1 // Bitmap Allocator. -*- C++ -*-
2 
3 // Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING.  If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
20 
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction.  Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License.  This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29 
30 /** @file ext/bitmap_allocator.h
31  *  This file is a GNU extension to the Standard C++ Library.
32  */
33 
34 #ifndef _BITMAP_ALLOCATOR_H
35 #define _BITMAP_ALLOCATOR_H 1
36 
37 #include <cstddef> // For std::size_t, and ptrdiff_t.
38 #include <bits/functexcept.h> // For __throw_bad_alloc().
39 #include <utility> // For std::pair.
40 #include <functional> // For greater_equal, and less_equal.
41 #include <new> // For operator new.
42 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
43 #include <ext/concurrence.h>
44 
45 
46 /** @brief The constant in the expression below is the alignment
47  * required in bytes.
48  */
49 #define _BALLOC_ALIGN_BYTES 8
50 
51 _GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
52 
53   using std::size_t;
54   using std::ptrdiff_t;
55 
56   namespace __detail
57   {
58     /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
59      *
60      *  @brief  __mini_vector<> is a stripped down version of the
61      *  full-fledged std::vector<>.
62      *
63      *  It is to be used only for built-in types or PODs. Notable
64      *  differences are:
65      *
66      *  @detail
67      *  1. Not all accessor functions are present.
68      *  2. Used ONLY for PODs.
69      *  3. No Allocator template argument. Uses ::operator new() to get
70      *  memory, and ::operator delete() to free it.
71      *  Caveat: The dtor does NOT free the memory allocated, so this a
72      *  memory-leaking vector!
73      */
74     template<typename _Tp>
75       class __mini_vector
76       {
77 	__mini_vector(const __mini_vector&);
78 	__mini_vector& operator=(const __mini_vector&);
79 
80       public:
81 	typedef _Tp value_type;
82 	typedef _Tp* pointer;
83 	typedef _Tp& reference;
84 	typedef const _Tp& const_reference;
85 	typedef size_t size_type;
86 	typedef ptrdiff_t difference_type;
87 	typedef pointer iterator;
88 
89       private:
90 	pointer _M_start;
91 	pointer _M_finish;
92 	pointer _M_end_of_storage;
93 
94 	size_type
95 	_M_space_left() const throw()
96 	{ return _M_end_of_storage - _M_finish; }
97 
98 	pointer
99 	allocate(size_type __n)
100 	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
101 
102 	void
103 	deallocate(pointer __p, size_type)
104 	{ ::operator delete(__p); }
105 
106       public:
107 	// Members used: size(), push_back(), pop_back(),
108 	// insert(iterator, const_reference), erase(iterator),
109 	// begin(), end(), back(), operator[].
110 
111 	__mini_vector() : _M_start(0), _M_finish(0),
112 			  _M_end_of_storage(0)
113 	{ }
114 
115 #if 0
116 	~__mini_vector()
117 	{
118 	  if (this->_M_start)
119 	    {
120 	      this->deallocate(this->_M_start, this->_M_end_of_storage
121 			       - this->_M_start);
122 	    }
123 	}
124 #endif
125 
126 	size_type
127 	size() const throw()
128 	{ return _M_finish - _M_start; }
129 
130 	iterator
131 	begin() const throw()
132 	{ return this->_M_start; }
133 
134 	iterator
135 	end() const throw()
136 	{ return this->_M_finish; }
137 
138 	reference
139 	back() const throw()
140 	{ return *(this->end() - 1); }
141 
142 	reference
143 	operator[](const size_type __pos) const throw()
144 	{ return this->_M_start[__pos]; }
145 
146 	void
147 	insert(iterator __pos, const_reference __x);
148 
149 	void
150 	push_back(const_reference __x)
151 	{
152 	  if (this->_M_space_left())
153 	    {
154 	      *this->end() = __x;
155 	      ++this->_M_finish;
156 	    }
157 	  else
158 	    this->insert(this->end(), __x);
159 	}
160 
161 	void
162 	pop_back() throw()
163 	{ --this->_M_finish; }
164 
165 	void
166 	erase(iterator __pos) throw();
167 
168 	void
169 	clear() throw()
170 	{ this->_M_finish = this->_M_start; }
171       };
172 
173     // Out of line function definitions.
174     template<typename _Tp>
175       void __mini_vector<_Tp>::
176       insert(iterator __pos, const_reference __x)
177       {
178 	if (this->_M_space_left())
179 	  {
180 	    size_type __to_move = this->_M_finish - __pos;
181 	    iterator __dest = this->end();
182 	    iterator __src = this->end() - 1;
183 
184 	    ++this->_M_finish;
185 	    while (__to_move)
186 	      {
187 		*__dest = *__src;
188 		--__dest; --__src; --__to_move;
189 	      }
190 	    *__pos = __x;
191 	  }
192 	else
193 	  {
194 	    size_type __new_size = this->size() ? this->size() * 2 : 1;
195 	    iterator __new_start = this->allocate(__new_size);
196 	    iterator __first = this->begin();
197 	    iterator __start = __new_start;
198 	    while (__first != __pos)
199 	      {
200 		*__start = *__first;
201 		++__start; ++__first;
202 	      }
203 	    *__start = __x;
204 	    ++__start;
205 	    while (__first != this->end())
206 	      {
207 		*__start = *__first;
208 		++__start; ++__first;
209 	      }
210 	    if (this->_M_start)
211 	      this->deallocate(this->_M_start, this->size());
212 
213 	    this->_M_start = __new_start;
214 	    this->_M_finish = __start;
215 	    this->_M_end_of_storage = this->_M_start + __new_size;
216 	  }
217       }
218 
219     template<typename _Tp>
220       void __mini_vector<_Tp>::
221       erase(iterator __pos) throw()
222       {
223 	while (__pos + 1 != this->end())
224 	  {
225 	    *__pos = __pos[1];
226 	    ++__pos;
227 	  }
228 	--this->_M_finish;
229       }
230 
231 
232     template<typename _Tp>
233       struct __mv_iter_traits
234       {
235 	typedef typename _Tp::value_type value_type;
236 	typedef typename _Tp::difference_type difference_type;
237       };
238 
239     template<typename _Tp>
240       struct __mv_iter_traits<_Tp*>
241       {
242 	typedef _Tp value_type;
243 	typedef ptrdiff_t difference_type;
244       };
245 
246     enum
247       {
248 	bits_per_byte = 8,
249 	bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
250       };
251 
252     template<typename _ForwardIterator, typename _Tp, typename _Compare>
253       _ForwardIterator
254       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
255 		    const _Tp& __val, _Compare __comp)
256       {
257 	typedef typename __mv_iter_traits<_ForwardIterator>::value_type
258 	  _ValueType;
259 	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
260 	  _DistanceType;
261 
262 	_DistanceType __len = __last - __first;
263 	_DistanceType __half;
264 	_ForwardIterator __middle;
265 
266 	while (__len > 0)
267 	  {
268 	    __half = __len >> 1;
269 	    __middle = __first;
270 	    __middle += __half;
271 	    if (__comp(*__middle, __val))
272 	      {
273 		__first = __middle;
274 		++__first;
275 		__len = __len - __half - 1;
276 	      }
277 	    else
278 	      __len = __half;
279 	  }
280 	return __first;
281       }
282 
283     template<typename _InputIterator, typename _Predicate>
284       inline _InputIterator
285       __find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
286       {
287 	while (__first != __last && !__p(*__first))
288 	  ++__first;
289 	return __first;
290       }
291 
292     /** @brief The number of Blocks pointed to by the address pair
293      *  passed to the function.
294      */
295     template<typename _AddrPair>
296       inline size_t
297       __num_blocks(_AddrPair __ap)
298       { return (__ap.second - __ap.first) + 1; }
299 
300     /** @brief The number of Bit-maps pointed to by the address pair
301      *  passed to the function.
302      */
303     template<typename _AddrPair>
304       inline size_t
305       __num_bitmaps(_AddrPair __ap)
306       { return __num_blocks(__ap) / size_t(bits_per_block); }
307 
308     // _Tp should be a pointer type.
309     template<typename _Tp>
310       class _Inclusive_between
311       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
312       {
313 	typedef _Tp pointer;
314 	pointer _M_ptr_value;
315 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
316 
317       public:
318 	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
319 	{ }
320 
321 	bool
322 	operator()(_Block_pair __bp) const throw()
323 	{
324 	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
325 	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
326 	    return true;
327 	  else
328 	    return false;
329 	}
330       };
331 
332     // Used to pass a Functor to functions by reference.
333     template<typename _Functor>
334       class _Functor_Ref
335       : public std::unary_function<typename _Functor::argument_type,
336 				   typename _Functor::result_type>
337       {
338 	_Functor& _M_fref;
339 
340       public:
341 	typedef typename _Functor::argument_type argument_type;
342 	typedef typename _Functor::result_type result_type;
343 
344 	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
345 	{ }
346 
347 	result_type
348 	operator()(argument_type __arg)
349 	{ return _M_fref(__arg); }
350       };
351 
352     /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
353      *
354      *  @brief  The class which acts as a predicate for applying the
355      *  first-fit memory allocation policy for the bitmap allocator.
356      */
357     // _Tp should be a pointer type, and _Alloc is the Allocator for
358     // the vector.
359     template<typename _Tp>
360       class _Ffit_finder
361       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
362       {
363 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
364 	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
365 	typedef typename _BPVector::difference_type _Counter_type;
366 
367 	size_t* _M_pbitmap;
368 	_Counter_type _M_data_offset;
369 
370       public:
371 	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
372 	{ }
373 
374 	bool
375 	operator()(_Block_pair __bp) throw()
376 	{
377 	  // Set the _rover to the last physical location bitmap,
378 	  // which is the bitmap which belongs to the first free
379 	  // block. Thus, the bitmaps are in exact reverse order of
380 	  // the actual memory layout. So, we count down the bimaps,
381 	  // which is the same as moving up the memory.
382 
383 	  // If the used count stored at the start of the Bit Map headers
384 	  // is equal to the number of Objects that the current Block can
385 	  // store, then there is definitely no space for another single
386 	  // object, so just return false.
387 	  _Counter_type __diff =
388 	    __gnu_cxx::__detail::__num_bitmaps(__bp);
389 
390 	  if (*(reinterpret_cast<size_t*>
391 		(__bp.first) - (__diff + 1))
392 	      == __gnu_cxx::__detail::__num_blocks(__bp))
393 	    return false;
394 
395 	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
396 
397 	  for (_Counter_type __i = 0; __i < __diff; ++__i)
398 	    {
399 	      _M_data_offset = __i;
400 	      if (*__rover)
401 		{
402 		  _M_pbitmap = __rover;
403 		  return true;
404 		}
405 	      --__rover;
406 	    }
407 	  return false;
408 	}
409 
410 
411 	size_t*
412 	_M_get() const throw()
413 	{ return _M_pbitmap; }
414 
415 	_Counter_type
416 	_M_offset() const throw()
417 	{ return _M_data_offset * size_t(bits_per_block); }
418       };
419 
420 
421     /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
422      *
423      *  @brief  The bitmap counter which acts as the bitmap
424      *  manipulator, and manages the bit-manipulation functions and
425      *  the searching and identification functions on the bit-map.
426      */
427     // _Tp should be a pointer type.
428     template<typename _Tp>
429       class _Bitmap_counter
430       {
431 	typedef typename __detail::__mini_vector<typename std::pair<_Tp, _Tp> >
432 	_BPVector;
433 	typedef typename _BPVector::size_type _Index_type;
434 	typedef _Tp pointer;
435 
436 	_BPVector& _M_vbp;
437 	size_t* _M_curr_bmap;
438 	size_t* _M_last_bmap_in_block;
439 	_Index_type _M_curr_index;
440 
441       public:
442 	// Use the 2nd parameter with care. Make sure that such an
443 	// entry exists in the vector before passing that particular
444 	// index to this ctor.
445 	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
446 	{ this->_M_reset(__index); }
447 
448 	void
449 	_M_reset(long __index = -1) throw()
450 	{
451 	  if (__index == -1)
452 	    {
453 	      _M_curr_bmap = 0;
454 	      _M_curr_index = static_cast<_Index_type>(-1);
455 	      return;
456 	    }
457 
458 	  _M_curr_index = __index;
459 	  _M_curr_bmap = reinterpret_cast<size_t*>
460 	    (_M_vbp[_M_curr_index].first) - 1;
461 
462 	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
463 
464 	  _M_last_bmap_in_block = _M_curr_bmap
465 	    - ((_M_vbp[_M_curr_index].second
466 		- _M_vbp[_M_curr_index].first + 1)
467 	       / size_t(bits_per_block) - 1);
468 	}
469 
470 	// Dangerous Function! Use with extreme care. Pass to this
471 	// function ONLY those values that are known to be correct,
472 	// otherwise this will mess up big time.
473 	void
474 	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
475 	{ _M_curr_bmap = __new_internal_marker; }
476 
477 	bool
478 	_M_finished() const throw()
479 	{ return(_M_curr_bmap == 0); }
480 
481 	_Bitmap_counter&
482 	operator++() throw()
483 	{
484 	  if (_M_curr_bmap == _M_last_bmap_in_block)
485 	    {
486 	      if (++_M_curr_index == _M_vbp.size())
487 		_M_curr_bmap = 0;
488 	      else
489 		this->_M_reset(_M_curr_index);
490 	    }
491 	  else
492 	    --_M_curr_bmap;
493 	  return *this;
494 	}
495 
496 	size_t*
497 	_M_get() const throw()
498 	{ return _M_curr_bmap; }
499 
500 	pointer
501 	_M_base() const throw()
502 	{ return _M_vbp[_M_curr_index].first; }
503 
504 	_Index_type
505 	_M_offset() const throw()
506 	{
507 	  return size_t(bits_per_block)
508 	    * ((reinterpret_cast<size_t*>(this->_M_base())
509 		- _M_curr_bmap) - 1);
510 	}
511 
512 	_Index_type
513 	_M_where() const throw()
514 	{ return _M_curr_index; }
515       };
516 
517     /** @brief  Mark a memory address as allocated by re-setting the
518      *  corresponding bit in the bit-map.
519      */
520     inline void
521     __bit_allocate(size_t* __pbmap, size_t __pos) throw()
522     {
523       size_t __mask = 1 << __pos;
524       __mask = ~__mask;
525       *__pbmap &= __mask;
526     }
527 
528     /** @brief  Mark a memory address as free by setting the
529      *  corresponding bit in the bit-map.
530      */
531     inline void
532     __bit_free(size_t* __pbmap, size_t __pos) throw()
533     {
534       size_t __mask = 1 << __pos;
535       *__pbmap |= __mask;
536     }
537   } // namespace __detail
538 
539   /** @brief  Generic Version of the bsf instruction.
540    */
541   inline size_t
542   _Bit_scan_forward(size_t __num)
543   { return static_cast<size_t>(__builtin_ctzl(__num)); }
544 
545   /** @class  free_list bitmap_allocator.h bitmap_allocator.h
546    *
547    *  @brief  The free list class for managing chunks of memory to be
548    *  given to and returned by the bitmap_allocator.
549    */
550   class free_list
551   {
552   public:
553     typedef size_t* 				value_type;
554     typedef __detail::__mini_vector<value_type> vector_type;
555     typedef vector_type::iterator 		iterator;
556     typedef __mutex				__mutex_type;
557 
558   private:
559     struct _LT_pointer_compare
560     {
561       bool
562       operator()(const size_t* __pui,
563 		 const size_t __cui) const throw()
564       { return *__pui < __cui; }
565     };
566 
567 #if defined __GTHREADS
568     __mutex_type&
569     _M_get_mutex()
570     {
571       static __mutex_type _S_mutex;
572       return _S_mutex;
573     }
574 #endif
575 
576     vector_type&
577     _M_get_free_list()
578     {
579       static vector_type _S_free_list;
580       return _S_free_list;
581     }
582 
583     /** @brief  Performs validation of memory based on their size.
584      *
585      *  @param  __addr The pointer to the memory block to be
586      *  validated.
587      *
588      *  @detail  Validates the memory block passed to this function and
589      *  appropriately performs the action of managing the free list of
590      *  blocks by adding this block to the free list or deleting this
591      *  or larger blocks from the free list.
592      */
593     void
594     _M_validate(size_t* __addr) throw()
595     {
596       vector_type& __free_list = _M_get_free_list();
597       const vector_type::size_type __max_size = 64;
598       if (__free_list.size() >= __max_size)
599 	{
600 	  // Ok, the threshold value has been reached.  We determine
601 	  // which block to remove from the list of free blocks.
602 	  if (*__addr >= *__free_list.back())
603 	    {
604 	      // Ok, the new block is greater than or equal to the
605 	      // last block in the list of free blocks. We just free
606 	      // the new block.
607 	      ::operator delete(static_cast<void*>(__addr));
608 	      return;
609 	    }
610 	  else
611 	    {
612 	      // Deallocate the last block in the list of free lists,
613 	      // and insert the new one in it's correct position.
614 	      ::operator delete(static_cast<void*>(__free_list.back()));
615 	      __free_list.pop_back();
616 	    }
617 	}
618 
619       // Just add the block to the list of free lists unconditionally.
620       iterator __temp = __gnu_cxx::__detail::__lower_bound
621 	(__free_list.begin(), __free_list.end(),
622 	 *__addr, _LT_pointer_compare());
623 
624       // We may insert the new free list before _temp;
625       __free_list.insert(__temp, __addr);
626     }
627 
628     /** @brief  Decides whether the wastage of memory is acceptable for
629      *  the current memory request and returns accordingly.
630      *
631      *  @param __block_size The size of the block available in the free
632      *  list.
633      *
634      *  @param __required_size The required size of the memory block.
635      *
636      *  @return true if the wastage incurred is acceptable, else returns
637      *  false.
638      */
639     bool
640     _M_should_i_give(size_t __block_size,
641 		     size_t __required_size) throw()
642     {
643       const size_t __max_wastage_percentage = 36;
644       if (__block_size >= __required_size &&
645 	  (((__block_size - __required_size) * 100 / __block_size)
646 	   < __max_wastage_percentage))
647 	return true;
648       else
649 	return false;
650     }
651 
652   public:
653     /** @brief This function returns the block of memory to the
654      *  internal free list.
655      *
656      *  @param  __addr The pointer to the memory block that was given
657      *  by a call to the _M_get function.
658      */
659     inline void
660     _M_insert(size_t* __addr) throw()
661     {
662 #if defined __GTHREADS
663       __gnu_cxx::__scoped_lock __bfl_lock(_M_get_mutex());
664 #endif
665       // Call _M_validate to decide what should be done with
666       // this particular free list.
667       this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
668       // See discussion as to why this is 1!
669     }
670 
671     /** @brief  This function gets a block of memory of the specified
672      *  size from the free list.
673      *
674      *  @param  __sz The size in bytes of the memory required.
675      *
676      *  @return  A pointer to the new memory block of size at least
677      *  equal to that requested.
678      */
679     size_t*
680     _M_get(size_t __sz) throw(std::bad_alloc);
681 
682     /** @brief  This function just clears the internal Free List, and
683      *  gives back all the memory to the OS.
684      */
685     void
686     _M_clear();
687   };
688 
689 
690   // Forward declare the class.
691   template<typename _Tp>
692     class bitmap_allocator;
693 
694   // Specialize for void:
695   template<>
696     class bitmap_allocator<void>
697     {
698     public:
699       typedef void*       pointer;
700       typedef const void* const_pointer;
701 
702       // Reference-to-void members are impossible.
703       typedef void  value_type;
704       template<typename _Tp1>
705         struct rebind
706 	{
707 	  typedef bitmap_allocator<_Tp1> other;
708 	};
709     };
710 
711   template<typename _Tp>
712     class bitmap_allocator : private free_list
713     {
714     public:
715       typedef size_t    		size_type;
716       typedef ptrdiff_t 		difference_type;
717       typedef _Tp*        		pointer;
718       typedef const _Tp*  		const_pointer;
719       typedef _Tp&        		reference;
720       typedef const _Tp&  		const_reference;
721       typedef _Tp         		value_type;
722       typedef free_list::__mutex_type 	__mutex_type;
723 
724       template<typename _Tp1>
725         struct rebind
726 	{
727 	  typedef bitmap_allocator<_Tp1> other;
728 	};
729 
730     private:
731       template<size_t _BSize, size_t _AlignSize>
732         struct aligned_size
733 	{
734 	  enum
735 	    {
736 	      modulus = _BSize % _AlignSize,
737 	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
738 	    };
739 	};
740 
741       struct _Alloc_block
742       {
743 	char __M_unused[aligned_size<sizeof(value_type),
744 			_BALLOC_ALIGN_BYTES>::value];
745       };
746 
747 
748       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
749 
750       typedef typename
751       __detail::__mini_vector<_Block_pair> _BPVector;
752 
753 #if defined _GLIBCXX_DEBUG
754       // Complexity: O(lg(N)). Where, N is the number of block of size
755       // sizeof(value_type).
756       void
757       _S_check_for_free_blocks() throw()
758       {
759 	typedef typename
760 	  __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
761 	_FFF __fff;
762 	typedef typename _BPVector::iterator _BPiter;
763 	_BPiter __bpi =
764 	  __gnu_cxx::__detail::__find_if
765 	  (_S_mem_blocks.begin(), _S_mem_blocks.end(),
766 	   __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));
767 
768 	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
769       }
770 #endif
771 
772       /** @brief  Responsible for exponentially growing the internal
773        *  memory pool.
774        *
775        *  @throw  std::bad_alloc. If memory can not be allocated.
776        *
777        *  @detail  Complexity: O(1), but internally depends upon the
778        *  complexity of the function free_list::_M_get. The part where
779        *  the bitmap headers are written has complexity: O(X),where X
780        *  is the number of blocks of size sizeof(value_type) within
781        *  the newly acquired block. Having a tight bound.
782        */
783       void
784       _S_refill_pool() throw(std::bad_alloc)
785       {
786 #if defined _GLIBCXX_DEBUG
787 	_S_check_for_free_blocks();
788 #endif
789 
790 	const size_t __num_bitmaps = (_S_block_size
791 				      / size_t(__detail::bits_per_block));
792 	const size_t __size_to_allocate = sizeof(size_t)
793 	  + _S_block_size * sizeof(_Alloc_block)
794 	  + __num_bitmaps * sizeof(size_t);
795 
796 	size_t* __temp =
797 	  reinterpret_cast<size_t*>
798 	  (this->_M_get(__size_to_allocate));
799 	*__temp = 0;
800 	++__temp;
801 
802 	// The Header information goes at the Beginning of the Block.
803 	_Block_pair __bp =
804 	  std::make_pair(reinterpret_cast<_Alloc_block*>
805 			 (__temp + __num_bitmaps),
806 			 reinterpret_cast<_Alloc_block*>
807 			 (__temp + __num_bitmaps)
808 			 + _S_block_size - 1);
809 
810 	// Fill the Vector with this information.
811 	_S_mem_blocks.push_back(__bp);
812 
813 	size_t __bit_mask = 0; // 0 Indicates all Allocated.
814 	__bit_mask = ~__bit_mask; // 1 Indicates all Free.
815 
816 	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
817 	  __temp[__i] = __bit_mask;
818 
819 	_S_block_size *= 2;
820       }
821 
822 
823       static _BPVector _S_mem_blocks;
824       static size_t _S_block_size;
825       static __gnu_cxx::__detail::
826       _Bitmap_counter<_Alloc_block*> _S_last_request;
827       static typename _BPVector::size_type _S_last_dealloc_index;
828 #if defined __GTHREADS
829       static __mutex_type _S_mut;
830 #endif
831 
832     public:
833 
834       /** @brief  Allocates memory for a single object of size
835        *  sizeof(_Tp).
836        *
837        *  @throw  std::bad_alloc. If memory can not be allocated.
838        *
839        *  @detail  Complexity: Worst case complexity is O(N), but that
840        *  is hardly ever hit. If and when this particular case is
841        *  encountered, the next few cases are guaranteed to have a
842        *  worst case complexity of O(1)!  That's why this function
843        *  performs very well on average. You can consider this
844        *  function to have a complexity referred to commonly as:
845        *  Amortized Constant time.
846        */
847       pointer
848       _M_allocate_single_object() throw(std::bad_alloc)
849       {
850 #if defined __GTHREADS
851 	__gnu_cxx::__scoped_lock __bit_lock(_S_mut);
852 #endif
853 
854 	// The algorithm is something like this: The last_request
855 	// variable points to the last accessed Bit Map. When such a
856 	// condition occurs, we try to find a free block in the
857 	// current bitmap, or succeeding bitmaps until the last bitmap
858 	// is reached. If no free block turns up, we resort to First
859 	// Fit method.
860 
861 	// WARNING: Do not re-order the condition in the while
862 	// statement below, because it relies on C++'s short-circuit
863 	// evaluation. The return from _S_last_request->_M_get() will
864 	// NOT be dereference able if _S_last_request->_M_finished()
865 	// returns true. This would inevitably lead to a NULL pointer
866 	// dereference if tinkered with.
867 	while (_S_last_request._M_finished() == false
868 	       && (*(_S_last_request._M_get()) == 0))
869 	  {
870 	    _S_last_request.operator++();
871 	  }
872 
873 	if (__builtin_expect(_S_last_request._M_finished() == true, false))
874 	  {
875 	    // Fall Back to First Fit algorithm.
876 	    typedef typename
877 	      __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
878 	    _FFF __fff;
879 	    typedef typename _BPVector::iterator _BPiter;
880 	    _BPiter __bpi =
881 	      __gnu_cxx::__detail::__find_if
882 	      (_S_mem_blocks.begin(), _S_mem_blocks.end(),
883 	       __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));
884 
885 	    if (__bpi != _S_mem_blocks.end())
886 	      {
887 		// Search was successful. Ok, now mark the first bit from
888 		// the right as 0, meaning Allocated. This bit is obtained
889 		// by calling _M_get() on __fff.
890 		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
891 		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
892 
893 		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
894 
895 		// Now, get the address of the bit we marked as allocated.
896 		pointer __ret = reinterpret_cast<pointer>
897 		  (__bpi->first + __fff._M_offset() + __nz_bit);
898 		size_t* __puse_count =
899 		  reinterpret_cast<size_t*>
900 		  (__bpi->first)
901 		  - (__gnu_cxx::__detail::__num_bitmaps(*__bpi) + 1);
902 
903 		++(*__puse_count);
904 		return __ret;
905 	      }
906 	    else
907 	      {
908 		// Search was unsuccessful. We Add more memory to the
909 		// pool by calling _S_refill_pool().
910 		_S_refill_pool();
911 
912 		// _M_Reset the _S_last_request structure to the first
913 		// free block's bit map.
914 		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
915 
916 		// Now, mark that bit as allocated.
917 	      }
918 	  }
919 
920 	// _S_last_request holds a pointer to a valid bit map, that
921 	// points to a free block in memory.
922 	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
923 	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
924 
925 	pointer __ret = reinterpret_cast<pointer>
926 	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
927 
928 	size_t* __puse_count = reinterpret_cast<size_t*>
929 	  (_S_mem_blocks[_S_last_request._M_where()].first)
930 	  - (__gnu_cxx::__detail::
931 	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
932 
933 	++(*__puse_count);
934 	return __ret;
935       }
936 
937       /** @brief  Deallocates memory that belongs to a single object of
938        *  size sizeof(_Tp).
939        *
940        *  @detail  Complexity: O(lg(N)), but the worst case is not hit
941        *  often!  This is because containers usually deallocate memory
942        *  close to each other and this case is handled in O(1) time by
943        *  the deallocate function.
944        */
945       void
946       _M_deallocate_single_object(pointer __p) throw()
947       {
948 #if defined __GTHREADS
949 	__gnu_cxx::__scoped_lock __bit_lock(_S_mut);
950 #endif
951 	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
952 
953 	typedef typename _BPVector::iterator _Iterator;
954 	typedef typename _BPVector::difference_type _Difference_type;
955 
956 	_Difference_type __diff;
957 	long __displacement;
958 
959 	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
960 
961 
962 	if (__gnu_cxx::__detail::_Inclusive_between<_Alloc_block*>
963 	    (__real_p) (_S_mem_blocks[_S_last_dealloc_index]))
964 	  {
965 	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
966 				  <= _S_mem_blocks.size() - 1);
967 
968 	    // Initial Assumption was correct!
969 	    __diff = _S_last_dealloc_index;
970 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
971 	  }
972 	else
973 	  {
974 	    _Iterator _iter = __gnu_cxx::__detail::
975 	      __find_if(_S_mem_blocks.begin(),
976 			_S_mem_blocks.end(),
977 			__gnu_cxx::__detail::
978 			_Inclusive_between<_Alloc_block*>(__real_p));
979 
980 	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
981 
982 	    __diff = _iter - _S_mem_blocks.begin();
983 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
984 	    _S_last_dealloc_index = __diff;
985 	  }
986 
987 	// Get the position of the iterator that has been found.
988 	const size_t __rotate = (__displacement
989 				 % size_t(__detail::bits_per_block));
990 	size_t* __bitmapC =
991 	  reinterpret_cast<size_t*>
992 	  (_S_mem_blocks[__diff].first) - 1;
993 	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
994 
995 	__detail::__bit_free(__bitmapC, __rotate);
996 	size_t* __puse_count = reinterpret_cast<size_t*>
997 	  (_S_mem_blocks[__diff].first)
998 	  - (__gnu_cxx::__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
999 
1000 	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
1001 
1002 	--(*__puse_count);
1003 
1004 	if (__builtin_expect(*__puse_count == 0, false))
1005 	  {
1006 	    _S_block_size /= 2;
1007 
1008 	    // We can safely remove this block.
1009 	    // _Block_pair __bp = _S_mem_blocks[__diff];
1010 	    this->_M_insert(__puse_count);
1011 	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
1012 
1013 	    // Reset the _S_last_request variable to reflect the
1014 	    // erased block. We do this to protect future requests
1015 	    // after the last block has been removed from a particular
1016 	    // memory Chunk, which in turn has been returned to the
1017 	    // free list, and hence had been erased from the vector,
1018 	    // so the size of the vector gets reduced by 1.
1019 	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
1020 	      _S_last_request._M_reset(__diff);
1021 
1022 	    // If the Index into the vector of the region of memory
1023 	    // that might hold the next address that will be passed to
1024 	    // deallocated may have been invalidated due to the above
1025 	    // erase procedure being called on the vector, hence we
1026 	    // try to restore this invariant too.
1027 	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
1028 	      {
1029 		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
1030 		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
1031 	      }
1032 	  }
1033       }
1034 
1035     public:
1036       bitmap_allocator() throw()
1037       { }
1038 
1039       bitmap_allocator(const bitmap_allocator&)
1040       { }
1041 
1042       template<typename _Tp1>
1043         bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
1044         { }
1045 
1046       ~bitmap_allocator() throw()
1047       { }
1048 
1049       pointer
1050       allocate(size_type __n)
1051       {
1052 	if (__builtin_expect(__n > this->max_size(), false))
1053 	  std::__throw_bad_alloc();
1054 
1055 	if (__builtin_expect(__n == 1, true))
1056 	  return this->_M_allocate_single_object();
1057 	else
1058 	  {
1059 	    const size_type __b = __n * sizeof(value_type);
1060 	    return reinterpret_cast<pointer>(::operator new(__b));
1061 	  }
1062       }
1063 
1064       pointer
1065       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1066       { return allocate(__n); }
1067 
1068       void
1069       deallocate(pointer __p, size_type __n) throw()
1070       {
1071 	if (__builtin_expect(__p != 0, true))
1072 	  {
1073 	    if (__builtin_expect(__n == 1, true))
1074 	      this->_M_deallocate_single_object(__p);
1075 	    else
1076 	      ::operator delete(__p);
1077 	  }
1078       }
1079 
1080       pointer
1081       address(reference __r) const
1082       { return &__r; }
1083 
1084       const_pointer
1085       address(const_reference __r) const
1086       { return &__r; }
1087 
1088       size_type
1089       max_size() const throw()
1090       { return size_type(-1) / sizeof(value_type); }
1091 
1092       void
1093       construct(pointer __p, const_reference __data)
1094       { ::new(__p) value_type(__data); }
1095 
1096       void
1097       destroy(pointer __p)
1098       { __p->~value_type(); }
1099     };
1100 
1101   template<typename _Tp1, typename _Tp2>
1102     bool
1103     operator==(const bitmap_allocator<_Tp1>&,
1104 	       const bitmap_allocator<_Tp2>&) throw()
1105     { return true; }
1106 
1107   template<typename _Tp1, typename _Tp2>
1108     bool
1109     operator!=(const bitmap_allocator<_Tp1>&,
1110 	       const bitmap_allocator<_Tp2>&) throw()
1111   { return false; }
1112 
1113   // Static member definitions.
1114   template<typename _Tp>
1115     typename bitmap_allocator<_Tp>::_BPVector
1116     bitmap_allocator<_Tp>::_S_mem_blocks;
1117 
1118   template<typename _Tp>
1119     size_t bitmap_allocator<_Tp>::_S_block_size =
1120     2 * size_t(__detail::bits_per_block);
1121 
1122   template<typename _Tp>
1123     typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type
1124     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1125 
1126   template<typename _Tp>
1127     __gnu_cxx::__detail::_Bitmap_counter
1128   <typename bitmap_allocator<_Tp>::_Alloc_block*>
1129     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1130 
1131 #if defined __GTHREADS
1132   template<typename _Tp>
1133     typename bitmap_allocator<_Tp>::__mutex_type
1134     bitmap_allocator<_Tp>::_S_mut;
1135 #endif
1136 
1137 _GLIBCXX_END_NAMESPACE
1138 
1139 #endif
1140 
1141