1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2017 Intel Corporation.
3  */
4 
5 #ifndef _RTE_CRYPTODEV_H_
6 #define _RTE_CRYPTODEV_H_
7 
8 /**
9  * @file rte_cryptodev.h
10  *
11  * RTE Cryptographic Device APIs
12  *
13  * Defines RTE Crypto Device APIs for the provisioning of cipher and
14  * authentication operations.
15  */
16 
17 #ifdef __cplusplus
18 extern "C" {
19 #endif
20 
21 #include "rte_kvargs.h"
22 #include "rte_crypto.h"
23 #include "rte_dev.h"
24 #include <rte_common.h>
25 #include <rte_config.h>
26 
27 extern const char **rte_cyptodev_names;
28 
29 /* Logging Macros */
30 
31 #define CDEV_LOG_ERR(...) \
32 	RTE_LOG(ERR, CRYPTODEV, \
33 		RTE_FMT("%s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \
34 			__func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,)))
35 
36 #define CDEV_LOG_INFO(...) \
37 	RTE_LOG(INFO, CRYPTODEV, \
38 		RTE_FMT(RTE_FMT_HEAD(__VA_ARGS__,) "\n", \
39 			RTE_FMT_TAIL(__VA_ARGS__,)))
40 
41 #define CDEV_LOG_DEBUG(...) \
42 	RTE_LOG(DEBUG, CRYPTODEV, \
43 		RTE_FMT("%s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \
44 			__func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,)))
45 
46 #define CDEV_PMD_TRACE(...) \
47 	RTE_LOG(DEBUG, CRYPTODEV, \
48 		RTE_FMT("[%s] %s: " RTE_FMT_HEAD(__VA_ARGS__,) "\n", \
49 			dev, __func__, RTE_FMT_TAIL(__VA_ARGS__,)))
50 
51 /**
52  * A macro that points to an offset from the start
53  * of the crypto operation structure (rte_crypto_op)
54  *
55  * The returned pointer is cast to type t.
56  *
57  * @param c
58  *   The crypto operation.
59  * @param o
60  *   The offset from the start of the crypto operation.
61  * @param t
62  *   The type to cast the result into.
63  */
64 #define rte_crypto_op_ctod_offset(c, t, o)	\
65 	((t)((char *)(c) + (o)))
66 
67 /**
68  * A macro that returns the physical address that points
69  * to an offset from the start of the crypto operation
70  * (rte_crypto_op)
71  *
72  * @param c
73  *   The crypto operation.
74  * @param o
75  *   The offset from the start of the crypto operation
76  *   to calculate address from.
77  */
78 #define rte_crypto_op_ctophys_offset(c, o)	\
79 	(rte_iova_t)((c)->phys_addr + (o))
80 
81 /**
82  * Crypto parameters range description
83  */
84 struct rte_crypto_param_range {
85 	uint16_t min;	/**< minimum size */
86 	uint16_t max;	/**< maximum size */
87 	uint16_t increment;
88 	/**< if a range of sizes are supported,
89 	 * this parameter is used to indicate
90 	 * increments in byte size that are supported
91 	 * between the minimum and maximum
92 	 */
93 };
94 
95 /**
96  * Symmetric Crypto Capability
97  */
98 struct rte_cryptodev_symmetric_capability {
99 	enum rte_crypto_sym_xform_type xform_type;
100 	/**< Transform type : Authentication / Cipher / AEAD */
101 	RTE_STD_C11
102 	union {
103 		struct {
104 			enum rte_crypto_auth_algorithm algo;
105 			/**< authentication algorithm */
106 			uint16_t block_size;
107 			/**< algorithm block size */
108 			struct rte_crypto_param_range key_size;
109 			/**< auth key size range */
110 			struct rte_crypto_param_range digest_size;
111 			/**< digest size range */
112 			struct rte_crypto_param_range aad_size;
113 			/**< Additional authentication data size range */
114 			struct rte_crypto_param_range iv_size;
115 			/**< Initialisation vector data size range */
116 		} auth;
117 		/**< Symmetric Authentication transform capabilities */
118 		struct {
119 			enum rte_crypto_cipher_algorithm algo;
120 			/**< cipher algorithm */
121 			uint16_t block_size;
122 			/**< algorithm block size */
123 			struct rte_crypto_param_range key_size;
124 			/**< cipher key size range */
125 			struct rte_crypto_param_range iv_size;
126 			/**< Initialisation vector data size range */
127 		} cipher;
128 		/**< Symmetric Cipher transform capabilities */
129 		struct {
130 			enum rte_crypto_aead_algorithm algo;
131 			/**< AEAD algorithm */
132 			uint16_t block_size;
133 			/**< algorithm block size */
134 			struct rte_crypto_param_range key_size;
135 			/**< AEAD key size range */
136 			struct rte_crypto_param_range digest_size;
137 			/**< digest size range */
138 			struct rte_crypto_param_range aad_size;
139 			/**< Additional authentication data size range */
140 			struct rte_crypto_param_range iv_size;
141 			/**< Initialisation vector data size range */
142 		} aead;
143 	};
144 };
145 
146 /**
147  * Asymmetric Xform Crypto Capability
148  *
149  */
150 struct rte_cryptodev_asymmetric_xform_capability {
151 	enum rte_crypto_asym_xform_type xform_type;
152 	/**< Transform type: RSA/MODEXP/DH/DSA/MODINV */
153 
154 	uint32_t op_types;
155 	/**< bitmask for supported rte_crypto_asym_op_type */
156 
157 	__extension__
158 	union {
159 		struct rte_crypto_param_range modlen;
160 		/**< Range of modulus length supported by modulus based xform.
161 		 * Value 0 mean implementation default
162 		 */
163 	};
164 };
165 
166 /**
167  * Asymmetric Crypto Capability
168  *
169  */
170 struct rte_cryptodev_asymmetric_capability {
171 	struct rte_cryptodev_asymmetric_xform_capability xform_capa;
172 };
173 
174 
175 /** Structure used to capture a capability of a crypto device */
176 struct rte_cryptodev_capabilities {
177 	enum rte_crypto_op_type op;
178 	/**< Operation type */
179 
180 	RTE_STD_C11
181 	union {
182 		struct rte_cryptodev_symmetric_capability sym;
183 		/**< Symmetric operation capability parameters */
184 		struct rte_cryptodev_asymmetric_capability asym;
185 		/**< Asymmetric operation capability parameters */
186 	};
187 };
188 
189 /** Structure used to describe crypto algorithms */
190 struct rte_cryptodev_sym_capability_idx {
191 	enum rte_crypto_sym_xform_type type;
192 	union {
193 		enum rte_crypto_cipher_algorithm cipher;
194 		enum rte_crypto_auth_algorithm auth;
195 		enum rte_crypto_aead_algorithm aead;
196 	} algo;
197 };
198 
199 /**
200  * Structure used to describe asymmetric crypto xforms
201  * Each xform maps to one asym algorithm.
202  *
203  */
204 struct rte_cryptodev_asym_capability_idx {
205 	enum rte_crypto_asym_xform_type type;
206 	/**< Asymmetric xform (algo) type */
207 };
208 
209 /**
210  * Provide capabilities available for defined device and algorithm
211  *
212  * @param	dev_id		The identifier of the device.
213  * @param	idx		Description of crypto algorithms.
214  *
215  * @return
216  *   - Return description of the symmetric crypto capability if exist.
217  *   - Return NULL if the capability not exist.
218  */
219 const struct rte_cryptodev_symmetric_capability *
220 rte_cryptodev_sym_capability_get(uint8_t dev_id,
221 		const struct rte_cryptodev_sym_capability_idx *idx);
222 
223 /**
224  *  Provide capabilities available for defined device and xform
225  *
226  * @param	dev_id		The identifier of the device.
227  * @param	idx		Description of asym crypto xform.
228  *
229  * @return
230  *   - Return description of the asymmetric crypto capability if exist.
231  *   - Return NULL if the capability not exist.
232  */
233 const struct rte_cryptodev_asymmetric_xform_capability * __rte_experimental
234 rte_cryptodev_asym_capability_get(uint8_t dev_id,
235 		const struct rte_cryptodev_asym_capability_idx *idx);
236 
237 /**
238  * Check if key size and initial vector are supported
239  * in crypto cipher capability
240  *
241  * @param	capability	Description of the symmetric crypto capability.
242  * @param	key_size	Cipher key size.
243  * @param	iv_size		Cipher initial vector size.
244  *
245  * @return
246  *   - Return 0 if the parameters are in range of the capability.
247  *   - Return -1 if the parameters are out of range of the capability.
248  */
249 int
250 rte_cryptodev_sym_capability_check_cipher(
251 		const struct rte_cryptodev_symmetric_capability *capability,
252 		uint16_t key_size, uint16_t iv_size);
253 
254 /**
255  * Check if key size and initial vector are supported
256  * in crypto auth capability
257  *
258  * @param	capability	Description of the symmetric crypto capability.
259  * @param	key_size	Auth key size.
260  * @param	digest_size	Auth digest size.
261  * @param	iv_size		Auth initial vector size.
262  *
263  * @return
264  *   - Return 0 if the parameters are in range of the capability.
265  *   - Return -1 if the parameters are out of range of the capability.
266  */
267 int
268 rte_cryptodev_sym_capability_check_auth(
269 		const struct rte_cryptodev_symmetric_capability *capability,
270 		uint16_t key_size, uint16_t digest_size, uint16_t iv_size);
271 
272 /**
273  * Check if key, digest, AAD and initial vector sizes are supported
274  * in crypto AEAD capability
275  *
276  * @param	capability	Description of the symmetric crypto capability.
277  * @param	key_size	AEAD key size.
278  * @param	digest_size	AEAD digest size.
279  * @param	aad_size	AEAD AAD size.
280  * @param	iv_size		AEAD IV size.
281  *
282  * @return
283  *   - Return 0 if the parameters are in range of the capability.
284  *   - Return -1 if the parameters are out of range of the capability.
285  */
286 int
287 rte_cryptodev_sym_capability_check_aead(
288 		const struct rte_cryptodev_symmetric_capability *capability,
289 		uint16_t key_size, uint16_t digest_size, uint16_t aad_size,
290 		uint16_t iv_size);
291 
292 /**
293  * Check if op type is supported
294  *
295  * @param	capability	Description of the asymmetric crypto capability.
296  * @param	op_type		op type
297  *
298  * @return
299  *   - Return 1 if the op type is supported
300  *   - Return 0 if unsupported
301  */
302 int __rte_experimental
303 rte_cryptodev_asym_xform_capability_check_optype(
304 	const struct rte_cryptodev_asymmetric_xform_capability *capability,
305 		enum rte_crypto_asym_op_type op_type);
306 
307 /**
308  * Check if modulus length is in supported range
309  *
310  * @param	capability	Description of the asymmetric crypto capability.
311  * @param	modlen		modulus length.
312  *
313  * @return
314  *   - Return 0 if the parameters are in range of the capability.
315  *   - Return -1 if the parameters are out of range of the capability.
316  */
317 int __rte_experimental
318 rte_cryptodev_asym_xform_capability_check_modlen(
319 	const struct rte_cryptodev_asymmetric_xform_capability *capability,
320 		uint16_t modlen);
321 
322 /**
323  * Provide the cipher algorithm enum, given an algorithm string
324  *
325  * @param	algo_enum	A pointer to the cipher algorithm
326  *				enum to be filled
327  * @param	algo_string	Authentication algo string
328  *
329  * @return
330  * - Return -1 if string is not valid
331  * - Return 0 is the string is valid
332  */
333 int
334 rte_cryptodev_get_cipher_algo_enum(enum rte_crypto_cipher_algorithm *algo_enum,
335 		const char *algo_string);
336 
337 /**
338  * Provide the authentication algorithm enum, given an algorithm string
339  *
340  * @param	algo_enum	A pointer to the authentication algorithm
341  *				enum to be filled
342  * @param	algo_string	Authentication algo string
343  *
344  * @return
345  * - Return -1 if string is not valid
346  * - Return 0 is the string is valid
347  */
348 int
349 rte_cryptodev_get_auth_algo_enum(enum rte_crypto_auth_algorithm *algo_enum,
350 		const char *algo_string);
351 
352 /**
353  * Provide the AEAD algorithm enum, given an algorithm string
354  *
355  * @param	algo_enum	A pointer to the AEAD algorithm
356  *				enum to be filled
357  * @param	algo_string	AEAD algorithm string
358  *
359  * @return
360  * - Return -1 if string is not valid
361  * - Return 0 is the string is valid
362  */
363 int
364 rte_cryptodev_get_aead_algo_enum(enum rte_crypto_aead_algorithm *algo_enum,
365 		const char *algo_string);
366 
367 /**
368  * Provide the Asymmetric xform enum, given an xform string
369  *
370  * @param	xform_enum	A pointer to the xform type
371  *				enum to be filled
372  * @param	xform_string	xform string
373  *
374  * @return
375  * - Return -1 if string is not valid
376  * - Return 0 if the string is valid
377  */
378 int __rte_experimental
379 rte_cryptodev_asym_get_xform_enum(enum rte_crypto_asym_xform_type *xform_enum,
380 		const char *xform_string);
381 
382 
383 /** Macro used at end of crypto PMD list */
384 #define RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST() \
385 	{ RTE_CRYPTO_OP_TYPE_UNDEFINED }
386 
387 
388 /**
389  * Crypto device supported feature flags
390  *
391  * Note:
392  * New features flags should be added to the end of the list
393  *
394  * Keep these flags synchronised with rte_cryptodev_get_feature_name()
395  */
396 #define	RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO		(1ULL << 0)
397 /**< Symmetric crypto operations are supported */
398 #define	RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO		(1ULL << 1)
399 /**< Asymmetric crypto operations are supported */
400 #define	RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING		(1ULL << 2)
401 /**< Chaining symmetric crypto operations are supported */
402 #define	RTE_CRYPTODEV_FF_CPU_SSE			(1ULL << 3)
403 /**< Utilises CPU SIMD SSE instructions */
404 #define	RTE_CRYPTODEV_FF_CPU_AVX			(1ULL << 4)
405 /**< Utilises CPU SIMD AVX instructions */
406 #define	RTE_CRYPTODEV_FF_CPU_AVX2			(1ULL << 5)
407 /**< Utilises CPU SIMD AVX2 instructions */
408 #define	RTE_CRYPTODEV_FF_CPU_AESNI			(1ULL << 6)
409 /**< Utilises CPU AES-NI instructions */
410 #define	RTE_CRYPTODEV_FF_HW_ACCELERATED			(1ULL << 7)
411 /**< Operations are off-loaded to an
412  * external hardware accelerator
413  */
414 #define	RTE_CRYPTODEV_FF_CPU_AVX512			(1ULL << 8)
415 /**< Utilises CPU SIMD AVX512 instructions */
416 #define	RTE_CRYPTODEV_FF_IN_PLACE_SGL			(1ULL << 9)
417 /**< In-place Scatter-gather (SGL) buffers, with multiple segments,
418  * are supported
419  */
420 #define RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT		(1ULL << 10)
421 /**< Out-of-place Scatter-gather (SGL) buffers are
422  * supported in input and output
423  */
424 #define RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT		(1ULL << 11)
425 /**< Out-of-place Scatter-gather (SGL) buffers are supported
426  * in input, combined with linear buffers (LB), with a
427  * single segment in output
428  */
429 #define RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT		(1ULL << 12)
430 /**< Out-of-place Scatter-gather (SGL) buffers are supported
431  * in output, combined with linear buffers (LB) in input
432  */
433 #define RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT		(1ULL << 13)
434 /**< Out-of-place linear buffers (LB) are supported in input and output */
435 #define	RTE_CRYPTODEV_FF_CPU_NEON			(1ULL << 14)
436 /**< Utilises CPU NEON instructions */
437 #define	RTE_CRYPTODEV_FF_CPU_ARM_CE			(1ULL << 15)
438 /**< Utilises ARM CPU Cryptographic Extensions */
439 #define	RTE_CRYPTODEV_FF_SECURITY			(1ULL << 16)
440 /**< Support Security Protocol Processing */
441 
442 
443 /**
444  * Get the name of a crypto device feature flag
445  *
446  * @param	flag	The mask describing the flag.
447  *
448  * @return
449  *   The name of this flag, or NULL if it's not a valid feature flag.
450  */
451 
452 extern const char *
453 rte_cryptodev_get_feature_name(uint64_t flag);
454 
455 /**  Crypto device information */
456 struct rte_cryptodev_info {
457 	const char *driver_name;	/**< Driver name. */
458 	uint8_t driver_id;		/**< Driver identifier */
459 	struct rte_device *device;	/**< Generic device information. */
460 
461 	uint64_t feature_flags;
462 	/**< Feature flags exposes HW/SW features for the given device */
463 
464 	const struct rte_cryptodev_capabilities *capabilities;
465 	/**< Array of devices supported capabilities */
466 
467 	unsigned max_nb_queue_pairs;
468 	/**< Maximum number of queues pairs supported by device. */
469 
470 	uint16_t min_mbuf_headroom_req;
471 	/**< Minimum mbuf headroom required by device */
472 
473 	uint16_t min_mbuf_tailroom_req;
474 	/**< Minimum mbuf tailroom required by device */
475 
476 	struct {
477 		unsigned max_nb_sessions;
478 		/**< Maximum number of sessions supported by device.
479 		 * If 0, the device does not have any limitation in
480 		 * number of sessions that can be used.
481 		 */
482 	} sym;
483 };
484 
485 #define RTE_CRYPTODEV_DETACHED  (0)
486 #define RTE_CRYPTODEV_ATTACHED  (1)
487 
488 /** Definitions of Crypto device event types */
489 enum rte_cryptodev_event_type {
490 	RTE_CRYPTODEV_EVENT_UNKNOWN,	/**< unknown event type */
491 	RTE_CRYPTODEV_EVENT_ERROR,	/**< error interrupt event */
492 	RTE_CRYPTODEV_EVENT_MAX		/**< max value of this enum */
493 };
494 
495 /** Crypto device queue pair configuration structure. */
496 struct rte_cryptodev_qp_conf {
497 	uint32_t nb_descriptors; /**< Number of descriptors per queue pair */
498 };
499 
500 /**
501  * Typedef for application callback function to be registered by application
502  * software for notification of device events
503  *
504  * @param	dev_id	Crypto device identifier
505  * @param	event	Crypto device event to register for notification of.
506  * @param	cb_arg	User specified parameter to be passed as to passed to
507  *			users callback function.
508  */
509 typedef void (*rte_cryptodev_cb_fn)(uint8_t dev_id,
510 		enum rte_cryptodev_event_type event, void *cb_arg);
511 
512 
513 /** Crypto Device statistics */
514 struct rte_cryptodev_stats {
515 	uint64_t enqueued_count;
516 	/**< Count of all operations enqueued */
517 	uint64_t dequeued_count;
518 	/**< Count of all operations dequeued */
519 
520 	uint64_t enqueue_err_count;
521 	/**< Total error count on operations enqueued */
522 	uint64_t dequeue_err_count;
523 	/**< Total error count on operations dequeued */
524 };
525 
526 #define RTE_CRYPTODEV_NAME_MAX_LEN	(64)
527 /**< Max length of name of crypto PMD */
528 
529 /**
530  * Get the device identifier for the named crypto device.
531  *
532  * @param	name	device name to select the device structure.
533  *
534  * @return
535  *   - Returns crypto device identifier on success.
536  *   - Return -1 on failure to find named crypto device.
537  */
538 extern int
539 rte_cryptodev_get_dev_id(const char *name);
540 
541 /**
542  * Get the crypto device name given a device identifier.
543  *
544  * @param dev_id
545  *   The identifier of the device
546  *
547  * @return
548  *   - Returns crypto device name.
549  *   - Returns NULL if crypto device is not present.
550  */
551 extern const char *
552 rte_cryptodev_name_get(uint8_t dev_id);
553 
554 /**
555  * Get the total number of crypto devices that have been successfully
556  * initialised.
557  *
558  * @return
559  *   - The total number of usable crypto devices.
560  */
561 extern uint8_t
562 rte_cryptodev_count(void);
563 
564 /**
565  * Get number of crypto device defined type.
566  *
567  * @param	driver_id	driver identifier.
568  *
569  * @return
570  *   Returns number of crypto device.
571  */
572 extern uint8_t
573 rte_cryptodev_device_count_by_driver(uint8_t driver_id);
574 
575 /**
576  * Get number and identifiers of attached crypto devices that
577  * use the same crypto driver.
578  *
579  * @param	driver_name	driver name.
580  * @param	devices		output devices identifiers.
581  * @param	nb_devices	maximal number of devices.
582  *
583  * @return
584  *   Returns number of attached crypto device.
585  */
586 uint8_t
587 rte_cryptodev_devices_get(const char *driver_name, uint8_t *devices,
588 		uint8_t nb_devices);
589 /*
590  * Return the NUMA socket to which a device is connected
591  *
592  * @param dev_id
593  *   The identifier of the device
594  * @return
595  *   The NUMA socket id to which the device is connected or
596  *   a default of zero if the socket could not be determined.
597  *   -1 if returned is the dev_id value is out of range.
598  */
599 extern int
600 rte_cryptodev_socket_id(uint8_t dev_id);
601 
602 /** Crypto device configuration structure */
603 struct rte_cryptodev_config {
604 	int socket_id;			/**< Socket to allocate resources on */
605 	uint16_t nb_queue_pairs;
606 	/**< Number of queue pairs to configure on device */
607 };
608 
609 /**
610  * Configure a device.
611  *
612  * This function must be invoked first before any other function in the
613  * API. This function can also be re-invoked when a device is in the
614  * stopped state.
615  *
616  * @param	dev_id		The identifier of the device to configure.
617  * @param	config		The crypto device configuration structure.
618  *
619  * @return
620  *   - 0: Success, device configured.
621  *   - <0: Error code returned by the driver configuration function.
622  */
623 extern int
624 rte_cryptodev_configure(uint8_t dev_id, struct rte_cryptodev_config *config);
625 
626 /**
627  * Start an device.
628  *
629  * The device start step is the last one and consists of setting the configured
630  * offload features and in starting the transmit and the receive units of the
631  * device.
632  * On success, all basic functions exported by the API (link status,
633  * receive/transmit, and so on) can be invoked.
634  *
635  * @param dev_id
636  *   The identifier of the device.
637  * @return
638  *   - 0: Success, device started.
639  *   - <0: Error code of the driver device start function.
640  */
641 extern int
642 rte_cryptodev_start(uint8_t dev_id);
643 
644 /**
645  * Stop an device. The device can be restarted with a call to
646  * rte_cryptodev_start()
647  *
648  * @param	dev_id		The identifier of the device.
649  */
650 extern void
651 rte_cryptodev_stop(uint8_t dev_id);
652 
653 /**
654  * Close an device. The device cannot be restarted!
655  *
656  * @param	dev_id		The identifier of the device.
657  *
658  * @return
659  *  - 0 on successfully closing device
660  *  - <0 on failure to close device
661  */
662 extern int
663 rte_cryptodev_close(uint8_t dev_id);
664 
665 /**
666  * Allocate and set up a receive queue pair for a device.
667  *
668  *
669  * @param	dev_id		The identifier of the device.
670  * @param	queue_pair_id	The index of the queue pairs to set up. The
671  *				value must be in the range [0, nb_queue_pair
672  *				- 1] previously supplied to
673  *				rte_cryptodev_configure().
674  * @param	qp_conf		The pointer to the configuration data to be
675  *				used for the queue pair. NULL value is
676  *				allowed, in which case default configuration
677  *				will be used.
678  * @param	socket_id	The *socket_id* argument is the socket
679  *				identifier in case of NUMA. The value can be
680  *				*SOCKET_ID_ANY* if there is no NUMA constraint
681  *				for the DMA memory allocated for the receive
682  *				queue pair.
683  * @param	session_pool	Pointer to device session mempool, used
684  *				for session-less operations.
685  *
686  * @return
687  *   - 0: Success, queue pair correctly set up.
688  *   - <0: Queue pair configuration failed
689  */
690 extern int
691 rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
692 		const struct rte_cryptodev_qp_conf *qp_conf, int socket_id,
693 		struct rte_mempool *session_pool);
694 
695 /**
696  * Get the number of queue pairs on a specific crypto device
697  *
698  * @param	dev_id		Crypto device identifier.
699  * @return
700  *   - The number of configured queue pairs.
701  */
702 extern uint16_t
703 rte_cryptodev_queue_pair_count(uint8_t dev_id);
704 
705 
706 /**
707  * Retrieve the general I/O statistics of a device.
708  *
709  * @param	dev_id		The identifier of the device.
710  * @param	stats		A pointer to a structure of type
711  *				*rte_cryptodev_stats* to be filled with the
712  *				values of device counters.
713  * @return
714  *   - Zero if successful.
715  *   - Non-zero otherwise.
716  */
717 extern int
718 rte_cryptodev_stats_get(uint8_t dev_id, struct rte_cryptodev_stats *stats);
719 
720 /**
721  * Reset the general I/O statistics of a device.
722  *
723  * @param	dev_id		The identifier of the device.
724  */
725 extern void
726 rte_cryptodev_stats_reset(uint8_t dev_id);
727 
728 /**
729  * Retrieve the contextual information of a device.
730  *
731  * @param	dev_id		The identifier of the device.
732  * @param	dev_info	A pointer to a structure of type
733  *				*rte_cryptodev_info* to be filled with the
734  *				contextual information of the device.
735  *
736  * @note The capabilities field of dev_info is set to point to the first
737  * element of an array of struct rte_cryptodev_capabilities. The element after
738  * the last valid element has it's op field set to
739  * RTE_CRYPTO_OP_TYPE_UNDEFINED.
740  */
741 extern void
742 rte_cryptodev_info_get(uint8_t dev_id, struct rte_cryptodev_info *dev_info);
743 
744 
745 /**
746  * Register a callback function for specific device id.
747  *
748  * @param	dev_id		Device id.
749  * @param	event		Event interested.
750  * @param	cb_fn		User supplied callback function to be called.
751  * @param	cb_arg		Pointer to the parameters for the registered
752  *				callback.
753  *
754  * @return
755  *  - On success, zero.
756  *  - On failure, a negative value.
757  */
758 extern int
759 rte_cryptodev_callback_register(uint8_t dev_id,
760 		enum rte_cryptodev_event_type event,
761 		rte_cryptodev_cb_fn cb_fn, void *cb_arg);
762 
763 /**
764  * Unregister a callback function for specific device id.
765  *
766  * @param	dev_id		The device identifier.
767  * @param	event		Event interested.
768  * @param	cb_fn		User supplied callback function to be called.
769  * @param	cb_arg		Pointer to the parameters for the registered
770  *				callback.
771  *
772  * @return
773  *  - On success, zero.
774  *  - On failure, a negative value.
775  */
776 extern int
777 rte_cryptodev_callback_unregister(uint8_t dev_id,
778 		enum rte_cryptodev_event_type event,
779 		rte_cryptodev_cb_fn cb_fn, void *cb_arg);
780 
781 
782 typedef uint16_t (*dequeue_pkt_burst_t)(void *qp,
783 		struct rte_crypto_op **ops,	uint16_t nb_ops);
784 /**< Dequeue processed packets from queue pair of a device. */
785 
786 typedef uint16_t (*enqueue_pkt_burst_t)(void *qp,
787 		struct rte_crypto_op **ops,	uint16_t nb_ops);
788 /**< Enqueue packets for processing on queue pair of a device. */
789 
790 
791 
792 
793 struct rte_cryptodev_callback;
794 
795 /** Structure to keep track of registered callbacks */
796 TAILQ_HEAD(rte_cryptodev_cb_list, rte_cryptodev_callback);
797 
798 /** The data structure associated with each crypto device. */
799 struct rte_cryptodev {
800 	dequeue_pkt_burst_t dequeue_burst;
801 	/**< Pointer to PMD receive function. */
802 	enqueue_pkt_burst_t enqueue_burst;
803 	/**< Pointer to PMD transmit function. */
804 
805 	struct rte_cryptodev_data *data;
806 	/**< Pointer to device data */
807 	struct rte_cryptodev_ops *dev_ops;
808 	/**< Functions exported by PMD */
809 	uint64_t feature_flags;
810 	/**< Feature flags exposes HW/SW features for the given device */
811 	struct rte_device *device;
812 	/**< Backing device */
813 
814 	uint8_t driver_id;
815 	/**< Crypto driver identifier*/
816 
817 	struct rte_cryptodev_cb_list link_intr_cbs;
818 	/**< User application callback for interrupts if present */
819 
820 	void *security_ctx;
821 	/**< Context for security ops */
822 
823 	__extension__
824 	uint8_t attached : 1;
825 	/**< Flag indicating the device is attached */
826 } __rte_cache_aligned;
827 
828 void *
829 rte_cryptodev_get_sec_ctx(uint8_t dev_id);
830 
831 /**
832  *
833  * The data part, with no function pointers, associated with each device.
834  *
835  * This structure is safe to place in shared memory to be common among
836  * different processes in a multi-process configuration.
837  */
838 struct rte_cryptodev_data {
839 	uint8_t dev_id;
840 	/**< Device ID for this instance */
841 	uint8_t socket_id;
842 	/**< Socket ID where memory is allocated */
843 	char name[RTE_CRYPTODEV_NAME_MAX_LEN];
844 	/**< Unique identifier name */
845 
846 	__extension__
847 	uint8_t dev_started : 1;
848 	/**< Device state: STARTED(1)/STOPPED(0) */
849 
850 	struct rte_mempool *session_pool;
851 	/**< Session memory pool */
852 	void **queue_pairs;
853 	/**< Array of pointers to queue pairs. */
854 	uint16_t nb_queue_pairs;
855 	/**< Number of device queue pairs. */
856 
857 	void *dev_private;
858 	/**< PMD-specific private data */
859 } __rte_cache_aligned;
860 
861 extern struct rte_cryptodev *rte_cryptodevs;
862 /**
863  *
864  * Dequeue a burst of processed crypto operations from a queue on the crypto
865  * device. The dequeued operation are stored in *rte_crypto_op* structures
866  * whose pointers are supplied in the *ops* array.
867  *
868  * The rte_cryptodev_dequeue_burst() function returns the number of ops
869  * actually dequeued, which is the number of *rte_crypto_op* data structures
870  * effectively supplied into the *ops* array.
871  *
872  * A return value equal to *nb_ops* indicates that the queue contained
873  * at least *nb_ops* operations, and this is likely to signify that other
874  * processed operations remain in the devices output queue. Applications
875  * implementing a "retrieve as many processed operations as possible" policy
876  * can check this specific case and keep invoking the
877  * rte_cryptodev_dequeue_burst() function until a value less than
878  * *nb_ops* is returned.
879  *
880  * The rte_cryptodev_dequeue_burst() function does not provide any error
881  * notification to avoid the corresponding overhead.
882  *
883  * @param	dev_id		The symmetric crypto device identifier
884  * @param	qp_id		The index of the queue pair from which to
885  *				retrieve processed packets. The value must be
886  *				in the range [0, nb_queue_pair - 1] previously
887  *				supplied to rte_cryptodev_configure().
888  * @param	ops		The address of an array of pointers to
889  *				*rte_crypto_op* structures that must be
890  *				large enough to store *nb_ops* pointers in it.
891  * @param	nb_ops		The maximum number of operations to dequeue.
892  *
893  * @return
894  *   - The number of operations actually dequeued, which is the number
895  *   of pointers to *rte_crypto_op* structures effectively supplied to the
896  *   *ops* array.
897  */
898 static inline uint16_t
899 rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id,
900 		struct rte_crypto_op **ops, uint16_t nb_ops)
901 {
902 	struct rte_cryptodev *dev = &rte_cryptodevs[dev_id];
903 
904 	nb_ops = (*dev->dequeue_burst)
905 			(dev->data->queue_pairs[qp_id], ops, nb_ops);
906 
907 	return nb_ops;
908 }
909 
910 /**
911  * Enqueue a burst of operations for processing on a crypto device.
912  *
913  * The rte_cryptodev_enqueue_burst() function is invoked to place
914  * crypto operations on the queue *qp_id* of the device designated by
915  * its *dev_id*.
916  *
917  * The *nb_ops* parameter is the number of operations to process which are
918  * supplied in the *ops* array of *rte_crypto_op* structures.
919  *
920  * The rte_cryptodev_enqueue_burst() function returns the number of
921  * operations it actually enqueued for processing. A return value equal to
922  * *nb_ops* means that all packets have been enqueued.
923  *
924  * @param	dev_id		The identifier of the device.
925  * @param	qp_id		The index of the queue pair which packets are
926  *				to be enqueued for processing. The value
927  *				must be in the range [0, nb_queue_pairs - 1]
928  *				previously supplied to
929  *				 *rte_cryptodev_configure*.
930  * @param	ops		The address of an array of *nb_ops* pointers
931  *				to *rte_crypto_op* structures which contain
932  *				the crypto operations to be processed.
933  * @param	nb_ops		The number of operations to process.
934  *
935  * @return
936  * The number of operations actually enqueued on the crypto device. The return
937  * value can be less than the value of the *nb_ops* parameter when the
938  * crypto devices queue is full or if invalid parameters are specified in
939  * a *rte_crypto_op*.
940  */
941 static inline uint16_t
942 rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id,
943 		struct rte_crypto_op **ops, uint16_t nb_ops)
944 {
945 	struct rte_cryptodev *dev = &rte_cryptodevs[dev_id];
946 
947 	return (*dev->enqueue_burst)(
948 			dev->data->queue_pairs[qp_id], ops, nb_ops);
949 }
950 
951 
952 /** Cryptodev symmetric crypto session
953  * Each session is derived from a fixed xform chain. Therefore each session
954  * has a fixed algo, key, op-type, digest_len etc.
955  */
956 struct rte_cryptodev_sym_session {
957 	__extension__ void *sess_private_data[0];
958 	/**< Private symmetric session material */
959 };
960 
961 /** Cryptodev asymmetric crypto session */
962 struct rte_cryptodev_asym_session {
963 	__extension__ void *sess_private_data[0];
964 	/**< Private asymmetric session material */
965 };
966 
967 /**
968  * Create symmetric crypto session header (generic with no private data)
969  *
970  * @param   mempool    Symmetric session mempool to allocate session
971  *                     objects from
972  * @return
973  *  - On success return pointer to sym-session
974  *  - On failure returns NULL
975  */
976 struct rte_cryptodev_sym_session *
977 rte_cryptodev_sym_session_create(struct rte_mempool *mempool);
978 
979 /**
980  * Create asymmetric crypto session header (generic with no private data)
981  *
982  * @param   mempool    mempool to allocate asymmetric session
983  *                     objects from
984  * @return
985  *  - On success return pointer to asym-session
986  *  - On failure returns NULL
987  */
988 struct rte_cryptodev_asym_session * __rte_experimental
989 rte_cryptodev_asym_session_create(struct rte_mempool *mempool);
990 
991 /**
992  * Frees symmetric crypto session header, after checking that all
993  * the device private data has been freed, returning it
994  * to its original mempool.
995  *
996  * @param   sess     Session header to be freed.
997  *
998  * @return
999  *  - 0 if successful.
1000  *  - -EINVAL if session is NULL.
1001  *  - -EBUSY if not all device private data has been freed.
1002  */
1003 int
1004 rte_cryptodev_sym_session_free(struct rte_cryptodev_sym_session *sess);
1005 
1006 /**
1007  * Frees asymmetric crypto session header, after checking that all
1008  * the device private data has been freed, returning it
1009  * to its original mempool.
1010  *
1011  * @param   sess     Session header to be freed.
1012  *
1013  * @return
1014  *  - 0 if successful.
1015  *  - -EINVAL if session is NULL.
1016  *  - -EBUSY if not all device private data has been freed.
1017  */
1018 int __rte_experimental
1019 rte_cryptodev_asym_session_free(struct rte_cryptodev_asym_session *sess);
1020 
1021 /**
1022  * Fill out private data for the device id, based on its device type.
1023  *
1024  * @param   dev_id   ID of device that we want the session to be used on
1025  * @param   sess     Session where the private data will be attached to
1026  * @param   xforms   Symmetric crypto transform operations to apply on flow
1027  *                   processed with this session
1028  * @param   mempool  Mempool where the private data is allocated.
1029  *
1030  * @return
1031  *  - On success, zero.
1032  *  - -EINVAL if input parameters are invalid.
1033  *  - -ENOTSUP if crypto device does not support the crypto transform or
1034  *    does not support symmetric operations.
1035  *  - -ENOMEM if the private session could not be allocated.
1036  */
1037 int
1038 rte_cryptodev_sym_session_init(uint8_t dev_id,
1039 			struct rte_cryptodev_sym_session *sess,
1040 			struct rte_crypto_sym_xform *xforms,
1041 			struct rte_mempool *mempool);
1042 
1043 /**
1044  * Initialize asymmetric session on a device with specific asymmetric xform
1045  *
1046  * @param   dev_id   ID of device that we want the session to be used on
1047  * @param   sess     Session to be set up on a device
1048  * @param   xforms   Asymmetric crypto transform operations to apply on flow
1049  *                   processed with this session
1050  * @param   mempool  Mempool to be used for internal allocation.
1051  *
1052  * @return
1053  *  - On success, zero.
1054  *  - -EINVAL if input parameters are invalid.
1055  *  - -ENOTSUP if crypto device does not support the crypto transform.
1056  *  - -ENOMEM if the private session could not be allocated.
1057  */
1058 int __rte_experimental
1059 rte_cryptodev_asym_session_init(uint8_t dev_id,
1060 			struct rte_cryptodev_asym_session *sess,
1061 			struct rte_crypto_asym_xform *xforms,
1062 			struct rte_mempool *mempool);
1063 
1064 /**
1065  * Frees private data for the device id, based on its device type,
1066  * returning it to its mempool. It is the application's responsibility
1067  * to ensure that private session data is not cleared while there are
1068  * still in-flight operations using it.
1069  *
1070  * @param   dev_id   ID of device that uses the session.
1071  * @param   sess     Session containing the reference to the private data
1072  *
1073  * @return
1074  *  - 0 if successful.
1075  *  - -EINVAL if device is invalid or session is NULL.
1076  *  - -ENOTSUP if crypto device does not support symmetric operations.
1077  */
1078 int
1079 rte_cryptodev_sym_session_clear(uint8_t dev_id,
1080 			struct rte_cryptodev_sym_session *sess);
1081 
1082 /**
1083  * Frees resources held by asymmetric session during rte_cryptodev_session_init
1084  *
1085  * @param   dev_id   ID of device that uses the asymmetric session.
1086  * @param   sess     Asymmetric session setup on device using
1087  *					 rte_cryptodev_session_init
1088  * @return
1089  *  - 0 if successful.
1090  *  - -EINVAL if device is invalid or session is NULL.
1091  */
1092 int __rte_experimental
1093 rte_cryptodev_asym_session_clear(uint8_t dev_id,
1094 			struct rte_cryptodev_asym_session *sess);
1095 
1096 /**
1097  * Get the size of the header session, for all registered drivers.
1098  *
1099  * @return
1100  *   Size of the symmetric eader session.
1101  */
1102 unsigned int
1103 rte_cryptodev_sym_get_header_session_size(void);
1104 
1105 /**
1106  * Get the size of the asymmetric session header, for all registered drivers.
1107  *
1108  * @return
1109  *   Size of the asymmetric header session.
1110  */
1111 unsigned int __rte_experimental
1112 rte_cryptodev_asym_get_header_session_size(void);
1113 
1114 /**
1115  * Get the size of the private symmetric session data
1116  * for a device.
1117  *
1118  * @param	dev_id		The device identifier.
1119  *
1120  * @return
1121  *   - Size of the private data, if successful
1122  *   - 0 if device is invalid or does not have private
1123  *   symmetric session
1124  */
1125 unsigned int
1126 rte_cryptodev_sym_get_private_session_size(uint8_t dev_id);
1127 
1128 /**
1129  * Get the size of the private data for asymmetric session
1130  * on device
1131  *
1132  * @param	dev_id		The device identifier.
1133  *
1134  * @return
1135  *   - Size of the asymmetric private data, if successful
1136  *   - 0 if device is invalid or does not have private session
1137  */
1138 unsigned int __rte_experimental
1139 rte_cryptodev_asym_get_private_session_size(uint8_t dev_id);
1140 
1141 /**
1142  * Provide driver identifier.
1143  *
1144  * @param name
1145  *   The pointer to a driver name.
1146  * @return
1147  *  The driver type identifier or -1 if no driver found
1148  */
1149 int rte_cryptodev_driver_id_get(const char *name);
1150 
1151 /**
1152  * Provide driver name.
1153  *
1154  * @param driver_id
1155  *   The driver identifier.
1156  * @return
1157  *  The driver name or null if no driver found
1158  */
1159 const char *rte_cryptodev_driver_name_get(uint8_t driver_id);
1160 
1161 /**
1162  * Store user data in a session.
1163  *
1164  * @param	sess		Session pointer allocated by
1165  *				*rte_cryptodev_sym_session_create*.
1166  * @param	data		Pointer to the user data.
1167  * @param	size		Size of the user data.
1168  *
1169  * @return
1170  *  - On success, zero.
1171  *  - On failure, a negative value.
1172  */
1173 int __rte_experimental
1174 rte_cryptodev_sym_session_set_user_data(
1175 					struct rte_cryptodev_sym_session *sess,
1176 					void *data,
1177 					uint16_t size);
1178 
1179 /**
1180  * Get user data stored in a session.
1181  *
1182  * @param	sess		Session pointer allocated by
1183  *				*rte_cryptodev_sym_session_create*.
1184  *
1185  * @return
1186  *  - On success return pointer to user data.
1187  *  - On failure returns NULL.
1188  */
1189 void * __rte_experimental
1190 rte_cryptodev_sym_session_get_user_data(
1191 					struct rte_cryptodev_sym_session *sess);
1192 
1193 #ifdef __cplusplus
1194 }
1195 #endif
1196 
1197 #endif /* _RTE_CRYPTODEV_H_ */
1198