1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2017 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <string.h> 8 #include <unistd.h> 9 #include <stdint.h> 10 #include <stdarg.h> 11 #include <inttypes.h> 12 #include <sys/queue.h> 13 #include <errno.h> 14 #include <netinet/ip.h> 15 16 #include <rte_common.h> 17 #include <rte_memory.h> 18 #include <rte_eal.h> 19 #include <rte_launch.h> 20 #include <rte_per_lcore.h> 21 #include <rte_lcore.h> 22 #include <rte_branch_prediction.h> 23 #include <rte_atomic.h> 24 #include <rte_ring.h> 25 #include <rte_log.h> 26 #include <rte_debug.h> 27 #include <rte_mempool.h> 28 #include <rte_memcpy.h> 29 #include <rte_mbuf.h> 30 #include <rte_ether.h> 31 #include <rte_interrupts.h> 32 #include <rte_ethdev.h> 33 #include <rte_byteorder.h> 34 #include <rte_malloc.h> 35 #include <rte_string_fns.h> 36 #include <rte_efd.h> 37 #include <rte_ip.h> 38 39 #include "common.h" 40 #include "args.h" 41 #include "init.h" 42 43 /* 44 * When doing reads from the NIC or the node queues, 45 * use this batch size 46 */ 47 #define PACKET_READ_SIZE 32 48 49 /* 50 * Local buffers to put packets in, used to send packets in bursts to the 51 * nodes 52 */ 53 struct node_rx_buf { 54 struct rte_mbuf *buffer[PACKET_READ_SIZE]; 55 uint16_t count; 56 }; 57 58 struct efd_stats { 59 uint64_t distributed; 60 uint64_t drop; 61 } flow_dist_stats; 62 63 /* One buffer per node rx queue - dynamically allocate array */ 64 static struct node_rx_buf *cl_rx_buf; 65 66 static const char * 67 get_printable_mac_addr(uint16_t port) 68 { 69 static const char err_address[] = "00:00:00:00:00:00"; 70 static char addresses[RTE_MAX_ETHPORTS][sizeof(err_address)]; 71 struct ether_addr mac; 72 73 if (unlikely(port >= RTE_MAX_ETHPORTS)) 74 return err_address; 75 if (unlikely(addresses[port][0] == '\0')) { 76 rte_eth_macaddr_get(port, &mac); 77 snprintf(addresses[port], sizeof(addresses[port]), 78 "%02x:%02x:%02x:%02x:%02x:%02x\n", 79 mac.addr_bytes[0], mac.addr_bytes[1], 80 mac.addr_bytes[2], mac.addr_bytes[3], 81 mac.addr_bytes[4], mac.addr_bytes[5]); 82 } 83 return addresses[port]; 84 } 85 86 /* 87 * This function displays the recorded statistics for each port 88 * and for each node. It uses ANSI terminal codes to clear 89 * screen when called. It is called from a single non-master 90 * thread in the server process, when the process is run with more 91 * than one lcore enabled. 92 */ 93 static void 94 do_stats_display(void) 95 { 96 unsigned int i, j; 97 const char clr[] = {27, '[', '2', 'J', '\0'}; 98 const char topLeft[] = {27, '[', '1', ';', '1', 'H', '\0'}; 99 uint64_t port_tx[RTE_MAX_ETHPORTS], port_tx_drop[RTE_MAX_ETHPORTS]; 100 uint64_t node_tx[MAX_NODES], node_tx_drop[MAX_NODES]; 101 102 /* to get TX stats, we need to do some summing calculations */ 103 memset(port_tx, 0, sizeof(port_tx)); 104 memset(port_tx_drop, 0, sizeof(port_tx_drop)); 105 memset(node_tx, 0, sizeof(node_tx)); 106 memset(node_tx_drop, 0, sizeof(node_tx_drop)); 107 108 for (i = 0; i < num_nodes; i++) { 109 const struct tx_stats *tx = &info->tx_stats[i]; 110 111 for (j = 0; j < info->num_ports; j++) { 112 const uint64_t tx_val = tx->tx[info->id[j]]; 113 const uint64_t drop_val = tx->tx_drop[info->id[j]]; 114 115 port_tx[j] += tx_val; 116 port_tx_drop[j] += drop_val; 117 node_tx[i] += tx_val; 118 node_tx_drop[i] += drop_val; 119 } 120 } 121 122 /* Clear screen and move to top left */ 123 printf("%s%s", clr, topLeft); 124 125 printf("PORTS\n"); 126 printf("-----\n"); 127 for (i = 0; i < info->num_ports; i++) 128 printf("Port %u: '%s'\t", (unsigned int)info->id[i], 129 get_printable_mac_addr(info->id[i])); 130 printf("\n\n"); 131 for (i = 0; i < info->num_ports; i++) { 132 printf("Port %u - rx: %9"PRIu64"\t" 133 "tx: %9"PRIu64"\n", 134 (unsigned int)info->id[i], info->rx_stats.rx[i], 135 port_tx[i]); 136 } 137 138 printf("\nSERVER\n"); 139 printf("-----\n"); 140 printf("distributed: %9"PRIu64", drop: %9"PRIu64"\n", 141 flow_dist_stats.distributed, flow_dist_stats.drop); 142 143 printf("\nNODES\n"); 144 printf("-------\n"); 145 for (i = 0; i < num_nodes; i++) { 146 const unsigned long long rx = nodes[i].stats.rx; 147 const unsigned long long rx_drop = nodes[i].stats.rx_drop; 148 const struct filter_stats *filter = &info->filter_stats[i]; 149 150 printf("Node %2u - rx: %9llu, rx_drop: %9llu\n" 151 " tx: %9"PRIu64", tx_drop: %9"PRIu64"\n" 152 " filter_passed: %9"PRIu64", " 153 "filter_drop: %9"PRIu64"\n", 154 i, rx, rx_drop, node_tx[i], node_tx_drop[i], 155 filter->passed, filter->drop); 156 } 157 158 printf("\n"); 159 } 160 161 /* 162 * The function called from each non-master lcore used by the process. 163 * The test_and_set function is used to randomly pick a single lcore on which 164 * the code to display the statistics will run. Otherwise, the code just 165 * repeatedly sleeps. 166 */ 167 static int 168 sleep_lcore(__attribute__((unused)) void *dummy) 169 { 170 /* Used to pick a display thread - static, so zero-initialised */ 171 static rte_atomic32_t display_stats; 172 173 /* Only one core should display stats */ 174 if (rte_atomic32_test_and_set(&display_stats)) { 175 const unsigned int sleeptime = 1; 176 177 printf("Core %u displaying statistics\n", rte_lcore_id()); 178 179 /* Longer initial pause so above printf is seen */ 180 sleep(sleeptime * 3); 181 182 /* Loop forever: sleep always returns 0 or <= param */ 183 while (sleep(sleeptime) <= sleeptime) 184 do_stats_display(); 185 } 186 return 0; 187 } 188 189 /* 190 * Function to set all the node statistic values to zero. 191 * Called at program startup. 192 */ 193 static void 194 clear_stats(void) 195 { 196 unsigned int i; 197 198 for (i = 0; i < num_nodes; i++) 199 nodes[i].stats.rx = nodes[i].stats.rx_drop = 0; 200 } 201 202 /* 203 * send a burst of traffic to a node, assuming there are packets 204 * available to be sent to this node 205 */ 206 static void 207 flush_rx_queue(uint16_t node) 208 { 209 uint16_t j; 210 struct node *cl; 211 212 if (cl_rx_buf[node].count == 0) 213 return; 214 215 cl = &nodes[node]; 216 if (rte_ring_enqueue_bulk(cl->rx_q, (void **)cl_rx_buf[node].buffer, 217 cl_rx_buf[node].count, NULL) != cl_rx_buf[node].count){ 218 for (j = 0; j < cl_rx_buf[node].count; j++) 219 rte_pktmbuf_free(cl_rx_buf[node].buffer[j]); 220 cl->stats.rx_drop += cl_rx_buf[node].count; 221 } else 222 cl->stats.rx += cl_rx_buf[node].count; 223 224 cl_rx_buf[node].count = 0; 225 } 226 227 /* 228 * marks a packet down to be sent to a particular node process 229 */ 230 static inline void 231 enqueue_rx_packet(uint8_t node, struct rte_mbuf *buf) 232 { 233 cl_rx_buf[node].buffer[cl_rx_buf[node].count++] = buf; 234 } 235 236 /* 237 * This function takes a group of packets and routes them 238 * individually to the node process. Very simply round-robins the packets 239 * without checking any of the packet contents. 240 */ 241 static void 242 process_packets(uint32_t port_num __rte_unused, struct rte_mbuf *pkts[], 243 uint16_t rx_count, unsigned int socket_id) 244 { 245 uint16_t i; 246 uint8_t node; 247 efd_value_t data[RTE_EFD_BURST_MAX]; 248 const void *key_ptrs[RTE_EFD_BURST_MAX]; 249 250 struct ipv4_hdr *ipv4_hdr; 251 uint32_t ipv4_dst_ip[RTE_EFD_BURST_MAX]; 252 253 for (i = 0; i < rx_count; i++) { 254 /* Handle IPv4 header.*/ 255 ipv4_hdr = rte_pktmbuf_mtod_offset(pkts[i], struct ipv4_hdr *, 256 sizeof(struct ether_hdr)); 257 ipv4_dst_ip[i] = ipv4_hdr->dst_addr; 258 key_ptrs[i] = (void *)&ipv4_dst_ip[i]; 259 } 260 261 rte_efd_lookup_bulk(efd_table, socket_id, rx_count, 262 (const void **) key_ptrs, data); 263 for (i = 0; i < rx_count; i++) { 264 node = (uint8_t) ((uintptr_t)data[i]); 265 266 if (node >= num_nodes) { 267 /* 268 * Node is out of range, which means that 269 * flow has not been inserted 270 */ 271 flow_dist_stats.drop++; 272 rte_pktmbuf_free(pkts[i]); 273 } else { 274 flow_dist_stats.distributed++; 275 enqueue_rx_packet(node, pkts[i]); 276 } 277 } 278 279 for (i = 0; i < num_nodes; i++) 280 flush_rx_queue(i); 281 } 282 283 /* 284 * Function called by the master lcore of the DPDK process. 285 */ 286 static void 287 do_packet_forwarding(void) 288 { 289 unsigned int port_num = 0; /* indexes the port[] array */ 290 unsigned int socket_id = rte_socket_id(); 291 292 for (;;) { 293 struct rte_mbuf *buf[PACKET_READ_SIZE]; 294 uint16_t rx_count; 295 296 /* read a port */ 297 rx_count = rte_eth_rx_burst(info->id[port_num], 0, 298 buf, PACKET_READ_SIZE); 299 info->rx_stats.rx[port_num] += rx_count; 300 301 /* Now process the NIC packets read */ 302 if (likely(rx_count > 0)) 303 process_packets(port_num, buf, rx_count, socket_id); 304 305 /* move to next port */ 306 if (++port_num == info->num_ports) 307 port_num = 0; 308 } 309 } 310 311 int 312 main(int argc, char *argv[]) 313 { 314 /* initialise the system */ 315 if (init(argc, argv) < 0) 316 return -1; 317 RTE_LOG(INFO, APP, "Finished Process Init.\n"); 318 319 cl_rx_buf = calloc(num_nodes, sizeof(cl_rx_buf[0])); 320 321 /* clear statistics */ 322 clear_stats(); 323 324 /* put all other cores to sleep bar master */ 325 rte_eal_mp_remote_launch(sleep_lcore, NULL, SKIP_MASTER); 326 327 do_packet_forwarding(); 328 return 0; 329 } 330