1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #ifndef RTE_FLOW_H_ 7 #define RTE_FLOW_H_ 8 9 /** 10 * @file 11 * RTE generic flow API 12 * 13 * This interface provides the ability to program packet matching and 14 * associated actions in hardware through flow rules. 15 */ 16 17 #include <stddef.h> 18 #include <stdint.h> 19 20 #include <rte_arp.h> 21 #include <rte_common.h> 22 #include <rte_ether.h> 23 #include <rte_eth_ctrl.h> 24 #include <rte_icmp.h> 25 #include <rte_ip.h> 26 #include <rte_sctp.h> 27 #include <rte_tcp.h> 28 #include <rte_udp.h> 29 #include <rte_byteorder.h> 30 #include <rte_esp.h> 31 32 #ifdef __cplusplus 33 extern "C" { 34 #endif 35 36 /** 37 * Flow rule attributes. 38 * 39 * Priorities are set on a per rule based within groups. 40 * 41 * Lower values denote higher priority, the highest priority for a flow rule 42 * is 0, so that a flow that matches for than one rule, the rule with the 43 * lowest priority value will always be matched. 44 * 45 * Although optional, applications are encouraged to group similar rules as 46 * much as possible to fully take advantage of hardware capabilities 47 * (e.g. optimized matching) and work around limitations (e.g. a single 48 * pattern type possibly allowed in a given group). Applications should be 49 * aware that groups are not linked by default, and that they must be 50 * explicitly linked by the application using the JUMP action. 51 * 52 * Priority levels are arbitrary and up to the application, they 53 * do not need to be contiguous nor start from 0, however the maximum number 54 * varies between devices and may be affected by existing flow rules. 55 * 56 * If a packet is matched by several rules of a given group for a given 57 * priority level, the outcome is undefined. It can take any path, may be 58 * duplicated or even cause unrecoverable errors. 59 * 60 * Note that support for more than a single group and priority level is not 61 * guaranteed. 62 * 63 * Flow rules can apply to inbound and/or outbound traffic (ingress/egress). 64 * 65 * Several pattern items and actions are valid and can be used in both 66 * directions. Those valid for only one direction are described as such. 67 * 68 * At least one direction must be specified. 69 * 70 * Specifying both directions at once for a given rule is not recommended 71 * but may be valid in a few cases (e.g. shared counter). 72 */ 73 struct rte_flow_attr { 74 uint32_t group; /**< Priority group. */ 75 uint32_t priority; /**< Rule priority level within group. */ 76 uint32_t ingress:1; /**< Rule applies to ingress traffic. */ 77 uint32_t egress:1; /**< Rule applies to egress traffic. */ 78 /** 79 * Instead of simply matching the properties of traffic as it would 80 * appear on a given DPDK port ID, enabling this attribute transfers 81 * a flow rule to the lowest possible level of any device endpoints 82 * found in the pattern. 83 * 84 * When supported, this effectively enables an application to 85 * re-route traffic not necessarily intended for it (e.g. coming 86 * from or addressed to different physical ports, VFs or 87 * applications) at the device level. 88 * 89 * It complements the behavior of some pattern items such as 90 * RTE_FLOW_ITEM_TYPE_PHY_PORT and is meaningless without them. 91 * 92 * When transferring flow rules, ingress and egress attributes keep 93 * their original meaning, as if processing traffic emitted or 94 * received by the application. 95 */ 96 uint32_t transfer:1; 97 uint32_t reserved:29; /**< Reserved, must be zero. */ 98 }; 99 100 /** 101 * Matching pattern item types. 102 * 103 * Pattern items fall in two categories: 104 * 105 * - Matching protocol headers and packet data, usually associated with a 106 * specification structure. These must be stacked in the same order as the 107 * protocol layers to match inside packets, starting from the lowest. 108 * 109 * - Matching meta-data or affecting pattern processing, often without a 110 * specification structure. Since they do not match packet contents, their 111 * position in the list is usually not relevant. 112 * 113 * See the description of individual types for more information. Those 114 * marked with [META] fall into the second category. 115 */ 116 enum rte_flow_item_type { 117 /** 118 * [META] 119 * 120 * End marker for item lists. Prevents further processing of items, 121 * thereby ending the pattern. 122 * 123 * No associated specification structure. 124 */ 125 RTE_FLOW_ITEM_TYPE_END, 126 127 /** 128 * [META] 129 * 130 * Used as a placeholder for convenience. It is ignored and simply 131 * discarded by PMDs. 132 * 133 * No associated specification structure. 134 */ 135 RTE_FLOW_ITEM_TYPE_VOID, 136 137 /** 138 * [META] 139 * 140 * Inverted matching, i.e. process packets that do not match the 141 * pattern. 142 * 143 * No associated specification structure. 144 */ 145 RTE_FLOW_ITEM_TYPE_INVERT, 146 147 /** 148 * Matches any protocol in place of the current layer, a single ANY 149 * may also stand for several protocol layers. 150 * 151 * See struct rte_flow_item_any. 152 */ 153 RTE_FLOW_ITEM_TYPE_ANY, 154 155 /** 156 * [META] 157 * 158 * Matches traffic originating from (ingress) or going to (egress) 159 * the physical function of the current device. 160 * 161 * No associated specification structure. 162 */ 163 RTE_FLOW_ITEM_TYPE_PF, 164 165 /** 166 * [META] 167 * 168 * Matches traffic originating from (ingress) or going to (egress) a 169 * given virtual function of the current device. 170 * 171 * See struct rte_flow_item_vf. 172 */ 173 RTE_FLOW_ITEM_TYPE_VF, 174 175 /** 176 * [META] 177 * 178 * Matches traffic originating from (ingress) or going to (egress) a 179 * physical port of the underlying device. 180 * 181 * See struct rte_flow_item_phy_port. 182 */ 183 RTE_FLOW_ITEM_TYPE_PHY_PORT, 184 185 /** 186 * [META] 187 * 188 * Matches traffic originating from (ingress) or going to (egress) a 189 * given DPDK port ID. 190 * 191 * See struct rte_flow_item_port_id. 192 */ 193 RTE_FLOW_ITEM_TYPE_PORT_ID, 194 195 /** 196 * Matches a byte string of a given length at a given offset. 197 * 198 * See struct rte_flow_item_raw. 199 */ 200 RTE_FLOW_ITEM_TYPE_RAW, 201 202 /** 203 * Matches an Ethernet header. 204 * 205 * See struct rte_flow_item_eth. 206 */ 207 RTE_FLOW_ITEM_TYPE_ETH, 208 209 /** 210 * Matches an 802.1Q/ad VLAN tag. 211 * 212 * See struct rte_flow_item_vlan. 213 */ 214 RTE_FLOW_ITEM_TYPE_VLAN, 215 216 /** 217 * Matches an IPv4 header. 218 * 219 * See struct rte_flow_item_ipv4. 220 */ 221 RTE_FLOW_ITEM_TYPE_IPV4, 222 223 /** 224 * Matches an IPv6 header. 225 * 226 * See struct rte_flow_item_ipv6. 227 */ 228 RTE_FLOW_ITEM_TYPE_IPV6, 229 230 /** 231 * Matches an ICMP header. 232 * 233 * See struct rte_flow_item_icmp. 234 */ 235 RTE_FLOW_ITEM_TYPE_ICMP, 236 237 /** 238 * Matches a UDP header. 239 * 240 * See struct rte_flow_item_udp. 241 */ 242 RTE_FLOW_ITEM_TYPE_UDP, 243 244 /** 245 * Matches a TCP header. 246 * 247 * See struct rte_flow_item_tcp. 248 */ 249 RTE_FLOW_ITEM_TYPE_TCP, 250 251 /** 252 * Matches a SCTP header. 253 * 254 * See struct rte_flow_item_sctp. 255 */ 256 RTE_FLOW_ITEM_TYPE_SCTP, 257 258 /** 259 * Matches a VXLAN header. 260 * 261 * See struct rte_flow_item_vxlan. 262 */ 263 RTE_FLOW_ITEM_TYPE_VXLAN, 264 265 /** 266 * Matches a E_TAG header. 267 * 268 * See struct rte_flow_item_e_tag. 269 */ 270 RTE_FLOW_ITEM_TYPE_E_TAG, 271 272 /** 273 * Matches a NVGRE header. 274 * 275 * See struct rte_flow_item_nvgre. 276 */ 277 RTE_FLOW_ITEM_TYPE_NVGRE, 278 279 /** 280 * Matches a MPLS header. 281 * 282 * See struct rte_flow_item_mpls. 283 */ 284 RTE_FLOW_ITEM_TYPE_MPLS, 285 286 /** 287 * Matches a GRE header. 288 * 289 * See struct rte_flow_item_gre. 290 */ 291 RTE_FLOW_ITEM_TYPE_GRE, 292 293 /** 294 * [META] 295 * 296 * Fuzzy pattern match, expect faster than default. 297 * 298 * This is for device that support fuzzy matching option. 299 * Usually a fuzzy matching is fast but the cost is accuracy. 300 * 301 * See struct rte_flow_item_fuzzy. 302 */ 303 RTE_FLOW_ITEM_TYPE_FUZZY, 304 305 /** 306 * Matches a GTP header. 307 * 308 * Configure flow for GTP packets. 309 * 310 * See struct rte_flow_item_gtp. 311 */ 312 RTE_FLOW_ITEM_TYPE_GTP, 313 314 /** 315 * Matches a GTP header. 316 * 317 * Configure flow for GTP-C packets. 318 * 319 * See struct rte_flow_item_gtp. 320 */ 321 RTE_FLOW_ITEM_TYPE_GTPC, 322 323 /** 324 * Matches a GTP header. 325 * 326 * Configure flow for GTP-U packets. 327 * 328 * See struct rte_flow_item_gtp. 329 */ 330 RTE_FLOW_ITEM_TYPE_GTPU, 331 332 /** 333 * Matches a ESP header. 334 * 335 * See struct rte_flow_item_esp. 336 */ 337 RTE_FLOW_ITEM_TYPE_ESP, 338 339 /** 340 * Matches a GENEVE header. 341 * 342 * See struct rte_flow_item_geneve. 343 */ 344 RTE_FLOW_ITEM_TYPE_GENEVE, 345 346 /** 347 * Matches a VXLAN-GPE header. 348 * 349 * See struct rte_flow_item_vxlan_gpe. 350 */ 351 RTE_FLOW_ITEM_TYPE_VXLAN_GPE, 352 353 /** 354 * Matches an ARP header for Ethernet/IPv4. 355 * 356 * See struct rte_flow_item_arp_eth_ipv4. 357 */ 358 RTE_FLOW_ITEM_TYPE_ARP_ETH_IPV4, 359 360 /** 361 * Matches the presence of any IPv6 extension header. 362 * 363 * See struct rte_flow_item_ipv6_ext. 364 */ 365 RTE_FLOW_ITEM_TYPE_IPV6_EXT, 366 367 /** 368 * Matches any ICMPv6 header. 369 * 370 * See struct rte_flow_item_icmp6. 371 */ 372 RTE_FLOW_ITEM_TYPE_ICMP6, 373 374 /** 375 * Matches an ICMPv6 neighbor discovery solicitation. 376 * 377 * See struct rte_flow_item_icmp6_nd_ns. 378 */ 379 RTE_FLOW_ITEM_TYPE_ICMP6_ND_NS, 380 381 /** 382 * Matches an ICMPv6 neighbor discovery advertisement. 383 * 384 * See struct rte_flow_item_icmp6_nd_na. 385 */ 386 RTE_FLOW_ITEM_TYPE_ICMP6_ND_NA, 387 388 /** 389 * Matches the presence of any ICMPv6 neighbor discovery option. 390 * 391 * See struct rte_flow_item_icmp6_nd_opt. 392 */ 393 RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT, 394 395 /** 396 * Matches an ICMPv6 neighbor discovery source Ethernet link-layer 397 * address option. 398 * 399 * See struct rte_flow_item_icmp6_nd_opt_sla_eth. 400 */ 401 RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT_SLA_ETH, 402 403 /** 404 * Matches an ICMPv6 neighbor discovery target Ethernet link-layer 405 * address option. 406 * 407 * See struct rte_flow_item_icmp6_nd_opt_tla_eth. 408 */ 409 RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT_TLA_ETH, 410 411 /** 412 * Matches specified mark field. 413 * 414 * See struct rte_flow_item_mark. 415 */ 416 RTE_FLOW_ITEM_TYPE_MARK, 417 418 /** 419 * [META] 420 * 421 * Matches a metadata value specified in mbuf metadata field. 422 * See struct rte_flow_item_meta. 423 */ 424 RTE_FLOW_ITEM_TYPE_META, 425 }; 426 427 /** 428 * RTE_FLOW_ITEM_TYPE_ANY 429 * 430 * Matches any protocol in place of the current layer, a single ANY may also 431 * stand for several protocol layers. 432 * 433 * This is usually specified as the first pattern item when looking for a 434 * protocol anywhere in a packet. 435 * 436 * A zeroed mask stands for any number of layers. 437 */ 438 struct rte_flow_item_any { 439 uint32_t num; /**< Number of layers covered. */ 440 }; 441 442 /** Default mask for RTE_FLOW_ITEM_TYPE_ANY. */ 443 #ifndef __cplusplus 444 static const struct rte_flow_item_any rte_flow_item_any_mask = { 445 .num = 0x00000000, 446 }; 447 #endif 448 449 /** 450 * RTE_FLOW_ITEM_TYPE_VF 451 * 452 * Matches traffic originating from (ingress) or going to (egress) a given 453 * virtual function of the current device. 454 * 455 * If supported, should work even if the virtual function is not managed by 456 * the application and thus not associated with a DPDK port ID. 457 * 458 * Note this pattern item does not match VF representors traffic which, as 459 * separate entities, should be addressed through their own DPDK port IDs. 460 * 461 * - Can be specified multiple times to match traffic addressed to several 462 * VF IDs. 463 * - Can be combined with a PF item to match both PF and VF traffic. 464 * 465 * A zeroed mask can be used to match any VF ID. 466 */ 467 struct rte_flow_item_vf { 468 uint32_t id; /**< VF ID. */ 469 }; 470 471 /** Default mask for RTE_FLOW_ITEM_TYPE_VF. */ 472 #ifndef __cplusplus 473 static const struct rte_flow_item_vf rte_flow_item_vf_mask = { 474 .id = 0x00000000, 475 }; 476 #endif 477 478 /** 479 * RTE_FLOW_ITEM_TYPE_PHY_PORT 480 * 481 * Matches traffic originating from (ingress) or going to (egress) a 482 * physical port of the underlying device. 483 * 484 * The first PHY_PORT item overrides the physical port normally associated 485 * with the specified DPDK input port (port_id). This item can be provided 486 * several times to match additional physical ports. 487 * 488 * Note that physical ports are not necessarily tied to DPDK input ports 489 * (port_id) when those are not under DPDK control. Possible values are 490 * specific to each device, they are not necessarily indexed from zero and 491 * may not be contiguous. 492 * 493 * As a device property, the list of allowed values as well as the value 494 * associated with a port_id should be retrieved by other means. 495 * 496 * A zeroed mask can be used to match any port index. 497 */ 498 struct rte_flow_item_phy_port { 499 uint32_t index; /**< Physical port index. */ 500 }; 501 502 /** Default mask for RTE_FLOW_ITEM_TYPE_PHY_PORT. */ 503 #ifndef __cplusplus 504 static const struct rte_flow_item_phy_port rte_flow_item_phy_port_mask = { 505 .index = 0x00000000, 506 }; 507 #endif 508 509 /** 510 * RTE_FLOW_ITEM_TYPE_PORT_ID 511 * 512 * Matches traffic originating from (ingress) or going to (egress) a given 513 * DPDK port ID. 514 * 515 * Normally only supported if the port ID in question is known by the 516 * underlying PMD and related to the device the flow rule is created 517 * against. 518 * 519 * This must not be confused with @p PHY_PORT which refers to the physical 520 * port of a device, whereas @p PORT_ID refers to a struct rte_eth_dev 521 * object on the application side (also known as "port representor" 522 * depending on the kind of underlying device). 523 */ 524 struct rte_flow_item_port_id { 525 uint32_t id; /**< DPDK port ID. */ 526 }; 527 528 /** Default mask for RTE_FLOW_ITEM_TYPE_PORT_ID. */ 529 #ifndef __cplusplus 530 static const struct rte_flow_item_port_id rte_flow_item_port_id_mask = { 531 .id = 0xffffffff, 532 }; 533 #endif 534 535 /** 536 * RTE_FLOW_ITEM_TYPE_RAW 537 * 538 * Matches a byte string of a given length at a given offset. 539 * 540 * Offset is either absolute (using the start of the packet) or relative to 541 * the end of the previous matched item in the stack, in which case negative 542 * values are allowed. 543 * 544 * If search is enabled, offset is used as the starting point. The search 545 * area can be delimited by setting limit to a nonzero value, which is the 546 * maximum number of bytes after offset where the pattern may start. 547 * 548 * Matching a zero-length pattern is allowed, doing so resets the relative 549 * offset for subsequent items. 550 * 551 * This type does not support ranges (struct rte_flow_item.last). 552 */ 553 struct rte_flow_item_raw { 554 uint32_t relative:1; /**< Look for pattern after the previous item. */ 555 uint32_t search:1; /**< Search pattern from offset (see also limit). */ 556 uint32_t reserved:30; /**< Reserved, must be set to zero. */ 557 int32_t offset; /**< Absolute or relative offset for pattern. */ 558 uint16_t limit; /**< Search area limit for start of pattern. */ 559 uint16_t length; /**< Pattern length. */ 560 const uint8_t *pattern; /**< Byte string to look for. */ 561 }; 562 563 /** Default mask for RTE_FLOW_ITEM_TYPE_RAW. */ 564 #ifndef __cplusplus 565 static const struct rte_flow_item_raw rte_flow_item_raw_mask = { 566 .relative = 1, 567 .search = 1, 568 .reserved = 0x3fffffff, 569 .offset = 0xffffffff, 570 .limit = 0xffff, 571 .length = 0xffff, 572 .pattern = NULL, 573 }; 574 #endif 575 576 /** 577 * RTE_FLOW_ITEM_TYPE_ETH 578 * 579 * Matches an Ethernet header. 580 * 581 * The @p type field either stands for "EtherType" or "TPID" when followed 582 * by so-called layer 2.5 pattern items such as RTE_FLOW_ITEM_TYPE_VLAN. In 583 * the latter case, @p type refers to that of the outer header, with the 584 * inner EtherType/TPID provided by the subsequent pattern item. This is the 585 * same order as on the wire. 586 */ 587 struct rte_flow_item_eth { 588 struct ether_addr dst; /**< Destination MAC. */ 589 struct ether_addr src; /**< Source MAC. */ 590 rte_be16_t type; /**< EtherType or TPID. */ 591 }; 592 593 /** Default mask for RTE_FLOW_ITEM_TYPE_ETH. */ 594 #ifndef __cplusplus 595 static const struct rte_flow_item_eth rte_flow_item_eth_mask = { 596 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 597 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 598 .type = RTE_BE16(0x0000), 599 }; 600 #endif 601 602 /** 603 * RTE_FLOW_ITEM_TYPE_VLAN 604 * 605 * Matches an 802.1Q/ad VLAN tag. 606 * 607 * The corresponding standard outer EtherType (TPID) values are 608 * ETHER_TYPE_VLAN or ETHER_TYPE_QINQ. It can be overridden by the preceding 609 * pattern item. 610 */ 611 struct rte_flow_item_vlan { 612 rte_be16_t tci; /**< Tag control information. */ 613 rte_be16_t inner_type; /**< Inner EtherType or TPID. */ 614 }; 615 616 /** Default mask for RTE_FLOW_ITEM_TYPE_VLAN. */ 617 #ifndef __cplusplus 618 static const struct rte_flow_item_vlan rte_flow_item_vlan_mask = { 619 .tci = RTE_BE16(0x0fff), 620 .inner_type = RTE_BE16(0x0000), 621 }; 622 #endif 623 624 /** 625 * RTE_FLOW_ITEM_TYPE_IPV4 626 * 627 * Matches an IPv4 header. 628 * 629 * Note: IPv4 options are handled by dedicated pattern items. 630 */ 631 struct rte_flow_item_ipv4 { 632 struct ipv4_hdr hdr; /**< IPv4 header definition. */ 633 }; 634 635 /** Default mask for RTE_FLOW_ITEM_TYPE_IPV4. */ 636 #ifndef __cplusplus 637 static const struct rte_flow_item_ipv4 rte_flow_item_ipv4_mask = { 638 .hdr = { 639 .src_addr = RTE_BE32(0xffffffff), 640 .dst_addr = RTE_BE32(0xffffffff), 641 }, 642 }; 643 #endif 644 645 /** 646 * RTE_FLOW_ITEM_TYPE_IPV6. 647 * 648 * Matches an IPv6 header. 649 * 650 * Note: IPv6 options are handled by dedicated pattern items, see 651 * RTE_FLOW_ITEM_TYPE_IPV6_EXT. 652 */ 653 struct rte_flow_item_ipv6 { 654 struct ipv6_hdr hdr; /**< IPv6 header definition. */ 655 }; 656 657 /** Default mask for RTE_FLOW_ITEM_TYPE_IPV6. */ 658 #ifndef __cplusplus 659 static const struct rte_flow_item_ipv6 rte_flow_item_ipv6_mask = { 660 .hdr = { 661 .src_addr = 662 "\xff\xff\xff\xff\xff\xff\xff\xff" 663 "\xff\xff\xff\xff\xff\xff\xff\xff", 664 .dst_addr = 665 "\xff\xff\xff\xff\xff\xff\xff\xff" 666 "\xff\xff\xff\xff\xff\xff\xff\xff", 667 }, 668 }; 669 #endif 670 671 /** 672 * RTE_FLOW_ITEM_TYPE_ICMP. 673 * 674 * Matches an ICMP header. 675 */ 676 struct rte_flow_item_icmp { 677 struct icmp_hdr hdr; /**< ICMP header definition. */ 678 }; 679 680 /** Default mask for RTE_FLOW_ITEM_TYPE_ICMP. */ 681 #ifndef __cplusplus 682 static const struct rte_flow_item_icmp rte_flow_item_icmp_mask = { 683 .hdr = { 684 .icmp_type = 0xff, 685 .icmp_code = 0xff, 686 }, 687 }; 688 #endif 689 690 /** 691 * RTE_FLOW_ITEM_TYPE_UDP. 692 * 693 * Matches a UDP header. 694 */ 695 struct rte_flow_item_udp { 696 struct udp_hdr hdr; /**< UDP header definition. */ 697 }; 698 699 /** Default mask for RTE_FLOW_ITEM_TYPE_UDP. */ 700 #ifndef __cplusplus 701 static const struct rte_flow_item_udp rte_flow_item_udp_mask = { 702 .hdr = { 703 .src_port = RTE_BE16(0xffff), 704 .dst_port = RTE_BE16(0xffff), 705 }, 706 }; 707 #endif 708 709 /** 710 * RTE_FLOW_ITEM_TYPE_TCP. 711 * 712 * Matches a TCP header. 713 */ 714 struct rte_flow_item_tcp { 715 struct tcp_hdr hdr; /**< TCP header definition. */ 716 }; 717 718 /** Default mask for RTE_FLOW_ITEM_TYPE_TCP. */ 719 #ifndef __cplusplus 720 static const struct rte_flow_item_tcp rte_flow_item_tcp_mask = { 721 .hdr = { 722 .src_port = RTE_BE16(0xffff), 723 .dst_port = RTE_BE16(0xffff), 724 }, 725 }; 726 #endif 727 728 /** 729 * RTE_FLOW_ITEM_TYPE_SCTP. 730 * 731 * Matches a SCTP header. 732 */ 733 struct rte_flow_item_sctp { 734 struct sctp_hdr hdr; /**< SCTP header definition. */ 735 }; 736 737 /** Default mask for RTE_FLOW_ITEM_TYPE_SCTP. */ 738 #ifndef __cplusplus 739 static const struct rte_flow_item_sctp rte_flow_item_sctp_mask = { 740 .hdr = { 741 .src_port = RTE_BE16(0xffff), 742 .dst_port = RTE_BE16(0xffff), 743 }, 744 }; 745 #endif 746 747 /** 748 * RTE_FLOW_ITEM_TYPE_VXLAN. 749 * 750 * Matches a VXLAN header (RFC 7348). 751 */ 752 struct rte_flow_item_vxlan { 753 uint8_t flags; /**< Normally 0x08 (I flag). */ 754 uint8_t rsvd0[3]; /**< Reserved, normally 0x000000. */ 755 uint8_t vni[3]; /**< VXLAN identifier. */ 756 uint8_t rsvd1; /**< Reserved, normally 0x00. */ 757 }; 758 759 /** Default mask for RTE_FLOW_ITEM_TYPE_VXLAN. */ 760 #ifndef __cplusplus 761 static const struct rte_flow_item_vxlan rte_flow_item_vxlan_mask = { 762 .vni = "\xff\xff\xff", 763 }; 764 #endif 765 766 /** 767 * RTE_FLOW_ITEM_TYPE_E_TAG. 768 * 769 * Matches a E-tag header. 770 * 771 * The corresponding standard outer EtherType (TPID) value is 772 * ETHER_TYPE_ETAG. It can be overridden by the preceding pattern item. 773 */ 774 struct rte_flow_item_e_tag { 775 /** 776 * E-Tag control information (E-TCI). 777 * E-PCP (3b), E-DEI (1b), ingress E-CID base (12b). 778 */ 779 rte_be16_t epcp_edei_in_ecid_b; 780 /** Reserved (2b), GRP (2b), E-CID base (12b). */ 781 rte_be16_t rsvd_grp_ecid_b; 782 uint8_t in_ecid_e; /**< Ingress E-CID ext. */ 783 uint8_t ecid_e; /**< E-CID ext. */ 784 rte_be16_t inner_type; /**< Inner EtherType or TPID. */ 785 }; 786 787 /** Default mask for RTE_FLOW_ITEM_TYPE_E_TAG. */ 788 #ifndef __cplusplus 789 static const struct rte_flow_item_e_tag rte_flow_item_e_tag_mask = { 790 .rsvd_grp_ecid_b = RTE_BE16(0x3fff), 791 }; 792 #endif 793 794 /** 795 * RTE_FLOW_ITEM_TYPE_NVGRE. 796 * 797 * Matches a NVGRE header. 798 */ 799 struct rte_flow_item_nvgre { 800 /** 801 * Checksum (1b), undefined (1b), key bit (1b), sequence number (1b), 802 * reserved 0 (9b), version (3b). 803 * 804 * c_k_s_rsvd0_ver must have value 0x2000 according to RFC 7637. 805 */ 806 rte_be16_t c_k_s_rsvd0_ver; 807 rte_be16_t protocol; /**< Protocol type (0x6558). */ 808 uint8_t tni[3]; /**< Virtual subnet ID. */ 809 uint8_t flow_id; /**< Flow ID. */ 810 }; 811 812 /** Default mask for RTE_FLOW_ITEM_TYPE_NVGRE. */ 813 #ifndef __cplusplus 814 static const struct rte_flow_item_nvgre rte_flow_item_nvgre_mask = { 815 .tni = "\xff\xff\xff", 816 }; 817 #endif 818 819 /** 820 * RTE_FLOW_ITEM_TYPE_MPLS. 821 * 822 * Matches a MPLS header. 823 */ 824 struct rte_flow_item_mpls { 825 /** 826 * Label (20b), TC (3b), Bottom of Stack (1b). 827 */ 828 uint8_t label_tc_s[3]; 829 uint8_t ttl; /** Time-to-Live. */ 830 }; 831 832 /** Default mask for RTE_FLOW_ITEM_TYPE_MPLS. */ 833 #ifndef __cplusplus 834 static const struct rte_flow_item_mpls rte_flow_item_mpls_mask = { 835 .label_tc_s = "\xff\xff\xf0", 836 }; 837 #endif 838 839 /** 840 * RTE_FLOW_ITEM_TYPE_GRE. 841 * 842 * Matches a GRE header. 843 */ 844 struct rte_flow_item_gre { 845 /** 846 * Checksum (1b), reserved 0 (12b), version (3b). 847 * Refer to RFC 2784. 848 */ 849 rte_be16_t c_rsvd0_ver; 850 rte_be16_t protocol; /**< Protocol type. */ 851 }; 852 853 /** Default mask for RTE_FLOW_ITEM_TYPE_GRE. */ 854 #ifndef __cplusplus 855 static const struct rte_flow_item_gre rte_flow_item_gre_mask = { 856 .protocol = RTE_BE16(0xffff), 857 }; 858 #endif 859 860 /** 861 * RTE_FLOW_ITEM_TYPE_FUZZY 862 * 863 * Fuzzy pattern match, expect faster than default. 864 * 865 * This is for device that support fuzzy match option. 866 * Usually a fuzzy match is fast but the cost is accuracy. 867 * i.e. Signature Match only match pattern's hash value, but it is 868 * possible two different patterns have the same hash value. 869 * 870 * Matching accuracy level can be configure by threshold. 871 * Driver can divide the range of threshold and map to different 872 * accuracy levels that device support. 873 * 874 * Threshold 0 means perfect match (no fuzziness), while threshold 875 * 0xffffffff means fuzziest match. 876 */ 877 struct rte_flow_item_fuzzy { 878 uint32_t thresh; /**< Accuracy threshold. */ 879 }; 880 881 /** Default mask for RTE_FLOW_ITEM_TYPE_FUZZY. */ 882 #ifndef __cplusplus 883 static const struct rte_flow_item_fuzzy rte_flow_item_fuzzy_mask = { 884 .thresh = 0xffffffff, 885 }; 886 #endif 887 888 /** 889 * RTE_FLOW_ITEM_TYPE_GTP. 890 * 891 * Matches a GTPv1 header. 892 */ 893 struct rte_flow_item_gtp { 894 /** 895 * Version (3b), protocol type (1b), reserved (1b), 896 * Extension header flag (1b), 897 * Sequence number flag (1b), 898 * N-PDU number flag (1b). 899 */ 900 uint8_t v_pt_rsv_flags; 901 uint8_t msg_type; /**< Message type. */ 902 rte_be16_t msg_len; /**< Message length. */ 903 rte_be32_t teid; /**< Tunnel endpoint identifier. */ 904 }; 905 906 /** Default mask for RTE_FLOW_ITEM_TYPE_GTP. */ 907 #ifndef __cplusplus 908 static const struct rte_flow_item_gtp rte_flow_item_gtp_mask = { 909 .teid = RTE_BE32(0xffffffff), 910 }; 911 #endif 912 913 /** 914 * RTE_FLOW_ITEM_TYPE_ESP 915 * 916 * Matches an ESP header. 917 */ 918 struct rte_flow_item_esp { 919 struct esp_hdr hdr; /**< ESP header definition. */ 920 }; 921 922 /** Default mask for RTE_FLOW_ITEM_TYPE_ESP. */ 923 #ifndef __cplusplus 924 static const struct rte_flow_item_esp rte_flow_item_esp_mask = { 925 .hdr = { 926 .spi = 0xffffffff, 927 }, 928 }; 929 #endif 930 931 /** 932 * RTE_FLOW_ITEM_TYPE_GENEVE. 933 * 934 * Matches a GENEVE header. 935 */ 936 struct rte_flow_item_geneve { 937 /** 938 * Version (2b), length of the options fields (6b), OAM packet (1b), 939 * critical options present (1b), reserved 0 (6b). 940 */ 941 rte_be16_t ver_opt_len_o_c_rsvd0; 942 rte_be16_t protocol; /**< Protocol type. */ 943 uint8_t vni[3]; /**< Virtual Network Identifier. */ 944 uint8_t rsvd1; /**< Reserved, normally 0x00. */ 945 }; 946 947 /** Default mask for RTE_FLOW_ITEM_TYPE_GENEVE. */ 948 #ifndef __cplusplus 949 static const struct rte_flow_item_geneve rte_flow_item_geneve_mask = { 950 .vni = "\xff\xff\xff", 951 }; 952 #endif 953 954 /** 955 * RTE_FLOW_ITEM_TYPE_VXLAN_GPE (draft-ietf-nvo3-vxlan-gpe-05). 956 * 957 * Matches a VXLAN-GPE header. 958 */ 959 struct rte_flow_item_vxlan_gpe { 960 uint8_t flags; /**< Normally 0x0c (I and P flags). */ 961 uint8_t rsvd0[2]; /**< Reserved, normally 0x0000. */ 962 uint8_t protocol; /**< Protocol type. */ 963 uint8_t vni[3]; /**< VXLAN identifier. */ 964 uint8_t rsvd1; /**< Reserved, normally 0x00. */ 965 }; 966 967 /** Default mask for RTE_FLOW_ITEM_TYPE_VXLAN_GPE. */ 968 #ifndef __cplusplus 969 static const struct rte_flow_item_vxlan_gpe rte_flow_item_vxlan_gpe_mask = { 970 .vni = "\xff\xff\xff", 971 }; 972 #endif 973 974 /** 975 * RTE_FLOW_ITEM_TYPE_ARP_ETH_IPV4 976 * 977 * Matches an ARP header for Ethernet/IPv4. 978 */ 979 struct rte_flow_item_arp_eth_ipv4 { 980 rte_be16_t hrd; /**< Hardware type, normally 1. */ 981 rte_be16_t pro; /**< Protocol type, normally 0x0800. */ 982 uint8_t hln; /**< Hardware address length, normally 6. */ 983 uint8_t pln; /**< Protocol address length, normally 4. */ 984 rte_be16_t op; /**< Opcode (1 for request, 2 for reply). */ 985 struct ether_addr sha; /**< Sender hardware address. */ 986 rte_be32_t spa; /**< Sender IPv4 address. */ 987 struct ether_addr tha; /**< Target hardware address. */ 988 rte_be32_t tpa; /**< Target IPv4 address. */ 989 }; 990 991 /** Default mask for RTE_FLOW_ITEM_TYPE_ARP_ETH_IPV4. */ 992 #ifndef __cplusplus 993 static const struct rte_flow_item_arp_eth_ipv4 994 rte_flow_item_arp_eth_ipv4_mask = { 995 .sha.addr_bytes = "\xff\xff\xff\xff\xff\xff", 996 .spa = RTE_BE32(0xffffffff), 997 .tha.addr_bytes = "\xff\xff\xff\xff\xff\xff", 998 .tpa = RTE_BE32(0xffffffff), 999 }; 1000 #endif 1001 1002 /** 1003 * RTE_FLOW_ITEM_TYPE_IPV6_EXT 1004 * 1005 * Matches the presence of any IPv6 extension header. 1006 * 1007 * Normally preceded by any of: 1008 * 1009 * - RTE_FLOW_ITEM_TYPE_IPV6 1010 * - RTE_FLOW_ITEM_TYPE_IPV6_EXT 1011 */ 1012 struct rte_flow_item_ipv6_ext { 1013 uint8_t next_hdr; /**< Next header. */ 1014 }; 1015 1016 /** Default mask for RTE_FLOW_ITEM_TYPE_IPV6_EXT. */ 1017 #ifndef __cplusplus 1018 static const 1019 struct rte_flow_item_ipv6_ext rte_flow_item_ipv6_ext_mask = { 1020 .next_hdr = 0xff, 1021 }; 1022 #endif 1023 1024 /** 1025 * RTE_FLOW_ITEM_TYPE_ICMP6 1026 * 1027 * Matches any ICMPv6 header. 1028 */ 1029 struct rte_flow_item_icmp6 { 1030 uint8_t type; /**< ICMPv6 type. */ 1031 uint8_t code; /**< ICMPv6 code. */ 1032 uint16_t checksum; /**< ICMPv6 checksum. */ 1033 }; 1034 1035 /** Default mask for RTE_FLOW_ITEM_TYPE_ICMP6. */ 1036 #ifndef __cplusplus 1037 static const struct rte_flow_item_icmp6 rte_flow_item_icmp6_mask = { 1038 .type = 0xff, 1039 .code = 0xff, 1040 }; 1041 #endif 1042 1043 /** 1044 * RTE_FLOW_ITEM_TYPE_ICMP6_ND_NS 1045 * 1046 * Matches an ICMPv6 neighbor discovery solicitation. 1047 */ 1048 struct rte_flow_item_icmp6_nd_ns { 1049 uint8_t type; /**< ICMPv6 type, normally 135. */ 1050 uint8_t code; /**< ICMPv6 code, normally 0. */ 1051 rte_be16_t checksum; /**< ICMPv6 checksum. */ 1052 rte_be32_t reserved; /**< Reserved, normally 0. */ 1053 uint8_t target_addr[16]; /**< Target address. */ 1054 }; 1055 1056 /** Default mask for RTE_FLOW_ITEM_TYPE_ICMP6_ND_NS. */ 1057 #ifndef __cplusplus 1058 static const 1059 struct rte_flow_item_icmp6_nd_ns rte_flow_item_icmp6_nd_ns_mask = { 1060 .target_addr = 1061 "\xff\xff\xff\xff\xff\xff\xff\xff" 1062 "\xff\xff\xff\xff\xff\xff\xff\xff", 1063 }; 1064 #endif 1065 1066 /** 1067 * RTE_FLOW_ITEM_TYPE_ICMP6_ND_NA 1068 * 1069 * Matches an ICMPv6 neighbor discovery advertisement. 1070 */ 1071 struct rte_flow_item_icmp6_nd_na { 1072 uint8_t type; /**< ICMPv6 type, normally 136. */ 1073 uint8_t code; /**< ICMPv6 code, normally 0. */ 1074 rte_be16_t checksum; /**< ICMPv6 checksum. */ 1075 /** 1076 * Route flag (1b), solicited flag (1b), override flag (1b), 1077 * reserved (29b). 1078 */ 1079 rte_be32_t rso_reserved; 1080 uint8_t target_addr[16]; /**< Target address. */ 1081 }; 1082 1083 /** Default mask for RTE_FLOW_ITEM_TYPE_ICMP6_ND_NA. */ 1084 #ifndef __cplusplus 1085 static const 1086 struct rte_flow_item_icmp6_nd_na rte_flow_item_icmp6_nd_na_mask = { 1087 .target_addr = 1088 "\xff\xff\xff\xff\xff\xff\xff\xff" 1089 "\xff\xff\xff\xff\xff\xff\xff\xff", 1090 }; 1091 #endif 1092 1093 /** 1094 * RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT 1095 * 1096 * Matches the presence of any ICMPv6 neighbor discovery option. 1097 * 1098 * Normally preceded by any of: 1099 * 1100 * - RTE_FLOW_ITEM_TYPE_ICMP6_ND_NA 1101 * - RTE_FLOW_ITEM_TYPE_ICMP6_ND_NS 1102 * - RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT 1103 */ 1104 struct rte_flow_item_icmp6_nd_opt { 1105 uint8_t type; /**< ND option type. */ 1106 uint8_t length; /**< ND option length. */ 1107 }; 1108 1109 /** Default mask for RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT. */ 1110 #ifndef __cplusplus 1111 static const struct rte_flow_item_icmp6_nd_opt 1112 rte_flow_item_icmp6_nd_opt_mask = { 1113 .type = 0xff, 1114 }; 1115 #endif 1116 1117 /** 1118 * RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT_SLA_ETH 1119 * 1120 * Matches an ICMPv6 neighbor discovery source Ethernet link-layer address 1121 * option. 1122 * 1123 * Normally preceded by any of: 1124 * 1125 * - RTE_FLOW_ITEM_TYPE_ICMP6_ND_NA 1126 * - RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT 1127 */ 1128 struct rte_flow_item_icmp6_nd_opt_sla_eth { 1129 uint8_t type; /**< ND option type, normally 1. */ 1130 uint8_t length; /**< ND option length, normally 1. */ 1131 struct ether_addr sla; /**< Source Ethernet LLA. */ 1132 }; 1133 1134 /** Default mask for RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT_SLA_ETH. */ 1135 #ifndef __cplusplus 1136 static const struct rte_flow_item_icmp6_nd_opt_sla_eth 1137 rte_flow_item_icmp6_nd_opt_sla_eth_mask = { 1138 .sla.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1139 }; 1140 #endif 1141 1142 /** 1143 * RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT_TLA_ETH 1144 * 1145 * Matches an ICMPv6 neighbor discovery target Ethernet link-layer address 1146 * option. 1147 * 1148 * Normally preceded by any of: 1149 * 1150 * - RTE_FLOW_ITEM_TYPE_ICMP6_ND_NS 1151 * - RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT 1152 */ 1153 struct rte_flow_item_icmp6_nd_opt_tla_eth { 1154 uint8_t type; /**< ND option type, normally 2. */ 1155 uint8_t length; /**< ND option length, normally 1. */ 1156 struct ether_addr tla; /**< Target Ethernet LLA. */ 1157 }; 1158 1159 /** Default mask for RTE_FLOW_ITEM_TYPE_ICMP6_ND_OPT_TLA_ETH. */ 1160 #ifndef __cplusplus 1161 static const struct rte_flow_item_icmp6_nd_opt_tla_eth 1162 rte_flow_item_icmp6_nd_opt_tla_eth_mask = { 1163 .tla.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1164 }; 1165 #endif 1166 1167 /** 1168 * RTE_FLOW_ITEM_TYPE_META. 1169 * 1170 * Matches a specified metadata value. 1171 */ 1172 struct rte_flow_item_meta { 1173 rte_be32_t data; 1174 }; 1175 1176 /** Default mask for RTE_FLOW_ITEM_TYPE_META. */ 1177 #ifndef __cplusplus 1178 static const struct rte_flow_item_meta rte_flow_item_meta_mask = { 1179 .data = RTE_BE32(UINT32_MAX), 1180 }; 1181 #endif 1182 1183 /** 1184 * @warning 1185 * @b EXPERIMENTAL: this structure may change without prior notice 1186 * 1187 * RTE_FLOW_ITEM_TYPE_MARK 1188 * 1189 * Matches an arbitrary integer value which was set using the ``MARK`` action 1190 * in a previously matched rule. 1191 * 1192 * This item can only be specified once as a match criteria as the ``MARK`` 1193 * action can only be specified once in a flow action. 1194 * 1195 * This value is arbitrary and application-defined. Maximum allowed value 1196 * depends on the underlying implementation. 1197 * 1198 * Depending on the underlying implementation the MARK item may be supported on 1199 * the physical device, with virtual groups in the PMD or not at all. 1200 */ 1201 struct rte_flow_item_mark { 1202 uint32_t id; /**< Integer value to match against. */ 1203 }; 1204 1205 /** 1206 * Matching pattern item definition. 1207 * 1208 * A pattern is formed by stacking items starting from the lowest protocol 1209 * layer to match. This stacking restriction does not apply to meta items 1210 * which can be placed anywhere in the stack without affecting the meaning 1211 * of the resulting pattern. 1212 * 1213 * Patterns are terminated by END items. 1214 * 1215 * The spec field should be a valid pointer to a structure of the related 1216 * item type. It may remain unspecified (NULL) in many cases to request 1217 * broad (nonspecific) matching. In such cases, last and mask must also be 1218 * set to NULL. 1219 * 1220 * Optionally, last can point to a structure of the same type to define an 1221 * inclusive range. This is mostly supported by integer and address fields, 1222 * may cause errors otherwise. Fields that do not support ranges must be set 1223 * to 0 or to the same value as the corresponding fields in spec. 1224 * 1225 * Only the fields defined to nonzero values in the default masks (see 1226 * rte_flow_item_{name}_mask constants) are considered relevant by 1227 * default. This can be overridden by providing a mask structure of the 1228 * same type with applicable bits set to one. It can also be used to 1229 * partially filter out specific fields (e.g. as an alternate mean to match 1230 * ranges of IP addresses). 1231 * 1232 * Mask is a simple bit-mask applied before interpreting the contents of 1233 * spec and last, which may yield unexpected results if not used 1234 * carefully. For example, if for an IPv4 address field, spec provides 1235 * 10.1.2.3, last provides 10.3.4.5 and mask provides 255.255.0.0, the 1236 * effective range becomes 10.1.0.0 to 10.3.255.255. 1237 */ 1238 struct rte_flow_item { 1239 enum rte_flow_item_type type; /**< Item type. */ 1240 const void *spec; /**< Pointer to item specification structure. */ 1241 const void *last; /**< Defines an inclusive range (spec to last). */ 1242 const void *mask; /**< Bit-mask applied to spec and last. */ 1243 }; 1244 1245 /** 1246 * Action types. 1247 * 1248 * Each possible action is represented by a type. Some have associated 1249 * configuration structures. Several actions combined in a list can be 1250 * assigned to a flow rule and are performed in order. 1251 * 1252 * They fall in three categories: 1253 * 1254 * - Actions that modify the fate of matching traffic, for instance by 1255 * dropping or assigning it a specific destination. 1256 * 1257 * - Actions that modify matching traffic contents or its properties. This 1258 * includes adding/removing encapsulation, encryption, compression and 1259 * marks. 1260 * 1261 * - Actions related to the flow rule itself, such as updating counters or 1262 * making it non-terminating. 1263 * 1264 * Flow rules being terminating by default, not specifying any action of the 1265 * fate kind results in undefined behavior. This applies to both ingress and 1266 * egress. 1267 * 1268 * PASSTHRU, when supported, makes a flow rule non-terminating. 1269 */ 1270 enum rte_flow_action_type { 1271 /** 1272 * End marker for action lists. Prevents further processing of 1273 * actions, thereby ending the list. 1274 * 1275 * No associated configuration structure. 1276 */ 1277 RTE_FLOW_ACTION_TYPE_END, 1278 1279 /** 1280 * Used as a placeholder for convenience. It is ignored and simply 1281 * discarded by PMDs. 1282 * 1283 * No associated configuration structure. 1284 */ 1285 RTE_FLOW_ACTION_TYPE_VOID, 1286 1287 /** 1288 * Leaves traffic up for additional processing by subsequent flow 1289 * rules; makes a flow rule non-terminating. 1290 * 1291 * No associated configuration structure. 1292 */ 1293 RTE_FLOW_ACTION_TYPE_PASSTHRU, 1294 1295 /** 1296 * RTE_FLOW_ACTION_TYPE_JUMP 1297 * 1298 * Redirects packets to a group on the current device. 1299 * 1300 * See struct rte_flow_action_jump. 1301 */ 1302 RTE_FLOW_ACTION_TYPE_JUMP, 1303 1304 /** 1305 * Attaches an integer value to packets and sets PKT_RX_FDIR and 1306 * PKT_RX_FDIR_ID mbuf flags. 1307 * 1308 * See struct rte_flow_action_mark. 1309 */ 1310 RTE_FLOW_ACTION_TYPE_MARK, 1311 1312 /** 1313 * Flags packets. Similar to MARK without a specific value; only 1314 * sets the PKT_RX_FDIR mbuf flag. 1315 * 1316 * No associated configuration structure. 1317 */ 1318 RTE_FLOW_ACTION_TYPE_FLAG, 1319 1320 /** 1321 * Assigns packets to a given queue index. 1322 * 1323 * See struct rte_flow_action_queue. 1324 */ 1325 RTE_FLOW_ACTION_TYPE_QUEUE, 1326 1327 /** 1328 * Drops packets. 1329 * 1330 * PASSTHRU overrides this action if both are specified. 1331 * 1332 * No associated configuration structure. 1333 */ 1334 RTE_FLOW_ACTION_TYPE_DROP, 1335 1336 /** 1337 * Enables counters for this flow rule. 1338 * 1339 * These counters can be retrieved and reset through rte_flow_query(), 1340 * see struct rte_flow_query_count. 1341 * 1342 * See struct rte_flow_action_count. 1343 */ 1344 RTE_FLOW_ACTION_TYPE_COUNT, 1345 1346 /** 1347 * Similar to QUEUE, except RSS is additionally performed on packets 1348 * to spread them among several queues according to the provided 1349 * parameters. 1350 * 1351 * See struct rte_flow_action_rss. 1352 */ 1353 RTE_FLOW_ACTION_TYPE_RSS, 1354 1355 /** 1356 * Directs matching traffic to the physical function (PF) of the 1357 * current device. 1358 * 1359 * No associated configuration structure. 1360 */ 1361 RTE_FLOW_ACTION_TYPE_PF, 1362 1363 /** 1364 * Directs matching traffic to a given virtual function of the 1365 * current device. 1366 * 1367 * See struct rte_flow_action_vf. 1368 */ 1369 RTE_FLOW_ACTION_TYPE_VF, 1370 1371 /** 1372 * Directs packets to a given physical port index of the underlying 1373 * device. 1374 * 1375 * See struct rte_flow_action_phy_port. 1376 */ 1377 RTE_FLOW_ACTION_TYPE_PHY_PORT, 1378 1379 /** 1380 * Directs matching traffic to a given DPDK port ID. 1381 * 1382 * See struct rte_flow_action_port_id. 1383 */ 1384 RTE_FLOW_ACTION_TYPE_PORT_ID, 1385 1386 /** 1387 * Traffic metering and policing (MTR). 1388 * 1389 * See struct rte_flow_action_meter. 1390 * See file rte_mtr.h for MTR object configuration. 1391 */ 1392 RTE_FLOW_ACTION_TYPE_METER, 1393 1394 /** 1395 * Redirects packets to security engine of current device for security 1396 * processing as specified by security session. 1397 * 1398 * See struct rte_flow_action_security. 1399 */ 1400 RTE_FLOW_ACTION_TYPE_SECURITY, 1401 1402 /** 1403 * Implements OFPAT_SET_MPLS_TTL ("MPLS TTL") as defined by the 1404 * OpenFlow Switch Specification. 1405 * 1406 * See struct rte_flow_action_of_set_mpls_ttl. 1407 */ 1408 RTE_FLOW_ACTION_TYPE_OF_SET_MPLS_TTL, 1409 1410 /** 1411 * Implements OFPAT_DEC_MPLS_TTL ("decrement MPLS TTL") as defined 1412 * by the OpenFlow Switch Specification. 1413 * 1414 * No associated configuration structure. 1415 */ 1416 RTE_FLOW_ACTION_TYPE_OF_DEC_MPLS_TTL, 1417 1418 /** 1419 * Implements OFPAT_SET_NW_TTL ("IP TTL") as defined by the OpenFlow 1420 * Switch Specification. 1421 * 1422 * See struct rte_flow_action_of_set_nw_ttl. 1423 */ 1424 RTE_FLOW_ACTION_TYPE_OF_SET_NW_TTL, 1425 1426 /** 1427 * Implements OFPAT_DEC_NW_TTL ("decrement IP TTL") as defined by 1428 * the OpenFlow Switch Specification. 1429 * 1430 * No associated configuration structure. 1431 */ 1432 RTE_FLOW_ACTION_TYPE_OF_DEC_NW_TTL, 1433 1434 /** 1435 * Implements OFPAT_COPY_TTL_OUT ("copy TTL "outwards" -- from 1436 * next-to-outermost to outermost") as defined by the OpenFlow 1437 * Switch Specification. 1438 * 1439 * No associated configuration structure. 1440 */ 1441 RTE_FLOW_ACTION_TYPE_OF_COPY_TTL_OUT, 1442 1443 /** 1444 * Implements OFPAT_COPY_TTL_IN ("copy TTL "inwards" -- from 1445 * outermost to next-to-outermost") as defined by the OpenFlow 1446 * Switch Specification. 1447 * 1448 * No associated configuration structure. 1449 */ 1450 RTE_FLOW_ACTION_TYPE_OF_COPY_TTL_IN, 1451 1452 /** 1453 * Implements OFPAT_POP_VLAN ("pop the outer VLAN tag") as defined 1454 * by the OpenFlow Switch Specification. 1455 * 1456 * No associated configuration structure. 1457 */ 1458 RTE_FLOW_ACTION_TYPE_OF_POP_VLAN, 1459 1460 /** 1461 * Implements OFPAT_PUSH_VLAN ("push a new VLAN tag") as defined by 1462 * the OpenFlow Switch Specification. 1463 * 1464 * See struct rte_flow_action_of_push_vlan. 1465 */ 1466 RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN, 1467 1468 /** 1469 * Implements OFPAT_SET_VLAN_VID ("set the 802.1q VLAN id") as 1470 * defined by the OpenFlow Switch Specification. 1471 * 1472 * See struct rte_flow_action_of_set_vlan_vid. 1473 */ 1474 RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID, 1475 1476 /** 1477 * Implements OFPAT_SET_LAN_PCP ("set the 802.1q priority") as 1478 * defined by the OpenFlow Switch Specification. 1479 * 1480 * See struct rte_flow_action_of_set_vlan_pcp. 1481 */ 1482 RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP, 1483 1484 /** 1485 * Implements OFPAT_POP_MPLS ("pop the outer MPLS tag") as defined 1486 * by the OpenFlow Switch Specification. 1487 * 1488 * See struct rte_flow_action_of_pop_mpls. 1489 */ 1490 RTE_FLOW_ACTION_TYPE_OF_POP_MPLS, 1491 1492 /** 1493 * Implements OFPAT_PUSH_MPLS ("push a new MPLS tag") as defined by 1494 * the OpenFlow Switch Specification. 1495 * 1496 * See struct rte_flow_action_of_push_mpls. 1497 */ 1498 RTE_FLOW_ACTION_TYPE_OF_PUSH_MPLS, 1499 1500 /** 1501 * Encapsulate flow in VXLAN tunnel as defined in 1502 * rte_flow_action_vxlan_encap action structure. 1503 * 1504 * See struct rte_flow_action_vxlan_encap. 1505 */ 1506 RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP, 1507 1508 /** 1509 * Decapsulate outer most VXLAN tunnel from matched flow. 1510 * 1511 * If flow pattern does not define a valid VXLAN tunnel (as specified by 1512 * RFC7348) then the PMD should return a RTE_FLOW_ERROR_TYPE_ACTION 1513 * error. 1514 */ 1515 RTE_FLOW_ACTION_TYPE_VXLAN_DECAP, 1516 1517 /** 1518 * Encapsulate flow in NVGRE tunnel defined in the 1519 * rte_flow_action_nvgre_encap action structure. 1520 * 1521 * See struct rte_flow_action_nvgre_encap. 1522 */ 1523 RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP, 1524 1525 /** 1526 * Decapsulate outer most NVGRE tunnel from matched flow. 1527 * 1528 * If flow pattern does not define a valid NVGRE tunnel (as specified by 1529 * RFC7637) then the PMD should return a RTE_FLOW_ERROR_TYPE_ACTION 1530 * error. 1531 */ 1532 RTE_FLOW_ACTION_TYPE_NVGRE_DECAP, 1533 1534 /** 1535 * Add outer header whose template is provided in its data buffer 1536 * 1537 * See struct rte_flow_action_raw_encap. 1538 */ 1539 RTE_FLOW_ACTION_TYPE_RAW_ENCAP, 1540 1541 /** 1542 * Remove outer header whose template is provided in its data buffer. 1543 * 1544 * See struct rte_flow_action_raw_decap 1545 */ 1546 RTE_FLOW_ACTION_TYPE_RAW_DECAP, 1547 1548 /** 1549 * Modify IPv4 source address in the outermost IPv4 header. 1550 * 1551 * If flow pattern does not define a valid RTE_FLOW_ITEM_TYPE_IPV4, 1552 * then the PMD should return a RTE_FLOW_ERROR_TYPE_ACTION error. 1553 * 1554 * See struct rte_flow_action_set_ipv4. 1555 */ 1556 RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC, 1557 1558 /** 1559 * Modify IPv4 destination address in the outermost IPv4 header. 1560 * 1561 * If flow pattern does not define a valid RTE_FLOW_ITEM_TYPE_IPV4, 1562 * then the PMD should return a RTE_FLOW_ERROR_TYPE_ACTION error. 1563 * 1564 * See struct rte_flow_action_set_ipv4. 1565 */ 1566 RTE_FLOW_ACTION_TYPE_SET_IPV4_DST, 1567 1568 /** 1569 * Modify IPv6 source address in the outermost IPv6 header. 1570 * 1571 * If flow pattern does not define a valid RTE_FLOW_ITEM_TYPE_IPV6, 1572 * then the PMD should return a RTE_FLOW_ERROR_TYPE_ACTION error. 1573 * 1574 * See struct rte_flow_action_set_ipv6. 1575 */ 1576 RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC, 1577 1578 /** 1579 * Modify IPv6 destination address in the outermost IPv6 header. 1580 * 1581 * If flow pattern does not define a valid RTE_FLOW_ITEM_TYPE_IPV6, 1582 * then the PMD should return a RTE_FLOW_ERROR_TYPE_ACTION error. 1583 * 1584 * See struct rte_flow_action_set_ipv6. 1585 */ 1586 RTE_FLOW_ACTION_TYPE_SET_IPV6_DST, 1587 1588 /** 1589 * Modify source port number in the outermost TCP/UDP header. 1590 * 1591 * If flow pattern does not define a valid RTE_FLOW_ITEM_TYPE_TCP 1592 * or RTE_FLOW_ITEM_TYPE_UDP, then the PMD should return a 1593 * RTE_FLOW_ERROR_TYPE_ACTION error. 1594 * 1595 * See struct rte_flow_action_set_tp. 1596 */ 1597 RTE_FLOW_ACTION_TYPE_SET_TP_SRC, 1598 1599 /** 1600 * Modify destination port number in the outermost TCP/UDP header. 1601 * 1602 * If flow pattern does not define a valid RTE_FLOW_ITEM_TYPE_TCP 1603 * or RTE_FLOW_ITEM_TYPE_UDP, then the PMD should return a 1604 * RTE_FLOW_ERROR_TYPE_ACTION error. 1605 * 1606 * See struct rte_flow_action_set_tp. 1607 */ 1608 RTE_FLOW_ACTION_TYPE_SET_TP_DST, 1609 1610 /** 1611 * Swap the source and destination MAC addresses in the outermost 1612 * Ethernet header. 1613 * 1614 * If flow pattern does not define a valid RTE_FLOW_ITEM_TYPE_ETH, 1615 * then the PMD should return a RTE_FLOW_ERROR_TYPE_ACTION error. 1616 * 1617 * No associated configuration structure. 1618 */ 1619 RTE_FLOW_ACTION_TYPE_MAC_SWAP, 1620 1621 /** 1622 * Decrease TTL value directly 1623 * 1624 * No associated configuration structure. 1625 */ 1626 RTE_FLOW_ACTION_TYPE_DEC_TTL, 1627 1628 /** 1629 * Set TTL value 1630 * 1631 * See struct rte_flow_action_set_ttl 1632 */ 1633 RTE_FLOW_ACTION_TYPE_SET_TTL, 1634 1635 /** 1636 * Set source MAC address from matched flow. 1637 * 1638 * If flow pattern does not define a valid RTE_FLOW_ITEM_TYPE_ETH, 1639 * the PMD should return a RTE_FLOW_ERROR_TYPE_ACTION error. 1640 * 1641 * See struct rte_flow_action_set_mac. 1642 */ 1643 RTE_FLOW_ACTION_TYPE_SET_MAC_SRC, 1644 1645 /** 1646 * Set destination MAC address from matched flow. 1647 * 1648 * If flow pattern does not define a valid RTE_FLOW_ITEM_TYPE_ETH, 1649 * the PMD should return a RTE_FLOW_ERROR_TYPE_ACTION error. 1650 * 1651 * See struct rte_flow_action_set_mac. 1652 */ 1653 RTE_FLOW_ACTION_TYPE_SET_MAC_DST, 1654 }; 1655 1656 /** 1657 * RTE_FLOW_ACTION_TYPE_MARK 1658 * 1659 * Attaches an integer value to packets and sets PKT_RX_FDIR and 1660 * PKT_RX_FDIR_ID mbuf flags. 1661 * 1662 * This value is arbitrary and application-defined. Maximum allowed value 1663 * depends on the underlying implementation. It is returned in the 1664 * hash.fdir.hi mbuf field. 1665 */ 1666 struct rte_flow_action_mark { 1667 uint32_t id; /**< Integer value to return with packets. */ 1668 }; 1669 1670 /** 1671 * @warning 1672 * @b EXPERIMENTAL: this structure may change without prior notice 1673 * 1674 * RTE_FLOW_ACTION_TYPE_JUMP 1675 * 1676 * Redirects packets to a group on the current device. 1677 * 1678 * In a hierarchy of groups, which can be used to represent physical or logical 1679 * flow tables on the device, this action allows the action to be a redirect to 1680 * a group on that device. 1681 */ 1682 struct rte_flow_action_jump { 1683 uint32_t group; 1684 }; 1685 1686 /** 1687 * RTE_FLOW_ACTION_TYPE_QUEUE 1688 * 1689 * Assign packets to a given queue index. 1690 */ 1691 struct rte_flow_action_queue { 1692 uint16_t index; /**< Queue index to use. */ 1693 }; 1694 1695 1696 /** 1697 * @warning 1698 * @b EXPERIMENTAL: this structure may change without prior notice 1699 * 1700 * RTE_FLOW_ACTION_TYPE_COUNT 1701 * 1702 * Adds a counter action to a matched flow. 1703 * 1704 * If more than one count action is specified in a single flow rule, then each 1705 * action must specify a unique id. 1706 * 1707 * Counters can be retrieved and reset through ``rte_flow_query()``, see 1708 * ``struct rte_flow_query_count``. 1709 * 1710 * The shared flag indicates whether the counter is unique to the flow rule the 1711 * action is specified with, or whether it is a shared counter. 1712 * 1713 * For a count action with the shared flag set, then then a global device 1714 * namespace is assumed for the counter id, so that any matched flow rules using 1715 * a count action with the same counter id on the same port will contribute to 1716 * that counter. 1717 * 1718 * For ports within the same switch domain then the counter id namespace extends 1719 * to all ports within that switch domain. 1720 */ 1721 struct rte_flow_action_count { 1722 uint32_t shared:1; /**< Share counter ID with other flow rules. */ 1723 uint32_t reserved:31; /**< Reserved, must be zero. */ 1724 uint32_t id; /**< Counter ID. */ 1725 }; 1726 1727 /** 1728 * RTE_FLOW_ACTION_TYPE_COUNT (query) 1729 * 1730 * Query structure to retrieve and reset flow rule counters. 1731 */ 1732 struct rte_flow_query_count { 1733 uint32_t reset:1; /**< Reset counters after query [in]. */ 1734 uint32_t hits_set:1; /**< hits field is set [out]. */ 1735 uint32_t bytes_set:1; /**< bytes field is set [out]. */ 1736 uint32_t reserved:29; /**< Reserved, must be zero [in, out]. */ 1737 uint64_t hits; /**< Number of hits for this rule [out]. */ 1738 uint64_t bytes; /**< Number of bytes through this rule [out]. */ 1739 }; 1740 1741 /** 1742 * RTE_FLOW_ACTION_TYPE_RSS 1743 * 1744 * Similar to QUEUE, except RSS is additionally performed on packets to 1745 * spread them among several queues according to the provided parameters. 1746 * 1747 * Unlike global RSS settings used by other DPDK APIs, unsetting the 1748 * @p types field does not disable RSS in a flow rule. Doing so instead 1749 * requests safe unspecified "best-effort" settings from the underlying PMD, 1750 * which depending on the flow rule, may result in anything ranging from 1751 * empty (single queue) to all-inclusive RSS. 1752 * 1753 * Note: RSS hash result is stored in the hash.rss mbuf field which overlaps 1754 * hash.fdir.lo. Since the MARK action sets the hash.fdir.hi field only, 1755 * both can be requested simultaneously. 1756 */ 1757 struct rte_flow_action_rss { 1758 enum rte_eth_hash_function func; /**< RSS hash function to apply. */ 1759 /** 1760 * Packet encapsulation level RSS hash @p types apply to. 1761 * 1762 * - @p 0 requests the default behavior. Depending on the packet 1763 * type, it can mean outermost, innermost, anything in between or 1764 * even no RSS. 1765 * 1766 * It basically stands for the innermost encapsulation level RSS 1767 * can be performed on according to PMD and device capabilities. 1768 * 1769 * - @p 1 requests RSS to be performed on the outermost packet 1770 * encapsulation level. 1771 * 1772 * - @p 2 and subsequent values request RSS to be performed on the 1773 * specified inner packet encapsulation level, from outermost to 1774 * innermost (lower to higher values). 1775 * 1776 * Values other than @p 0 are not necessarily supported. 1777 * 1778 * Requesting a specific RSS level on unrecognized traffic results 1779 * in undefined behavior. For predictable results, it is recommended 1780 * to make the flow rule pattern match packet headers up to the 1781 * requested encapsulation level so that only matching traffic goes 1782 * through. 1783 */ 1784 uint32_t level; 1785 uint64_t types; /**< Specific RSS hash types (see ETH_RSS_*). */ 1786 uint32_t key_len; /**< Hash key length in bytes. */ 1787 uint32_t queue_num; /**< Number of entries in @p queue. */ 1788 const uint8_t *key; /**< Hash key. */ 1789 const uint16_t *queue; /**< Queue indices to use. */ 1790 }; 1791 1792 /** 1793 * RTE_FLOW_ACTION_TYPE_VF 1794 * 1795 * Directs matching traffic to a given virtual function of the current 1796 * device. 1797 * 1798 * Packets matched by a VF pattern item can be redirected to their original 1799 * VF ID instead of the specified one. This parameter may not be available 1800 * and is not guaranteed to work properly if the VF part is matched by a 1801 * prior flow rule or if packets are not addressed to a VF in the first 1802 * place. 1803 */ 1804 struct rte_flow_action_vf { 1805 uint32_t original:1; /**< Use original VF ID if possible. */ 1806 uint32_t reserved:31; /**< Reserved, must be zero. */ 1807 uint32_t id; /**< VF ID. */ 1808 }; 1809 1810 /** 1811 * RTE_FLOW_ACTION_TYPE_PHY_PORT 1812 * 1813 * Directs packets to a given physical port index of the underlying 1814 * device. 1815 * 1816 * @see RTE_FLOW_ITEM_TYPE_PHY_PORT 1817 */ 1818 struct rte_flow_action_phy_port { 1819 uint32_t original:1; /**< Use original port index if possible. */ 1820 uint32_t reserved:31; /**< Reserved, must be zero. */ 1821 uint32_t index; /**< Physical port index. */ 1822 }; 1823 1824 /** 1825 * RTE_FLOW_ACTION_TYPE_PORT_ID 1826 * 1827 * Directs matching traffic to a given DPDK port ID. 1828 * 1829 * @see RTE_FLOW_ITEM_TYPE_PORT_ID 1830 */ 1831 struct rte_flow_action_port_id { 1832 uint32_t original:1; /**< Use original DPDK port ID if possible. */ 1833 uint32_t reserved:31; /**< Reserved, must be zero. */ 1834 uint32_t id; /**< DPDK port ID. */ 1835 }; 1836 1837 /** 1838 * RTE_FLOW_ACTION_TYPE_METER 1839 * 1840 * Traffic metering and policing (MTR). 1841 * 1842 * Packets matched by items of this type can be either dropped or passed to the 1843 * next item with their color set by the MTR object. 1844 */ 1845 struct rte_flow_action_meter { 1846 uint32_t mtr_id; /**< MTR object ID created with rte_mtr_create(). */ 1847 }; 1848 1849 /** 1850 * RTE_FLOW_ACTION_TYPE_SECURITY 1851 * 1852 * Perform the security action on flows matched by the pattern items 1853 * according to the configuration of the security session. 1854 * 1855 * This action modifies the payload of matched flows. For INLINE_CRYPTO, the 1856 * security protocol headers and IV are fully provided by the application as 1857 * specified in the flow pattern. The payload of matching packets is 1858 * encrypted on egress, and decrypted and authenticated on ingress. 1859 * For INLINE_PROTOCOL, the security protocol is fully offloaded to HW, 1860 * providing full encapsulation and decapsulation of packets in security 1861 * protocols. The flow pattern specifies both the outer security header fields 1862 * and the inner packet fields. The security session specified in the action 1863 * must match the pattern parameters. 1864 * 1865 * The security session specified in the action must be created on the same 1866 * port as the flow action that is being specified. 1867 * 1868 * The ingress/egress flow attribute should match that specified in the 1869 * security session if the security session supports the definition of the 1870 * direction. 1871 * 1872 * Multiple flows can be configured to use the same security session. 1873 */ 1874 struct rte_flow_action_security { 1875 void *security_session; /**< Pointer to security session structure. */ 1876 }; 1877 1878 /** 1879 * RTE_FLOW_ACTION_TYPE_OF_SET_MPLS_TTL 1880 * 1881 * Implements OFPAT_SET_MPLS_TTL ("MPLS TTL") as defined by the OpenFlow 1882 * Switch Specification. 1883 */ 1884 struct rte_flow_action_of_set_mpls_ttl { 1885 uint8_t mpls_ttl; /**< MPLS TTL. */ 1886 }; 1887 1888 /** 1889 * RTE_FLOW_ACTION_TYPE_OF_SET_NW_TTL 1890 * 1891 * Implements OFPAT_SET_NW_TTL ("IP TTL") as defined by the OpenFlow Switch 1892 * Specification. 1893 */ 1894 struct rte_flow_action_of_set_nw_ttl { 1895 uint8_t nw_ttl; /**< IP TTL. */ 1896 }; 1897 1898 /** 1899 * RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN 1900 * 1901 * Implements OFPAT_PUSH_VLAN ("push a new VLAN tag") as defined by the 1902 * OpenFlow Switch Specification. 1903 */ 1904 struct rte_flow_action_of_push_vlan { 1905 rte_be16_t ethertype; /**< EtherType. */ 1906 }; 1907 1908 /** 1909 * RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID 1910 * 1911 * Implements OFPAT_SET_VLAN_VID ("set the 802.1q VLAN id") as defined by 1912 * the OpenFlow Switch Specification. 1913 */ 1914 struct rte_flow_action_of_set_vlan_vid { 1915 rte_be16_t vlan_vid; /**< VLAN id. */ 1916 }; 1917 1918 /** 1919 * RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP 1920 * 1921 * Implements OFPAT_SET_LAN_PCP ("set the 802.1q priority") as defined by 1922 * the OpenFlow Switch Specification. 1923 */ 1924 struct rte_flow_action_of_set_vlan_pcp { 1925 uint8_t vlan_pcp; /**< VLAN priority. */ 1926 }; 1927 1928 /** 1929 * RTE_FLOW_ACTION_TYPE_OF_POP_MPLS 1930 * 1931 * Implements OFPAT_POP_MPLS ("pop the outer MPLS tag") as defined by the 1932 * OpenFlow Switch Specification. 1933 */ 1934 struct rte_flow_action_of_pop_mpls { 1935 rte_be16_t ethertype; /**< EtherType. */ 1936 }; 1937 1938 /** 1939 * RTE_FLOW_ACTION_TYPE_OF_PUSH_MPLS 1940 * 1941 * Implements OFPAT_PUSH_MPLS ("push a new MPLS tag") as defined by the 1942 * OpenFlow Switch Specification. 1943 */ 1944 struct rte_flow_action_of_push_mpls { 1945 rte_be16_t ethertype; /**< EtherType. */ 1946 }; 1947 1948 /** 1949 * @warning 1950 * @b EXPERIMENTAL: this structure may change without prior notice 1951 * 1952 * RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP 1953 * 1954 * VXLAN tunnel end-point encapsulation data definition 1955 * 1956 * The tunnel definition is provided through the flow item pattern, the 1957 * provided pattern must conform to RFC7348 for the tunnel specified. The flow 1958 * definition must be provided in order from the RTE_FLOW_ITEM_TYPE_ETH 1959 * definition up the end item which is specified by RTE_FLOW_ITEM_TYPE_END. 1960 * 1961 * The mask field allows user to specify which fields in the flow item 1962 * definitions can be ignored and which have valid data and can be used 1963 * verbatim. 1964 * 1965 * Note: the last field is not used in the definition of a tunnel and can be 1966 * ignored. 1967 * 1968 * Valid flow definition for RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP include: 1969 * 1970 * - ETH / IPV4 / UDP / VXLAN / END 1971 * - ETH / IPV6 / UDP / VXLAN / END 1972 * - ETH / VLAN / IPV4 / UDP / VXLAN / END 1973 * 1974 */ 1975 struct rte_flow_action_vxlan_encap { 1976 /** 1977 * Encapsulating vxlan tunnel definition 1978 * (terminated by the END pattern item). 1979 */ 1980 struct rte_flow_item *definition; 1981 }; 1982 1983 /** 1984 * @warning 1985 * @b EXPERIMENTAL: this structure may change without prior notice 1986 * 1987 * RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP 1988 * 1989 * NVGRE tunnel end-point encapsulation data definition 1990 * 1991 * The tunnel definition is provided through the flow item pattern the 1992 * provided pattern must conform with RFC7637. The flow definition must be 1993 * provided in order from the RTE_FLOW_ITEM_TYPE_ETH definition up the end item 1994 * which is specified by RTE_FLOW_ITEM_TYPE_END. 1995 * 1996 * The mask field allows user to specify which fields in the flow item 1997 * definitions can be ignored and which have valid data and can be used 1998 * verbatim. 1999 * 2000 * Note: the last field is not used in the definition of a tunnel and can be 2001 * ignored. 2002 * 2003 * Valid flow definition for RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP include: 2004 * 2005 * - ETH / IPV4 / NVGRE / END 2006 * - ETH / VLAN / IPV6 / NVGRE / END 2007 * 2008 */ 2009 struct rte_flow_action_nvgre_encap { 2010 /** 2011 * Encapsulating vxlan tunnel definition 2012 * (terminated by the END pattern item). 2013 */ 2014 struct rte_flow_item *definition; 2015 }; 2016 2017 /** 2018 * @warning 2019 * @b EXPERIMENTAL: this structure may change without prior notice 2020 * 2021 * RTE_FLOW_ACTION_TYPE_RAW_ENCAP 2022 * 2023 * Raw tunnel end-point encapsulation data definition. 2024 * 2025 * The data holds the headers definitions to be applied on the packet. 2026 * The data must start with ETH header up to the tunnel item header itself. 2027 * When used right after RAW_DECAP (for decapsulating L3 tunnel type for 2028 * example MPLSoGRE) the data will just hold layer 2 header. 2029 * 2030 * The preserve parameter holds which bits in the packet the PMD is not allowed 2031 * to change, this parameter can also be NULL and then the PMD is allowed 2032 * to update any field. 2033 * 2034 * size holds the number of bytes in @p data and @p preserve. 2035 */ 2036 struct rte_flow_action_raw_encap { 2037 uint8_t *data; /**< Encapsulation data. */ 2038 uint8_t *preserve; /**< Bit-mask of @p data to preserve on output. */ 2039 size_t size; /**< Size of @p data and @p preserve. */ 2040 }; 2041 2042 /** 2043 * @warning 2044 * @b EXPERIMENTAL: this structure may change without prior notice 2045 * 2046 * RTE_FLOW_ACTION_TYPE_RAW_DECAP 2047 * 2048 * Raw tunnel end-point decapsulation data definition. 2049 * 2050 * The data holds the headers definitions to be removed from the packet. 2051 * The data must start with ETH header up to the tunnel item header itself. 2052 * When used right before RAW_DECAP (for encapsulating L3 tunnel type for 2053 * example MPLSoGRE) the data will just hold layer 2 header. 2054 * 2055 * size holds the number of bytes in @p data. 2056 */ 2057 struct rte_flow_action_raw_decap { 2058 uint8_t *data; /**< Encapsulation data. */ 2059 size_t size; /**< Size of @p data and @p preserve. */ 2060 }; 2061 2062 /** 2063 * @warning 2064 * @b EXPERIMENTAL: this structure may change without prior notice 2065 * 2066 * RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC 2067 * RTE_FLOW_ACTION_TYPE_SET_IPV4_DST 2068 * 2069 * Allows modification of IPv4 source (RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC) 2070 * and destination address (RTE_FLOW_ACTION_TYPE_SET_IPV4_DST) in the 2071 * specified outermost IPv4 header. 2072 */ 2073 struct rte_flow_action_set_ipv4 { 2074 rte_be32_t ipv4_addr; 2075 }; 2076 2077 /** 2078 * @warning 2079 * @b EXPERIMENTAL: this structure may change without prior notice 2080 * 2081 * RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC 2082 * RTE_FLOW_ACTION_TYPE_SET_IPV6_DST 2083 * 2084 * Allows modification of IPv6 source (RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC) 2085 * and destination address (RTE_FLOW_ACTION_TYPE_SET_IPV6_DST) in the 2086 * specified outermost IPv6 header. 2087 */ 2088 struct rte_flow_action_set_ipv6 { 2089 uint8_t ipv6_addr[16]; 2090 }; 2091 2092 /** 2093 * @warning 2094 * @b EXPERIMENTAL: this structure may change without prior notice 2095 * 2096 * RTE_FLOW_ACTION_TYPE_SET_TP_SRC 2097 * RTE_FLOW_ACTION_TYPE_SET_TP_DST 2098 * 2099 * Allows modification of source (RTE_FLOW_ACTION_TYPE_SET_TP_SRC) 2100 * and destination (RTE_FLOW_ACTION_TYPE_SET_TP_DST) port numbers 2101 * in the specified outermost TCP/UDP header. 2102 */ 2103 struct rte_flow_action_set_tp { 2104 rte_be16_t port; 2105 }; 2106 2107 /** 2108 * RTE_FLOW_ACTION_TYPE_SET_TTL 2109 * 2110 * Set the TTL value directly for IPv4 or IPv6 2111 */ 2112 struct rte_flow_action_set_ttl { 2113 uint8_t ttl_value; 2114 }; 2115 2116 /** 2117 * RTE_FLOW_ACTION_TYPE_SET_MAC 2118 * 2119 * Set MAC address from the matched flow 2120 */ 2121 struct rte_flow_action_set_mac { 2122 uint8_t mac_addr[ETHER_ADDR_LEN]; 2123 }; 2124 2125 /* 2126 * Definition of a single action. 2127 * 2128 * A list of actions is terminated by a END action. 2129 * 2130 * For simple actions without a configuration structure, conf remains NULL. 2131 */ 2132 struct rte_flow_action { 2133 enum rte_flow_action_type type; /**< Action type. */ 2134 const void *conf; /**< Pointer to action configuration structure. */ 2135 }; 2136 2137 /** 2138 * Opaque type returned after successfully creating a flow. 2139 * 2140 * This handle can be used to manage and query the related flow (e.g. to 2141 * destroy it or retrieve counters). 2142 */ 2143 struct rte_flow; 2144 2145 /** 2146 * Verbose error types. 2147 * 2148 * Most of them provide the type of the object referenced by struct 2149 * rte_flow_error.cause. 2150 */ 2151 enum rte_flow_error_type { 2152 RTE_FLOW_ERROR_TYPE_NONE, /**< No error. */ 2153 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, /**< Cause unspecified. */ 2154 RTE_FLOW_ERROR_TYPE_HANDLE, /**< Flow rule (handle). */ 2155 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, /**< Group field. */ 2156 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, /**< Priority field. */ 2157 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, /**< Ingress field. */ 2158 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, /**< Egress field. */ 2159 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, /**< Transfer field. */ 2160 RTE_FLOW_ERROR_TYPE_ATTR, /**< Attributes structure. */ 2161 RTE_FLOW_ERROR_TYPE_ITEM_NUM, /**< Pattern length. */ 2162 RTE_FLOW_ERROR_TYPE_ITEM_SPEC, /**< Item specification. */ 2163 RTE_FLOW_ERROR_TYPE_ITEM_LAST, /**< Item specification range. */ 2164 RTE_FLOW_ERROR_TYPE_ITEM_MASK, /**< Item specification mask. */ 2165 RTE_FLOW_ERROR_TYPE_ITEM, /**< Specific pattern item. */ 2166 RTE_FLOW_ERROR_TYPE_ACTION_NUM, /**< Number of actions. */ 2167 RTE_FLOW_ERROR_TYPE_ACTION_CONF, /**< Action configuration. */ 2168 RTE_FLOW_ERROR_TYPE_ACTION, /**< Specific action. */ 2169 }; 2170 2171 /** 2172 * Verbose error structure definition. 2173 * 2174 * This object is normally allocated by applications and set by PMDs, the 2175 * message points to a constant string which does not need to be freed by 2176 * the application, however its pointer can be considered valid only as long 2177 * as its associated DPDK port remains configured. Closing the underlying 2178 * device or unloading the PMD invalidates it. 2179 * 2180 * Both cause and message may be NULL regardless of the error type. 2181 */ 2182 struct rte_flow_error { 2183 enum rte_flow_error_type type; /**< Cause field and error types. */ 2184 const void *cause; /**< Object responsible for the error. */ 2185 const char *message; /**< Human-readable error message. */ 2186 }; 2187 2188 /** 2189 * Complete flow rule description. 2190 * 2191 * This object type is used when converting a flow rule description. 2192 * 2193 * @see RTE_FLOW_CONV_OP_RULE 2194 * @see rte_flow_conv() 2195 */ 2196 RTE_STD_C11 2197 struct rte_flow_conv_rule { 2198 union { 2199 const struct rte_flow_attr *attr_ro; /**< RO attributes. */ 2200 struct rte_flow_attr *attr; /**< Attributes. */ 2201 }; 2202 union { 2203 const struct rte_flow_item *pattern_ro; /**< RO pattern. */ 2204 struct rte_flow_item *pattern; /**< Pattern items. */ 2205 }; 2206 union { 2207 const struct rte_flow_action *actions_ro; /**< RO actions. */ 2208 struct rte_flow_action *actions; /**< List of actions. */ 2209 }; 2210 }; 2211 2212 /** 2213 * Conversion operations for flow API objects. 2214 * 2215 * @see rte_flow_conv() 2216 */ 2217 enum rte_flow_conv_op { 2218 /** 2219 * No operation to perform. 2220 * 2221 * rte_flow_conv() simply returns 0. 2222 */ 2223 RTE_FLOW_CONV_OP_NONE, 2224 2225 /** 2226 * Convert attributes structure. 2227 * 2228 * This is a basic copy of an attributes structure. 2229 * 2230 * - @p src type: 2231 * @code const struct rte_flow_attr * @endcode 2232 * - @p dst type: 2233 * @code struct rte_flow_attr * @endcode 2234 */ 2235 RTE_FLOW_CONV_OP_ATTR, 2236 2237 /** 2238 * Convert a single item. 2239 * 2240 * Duplicates @p spec, @p last and @p mask but not outside objects. 2241 * 2242 * - @p src type: 2243 * @code const struct rte_flow_item * @endcode 2244 * - @p dst type: 2245 * @code struct rte_flow_item * @endcode 2246 */ 2247 RTE_FLOW_CONV_OP_ITEM, 2248 2249 /** 2250 * Convert a single action. 2251 * 2252 * Duplicates @p conf but not outside objects. 2253 * 2254 * - @p src type: 2255 * @code const struct rte_flow_action * @endcode 2256 * - @p dst type: 2257 * @code struct rte_flow_action * @endcode 2258 */ 2259 RTE_FLOW_CONV_OP_ACTION, 2260 2261 /** 2262 * Convert an entire pattern. 2263 * 2264 * Duplicates all pattern items at once with the same constraints as 2265 * RTE_FLOW_CONV_OP_ITEM. 2266 * 2267 * - @p src type: 2268 * @code const struct rte_flow_item * @endcode 2269 * - @p dst type: 2270 * @code struct rte_flow_item * @endcode 2271 */ 2272 RTE_FLOW_CONV_OP_PATTERN, 2273 2274 /** 2275 * Convert a list of actions. 2276 * 2277 * Duplicates the entire list of actions at once with the same 2278 * constraints as RTE_FLOW_CONV_OP_ACTION. 2279 * 2280 * - @p src type: 2281 * @code const struct rte_flow_action * @endcode 2282 * - @p dst type: 2283 * @code struct rte_flow_action * @endcode 2284 */ 2285 RTE_FLOW_CONV_OP_ACTIONS, 2286 2287 /** 2288 * Convert a complete flow rule description. 2289 * 2290 * Comprises attributes, pattern and actions together at once with 2291 * the usual constraints. 2292 * 2293 * - @p src type: 2294 * @code const struct rte_flow_conv_rule * @endcode 2295 * - @p dst type: 2296 * @code struct rte_flow_conv_rule * @endcode 2297 */ 2298 RTE_FLOW_CONV_OP_RULE, 2299 2300 /** 2301 * Convert item type to its name string. 2302 * 2303 * Writes a NUL-terminated string to @p dst. Like snprintf(), the 2304 * returned value excludes the terminator which is always written 2305 * nonetheless. 2306 * 2307 * - @p src type: 2308 * @code (const void *)enum rte_flow_item_type @endcode 2309 * - @p dst type: 2310 * @code char * @endcode 2311 **/ 2312 RTE_FLOW_CONV_OP_ITEM_NAME, 2313 2314 /** 2315 * Convert action type to its name string. 2316 * 2317 * Writes a NUL-terminated string to @p dst. Like snprintf(), the 2318 * returned value excludes the terminator which is always written 2319 * nonetheless. 2320 * 2321 * - @p src type: 2322 * @code (const void *)enum rte_flow_action_type @endcode 2323 * - @p dst type: 2324 * @code char * @endcode 2325 **/ 2326 RTE_FLOW_CONV_OP_ACTION_NAME, 2327 2328 /** 2329 * Convert item type to pointer to item name. 2330 * 2331 * Retrieves item name pointer from its type. The string itself is 2332 * not copied; instead, a unique pointer to an internal static 2333 * constant storage is written to @p dst. 2334 * 2335 * - @p src type: 2336 * @code (const void *)enum rte_flow_item_type @endcode 2337 * - @p dst type: 2338 * @code const char ** @endcode 2339 */ 2340 RTE_FLOW_CONV_OP_ITEM_NAME_PTR, 2341 2342 /** 2343 * Convert action type to pointer to action name. 2344 * 2345 * Retrieves action name pointer from its type. The string itself is 2346 * not copied; instead, a unique pointer to an internal static 2347 * constant storage is written to @p dst. 2348 * 2349 * - @p src type: 2350 * @code (const void *)enum rte_flow_action_type @endcode 2351 * - @p dst type: 2352 * @code const char ** @endcode 2353 */ 2354 RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 2355 }; 2356 2357 /** 2358 * Check whether a flow rule can be created on a given port. 2359 * 2360 * The flow rule is validated for correctness and whether it could be accepted 2361 * by the device given sufficient resources. The rule is checked against the 2362 * current device mode and queue configuration. The flow rule may also 2363 * optionally be validated against existing flow rules and device resources. 2364 * This function has no effect on the target device. 2365 * 2366 * The returned value is guaranteed to remain valid only as long as no 2367 * successful calls to rte_flow_create() or rte_flow_destroy() are made in 2368 * the meantime and no device parameter affecting flow rules in any way are 2369 * modified, due to possible collisions or resource limitations (although in 2370 * such cases EINVAL should not be returned). 2371 * 2372 * @param port_id 2373 * Port identifier of Ethernet device. 2374 * @param[in] attr 2375 * Flow rule attributes. 2376 * @param[in] pattern 2377 * Pattern specification (list terminated by the END pattern item). 2378 * @param[in] actions 2379 * Associated actions (list terminated by the END action). 2380 * @param[out] error 2381 * Perform verbose error reporting if not NULL. PMDs initialize this 2382 * structure in case of error only. 2383 * 2384 * @return 2385 * 0 if flow rule is valid and can be created. A negative errno value 2386 * otherwise (rte_errno is also set), the following errors are defined: 2387 * 2388 * -ENOSYS: underlying device does not support this functionality. 2389 * 2390 * -EIO: underlying device is removed. 2391 * 2392 * -EINVAL: unknown or invalid rule specification. 2393 * 2394 * -ENOTSUP: valid but unsupported rule specification (e.g. partial 2395 * bit-masks are unsupported). 2396 * 2397 * -EEXIST: collision with an existing rule. Only returned if device 2398 * supports flow rule collision checking and there was a flow rule 2399 * collision. Not receiving this return code is no guarantee that creating 2400 * the rule will not fail due to a collision. 2401 * 2402 * -ENOMEM: not enough memory to execute the function, or if the device 2403 * supports resource validation, resource limitation on the device. 2404 * 2405 * -EBUSY: action cannot be performed due to busy device resources, may 2406 * succeed if the affected queues or even the entire port are in a stopped 2407 * state (see rte_eth_dev_rx_queue_stop() and rte_eth_dev_stop()). 2408 */ 2409 int 2410 rte_flow_validate(uint16_t port_id, 2411 const struct rte_flow_attr *attr, 2412 const struct rte_flow_item pattern[], 2413 const struct rte_flow_action actions[], 2414 struct rte_flow_error *error); 2415 2416 /** 2417 * Create a flow rule on a given port. 2418 * 2419 * @param port_id 2420 * Port identifier of Ethernet device. 2421 * @param[in] attr 2422 * Flow rule attributes. 2423 * @param[in] pattern 2424 * Pattern specification (list terminated by the END pattern item). 2425 * @param[in] actions 2426 * Associated actions (list terminated by the END action). 2427 * @param[out] error 2428 * Perform verbose error reporting if not NULL. PMDs initialize this 2429 * structure in case of error only. 2430 * 2431 * @return 2432 * A valid handle in case of success, NULL otherwise and rte_errno is set 2433 * to the positive version of one of the error codes defined for 2434 * rte_flow_validate(). 2435 */ 2436 struct rte_flow * 2437 rte_flow_create(uint16_t port_id, 2438 const struct rte_flow_attr *attr, 2439 const struct rte_flow_item pattern[], 2440 const struct rte_flow_action actions[], 2441 struct rte_flow_error *error); 2442 2443 /** 2444 * Destroy a flow rule on a given port. 2445 * 2446 * Failure to destroy a flow rule handle may occur when other flow rules 2447 * depend on it, and destroying it would result in an inconsistent state. 2448 * 2449 * This function is only guaranteed to succeed if handles are destroyed in 2450 * reverse order of their creation. 2451 * 2452 * @param port_id 2453 * Port identifier of Ethernet device. 2454 * @param flow 2455 * Flow rule handle to destroy. 2456 * @param[out] error 2457 * Perform verbose error reporting if not NULL. PMDs initialize this 2458 * structure in case of error only. 2459 * 2460 * @return 2461 * 0 on success, a negative errno value otherwise and rte_errno is set. 2462 */ 2463 int 2464 rte_flow_destroy(uint16_t port_id, 2465 struct rte_flow *flow, 2466 struct rte_flow_error *error); 2467 2468 /** 2469 * Destroy all flow rules associated with a port. 2470 * 2471 * In the unlikely event of failure, handles are still considered destroyed 2472 * and no longer valid but the port must be assumed to be in an inconsistent 2473 * state. 2474 * 2475 * @param port_id 2476 * Port identifier of Ethernet device. 2477 * @param[out] error 2478 * Perform verbose error reporting if not NULL. PMDs initialize this 2479 * structure in case of error only. 2480 * 2481 * @return 2482 * 0 on success, a negative errno value otherwise and rte_errno is set. 2483 */ 2484 int 2485 rte_flow_flush(uint16_t port_id, 2486 struct rte_flow_error *error); 2487 2488 /** 2489 * Query an existing flow rule. 2490 * 2491 * This function allows retrieving flow-specific data such as counters. 2492 * Data is gathered by special actions which must be present in the flow 2493 * rule definition. 2494 * 2495 * \see RTE_FLOW_ACTION_TYPE_COUNT 2496 * 2497 * @param port_id 2498 * Port identifier of Ethernet device. 2499 * @param flow 2500 * Flow rule handle to query. 2501 * @param action 2502 * Action definition as defined in original flow rule. 2503 * @param[in, out] data 2504 * Pointer to storage for the associated query data type. 2505 * @param[out] error 2506 * Perform verbose error reporting if not NULL. PMDs initialize this 2507 * structure in case of error only. 2508 * 2509 * @return 2510 * 0 on success, a negative errno value otherwise and rte_errno is set. 2511 */ 2512 int 2513 rte_flow_query(uint16_t port_id, 2514 struct rte_flow *flow, 2515 const struct rte_flow_action *action, 2516 void *data, 2517 struct rte_flow_error *error); 2518 2519 /** 2520 * Restrict ingress traffic to the defined flow rules. 2521 * 2522 * Isolated mode guarantees that all ingress traffic comes from defined flow 2523 * rules only (current and future). 2524 * 2525 * Besides making ingress more deterministic, it allows PMDs to safely reuse 2526 * resources otherwise assigned to handle the remaining traffic, such as 2527 * global RSS configuration settings, VLAN filters, MAC address entries, 2528 * legacy filter API rules and so on in order to expand the set of possible 2529 * flow rule types. 2530 * 2531 * Calling this function as soon as possible after device initialization, 2532 * ideally before the first call to rte_eth_dev_configure(), is recommended 2533 * to avoid possible failures due to conflicting settings. 2534 * 2535 * Once effective, leaving isolated mode may not be possible depending on 2536 * PMD implementation. 2537 * 2538 * Additionally, the following functionality has no effect on the underlying 2539 * port and may return errors such as ENOTSUP ("not supported"): 2540 * 2541 * - Toggling promiscuous mode. 2542 * - Toggling allmulticast mode. 2543 * - Configuring MAC addresses. 2544 * - Configuring multicast addresses. 2545 * - Configuring VLAN filters. 2546 * - Configuring Rx filters through the legacy API (e.g. FDIR). 2547 * - Configuring global RSS settings. 2548 * 2549 * @param port_id 2550 * Port identifier of Ethernet device. 2551 * @param set 2552 * Nonzero to enter isolated mode, attempt to leave it otherwise. 2553 * @param[out] error 2554 * Perform verbose error reporting if not NULL. PMDs initialize this 2555 * structure in case of error only. 2556 * 2557 * @return 2558 * 0 on success, a negative errno value otherwise and rte_errno is set. 2559 */ 2560 int 2561 rte_flow_isolate(uint16_t port_id, int set, struct rte_flow_error *error); 2562 2563 /** 2564 * Initialize flow error structure. 2565 * 2566 * @param[out] error 2567 * Pointer to flow error structure (may be NULL). 2568 * @param code 2569 * Related error code (rte_errno). 2570 * @param type 2571 * Cause field and error types. 2572 * @param cause 2573 * Object responsible for the error. 2574 * @param message 2575 * Human-readable error message. 2576 * 2577 * @return 2578 * Negative error code (errno value) and rte_errno is set. 2579 */ 2580 int 2581 rte_flow_error_set(struct rte_flow_error *error, 2582 int code, 2583 enum rte_flow_error_type type, 2584 const void *cause, 2585 const char *message); 2586 2587 /** 2588 * @deprecated 2589 * @see rte_flow_copy() 2590 */ 2591 struct rte_flow_desc { 2592 size_t size; /**< Allocated space including data[]. */ 2593 struct rte_flow_attr attr; /**< Attributes. */ 2594 struct rte_flow_item *items; /**< Items. */ 2595 struct rte_flow_action *actions; /**< Actions. */ 2596 uint8_t data[]; /**< Storage for items/actions. */ 2597 }; 2598 2599 /** 2600 * @deprecated 2601 * Copy an rte_flow rule description. 2602 * 2603 * This interface is kept for compatibility with older applications but is 2604 * implemented as a wrapper to rte_flow_conv(). It is deprecated due to its 2605 * lack of flexibility and reliance on a type unusable with C++ programs 2606 * (struct rte_flow_desc). 2607 * 2608 * @param[in] fd 2609 * Flow rule description. 2610 * @param[in] len 2611 * Total size of allocated data for the flow description. 2612 * @param[in] attr 2613 * Flow rule attributes. 2614 * @param[in] items 2615 * Pattern specification (list terminated by the END pattern item). 2616 * @param[in] actions 2617 * Associated actions (list terminated by the END action). 2618 * 2619 * @return 2620 * If len is greater or equal to the size of the flow, the total size of the 2621 * flow description and its data. 2622 * If len is lower than the size of the flow, the number of bytes that would 2623 * have been written to desc had it been sufficient. Nothing is written. 2624 */ 2625 __rte_deprecated 2626 size_t 2627 rte_flow_copy(struct rte_flow_desc *fd, size_t len, 2628 const struct rte_flow_attr *attr, 2629 const struct rte_flow_item *items, 2630 const struct rte_flow_action *actions); 2631 2632 /** 2633 * Flow object conversion helper. 2634 * 2635 * This function performs conversion of various flow API objects to a 2636 * pre-allocated destination buffer. See enum rte_flow_conv_op for possible 2637 * operations and details about each of them. 2638 * 2639 * Since destination buffer must be large enough, it works in a manner 2640 * reminiscent of snprintf(): 2641 * 2642 * - If @p size is 0, @p dst may be a NULL pointer, otherwise @p dst must be 2643 * non-NULL. 2644 * - If positive, the returned value represents the number of bytes needed 2645 * to store the conversion of @p src to @p dst according to @p op 2646 * regardless of the @p size parameter. 2647 * - Since no more than @p size bytes can be written to @p dst, output is 2648 * truncated and may be inconsistent when the returned value is larger 2649 * than that. 2650 * - In case of conversion error, a negative error code is returned and 2651 * @p dst contents are unspecified. 2652 * 2653 * @param op 2654 * Operation to perform, related to the object type of @p dst. 2655 * @param[out] dst 2656 * Destination buffer address. Must be suitably aligned by the caller. 2657 * @param size 2658 * Destination buffer size in bytes. 2659 * @param[in] src 2660 * Source object to copy. Depending on @p op, its type may differ from 2661 * that of @p dst. 2662 * @param[out] error 2663 * Perform verbose error reporting if not NULL. Initialized in case of 2664 * error only. 2665 * 2666 * @return 2667 * The number of bytes required to convert @p src to @p dst on success, a 2668 * negative errno value otherwise and rte_errno is set. 2669 * 2670 * @see rte_flow_conv_op 2671 */ 2672 __rte_experimental 2673 int 2674 rte_flow_conv(enum rte_flow_conv_op op, 2675 void *dst, 2676 size_t size, 2677 const void *src, 2678 struct rte_flow_error *error); 2679 2680 #ifdef __cplusplus 2681 } 2682 #endif 2683 2684 #endif /* RTE_FLOW_H_ */ 2685