xref: /f-stack/dpdk/lib/librte_timer/rte_timer.c (revision a9643ea8)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <string.h>
35 #include <stdio.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <assert.h>
39 #include <sys/queue.h>
40 
41 #include <rte_atomic.h>
42 #include <rte_common.h>
43 #include <rte_cycles.h>
44 #include <rte_per_lcore.h>
45 #include <rte_memory.h>
46 #include <rte_memzone.h>
47 #include <rte_launch.h>
48 #include <rte_eal.h>
49 #include <rte_per_lcore.h>
50 #include <rte_lcore.h>
51 #include <rte_branch_prediction.h>
52 #include <rte_spinlock.h>
53 #include <rte_random.h>
54 
55 #include "rte_timer.h"
56 
57 LIST_HEAD(rte_timer_list, rte_timer);
58 
59 struct priv_timer {
60 	struct rte_timer pending_head;  /**< dummy timer instance to head up list */
61 	rte_spinlock_t list_lock;       /**< lock to protect list access */
62 
63 	/** per-core variable that true if a timer was updated on this
64 	 *  core since last reset of the variable */
65 	int updated;
66 
67 	/** track the current depth of the skiplist */
68 	unsigned curr_skiplist_depth;
69 
70 	unsigned prev_lcore;              /**< used for lcore round robin */
71 
72 	/** running timer on this lcore now */
73 	struct rte_timer *running_tim;
74 
75 #ifdef RTE_LIBRTE_TIMER_DEBUG
76 	/** per-lcore statistics */
77 	struct rte_timer_debug_stats stats;
78 #endif
79 } __rte_cache_aligned;
80 
81 /** per-lcore private info for timers */
82 static struct priv_timer priv_timer[RTE_MAX_LCORE];
83 
84 /* when debug is enabled, store some statistics */
85 #ifdef RTE_LIBRTE_TIMER_DEBUG
86 #define __TIMER_STAT_ADD(name, n) do {					\
87 		unsigned __lcore_id = rte_lcore_id();			\
88 		if (__lcore_id < RTE_MAX_LCORE)				\
89 			priv_timer[__lcore_id].stats.name += (n);	\
90 	} while(0)
91 #else
92 #define __TIMER_STAT_ADD(name, n) do {} while(0)
93 #endif
94 
95 /* Init the timer library. */
96 void
97 rte_timer_subsystem_init(void)
98 {
99 	unsigned lcore_id;
100 
101 	/* since priv_timer is static, it's zeroed by default, so only init some
102 	 * fields.
103 	 */
104 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id ++) {
105 		rte_spinlock_init(&priv_timer[lcore_id].list_lock);
106 		priv_timer[lcore_id].prev_lcore = lcore_id;
107 	}
108 }
109 
110 /* Initialize the timer handle tim for use */
111 void
112 rte_timer_init(struct rte_timer *tim)
113 {
114 	union rte_timer_status status;
115 
116 	status.state = RTE_TIMER_STOP;
117 	status.owner = RTE_TIMER_NO_OWNER;
118 	tim->status.u32 = status.u32;
119 }
120 
121 /*
122  * if timer is pending or stopped (or running on the same core than
123  * us), mark timer as configuring, and on success return the previous
124  * status of the timer
125  */
126 static int
127 timer_set_config_state(struct rte_timer *tim,
128 		       union rte_timer_status *ret_prev_status)
129 {
130 	union rte_timer_status prev_status, status;
131 	int success = 0;
132 	unsigned lcore_id;
133 
134 	lcore_id = rte_lcore_id();
135 
136 	/* wait that the timer is in correct status before update,
137 	 * and mark it as being configured */
138 	while (success == 0) {
139 		prev_status.u32 = tim->status.u32;
140 
141 		/* timer is running on another core
142 		 * or ready to run on local core, exit
143 		 */
144 		if (prev_status.state == RTE_TIMER_RUNNING &&
145 		    (prev_status.owner != (uint16_t)lcore_id ||
146 		     tim != priv_timer[lcore_id].running_tim))
147 			return -1;
148 
149 		/* timer is being configured on another core */
150 		if (prev_status.state == RTE_TIMER_CONFIG)
151 			return -1;
152 
153 		/* here, we know that timer is stopped or pending,
154 		 * mark it atomically as being configured */
155 		status.state = RTE_TIMER_CONFIG;
156 		status.owner = (int16_t)lcore_id;
157 		success = rte_atomic32_cmpset(&tim->status.u32,
158 					      prev_status.u32,
159 					      status.u32);
160 	}
161 
162 	ret_prev_status->u32 = prev_status.u32;
163 	return 0;
164 }
165 
166 /*
167  * if timer is pending, mark timer as running
168  */
169 static int
170 timer_set_running_state(struct rte_timer *tim)
171 {
172 	union rte_timer_status prev_status, status;
173 	unsigned lcore_id = rte_lcore_id();
174 	int success = 0;
175 
176 	/* wait that the timer is in correct status before update,
177 	 * and mark it as running */
178 	while (success == 0) {
179 		prev_status.u32 = tim->status.u32;
180 
181 		/* timer is not pending anymore */
182 		if (prev_status.state != RTE_TIMER_PENDING)
183 			return -1;
184 
185 		/* here, we know that timer is stopped or pending,
186 		 * mark it atomically as beeing configured */
187 		status.state = RTE_TIMER_RUNNING;
188 		status.owner = (int16_t)lcore_id;
189 		success = rte_atomic32_cmpset(&tim->status.u32,
190 					      prev_status.u32,
191 					      status.u32);
192 	}
193 
194 	return 0;
195 }
196 
197 /*
198  * Return a skiplist level for a new entry.
199  * This probabalistically gives a level with p=1/4 that an entry at level n
200  * will also appear at level n+1.
201  */
202 static uint32_t
203 timer_get_skiplist_level(unsigned curr_depth)
204 {
205 #ifdef RTE_LIBRTE_TIMER_DEBUG
206 	static uint32_t i, count = 0;
207 	static uint32_t levels[MAX_SKIPLIST_DEPTH] = {0};
208 #endif
209 
210 	/* probability value is 1/4, i.e. all at level 0, 1 in 4 is at level 1,
211 	 * 1 in 16 at level 2, 1 in 64 at level 3, etc. Calculated using lowest
212 	 * bit position of a (pseudo)random number.
213 	 */
214 	uint32_t rand = rte_rand() & (UINT32_MAX - 1);
215 	uint32_t level = rand == 0 ? MAX_SKIPLIST_DEPTH : (rte_bsf32(rand)-1) / 2;
216 
217 	/* limit the levels used to one above our current level, so we don't,
218 	 * for instance, have a level 0 and a level 7 without anything between
219 	 */
220 	if (level > curr_depth)
221 		level = curr_depth;
222 	if (level >= MAX_SKIPLIST_DEPTH)
223 		level = MAX_SKIPLIST_DEPTH-1;
224 #ifdef RTE_LIBRTE_TIMER_DEBUG
225 	count ++;
226 	levels[level]++;
227 	if (count % 10000 == 0)
228 		for (i = 0; i < MAX_SKIPLIST_DEPTH; i++)
229 			printf("Level %u: %u\n", (unsigned)i, (unsigned)levels[i]);
230 #endif
231 	return level;
232 }
233 
234 /*
235  * For a given time value, get the entries at each level which
236  * are <= that time value.
237  */
238 static void
239 timer_get_prev_entries(uint64_t time_val, unsigned tim_lcore,
240 		struct rte_timer **prev)
241 {
242 	unsigned lvl = priv_timer[tim_lcore].curr_skiplist_depth;
243 	prev[lvl] = &priv_timer[tim_lcore].pending_head;
244 	while(lvl != 0) {
245 		lvl--;
246 		prev[lvl] = prev[lvl+1];
247 		while (prev[lvl]->sl_next[lvl] &&
248 				prev[lvl]->sl_next[lvl]->expire <= time_val)
249 			prev[lvl] = prev[lvl]->sl_next[lvl];
250 	}
251 }
252 
253 /*
254  * Given a timer node in the skiplist, find the previous entries for it at
255  * all skiplist levels.
256  */
257 static void
258 timer_get_prev_entries_for_node(struct rte_timer *tim, unsigned tim_lcore,
259 		struct rte_timer **prev)
260 {
261 	int i;
262 	/* to get a specific entry in the list, look for just lower than the time
263 	 * values, and then increment on each level individually if necessary
264 	 */
265 	timer_get_prev_entries(tim->expire - 1, tim_lcore, prev);
266 	for (i = priv_timer[tim_lcore].curr_skiplist_depth - 1; i >= 0; i--) {
267 		while (prev[i]->sl_next[i] != NULL &&
268 				prev[i]->sl_next[i] != tim &&
269 				prev[i]->sl_next[i]->expire <= tim->expire)
270 			prev[i] = prev[i]->sl_next[i];
271 	}
272 }
273 
274 /*
275  * add in list, lock if needed
276  * timer must be in config state
277  * timer must not be in a list
278  */
279 static void
280 timer_add(struct rte_timer *tim, unsigned tim_lcore, int local_is_locked)
281 {
282 	unsigned lcore_id = rte_lcore_id();
283 	unsigned lvl;
284 	struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
285 
286 	/* if timer needs to be scheduled on another core, we need to
287 	 * lock the list; if it is on local core, we need to lock if
288 	 * we are not called from rte_timer_manage() */
289 	if (tim_lcore != lcore_id || !local_is_locked)
290 		rte_spinlock_lock(&priv_timer[tim_lcore].list_lock);
291 
292 	/* find where exactly this element goes in the list of elements
293 	 * for each depth. */
294 	timer_get_prev_entries(tim->expire, tim_lcore, prev);
295 
296 	/* now assign it a new level and add at that level */
297 	const unsigned tim_level = timer_get_skiplist_level(
298 			priv_timer[tim_lcore].curr_skiplist_depth);
299 	if (tim_level == priv_timer[tim_lcore].curr_skiplist_depth)
300 		priv_timer[tim_lcore].curr_skiplist_depth++;
301 
302 	lvl = tim_level;
303 	while (lvl > 0) {
304 		tim->sl_next[lvl] = prev[lvl]->sl_next[lvl];
305 		prev[lvl]->sl_next[lvl] = tim;
306 		lvl--;
307 	}
308 	tim->sl_next[0] = prev[0]->sl_next[0];
309 	prev[0]->sl_next[0] = tim;
310 
311 	/* save the lowest list entry into the expire field of the dummy hdr
312 	 * NOTE: this is not atomic on 32-bit*/
313 	priv_timer[tim_lcore].pending_head.expire = priv_timer[tim_lcore].\
314 			pending_head.sl_next[0]->expire;
315 
316 	if (tim_lcore != lcore_id || !local_is_locked)
317 		rte_spinlock_unlock(&priv_timer[tim_lcore].list_lock);
318 }
319 
320 /*
321  * del from list, lock if needed
322  * timer must be in config state
323  * timer must be in a list
324  */
325 static void
326 timer_del(struct rte_timer *tim, union rte_timer_status prev_status,
327 		int local_is_locked)
328 {
329 	unsigned lcore_id = rte_lcore_id();
330 	unsigned prev_owner = prev_status.owner;
331 	int i;
332 	struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
333 
334 	/* if timer needs is pending another core, we need to lock the
335 	 * list; if it is on local core, we need to lock if we are not
336 	 * called from rte_timer_manage() */
337 	if (prev_owner != lcore_id || !local_is_locked)
338 		rte_spinlock_lock(&priv_timer[prev_owner].list_lock);
339 
340 	/* save the lowest list entry into the expire field of the dummy hdr.
341 	 * NOTE: this is not atomic on 32-bit */
342 	if (tim == priv_timer[prev_owner].pending_head.sl_next[0])
343 		priv_timer[prev_owner].pending_head.expire =
344 				((tim->sl_next[0] == NULL) ? 0 : tim->sl_next[0]->expire);
345 
346 	/* adjust pointers from previous entries to point past this */
347 	timer_get_prev_entries_for_node(tim, prev_owner, prev);
348 	for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--) {
349 		if (prev[i]->sl_next[i] == tim)
350 			prev[i]->sl_next[i] = tim->sl_next[i];
351 	}
352 
353 	/* in case we deleted last entry at a level, adjust down max level */
354 	for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--)
355 		if (priv_timer[prev_owner].pending_head.sl_next[i] == NULL)
356 			priv_timer[prev_owner].curr_skiplist_depth --;
357 		else
358 			break;
359 
360 	if (prev_owner != lcore_id || !local_is_locked)
361 		rte_spinlock_unlock(&priv_timer[prev_owner].list_lock);
362 }
363 
364 /* Reset and start the timer associated with the timer handle (private func) */
365 static int
366 __rte_timer_reset(struct rte_timer *tim, uint64_t expire,
367 		  uint64_t period, unsigned tim_lcore,
368 		  rte_timer_cb_t fct, void *arg,
369 		  int local_is_locked)
370 {
371 	union rte_timer_status prev_status, status;
372 	int ret;
373 	unsigned lcore_id = rte_lcore_id();
374 
375 	/* round robin for tim_lcore */
376 	if (tim_lcore == (unsigned)LCORE_ID_ANY) {
377 		if (lcore_id < RTE_MAX_LCORE) {
378 			/* EAL thread with valid lcore_id */
379 			tim_lcore = rte_get_next_lcore(
380 				priv_timer[lcore_id].prev_lcore,
381 				0, 1);
382 			priv_timer[lcore_id].prev_lcore = tim_lcore;
383 		} else
384 			/* non-EAL thread do not run rte_timer_manage(),
385 			 * so schedule the timer on the first enabled lcore. */
386 			tim_lcore = rte_get_next_lcore(LCORE_ID_ANY, 0, 1);
387 	}
388 
389 	/* wait that the timer is in correct status before update,
390 	 * and mark it as being configured */
391 	ret = timer_set_config_state(tim, &prev_status);
392 	if (ret < 0)
393 		return -1;
394 
395 	__TIMER_STAT_ADD(reset, 1);
396 	if (prev_status.state == RTE_TIMER_RUNNING &&
397 	    lcore_id < RTE_MAX_LCORE) {
398 		priv_timer[lcore_id].updated = 1;
399 	}
400 
401 	/* remove it from list */
402 	if (prev_status.state == RTE_TIMER_PENDING) {
403 		timer_del(tim, prev_status, local_is_locked);
404 		__TIMER_STAT_ADD(pending, -1);
405 	}
406 
407 	tim->period = period;
408 	tim->expire = expire;
409 	tim->f = fct;
410 	tim->arg = arg;
411 
412 	__TIMER_STAT_ADD(pending, 1);
413 	timer_add(tim, tim_lcore, local_is_locked);
414 
415 	/* update state: as we are in CONFIG state, only us can modify
416 	 * the state so we don't need to use cmpset() here */
417 	rte_wmb();
418 	status.state = RTE_TIMER_PENDING;
419 	status.owner = (int16_t)tim_lcore;
420 	tim->status.u32 = status.u32;
421 
422 	return 0;
423 }
424 
425 /* Reset and start the timer associated with the timer handle tim */
426 int
427 rte_timer_reset(struct rte_timer *tim, uint64_t ticks,
428 		enum rte_timer_type type, unsigned tim_lcore,
429 		rte_timer_cb_t fct, void *arg)
430 {
431 	uint64_t cur_time = rte_get_timer_cycles();
432 	uint64_t period;
433 
434 	if (unlikely((tim_lcore != (unsigned)LCORE_ID_ANY) &&
435 			!rte_lcore_is_enabled(tim_lcore)))
436 		return -1;
437 
438 	if (type == PERIODICAL)
439 		period = ticks;
440 	else
441 		period = 0;
442 
443 	return __rte_timer_reset(tim,  cur_time + ticks, period, tim_lcore,
444 			  fct, arg, 0);
445 }
446 
447 /* loop until rte_timer_reset() succeed */
448 void
449 rte_timer_reset_sync(struct rte_timer *tim, uint64_t ticks,
450 		     enum rte_timer_type type, unsigned tim_lcore,
451 		     rte_timer_cb_t fct, void *arg)
452 {
453 	while (rte_timer_reset(tim, ticks, type, tim_lcore,
454 			       fct, arg) != 0)
455 		rte_pause();
456 }
457 
458 /* Stop the timer associated with the timer handle tim */
459 int
460 rte_timer_stop(struct rte_timer *tim)
461 {
462 	union rte_timer_status prev_status, status;
463 	unsigned lcore_id = rte_lcore_id();
464 	int ret;
465 
466 	/* wait that the timer is in correct status before update,
467 	 * and mark it as being configured */
468 	ret = timer_set_config_state(tim, &prev_status);
469 	if (ret < 0)
470 		return -1;
471 
472 	__TIMER_STAT_ADD(stop, 1);
473 	if (prev_status.state == RTE_TIMER_RUNNING &&
474 	    lcore_id < RTE_MAX_LCORE) {
475 		priv_timer[lcore_id].updated = 1;
476 	}
477 
478 	/* remove it from list */
479 	if (prev_status.state == RTE_TIMER_PENDING) {
480 		timer_del(tim, prev_status, 0);
481 		__TIMER_STAT_ADD(pending, -1);
482 	}
483 
484 	/* mark timer as stopped */
485 	rte_wmb();
486 	status.state = RTE_TIMER_STOP;
487 	status.owner = RTE_TIMER_NO_OWNER;
488 	tim->status.u32 = status.u32;
489 
490 	return 0;
491 }
492 
493 /* loop until rte_timer_stop() succeed */
494 void
495 rte_timer_stop_sync(struct rte_timer *tim)
496 {
497 	while (rte_timer_stop(tim) != 0)
498 		rte_pause();
499 }
500 
501 /* Test the PENDING status of the timer handle tim */
502 int
503 rte_timer_pending(struct rte_timer *tim)
504 {
505 	return tim->status.state == RTE_TIMER_PENDING;
506 }
507 
508 /* must be called periodically, run all timer that expired */
509 void rte_timer_manage(void)
510 {
511 	union rte_timer_status status;
512 	struct rte_timer *tim, *next_tim;
513 	struct rte_timer *run_first_tim, **pprev;
514 	unsigned lcore_id = rte_lcore_id();
515 	struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
516 	uint64_t cur_time;
517 	int i, ret;
518 
519 	/* timer manager only runs on EAL thread with valid lcore_id */
520 	assert(lcore_id < RTE_MAX_LCORE);
521 
522 	__TIMER_STAT_ADD(manage, 1);
523 	/* optimize for the case where per-cpu list is empty */
524 	if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL)
525 		return;
526 	cur_time = rte_get_timer_cycles();
527 
528 #ifdef RTE_ARCH_X86_64
529 	/* on 64-bit the value cached in the pending_head.expired will be
530 	 * updated atomically, so we can consult that for a quick check here
531 	 * outside the lock */
532 	if (likely(priv_timer[lcore_id].pending_head.expire > cur_time))
533 		return;
534 #endif
535 
536 	/* browse ordered list, add expired timers in 'expired' list */
537 	rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
538 
539 	/* if nothing to do just unlock and return */
540 	if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL ||
541 	    priv_timer[lcore_id].pending_head.sl_next[0]->expire > cur_time) {
542 		rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
543 		return;
544 	}
545 
546 	/* save start of list of expired timers */
547 	tim = priv_timer[lcore_id].pending_head.sl_next[0];
548 
549 	/* break the existing list at current time point */
550 	timer_get_prev_entries(cur_time, lcore_id, prev);
551 	for (i = priv_timer[lcore_id].curr_skiplist_depth -1; i >= 0; i--) {
552 		if (prev[i] == &priv_timer[lcore_id].pending_head)
553 			continue;
554 		priv_timer[lcore_id].pending_head.sl_next[i] =
555 		    prev[i]->sl_next[i];
556 		if (prev[i]->sl_next[i] == NULL)
557 			priv_timer[lcore_id].curr_skiplist_depth--;
558 		prev[i] ->sl_next[i] = NULL;
559 	}
560 
561 	/* transition run-list from PENDING to RUNNING */
562 	run_first_tim = tim;
563 	pprev = &run_first_tim;
564 
565 	for ( ; tim != NULL; tim = next_tim) {
566 		next_tim = tim->sl_next[0];
567 
568 		ret = timer_set_running_state(tim);
569 		if (likely(ret == 0)) {
570 			pprev = &tim->sl_next[0];
571 		} else {
572 			/* another core is trying to re-config this one,
573 			 * remove it from local expired list
574 			 */
575 			*pprev = next_tim;
576 		}
577 	}
578 
579 	/* update the next to expire timer value */
580 	priv_timer[lcore_id].pending_head.expire =
581 	    (priv_timer[lcore_id].pending_head.sl_next[0] == NULL) ? 0 :
582 		priv_timer[lcore_id].pending_head.sl_next[0]->expire;
583 
584 	rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
585 
586 	/* now scan expired list and call callbacks */
587 	for (tim = run_first_tim; tim != NULL; tim = next_tim) {
588 		next_tim = tim->sl_next[0];
589 		priv_timer[lcore_id].updated = 0;
590 		priv_timer[lcore_id].running_tim = tim;
591 
592 		/* execute callback function with list unlocked */
593 		tim->f(tim, tim->arg);
594 
595 		__TIMER_STAT_ADD(pending, -1);
596 		/* the timer was stopped or reloaded by the callback
597 		 * function, we have nothing to do here */
598 		if (priv_timer[lcore_id].updated == 1)
599 			continue;
600 
601 		if (tim->period == 0) {
602 			/* remove from done list and mark timer as stopped */
603 			status.state = RTE_TIMER_STOP;
604 			status.owner = RTE_TIMER_NO_OWNER;
605 			rte_wmb();
606 			tim->status.u32 = status.u32;
607 		}
608 		else {
609 			/* keep it in list and mark timer as pending */
610 			rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
611 			status.state = RTE_TIMER_PENDING;
612 			__TIMER_STAT_ADD(pending, 1);
613 			status.owner = (int16_t)lcore_id;
614 			rte_wmb();
615 			tim->status.u32 = status.u32;
616 			__rte_timer_reset(tim, tim->expire + tim->period,
617 				tim->period, lcore_id, tim->f, tim->arg, 1);
618 			rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
619 		}
620 	}
621 	priv_timer[lcore_id].running_tim = NULL;
622 }
623 
624 /* dump statistics about timers */
625 void rte_timer_dump_stats(FILE *f)
626 {
627 #ifdef RTE_LIBRTE_TIMER_DEBUG
628 	struct rte_timer_debug_stats sum;
629 	unsigned lcore_id;
630 
631 	memset(&sum, 0, sizeof(sum));
632 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
633 		sum.reset += priv_timer[lcore_id].stats.reset;
634 		sum.stop += priv_timer[lcore_id].stats.stop;
635 		sum.manage += priv_timer[lcore_id].stats.manage;
636 		sum.pending += priv_timer[lcore_id].stats.pending;
637 	}
638 	fprintf(f, "Timer statistics:\n");
639 	fprintf(f, "  reset = %"PRIu64"\n", sum.reset);
640 	fprintf(f, "  stop = %"PRIu64"\n", sum.stop);
641 	fprintf(f, "  manage = %"PRIu64"\n", sum.manage);
642 	fprintf(f, "  pending = %"PRIu64"\n", sum.pending);
643 #else
644 	fprintf(f, "No timer statistics, RTE_LIBRTE_TIMER_DEBUG is disabled\n");
645 #endif
646 }
647