1a9643ea8Slogwang /*-
2*22ce4affSfengbojiang * SPDX-License-Identifier: BSD-3-Clause
3*22ce4affSfengbojiang *
4a9643ea8Slogwang * Copyright (c) 1982, 1986, 1993
5a9643ea8Slogwang * The Regents of the University of California. All rights reserved.
6a9643ea8Slogwang *
7a9643ea8Slogwang * Redistribution and use in source and binary forms, with or without
8a9643ea8Slogwang * modification, are permitted provided that the following conditions
9a9643ea8Slogwang * are met:
10a9643ea8Slogwang * 1. Redistributions of source code must retain the above copyright
11a9643ea8Slogwang * notice, this list of conditions and the following disclaimer.
12a9643ea8Slogwang * 2. Redistributions in binary form must reproduce the above copyright
13a9643ea8Slogwang * notice, this list of conditions and the following disclaimer in the
14a9643ea8Slogwang * documentation and/or other materials provided with the distribution.
15*22ce4affSfengbojiang * 3. Neither the name of the University nor the names of its contributors
16a9643ea8Slogwang * may be used to endorse or promote products derived from this software
17a9643ea8Slogwang * without specific prior written permission.
18a9643ea8Slogwang *
19a9643ea8Slogwang * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20a9643ea8Slogwang * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21a9643ea8Slogwang * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22a9643ea8Slogwang * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23a9643ea8Slogwang * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24a9643ea8Slogwang * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25a9643ea8Slogwang * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26a9643ea8Slogwang * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27a9643ea8Slogwang * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28a9643ea8Slogwang * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29a9643ea8Slogwang * SUCH DAMAGE.
30a9643ea8Slogwang *
31a9643ea8Slogwang * @(#)time.h 8.5 (Berkeley) 5/4/95
32a9643ea8Slogwang * $FreeBSD$
33a9643ea8Slogwang */
34a9643ea8Slogwang
35a9643ea8Slogwang #ifndef _SYS_TIME_H_
36a9643ea8Slogwang #define _SYS_TIME_H_
37a9643ea8Slogwang
38a9643ea8Slogwang #include <sys/_timeval.h>
39a9643ea8Slogwang #include <sys/types.h>
40a9643ea8Slogwang #include <sys/timespec.h>
41a9643ea8Slogwang
42a9643ea8Slogwang struct timezone {
43a9643ea8Slogwang int tz_minuteswest; /* minutes west of Greenwich */
44a9643ea8Slogwang int tz_dsttime; /* type of dst correction */
45a9643ea8Slogwang };
46a9643ea8Slogwang #define DST_NONE 0 /* not on dst */
47a9643ea8Slogwang #define DST_USA 1 /* USA style dst */
48a9643ea8Slogwang #define DST_AUST 2 /* Australian style dst */
49a9643ea8Slogwang #define DST_WET 3 /* Western European dst */
50a9643ea8Slogwang #define DST_MET 4 /* Middle European dst */
51a9643ea8Slogwang #define DST_EET 5 /* Eastern European dst */
52a9643ea8Slogwang #define DST_CAN 6 /* Canada */
53a9643ea8Slogwang
54a9643ea8Slogwang #if __BSD_VISIBLE
55a9643ea8Slogwang struct bintime {
56a9643ea8Slogwang time_t sec;
57a9643ea8Slogwang uint64_t frac;
58a9643ea8Slogwang };
59a9643ea8Slogwang
60a9643ea8Slogwang static __inline void
bintime_addx(struct bintime * _bt,uint64_t _x)61a9643ea8Slogwang bintime_addx(struct bintime *_bt, uint64_t _x)
62a9643ea8Slogwang {
63a9643ea8Slogwang uint64_t _u;
64a9643ea8Slogwang
65a9643ea8Slogwang _u = _bt->frac;
66a9643ea8Slogwang _bt->frac += _x;
67a9643ea8Slogwang if (_u > _bt->frac)
68a9643ea8Slogwang _bt->sec++;
69a9643ea8Slogwang }
70a9643ea8Slogwang
71a9643ea8Slogwang static __inline void
bintime_add(struct bintime * _bt,const struct bintime * _bt2)72a9643ea8Slogwang bintime_add(struct bintime *_bt, const struct bintime *_bt2)
73a9643ea8Slogwang {
74a9643ea8Slogwang uint64_t _u;
75a9643ea8Slogwang
76a9643ea8Slogwang _u = _bt->frac;
77a9643ea8Slogwang _bt->frac += _bt2->frac;
78a9643ea8Slogwang if (_u > _bt->frac)
79a9643ea8Slogwang _bt->sec++;
80a9643ea8Slogwang _bt->sec += _bt2->sec;
81a9643ea8Slogwang }
82a9643ea8Slogwang
83a9643ea8Slogwang static __inline void
bintime_sub(struct bintime * _bt,const struct bintime * _bt2)84a9643ea8Slogwang bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
85a9643ea8Slogwang {
86a9643ea8Slogwang uint64_t _u;
87a9643ea8Slogwang
88a9643ea8Slogwang _u = _bt->frac;
89a9643ea8Slogwang _bt->frac -= _bt2->frac;
90a9643ea8Slogwang if (_u < _bt->frac)
91a9643ea8Slogwang _bt->sec--;
92a9643ea8Slogwang _bt->sec -= _bt2->sec;
93a9643ea8Slogwang }
94a9643ea8Slogwang
95a9643ea8Slogwang static __inline void
bintime_mul(struct bintime * _bt,u_int _x)96a9643ea8Slogwang bintime_mul(struct bintime *_bt, u_int _x)
97a9643ea8Slogwang {
98a9643ea8Slogwang uint64_t _p1, _p2;
99a9643ea8Slogwang
100a9643ea8Slogwang _p1 = (_bt->frac & 0xffffffffull) * _x;
101a9643ea8Slogwang _p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
102a9643ea8Slogwang _bt->sec *= _x;
103a9643ea8Slogwang _bt->sec += (_p2 >> 32);
104a9643ea8Slogwang _bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
105a9643ea8Slogwang }
106a9643ea8Slogwang
107a9643ea8Slogwang static __inline void
bintime_shift(struct bintime * _bt,int _exp)108a9643ea8Slogwang bintime_shift(struct bintime *_bt, int _exp)
109a9643ea8Slogwang {
110a9643ea8Slogwang
111a9643ea8Slogwang if (_exp > 0) {
112a9643ea8Slogwang _bt->sec <<= _exp;
113a9643ea8Slogwang _bt->sec |= _bt->frac >> (64 - _exp);
114a9643ea8Slogwang _bt->frac <<= _exp;
115a9643ea8Slogwang } else if (_exp < 0) {
116a9643ea8Slogwang _bt->frac >>= -_exp;
117a9643ea8Slogwang _bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
118a9643ea8Slogwang _bt->sec >>= -_exp;
119a9643ea8Slogwang }
120a9643ea8Slogwang }
121a9643ea8Slogwang
122a9643ea8Slogwang #define bintime_clear(a) ((a)->sec = (a)->frac = 0)
123a9643ea8Slogwang #define bintime_isset(a) ((a)->sec || (a)->frac)
124a9643ea8Slogwang #define bintime_cmp(a, b, cmp) \
125a9643ea8Slogwang (((a)->sec == (b)->sec) ? \
126a9643ea8Slogwang ((a)->frac cmp (b)->frac) : \
127a9643ea8Slogwang ((a)->sec cmp (b)->sec))
128a9643ea8Slogwang
129a9643ea8Slogwang #define SBT_1S ((sbintime_t)1 << 32)
130a9643ea8Slogwang #define SBT_1M (SBT_1S * 60)
131a9643ea8Slogwang #define SBT_1MS (SBT_1S / 1000)
132a9643ea8Slogwang #define SBT_1US (SBT_1S / 1000000)
133*22ce4affSfengbojiang #define SBT_1NS (SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
134a9643ea8Slogwang #define SBT_MAX 0x7fffffffffffffffLL
135a9643ea8Slogwang
136a9643ea8Slogwang static __inline int
sbintime_getsec(sbintime_t _sbt)137a9643ea8Slogwang sbintime_getsec(sbintime_t _sbt)
138a9643ea8Slogwang {
139a9643ea8Slogwang
140a9643ea8Slogwang return (_sbt >> 32);
141a9643ea8Slogwang }
142a9643ea8Slogwang
143a9643ea8Slogwang static __inline sbintime_t
bttosbt(const struct bintime _bt)144a9643ea8Slogwang bttosbt(const struct bintime _bt)
145a9643ea8Slogwang {
146a9643ea8Slogwang
147a9643ea8Slogwang return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
148a9643ea8Slogwang }
149a9643ea8Slogwang
150a9643ea8Slogwang static __inline struct bintime
sbttobt(sbintime_t _sbt)151a9643ea8Slogwang sbttobt(sbintime_t _sbt)
152a9643ea8Slogwang {
153a9643ea8Slogwang struct bintime _bt;
154a9643ea8Slogwang
155a9643ea8Slogwang _bt.sec = _sbt >> 32;
156a9643ea8Slogwang _bt.frac = _sbt << 32;
157a9643ea8Slogwang return (_bt);
158a9643ea8Slogwang }
159a9643ea8Slogwang
160*22ce4affSfengbojiang /*
161*22ce4affSfengbojiang * Decimal<->sbt conversions. Multiplying or dividing by SBT_1NS results in
162*22ce4affSfengbojiang * large roundoff errors which sbttons() and nstosbt() avoid. Millisecond and
163*22ce4affSfengbojiang * microsecond functions are also provided for completeness.
164*22ce4affSfengbojiang *
165*22ce4affSfengbojiang * These functions return the smallest sbt larger or equal to the
166*22ce4affSfengbojiang * number of seconds requested so that sbttoX(Xtosbt(y)) == y. Unlike
167*22ce4affSfengbojiang * top of second computations below, which require that we tick at the
168*22ce4affSfengbojiang * top of second, these need to be rounded up so we do whatever for at
169*22ce4affSfengbojiang * least as long as requested.
170*22ce4affSfengbojiang *
171*22ce4affSfengbojiang * The naive computation we'd do is this
172*22ce4affSfengbojiang * ((unit * 2^64 / SIFACTOR) + 2^32-1) >> 32
173*22ce4affSfengbojiang * However, that overflows. Instead, we compute
174*22ce4affSfengbojiang * ((unit * 2^63 / SIFACTOR) + 2^31-1) >> 32
175*22ce4affSfengbojiang * and use pre-computed constants that are the ceil of the 2^63 / SIFACTOR
176*22ce4affSfengbojiang * term to ensure we are using exactly the right constant. We use the lesser
177*22ce4affSfengbojiang * evil of ull rather than a uint64_t cast to ensure we have well defined
178*22ce4affSfengbojiang * right shift semantics. With these changes, we get all the ns, us and ms
179*22ce4affSfengbojiang * conversions back and forth right.
180*22ce4affSfengbojiang * Note: This file is used for both kernel and userland includes, so we can't
181*22ce4affSfengbojiang * rely on KASSERT being defined, nor can we pollute the namespace by including
182*22ce4affSfengbojiang * assert.h.
183*22ce4affSfengbojiang */
184*22ce4affSfengbojiang static __inline int64_t
sbttons(sbintime_t _sbt)185*22ce4affSfengbojiang sbttons(sbintime_t _sbt)
186*22ce4affSfengbojiang {
187*22ce4affSfengbojiang uint64_t ns;
188*22ce4affSfengbojiang
189*22ce4affSfengbojiang #ifdef KASSERT
190*22ce4affSfengbojiang KASSERT(_sbt >= 0, ("Negative values illegal for sbttons: %jx", _sbt));
191*22ce4affSfengbojiang #endif
192*22ce4affSfengbojiang ns = _sbt;
193*22ce4affSfengbojiang if (ns >= SBT_1S)
194*22ce4affSfengbojiang ns = (ns >> 32) * 1000000000;
195*22ce4affSfengbojiang else
196*22ce4affSfengbojiang ns = 0;
197*22ce4affSfengbojiang
198*22ce4affSfengbojiang return (ns + (1000000000 * (_sbt & 0xffffffffu) >> 32));
199*22ce4affSfengbojiang }
200*22ce4affSfengbojiang
201*22ce4affSfengbojiang static __inline sbintime_t
nstosbt(int64_t _ns)202*22ce4affSfengbojiang nstosbt(int64_t _ns)
203*22ce4affSfengbojiang {
204*22ce4affSfengbojiang sbintime_t sb = 0;
205*22ce4affSfengbojiang
206*22ce4affSfengbojiang #ifdef KASSERT
207*22ce4affSfengbojiang KASSERT(_ns >= 0, ("Negative values illegal for nstosbt: %jd", _ns));
208*22ce4affSfengbojiang #endif
209*22ce4affSfengbojiang if (_ns >= SBT_1S) {
210*22ce4affSfengbojiang sb = (_ns / 1000000000) * SBT_1S;
211*22ce4affSfengbojiang _ns = _ns % 1000000000;
212*22ce4affSfengbojiang }
213*22ce4affSfengbojiang /* 9223372037 = ceil(2^63 / 1000000000) */
214*22ce4affSfengbojiang sb += ((_ns * 9223372037ull) + 0x7fffffff) >> 31;
215*22ce4affSfengbojiang return (sb);
216*22ce4affSfengbojiang }
217*22ce4affSfengbojiang
218*22ce4affSfengbojiang static __inline int64_t
sbttous(sbintime_t _sbt)219*22ce4affSfengbojiang sbttous(sbintime_t _sbt)
220*22ce4affSfengbojiang {
221*22ce4affSfengbojiang
222*22ce4affSfengbojiang return ((1000000 * _sbt) >> 32);
223*22ce4affSfengbojiang }
224*22ce4affSfengbojiang
225*22ce4affSfengbojiang static __inline sbintime_t
ustosbt(int64_t _us)226*22ce4affSfengbojiang ustosbt(int64_t _us)
227*22ce4affSfengbojiang {
228*22ce4affSfengbojiang sbintime_t sb = 0;
229*22ce4affSfengbojiang
230*22ce4affSfengbojiang #ifdef KASSERT
231*22ce4affSfengbojiang KASSERT(_us >= 0, ("Negative values illegal for ustosbt: %jd", _us));
232*22ce4affSfengbojiang #endif
233*22ce4affSfengbojiang if (_us >= SBT_1S) {
234*22ce4affSfengbojiang sb = (_us / 1000000) * SBT_1S;
235*22ce4affSfengbojiang _us = _us % 1000000;
236*22ce4affSfengbojiang }
237*22ce4affSfengbojiang /* 9223372036855 = ceil(2^63 / 1000000) */
238*22ce4affSfengbojiang sb += ((_us * 9223372036855ull) + 0x7fffffff) >> 31;
239*22ce4affSfengbojiang return (sb);
240*22ce4affSfengbojiang }
241*22ce4affSfengbojiang
242*22ce4affSfengbojiang static __inline int64_t
sbttoms(sbintime_t _sbt)243*22ce4affSfengbojiang sbttoms(sbintime_t _sbt)
244*22ce4affSfengbojiang {
245*22ce4affSfengbojiang
246*22ce4affSfengbojiang return ((1000 * _sbt) >> 32);
247*22ce4affSfengbojiang }
248*22ce4affSfengbojiang
249*22ce4affSfengbojiang static __inline sbintime_t
mstosbt(int64_t _ms)250*22ce4affSfengbojiang mstosbt(int64_t _ms)
251*22ce4affSfengbojiang {
252*22ce4affSfengbojiang sbintime_t sb = 0;
253*22ce4affSfengbojiang
254*22ce4affSfengbojiang #ifdef KASSERT
255*22ce4affSfengbojiang KASSERT(_ms >= 0, ("Negative values illegal for mstosbt: %jd", _ms));
256*22ce4affSfengbojiang #endif
257*22ce4affSfengbojiang if (_ms >= SBT_1S) {
258*22ce4affSfengbojiang sb = (_ms / 1000) * SBT_1S;
259*22ce4affSfengbojiang _ms = _ms % 1000;
260*22ce4affSfengbojiang }
261*22ce4affSfengbojiang /* 9223372036854776 = ceil(2^63 / 1000) */
262*22ce4affSfengbojiang sb += ((_ms * 9223372036854776ull) + 0x7fffffff) >> 31;
263*22ce4affSfengbojiang return (sb);
264*22ce4affSfengbojiang }
265*22ce4affSfengbojiang
266a9643ea8Slogwang /*-
267a9643ea8Slogwang * Background information:
268a9643ea8Slogwang *
269a9643ea8Slogwang * When converting between timestamps on parallel timescales of differing
270a9643ea8Slogwang * resolutions it is historical and scientific practice to round down rather
271a9643ea8Slogwang * than doing 4/5 rounding.
272a9643ea8Slogwang *
273a9643ea8Slogwang * The date changes at midnight, not at noon.
274a9643ea8Slogwang *
275a9643ea8Slogwang * Even at 15:59:59.999999999 it's not four'o'clock.
276a9643ea8Slogwang *
277a9643ea8Slogwang * time_second ticks after N.999999999 not after N.4999999999
278a9643ea8Slogwang */
279a9643ea8Slogwang
280a9643ea8Slogwang static __inline void
bintime2timespec(const struct bintime * _bt,struct timespec * _ts)281a9643ea8Slogwang bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
282a9643ea8Slogwang {
283a9643ea8Slogwang
284a9643ea8Slogwang _ts->tv_sec = _bt->sec;
285a9643ea8Slogwang _ts->tv_nsec = ((uint64_t)1000000000 *
286a9643ea8Slogwang (uint32_t)(_bt->frac >> 32)) >> 32;
287a9643ea8Slogwang }
288a9643ea8Slogwang
289a9643ea8Slogwang static __inline void
timespec2bintime(const struct timespec * _ts,struct bintime * _bt)290a9643ea8Slogwang timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
291a9643ea8Slogwang {
292a9643ea8Slogwang
293a9643ea8Slogwang _bt->sec = _ts->tv_sec;
294a9643ea8Slogwang /* 18446744073 = int(2^64 / 1000000000) */
295a9643ea8Slogwang _bt->frac = _ts->tv_nsec * (uint64_t)18446744073LL;
296a9643ea8Slogwang }
297a9643ea8Slogwang
298a9643ea8Slogwang static __inline void
bintime2timeval(const struct bintime * _bt,struct timeval * _tv)299a9643ea8Slogwang bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
300a9643ea8Slogwang {
301a9643ea8Slogwang
302a9643ea8Slogwang _tv->tv_sec = _bt->sec;
303a9643ea8Slogwang _tv->tv_usec = ((uint64_t)1000000 * (uint32_t)(_bt->frac >> 32)) >> 32;
304a9643ea8Slogwang }
305a9643ea8Slogwang
306a9643ea8Slogwang static __inline void
timeval2bintime(const struct timeval * _tv,struct bintime * _bt)307a9643ea8Slogwang timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
308a9643ea8Slogwang {
309a9643ea8Slogwang
310a9643ea8Slogwang _bt->sec = _tv->tv_sec;
311a9643ea8Slogwang /* 18446744073709 = int(2^64 / 1000000) */
312a9643ea8Slogwang _bt->frac = _tv->tv_usec * (uint64_t)18446744073709LL;
313a9643ea8Slogwang }
314a9643ea8Slogwang
315a9643ea8Slogwang static __inline struct timespec
sbttots(sbintime_t _sbt)316a9643ea8Slogwang sbttots(sbintime_t _sbt)
317a9643ea8Slogwang {
318a9643ea8Slogwang struct timespec _ts;
319a9643ea8Slogwang
320a9643ea8Slogwang _ts.tv_sec = _sbt >> 32;
321*22ce4affSfengbojiang _ts.tv_nsec = sbttons((uint32_t)_sbt);
322a9643ea8Slogwang return (_ts);
323a9643ea8Slogwang }
324a9643ea8Slogwang
325a9643ea8Slogwang static __inline sbintime_t
tstosbt(struct timespec _ts)326a9643ea8Slogwang tstosbt(struct timespec _ts)
327a9643ea8Slogwang {
328a9643ea8Slogwang
329*22ce4affSfengbojiang return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
330a9643ea8Slogwang }
331a9643ea8Slogwang
332a9643ea8Slogwang static __inline struct timeval
sbttotv(sbintime_t _sbt)333a9643ea8Slogwang sbttotv(sbintime_t _sbt)
334a9643ea8Slogwang {
335a9643ea8Slogwang struct timeval _tv;
336a9643ea8Slogwang
337a9643ea8Slogwang _tv.tv_sec = _sbt >> 32;
338*22ce4affSfengbojiang _tv.tv_usec = sbttous((uint32_t)_sbt);
339a9643ea8Slogwang return (_tv);
340a9643ea8Slogwang }
341a9643ea8Slogwang
342a9643ea8Slogwang static __inline sbintime_t
tvtosbt(struct timeval _tv)343a9643ea8Slogwang tvtosbt(struct timeval _tv)
344a9643ea8Slogwang {
345a9643ea8Slogwang
346*22ce4affSfengbojiang return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
347a9643ea8Slogwang }
348a9643ea8Slogwang #endif /* __BSD_VISIBLE */
349a9643ea8Slogwang
350a9643ea8Slogwang #ifdef _KERNEL
351*22ce4affSfengbojiang /*
352*22ce4affSfengbojiang * Simple macros to convert ticks to milliseconds
353*22ce4affSfengbojiang * or microseconds and vice-versa. The answer
354*22ce4affSfengbojiang * will always be at least 1. Note the return
355*22ce4affSfengbojiang * value is a uint32_t however we step up the
356*22ce4affSfengbojiang * operations to 64 bit to avoid any overflow/underflow
357*22ce4affSfengbojiang * problems.
358*22ce4affSfengbojiang */
359*22ce4affSfengbojiang #define TICKS_2_MSEC(t) max(1, (uint32_t)(hz == 1000) ? \
360*22ce4affSfengbojiang (t) : (((uint64_t)(t) * (uint64_t)1000)/(uint64_t)hz))
361*22ce4affSfengbojiang #define TICKS_2_USEC(t) max(1, (uint32_t)(hz == 1000) ? \
362*22ce4affSfengbojiang ((t) * 1000) : (((uint64_t)(t) * (uint64_t)1000000)/(uint64_t)hz))
363*22ce4affSfengbojiang #define MSEC_2_TICKS(m) max(1, (uint32_t)((hz == 1000) ? \
364*22ce4affSfengbojiang (m) : ((uint64_t)(m) * (uint64_t)hz)/(uint64_t)1000))
365*22ce4affSfengbojiang #define USEC_2_TICKS(u) max(1, (uint32_t)((hz == 1000) ? \
366*22ce4affSfengbojiang ((u) / 1000) : ((uint64_t)(u) * (uint64_t)hz)/(uint64_t)1000000))
367a9643ea8Slogwang
368*22ce4affSfengbojiang #endif
369a9643ea8Slogwang /* Operations on timespecs */
370a9643ea8Slogwang #define timespecclear(tvp) ((tvp)->tv_sec = (tvp)->tv_nsec = 0)
371a9643ea8Slogwang #define timespecisset(tvp) ((tvp)->tv_sec || (tvp)->tv_nsec)
372a9643ea8Slogwang #define timespeccmp(tvp, uvp, cmp) \
373a9643ea8Slogwang (((tvp)->tv_sec == (uvp)->tv_sec) ? \
374a9643ea8Slogwang ((tvp)->tv_nsec cmp (uvp)->tv_nsec) : \
375a9643ea8Slogwang ((tvp)->tv_sec cmp (uvp)->tv_sec))
376*22ce4affSfengbojiang
377*22ce4affSfengbojiang #define timespecadd(tsp, usp, vsp) \
378a9643ea8Slogwang do { \
379*22ce4affSfengbojiang (vsp)->tv_sec = (tsp)->tv_sec + (usp)->tv_sec; \
380*22ce4affSfengbojiang (vsp)->tv_nsec = (tsp)->tv_nsec + (usp)->tv_nsec; \
381*22ce4affSfengbojiang if ((vsp)->tv_nsec >= 1000000000L) { \
382*22ce4affSfengbojiang (vsp)->tv_sec++; \
383*22ce4affSfengbojiang (vsp)->tv_nsec -= 1000000000L; \
384a9643ea8Slogwang } \
385a9643ea8Slogwang } while (0)
386*22ce4affSfengbojiang #define timespecsub(tsp, usp, vsp) \
387a9643ea8Slogwang do { \
388*22ce4affSfengbojiang (vsp)->tv_sec = (tsp)->tv_sec - (usp)->tv_sec; \
389*22ce4affSfengbojiang (vsp)->tv_nsec = (tsp)->tv_nsec - (usp)->tv_nsec; \
390*22ce4affSfengbojiang if ((vsp)->tv_nsec < 0) { \
391*22ce4affSfengbojiang (vsp)->tv_sec--; \
392*22ce4affSfengbojiang (vsp)->tv_nsec += 1000000000L; \
393a9643ea8Slogwang } \
394a9643ea8Slogwang } while (0)
395a9643ea8Slogwang
396*22ce4affSfengbojiang #ifdef _KERNEL
397*22ce4affSfengbojiang
398a9643ea8Slogwang /* Operations on timevals. */
399a9643ea8Slogwang
400a9643ea8Slogwang #define timevalclear(tvp) ((tvp)->tv_sec = (tvp)->tv_usec = 0)
401a9643ea8Slogwang #define timevalisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec)
402a9643ea8Slogwang #define timevalcmp(tvp, uvp, cmp) \
403a9643ea8Slogwang (((tvp)->tv_sec == (uvp)->tv_sec) ? \
404a9643ea8Slogwang ((tvp)->tv_usec cmp (uvp)->tv_usec) : \
405a9643ea8Slogwang ((tvp)->tv_sec cmp (uvp)->tv_sec))
406a9643ea8Slogwang
407a9643ea8Slogwang /* timevaladd and timevalsub are not inlined */
408a9643ea8Slogwang
409a9643ea8Slogwang #endif /* _KERNEL */
410a9643ea8Slogwang
411a9643ea8Slogwang #ifndef _KERNEL /* NetBSD/OpenBSD compatible interfaces */
412a9643ea8Slogwang
413a9643ea8Slogwang #define timerclear(tvp) ((tvp)->tv_sec = (tvp)->tv_usec = 0)
414a9643ea8Slogwang #define timerisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec)
415a9643ea8Slogwang #define timercmp(tvp, uvp, cmp) \
416a9643ea8Slogwang (((tvp)->tv_sec == (uvp)->tv_sec) ? \
417a9643ea8Slogwang ((tvp)->tv_usec cmp (uvp)->tv_usec) : \
418a9643ea8Slogwang ((tvp)->tv_sec cmp (uvp)->tv_sec))
419a9643ea8Slogwang #define timeradd(tvp, uvp, vvp) \
420a9643ea8Slogwang do { \
421a9643ea8Slogwang (vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec; \
422a9643ea8Slogwang (vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec; \
423a9643ea8Slogwang if ((vvp)->tv_usec >= 1000000) { \
424a9643ea8Slogwang (vvp)->tv_sec++; \
425a9643ea8Slogwang (vvp)->tv_usec -= 1000000; \
426a9643ea8Slogwang } \
427a9643ea8Slogwang } while (0)
428a9643ea8Slogwang #define timersub(tvp, uvp, vvp) \
429a9643ea8Slogwang do { \
430a9643ea8Slogwang (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
431a9643ea8Slogwang (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
432a9643ea8Slogwang if ((vvp)->tv_usec < 0) { \
433a9643ea8Slogwang (vvp)->tv_sec--; \
434a9643ea8Slogwang (vvp)->tv_usec += 1000000; \
435a9643ea8Slogwang } \
436a9643ea8Slogwang } while (0)
437a9643ea8Slogwang #endif
438a9643ea8Slogwang
439a9643ea8Slogwang /*
440a9643ea8Slogwang * Names of the interval timers, and structure
441a9643ea8Slogwang * defining a timer setting.
442a9643ea8Slogwang */
443a9643ea8Slogwang #define ITIMER_REAL 0
444a9643ea8Slogwang #define ITIMER_VIRTUAL 1
445a9643ea8Slogwang #define ITIMER_PROF 2
446a9643ea8Slogwang
447a9643ea8Slogwang struct itimerval {
448a9643ea8Slogwang struct timeval it_interval; /* timer interval */
449a9643ea8Slogwang struct timeval it_value; /* current value */
450a9643ea8Slogwang };
451a9643ea8Slogwang
452a9643ea8Slogwang /*
453a9643ea8Slogwang * Getkerninfo clock information structure
454a9643ea8Slogwang */
455a9643ea8Slogwang struct clockinfo {
456a9643ea8Slogwang int hz; /* clock frequency */
457a9643ea8Slogwang int tick; /* micro-seconds per hz tick */
458a9643ea8Slogwang int spare;
459a9643ea8Slogwang int stathz; /* statistics clock frequency */
460a9643ea8Slogwang int profhz; /* profiling clock frequency */
461a9643ea8Slogwang };
462a9643ea8Slogwang
463a9643ea8Slogwang /* These macros are also in time.h. */
464a9643ea8Slogwang #ifndef CLOCK_REALTIME
465a9643ea8Slogwang #define CLOCK_REALTIME 0
466*22ce4affSfengbojiang #endif
467*22ce4affSfengbojiang #ifndef CLOCK_VIRTUAL
468a9643ea8Slogwang #define CLOCK_VIRTUAL 1
469a9643ea8Slogwang #define CLOCK_PROF 2
470*22ce4affSfengbojiang #endif
471*22ce4affSfengbojiang #ifndef CLOCK_MONOTONIC
472a9643ea8Slogwang #define CLOCK_MONOTONIC 4
473a9643ea8Slogwang #define CLOCK_UPTIME 5 /* FreeBSD-specific. */
474a9643ea8Slogwang #define CLOCK_UPTIME_PRECISE 7 /* FreeBSD-specific. */
475a9643ea8Slogwang #define CLOCK_UPTIME_FAST 8 /* FreeBSD-specific. */
476a9643ea8Slogwang #define CLOCK_REALTIME_PRECISE 9 /* FreeBSD-specific. */
477a9643ea8Slogwang #define CLOCK_REALTIME_FAST 10 /* FreeBSD-specific. */
478a9643ea8Slogwang #define CLOCK_MONOTONIC_PRECISE 11 /* FreeBSD-specific. */
479a9643ea8Slogwang #define CLOCK_MONOTONIC_FAST 12 /* FreeBSD-specific. */
480a9643ea8Slogwang #define CLOCK_SECOND 13 /* FreeBSD-specific. */
481a9643ea8Slogwang #define CLOCK_THREAD_CPUTIME_ID 14
482a9643ea8Slogwang #define CLOCK_PROCESS_CPUTIME_ID 15
483a9643ea8Slogwang #endif
484a9643ea8Slogwang
485a9643ea8Slogwang #ifndef TIMER_ABSTIME
486a9643ea8Slogwang #define TIMER_RELTIME 0x0 /* relative timer */
487a9643ea8Slogwang #define TIMER_ABSTIME 0x1 /* absolute timer */
488a9643ea8Slogwang #endif
489a9643ea8Slogwang
490a9643ea8Slogwang #if __BSD_VISIBLE
491a9643ea8Slogwang #define CPUCLOCK_WHICH_PID 0
492a9643ea8Slogwang #define CPUCLOCK_WHICH_TID 1
493a9643ea8Slogwang #endif
494a9643ea8Slogwang
495*22ce4affSfengbojiang #if defined(_KERNEL) || defined(_STANDALONE)
496a9643ea8Slogwang
497a9643ea8Slogwang /*
498a9643ea8Slogwang * Kernel to clock driver interface.
499a9643ea8Slogwang */
500a9643ea8Slogwang void inittodr(time_t base);
501a9643ea8Slogwang void resettodr(void);
502a9643ea8Slogwang
503a9643ea8Slogwang extern volatile time_t time_second;
504a9643ea8Slogwang extern volatile time_t time_uptime;
505a9643ea8Slogwang extern struct bintime tc_tick_bt;
506a9643ea8Slogwang extern sbintime_t tc_tick_sbt;
507a9643ea8Slogwang extern struct bintime tick_bt;
508a9643ea8Slogwang extern sbintime_t tick_sbt;
509a9643ea8Slogwang extern int tc_precexp;
510a9643ea8Slogwang extern int tc_timepercentage;
511a9643ea8Slogwang extern struct bintime bt_timethreshold;
512a9643ea8Slogwang extern struct bintime bt_tickthreshold;
513a9643ea8Slogwang extern sbintime_t sbt_timethreshold;
514a9643ea8Slogwang extern sbintime_t sbt_tickthreshold;
515a9643ea8Slogwang
516*22ce4affSfengbojiang extern volatile int rtc_generation;
517*22ce4affSfengbojiang
518a9643ea8Slogwang /*
519a9643ea8Slogwang * Functions for looking at our clock: [get]{bin,nano,micro}[up]time()
520a9643ea8Slogwang *
521a9643ea8Slogwang * Functions without the "get" prefix returns the best timestamp
522a9643ea8Slogwang * we can produce in the given format.
523a9643ea8Slogwang *
524a9643ea8Slogwang * "bin" == struct bintime == seconds + 64 bit fraction of seconds.
525a9643ea8Slogwang * "nano" == struct timespec == seconds + nanoseconds.
526a9643ea8Slogwang * "micro" == struct timeval == seconds + microseconds.
527a9643ea8Slogwang *
528a9643ea8Slogwang * Functions containing "up" returns time relative to boot and
529a9643ea8Slogwang * should be used for calculating time intervals.
530a9643ea8Slogwang *
531a9643ea8Slogwang * Functions without "up" returns UTC time.
532a9643ea8Slogwang *
533a9643ea8Slogwang * Functions with the "get" prefix returns a less precise result
534a9643ea8Slogwang * much faster than the functions without "get" prefix and should
535a9643ea8Slogwang * be used where a precision of 1/hz seconds is acceptable or where
536a9643ea8Slogwang * performance is priority. (NB: "precision", _not_ "resolution" !)
537a9643ea8Slogwang */
538a9643ea8Slogwang
539a9643ea8Slogwang void binuptime(struct bintime *bt);
540a9643ea8Slogwang void nanouptime(struct timespec *tsp);
541a9643ea8Slogwang void microuptime(struct timeval *tvp);
542a9643ea8Slogwang
543a9643ea8Slogwang static __inline sbintime_t
sbinuptime(void)544a9643ea8Slogwang sbinuptime(void)
545a9643ea8Slogwang {
546a9643ea8Slogwang struct bintime _bt;
547a9643ea8Slogwang
548a9643ea8Slogwang binuptime(&_bt);
549a9643ea8Slogwang return (bttosbt(_bt));
550a9643ea8Slogwang }
551a9643ea8Slogwang
552a9643ea8Slogwang void bintime(struct bintime *bt);
553a9643ea8Slogwang void nanotime(struct timespec *tsp);
554a9643ea8Slogwang void microtime(struct timeval *tvp);
555a9643ea8Slogwang
556a9643ea8Slogwang void getbinuptime(struct bintime *bt);
557a9643ea8Slogwang void getnanouptime(struct timespec *tsp);
558a9643ea8Slogwang void getmicrouptime(struct timeval *tvp);
559a9643ea8Slogwang
560a9643ea8Slogwang static __inline sbintime_t
getsbinuptime(void)561a9643ea8Slogwang getsbinuptime(void)
562a9643ea8Slogwang {
563a9643ea8Slogwang struct bintime _bt;
564a9643ea8Slogwang
565a9643ea8Slogwang getbinuptime(&_bt);
566a9643ea8Slogwang return (bttosbt(_bt));
567a9643ea8Slogwang }
568a9643ea8Slogwang
569a9643ea8Slogwang void getbintime(struct bintime *bt);
570a9643ea8Slogwang void getnanotime(struct timespec *tsp);
571a9643ea8Slogwang void getmicrotime(struct timeval *tvp);
572a9643ea8Slogwang
573*22ce4affSfengbojiang void getboottime(struct timeval *boottime);
574*22ce4affSfengbojiang void getboottimebin(struct bintime *boottimebin);
575*22ce4affSfengbojiang
576a9643ea8Slogwang /* Other functions */
577a9643ea8Slogwang int itimerdecr(struct itimerval *itp, int usec);
578a9643ea8Slogwang int itimerfix(struct timeval *tv);
579a9643ea8Slogwang int ppsratecheck(struct timeval *, int *, int);
580a9643ea8Slogwang int ratecheck(struct timeval *, const struct timeval *);
581a9643ea8Slogwang void timevaladd(struct timeval *t1, const struct timeval *t2);
582a9643ea8Slogwang void timevalsub(struct timeval *t1, const struct timeval *t2);
583a9643ea8Slogwang int tvtohz(struct timeval *tv);
584a9643ea8Slogwang
585a9643ea8Slogwang #define TC_DEFAULTPERC 5
586a9643ea8Slogwang
587a9643ea8Slogwang #define BT2FREQ(bt) \
588a9643ea8Slogwang (((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) / \
589a9643ea8Slogwang ((bt)->frac >> 1))
590a9643ea8Slogwang
591a9643ea8Slogwang #define SBT2FREQ(sbt) ((SBT_1S + ((sbt) >> 1)) / (sbt))
592a9643ea8Slogwang
593a9643ea8Slogwang #define FREQ2BT(freq, bt) \
594a9643ea8Slogwang { \
595a9643ea8Slogwang (bt)->sec = 0; \
596a9643ea8Slogwang (bt)->frac = ((uint64_t)0x8000000000000000 / (freq)) << 1; \
597a9643ea8Slogwang }
598a9643ea8Slogwang
599a9643ea8Slogwang #define TIMESEL(sbt, sbt2) \
600a9643ea8Slogwang (((sbt2) >= sbt_timethreshold) ? \
601a9643ea8Slogwang ((*(sbt) = getsbinuptime()), 1) : ((*(sbt) = sbinuptime()), 0))
602a9643ea8Slogwang
603*22ce4affSfengbojiang #else /* !_KERNEL && !_STANDALONE */
604a9643ea8Slogwang #include <time.h>
605a9643ea8Slogwang
606a9643ea8Slogwang #include <sys/cdefs.h>
607a9643ea8Slogwang #include <sys/select.h>
608a9643ea8Slogwang
609a9643ea8Slogwang __BEGIN_DECLS
610a9643ea8Slogwang int setitimer(int, const struct itimerval *, struct itimerval *);
611a9643ea8Slogwang int utimes(const char *, const struct timeval *);
612a9643ea8Slogwang
613a9643ea8Slogwang #if __BSD_VISIBLE
614a9643ea8Slogwang int adjtime(const struct timeval *, struct timeval *);
615a9643ea8Slogwang int clock_getcpuclockid2(id_t, int, clockid_t *);
616a9643ea8Slogwang int futimes(int, const struct timeval *);
617a9643ea8Slogwang int futimesat(int, const char *, const struct timeval [2]);
618a9643ea8Slogwang int lutimes(const char *, const struct timeval *);
619a9643ea8Slogwang int settimeofday(const struct timeval *, const struct timezone *);
620a9643ea8Slogwang #endif
621a9643ea8Slogwang
622a9643ea8Slogwang #if __XSI_VISIBLE
623a9643ea8Slogwang int getitimer(int, struct itimerval *);
624a9643ea8Slogwang int gettimeofday(struct timeval *, struct timezone *);
625a9643ea8Slogwang #endif
626a9643ea8Slogwang
627a9643ea8Slogwang __END_DECLS
628a9643ea8Slogwang
629a9643ea8Slogwang #endif /* !_KERNEL */
630a9643ea8Slogwang
631a9643ea8Slogwang #endif /* !_SYS_TIME_H_ */
632