1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CaptureTracking.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include <algorithm> 41 42 #define DEBUG_TYPE "basicaa" 43 44 using namespace llvm; 45 46 /// Enable analysis of recursive PHI nodes. 47 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 48 cl::init(false)); 49 /// SearchLimitReached / SearchTimes shows how often the limit of 50 /// to decompose GEPs is reached. It will affect the precision 51 /// of basic alias analysis. 52 STATISTIC(SearchLimitReached, "Number of times the limit to " 53 "decompose GEPs is reached"); 54 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 55 56 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 57 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 58 /// careful with value equivalence. We use reachability to make sure a value 59 /// cannot be involved in a cycle. 60 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 61 62 // The max limit of the search depth in DecomposeGEPExpression() and 63 // GetUnderlyingObject(), both functions need to use the same search 64 // depth otherwise the algorithm in aliasGEP will assert. 65 static const unsigned MaxLookupSearchDepth = 6; 66 67 bool BasicAAResult::invalidate(Function &F, const PreservedAnalyses &PA, 68 FunctionAnalysisManager::Invalidator &Inv) { 69 // We don't care if this analysis itself is preserved, it has no state. But 70 // we need to check that the analyses it depends on have been. Note that we 71 // may be created without handles to some analyses and in that case don't 72 // depend on them. 73 if (Inv.invalidate<AssumptionAnalysis>(F, PA) || 74 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)) || 75 (LI && Inv.invalidate<LoopAnalysis>(F, PA))) 76 return true; 77 78 // Otherwise this analysis result remains valid. 79 return false; 80 } 81 82 //===----------------------------------------------------------------------===// 83 // Useful predicates 84 //===----------------------------------------------------------------------===// 85 86 /// Returns true if the pointer is to a function-local object that never 87 /// escapes from the function. 88 static bool isNonEscapingLocalObject(const Value *V) { 89 // If this is a local allocation, check to see if it escapes. 90 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 91 // Set StoreCaptures to True so that we can assume in our callers that the 92 // pointer is not the result of a load instruction. Currently 93 // PointerMayBeCaptured doesn't have any special analysis for the 94 // StoreCaptures=false case; if it did, our callers could be refined to be 95 // more precise. 96 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 97 98 // If this is an argument that corresponds to a byval or noalias argument, 99 // then it has not escaped before entering the function. Check if it escapes 100 // inside the function. 101 if (const Argument *A = dyn_cast<Argument>(V)) 102 if (A->hasByValAttr() || A->hasNoAliasAttr()) 103 // Note even if the argument is marked nocapture, we still need to check 104 // for copies made inside the function. The nocapture attribute only 105 // specifies that there are no copies made that outlive the function. 106 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 107 108 return false; 109 } 110 111 /// Returns true if the pointer is one which would have been considered an 112 /// escape by isNonEscapingLocalObject. 113 static bool isEscapeSource(const Value *V) { 114 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 115 return true; 116 117 // The load case works because isNonEscapingLocalObject considers all 118 // stores to be escapes (it passes true for the StoreCaptures argument 119 // to PointerMayBeCaptured). 120 if (isa<LoadInst>(V)) 121 return true; 122 123 return false; 124 } 125 126 /// Returns the size of the object specified by V or UnknownSize if unknown. 127 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 128 const TargetLibraryInfo &TLI, 129 bool RoundToAlign = false) { 130 uint64_t Size; 131 ObjectSizeOpts Opts; 132 Opts.RoundToAlign = RoundToAlign; 133 if (getObjectSize(V, Size, DL, &TLI, Opts)) 134 return Size; 135 return MemoryLocation::UnknownSize; 136 } 137 138 /// Returns true if we can prove that the object specified by V is smaller than 139 /// Size. 140 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 141 const DataLayout &DL, 142 const TargetLibraryInfo &TLI) { 143 // Note that the meanings of the "object" are slightly different in the 144 // following contexts: 145 // c1: llvm::getObjectSize() 146 // c2: llvm.objectsize() intrinsic 147 // c3: isObjectSmallerThan() 148 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 149 // refers to the "entire object". 150 // 151 // Consider this example: 152 // char *p = (char*)malloc(100) 153 // char *q = p+80; 154 // 155 // In the context of c1 and c2, the "object" pointed by q refers to the 156 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 157 // 158 // However, in the context of c3, the "object" refers to the chunk of memory 159 // being allocated. So, the "object" has 100 bytes, and q points to the middle 160 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 161 // parameter, before the llvm::getObjectSize() is called to get the size of 162 // entire object, we should: 163 // - either rewind the pointer q to the base-address of the object in 164 // question (in this case rewind to p), or 165 // - just give up. It is up to caller to make sure the pointer is pointing 166 // to the base address the object. 167 // 168 // We go for 2nd option for simplicity. 169 if (!isIdentifiedObject(V)) 170 return false; 171 172 // This function needs to use the aligned object size because we allow 173 // reads a bit past the end given sufficient alignment. 174 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 175 176 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 177 } 178 179 /// Returns true if we can prove that the object specified by V has size Size. 180 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 181 const TargetLibraryInfo &TLI) { 182 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 183 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 184 } 185 186 //===----------------------------------------------------------------------===// 187 // GetElementPtr Instruction Decomposition and Analysis 188 //===----------------------------------------------------------------------===// 189 190 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 191 /// B are constant integers. 192 /// 193 /// Returns the scale and offset values as APInts and return V as a Value*, and 194 /// return whether we looked through any sign or zero extends. The incoming 195 /// Value is known to have IntegerType, and it may already be sign or zero 196 /// extended. 197 /// 198 /// Note that this looks through extends, so the high bits may not be 199 /// represented in the result. 200 /*static*/ const Value *BasicAAResult::GetLinearExpression( 201 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 202 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 203 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 204 assert(V->getType()->isIntegerTy() && "Not an integer value"); 205 206 // Limit our recursion depth. 207 if (Depth == 6) { 208 Scale = 1; 209 Offset = 0; 210 return V; 211 } 212 213 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 214 // If it's a constant, just convert it to an offset and remove the variable. 215 // If we've been called recursively, the Offset bit width will be greater 216 // than the constant's (the Offset's always as wide as the outermost call), 217 // so we'll zext here and process any extension in the isa<SExtInst> & 218 // isa<ZExtInst> cases below. 219 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 220 assert(Scale == 0 && "Constant values don't have a scale"); 221 return V; 222 } 223 224 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 225 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 226 227 // If we've been called recursively, then Offset and Scale will be wider 228 // than the BOp operands. We'll always zext it here as we'll process sign 229 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 230 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 231 232 switch (BOp->getOpcode()) { 233 default: 234 // We don't understand this instruction, so we can't decompose it any 235 // further. 236 Scale = 1; 237 Offset = 0; 238 return V; 239 case Instruction::Or: 240 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 241 // analyze it. 242 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 243 BOp, DT)) { 244 Scale = 1; 245 Offset = 0; 246 return V; 247 } 248 LLVM_FALLTHROUGH; 249 case Instruction::Add: 250 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 251 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 252 Offset += RHS; 253 break; 254 case Instruction::Sub: 255 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 256 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 257 Offset -= RHS; 258 break; 259 case Instruction::Mul: 260 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 261 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 262 Offset *= RHS; 263 Scale *= RHS; 264 break; 265 case Instruction::Shl: 266 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 267 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 268 Offset <<= RHS.getLimitedValue(); 269 Scale <<= RHS.getLimitedValue(); 270 // the semantics of nsw and nuw for left shifts don't match those of 271 // multiplications, so we won't propagate them. 272 NSW = NUW = false; 273 return V; 274 } 275 276 if (isa<OverflowingBinaryOperator>(BOp)) { 277 NUW &= BOp->hasNoUnsignedWrap(); 278 NSW &= BOp->hasNoSignedWrap(); 279 } 280 return V; 281 } 282 } 283 284 // Since GEP indices are sign extended anyway, we don't care about the high 285 // bits of a sign or zero extended value - just scales and offsets. The 286 // extensions have to be consistent though. 287 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 288 Value *CastOp = cast<CastInst>(V)->getOperand(0); 289 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 290 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 291 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 292 const Value *Result = 293 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 294 Depth + 1, AC, DT, NSW, NUW); 295 296 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 297 // by just incrementing the number of bits we've extended by. 298 unsigned ExtendedBy = NewWidth - SmallWidth; 299 300 if (isa<SExtInst>(V) && ZExtBits == 0) { 301 // sext(sext(%x, a), b) == sext(%x, a + b) 302 303 if (NSW) { 304 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 305 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 306 unsigned OldWidth = Offset.getBitWidth(); 307 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 308 } else { 309 // We may have signed-wrapped, so don't decompose sext(%x + c) into 310 // sext(%x) + sext(c) 311 Scale = 1; 312 Offset = 0; 313 Result = CastOp; 314 ZExtBits = OldZExtBits; 315 SExtBits = OldSExtBits; 316 } 317 SExtBits += ExtendedBy; 318 } else { 319 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 320 321 if (!NUW) { 322 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 323 // zext(%x) + zext(c) 324 Scale = 1; 325 Offset = 0; 326 Result = CastOp; 327 ZExtBits = OldZExtBits; 328 SExtBits = OldSExtBits; 329 } 330 ZExtBits += ExtendedBy; 331 } 332 333 return Result; 334 } 335 336 Scale = 1; 337 Offset = 0; 338 return V; 339 } 340 341 /// To ensure a pointer offset fits in an integer of size PointerSize 342 /// (in bits) when that size is smaller than 64. This is an issue in 343 /// particular for 32b programs with negative indices that rely on two's 344 /// complement wrap-arounds for precise alias information. 345 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 346 assert(PointerSize <= 64 && "Invalid PointerSize!"); 347 unsigned ShiftBits = 64 - PointerSize; 348 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 349 } 350 351 /// If V is a symbolic pointer expression, decompose it into a base pointer 352 /// with a constant offset and a number of scaled symbolic offsets. 353 /// 354 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 355 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 356 /// specified amount, but which may have other unrepresented high bits. As 357 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 358 /// 359 /// When DataLayout is around, this function is capable of analyzing everything 360 /// that GetUnderlyingObject can look through. To be able to do that 361 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 362 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 363 /// through pointer casts. 364 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 365 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 366 DominatorTree *DT) { 367 // Limit recursion depth to limit compile time in crazy cases. 368 unsigned MaxLookup = MaxLookupSearchDepth; 369 SearchTimes++; 370 371 Decomposed.StructOffset = 0; 372 Decomposed.OtherOffset = 0; 373 Decomposed.VarIndices.clear(); 374 do { 375 // See if this is a bitcast or GEP. 376 const Operator *Op = dyn_cast<Operator>(V); 377 if (!Op) { 378 // The only non-operator case we can handle are GlobalAliases. 379 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 380 if (!GA->isInterposable()) { 381 V = GA->getAliasee(); 382 continue; 383 } 384 } 385 Decomposed.Base = V; 386 return false; 387 } 388 389 if (Op->getOpcode() == Instruction::BitCast || 390 Op->getOpcode() == Instruction::AddrSpaceCast) { 391 V = Op->getOperand(0); 392 continue; 393 } 394 395 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 396 if (!GEPOp) { 397 if (auto CS = ImmutableCallSite(V)) 398 if (const Value *RV = CS.getReturnedArgOperand()) { 399 V = RV; 400 continue; 401 } 402 403 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 404 // can come up with something. This matches what GetUnderlyingObject does. 405 if (const Instruction *I = dyn_cast<Instruction>(V)) 406 // TODO: Get a DominatorTree and AssumptionCache and use them here 407 // (these are both now available in this function, but this should be 408 // updated when GetUnderlyingObject is updated). TLI should be 409 // provided also. 410 if (const Value *Simplified = 411 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 412 V = Simplified; 413 continue; 414 } 415 416 Decomposed.Base = V; 417 return false; 418 } 419 420 // Don't attempt to analyze GEPs over unsized objects. 421 if (!GEPOp->getSourceElementType()->isSized()) { 422 Decomposed.Base = V; 423 return false; 424 } 425 426 unsigned AS = GEPOp->getPointerAddressSpace(); 427 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 428 gep_type_iterator GTI = gep_type_begin(GEPOp); 429 unsigned PointerSize = DL.getPointerSizeInBits(AS); 430 // Assume all GEP operands are constants until proven otherwise. 431 bool GepHasConstantOffset = true; 432 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 433 I != E; ++I, ++GTI) { 434 const Value *Index = *I; 435 // Compute the (potentially symbolic) offset in bytes for this index. 436 if (StructType *STy = GTI.getStructTypeOrNull()) { 437 // For a struct, add the member offset. 438 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 439 if (FieldNo == 0) 440 continue; 441 442 Decomposed.StructOffset += 443 DL.getStructLayout(STy)->getElementOffset(FieldNo); 444 continue; 445 } 446 447 // For an array/pointer, add the element offset, explicitly scaled. 448 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 449 if (CIdx->isZero()) 450 continue; 451 Decomposed.OtherOffset += 452 DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue(); 453 continue; 454 } 455 456 GepHasConstantOffset = false; 457 458 uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType()); 459 unsigned ZExtBits = 0, SExtBits = 0; 460 461 // If the integer type is smaller than the pointer size, it is implicitly 462 // sign extended to pointer size. 463 unsigned Width = Index->getType()->getIntegerBitWidth(); 464 if (PointerSize > Width) 465 SExtBits += PointerSize - Width; 466 467 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 468 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 469 bool NSW = true, NUW = true; 470 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 471 SExtBits, DL, 0, AC, DT, NSW, NUW); 472 473 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 474 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 475 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 476 Scale *= IndexScale.getSExtValue(); 477 478 // If we already had an occurrence of this index variable, merge this 479 // scale into it. For example, we want to handle: 480 // A[x][x] -> x*16 + x*4 -> x*20 481 // This also ensures that 'x' only appears in the index list once. 482 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 483 if (Decomposed.VarIndices[i].V == Index && 484 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 485 Decomposed.VarIndices[i].SExtBits == SExtBits) { 486 Scale += Decomposed.VarIndices[i].Scale; 487 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 488 break; 489 } 490 } 491 492 // Make sure that we have a scale that makes sense for this target's 493 // pointer size. 494 Scale = adjustToPointerSize(Scale, PointerSize); 495 496 if (Scale) { 497 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 498 static_cast<int64_t>(Scale)}; 499 Decomposed.VarIndices.push_back(Entry); 500 } 501 } 502 503 // Take care of wrap-arounds 504 if (GepHasConstantOffset) { 505 Decomposed.StructOffset = 506 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 507 Decomposed.OtherOffset = 508 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 509 } 510 511 // Analyze the base pointer next. 512 V = GEPOp->getOperand(0); 513 } while (--MaxLookup); 514 515 // If the chain of expressions is too deep, just return early. 516 Decomposed.Base = V; 517 SearchLimitReached++; 518 return true; 519 } 520 521 /// Returns whether the given pointer value points to memory that is local to 522 /// the function, with global constants being considered local to all 523 /// functions. 524 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 525 bool OrLocal) { 526 assert(Visited.empty() && "Visited must be cleared after use!"); 527 528 unsigned MaxLookup = 8; 529 SmallVector<const Value *, 16> Worklist; 530 Worklist.push_back(Loc.Ptr); 531 do { 532 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 533 if (!Visited.insert(V).second) { 534 Visited.clear(); 535 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 536 } 537 538 // An alloca instruction defines local memory. 539 if (OrLocal && isa<AllocaInst>(V)) 540 continue; 541 542 // A global constant counts as local memory for our purposes. 543 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 544 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 545 // global to be marked constant in some modules and non-constant in 546 // others. GV may even be a declaration, not a definition. 547 if (!GV->isConstant()) { 548 Visited.clear(); 549 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 550 } 551 continue; 552 } 553 554 // If both select values point to local memory, then so does the select. 555 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 556 Worklist.push_back(SI->getTrueValue()); 557 Worklist.push_back(SI->getFalseValue()); 558 continue; 559 } 560 561 // If all values incoming to a phi node point to local memory, then so does 562 // the phi. 563 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 564 // Don't bother inspecting phi nodes with many operands. 565 if (PN->getNumIncomingValues() > MaxLookup) { 566 Visited.clear(); 567 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 568 } 569 for (Value *IncValue : PN->incoming_values()) 570 Worklist.push_back(IncValue); 571 continue; 572 } 573 574 // Otherwise be conservative. 575 Visited.clear(); 576 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 577 578 } while (!Worklist.empty() && --MaxLookup); 579 580 Visited.clear(); 581 return Worklist.empty(); 582 } 583 584 /// Returns the behavior when calling the given call site. 585 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 586 if (CS.doesNotAccessMemory()) 587 // Can't do better than this. 588 return FMRB_DoesNotAccessMemory; 589 590 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 591 592 // If the callsite knows it only reads memory, don't return worse 593 // than that. 594 if (CS.onlyReadsMemory()) 595 Min = FMRB_OnlyReadsMemory; 596 else if (CS.doesNotReadMemory()) 597 Min = FMRB_DoesNotReadMemory; 598 599 if (CS.onlyAccessesArgMemory()) 600 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 601 602 // If CS has operand bundles then aliasing attributes from the function it 603 // calls do not directly apply to the CallSite. This can be made more 604 // precise in the future. 605 if (!CS.hasOperandBundles()) 606 if (const Function *F = CS.getCalledFunction()) 607 Min = 608 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 609 610 return Min; 611 } 612 613 /// Returns the behavior when calling the given function. For use when the call 614 /// site is not known. 615 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 616 // If the function declares it doesn't access memory, we can't do better. 617 if (F->doesNotAccessMemory()) 618 return FMRB_DoesNotAccessMemory; 619 620 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 621 622 // If the function declares it only reads memory, go with that. 623 if (F->onlyReadsMemory()) 624 Min = FMRB_OnlyReadsMemory; 625 else if (F->doesNotReadMemory()) 626 Min = FMRB_DoesNotReadMemory; 627 628 if (F->onlyAccessesArgMemory()) 629 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 630 else if (F->onlyAccessesInaccessibleMemory()) 631 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 632 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 633 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 634 635 return Min; 636 } 637 638 /// Returns true if this is a writeonly (i.e Mod only) parameter. 639 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 640 const TargetLibraryInfo &TLI) { 641 if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly)) 642 return true; 643 644 // We can bound the aliasing properties of memset_pattern16 just as we can 645 // for memcpy/memset. This is particularly important because the 646 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 647 // whenever possible. 648 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 649 // attributes. 650 LibFunc F; 651 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 652 F == LibFunc_memset_pattern16 && TLI.has(F)) 653 if (ArgIdx == 0) 654 return true; 655 656 // TODO: memset_pattern4, memset_pattern8 657 // TODO: _chk variants 658 // TODO: strcmp, strcpy 659 660 return false; 661 } 662 663 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 664 unsigned ArgIdx) { 665 666 // Checking for known builtin intrinsics and target library functions. 667 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 668 return MRI_Mod; 669 670 if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly)) 671 return MRI_Ref; 672 673 if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone)) 674 return MRI_NoModRef; 675 676 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 677 } 678 679 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 680 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 681 return II && II->getIntrinsicID() == IID; 682 } 683 684 #ifndef NDEBUG 685 static const Function *getParent(const Value *V) { 686 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 687 if (!inst->getParent()) 688 return nullptr; 689 return inst->getParent()->getParent(); 690 } 691 692 if (const Argument *arg = dyn_cast<Argument>(V)) 693 return arg->getParent(); 694 695 return nullptr; 696 } 697 698 static bool notDifferentParent(const Value *O1, const Value *O2) { 699 700 const Function *F1 = getParent(O1); 701 const Function *F2 = getParent(O2); 702 703 return !F1 || !F2 || F1 == F2; 704 } 705 #endif 706 707 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 708 const MemoryLocation &LocB) { 709 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 710 "BasicAliasAnalysis doesn't support interprocedural queries."); 711 712 // If we have a directly cached entry for these locations, we have recursed 713 // through this once, so just return the cached results. Notably, when this 714 // happens, we don't clear the cache. 715 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 716 if (CacheIt != AliasCache.end()) 717 return CacheIt->second; 718 719 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 720 LocB.Size, LocB.AATags); 721 // AliasCache rarely has more than 1 or 2 elements, always use 722 // shrink_and_clear so it quickly returns to the inline capacity of the 723 // SmallDenseMap if it ever grows larger. 724 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 725 AliasCache.shrink_and_clear(); 726 VisitedPhiBBs.clear(); 727 return Alias; 728 } 729 730 /// Checks to see if the specified callsite can clobber the specified memory 731 /// object. 732 /// 733 /// Since we only look at local properties of this function, we really can't 734 /// say much about this query. We do, however, use simple "address taken" 735 /// analysis on local objects. 736 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 737 const MemoryLocation &Loc) { 738 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 739 "AliasAnalysis query involving multiple functions!"); 740 741 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 742 743 // If this is a tail call and Loc.Ptr points to a stack location, we know that 744 // the tail call cannot access or modify the local stack. 745 // We cannot exclude byval arguments here; these belong to the caller of 746 // the current function not to the current function, and a tail callee 747 // may reference them. 748 if (isa<AllocaInst>(Object)) 749 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 750 if (CI->isTailCall()) 751 return MRI_NoModRef; 752 753 // If the pointer is to a locally allocated object that does not escape, 754 // then the call can not mod/ref the pointer unless the call takes the pointer 755 // as an argument, and itself doesn't capture it. 756 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 757 isNonEscapingLocalObject(Object)) { 758 759 // Optimistically assume that call doesn't touch Object and check this 760 // assumption in the following loop. 761 ModRefInfo Result = MRI_NoModRef; 762 763 unsigned OperandNo = 0; 764 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 765 CI != CE; ++CI, ++OperandNo) { 766 // Only look at the no-capture or byval pointer arguments. If this 767 // pointer were passed to arguments that were neither of these, then it 768 // couldn't be no-capture. 769 if (!(*CI)->getType()->isPointerTy() || 770 (!CS.doesNotCapture(OperandNo) && 771 OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo))) 772 continue; 773 774 // Call doesn't access memory through this operand, so we don't care 775 // if it aliases with Object. 776 if (CS.doesNotAccessMemory(OperandNo)) 777 continue; 778 779 // If this is a no-capture pointer argument, see if we can tell that it 780 // is impossible to alias the pointer we're checking. 781 AliasResult AR = 782 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 783 784 // Operand doesnt alias 'Object', continue looking for other aliases 785 if (AR == NoAlias) 786 continue; 787 // Operand aliases 'Object', but call doesn't modify it. Strengthen 788 // initial assumption and keep looking in case if there are more aliases. 789 if (CS.onlyReadsMemory(OperandNo)) { 790 Result = static_cast<ModRefInfo>(Result | MRI_Ref); 791 continue; 792 } 793 // Operand aliases 'Object' but call only writes into it. 794 if (CS.doesNotReadMemory(OperandNo)) { 795 Result = static_cast<ModRefInfo>(Result | MRI_Mod); 796 continue; 797 } 798 // This operand aliases 'Object' and call reads and writes into it. 799 Result = MRI_ModRef; 800 break; 801 } 802 803 // Early return if we improved mod ref information 804 if (Result != MRI_ModRef) 805 return Result; 806 } 807 808 // If the CallSite is to malloc or calloc, we can assume that it doesn't 809 // modify any IR visible value. This is only valid because we assume these 810 // routines do not read values visible in the IR. TODO: Consider special 811 // casing realloc and strdup routines which access only their arguments as 812 // well. Or alternatively, replace all of this with inaccessiblememonly once 813 // that's implemented fully. 814 auto *Inst = CS.getInstruction(); 815 if (isMallocOrCallocLikeFn(Inst, &TLI)) { 816 // Be conservative if the accessed pointer may alias the allocation - 817 // fallback to the generic handling below. 818 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 819 return MRI_NoModRef; 820 } 821 822 // The semantics of memcpy intrinsics forbid overlap between their respective 823 // operands, i.e., source and destination of any given memcpy must no-alias. 824 // If Loc must-aliases either one of these two locations, then it necessarily 825 // no-aliases the other. 826 if (auto *Inst = dyn_cast<MemCpyInst>(CS.getInstruction())) { 827 AliasResult SrcAA, DestAA; 828 829 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 830 Loc)) == MustAlias) 831 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 832 return MRI_Ref; 833 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 834 Loc)) == MustAlias) 835 // The converse case. 836 return MRI_Mod; 837 838 // It's also possible for Loc to alias both src and dest, or neither. 839 ModRefInfo rv = MRI_NoModRef; 840 if (SrcAA != NoAlias) 841 rv = static_cast<ModRefInfo>(rv | MRI_Ref); 842 if (DestAA != NoAlias) 843 rv = static_cast<ModRefInfo>(rv | MRI_Mod); 844 return rv; 845 } 846 847 // While the assume intrinsic is marked as arbitrarily writing so that 848 // proper control dependencies will be maintained, it never aliases any 849 // particular memory location. 850 if (isIntrinsicCall(CS, Intrinsic::assume)) 851 return MRI_NoModRef; 852 853 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 854 // that proper control dependencies are maintained but they never mods any 855 // particular memory location. 856 // 857 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 858 // heap state at the point the guard is issued needs to be consistent in case 859 // the guard invokes the "deopt" continuation. 860 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 861 return MRI_Ref; 862 863 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 864 // writing so that proper control dependencies are maintained but they never 865 // mod any particular memory location visible to the IR. 866 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 867 // intrinsic is now modeled as reading memory. This prevents hoisting the 868 // invariant.start intrinsic over stores. Consider: 869 // *ptr = 40; 870 // *ptr = 50; 871 // invariant_start(ptr) 872 // int val = *ptr; 873 // print(val); 874 // 875 // This cannot be transformed to: 876 // 877 // *ptr = 40; 878 // invariant_start(ptr) 879 // *ptr = 50; 880 // int val = *ptr; 881 // print(val); 882 // 883 // The transformation will cause the second store to be ignored (based on 884 // rules of invariant.start) and print 40, while the first program always 885 // prints 50. 886 if (isIntrinsicCall(CS, Intrinsic::invariant_start)) 887 return MRI_Ref; 888 889 // The AAResultBase base class has some smarts, lets use them. 890 return AAResultBase::getModRefInfo(CS, Loc); 891 } 892 893 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 894 ImmutableCallSite CS2) { 895 // While the assume intrinsic is marked as arbitrarily writing so that 896 // proper control dependencies will be maintained, it never aliases any 897 // particular memory location. 898 if (isIntrinsicCall(CS1, Intrinsic::assume) || 899 isIntrinsicCall(CS2, Intrinsic::assume)) 900 return MRI_NoModRef; 901 902 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 903 // that proper control dependencies are maintained but they never mod any 904 // particular memory location. 905 // 906 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 907 // heap state at the point the guard is issued needs to be consistent in case 908 // the guard invokes the "deopt" continuation. 909 910 // NB! This function is *not* commutative, so we specical case two 911 // possibilities for guard intrinsics. 912 913 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 914 return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef; 915 916 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 917 return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef; 918 919 // The AAResultBase base class has some smarts, lets use them. 920 return AAResultBase::getModRefInfo(CS1, CS2); 921 } 922 923 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 924 /// both having the exact same pointer operand. 925 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 926 uint64_t V1Size, 927 const GEPOperator *GEP2, 928 uint64_t V2Size, 929 const DataLayout &DL) { 930 931 assert(GEP1->getPointerOperand()->stripPointerCastsAndBarriers() == 932 GEP2->getPointerOperand()->stripPointerCastsAndBarriers() && 933 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 934 "Expected GEPs with the same pointer operand"); 935 936 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 937 // such that the struct field accesses provably cannot alias. 938 // We also need at least two indices (the pointer, and the struct field). 939 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 940 GEP1->getNumIndices() < 2) 941 return MayAlias; 942 943 // If we don't know the size of the accesses through both GEPs, we can't 944 // determine whether the struct fields accessed can't alias. 945 if (V1Size == MemoryLocation::UnknownSize || 946 V2Size == MemoryLocation::UnknownSize) 947 return MayAlias; 948 949 ConstantInt *C1 = 950 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 951 ConstantInt *C2 = 952 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 953 954 // If the last (struct) indices are constants and are equal, the other indices 955 // might be also be dynamically equal, so the GEPs can alias. 956 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 957 return MayAlias; 958 959 // Find the last-indexed type of the GEP, i.e., the type you'd get if 960 // you stripped the last index. 961 // On the way, look at each indexed type. If there's something other 962 // than an array, different indices can lead to different final types. 963 SmallVector<Value *, 8> IntermediateIndices; 964 965 // Insert the first index; we don't need to check the type indexed 966 // through it as it only drops the pointer indirection. 967 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 968 IntermediateIndices.push_back(GEP1->getOperand(1)); 969 970 // Insert all the remaining indices but the last one. 971 // Also, check that they all index through arrays. 972 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 973 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 974 GEP1->getSourceElementType(), IntermediateIndices))) 975 return MayAlias; 976 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 977 } 978 979 auto *Ty = GetElementPtrInst::getIndexedType( 980 GEP1->getSourceElementType(), IntermediateIndices); 981 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 982 983 if (isa<SequentialType>(Ty)) { 984 // We know that: 985 // - both GEPs begin indexing from the exact same pointer; 986 // - the last indices in both GEPs are constants, indexing into a sequential 987 // type (array or pointer); 988 // - both GEPs only index through arrays prior to that. 989 // 990 // Because array indices greater than the number of elements are valid in 991 // GEPs, unless we know the intermediate indices are identical between 992 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 993 // partially overlap. We also need to check that the loaded size matches 994 // the element size, otherwise we could still have overlap. 995 const uint64_t ElementSize = 996 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 997 if (V1Size != ElementSize || V2Size != ElementSize) 998 return MayAlias; 999 1000 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1001 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1002 return MayAlias; 1003 1004 // Now we know that the array/pointer that GEP1 indexes into and that 1005 // that GEP2 indexes into must either precisely overlap or be disjoint. 1006 // Because they cannot partially overlap and because fields in an array 1007 // cannot overlap, if we can prove the final indices are different between 1008 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1009 1010 // If the last indices are constants, we've already checked they don't 1011 // equal each other so we can exit early. 1012 if (C1 && C2) 1013 return NoAlias; 1014 { 1015 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1016 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1017 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1018 // If one of the indices is a PHI node, be safe and only use 1019 // computeKnownBits so we don't make any assumptions about the 1020 // relationships between the two indices. This is important if we're 1021 // asking about values from different loop iterations. See PR32314. 1022 // TODO: We may be able to change the check so we only do this when 1023 // we definitely looked through a PHINode. 1024 if (GEP1LastIdx != GEP2LastIdx && 1025 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1026 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1027 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1028 if (Known1.Zero.intersects(Known2.One) || 1029 Known1.One.intersects(Known2.Zero)) 1030 return NoAlias; 1031 } 1032 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1033 return NoAlias; 1034 } 1035 return MayAlias; 1036 } else if (!LastIndexedStruct || !C1 || !C2) { 1037 return MayAlias; 1038 } 1039 1040 // We know that: 1041 // - both GEPs begin indexing from the exact same pointer; 1042 // - the last indices in both GEPs are constants, indexing into a struct; 1043 // - said indices are different, hence, the pointed-to fields are different; 1044 // - both GEPs only index through arrays prior to that. 1045 // 1046 // This lets us determine that the struct that GEP1 indexes into and the 1047 // struct that GEP2 indexes into must either precisely overlap or be 1048 // completely disjoint. Because they cannot partially overlap, indexing into 1049 // different non-overlapping fields of the struct will never alias. 1050 1051 // Therefore, the only remaining thing needed to show that both GEPs can't 1052 // alias is that the fields are not overlapping. 1053 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1054 const uint64_t StructSize = SL->getSizeInBytes(); 1055 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1056 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1057 1058 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1059 uint64_t V2Off, uint64_t V2Size) { 1060 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1061 ((V2Off + V2Size <= StructSize) || 1062 (V2Off + V2Size - StructSize <= V1Off)); 1063 }; 1064 1065 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1066 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1067 return NoAlias; 1068 1069 return MayAlias; 1070 } 1071 1072 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1073 // beginning of the object the GEP points would have a negative offset with 1074 // repsect to the alloca, that means the GEP can not alias pointer (b). 1075 // Note that the pointer based on the alloca may not be a GEP. For 1076 // example, it may be the alloca itself. 1077 // The same applies if (b) is based on a GlobalVariable. Note that just being 1078 // based on isIdentifiedObject() is not enough - we need an identified object 1079 // that does not permit access to negative offsets. For example, a negative 1080 // offset from a noalias argument or call can be inbounds w.r.t the actual 1081 // underlying object. 1082 // 1083 // For example, consider: 1084 // 1085 // struct { int f0, int f1, ...} foo; 1086 // foo alloca; 1087 // foo* random = bar(alloca); 1088 // int *f0 = &alloca.f0 1089 // int *f1 = &random->f1; 1090 // 1091 // Which is lowered, approximately, to: 1092 // 1093 // %alloca = alloca %struct.foo 1094 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1095 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1096 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1097 // 1098 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1099 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1100 // point into the same object. But since %f0 points to the beginning of %alloca, 1101 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1102 // than (%alloca - 1), and so is not inbounds, a contradiction. 1103 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1104 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1105 uint64_t ObjectAccessSize) { 1106 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1107 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 1108 return false; 1109 1110 // We need the object to be an alloca or a globalvariable, and want to know 1111 // the offset of the pointer from the object precisely, so no variable 1112 // indices are allowed. 1113 if (!(isa<AllocaInst>(DecompObject.Base) || 1114 isa<GlobalVariable>(DecompObject.Base)) || 1115 !DecompObject.VarIndices.empty()) 1116 return false; 1117 1118 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1119 DecompObject.OtherOffset; 1120 1121 // If the GEP has no variable indices, we know the precise offset 1122 // from the base, then use it. If the GEP has variable indices, we're in 1123 // a bit more trouble: we can't count on the constant offsets that come 1124 // from non-struct sources, since these can be "rewound" by a negative 1125 // variable offset. So use only offsets that came from structs. 1126 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1127 if (DecompGEP.VarIndices.empty()) 1128 GEPBaseOffset += DecompGEP.OtherOffset; 1129 1130 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1131 } 1132 1133 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1134 /// another pointer. 1135 /// 1136 /// We know that V1 is a GEP, but we don't know anything about V2. 1137 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1138 /// V2. 1139 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 1140 const AAMDNodes &V1AAInfo, const Value *V2, 1141 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1142 const Value *UnderlyingV1, 1143 const Value *UnderlyingV2) { 1144 DecomposedGEP DecompGEP1, DecompGEP2; 1145 bool GEP1MaxLookupReached = 1146 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1147 bool GEP2MaxLookupReached = 1148 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1149 1150 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1151 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1152 1153 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1154 "DecomposeGEPExpression returned a result different from " 1155 "GetUnderlyingObject"); 1156 1157 // If the GEP's offset relative to its base is such that the base would 1158 // fall below the start of the object underlying V2, then the GEP and V2 1159 // cannot alias. 1160 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1161 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1162 return NoAlias; 1163 // If we have two gep instructions with must-alias or not-alias'ing base 1164 // pointers, figure out if the indexes to the GEP tell us anything about the 1165 // derived pointer. 1166 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1167 // Check for the GEP base being at a negative offset, this time in the other 1168 // direction. 1169 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1170 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1171 return NoAlias; 1172 // Do the base pointers alias? 1173 AliasResult BaseAlias = 1174 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1175 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1176 1177 // Check for geps of non-aliasing underlying pointers where the offsets are 1178 // identical. 1179 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1180 // Do the base pointers alias assuming type and size. 1181 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1182 UnderlyingV2, V2Size, V2AAInfo); 1183 if (PreciseBaseAlias == NoAlias) { 1184 // See if the computed offset from the common pointer tells us about the 1185 // relation of the resulting pointer. 1186 // If the max search depth is reached the result is undefined 1187 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1188 return MayAlias; 1189 1190 // Same offsets. 1191 if (GEP1BaseOffset == GEP2BaseOffset && 1192 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1193 return NoAlias; 1194 } 1195 } 1196 1197 // If we get a No or May, then return it immediately, no amount of analysis 1198 // will improve this situation. 1199 if (BaseAlias != MustAlias) 1200 return BaseAlias; 1201 1202 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1203 // exactly, see if the computed offset from the common pointer tells us 1204 // about the relation of the resulting pointer. 1205 // If we know the two GEPs are based off of the exact same pointer (and not 1206 // just the same underlying object), see if that tells us anything about 1207 // the resulting pointers. 1208 if (GEP1->getPointerOperand()->stripPointerCastsAndBarriers() == 1209 GEP2->getPointerOperand()->stripPointerCastsAndBarriers() && 1210 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1211 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1212 // If we couldn't find anything interesting, don't abandon just yet. 1213 if (R != MayAlias) 1214 return R; 1215 } 1216 1217 // If the max search depth is reached, the result is undefined 1218 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1219 return MayAlias; 1220 1221 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1222 // symbolic difference. 1223 GEP1BaseOffset -= GEP2BaseOffset; 1224 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1225 1226 } else { 1227 // Check to see if these two pointers are related by the getelementptr 1228 // instruction. If one pointer is a GEP with a non-zero index of the other 1229 // pointer, we know they cannot alias. 1230 1231 // If both accesses are unknown size, we can't do anything useful here. 1232 if (V1Size == MemoryLocation::UnknownSize && 1233 V2Size == MemoryLocation::UnknownSize) 1234 return MayAlias; 1235 1236 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1237 AAMDNodes(), V2, MemoryLocation::UnknownSize, 1238 V2AAInfo, nullptr, UnderlyingV2); 1239 if (R != MustAlias) 1240 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1241 // If V2 is known not to alias GEP base pointer, then the two values 1242 // cannot alias per GEP semantics: "Any memory access must be done through 1243 // a pointer value associated with an address range of the memory access, 1244 // otherwise the behavior is undefined.". 1245 return R; 1246 1247 // If the max search depth is reached the result is undefined 1248 if (GEP1MaxLookupReached) 1249 return MayAlias; 1250 } 1251 1252 // In the two GEP Case, if there is no difference in the offsets of the 1253 // computed pointers, the resultant pointers are a must alias. This 1254 // happens when we have two lexically identical GEP's (for example). 1255 // 1256 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1257 // must aliases the GEP, the end result is a must alias also. 1258 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1259 return MustAlias; 1260 1261 // If there is a constant difference between the pointers, but the difference 1262 // is less than the size of the associated memory object, then we know 1263 // that the objects are partially overlapping. If the difference is 1264 // greater, we know they do not overlap. 1265 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1266 if (GEP1BaseOffset >= 0) { 1267 if (V2Size != MemoryLocation::UnknownSize) { 1268 if ((uint64_t)GEP1BaseOffset < V2Size) 1269 return PartialAlias; 1270 return NoAlias; 1271 } 1272 } else { 1273 // We have the situation where: 1274 // + + 1275 // | BaseOffset | 1276 // ---------------->| 1277 // |-->V1Size |-------> V2Size 1278 // GEP1 V2 1279 // We need to know that V2Size is not unknown, otherwise we might have 1280 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1281 if (V1Size != MemoryLocation::UnknownSize && 1282 V2Size != MemoryLocation::UnknownSize) { 1283 if (-(uint64_t)GEP1BaseOffset < V1Size) 1284 return PartialAlias; 1285 return NoAlias; 1286 } 1287 } 1288 } 1289 1290 if (!DecompGEP1.VarIndices.empty()) { 1291 uint64_t Modulo = 0; 1292 bool AllPositive = true; 1293 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1294 1295 // Try to distinguish something like &A[i][1] against &A[42][0]. 1296 // Grab the least significant bit set in any of the scales. We 1297 // don't need std::abs here (even if the scale's negative) as we'll 1298 // be ^'ing Modulo with itself later. 1299 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1300 1301 if (AllPositive) { 1302 // If the Value could change between cycles, then any reasoning about 1303 // the Value this cycle may not hold in the next cycle. We'll just 1304 // give up if we can't determine conditions that hold for every cycle: 1305 const Value *V = DecompGEP1.VarIndices[i].V; 1306 1307 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT); 1308 bool SignKnownZero = Known.isNonNegative(); 1309 bool SignKnownOne = Known.isNegative(); 1310 1311 // Zero-extension widens the variable, and so forces the sign 1312 // bit to zero. 1313 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1314 SignKnownZero |= IsZExt; 1315 SignKnownOne &= !IsZExt; 1316 1317 // If the variable begins with a zero then we know it's 1318 // positive, regardless of whether the value is signed or 1319 // unsigned. 1320 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1321 AllPositive = 1322 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1323 } 1324 } 1325 1326 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1327 1328 // We can compute the difference between the two addresses 1329 // mod Modulo. Check whether that difference guarantees that the 1330 // two locations do not alias. 1331 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1332 if (V1Size != MemoryLocation::UnknownSize && 1333 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1334 V1Size <= Modulo - ModOffset) 1335 return NoAlias; 1336 1337 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1338 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1339 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1340 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1341 return NoAlias; 1342 1343 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1344 GEP1BaseOffset, &AC, DT)) 1345 return NoAlias; 1346 } 1347 1348 // Statically, we can see that the base objects are the same, but the 1349 // pointers have dynamic offsets which we can't resolve. And none of our 1350 // little tricks above worked. 1351 return MayAlias; 1352 } 1353 1354 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1355 // If the results agree, take it. 1356 if (A == B) 1357 return A; 1358 // A mix of PartialAlias and MustAlias is PartialAlias. 1359 if ((A == PartialAlias && B == MustAlias) || 1360 (B == PartialAlias && A == MustAlias)) 1361 return PartialAlias; 1362 // Otherwise, we don't know anything. 1363 return MayAlias; 1364 } 1365 1366 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1367 /// against another. 1368 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1369 const AAMDNodes &SIAAInfo, 1370 const Value *V2, uint64_t V2Size, 1371 const AAMDNodes &V2AAInfo, 1372 const Value *UnderV2) { 1373 // If the values are Selects with the same condition, we can do a more precise 1374 // check: just check for aliases between the values on corresponding arms. 1375 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1376 if (SI->getCondition() == SI2->getCondition()) { 1377 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1378 SI2->getTrueValue(), V2Size, V2AAInfo); 1379 if (Alias == MayAlias) 1380 return MayAlias; 1381 AliasResult ThisAlias = 1382 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1383 SI2->getFalseValue(), V2Size, V2AAInfo); 1384 return MergeAliasResults(ThisAlias, Alias); 1385 } 1386 1387 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1388 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1389 AliasResult Alias = 1390 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1391 SISize, SIAAInfo, UnderV2); 1392 if (Alias == MayAlias) 1393 return MayAlias; 1394 1395 AliasResult ThisAlias = 1396 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1397 UnderV2); 1398 return MergeAliasResults(ThisAlias, Alias); 1399 } 1400 1401 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1402 /// another. 1403 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1404 const AAMDNodes &PNAAInfo, const Value *V2, 1405 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1406 const Value *UnderV2) { 1407 // Track phi nodes we have visited. We use this information when we determine 1408 // value equivalence. 1409 VisitedPhiBBs.insert(PN->getParent()); 1410 1411 // If the values are PHIs in the same block, we can do a more precise 1412 // as well as efficient check: just check for aliases between the values 1413 // on corresponding edges. 1414 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1415 if (PN2->getParent() == PN->getParent()) { 1416 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1417 MemoryLocation(V2, V2Size, V2AAInfo)); 1418 if (PN > V2) 1419 std::swap(Locs.first, Locs.second); 1420 // Analyse the PHIs' inputs under the assumption that the PHIs are 1421 // NoAlias. 1422 // If the PHIs are May/MustAlias there must be (recursively) an input 1423 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1424 // there must be an operation on the PHIs within the PHIs' value cycle 1425 // that causes a MayAlias. 1426 // Pretend the phis do not alias. 1427 AliasResult Alias = NoAlias; 1428 assert(AliasCache.count(Locs) && 1429 "There must exist an entry for the phi node"); 1430 AliasResult OrigAliasResult = AliasCache[Locs]; 1431 AliasCache[Locs] = NoAlias; 1432 1433 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1434 AliasResult ThisAlias = 1435 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1436 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1437 V2Size, V2AAInfo); 1438 Alias = MergeAliasResults(ThisAlias, Alias); 1439 if (Alias == MayAlias) 1440 break; 1441 } 1442 1443 // Reset if speculation failed. 1444 if (Alias != NoAlias) 1445 AliasCache[Locs] = OrigAliasResult; 1446 1447 return Alias; 1448 } 1449 1450 SmallPtrSet<Value *, 4> UniqueSrc; 1451 SmallVector<Value *, 4> V1Srcs; 1452 bool isRecursive = false; 1453 for (Value *PV1 : PN->incoming_values()) { 1454 if (isa<PHINode>(PV1)) 1455 // If any of the source itself is a PHI, return MayAlias conservatively 1456 // to avoid compile time explosion. The worst possible case is if both 1457 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1458 // and 'n' are the number of PHI sources. 1459 return MayAlias; 1460 1461 if (EnableRecPhiAnalysis) 1462 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1463 // Check whether the incoming value is a GEP that advances the pointer 1464 // result of this PHI node (e.g. in a loop). If this is the case, we 1465 // would recurse and always get a MayAlias. Handle this case specially 1466 // below. 1467 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1468 isa<ConstantInt>(PV1GEP->idx_begin())) { 1469 isRecursive = true; 1470 continue; 1471 } 1472 } 1473 1474 if (UniqueSrc.insert(PV1).second) 1475 V1Srcs.push_back(PV1); 1476 } 1477 1478 // If this PHI node is recursive, set the size of the accessed memory to 1479 // unknown to represent all the possible values the GEP could advance the 1480 // pointer to. 1481 if (isRecursive) 1482 PNSize = MemoryLocation::UnknownSize; 1483 1484 AliasResult Alias = 1485 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1486 PNSize, PNAAInfo, UnderV2); 1487 1488 // Early exit if the check of the first PHI source against V2 is MayAlias. 1489 // Other results are not possible. 1490 if (Alias == MayAlias) 1491 return MayAlias; 1492 1493 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1494 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1495 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1496 Value *V = V1Srcs[i]; 1497 1498 AliasResult ThisAlias = 1499 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1500 Alias = MergeAliasResults(ThisAlias, Alias); 1501 if (Alias == MayAlias) 1502 break; 1503 } 1504 1505 return Alias; 1506 } 1507 1508 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1509 /// array references. 1510 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1511 AAMDNodes V1AAInfo, const Value *V2, 1512 uint64_t V2Size, AAMDNodes V2AAInfo, 1513 const Value *O1, const Value *O2) { 1514 // If either of the memory references is empty, it doesn't matter what the 1515 // pointer values are. 1516 if (V1Size == 0 || V2Size == 0) 1517 return NoAlias; 1518 1519 // Strip off any casts if they exist. 1520 V1 = V1->stripPointerCastsAndBarriers(); 1521 V2 = V2->stripPointerCastsAndBarriers(); 1522 1523 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1524 // value for undef that aliases nothing in the program. 1525 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1526 return NoAlias; 1527 1528 // Are we checking for alias of the same value? 1529 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1530 // different iterations. We must therefore make sure that this is not the 1531 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1532 // happen by looking at the visited phi nodes and making sure they cannot 1533 // reach the value. 1534 if (isValueEqualInPotentialCycles(V1, V2)) 1535 return MustAlias; 1536 1537 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1538 return NoAlias; // Scalars cannot alias each other 1539 1540 // Figure out what objects these things are pointing to if we can. 1541 if (O1 == nullptr) 1542 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1543 1544 if (O2 == nullptr) 1545 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1546 1547 // Null values in the default address space don't point to any object, so they 1548 // don't alias any other pointer. 1549 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1550 if (CPN->getType()->getAddressSpace() == 0) 1551 return NoAlias; 1552 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1553 if (CPN->getType()->getAddressSpace() == 0) 1554 return NoAlias; 1555 1556 if (O1 != O2) { 1557 // If V1/V2 point to two different objects, we know that we have no alias. 1558 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1559 return NoAlias; 1560 1561 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1562 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1563 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1564 return NoAlias; 1565 1566 // Function arguments can't alias with things that are known to be 1567 // unambigously identified at the function level. 1568 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1569 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1570 return NoAlias; 1571 1572 // Most objects can't alias null. 1573 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1574 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1575 return NoAlias; 1576 1577 // If one pointer is the result of a call/invoke or load and the other is a 1578 // non-escaping local object within the same function, then we know the 1579 // object couldn't escape to a point where the call could return it. 1580 // 1581 // Note that if the pointers are in different functions, there are a 1582 // variety of complications. A call with a nocapture argument may still 1583 // temporary store the nocapture argument's value in a temporary memory 1584 // location if that memory location doesn't escape. Or it may pass a 1585 // nocapture value to other functions as long as they don't capture it. 1586 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1587 return NoAlias; 1588 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1589 return NoAlias; 1590 } 1591 1592 // If the size of one access is larger than the entire object on the other 1593 // side, then we know such behavior is undefined and can assume no alias. 1594 if ((V1Size != MemoryLocation::UnknownSize && 1595 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1596 (V2Size != MemoryLocation::UnknownSize && 1597 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1598 return NoAlias; 1599 1600 // Check the cache before climbing up use-def chains. This also terminates 1601 // otherwise infinitely recursive queries. 1602 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1603 MemoryLocation(V2, V2Size, V2AAInfo)); 1604 if (V1 > V2) 1605 std::swap(Locs.first, Locs.second); 1606 std::pair<AliasCacheTy::iterator, bool> Pair = 1607 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1608 if (!Pair.second) 1609 return Pair.first->second; 1610 1611 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1612 // GEP can't simplify, we don't even look at the PHI cases. 1613 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1614 std::swap(V1, V2); 1615 std::swap(V1Size, V2Size); 1616 std::swap(O1, O2); 1617 std::swap(V1AAInfo, V2AAInfo); 1618 } 1619 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1620 AliasResult Result = 1621 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1622 if (Result != MayAlias) 1623 return AliasCache[Locs] = Result; 1624 } 1625 1626 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1627 std::swap(V1, V2); 1628 std::swap(O1, O2); 1629 std::swap(V1Size, V2Size); 1630 std::swap(V1AAInfo, V2AAInfo); 1631 } 1632 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1633 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1634 V2, V2Size, V2AAInfo, O2); 1635 if (Result != MayAlias) 1636 return AliasCache[Locs] = Result; 1637 } 1638 1639 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1640 std::swap(V1, V2); 1641 std::swap(O1, O2); 1642 std::swap(V1Size, V2Size); 1643 std::swap(V1AAInfo, V2AAInfo); 1644 } 1645 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1646 AliasResult Result = 1647 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1648 if (Result != MayAlias) 1649 return AliasCache[Locs] = Result; 1650 } 1651 1652 // If both pointers are pointing into the same object and one of them 1653 // accesses the entire object, then the accesses must overlap in some way. 1654 if (O1 == O2) 1655 if ((V1Size != MemoryLocation::UnknownSize && 1656 isObjectSize(O1, V1Size, DL, TLI)) || 1657 (V2Size != MemoryLocation::UnknownSize && 1658 isObjectSize(O2, V2Size, DL, TLI))) 1659 return AliasCache[Locs] = PartialAlias; 1660 1661 // Recurse back into the best AA results we have, potentially with refined 1662 // memory locations. We have already ensured that BasicAA has a MayAlias 1663 // cache result for these, so any recursion back into BasicAA won't loop. 1664 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1665 return AliasCache[Locs] = Result; 1666 } 1667 1668 /// Check whether two Values can be considered equivalent. 1669 /// 1670 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1671 /// they can not be part of a cycle in the value graph by looking at all 1672 /// visited phi nodes an making sure that the phis cannot reach the value. We 1673 /// have to do this because we are looking through phi nodes (That is we say 1674 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1675 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1676 const Value *V2) { 1677 if (V != V2) 1678 return false; 1679 1680 const Instruction *Inst = dyn_cast<Instruction>(V); 1681 if (!Inst) 1682 return true; 1683 1684 if (VisitedPhiBBs.empty()) 1685 return true; 1686 1687 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1688 return false; 1689 1690 // Make sure that the visited phis cannot reach the Value. This ensures that 1691 // the Values cannot come from different iterations of a potential cycle the 1692 // phi nodes could be involved in. 1693 for (auto *P : VisitedPhiBBs) 1694 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1695 return false; 1696 1697 return true; 1698 } 1699 1700 /// Computes the symbolic difference between two de-composed GEPs. 1701 /// 1702 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1703 /// instructions GEP1 and GEP2 which have common base pointers. 1704 void BasicAAResult::GetIndexDifference( 1705 SmallVectorImpl<VariableGEPIndex> &Dest, 1706 const SmallVectorImpl<VariableGEPIndex> &Src) { 1707 if (Src.empty()) 1708 return; 1709 1710 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1711 const Value *V = Src[i].V; 1712 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1713 int64_t Scale = Src[i].Scale; 1714 1715 // Find V in Dest. This is N^2, but pointer indices almost never have more 1716 // than a few variable indexes. 1717 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1718 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1719 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1720 continue; 1721 1722 // If we found it, subtract off Scale V's from the entry in Dest. If it 1723 // goes to zero, remove the entry. 1724 if (Dest[j].Scale != Scale) 1725 Dest[j].Scale -= Scale; 1726 else 1727 Dest.erase(Dest.begin() + j); 1728 Scale = 0; 1729 break; 1730 } 1731 1732 // If we didn't consume this entry, add it to the end of the Dest list. 1733 if (Scale) { 1734 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1735 Dest.push_back(Entry); 1736 } 1737 } 1738 } 1739 1740 bool BasicAAResult::constantOffsetHeuristic( 1741 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1742 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1743 DominatorTree *DT) { 1744 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1745 V2Size == MemoryLocation::UnknownSize) 1746 return false; 1747 1748 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1749 1750 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1751 Var0.Scale != -Var1.Scale) 1752 return false; 1753 1754 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1755 1756 // We'll strip off the Extensions of Var0 and Var1 and do another round 1757 // of GetLinearExpression decomposition. In the example above, if Var0 1758 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1759 1760 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1761 V1Offset(Width, 0); 1762 bool NSW = true, NUW = true; 1763 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1764 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1765 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1766 NSW = true; 1767 NUW = true; 1768 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1769 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1770 1771 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1772 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1773 return false; 1774 1775 // We have a hit - Var0 and Var1 only differ by a constant offset! 1776 1777 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1778 // Var1 is possible to calculate, but we're just interested in the absolute 1779 // minimum difference between the two. The minimum distance may occur due to 1780 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1781 // the minimum distance between %i and %i + 5 is 3. 1782 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1783 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1784 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1785 1786 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1787 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1788 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1789 // V2Size can fit in the MinDiffBytes gap. 1790 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1791 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1792 } 1793 1794 //===----------------------------------------------------------------------===// 1795 // BasicAliasAnalysis Pass 1796 //===----------------------------------------------------------------------===// 1797 1798 AnalysisKey BasicAA::Key; 1799 1800 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1801 return BasicAAResult(F.getParent()->getDataLayout(), 1802 AM.getResult<TargetLibraryAnalysis>(F), 1803 AM.getResult<AssumptionAnalysis>(F), 1804 &AM.getResult<DominatorTreeAnalysis>(F), 1805 AM.getCachedResult<LoopAnalysis>(F)); 1806 } 1807 1808 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1809 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1810 } 1811 1812 char BasicAAWrapperPass::ID = 0; 1813 void BasicAAWrapperPass::anchor() {} 1814 1815 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1816 "Basic Alias Analysis (stateless AA impl)", true, true) 1817 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1818 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1819 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1820 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1821 "Basic Alias Analysis (stateless AA impl)", true, true) 1822 1823 FunctionPass *llvm::createBasicAAWrapperPass() { 1824 return new BasicAAWrapperPass(); 1825 } 1826 1827 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1828 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1829 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1830 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1831 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1832 1833 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1834 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1835 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1836 1837 return false; 1838 } 1839 1840 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1841 AU.setPreservesAll(); 1842 AU.addRequired<AssumptionCacheTracker>(); 1843 AU.addRequired<DominatorTreeWrapperPass>(); 1844 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1845 } 1846 1847 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1848 return BasicAAResult( 1849 F.getParent()->getDataLayout(), 1850 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1851 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1852 } 1853