1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 
16 #include <rte_common.h>
17 #include <rte_vect.h>
18 #include <rte_byteorder.h>
19 #include <rte_log.h>
20 #include <rte_memory.h>
21 #include <rte_memcpy.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ring.h>
36 #include <rte_mempool.h>
37 #include <rte_mbuf.h>
38 #include <rte_ip.h>
39 #include <rte_tcp.h>
40 #include <rte_udp.h>
41 #include <rte_string_fns.h>
42 #include <rte_pause.h>
43 
44 #include <cmdline_parse.h>
45 #include <cmdline_parse_etheraddr.h>
46 
47 #include <lthread_api.h>
48 
49 #define APP_LOOKUP_EXACT_MATCH          0
50 #define APP_LOOKUP_LPM                  1
51 #define DO_RFC_1812_CHECKS
52 
53 /* Enable cpu-load stats 0-off, 1-on */
54 #define APP_CPU_LOAD                 1
55 
56 #ifndef APP_LOOKUP_METHOD
57 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
58 #endif
59 
60 #ifndef __GLIBC__ /* sched_getcpu() is glibc specific */
61 #define sched_getcpu() rte_lcore_id()
62 #endif
63 
64 static int
65 check_ptype(int portid)
66 {
67 	int i, ret;
68 	int ipv4 = 0, ipv6 = 0;
69 
70 	ret = rte_eth_dev_get_supported_ptypes(portid, RTE_PTYPE_L3_MASK, NULL,
71 			0);
72 	if (ret <= 0)
73 		return 0;
74 
75 	uint32_t ptypes[ret];
76 
77 	ret = rte_eth_dev_get_supported_ptypes(portid, RTE_PTYPE_L3_MASK,
78 			ptypes, ret);
79 	for (i = 0; i < ret; ++i) {
80 		if (ptypes[i] & RTE_PTYPE_L3_IPV4)
81 			ipv4 = 1;
82 		if (ptypes[i] & RTE_PTYPE_L3_IPV6)
83 			ipv6 = 1;
84 	}
85 
86 	if (ipv4 && ipv6)
87 		return 1;
88 
89 	return 0;
90 }
91 
92 static inline void
93 parse_ptype(struct rte_mbuf *m)
94 {
95 	struct ether_hdr *eth_hdr;
96 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
97 	uint16_t ether_type;
98 
99 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
100 	ether_type = eth_hdr->ether_type;
101 	if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4))
102 		packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
103 	else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6))
104 		packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
105 
106 	m->packet_type = packet_type;
107 }
108 
109 static uint16_t
110 cb_parse_ptype(__rte_unused uint16_t port, __rte_unused uint16_t queue,
111 		struct rte_mbuf *pkts[], uint16_t nb_pkts,
112 		__rte_unused uint16_t max_pkts, __rte_unused void *user_param)
113 {
114 	unsigned int i;
115 
116 	for (i = 0; i < nb_pkts; i++)
117 		parse_ptype(pkts[i]);
118 
119 	return nb_pkts;
120 }
121 
122 /*
123  *  When set to zero, simple forwaring path is eanbled.
124  *  When set to one, optimized forwarding path is enabled.
125  *  Note that LPM optimisation path uses SSE4.1 instructions.
126  */
127 #define ENABLE_MULTI_BUFFER_OPTIMIZE	1
128 
129 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
130 #include <rte_hash.h>
131 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
132 #include <rte_lpm.h>
133 #include <rte_lpm6.h>
134 #else
135 #error "APP_LOOKUP_METHOD set to incorrect value"
136 #endif
137 
138 #define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
139 
140 #define MAX_JUMBO_PKT_LEN  9600
141 
142 #define IPV6_ADDR_LEN 16
143 
144 #define MEMPOOL_CACHE_SIZE 256
145 
146 /*
147  * This expression is used to calculate the number of mbufs needed depending on
148  * user input, taking into account memory for rx and tx hardware rings, cache
149  * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
150  * NB_MBUF never goes below a minimum value of 8192
151  */
152 
153 #define NB_MBUF RTE_MAX(\
154 		(nb_ports*nb_rx_queue*nb_rxd +      \
155 		nb_ports*nb_lcores*MAX_PKT_BURST +  \
156 		nb_ports*n_tx_queue*nb_txd +        \
157 		nb_lcores*MEMPOOL_CACHE_SIZE),      \
158 		(unsigned)8192)
159 
160 #define MAX_PKT_BURST     32
161 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
162 
163 /*
164  * Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send.
165  */
166 #define	MAX_TX_BURST  (MAX_PKT_BURST / 2)
167 #define BURST_SIZE    MAX_TX_BURST
168 
169 #define NB_SOCKETS 8
170 
171 /* Configure how many packets ahead to prefetch, when reading packets */
172 #define PREFETCH_OFFSET	3
173 
174 /* Used to mark destination port as 'invalid'. */
175 #define	BAD_PORT	((uint16_t)-1)
176 
177 #define FWDSTEP	4
178 
179 /*
180  * Configurable number of RX/TX ring descriptors
181  */
182 #define RTE_TEST_RX_DESC_DEFAULT 1024
183 #define RTE_TEST_TX_DESC_DEFAULT 1024
184 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
185 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
186 
187 /* ethernet addresses of ports */
188 static uint64_t dest_eth_addr[RTE_MAX_ETHPORTS];
189 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
190 
191 static xmm_t val_eth[RTE_MAX_ETHPORTS];
192 
193 /* replace first 12B of the ethernet header. */
194 #define	MASK_ETH 0x3f
195 
196 /* mask of enabled ports */
197 static uint32_t enabled_port_mask;
198 static int promiscuous_on; /**< Set in promiscuous mode off by default. */
199 static int numa_on = 1;    /**< NUMA is enabled by default. */
200 static int parse_ptype_on;
201 
202 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
203 static int ipv6;           /**< ipv6 is false by default. */
204 #endif
205 
206 #if (APP_CPU_LOAD == 1)
207 
208 #define MAX_CPU RTE_MAX_LCORE
209 #define CPU_LOAD_TIMEOUT_US (5 * 1000 * 1000)  /**< Timeout for collecting 5s */
210 
211 #define CPU_PROCESS     0
212 #define CPU_POLL        1
213 #define MAX_CPU_COUNTER 2
214 
215 struct cpu_load {
216 	uint16_t       n_cpu;
217 	uint64_t       counter;
218 	uint64_t       hits[MAX_CPU_COUNTER][MAX_CPU];
219 } __rte_cache_aligned;
220 
221 static struct cpu_load cpu_load;
222 static int cpu_load_lcore_id = -1;
223 
224 #define SET_CPU_BUSY(thread, counter) \
225 		thread->conf.busy[counter] = 1
226 
227 #define SET_CPU_IDLE(thread, counter) \
228 		thread->conf.busy[counter] = 0
229 
230 #define IS_CPU_BUSY(thread, counter) \
231 		(thread->conf.busy[counter] > 0)
232 
233 #else
234 
235 #define SET_CPU_BUSY(thread, counter)
236 #define SET_CPU_IDLE(thread, counter)
237 #define IS_CPU_BUSY(thread, counter) 0
238 
239 #endif
240 
241 struct mbuf_table {
242 	uint16_t len;
243 	struct rte_mbuf *m_table[MAX_PKT_BURST];
244 };
245 
246 struct lcore_rx_queue {
247 	uint16_t port_id;
248 	uint8_t queue_id;
249 } __rte_cache_aligned;
250 
251 #define MAX_RX_QUEUE_PER_LCORE 16
252 #define MAX_TX_QUEUE_PER_PORT  RTE_MAX_ETHPORTS
253 #define MAX_RX_QUEUE_PER_PORT  128
254 
255 #define MAX_LCORE_PARAMS       1024
256 struct rx_thread_params {
257 	uint16_t port_id;
258 	uint8_t queue_id;
259 	uint8_t lcore_id;
260 	uint8_t thread_id;
261 } __rte_cache_aligned;
262 
263 static struct rx_thread_params rx_thread_params_array[MAX_LCORE_PARAMS];
264 static struct rx_thread_params rx_thread_params_array_default[] = {
265 	{0, 0, 2, 0},
266 	{0, 1, 2, 1},
267 	{0, 2, 2, 2},
268 	{1, 0, 2, 3},
269 	{1, 1, 2, 4},
270 	{1, 2, 2, 5},
271 	{2, 0, 2, 6},
272 	{3, 0, 3, 7},
273 	{3, 1, 3, 8},
274 };
275 
276 static struct rx_thread_params *rx_thread_params =
277 		rx_thread_params_array_default;
278 static uint16_t nb_rx_thread_params = RTE_DIM(rx_thread_params_array_default);
279 
280 struct tx_thread_params {
281 	uint8_t lcore_id;
282 	uint8_t thread_id;
283 } __rte_cache_aligned;
284 
285 static struct tx_thread_params tx_thread_params_array[MAX_LCORE_PARAMS];
286 static struct tx_thread_params tx_thread_params_array_default[] = {
287 	{4, 0},
288 	{5, 1},
289 	{6, 2},
290 	{7, 3},
291 	{8, 4},
292 	{9, 5},
293 	{10, 6},
294 	{11, 7},
295 	{12, 8},
296 };
297 
298 static struct tx_thread_params *tx_thread_params =
299 		tx_thread_params_array_default;
300 static uint16_t nb_tx_thread_params = RTE_DIM(tx_thread_params_array_default);
301 
302 static struct rte_eth_conf port_conf = {
303 	.rxmode = {
304 		.mq_mode = ETH_MQ_RX_RSS,
305 		.max_rx_pkt_len = ETHER_MAX_LEN,
306 		.split_hdr_size = 0,
307 		.offloads = DEV_RX_OFFLOAD_CHECKSUM,
308 	},
309 	.rx_adv_conf = {
310 		.rss_conf = {
311 			.rss_key = NULL,
312 			.rss_hf = ETH_RSS_TCP,
313 		},
314 	},
315 	.txmode = {
316 		.mq_mode = ETH_MQ_TX_NONE,
317 	},
318 };
319 
320 static struct rte_mempool *pktmbuf_pool[NB_SOCKETS];
321 
322 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
323 
324 #include <rte_hash_crc.h>
325 #define DEFAULT_HASH_FUNC       rte_hash_crc
326 
327 struct ipv4_5tuple {
328 	uint32_t ip_dst;
329 	uint32_t ip_src;
330 	uint16_t port_dst;
331 	uint16_t port_src;
332 	uint8_t  proto;
333 } __attribute__((__packed__));
334 
335 union ipv4_5tuple_host {
336 	struct {
337 		uint8_t  pad0;
338 		uint8_t  proto;
339 		uint16_t pad1;
340 		uint32_t ip_src;
341 		uint32_t ip_dst;
342 		uint16_t port_src;
343 		uint16_t port_dst;
344 	};
345 	__m128i xmm;
346 };
347 
348 #define XMM_NUM_IN_IPV6_5TUPLE 3
349 
350 struct ipv6_5tuple {
351 	uint8_t  ip_dst[IPV6_ADDR_LEN];
352 	uint8_t  ip_src[IPV6_ADDR_LEN];
353 	uint16_t port_dst;
354 	uint16_t port_src;
355 	uint8_t  proto;
356 } __attribute__((__packed__));
357 
358 union ipv6_5tuple_host {
359 	struct {
360 		uint16_t pad0;
361 		uint8_t  proto;
362 		uint8_t  pad1;
363 		uint8_t  ip_src[IPV6_ADDR_LEN];
364 		uint8_t  ip_dst[IPV6_ADDR_LEN];
365 		uint16_t port_src;
366 		uint16_t port_dst;
367 		uint64_t reserve;
368 	};
369 	__m128i xmm[XMM_NUM_IN_IPV6_5TUPLE];
370 };
371 
372 struct ipv4_l3fwd_route {
373 	struct ipv4_5tuple key;
374 	uint8_t if_out;
375 };
376 
377 struct ipv6_l3fwd_route {
378 	struct ipv6_5tuple key;
379 	uint8_t if_out;
380 };
381 
382 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
383 	{{IPv4(101, 0, 0, 0), IPv4(100, 10, 0, 1),  101, 11, IPPROTO_TCP}, 0},
384 	{{IPv4(201, 0, 0, 0), IPv4(200, 20, 0, 1),  102, 12, IPPROTO_TCP}, 1},
385 	{{IPv4(111, 0, 0, 0), IPv4(100, 30, 0, 1),  101, 11, IPPROTO_TCP}, 2},
386 	{{IPv4(211, 0, 0, 0), IPv4(200, 40, 0, 1),  102, 12, IPPROTO_TCP}, 3},
387 };
388 
389 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
390 	{{
391 	{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
392 	{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
393 			0x05},
394 	101, 11, IPPROTO_TCP}, 0},
395 
396 	{{
397 	{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
398 	{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
399 			0x05},
400 	102, 12, IPPROTO_TCP}, 1},
401 
402 	{{
403 	{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
404 	{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
405 			0x05},
406 	101, 11, IPPROTO_TCP}, 2},
407 
408 	{{
409 	{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
410 	{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
411 			0x05},
412 	102, 12, IPPROTO_TCP}, 3},
413 };
414 
415 typedef struct rte_hash lookup_struct_t;
416 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
417 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
418 
419 #ifdef RTE_ARCH_X86_64
420 /* default to 4 million hash entries (approx) */
421 #define L3FWD_HASH_ENTRIES (1024*1024*4)
422 #else
423 /* 32-bit has less address-space for hugepage memory, limit to 1M entries */
424 #define L3FWD_HASH_ENTRIES (1024*1024*1)
425 #endif
426 #define HASH_ENTRY_NUMBER_DEFAULT 4
427 
428 static uint32_t hash_entry_number = HASH_ENTRY_NUMBER_DEFAULT;
429 
430 static inline uint32_t
431 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
432 		uint32_t init_val)
433 {
434 	const union ipv4_5tuple_host *k;
435 	uint32_t t;
436 	const uint32_t *p;
437 
438 	k = data;
439 	t = k->proto;
440 	p = (const uint32_t *)&k->port_src;
441 
442 	init_val = rte_hash_crc_4byte(t, init_val);
443 	init_val = rte_hash_crc_4byte(k->ip_src, init_val);
444 	init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
445 	init_val = rte_hash_crc_4byte(*p, init_val);
446 	return init_val;
447 }
448 
449 static inline uint32_t
450 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
451 		uint32_t init_val)
452 {
453 	const union ipv6_5tuple_host *k;
454 	uint32_t t;
455 	const uint32_t *p;
456 	const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3;
457 	const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
458 
459 	k = data;
460 	t = k->proto;
461 	p = (const uint32_t *)&k->port_src;
462 
463 	ip_src0 = (const uint32_t *) k->ip_src;
464 	ip_src1 = (const uint32_t *)(k->ip_src + 4);
465 	ip_src2 = (const uint32_t *)(k->ip_src + 8);
466 	ip_src3 = (const uint32_t *)(k->ip_src + 12);
467 	ip_dst0 = (const uint32_t *) k->ip_dst;
468 	ip_dst1 = (const uint32_t *)(k->ip_dst + 4);
469 	ip_dst2 = (const uint32_t *)(k->ip_dst + 8);
470 	ip_dst3 = (const uint32_t *)(k->ip_dst + 12);
471 	init_val = rte_hash_crc_4byte(t, init_val);
472 	init_val = rte_hash_crc_4byte(*ip_src0, init_val);
473 	init_val = rte_hash_crc_4byte(*ip_src1, init_val);
474 	init_val = rte_hash_crc_4byte(*ip_src2, init_val);
475 	init_val = rte_hash_crc_4byte(*ip_src3, init_val);
476 	init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
477 	init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
478 	init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
479 	init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
480 	init_val = rte_hash_crc_4byte(*p, init_val);
481 	return init_val;
482 }
483 
484 #define IPV4_L3FWD_NUM_ROUTES RTE_DIM(ipv4_l3fwd_route_array)
485 #define IPV6_L3FWD_NUM_ROUTES RTE_DIM(ipv6_l3fwd_route_array)
486 
487 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
488 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
489 
490 #endif
491 
492 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
493 struct ipv4_l3fwd_route {
494 	uint32_t ip;
495 	uint8_t  depth;
496 	uint8_t  if_out;
497 };
498 
499 struct ipv6_l3fwd_route {
500 	uint8_t ip[16];
501 	uint8_t depth;
502 	uint8_t if_out;
503 };
504 
505 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
506 	{IPv4(1, 1, 1, 0), 24, 0},
507 	{IPv4(2, 1, 1, 0), 24, 1},
508 	{IPv4(3, 1, 1, 0), 24, 2},
509 	{IPv4(4, 1, 1, 0), 24, 3},
510 	{IPv4(5, 1, 1, 0), 24, 4},
511 	{IPv4(6, 1, 1, 0), 24, 5},
512 	{IPv4(7, 1, 1, 0), 24, 6},
513 	{IPv4(8, 1, 1, 0), 24, 7},
514 };
515 
516 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
517 	{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
518 	{{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
519 	{{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
520 	{{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
521 	{{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
522 	{{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
523 	{{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
524 	{{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},
525 };
526 
527 #define IPV4_L3FWD_NUM_ROUTES RTE_DIM(ipv4_l3fwd_route_array)
528 #define IPV6_L3FWD_NUM_ROUTES RTE_DIM(ipv6_l3fwd_route_array)
529 
530 #define IPV4_L3FWD_LPM_MAX_RULES         1024
531 #define IPV6_L3FWD_LPM_MAX_RULES         1024
532 #define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16)
533 
534 typedef struct rte_lpm lookup_struct_t;
535 typedef struct rte_lpm6 lookup6_struct_t;
536 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
537 static lookup6_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
538 #endif
539 
540 struct lcore_conf {
541 	lookup_struct_t *ipv4_lookup_struct;
542 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
543 	lookup6_struct_t *ipv6_lookup_struct;
544 #else
545 	lookup_struct_t *ipv6_lookup_struct;
546 #endif
547 	void *data;
548 } __rte_cache_aligned;
549 
550 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
551 RTE_DEFINE_PER_LCORE(struct lcore_conf *, lcore_conf);
552 
553 #define MAX_RX_QUEUE_PER_THREAD 16
554 #define MAX_TX_PORT_PER_THREAD  RTE_MAX_ETHPORTS
555 #define MAX_TX_QUEUE_PER_PORT   RTE_MAX_ETHPORTS
556 #define MAX_RX_QUEUE_PER_PORT   128
557 
558 #define MAX_RX_THREAD 1024
559 #define MAX_TX_THREAD 1024
560 #define MAX_THREAD    (MAX_RX_THREAD + MAX_TX_THREAD)
561 
562 /**
563  * Producers and consumers threads configuration
564  */
565 static int lthreads_on = 1; /**< Use lthreads for processing*/
566 
567 rte_atomic16_t rx_counter;  /**< Number of spawned rx threads */
568 rte_atomic16_t tx_counter;  /**< Number of spawned tx threads */
569 
570 struct thread_conf {
571 	uint16_t lcore_id;      /**< Initial lcore for rx thread */
572 	uint16_t cpu_id;        /**< Cpu id for cpu load stats counter */
573 	uint16_t thread_id;     /**< Thread ID */
574 
575 #if (APP_CPU_LOAD > 0)
576 	int busy[MAX_CPU_COUNTER];
577 #endif
578 };
579 
580 struct thread_rx_conf {
581 	struct thread_conf conf;
582 
583 	uint16_t n_rx_queue;
584 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
585 
586 	uint16_t n_ring;        /**< Number of output rings */
587 	struct rte_ring *ring[RTE_MAX_LCORE];
588 	struct lthread_cond *ready[RTE_MAX_LCORE];
589 
590 #if (APP_CPU_LOAD > 0)
591 	int busy[MAX_CPU_COUNTER];
592 #endif
593 } __rte_cache_aligned;
594 
595 uint16_t n_rx_thread;
596 struct thread_rx_conf rx_thread[MAX_RX_THREAD];
597 
598 struct thread_tx_conf {
599 	struct thread_conf conf;
600 
601 	uint16_t tx_queue_id[RTE_MAX_LCORE];
602 	struct mbuf_table tx_mbufs[RTE_MAX_LCORE];
603 
604 	struct rte_ring *ring;
605 	struct lthread_cond **ready;
606 
607 } __rte_cache_aligned;
608 
609 uint16_t n_tx_thread;
610 struct thread_tx_conf tx_thread[MAX_TX_THREAD];
611 
612 /* Send burst of packets on an output interface */
613 static inline int
614 send_burst(struct thread_tx_conf *qconf, uint16_t n, uint16_t port)
615 {
616 	struct rte_mbuf **m_table;
617 	int ret;
618 	uint16_t queueid;
619 
620 	queueid = qconf->tx_queue_id[port];
621 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
622 
623 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
624 	if (unlikely(ret < n)) {
625 		do {
626 			rte_pktmbuf_free(m_table[ret]);
627 		} while (++ret < n);
628 	}
629 
630 	return 0;
631 }
632 
633 /* Enqueue a single packet, and send burst if queue is filled */
634 static inline int
635 send_single_packet(struct rte_mbuf *m, uint16_t port)
636 {
637 	uint16_t len;
638 	struct thread_tx_conf *qconf;
639 
640 	if (lthreads_on)
641 		qconf = (struct thread_tx_conf *)lthread_get_data();
642 	else
643 		qconf = (struct thread_tx_conf *)RTE_PER_LCORE(lcore_conf)->data;
644 
645 	len = qconf->tx_mbufs[port].len;
646 	qconf->tx_mbufs[port].m_table[len] = m;
647 	len++;
648 
649 	/* enough pkts to be sent */
650 	if (unlikely(len == MAX_PKT_BURST)) {
651 		send_burst(qconf, MAX_PKT_BURST, port);
652 		len = 0;
653 	}
654 
655 	qconf->tx_mbufs[port].len = len;
656 	return 0;
657 }
658 
659 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
660 	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
661 static __rte_always_inline void
662 send_packetsx4(uint16_t port,
663 	struct rte_mbuf *m[], uint32_t num)
664 {
665 	uint32_t len, j, n;
666 	struct thread_tx_conf *qconf;
667 
668 	if (lthreads_on)
669 		qconf = (struct thread_tx_conf *)lthread_get_data();
670 	else
671 		qconf = (struct thread_tx_conf *)RTE_PER_LCORE(lcore_conf)->data;
672 
673 	len = qconf->tx_mbufs[port].len;
674 
675 	/*
676 	 * If TX buffer for that queue is empty, and we have enough packets,
677 	 * then send them straightway.
678 	 */
679 	if (num >= MAX_TX_BURST && len == 0) {
680 		n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num);
681 		if (unlikely(n < num)) {
682 			do {
683 				rte_pktmbuf_free(m[n]);
684 			} while (++n < num);
685 		}
686 		return;
687 	}
688 
689 	/*
690 	 * Put packets into TX buffer for that queue.
691 	 */
692 
693 	n = len + num;
694 	n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num;
695 
696 	j = 0;
697 	switch (n % FWDSTEP) {
698 	while (j < n) {
699 	case 0:
700 		qconf->tx_mbufs[port].m_table[len + j] = m[j];
701 		j++;
702 		/* fall-through */
703 	case 3:
704 		qconf->tx_mbufs[port].m_table[len + j] = m[j];
705 		j++;
706 		/* fall-through */
707 	case 2:
708 		qconf->tx_mbufs[port].m_table[len + j] = m[j];
709 		j++;
710 		/* fall-through */
711 	case 1:
712 		qconf->tx_mbufs[port].m_table[len + j] = m[j];
713 		j++;
714 	}
715 	}
716 
717 	len += n;
718 
719 	/* enough pkts to be sent */
720 	if (unlikely(len == MAX_PKT_BURST)) {
721 
722 		send_burst(qconf, MAX_PKT_BURST, port);
723 
724 		/* copy rest of the packets into the TX buffer. */
725 		len = num - n;
726 		j = 0;
727 		switch (len % FWDSTEP) {
728 		while (j < len) {
729 		case 0:
730 			qconf->tx_mbufs[port].m_table[j] = m[n + j];
731 			j++;
732 			/* fall-through */
733 		case 3:
734 			qconf->tx_mbufs[port].m_table[j] = m[n + j];
735 			j++;
736 			/* fall-through */
737 		case 2:
738 			qconf->tx_mbufs[port].m_table[j] = m[n + j];
739 			j++;
740 			/* fall-through */
741 		case 1:
742 			qconf->tx_mbufs[port].m_table[j] = m[n + j];
743 			j++;
744 		}
745 		}
746 	}
747 
748 	qconf->tx_mbufs[port].len = len;
749 }
750 #endif /* APP_LOOKUP_LPM */
751 
752 #ifdef DO_RFC_1812_CHECKS
753 static inline int
754 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
755 {
756 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
757 	/*
758 	 * 1. The packet length reported by the Link Layer must be large
759 	 * enough to hold the minimum length legal IP datagram (20 bytes).
760 	 */
761 	if (link_len < sizeof(struct ipv4_hdr))
762 		return -1;
763 
764 	/* 2. The IP checksum must be correct. */
765 	/* this is checked in H/W */
766 
767 	/*
768 	 * 3. The IP version number must be 4. If the version number is not 4
769 	 * then the packet may be another version of IP, such as IPng or
770 	 * ST-II.
771 	 */
772 	if (((pkt->version_ihl) >> 4) != 4)
773 		return -3;
774 	/*
775 	 * 4. The IP header length field must be large enough to hold the
776 	 * minimum length legal IP datagram (20 bytes = 5 words).
777 	 */
778 	if ((pkt->version_ihl & 0xf) < 5)
779 		return -4;
780 
781 	/*
782 	 * 5. The IP total length field must be large enough to hold the IP
783 	 * datagram header, whose length is specified in the IP header length
784 	 * field.
785 	 */
786 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
787 		return -5;
788 
789 	return 0;
790 }
791 #endif
792 
793 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
794 
795 static __m128i mask0;
796 static __m128i mask1;
797 static __m128i mask2;
798 static inline uint16_t
799 get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid,
800 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
801 {
802 	int ret = 0;
803 	union ipv4_5tuple_host key;
804 
805 	ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
806 	__m128i data = _mm_loadu_si128((__m128i *)(ipv4_hdr));
807 	/* Get 5 tuple: dst port, src port, dst IP address, src IP address and
808 	   protocol */
809 	key.xmm = _mm_and_si128(data, mask0);
810 	/* Find destination port */
811 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
812 	return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
813 }
814 
815 static inline uint16_t
816 get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid,
817 		lookup_struct_t *ipv6_l3fwd_lookup_struct)
818 {
819 	int ret = 0;
820 	union ipv6_5tuple_host key;
821 
822 	ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
823 	__m128i data0 = _mm_loadu_si128((__m128i *)(ipv6_hdr));
824 	__m128i data1 = _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr) +
825 			sizeof(__m128i)));
826 	__m128i data2 = _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr) +
827 			sizeof(__m128i) + sizeof(__m128i)));
828 	/* Get part of 5 tuple: src IP address lower 96 bits and protocol */
829 	key.xmm[0] = _mm_and_si128(data0, mask1);
830 	/* Get part of 5 tuple: dst IP address lower 96 bits and src IP address
831 	   higher 32 bits */
832 	key.xmm[1] = data1;
833 	/* Get part of 5 tuple: dst port and src port and dst IP address higher
834 	   32 bits */
835 	key.xmm[2] = _mm_and_si128(data2, mask2);
836 
837 	/* Find destination port */
838 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
839 	return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
840 }
841 #endif
842 
843 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
844 
845 static inline uint16_t
846 get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid,
847 		lookup_struct_t *ipv4_l3fwd_lookup_struct)
848 {
849 	uint32_t next_hop;
850 
851 	return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
852 		rte_be_to_cpu_32(((struct ipv4_hdr *)ipv4_hdr)->dst_addr),
853 		&next_hop) == 0) ? next_hop : portid);
854 }
855 
856 static inline uint16_t
857 get_ipv6_dst_port(void *ipv6_hdr,  uint16_t portid,
858 		lookup6_struct_t *ipv6_l3fwd_lookup_struct)
859 {
860 	uint32_t next_hop;
861 
862 	return ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct,
863 			((struct ipv6_hdr *)ipv6_hdr)->dst_addr, &next_hop) == 0) ?
864 			next_hop : portid);
865 }
866 #endif
867 
868 static inline void l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid)
869 		__attribute__((unused));
870 
871 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) && \
872 	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
873 
874 #define MASK_ALL_PKTS   0xff
875 #define EXCLUDE_1ST_PKT 0xfe
876 #define EXCLUDE_2ND_PKT 0xfd
877 #define EXCLUDE_3RD_PKT 0xfb
878 #define EXCLUDE_4TH_PKT 0xf7
879 #define EXCLUDE_5TH_PKT 0xef
880 #define EXCLUDE_6TH_PKT 0xdf
881 #define EXCLUDE_7TH_PKT 0xbf
882 #define EXCLUDE_8TH_PKT 0x7f
883 
884 static inline void
885 simple_ipv4_fwd_8pkts(struct rte_mbuf *m[8], uint16_t portid)
886 {
887 	struct ether_hdr *eth_hdr[8];
888 	struct ipv4_hdr *ipv4_hdr[8];
889 	uint16_t dst_port[8];
890 	int32_t ret[8];
891 	union ipv4_5tuple_host key[8];
892 	__m128i data[8];
893 
894 	eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
895 	eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
896 	eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
897 	eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
898 	eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *);
899 	eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *);
900 	eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *);
901 	eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *);
902 
903 	/* Handle IPv4 headers.*/
904 	ipv4_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv4_hdr *,
905 			sizeof(struct ether_hdr));
906 	ipv4_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv4_hdr *,
907 			sizeof(struct ether_hdr));
908 	ipv4_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv4_hdr *,
909 			sizeof(struct ether_hdr));
910 	ipv4_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv4_hdr *,
911 			sizeof(struct ether_hdr));
912 	ipv4_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv4_hdr *,
913 			sizeof(struct ether_hdr));
914 	ipv4_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv4_hdr *,
915 			sizeof(struct ether_hdr));
916 	ipv4_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv4_hdr *,
917 			sizeof(struct ether_hdr));
918 	ipv4_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv4_hdr *,
919 			sizeof(struct ether_hdr));
920 
921 #ifdef DO_RFC_1812_CHECKS
922 	/* Check to make sure the packet is valid (RFC1812) */
923 	uint8_t valid_mask = MASK_ALL_PKTS;
924 
925 	if (is_valid_ipv4_pkt(ipv4_hdr[0], m[0]->pkt_len) < 0) {
926 		rte_pktmbuf_free(m[0]);
927 		valid_mask &= EXCLUDE_1ST_PKT;
928 	}
929 	if (is_valid_ipv4_pkt(ipv4_hdr[1], m[1]->pkt_len) < 0) {
930 		rte_pktmbuf_free(m[1]);
931 		valid_mask &= EXCLUDE_2ND_PKT;
932 	}
933 	if (is_valid_ipv4_pkt(ipv4_hdr[2], m[2]->pkt_len) < 0) {
934 		rte_pktmbuf_free(m[2]);
935 		valid_mask &= EXCLUDE_3RD_PKT;
936 	}
937 	if (is_valid_ipv4_pkt(ipv4_hdr[3], m[3]->pkt_len) < 0) {
938 		rte_pktmbuf_free(m[3]);
939 		valid_mask &= EXCLUDE_4TH_PKT;
940 	}
941 	if (is_valid_ipv4_pkt(ipv4_hdr[4], m[4]->pkt_len) < 0) {
942 		rte_pktmbuf_free(m[4]);
943 		valid_mask &= EXCLUDE_5TH_PKT;
944 	}
945 	if (is_valid_ipv4_pkt(ipv4_hdr[5], m[5]->pkt_len) < 0) {
946 		rte_pktmbuf_free(m[5]);
947 		valid_mask &= EXCLUDE_6TH_PKT;
948 	}
949 	if (is_valid_ipv4_pkt(ipv4_hdr[6], m[6]->pkt_len) < 0) {
950 		rte_pktmbuf_free(m[6]);
951 		valid_mask &= EXCLUDE_7TH_PKT;
952 	}
953 	if (is_valid_ipv4_pkt(ipv4_hdr[7], m[7]->pkt_len) < 0) {
954 		rte_pktmbuf_free(m[7]);
955 		valid_mask &= EXCLUDE_8TH_PKT;
956 	}
957 	if (unlikely(valid_mask != MASK_ALL_PKTS)) {
958 		if (valid_mask == 0)
959 			return;
960 
961 		uint8_t i = 0;
962 
963 		for (i = 0; i < 8; i++)
964 			if ((0x1 << i) & valid_mask)
965 				l3fwd_simple_forward(m[i], portid);
966 	}
967 #endif /* End of #ifdef DO_RFC_1812_CHECKS */
968 
969 	data[0] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[0], __m128i *,
970 			sizeof(struct ether_hdr) +
971 			offsetof(struct ipv4_hdr, time_to_live)));
972 	data[1] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[1], __m128i *,
973 			sizeof(struct ether_hdr) +
974 			offsetof(struct ipv4_hdr, time_to_live)));
975 	data[2] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[2], __m128i *,
976 			sizeof(struct ether_hdr) +
977 			offsetof(struct ipv4_hdr, time_to_live)));
978 	data[3] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[3], __m128i *,
979 			sizeof(struct ether_hdr) +
980 			offsetof(struct ipv4_hdr, time_to_live)));
981 	data[4] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[4], __m128i *,
982 			sizeof(struct ether_hdr) +
983 			offsetof(struct ipv4_hdr, time_to_live)));
984 	data[5] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[5], __m128i *,
985 			sizeof(struct ether_hdr) +
986 			offsetof(struct ipv4_hdr, time_to_live)));
987 	data[6] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[6], __m128i *,
988 			sizeof(struct ether_hdr) +
989 			offsetof(struct ipv4_hdr, time_to_live)));
990 	data[7] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[7], __m128i *,
991 			sizeof(struct ether_hdr) +
992 			offsetof(struct ipv4_hdr, time_to_live)));
993 
994 	key[0].xmm = _mm_and_si128(data[0], mask0);
995 	key[1].xmm = _mm_and_si128(data[1], mask0);
996 	key[2].xmm = _mm_and_si128(data[2], mask0);
997 	key[3].xmm = _mm_and_si128(data[3], mask0);
998 	key[4].xmm = _mm_and_si128(data[4], mask0);
999 	key[5].xmm = _mm_and_si128(data[5], mask0);
1000 	key[6].xmm = _mm_and_si128(data[6], mask0);
1001 	key[7].xmm = _mm_and_si128(data[7], mask0);
1002 
1003 	const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3],
1004 			&key[4], &key[5], &key[6], &key[7]};
1005 
1006 	rte_hash_lookup_bulk(RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct,
1007 			&key_array[0], 8, ret);
1008 	dst_port[0] = ((ret[0] < 0) ? portid : ipv4_l3fwd_out_if[ret[0]]);
1009 	dst_port[1] = ((ret[1] < 0) ? portid : ipv4_l3fwd_out_if[ret[1]]);
1010 	dst_port[2] = ((ret[2] < 0) ? portid : ipv4_l3fwd_out_if[ret[2]]);
1011 	dst_port[3] = ((ret[3] < 0) ? portid : ipv4_l3fwd_out_if[ret[3]]);
1012 	dst_port[4] = ((ret[4] < 0) ? portid : ipv4_l3fwd_out_if[ret[4]]);
1013 	dst_port[5] = ((ret[5] < 0) ? portid : ipv4_l3fwd_out_if[ret[5]]);
1014 	dst_port[6] = ((ret[6] < 0) ? portid : ipv4_l3fwd_out_if[ret[6]]);
1015 	dst_port[7] = ((ret[7] < 0) ? portid : ipv4_l3fwd_out_if[ret[7]]);
1016 
1017 	if (dst_port[0] >= RTE_MAX_ETHPORTS ||
1018 			(enabled_port_mask & 1 << dst_port[0]) == 0)
1019 		dst_port[0] = portid;
1020 	if (dst_port[1] >= RTE_MAX_ETHPORTS ||
1021 			(enabled_port_mask & 1 << dst_port[1]) == 0)
1022 		dst_port[1] = portid;
1023 	if (dst_port[2] >= RTE_MAX_ETHPORTS ||
1024 			(enabled_port_mask & 1 << dst_port[2]) == 0)
1025 		dst_port[2] = portid;
1026 	if (dst_port[3] >= RTE_MAX_ETHPORTS ||
1027 			(enabled_port_mask & 1 << dst_port[3]) == 0)
1028 		dst_port[3] = portid;
1029 	if (dst_port[4] >= RTE_MAX_ETHPORTS ||
1030 			(enabled_port_mask & 1 << dst_port[4]) == 0)
1031 		dst_port[4] = portid;
1032 	if (dst_port[5] >= RTE_MAX_ETHPORTS ||
1033 			(enabled_port_mask & 1 << dst_port[5]) == 0)
1034 		dst_port[5] = portid;
1035 	if (dst_port[6] >= RTE_MAX_ETHPORTS ||
1036 			(enabled_port_mask & 1 << dst_port[6]) == 0)
1037 		dst_port[6] = portid;
1038 	if (dst_port[7] >= RTE_MAX_ETHPORTS ||
1039 			(enabled_port_mask & 1 << dst_port[7]) == 0)
1040 		dst_port[7] = portid;
1041 
1042 #ifdef DO_RFC_1812_CHECKS
1043 	/* Update time to live and header checksum */
1044 	--(ipv4_hdr[0]->time_to_live);
1045 	--(ipv4_hdr[1]->time_to_live);
1046 	--(ipv4_hdr[2]->time_to_live);
1047 	--(ipv4_hdr[3]->time_to_live);
1048 	++(ipv4_hdr[0]->hdr_checksum);
1049 	++(ipv4_hdr[1]->hdr_checksum);
1050 	++(ipv4_hdr[2]->hdr_checksum);
1051 	++(ipv4_hdr[3]->hdr_checksum);
1052 	--(ipv4_hdr[4]->time_to_live);
1053 	--(ipv4_hdr[5]->time_to_live);
1054 	--(ipv4_hdr[6]->time_to_live);
1055 	--(ipv4_hdr[7]->time_to_live);
1056 	++(ipv4_hdr[4]->hdr_checksum);
1057 	++(ipv4_hdr[5]->hdr_checksum);
1058 	++(ipv4_hdr[6]->hdr_checksum);
1059 	++(ipv4_hdr[7]->hdr_checksum);
1060 #endif
1061 
1062 	/* dst addr */
1063 	*(uint64_t *)&eth_hdr[0]->d_addr = dest_eth_addr[dst_port[0]];
1064 	*(uint64_t *)&eth_hdr[1]->d_addr = dest_eth_addr[dst_port[1]];
1065 	*(uint64_t *)&eth_hdr[2]->d_addr = dest_eth_addr[dst_port[2]];
1066 	*(uint64_t *)&eth_hdr[3]->d_addr = dest_eth_addr[dst_port[3]];
1067 	*(uint64_t *)&eth_hdr[4]->d_addr = dest_eth_addr[dst_port[4]];
1068 	*(uint64_t *)&eth_hdr[5]->d_addr = dest_eth_addr[dst_port[5]];
1069 	*(uint64_t *)&eth_hdr[6]->d_addr = dest_eth_addr[dst_port[6]];
1070 	*(uint64_t *)&eth_hdr[7]->d_addr = dest_eth_addr[dst_port[7]];
1071 
1072 	/* src addr */
1073 	ether_addr_copy(&ports_eth_addr[dst_port[0]], &eth_hdr[0]->s_addr);
1074 	ether_addr_copy(&ports_eth_addr[dst_port[1]], &eth_hdr[1]->s_addr);
1075 	ether_addr_copy(&ports_eth_addr[dst_port[2]], &eth_hdr[2]->s_addr);
1076 	ether_addr_copy(&ports_eth_addr[dst_port[3]], &eth_hdr[3]->s_addr);
1077 	ether_addr_copy(&ports_eth_addr[dst_port[4]], &eth_hdr[4]->s_addr);
1078 	ether_addr_copy(&ports_eth_addr[dst_port[5]], &eth_hdr[5]->s_addr);
1079 	ether_addr_copy(&ports_eth_addr[dst_port[6]], &eth_hdr[6]->s_addr);
1080 	ether_addr_copy(&ports_eth_addr[dst_port[7]], &eth_hdr[7]->s_addr);
1081 
1082 	send_single_packet(m[0], (uint8_t)dst_port[0]);
1083 	send_single_packet(m[1], (uint8_t)dst_port[1]);
1084 	send_single_packet(m[2], (uint8_t)dst_port[2]);
1085 	send_single_packet(m[3], (uint8_t)dst_port[3]);
1086 	send_single_packet(m[4], (uint8_t)dst_port[4]);
1087 	send_single_packet(m[5], (uint8_t)dst_port[5]);
1088 	send_single_packet(m[6], (uint8_t)dst_port[6]);
1089 	send_single_packet(m[7], (uint8_t)dst_port[7]);
1090 
1091 }
1092 
1093 static inline void get_ipv6_5tuple(struct rte_mbuf *m0, __m128i mask0,
1094 		__m128i mask1, union ipv6_5tuple_host *key)
1095 {
1096 	__m128i tmpdata0 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0,
1097 			__m128i *, sizeof(struct ether_hdr) +
1098 			offsetof(struct ipv6_hdr, payload_len)));
1099 	__m128i tmpdata1 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0,
1100 			__m128i *, sizeof(struct ether_hdr) +
1101 			offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i)));
1102 	__m128i tmpdata2 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0,
1103 			__m128i *, sizeof(struct ether_hdr) +
1104 			offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i) +
1105 			sizeof(__m128i)));
1106 	key->xmm[0] = _mm_and_si128(tmpdata0, mask0);
1107 	key->xmm[1] = tmpdata1;
1108 	key->xmm[2] = _mm_and_si128(tmpdata2, mask1);
1109 }
1110 
1111 static inline void
1112 simple_ipv6_fwd_8pkts(struct rte_mbuf *m[8], uint16_t portid)
1113 {
1114 	int32_t ret[8];
1115 	uint16_t dst_port[8];
1116 	struct ether_hdr *eth_hdr[8];
1117 	union ipv6_5tuple_host key[8];
1118 
1119 	__attribute__((unused)) struct ipv6_hdr *ipv6_hdr[8];
1120 
1121 	eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
1122 	eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
1123 	eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
1124 	eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
1125 	eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *);
1126 	eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *);
1127 	eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *);
1128 	eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *);
1129 
1130 	/* Handle IPv6 headers.*/
1131 	ipv6_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv6_hdr *,
1132 			sizeof(struct ether_hdr));
1133 	ipv6_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv6_hdr *,
1134 			sizeof(struct ether_hdr));
1135 	ipv6_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv6_hdr *,
1136 			sizeof(struct ether_hdr));
1137 	ipv6_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv6_hdr *,
1138 			sizeof(struct ether_hdr));
1139 	ipv6_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv6_hdr *,
1140 			sizeof(struct ether_hdr));
1141 	ipv6_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv6_hdr *,
1142 			sizeof(struct ether_hdr));
1143 	ipv6_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv6_hdr *,
1144 			sizeof(struct ether_hdr));
1145 	ipv6_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv6_hdr *,
1146 			sizeof(struct ether_hdr));
1147 
1148 	get_ipv6_5tuple(m[0], mask1, mask2, &key[0]);
1149 	get_ipv6_5tuple(m[1], mask1, mask2, &key[1]);
1150 	get_ipv6_5tuple(m[2], mask1, mask2, &key[2]);
1151 	get_ipv6_5tuple(m[3], mask1, mask2, &key[3]);
1152 	get_ipv6_5tuple(m[4], mask1, mask2, &key[4]);
1153 	get_ipv6_5tuple(m[5], mask1, mask2, &key[5]);
1154 	get_ipv6_5tuple(m[6], mask1, mask2, &key[6]);
1155 	get_ipv6_5tuple(m[7], mask1, mask2, &key[7]);
1156 
1157 	const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3],
1158 			&key[4], &key[5], &key[6], &key[7]};
1159 
1160 	rte_hash_lookup_bulk(RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct,
1161 			&key_array[0], 4, ret);
1162 	dst_port[0] = ((ret[0] < 0) ? portid : ipv6_l3fwd_out_if[ret[0]]);
1163 	dst_port[1] = ((ret[1] < 0) ? portid : ipv6_l3fwd_out_if[ret[1]]);
1164 	dst_port[2] = ((ret[2] < 0) ? portid : ipv6_l3fwd_out_if[ret[2]]);
1165 	dst_port[3] = ((ret[3] < 0) ? portid : ipv6_l3fwd_out_if[ret[3]]);
1166 	dst_port[4] = ((ret[4] < 0) ? portid : ipv6_l3fwd_out_if[ret[4]]);
1167 	dst_port[5] = ((ret[5] < 0) ? portid : ipv6_l3fwd_out_if[ret[5]]);
1168 	dst_port[6] = ((ret[6] < 0) ? portid : ipv6_l3fwd_out_if[ret[6]]);
1169 	dst_port[7] = ((ret[7] < 0) ? portid : ipv6_l3fwd_out_if[ret[7]]);
1170 
1171 	if (dst_port[0] >= RTE_MAX_ETHPORTS ||
1172 			(enabled_port_mask & 1 << dst_port[0]) == 0)
1173 		dst_port[0] = portid;
1174 	if (dst_port[1] >= RTE_MAX_ETHPORTS ||
1175 			(enabled_port_mask & 1 << dst_port[1]) == 0)
1176 		dst_port[1] = portid;
1177 	if (dst_port[2] >= RTE_MAX_ETHPORTS ||
1178 			(enabled_port_mask & 1 << dst_port[2]) == 0)
1179 		dst_port[2] = portid;
1180 	if (dst_port[3] >= RTE_MAX_ETHPORTS ||
1181 			(enabled_port_mask & 1 << dst_port[3]) == 0)
1182 		dst_port[3] = portid;
1183 	if (dst_port[4] >= RTE_MAX_ETHPORTS ||
1184 			(enabled_port_mask & 1 << dst_port[4]) == 0)
1185 		dst_port[4] = portid;
1186 	if (dst_port[5] >= RTE_MAX_ETHPORTS ||
1187 			(enabled_port_mask & 1 << dst_port[5]) == 0)
1188 		dst_port[5] = portid;
1189 	if (dst_port[6] >= RTE_MAX_ETHPORTS ||
1190 			(enabled_port_mask & 1 << dst_port[6]) == 0)
1191 		dst_port[6] = portid;
1192 	if (dst_port[7] >= RTE_MAX_ETHPORTS ||
1193 			(enabled_port_mask & 1 << dst_port[7]) == 0)
1194 		dst_port[7] = portid;
1195 
1196 	/* dst addr */
1197 	*(uint64_t *)&eth_hdr[0]->d_addr = dest_eth_addr[dst_port[0]];
1198 	*(uint64_t *)&eth_hdr[1]->d_addr = dest_eth_addr[dst_port[1]];
1199 	*(uint64_t *)&eth_hdr[2]->d_addr = dest_eth_addr[dst_port[2]];
1200 	*(uint64_t *)&eth_hdr[3]->d_addr = dest_eth_addr[dst_port[3]];
1201 	*(uint64_t *)&eth_hdr[4]->d_addr = dest_eth_addr[dst_port[4]];
1202 	*(uint64_t *)&eth_hdr[5]->d_addr = dest_eth_addr[dst_port[5]];
1203 	*(uint64_t *)&eth_hdr[6]->d_addr = dest_eth_addr[dst_port[6]];
1204 	*(uint64_t *)&eth_hdr[7]->d_addr = dest_eth_addr[dst_port[7]];
1205 
1206 	/* src addr */
1207 	ether_addr_copy(&ports_eth_addr[dst_port[0]], &eth_hdr[0]->s_addr);
1208 	ether_addr_copy(&ports_eth_addr[dst_port[1]], &eth_hdr[1]->s_addr);
1209 	ether_addr_copy(&ports_eth_addr[dst_port[2]], &eth_hdr[2]->s_addr);
1210 	ether_addr_copy(&ports_eth_addr[dst_port[3]], &eth_hdr[3]->s_addr);
1211 	ether_addr_copy(&ports_eth_addr[dst_port[4]], &eth_hdr[4]->s_addr);
1212 	ether_addr_copy(&ports_eth_addr[dst_port[5]], &eth_hdr[5]->s_addr);
1213 	ether_addr_copy(&ports_eth_addr[dst_port[6]], &eth_hdr[6]->s_addr);
1214 	ether_addr_copy(&ports_eth_addr[dst_port[7]], &eth_hdr[7]->s_addr);
1215 
1216 	send_single_packet(m[0], dst_port[0]);
1217 	send_single_packet(m[1], dst_port[1]);
1218 	send_single_packet(m[2], dst_port[2]);
1219 	send_single_packet(m[3], dst_port[3]);
1220 	send_single_packet(m[4], dst_port[4]);
1221 	send_single_packet(m[5], dst_port[5]);
1222 	send_single_packet(m[6], dst_port[6]);
1223 	send_single_packet(m[7], dst_port[7]);
1224 
1225 }
1226 #endif /* APP_LOOKUP_METHOD */
1227 
1228 static __rte_always_inline void
1229 l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid)
1230 {
1231 	struct ether_hdr *eth_hdr;
1232 	struct ipv4_hdr *ipv4_hdr;
1233 	uint16_t dst_port;
1234 
1235 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
1236 
1237 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1238 		/* Handle IPv4 headers.*/
1239 		ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
1240 				sizeof(struct ether_hdr));
1241 
1242 #ifdef DO_RFC_1812_CHECKS
1243 		/* Check to make sure the packet is valid (RFC1812) */
1244 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
1245 			rte_pktmbuf_free(m);
1246 			return;
1247 		}
1248 #endif
1249 
1250 		 dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
1251 			RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct);
1252 		if (dst_port >= RTE_MAX_ETHPORTS ||
1253 				(enabled_port_mask & 1 << dst_port) == 0)
1254 			dst_port = portid;
1255 
1256 #ifdef DO_RFC_1812_CHECKS
1257 		/* Update time to live and header checksum */
1258 		--(ipv4_hdr->time_to_live);
1259 		++(ipv4_hdr->hdr_checksum);
1260 #endif
1261 		/* dst addr */
1262 		*(uint64_t *)&eth_hdr->d_addr = dest_eth_addr[dst_port];
1263 
1264 		/* src addr */
1265 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
1266 
1267 		send_single_packet(m, dst_port);
1268 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1269 		/* Handle IPv6 headers.*/
1270 		struct ipv6_hdr *ipv6_hdr;
1271 
1272 		ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *,
1273 				sizeof(struct ether_hdr));
1274 
1275 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
1276 				RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct);
1277 
1278 		if (dst_port >= RTE_MAX_ETHPORTS ||
1279 				(enabled_port_mask & 1 << dst_port) == 0)
1280 			dst_port = portid;
1281 
1282 		/* dst addr */
1283 		*(uint64_t *)&eth_hdr->d_addr = dest_eth_addr[dst_port];
1284 
1285 		/* src addr */
1286 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
1287 
1288 		send_single_packet(m, dst_port);
1289 	} else
1290 		/* Free the mbuf that contains non-IPV4/IPV6 packet */
1291 		rte_pktmbuf_free(m);
1292 }
1293 
1294 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1295 	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1296 #ifdef DO_RFC_1812_CHECKS
1297 
1298 #define	IPV4_MIN_VER_IHL	0x45
1299 #define	IPV4_MAX_VER_IHL	0x4f
1300 #define	IPV4_MAX_VER_IHL_DIFF	(IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL)
1301 
1302 /* Minimum value of IPV4 total length (20B) in network byte order. */
1303 #define	IPV4_MIN_LEN_BE	(sizeof(struct ipv4_hdr) << 8)
1304 
1305 /*
1306  * From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2:
1307  * - The IP version number must be 4.
1308  * - The IP header length field must be large enough to hold the
1309  *    minimum length legal IP datagram (20 bytes = 5 words).
1310  * - The IP total length field must be large enough to hold the IP
1311  *   datagram header, whose length is specified in the IP header length
1312  *   field.
1313  * If we encounter invalid IPV4 packet, then set destination port for it
1314  * to BAD_PORT value.
1315  */
1316 static __rte_always_inline void
1317 rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t ptype)
1318 {
1319 	uint8_t ihl;
1320 
1321 	if (RTE_ETH_IS_IPV4_HDR(ptype)) {
1322 		ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL;
1323 
1324 		ipv4_hdr->time_to_live--;
1325 		ipv4_hdr->hdr_checksum++;
1326 
1327 		if (ihl > IPV4_MAX_VER_IHL_DIFF ||
1328 				((uint8_t)ipv4_hdr->total_length == 0 &&
1329 				ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) {
1330 			dp[0] = BAD_PORT;
1331 		}
1332 	}
1333 }
1334 
1335 #else
1336 #define	rfc1812_process(mb, dp, ptype)	do { } while (0)
1337 #endif /* DO_RFC_1812_CHECKS */
1338 #endif /* APP_LOOKUP_LPM && ENABLE_MULTI_BUFFER_OPTIMIZE */
1339 
1340 
1341 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1342 	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1343 
1344 static __rte_always_inline uint16_t
1345 get_dst_port(struct rte_mbuf *pkt, uint32_t dst_ipv4, uint16_t portid)
1346 {
1347 	uint32_t next_hop;
1348 	struct ipv6_hdr *ipv6_hdr;
1349 	struct ether_hdr *eth_hdr;
1350 
1351 	if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
1352 		return (uint16_t) ((rte_lpm_lookup(
1353 				RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, dst_ipv4,
1354 				&next_hop) == 0) ? next_hop : portid);
1355 
1356 	} else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
1357 
1358 		eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
1359 		ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
1360 
1361 		return (uint16_t) ((rte_lpm6_lookup(
1362 				RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct,
1363 				ipv6_hdr->dst_addr, &next_hop) == 0) ?
1364 				next_hop : portid);
1365 
1366 	}
1367 
1368 	return portid;
1369 }
1370 
1371 static inline void
1372 process_packet(struct rte_mbuf *pkt, uint16_t *dst_port, uint16_t portid)
1373 {
1374 	struct ether_hdr *eth_hdr;
1375 	struct ipv4_hdr *ipv4_hdr;
1376 	uint32_t dst_ipv4;
1377 	uint16_t dp;
1378 	__m128i te, ve;
1379 
1380 	eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
1381 	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1382 
1383 	dst_ipv4 = ipv4_hdr->dst_addr;
1384 	dst_ipv4 = rte_be_to_cpu_32(dst_ipv4);
1385 	dp = get_dst_port(pkt, dst_ipv4, portid);
1386 
1387 	te = _mm_load_si128((__m128i *)eth_hdr);
1388 	ve = val_eth[dp];
1389 
1390 	dst_port[0] = dp;
1391 	rfc1812_process(ipv4_hdr, dst_port, pkt->packet_type);
1392 
1393 	te =  _mm_blend_epi16(te, ve, MASK_ETH);
1394 	_mm_store_si128((__m128i *)eth_hdr, te);
1395 }
1396 
1397 /*
1398  * Read packet_type and destination IPV4 addresses from 4 mbufs.
1399  */
1400 static inline void
1401 processx4_step1(struct rte_mbuf *pkt[FWDSTEP],
1402 		__m128i *dip,
1403 		uint32_t *ipv4_flag)
1404 {
1405 	struct ipv4_hdr *ipv4_hdr;
1406 	struct ether_hdr *eth_hdr;
1407 	uint32_t x0, x1, x2, x3;
1408 
1409 	eth_hdr = rte_pktmbuf_mtod(pkt[0], struct ether_hdr *);
1410 	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1411 	x0 = ipv4_hdr->dst_addr;
1412 	ipv4_flag[0] = pkt[0]->packet_type & RTE_PTYPE_L3_IPV4;
1413 
1414 	eth_hdr = rte_pktmbuf_mtod(pkt[1], struct ether_hdr *);
1415 	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1416 	x1 = ipv4_hdr->dst_addr;
1417 	ipv4_flag[0] &= pkt[1]->packet_type;
1418 
1419 	eth_hdr = rte_pktmbuf_mtod(pkt[2], struct ether_hdr *);
1420 	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1421 	x2 = ipv4_hdr->dst_addr;
1422 	ipv4_flag[0] &= pkt[2]->packet_type;
1423 
1424 	eth_hdr = rte_pktmbuf_mtod(pkt[3], struct ether_hdr *);
1425 	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1426 	x3 = ipv4_hdr->dst_addr;
1427 	ipv4_flag[0] &= pkt[3]->packet_type;
1428 
1429 	dip[0] = _mm_set_epi32(x3, x2, x1, x0);
1430 }
1431 
1432 /*
1433  * Lookup into LPM for destination port.
1434  * If lookup fails, use incoming port (portid) as destination port.
1435  */
1436 static inline void
1437 processx4_step2(__m128i dip,
1438 		uint32_t ipv4_flag,
1439 		uint16_t portid,
1440 		struct rte_mbuf *pkt[FWDSTEP],
1441 		uint16_t dprt[FWDSTEP])
1442 {
1443 	rte_xmm_t dst;
1444 	const __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11,
1445 			4, 5, 6, 7, 0, 1, 2, 3);
1446 
1447 	/* Byte swap 4 IPV4 addresses. */
1448 	dip = _mm_shuffle_epi8(dip, bswap_mask);
1449 
1450 	/* if all 4 packets are IPV4. */
1451 	if (likely(ipv4_flag)) {
1452 		rte_lpm_lookupx4(RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, dip,
1453 				dst.u32, portid);
1454 
1455 		/* get rid of unused upper 16 bit for each dport. */
1456 		dst.x = _mm_packs_epi32(dst.x, dst.x);
1457 		*(uint64_t *)dprt = dst.u64[0];
1458 	} else {
1459 		dst.x = dip;
1460 		dprt[0] = get_dst_port(pkt[0], dst.u32[0], portid);
1461 		dprt[1] = get_dst_port(pkt[1], dst.u32[1], portid);
1462 		dprt[2] = get_dst_port(pkt[2], dst.u32[2], portid);
1463 		dprt[3] = get_dst_port(pkt[3], dst.u32[3], portid);
1464 	}
1465 }
1466 
1467 /*
1468  * Update source and destination MAC addresses in the ethernet header.
1469  * Perform RFC1812 checks and updates for IPV4 packets.
1470  */
1471 static inline void
1472 processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
1473 {
1474 	__m128i te[FWDSTEP];
1475 	__m128i ve[FWDSTEP];
1476 	__m128i *p[FWDSTEP];
1477 
1478 	p[0] = rte_pktmbuf_mtod(pkt[0], __m128i *);
1479 	p[1] = rte_pktmbuf_mtod(pkt[1], __m128i *);
1480 	p[2] = rte_pktmbuf_mtod(pkt[2], __m128i *);
1481 	p[3] = rte_pktmbuf_mtod(pkt[3], __m128i *);
1482 
1483 	ve[0] = val_eth[dst_port[0]];
1484 	te[0] = _mm_load_si128(p[0]);
1485 
1486 	ve[1] = val_eth[dst_port[1]];
1487 	te[1] = _mm_load_si128(p[1]);
1488 
1489 	ve[2] = val_eth[dst_port[2]];
1490 	te[2] = _mm_load_si128(p[2]);
1491 
1492 	ve[3] = val_eth[dst_port[3]];
1493 	te[3] = _mm_load_si128(p[3]);
1494 
1495 	/* Update first 12 bytes, keep rest bytes intact. */
1496 	te[0] =  _mm_blend_epi16(te[0], ve[0], MASK_ETH);
1497 	te[1] =  _mm_blend_epi16(te[1], ve[1], MASK_ETH);
1498 	te[2] =  _mm_blend_epi16(te[2], ve[2], MASK_ETH);
1499 	te[3] =  _mm_blend_epi16(te[3], ve[3], MASK_ETH);
1500 
1501 	_mm_store_si128(p[0], te[0]);
1502 	_mm_store_si128(p[1], te[1]);
1503 	_mm_store_si128(p[2], te[2]);
1504 	_mm_store_si128(p[3], te[3]);
1505 
1506 	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1),
1507 			&dst_port[0], pkt[0]->packet_type);
1508 	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1),
1509 			&dst_port[1], pkt[1]->packet_type);
1510 	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1),
1511 			&dst_port[2], pkt[2]->packet_type);
1512 	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1),
1513 			&dst_port[3], pkt[3]->packet_type);
1514 }
1515 
1516 /*
1517  * We group consecutive packets with the same destionation port into one burst.
1518  * To avoid extra latency this is done together with some other packet
1519  * processing, but after we made a final decision about packet's destination.
1520  * To do this we maintain:
1521  * pnum - array of number of consecutive packets with the same dest port for
1522  * each packet in the input burst.
1523  * lp - pointer to the last updated element in the pnum.
1524  * dlp - dest port value lp corresponds to.
1525  */
1526 
1527 #define	GRPSZ	(1 << FWDSTEP)
1528 #define	GRPMSK	(GRPSZ - 1)
1529 
1530 #define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx)	do { \
1531 	if (likely((dlp) == (dcp)[(idx)])) {         \
1532 		(lp)[0]++;                           \
1533 	} else {                                     \
1534 		(dlp) = (dcp)[idx];                  \
1535 		(lp) = (pn) + (idx);                 \
1536 		(lp)[0] = 1;                         \
1537 	}                                            \
1538 } while (0)
1539 
1540 /*
1541  * Group consecutive packets with the same destination port in bursts of 4.
1542  * Suppose we have array of destionation ports:
1543  * dst_port[] = {a, b, c, d,, e, ... }
1544  * dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
1545  * We doing 4 comparisons at once and the result is 4 bit mask.
1546  * This mask is used as an index into prebuild array of pnum values.
1547  */
1548 static inline uint16_t *
1549 port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2)
1550 {
1551 	static const struct {
1552 		uint64_t pnum; /* prebuild 4 values for pnum[]. */
1553 		int32_t  idx;  /* index for new last updated elemnet. */
1554 		uint16_t lpv;  /* add value to the last updated element. */
1555 	} gptbl[GRPSZ] = {
1556 	{
1557 		/* 0: a != b, b != c, c != d, d != e */
1558 		.pnum = UINT64_C(0x0001000100010001),
1559 		.idx = 4,
1560 		.lpv = 0,
1561 	},
1562 	{
1563 		/* 1: a == b, b != c, c != d, d != e */
1564 		.pnum = UINT64_C(0x0001000100010002),
1565 		.idx = 4,
1566 		.lpv = 1,
1567 	},
1568 	{
1569 		/* 2: a != b, b == c, c != d, d != e */
1570 		.pnum = UINT64_C(0x0001000100020001),
1571 		.idx = 4,
1572 		.lpv = 0,
1573 	},
1574 	{
1575 		/* 3: a == b, b == c, c != d, d != e */
1576 		.pnum = UINT64_C(0x0001000100020003),
1577 		.idx = 4,
1578 		.lpv = 2,
1579 	},
1580 	{
1581 		/* 4: a != b, b != c, c == d, d != e */
1582 		.pnum = UINT64_C(0x0001000200010001),
1583 		.idx = 4,
1584 		.lpv = 0,
1585 	},
1586 	{
1587 		/* 5: a == b, b != c, c == d, d != e */
1588 		.pnum = UINT64_C(0x0001000200010002),
1589 		.idx = 4,
1590 		.lpv = 1,
1591 	},
1592 	{
1593 		/* 6: a != b, b == c, c == d, d != e */
1594 		.pnum = UINT64_C(0x0001000200030001),
1595 		.idx = 4,
1596 		.lpv = 0,
1597 	},
1598 	{
1599 		/* 7: a == b, b == c, c == d, d != e */
1600 		.pnum = UINT64_C(0x0001000200030004),
1601 		.idx = 4,
1602 		.lpv = 3,
1603 	},
1604 	{
1605 		/* 8: a != b, b != c, c != d, d == e */
1606 		.pnum = UINT64_C(0x0002000100010001),
1607 		.idx = 3,
1608 		.lpv = 0,
1609 	},
1610 	{
1611 		/* 9: a == b, b != c, c != d, d == e */
1612 		.pnum = UINT64_C(0x0002000100010002),
1613 		.idx = 3,
1614 		.lpv = 1,
1615 	},
1616 	{
1617 		/* 0xa: a != b, b == c, c != d, d == e */
1618 		.pnum = UINT64_C(0x0002000100020001),
1619 		.idx = 3,
1620 		.lpv = 0,
1621 	},
1622 	{
1623 		/* 0xb: a == b, b == c, c != d, d == e */
1624 		.pnum = UINT64_C(0x0002000100020003),
1625 		.idx = 3,
1626 		.lpv = 2,
1627 	},
1628 	{
1629 		/* 0xc: a != b, b != c, c == d, d == e */
1630 		.pnum = UINT64_C(0x0002000300010001),
1631 		.idx = 2,
1632 		.lpv = 0,
1633 	},
1634 	{
1635 		/* 0xd: a == b, b != c, c == d, d == e */
1636 		.pnum = UINT64_C(0x0002000300010002),
1637 		.idx = 2,
1638 		.lpv = 1,
1639 	},
1640 	{
1641 		/* 0xe: a != b, b == c, c == d, d == e */
1642 		.pnum = UINT64_C(0x0002000300040001),
1643 		.idx = 1,
1644 		.lpv = 0,
1645 	},
1646 	{
1647 		/* 0xf: a == b, b == c, c == d, d == e */
1648 		.pnum = UINT64_C(0x0002000300040005),
1649 		.idx = 0,
1650 		.lpv = 4,
1651 	},
1652 	};
1653 
1654 	union {
1655 		uint16_t u16[FWDSTEP + 1];
1656 		uint64_t u64;
1657 	} *pnum = (void *)pn;
1658 
1659 	int32_t v;
1660 
1661 	dp1 = _mm_cmpeq_epi16(dp1, dp2);
1662 	dp1 = _mm_unpacklo_epi16(dp1, dp1);
1663 	v = _mm_movemask_ps((__m128)dp1);
1664 
1665 	/* update last port counter. */
1666 	lp[0] += gptbl[v].lpv;
1667 
1668 	/* if dest port value has changed. */
1669 	if (v != GRPMSK) {
1670 		pnum->u64 = gptbl[v].pnum;
1671 		pnum->u16[FWDSTEP] = 1;
1672 		lp = pnum->u16 + gptbl[v].idx;
1673 	}
1674 
1675 	return lp;
1676 }
1677 
1678 #endif /* APP_LOOKUP_METHOD */
1679 
1680 static void
1681 process_burst(struct rte_mbuf *pkts_burst[MAX_PKT_BURST], int nb_rx,
1682 		uint16_t portid)
1683 {
1684 
1685 	int j;
1686 
1687 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1688 	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1689 	int32_t k;
1690 	uint16_t dlp;
1691 	uint16_t *lp;
1692 	uint16_t dst_port[MAX_PKT_BURST];
1693 	__m128i dip[MAX_PKT_BURST / FWDSTEP];
1694 	uint32_t ipv4_flag[MAX_PKT_BURST / FWDSTEP];
1695 	uint16_t pnum[MAX_PKT_BURST + 1];
1696 #endif
1697 
1698 
1699 #if (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
1700 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1701 	{
1702 		/*
1703 		 * Send nb_rx - nb_rx%8 packets
1704 		 * in groups of 8.
1705 		 */
1706 		int32_t n = RTE_ALIGN_FLOOR(nb_rx, 8);
1707 
1708 		for (j = 0; j < n; j += 8) {
1709 			uint32_t pkt_type =
1710 				pkts_burst[j]->packet_type &
1711 				pkts_burst[j+1]->packet_type &
1712 				pkts_burst[j+2]->packet_type &
1713 				pkts_burst[j+3]->packet_type &
1714 				pkts_burst[j+4]->packet_type &
1715 				pkts_burst[j+5]->packet_type &
1716 				pkts_burst[j+6]->packet_type &
1717 				pkts_burst[j+7]->packet_type;
1718 			if (pkt_type & RTE_PTYPE_L3_IPV4) {
1719 				simple_ipv4_fwd_8pkts(&pkts_burst[j], portid);
1720 			} else if (pkt_type &
1721 				RTE_PTYPE_L3_IPV6) {
1722 				simple_ipv6_fwd_8pkts(&pkts_burst[j], portid);
1723 			} else {
1724 				l3fwd_simple_forward(pkts_burst[j], portid);
1725 				l3fwd_simple_forward(pkts_burst[j+1], portid);
1726 				l3fwd_simple_forward(pkts_burst[j+2], portid);
1727 				l3fwd_simple_forward(pkts_burst[j+3], portid);
1728 				l3fwd_simple_forward(pkts_burst[j+4], portid);
1729 				l3fwd_simple_forward(pkts_burst[j+5], portid);
1730 				l3fwd_simple_forward(pkts_burst[j+6], portid);
1731 				l3fwd_simple_forward(pkts_burst[j+7], portid);
1732 			}
1733 		}
1734 		for (; j < nb_rx ; j++)
1735 			l3fwd_simple_forward(pkts_burst[j], portid);
1736 	}
1737 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1738 
1739 	k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1740 	for (j = 0; j != k; j += FWDSTEP)
1741 		processx4_step1(&pkts_burst[j], &dip[j / FWDSTEP],
1742 				&ipv4_flag[j / FWDSTEP]);
1743 
1744 	k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1745 	for (j = 0; j != k; j += FWDSTEP)
1746 		processx4_step2(dip[j / FWDSTEP], ipv4_flag[j / FWDSTEP],
1747 				portid, &pkts_burst[j], &dst_port[j]);
1748 
1749 	/*
1750 	 * Finish packet processing and group consecutive
1751 	 * packets with the same destination port.
1752 	 */
1753 	k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1754 	if (k != 0) {
1755 		__m128i dp1, dp2;
1756 
1757 		lp = pnum;
1758 		lp[0] = 1;
1759 
1760 		processx4_step3(pkts_burst, dst_port);
1761 
1762 		/* dp1: <d[0], d[1], d[2], d[3], ... > */
1763 		dp1 = _mm_loadu_si128((__m128i *)dst_port);
1764 
1765 		for (j = FWDSTEP; j != k; j += FWDSTEP) {
1766 			processx4_step3(&pkts_burst[j], &dst_port[j]);
1767 
1768 			/*
1769 			 * dp2:
1770 			 * <d[j-3], d[j-2], d[j-1], d[j], ... >
1771 			 */
1772 			dp2 = _mm_loadu_si128(
1773 					(__m128i *)&dst_port[j - FWDSTEP + 1]);
1774 			lp  = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
1775 
1776 			/*
1777 			 * dp1:
1778 			 * <d[j], d[j+1], d[j+2], d[j+3], ... >
1779 			 */
1780 			dp1 = _mm_srli_si128(dp2, (FWDSTEP - 1) *
1781 					sizeof(dst_port[0]));
1782 		}
1783 
1784 		/*
1785 		 * dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
1786 		 */
1787 		dp2 = _mm_shufflelo_epi16(dp1, 0xf9);
1788 		lp  = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
1789 
1790 		/*
1791 		 * remove values added by the last repeated
1792 		 * dst port.
1793 		 */
1794 		lp[0]--;
1795 		dlp = dst_port[j - 1];
1796 	} else {
1797 		/* set dlp and lp to the never used values. */
1798 		dlp = BAD_PORT - 1;
1799 		lp = pnum + MAX_PKT_BURST;
1800 	}
1801 
1802 	/* Process up to last 3 packets one by one. */
1803 	switch (nb_rx % FWDSTEP) {
1804 	case 3:
1805 		process_packet(pkts_burst[j], dst_port + j, portid);
1806 		GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1807 		j++;
1808 		/* fall-through */
1809 	case 2:
1810 		process_packet(pkts_burst[j], dst_port + j, portid);
1811 		GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1812 		j++;
1813 		/* fall-through */
1814 	case 1:
1815 		process_packet(pkts_burst[j], dst_port + j, portid);
1816 		GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1817 		j++;
1818 	}
1819 
1820 	/*
1821 	 * Send packets out, through destination port.
1822 	 * Consecuteve pacekts with the same destination port
1823 	 * are already grouped together.
1824 	 * If destination port for the packet equals BAD_PORT,
1825 	 * then free the packet without sending it out.
1826 	 */
1827 	for (j = 0; j < nb_rx; j += k) {
1828 
1829 		int32_t m;
1830 		uint16_t pn;
1831 
1832 		pn = dst_port[j];
1833 		k = pnum[j];
1834 
1835 		if (likely(pn != BAD_PORT))
1836 			send_packetsx4(pn, pkts_burst + j, k);
1837 		else
1838 			for (m = j; m != j + k; m++)
1839 				rte_pktmbuf_free(pkts_burst[m]);
1840 
1841 	}
1842 
1843 #endif /* APP_LOOKUP_METHOD */
1844 #else /* ENABLE_MULTI_BUFFER_OPTIMIZE == 0 */
1845 
1846 	/* Prefetch first packets */
1847 	for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++)
1848 		rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[j], void *));
1849 
1850 	/* Prefetch and forward already prefetched packets */
1851 	for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1852 		rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1853 				j + PREFETCH_OFFSET], void *));
1854 		l3fwd_simple_forward(pkts_burst[j], portid);
1855 	}
1856 
1857 	/* Forward remaining prefetched packets */
1858 	for (; j < nb_rx; j++)
1859 		l3fwd_simple_forward(pkts_burst[j], portid);
1860 
1861 #endif /* ENABLE_MULTI_BUFFER_OPTIMIZE */
1862 
1863 }
1864 
1865 #if (APP_CPU_LOAD > 0)
1866 
1867 /*
1868  * CPU-load stats collector
1869  */
1870 static int
1871 cpu_load_collector(__rte_unused void *arg) {
1872 	unsigned i, j, k;
1873 	uint64_t hits;
1874 	uint64_t prev_tsc, diff_tsc, cur_tsc;
1875 	uint64_t total[MAX_CPU] = { 0 };
1876 	unsigned min_cpu = MAX_CPU;
1877 	unsigned max_cpu = 0;
1878 	unsigned cpu_id;
1879 	int busy_total = 0;
1880 	int busy_flag = 0;
1881 
1882 	unsigned int n_thread_per_cpu[MAX_CPU] = { 0 };
1883 	struct thread_conf *thread_per_cpu[MAX_CPU][MAX_THREAD];
1884 
1885 	struct thread_conf *thread_conf;
1886 
1887 	const uint64_t interval_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
1888 		US_PER_S * CPU_LOAD_TIMEOUT_US;
1889 
1890 	prev_tsc = 0;
1891 	/*
1892 	 * Wait for all threads
1893 	 */
1894 
1895 	printf("Waiting for %d rx threads and %d tx threads\n", n_rx_thread,
1896 			n_tx_thread);
1897 
1898 	while (rte_atomic16_read(&rx_counter) < n_rx_thread)
1899 		rte_pause();
1900 
1901 	while (rte_atomic16_read(&tx_counter) < n_tx_thread)
1902 		rte_pause();
1903 
1904 	for (i = 0; i < n_rx_thread; i++) {
1905 
1906 		thread_conf = &rx_thread[i].conf;
1907 		cpu_id = thread_conf->cpu_id;
1908 		thread_per_cpu[cpu_id][n_thread_per_cpu[cpu_id]++] = thread_conf;
1909 
1910 		if (cpu_id > max_cpu)
1911 			max_cpu = cpu_id;
1912 		if (cpu_id < min_cpu)
1913 			min_cpu = cpu_id;
1914 	}
1915 	for (i = 0; i < n_tx_thread; i++) {
1916 
1917 		thread_conf = &tx_thread[i].conf;
1918 		cpu_id = thread_conf->cpu_id;
1919 		thread_per_cpu[cpu_id][n_thread_per_cpu[cpu_id]++] = thread_conf;
1920 
1921 		if (thread_conf->cpu_id > max_cpu)
1922 			max_cpu = thread_conf->cpu_id;
1923 		if (thread_conf->cpu_id < min_cpu)
1924 			min_cpu = thread_conf->cpu_id;
1925 	}
1926 
1927 	while (1) {
1928 
1929 		cpu_load.counter++;
1930 		for (i = min_cpu; i <= max_cpu; i++) {
1931 			for (j = 0; j < MAX_CPU_COUNTER; j++) {
1932 				for (k = 0; k < n_thread_per_cpu[i]; k++)
1933 					if (thread_per_cpu[i][k]->busy[j]) {
1934 						busy_flag = 1;
1935 						break;
1936 					}
1937 				if (busy_flag) {
1938 					cpu_load.hits[j][i]++;
1939 					busy_total = 1;
1940 					busy_flag = 0;
1941 				}
1942 			}
1943 
1944 			if (busy_total) {
1945 				total[i]++;
1946 				busy_total = 0;
1947 			}
1948 		}
1949 
1950 		cur_tsc = rte_rdtsc();
1951 
1952 		diff_tsc = cur_tsc - prev_tsc;
1953 		if (unlikely(diff_tsc > interval_tsc)) {
1954 
1955 			printf("\033c");
1956 
1957 			printf("Cpu usage for %d rx threads and %d tx threads:\n\n",
1958 					n_rx_thread, n_tx_thread);
1959 
1960 			printf("cpu#     proc%%  poll%%  overhead%%\n\n");
1961 
1962 			for (i = min_cpu; i <= max_cpu; i++) {
1963 				hits = 0;
1964 				printf("CPU %d:", i);
1965 				for (j = 0; j < MAX_CPU_COUNTER; j++) {
1966 					printf("%7" PRIu64 "",
1967 							cpu_load.hits[j][i] * 100 / cpu_load.counter);
1968 					hits += cpu_load.hits[j][i];
1969 					cpu_load.hits[j][i] = 0;
1970 				}
1971 				printf("%7" PRIu64 "\n",
1972 						100 - total[i] * 100 / cpu_load.counter);
1973 				total[i] = 0;
1974 			}
1975 			cpu_load.counter = 0;
1976 
1977 			prev_tsc = cur_tsc;
1978 		}
1979 
1980 	}
1981 }
1982 #endif /* APP_CPU_LOAD */
1983 
1984 /*
1985  * Null processing lthread loop
1986  *
1987  * This loop is used to start empty scheduler on lcore.
1988  */
1989 static void *
1990 lthread_null(__rte_unused void *args)
1991 {
1992 	int lcore_id = rte_lcore_id();
1993 
1994 	RTE_LOG(INFO, L3FWD, "Starting scheduler on lcore %d.\n", lcore_id);
1995 	lthread_exit(NULL);
1996 	return NULL;
1997 }
1998 
1999 /* main processing loop */
2000 static void *
2001 lthread_tx_per_ring(void *dummy)
2002 {
2003 	int nb_rx;
2004 	uint16_t portid;
2005 	struct rte_ring *ring;
2006 	struct thread_tx_conf *tx_conf;
2007 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2008 	struct lthread_cond *ready;
2009 
2010 	tx_conf = (struct thread_tx_conf *)dummy;
2011 	ring = tx_conf->ring;
2012 	ready = *tx_conf->ready;
2013 
2014 	lthread_set_data((void *)tx_conf);
2015 
2016 	/*
2017 	 * Move this lthread to lcore
2018 	 */
2019 	lthread_set_affinity(tx_conf->conf.lcore_id);
2020 
2021 	RTE_LOG(INFO, L3FWD, "entering main tx loop on lcore %u\n", rte_lcore_id());
2022 
2023 	nb_rx = 0;
2024 	rte_atomic16_inc(&tx_counter);
2025 	while (1) {
2026 
2027 		/*
2028 		 * Read packet from ring
2029 		 */
2030 		SET_CPU_BUSY(tx_conf, CPU_POLL);
2031 		nb_rx = rte_ring_sc_dequeue_burst(ring, (void **)pkts_burst,
2032 				MAX_PKT_BURST, NULL);
2033 		SET_CPU_IDLE(tx_conf, CPU_POLL);
2034 
2035 		if (nb_rx > 0) {
2036 			SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2037 			portid = pkts_burst[0]->port;
2038 			process_burst(pkts_burst, nb_rx, portid);
2039 			SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2040 			lthread_yield();
2041 		} else
2042 			lthread_cond_wait(ready, 0);
2043 
2044 	}
2045 	return NULL;
2046 }
2047 
2048 /*
2049  * Main tx-lthreads spawner lthread.
2050  *
2051  * This lthread is used to spawn one new lthread per ring from producers.
2052  *
2053  */
2054 static void *
2055 lthread_tx(void *args)
2056 {
2057 	struct lthread *lt;
2058 
2059 	unsigned lcore_id;
2060 	uint16_t portid;
2061 	struct thread_tx_conf *tx_conf;
2062 
2063 	tx_conf = (struct thread_tx_conf *)args;
2064 	lthread_set_data((void *)tx_conf);
2065 
2066 	/*
2067 	 * Move this lthread to the selected lcore
2068 	 */
2069 	lthread_set_affinity(tx_conf->conf.lcore_id);
2070 
2071 	/*
2072 	 * Spawn tx readers (one per input ring)
2073 	 */
2074 	lthread_create(&lt, tx_conf->conf.lcore_id, lthread_tx_per_ring,
2075 			(void *)tx_conf);
2076 
2077 	lcore_id = rte_lcore_id();
2078 
2079 	RTE_LOG(INFO, L3FWD, "Entering Tx main loop on lcore %u\n", lcore_id);
2080 
2081 	tx_conf->conf.cpu_id = sched_getcpu();
2082 	while (1) {
2083 
2084 		lthread_sleep(BURST_TX_DRAIN_US * 1000);
2085 
2086 		/*
2087 		 * TX burst queue drain
2088 		 */
2089 		for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
2090 			if (tx_conf->tx_mbufs[portid].len == 0)
2091 				continue;
2092 			SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2093 			send_burst(tx_conf, tx_conf->tx_mbufs[portid].len, portid);
2094 			SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2095 			tx_conf->tx_mbufs[portid].len = 0;
2096 		}
2097 
2098 	}
2099 	return NULL;
2100 }
2101 
2102 static void *
2103 lthread_rx(void *dummy)
2104 {
2105 	int ret;
2106 	uint16_t nb_rx;
2107 	int i;
2108 	uint16_t portid;
2109 	uint8_t queueid;
2110 	int worker_id;
2111 	int len[RTE_MAX_LCORE] = { 0 };
2112 	int old_len, new_len;
2113 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2114 	struct thread_rx_conf *rx_conf;
2115 
2116 	rx_conf = (struct thread_rx_conf *)dummy;
2117 	lthread_set_data((void *)rx_conf);
2118 
2119 	/*
2120 	 * Move this lthread to lcore
2121 	 */
2122 	lthread_set_affinity(rx_conf->conf.lcore_id);
2123 
2124 	if (rx_conf->n_rx_queue == 0) {
2125 		RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", rte_lcore_id());
2126 		return NULL;
2127 	}
2128 
2129 	RTE_LOG(INFO, L3FWD, "Entering main Rx loop on lcore %u\n", rte_lcore_id());
2130 
2131 	for (i = 0; i < rx_conf->n_rx_queue; i++) {
2132 
2133 		portid = rx_conf->rx_queue_list[i].port_id;
2134 		queueid = rx_conf->rx_queue_list[i].queue_id;
2135 		RTE_LOG(INFO, L3FWD,
2136 			" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
2137 				rte_lcore_id(), portid, queueid);
2138 	}
2139 
2140 	/*
2141 	 * Init all condition variables (one per rx thread)
2142 	 */
2143 	for (i = 0; i < rx_conf->n_rx_queue; i++)
2144 		lthread_cond_init(NULL, &rx_conf->ready[i], NULL);
2145 
2146 	worker_id = 0;
2147 
2148 	rx_conf->conf.cpu_id = sched_getcpu();
2149 	rte_atomic16_inc(&rx_counter);
2150 	while (1) {
2151 
2152 		/*
2153 		 * Read packet from RX queues
2154 		 */
2155 		for (i = 0; i < rx_conf->n_rx_queue; ++i) {
2156 			portid = rx_conf->rx_queue_list[i].port_id;
2157 			queueid = rx_conf->rx_queue_list[i].queue_id;
2158 
2159 			SET_CPU_BUSY(rx_conf, CPU_POLL);
2160 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
2161 				MAX_PKT_BURST);
2162 			SET_CPU_IDLE(rx_conf, CPU_POLL);
2163 
2164 			if (nb_rx != 0) {
2165 				worker_id = (worker_id + 1) % rx_conf->n_ring;
2166 				old_len = len[worker_id];
2167 
2168 				SET_CPU_BUSY(rx_conf, CPU_PROCESS);
2169 				ret = rte_ring_sp_enqueue_burst(
2170 						rx_conf->ring[worker_id],
2171 						(void **) pkts_burst,
2172 						nb_rx, NULL);
2173 
2174 				new_len = old_len + ret;
2175 
2176 				if (new_len >= BURST_SIZE) {
2177 					lthread_cond_signal(rx_conf->ready[worker_id]);
2178 					new_len = 0;
2179 				}
2180 
2181 				len[worker_id] = new_len;
2182 
2183 				if (unlikely(ret < nb_rx)) {
2184 					uint32_t k;
2185 
2186 					for (k = ret; k < nb_rx; k++) {
2187 						struct rte_mbuf *m = pkts_burst[k];
2188 
2189 						rte_pktmbuf_free(m);
2190 					}
2191 				}
2192 				SET_CPU_IDLE(rx_conf, CPU_PROCESS);
2193 			}
2194 
2195 			lthread_yield();
2196 		}
2197 	}
2198 	return NULL;
2199 }
2200 
2201 /*
2202  * Start scheduler with initial lthread on lcore
2203  *
2204  * This lthread loop spawns all rx and tx lthreads on master lcore
2205  */
2206 
2207 static void *
2208 lthread_spawner(__rte_unused void *arg)
2209 {
2210 	struct lthread *lt[MAX_THREAD];
2211 	int i;
2212 	int n_thread = 0;
2213 
2214 	printf("Entering lthread_spawner\n");
2215 
2216 	/*
2217 	 * Create producers (rx threads) on default lcore
2218 	 */
2219 	for (i = 0; i < n_rx_thread; i++) {
2220 		rx_thread[i].conf.thread_id = i;
2221 		lthread_create(&lt[n_thread], -1, lthread_rx,
2222 				(void *)&rx_thread[i]);
2223 		n_thread++;
2224 	}
2225 
2226 	/*
2227 	 * Wait for all producers. Until some producers can be started on the same
2228 	 * scheduler as this lthread, yielding is required to let them to run and
2229 	 * prevent deadlock here.
2230 	 */
2231 	while (rte_atomic16_read(&rx_counter) < n_rx_thread)
2232 		lthread_sleep(100000);
2233 
2234 	/*
2235 	 * Create consumers (tx threads) on default lcore_id
2236 	 */
2237 	for (i = 0; i < n_tx_thread; i++) {
2238 		tx_thread[i].conf.thread_id = i;
2239 		lthread_create(&lt[n_thread], -1, lthread_tx,
2240 				(void *)&tx_thread[i]);
2241 		n_thread++;
2242 	}
2243 
2244 	/*
2245 	 * Wait for all threads finished
2246 	 */
2247 	for (i = 0; i < n_thread; i++)
2248 		lthread_join(lt[i], NULL);
2249 
2250 	return NULL;
2251 }
2252 
2253 /*
2254  * Start master scheduler with initial lthread spawning rx and tx lthreads
2255  * (main_lthread_master).
2256  */
2257 static int
2258 lthread_master_spawner(__rte_unused void *arg) {
2259 	struct lthread *lt;
2260 	int lcore_id = rte_lcore_id();
2261 
2262 	RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2263 	lthread_create(&lt, -1, lthread_spawner, NULL);
2264 	lthread_run();
2265 
2266 	return 0;
2267 }
2268 
2269 /*
2270  * Start scheduler on lcore.
2271  */
2272 static int
2273 sched_spawner(__rte_unused void *arg) {
2274 	struct lthread *lt;
2275 	int lcore_id = rte_lcore_id();
2276 
2277 #if (APP_CPU_LOAD)
2278 	if (lcore_id == cpu_load_lcore_id) {
2279 		cpu_load_collector(arg);
2280 		return 0;
2281 	}
2282 #endif /* APP_CPU_LOAD */
2283 
2284 	RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2285 	lthread_create(&lt, -1, lthread_null, NULL);
2286 	lthread_run();
2287 
2288 	return 0;
2289 }
2290 
2291 /* main processing loop */
2292 static int
2293 pthread_tx(void *dummy)
2294 {
2295 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2296 	uint64_t prev_tsc, diff_tsc, cur_tsc;
2297 	int nb_rx;
2298 	uint16_t portid;
2299 	struct thread_tx_conf *tx_conf;
2300 
2301 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
2302 		US_PER_S * BURST_TX_DRAIN_US;
2303 
2304 	prev_tsc = 0;
2305 
2306 	tx_conf = (struct thread_tx_conf *)dummy;
2307 
2308 	RTE_LOG(INFO, L3FWD, "Entering main Tx loop on lcore %u\n", rte_lcore_id());
2309 
2310 	tx_conf->conf.cpu_id = sched_getcpu();
2311 	rte_atomic16_inc(&tx_counter);
2312 	while (1) {
2313 
2314 		cur_tsc = rte_rdtsc();
2315 
2316 		/*
2317 		 * TX burst queue drain
2318 		 */
2319 		diff_tsc = cur_tsc - prev_tsc;
2320 		if (unlikely(diff_tsc > drain_tsc)) {
2321 
2322 			/*
2323 			 * This could be optimized (use queueid instead of
2324 			 * portid), but it is not called so often
2325 			 */
2326 			SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2327 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
2328 				if (tx_conf->tx_mbufs[portid].len == 0)
2329 					continue;
2330 				send_burst(tx_conf, tx_conf->tx_mbufs[portid].len, portid);
2331 				tx_conf->tx_mbufs[portid].len = 0;
2332 			}
2333 			SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2334 
2335 			prev_tsc = cur_tsc;
2336 		}
2337 
2338 		/*
2339 		 * Read packet from ring
2340 		 */
2341 		SET_CPU_BUSY(tx_conf, CPU_POLL);
2342 		nb_rx = rte_ring_sc_dequeue_burst(tx_conf->ring,
2343 				(void **)pkts_burst, MAX_PKT_BURST, NULL);
2344 		SET_CPU_IDLE(tx_conf, CPU_POLL);
2345 
2346 		if (unlikely(nb_rx == 0)) {
2347 			sched_yield();
2348 			continue;
2349 		}
2350 
2351 		SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2352 		portid = pkts_burst[0]->port;
2353 		process_burst(pkts_burst, nb_rx, portid);
2354 		SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2355 
2356 	}
2357 }
2358 
2359 static int
2360 pthread_rx(void *dummy)
2361 {
2362 	int i;
2363 	int worker_id;
2364 	uint32_t n;
2365 	uint32_t nb_rx;
2366 	unsigned lcore_id;
2367 	uint8_t queueid;
2368 	uint16_t portid;
2369 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2370 
2371 	struct thread_rx_conf *rx_conf;
2372 
2373 	lcore_id = rte_lcore_id();
2374 	rx_conf = (struct thread_rx_conf *)dummy;
2375 
2376 	if (rx_conf->n_rx_queue == 0) {
2377 		RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
2378 		return 0;
2379 	}
2380 
2381 	RTE_LOG(INFO, L3FWD, "entering main rx loop on lcore %u\n", lcore_id);
2382 
2383 	for (i = 0; i < rx_conf->n_rx_queue; i++) {
2384 
2385 		portid = rx_conf->rx_queue_list[i].port_id;
2386 		queueid = rx_conf->rx_queue_list[i].queue_id;
2387 		RTE_LOG(INFO, L3FWD,
2388 			" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
2389 				lcore_id, portid, queueid);
2390 	}
2391 
2392 	worker_id = 0;
2393 	rx_conf->conf.cpu_id = sched_getcpu();
2394 	rte_atomic16_inc(&rx_counter);
2395 	while (1) {
2396 
2397 		/*
2398 		 * Read packet from RX queues
2399 		 */
2400 		for (i = 0; i < rx_conf->n_rx_queue; ++i) {
2401 			portid = rx_conf->rx_queue_list[i].port_id;
2402 			queueid = rx_conf->rx_queue_list[i].queue_id;
2403 
2404 			SET_CPU_BUSY(rx_conf, CPU_POLL);
2405 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
2406 				MAX_PKT_BURST);
2407 			SET_CPU_IDLE(rx_conf, CPU_POLL);
2408 
2409 			if (nb_rx == 0) {
2410 				sched_yield();
2411 				continue;
2412 			}
2413 
2414 			SET_CPU_BUSY(rx_conf, CPU_PROCESS);
2415 			worker_id = (worker_id + 1) % rx_conf->n_ring;
2416 			n = rte_ring_sp_enqueue_burst(rx_conf->ring[worker_id],
2417 					(void **)pkts_burst, nb_rx, NULL);
2418 
2419 			if (unlikely(n != nb_rx)) {
2420 				uint32_t k;
2421 
2422 				for (k = n; k < nb_rx; k++) {
2423 					struct rte_mbuf *m = pkts_burst[k];
2424 
2425 					rte_pktmbuf_free(m);
2426 				}
2427 			}
2428 
2429 			SET_CPU_IDLE(rx_conf, CPU_PROCESS);
2430 
2431 		}
2432 	}
2433 }
2434 
2435 /*
2436  * P-Thread spawner.
2437  */
2438 static int
2439 pthread_run(__rte_unused void *arg) {
2440 	int lcore_id = rte_lcore_id();
2441 	int i;
2442 
2443 	for (i = 0; i < n_rx_thread; i++)
2444 		if (rx_thread[i].conf.lcore_id == lcore_id) {
2445 			printf("Start rx thread on %d...\n", lcore_id);
2446 			RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2447 			RTE_PER_LCORE(lcore_conf)->data = (void *)&rx_thread[i];
2448 			pthread_rx((void *)&rx_thread[i]);
2449 			return 0;
2450 		}
2451 
2452 	for (i = 0; i < n_tx_thread; i++)
2453 		if (tx_thread[i].conf.lcore_id == lcore_id) {
2454 			printf("Start tx thread on %d...\n", lcore_id);
2455 			RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2456 			RTE_PER_LCORE(lcore_conf)->data = (void *)&tx_thread[i];
2457 			pthread_tx((void *)&tx_thread[i]);
2458 			return 0;
2459 		}
2460 
2461 #if (APP_CPU_LOAD)
2462 	if (lcore_id == cpu_load_lcore_id)
2463 		cpu_load_collector(arg);
2464 #endif /* APP_CPU_LOAD */
2465 
2466 	return 0;
2467 }
2468 
2469 static int
2470 check_lcore_params(void)
2471 {
2472 	uint8_t queue, lcore;
2473 	uint16_t i;
2474 	int socketid;
2475 
2476 	for (i = 0; i < nb_rx_thread_params; ++i) {
2477 		queue = rx_thread_params[i].queue_id;
2478 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
2479 			printf("invalid queue number: %hhu\n", queue);
2480 			return -1;
2481 		}
2482 		lcore = rx_thread_params[i].lcore_id;
2483 		if (!rte_lcore_is_enabled(lcore)) {
2484 			printf("error: lcore %hhu is not enabled in lcore mask\n", lcore);
2485 			return -1;
2486 		}
2487 		socketid = rte_lcore_to_socket_id(lcore);
2488 		if ((socketid != 0) && (numa_on == 0))
2489 			printf("warning: lcore %hhu is on socket %d with numa off\n",
2490 				lcore, socketid);
2491 	}
2492 	return 0;
2493 }
2494 
2495 static int
2496 check_port_config(void)
2497 {
2498 	unsigned portid;
2499 	uint16_t i;
2500 
2501 	for (i = 0; i < nb_rx_thread_params; ++i) {
2502 		portid = rx_thread_params[i].port_id;
2503 		if ((enabled_port_mask & (1 << portid)) == 0) {
2504 			printf("port %u is not enabled in port mask\n", portid);
2505 			return -1;
2506 		}
2507 		if (!rte_eth_dev_is_valid_port(portid)) {
2508 			printf("port %u is not present on the board\n", portid);
2509 			return -1;
2510 		}
2511 	}
2512 	return 0;
2513 }
2514 
2515 static uint8_t
2516 get_port_n_rx_queues(const uint16_t port)
2517 {
2518 	int queue = -1;
2519 	uint16_t i;
2520 
2521 	for (i = 0; i < nb_rx_thread_params; ++i)
2522 		if (rx_thread_params[i].port_id == port &&
2523 				rx_thread_params[i].queue_id > queue)
2524 			queue = rx_thread_params[i].queue_id;
2525 
2526 	return (uint8_t)(++queue);
2527 }
2528 
2529 static int
2530 init_rx_rings(void)
2531 {
2532 	unsigned socket_io;
2533 	struct thread_rx_conf *rx_conf;
2534 	struct thread_tx_conf *tx_conf;
2535 	unsigned rx_thread_id, tx_thread_id;
2536 	char name[256];
2537 	struct rte_ring *ring = NULL;
2538 
2539 	for (tx_thread_id = 0; tx_thread_id < n_tx_thread; tx_thread_id++) {
2540 
2541 		tx_conf = &tx_thread[tx_thread_id];
2542 
2543 		printf("Connecting tx-thread %d with rx-thread %d\n", tx_thread_id,
2544 				tx_conf->conf.thread_id);
2545 
2546 		rx_thread_id = tx_conf->conf.thread_id;
2547 		if (rx_thread_id > n_tx_thread) {
2548 			printf("connection from tx-thread %u to rx-thread %u fails "
2549 					"(rx-thread not defined)\n", tx_thread_id, rx_thread_id);
2550 			return -1;
2551 		}
2552 
2553 		rx_conf = &rx_thread[rx_thread_id];
2554 		socket_io = rte_lcore_to_socket_id(rx_conf->conf.lcore_id);
2555 
2556 		snprintf(name, sizeof(name), "app_ring_s%u_rx%u_tx%u",
2557 				socket_io, rx_thread_id, tx_thread_id);
2558 
2559 		ring = rte_ring_create(name, 1024 * 4, socket_io,
2560 				RING_F_SP_ENQ | RING_F_SC_DEQ);
2561 
2562 		if (ring == NULL) {
2563 			rte_panic("Cannot create ring to connect rx-thread %u "
2564 					"with tx-thread %u\n", rx_thread_id, tx_thread_id);
2565 		}
2566 
2567 		rx_conf->ring[rx_conf->n_ring] = ring;
2568 
2569 		tx_conf->ring = ring;
2570 		tx_conf->ready = &rx_conf->ready[rx_conf->n_ring];
2571 
2572 		rx_conf->n_ring++;
2573 	}
2574 	return 0;
2575 }
2576 
2577 static int
2578 init_rx_queues(void)
2579 {
2580 	uint16_t i, nb_rx_queue;
2581 	uint8_t thread;
2582 
2583 	n_rx_thread = 0;
2584 
2585 	for (i = 0; i < nb_rx_thread_params; ++i) {
2586 		thread = rx_thread_params[i].thread_id;
2587 		nb_rx_queue = rx_thread[thread].n_rx_queue;
2588 
2589 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
2590 			printf("error: too many queues (%u) for thread: %u\n",
2591 				(unsigned)nb_rx_queue + 1, (unsigned)thread);
2592 			return -1;
2593 		}
2594 
2595 		rx_thread[thread].conf.thread_id = thread;
2596 		rx_thread[thread].conf.lcore_id = rx_thread_params[i].lcore_id;
2597 		rx_thread[thread].rx_queue_list[nb_rx_queue].port_id =
2598 			rx_thread_params[i].port_id;
2599 		rx_thread[thread].rx_queue_list[nb_rx_queue].queue_id =
2600 			rx_thread_params[i].queue_id;
2601 		rx_thread[thread].n_rx_queue++;
2602 
2603 		if (thread >= n_rx_thread)
2604 			n_rx_thread = thread + 1;
2605 
2606 	}
2607 	return 0;
2608 }
2609 
2610 static int
2611 init_tx_threads(void)
2612 {
2613 	int i;
2614 
2615 	n_tx_thread = 0;
2616 	for (i = 0; i < nb_tx_thread_params; ++i) {
2617 		tx_thread[n_tx_thread].conf.thread_id = tx_thread_params[i].thread_id;
2618 		tx_thread[n_tx_thread].conf.lcore_id = tx_thread_params[i].lcore_id;
2619 		n_tx_thread++;
2620 	}
2621 	return 0;
2622 }
2623 
2624 /* display usage */
2625 static void
2626 print_usage(const char *prgname)
2627 {
2628 	printf("%s [EAL options] -- -p PORTMASK -P"
2629 		"  [--rx (port,queue,lcore,thread)[,(port,queue,lcore,thread]]"
2630 		"  [--tx (lcore,thread)[,(lcore,thread]]"
2631 		"  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
2632 		"  [--parse-ptype]\n\n"
2633 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
2634 		"  -P : enable promiscuous mode\n"
2635 		"  --rx (port,queue,lcore,thread): rx queues configuration\n"
2636 		"  --tx (lcore,thread): tx threads configuration\n"
2637 		"  --stat-lcore LCORE: use lcore for stat collector\n"
2638 		"  --eth-dest=X,MM:MM:MM:MM:MM:MM: optional, ethernet destination for port X\n"
2639 		"  --no-numa: optional, disable numa awareness\n"
2640 		"  --ipv6: optional, specify it if running ipv6 packets\n"
2641 		"  --enable-jumbo: enable jumbo frame"
2642 		" which max packet len is PKTLEN in decimal (64-9600)\n"
2643 		"  --hash-entry-num: specify the hash entry number in hexadecimal to be setup\n"
2644 		"  --no-lthreads: turn off lthread model\n"
2645 		"  --parse-ptype: set to use software to analyze packet type\n\n",
2646 		prgname);
2647 }
2648 
2649 static int parse_max_pkt_len(const char *pktlen)
2650 {
2651 	char *end = NULL;
2652 	unsigned long len;
2653 
2654 	/* parse decimal string */
2655 	len = strtoul(pktlen, &end, 10);
2656 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
2657 		return -1;
2658 
2659 	if (len == 0)
2660 		return -1;
2661 
2662 	return len;
2663 }
2664 
2665 static int
2666 parse_portmask(const char *portmask)
2667 {
2668 	char *end = NULL;
2669 	unsigned long pm;
2670 
2671 	/* parse hexadecimal string */
2672 	pm = strtoul(portmask, &end, 16);
2673 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
2674 		return -1;
2675 
2676 	if (pm == 0)
2677 		return -1;
2678 
2679 	return pm;
2680 }
2681 
2682 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2683 static int
2684 parse_hash_entry_number(const char *hash_entry_num)
2685 {
2686 	char *end = NULL;
2687 	unsigned long hash_en;
2688 
2689 	/* parse hexadecimal string */
2690 	hash_en = strtoul(hash_entry_num, &end, 16);
2691 	if ((hash_entry_num[0] == '\0') || (end == NULL) || (*end != '\0'))
2692 		return -1;
2693 
2694 	if (hash_en == 0)
2695 		return -1;
2696 
2697 	return hash_en;
2698 }
2699 #endif
2700 
2701 static int
2702 parse_rx_config(const char *q_arg)
2703 {
2704 	char s[256];
2705 	const char *p, *p0 = q_arg;
2706 	char *end;
2707 	enum fieldnames {
2708 		FLD_PORT = 0,
2709 		FLD_QUEUE,
2710 		FLD_LCORE,
2711 		FLD_THREAD,
2712 		_NUM_FLD
2713 	};
2714 	unsigned long int_fld[_NUM_FLD];
2715 	char *str_fld[_NUM_FLD];
2716 	int i;
2717 	unsigned size;
2718 
2719 	nb_rx_thread_params = 0;
2720 
2721 	while ((p = strchr(p0, '(')) != NULL) {
2722 		++p;
2723 		p0 = strchr(p, ')');
2724 		if (p0 == NULL)
2725 			return -1;
2726 
2727 		size = p0 - p;
2728 		if (size >= sizeof(s))
2729 			return -1;
2730 
2731 		snprintf(s, sizeof(s), "%.*s", size, p);
2732 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
2733 			return -1;
2734 		for (i = 0; i < _NUM_FLD; i++) {
2735 			errno = 0;
2736 			int_fld[i] = strtoul(str_fld[i], &end, 0);
2737 			if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
2738 				return -1;
2739 		}
2740 		if (nb_rx_thread_params >= MAX_LCORE_PARAMS) {
2741 			printf("exceeded max number of rx params: %hu\n",
2742 					nb_rx_thread_params);
2743 			return -1;
2744 		}
2745 		rx_thread_params_array[nb_rx_thread_params].port_id =
2746 				int_fld[FLD_PORT];
2747 		rx_thread_params_array[nb_rx_thread_params].queue_id =
2748 				(uint8_t)int_fld[FLD_QUEUE];
2749 		rx_thread_params_array[nb_rx_thread_params].lcore_id =
2750 				(uint8_t)int_fld[FLD_LCORE];
2751 		rx_thread_params_array[nb_rx_thread_params].thread_id =
2752 				(uint8_t)int_fld[FLD_THREAD];
2753 		++nb_rx_thread_params;
2754 	}
2755 	rx_thread_params = rx_thread_params_array;
2756 	return 0;
2757 }
2758 
2759 static int
2760 parse_tx_config(const char *q_arg)
2761 {
2762 	char s[256];
2763 	const char *p, *p0 = q_arg;
2764 	char *end;
2765 	enum fieldnames {
2766 		FLD_LCORE = 0,
2767 		FLD_THREAD,
2768 		_NUM_FLD
2769 	};
2770 	unsigned long int_fld[_NUM_FLD];
2771 	char *str_fld[_NUM_FLD];
2772 	int i;
2773 	unsigned size;
2774 
2775 	nb_tx_thread_params = 0;
2776 
2777 	while ((p = strchr(p0, '(')) != NULL) {
2778 		++p;
2779 		p0 = strchr(p, ')');
2780 		if (p0 == NULL)
2781 			return -1;
2782 
2783 		size = p0 - p;
2784 		if (size >= sizeof(s))
2785 			return -1;
2786 
2787 		snprintf(s, sizeof(s), "%.*s", size, p);
2788 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
2789 			return -1;
2790 		for (i = 0; i < _NUM_FLD; i++) {
2791 			errno = 0;
2792 			int_fld[i] = strtoul(str_fld[i], &end, 0);
2793 			if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
2794 				return -1;
2795 		}
2796 		if (nb_tx_thread_params >= MAX_LCORE_PARAMS) {
2797 			printf("exceeded max number of tx params: %hu\n",
2798 				nb_tx_thread_params);
2799 			return -1;
2800 		}
2801 		tx_thread_params_array[nb_tx_thread_params].lcore_id =
2802 				(uint8_t)int_fld[FLD_LCORE];
2803 		tx_thread_params_array[nb_tx_thread_params].thread_id =
2804 				(uint8_t)int_fld[FLD_THREAD];
2805 		++nb_tx_thread_params;
2806 	}
2807 	tx_thread_params = tx_thread_params_array;
2808 
2809 	return 0;
2810 }
2811 
2812 #if (APP_CPU_LOAD > 0)
2813 static int
2814 parse_stat_lcore(const char *stat_lcore)
2815 {
2816 	char *end = NULL;
2817 	unsigned long lcore_id;
2818 
2819 	lcore_id = strtoul(stat_lcore, &end, 10);
2820 	if ((stat_lcore[0] == '\0') || (end == NULL) || (*end != '\0'))
2821 		return -1;
2822 
2823 	return lcore_id;
2824 }
2825 #endif
2826 
2827 static void
2828 parse_eth_dest(const char *optarg)
2829 {
2830 	uint16_t portid;
2831 	char *port_end;
2832 	uint8_t c, *dest, peer_addr[6];
2833 
2834 	errno = 0;
2835 	portid = strtoul(optarg, &port_end, 10);
2836 	if (errno != 0 || port_end == optarg || *port_end++ != ',')
2837 		rte_exit(EXIT_FAILURE,
2838 		"Invalid eth-dest: %s", optarg);
2839 	if (portid >= RTE_MAX_ETHPORTS)
2840 		rte_exit(EXIT_FAILURE,
2841 		"eth-dest: port %d >= RTE_MAX_ETHPORTS(%d)\n",
2842 		portid, RTE_MAX_ETHPORTS);
2843 
2844 	if (cmdline_parse_etheraddr(NULL, port_end,
2845 		&peer_addr, sizeof(peer_addr)) < 0)
2846 		rte_exit(EXIT_FAILURE,
2847 		"Invalid ethernet address: %s\n",
2848 		port_end);
2849 	dest = (uint8_t *)&dest_eth_addr[portid];
2850 	for (c = 0; c < 6; c++)
2851 		dest[c] = peer_addr[c];
2852 	*(uint64_t *)(val_eth + portid) = dest_eth_addr[portid];
2853 }
2854 
2855 #define CMD_LINE_OPT_RX_CONFIG "rx"
2856 #define CMD_LINE_OPT_TX_CONFIG "tx"
2857 #define CMD_LINE_OPT_STAT_LCORE "stat-lcore"
2858 #define CMD_LINE_OPT_ETH_DEST "eth-dest"
2859 #define CMD_LINE_OPT_NO_NUMA "no-numa"
2860 #define CMD_LINE_OPT_IPV6 "ipv6"
2861 #define CMD_LINE_OPT_ENABLE_JUMBO "enable-jumbo"
2862 #define CMD_LINE_OPT_HASH_ENTRY_NUM "hash-entry-num"
2863 #define CMD_LINE_OPT_NO_LTHREADS "no-lthreads"
2864 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
2865 
2866 /* Parse the argument given in the command line of the application */
2867 static int
2868 parse_args(int argc, char **argv)
2869 {
2870 	int opt, ret;
2871 	char **argvopt;
2872 	int option_index;
2873 	char *prgname = argv[0];
2874 	static struct option lgopts[] = {
2875 		{CMD_LINE_OPT_RX_CONFIG, 1, 0, 0},
2876 		{CMD_LINE_OPT_TX_CONFIG, 1, 0, 0},
2877 		{CMD_LINE_OPT_STAT_LCORE, 1, 0, 0},
2878 		{CMD_LINE_OPT_ETH_DEST, 1, 0, 0},
2879 		{CMD_LINE_OPT_NO_NUMA, 0, 0, 0},
2880 		{CMD_LINE_OPT_IPV6, 0, 0, 0},
2881 		{CMD_LINE_OPT_ENABLE_JUMBO, 0, 0, 0},
2882 		{CMD_LINE_OPT_HASH_ENTRY_NUM, 1, 0, 0},
2883 		{CMD_LINE_OPT_NO_LTHREADS, 0, 0, 0},
2884 		{CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
2885 		{NULL, 0, 0, 0}
2886 	};
2887 
2888 	argvopt = argv;
2889 
2890 	while ((opt = getopt_long(argc, argvopt, "p:P",
2891 				lgopts, &option_index)) != EOF) {
2892 
2893 		switch (opt) {
2894 		/* portmask */
2895 		case 'p':
2896 			enabled_port_mask = parse_portmask(optarg);
2897 			if (enabled_port_mask == 0) {
2898 				printf("invalid portmask\n");
2899 				print_usage(prgname);
2900 				return -1;
2901 			}
2902 			break;
2903 		case 'P':
2904 			printf("Promiscuous mode selected\n");
2905 			promiscuous_on = 1;
2906 			break;
2907 
2908 		/* long options */
2909 		case 0:
2910 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_RX_CONFIG,
2911 				sizeof(CMD_LINE_OPT_RX_CONFIG))) {
2912 				ret = parse_rx_config(optarg);
2913 				if (ret) {
2914 					printf("invalid rx-config\n");
2915 					print_usage(prgname);
2916 					return -1;
2917 				}
2918 			}
2919 
2920 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_TX_CONFIG,
2921 				sizeof(CMD_LINE_OPT_TX_CONFIG))) {
2922 				ret = parse_tx_config(optarg);
2923 				if (ret) {
2924 					printf("invalid tx-config\n");
2925 					print_usage(prgname);
2926 					return -1;
2927 				}
2928 			}
2929 
2930 #if (APP_CPU_LOAD > 0)
2931 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_STAT_LCORE,
2932 					sizeof(CMD_LINE_OPT_STAT_LCORE))) {
2933 				cpu_load_lcore_id = parse_stat_lcore(optarg);
2934 			}
2935 #endif
2936 
2937 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ETH_DEST,
2938 				sizeof(CMD_LINE_OPT_ETH_DEST)))
2939 					parse_eth_dest(optarg);
2940 
2941 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_NUMA,
2942 				sizeof(CMD_LINE_OPT_NO_NUMA))) {
2943 				printf("numa is disabled\n");
2944 				numa_on = 0;
2945 			}
2946 
2947 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2948 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_IPV6,
2949 				sizeof(CMD_LINE_OPT_IPV6))) {
2950 				printf("ipv6 is specified\n");
2951 				ipv6 = 1;
2952 			}
2953 #endif
2954 
2955 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_LTHREADS,
2956 					sizeof(CMD_LINE_OPT_NO_LTHREADS))) {
2957 				printf("l-threads model is disabled\n");
2958 				lthreads_on = 0;
2959 			}
2960 
2961 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_PARSE_PTYPE,
2962 					sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
2963 				printf("software packet type parsing enabled\n");
2964 				parse_ptype_on = 1;
2965 			}
2966 
2967 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ENABLE_JUMBO,
2968 				sizeof(CMD_LINE_OPT_ENABLE_JUMBO))) {
2969 				struct option lenopts = {"max-pkt-len", required_argument, 0,
2970 						0};
2971 
2972 				printf("jumbo frame is enabled - disabling simple TX path\n");
2973 				port_conf.rxmode.offloads |=
2974 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2975 				port_conf.txmode.offloads |=
2976 						DEV_TX_OFFLOAD_MULTI_SEGS;
2977 
2978 				/* if no max-pkt-len set, use the default value ETHER_MAX_LEN */
2979 				if (0 == getopt_long(argc, argvopt, "", &lenopts,
2980 						&option_index)) {
2981 
2982 					ret = parse_max_pkt_len(optarg);
2983 					if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)) {
2984 						printf("invalid packet length\n");
2985 						print_usage(prgname);
2986 						return -1;
2987 					}
2988 					port_conf.rxmode.max_rx_pkt_len = ret;
2989 				}
2990 				printf("set jumbo frame max packet length to %u\n",
2991 						(unsigned int)port_conf.rxmode.max_rx_pkt_len);
2992 			}
2993 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2994 			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_HASH_ENTRY_NUM,
2995 				sizeof(CMD_LINE_OPT_HASH_ENTRY_NUM))) {
2996 				ret = parse_hash_entry_number(optarg);
2997 				if ((ret > 0) && (ret <= L3FWD_HASH_ENTRIES)) {
2998 					hash_entry_number = ret;
2999 				} else {
3000 					printf("invalid hash entry number\n");
3001 					print_usage(prgname);
3002 					return -1;
3003 				}
3004 			}
3005 #endif
3006 			break;
3007 
3008 		default:
3009 			print_usage(prgname);
3010 			return -1;
3011 		}
3012 	}
3013 
3014 	if (optind >= 0)
3015 		argv[optind-1] = prgname;
3016 
3017 	ret = optind-1;
3018 	optind = 1; /* reset getopt lib */
3019 	return ret;
3020 }
3021 
3022 static void
3023 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
3024 {
3025 	char buf[ETHER_ADDR_FMT_SIZE];
3026 
3027 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
3028 	printf("%s%s", name, buf);
3029 }
3030 
3031 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
3032 
3033 static void convert_ipv4_5tuple(struct ipv4_5tuple *key1,
3034 		union ipv4_5tuple_host *key2)
3035 {
3036 	key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
3037 	key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
3038 	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
3039 	key2->port_src = rte_cpu_to_be_16(key1->port_src);
3040 	key2->proto = key1->proto;
3041 	key2->pad0 = 0;
3042 	key2->pad1 = 0;
3043 }
3044 
3045 static void convert_ipv6_5tuple(struct ipv6_5tuple *key1,
3046 		union ipv6_5tuple_host *key2)
3047 {
3048 	uint32_t i;
3049 
3050 	for (i = 0; i < 16; i++) {
3051 		key2->ip_dst[i] = key1->ip_dst[i];
3052 		key2->ip_src[i] = key1->ip_src[i];
3053 	}
3054 	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
3055 	key2->port_src = rte_cpu_to_be_16(key1->port_src);
3056 	key2->proto = key1->proto;
3057 	key2->pad0 = 0;
3058 	key2->pad1 = 0;
3059 	key2->reserve = 0;
3060 }
3061 
3062 #define BYTE_VALUE_MAX 256
3063 #define ALL_32_BITS 0xffffffff
3064 #define BIT_8_TO_15 0x0000ff00
3065 static inline void
3066 populate_ipv4_few_flow_into_table(const struct rte_hash *h)
3067 {
3068 	uint32_t i;
3069 	int32_t ret;
3070 	uint32_t array_len = RTE_DIM(ipv4_l3fwd_route_array);
3071 
3072 	mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
3073 	for (i = 0; i < array_len; i++) {
3074 		struct ipv4_l3fwd_route  entry;
3075 		union ipv4_5tuple_host newkey;
3076 
3077 		entry = ipv4_l3fwd_route_array[i];
3078 		convert_ipv4_5tuple(&entry.key, &newkey);
3079 		ret = rte_hash_add_key(h, (void *)&newkey);
3080 		if (ret < 0) {
3081 			rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
3082 				" to the l3fwd hash.\n", i);
3083 		}
3084 		ipv4_l3fwd_out_if[ret] = entry.if_out;
3085 	}
3086 	printf("Hash: Adding 0x%" PRIx32 " keys\n", array_len);
3087 }
3088 
3089 #define BIT_16_TO_23 0x00ff0000
3090 static inline void
3091 populate_ipv6_few_flow_into_table(const struct rte_hash *h)
3092 {
3093 	uint32_t i;
3094 	int32_t ret;
3095 	uint32_t array_len = RTE_DIM(ipv6_l3fwd_route_array);
3096 
3097 	mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
3098 	mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
3099 	for (i = 0; i < array_len; i++) {
3100 		struct ipv6_l3fwd_route entry;
3101 		union ipv6_5tuple_host newkey;
3102 
3103 		entry = ipv6_l3fwd_route_array[i];
3104 		convert_ipv6_5tuple(&entry.key, &newkey);
3105 		ret = rte_hash_add_key(h, (void *)&newkey);
3106 		if (ret < 0) {
3107 			rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
3108 				" to the l3fwd hash.\n", i);
3109 		}
3110 		ipv6_l3fwd_out_if[ret] = entry.if_out;
3111 	}
3112 	printf("Hash: Adding 0x%" PRIx32 "keys\n", array_len);
3113 }
3114 
3115 #define NUMBER_PORT_USED 4
3116 static inline void
3117 populate_ipv4_many_flow_into_table(const struct rte_hash *h,
3118 		unsigned int nr_flow)
3119 {
3120 	unsigned i;
3121 
3122 	mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
3123 
3124 	for (i = 0; i < nr_flow; i++) {
3125 		struct ipv4_l3fwd_route entry;
3126 		union ipv4_5tuple_host newkey;
3127 		uint8_t a = (uint8_t)((i / NUMBER_PORT_USED) % BYTE_VALUE_MAX);
3128 		uint8_t b = (uint8_t)(((i / NUMBER_PORT_USED) / BYTE_VALUE_MAX) %
3129 				BYTE_VALUE_MAX);
3130 		uint8_t c = (uint8_t)((i / NUMBER_PORT_USED) / (BYTE_VALUE_MAX *
3131 				BYTE_VALUE_MAX));
3132 		/* Create the ipv4 exact match flow */
3133 		memset(&entry, 0, sizeof(entry));
3134 		switch (i & (NUMBER_PORT_USED - 1)) {
3135 		case 0:
3136 			entry = ipv4_l3fwd_route_array[0];
3137 			entry.key.ip_dst = IPv4(101, c, b, a);
3138 			break;
3139 		case 1:
3140 			entry = ipv4_l3fwd_route_array[1];
3141 			entry.key.ip_dst = IPv4(201, c, b, a);
3142 			break;
3143 		case 2:
3144 			entry = ipv4_l3fwd_route_array[2];
3145 			entry.key.ip_dst = IPv4(111, c, b, a);
3146 			break;
3147 		case 3:
3148 			entry = ipv4_l3fwd_route_array[3];
3149 			entry.key.ip_dst = IPv4(211, c, b, a);
3150 			break;
3151 		};
3152 		convert_ipv4_5tuple(&entry.key, &newkey);
3153 		int32_t ret = rte_hash_add_key(h, (void *)&newkey);
3154 
3155 		if (ret < 0)
3156 			rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
3157 
3158 		ipv4_l3fwd_out_if[ret] = (uint8_t)entry.if_out;
3159 
3160 	}
3161 	printf("Hash: Adding 0x%x keys\n", nr_flow);
3162 }
3163 
3164 static inline void
3165 populate_ipv6_many_flow_into_table(const struct rte_hash *h,
3166 		unsigned int nr_flow)
3167 {
3168 	unsigned i;
3169 
3170 	mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
3171 	mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
3172 	for (i = 0; i < nr_flow; i++) {
3173 		struct ipv6_l3fwd_route entry;
3174 		union ipv6_5tuple_host newkey;
3175 
3176 		uint8_t a = (uint8_t) ((i / NUMBER_PORT_USED) % BYTE_VALUE_MAX);
3177 		uint8_t b = (uint8_t) (((i / NUMBER_PORT_USED) / BYTE_VALUE_MAX) %
3178 				BYTE_VALUE_MAX);
3179 		uint8_t c = (uint8_t) ((i / NUMBER_PORT_USED) / (BYTE_VALUE_MAX *
3180 				BYTE_VALUE_MAX));
3181 
3182 		/* Create the ipv6 exact match flow */
3183 		memset(&entry, 0, sizeof(entry));
3184 		switch (i & (NUMBER_PORT_USED - 1)) {
3185 		case 0:
3186 			entry = ipv6_l3fwd_route_array[0];
3187 			break;
3188 		case 1:
3189 			entry = ipv6_l3fwd_route_array[1];
3190 			break;
3191 		case 2:
3192 			entry = ipv6_l3fwd_route_array[2];
3193 			break;
3194 		case 3:
3195 			entry = ipv6_l3fwd_route_array[3];
3196 			break;
3197 		};
3198 		entry.key.ip_dst[13] = c;
3199 		entry.key.ip_dst[14] = b;
3200 		entry.key.ip_dst[15] = a;
3201 		convert_ipv6_5tuple(&entry.key, &newkey);
3202 		int32_t ret = rte_hash_add_key(h, (void *)&newkey);
3203 
3204 		if (ret < 0)
3205 			rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
3206 
3207 		ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
3208 
3209 	}
3210 	printf("Hash: Adding 0x%x keys\n", nr_flow);
3211 }
3212 
3213 static void
3214 setup_hash(int socketid)
3215 {
3216 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
3217 		.name = NULL,
3218 		.entries = L3FWD_HASH_ENTRIES,
3219 		.key_len = sizeof(union ipv4_5tuple_host),
3220 		.hash_func = ipv4_hash_crc,
3221 		.hash_func_init_val = 0,
3222 	};
3223 
3224 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
3225 		.name = NULL,
3226 		.entries = L3FWD_HASH_ENTRIES,
3227 		.key_len = sizeof(union ipv6_5tuple_host),
3228 		.hash_func = ipv6_hash_crc,
3229 		.hash_func_init_val = 0,
3230 	};
3231 
3232 	char s[64];
3233 
3234 	/* create ipv4 hash */
3235 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
3236 	ipv4_l3fwd_hash_params.name = s;
3237 	ipv4_l3fwd_hash_params.socket_id = socketid;
3238 	ipv4_l3fwd_lookup_struct[socketid] =
3239 			rte_hash_create(&ipv4_l3fwd_hash_params);
3240 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
3241 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
3242 				"socket %d\n", socketid);
3243 
3244 	/* create ipv6 hash */
3245 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
3246 	ipv6_l3fwd_hash_params.name = s;
3247 	ipv6_l3fwd_hash_params.socket_id = socketid;
3248 	ipv6_l3fwd_lookup_struct[socketid] =
3249 			rte_hash_create(&ipv6_l3fwd_hash_params);
3250 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
3251 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
3252 				"socket %d\n", socketid);
3253 
3254 	if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
3255 		/* For testing hash matching with a large number of flows we
3256 		 * generate millions of IP 5-tuples with an incremented dst
3257 		 * address to initialize the hash table. */
3258 		if (ipv6 == 0) {
3259 			/* populate the ipv4 hash */
3260 			populate_ipv4_many_flow_into_table(
3261 				ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);
3262 		} else {
3263 			/* populate the ipv6 hash */
3264 			populate_ipv6_many_flow_into_table(
3265 				ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);
3266 		}
3267 	} else {
3268 		/* Use data in ipv4/ipv6 l3fwd lookup table directly to initialize
3269 		 * the hash table */
3270 		if (ipv6 == 0) {
3271 			/* populate the ipv4 hash */
3272 			populate_ipv4_few_flow_into_table(
3273 					ipv4_l3fwd_lookup_struct[socketid]);
3274 		} else {
3275 			/* populate the ipv6 hash */
3276 			populate_ipv6_few_flow_into_table(
3277 					ipv6_l3fwd_lookup_struct[socketid]);
3278 		}
3279 	}
3280 }
3281 #endif
3282 
3283 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
3284 static void
3285 setup_lpm(int socketid)
3286 {
3287 	struct rte_lpm6_config config;
3288 	struct rte_lpm_config lpm_ipv4_config;
3289 	unsigned i;
3290 	int ret;
3291 	char s[64];
3292 
3293 	/* create the LPM table */
3294 	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
3295 	lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
3296 	lpm_ipv4_config.number_tbl8s = 256;
3297 	lpm_ipv4_config.flags = 0;
3298 	ipv4_l3fwd_lookup_struct[socketid] =
3299 			rte_lpm_create(s, socketid, &lpm_ipv4_config);
3300 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
3301 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
3302 				" on socket %d\n", socketid);
3303 
3304 	/* populate the LPM table */
3305 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
3306 
3307 		/* skip unused ports */
3308 		if ((1 << ipv4_l3fwd_route_array[i].if_out &
3309 				enabled_port_mask) == 0)
3310 			continue;
3311 
3312 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
3313 			ipv4_l3fwd_route_array[i].ip,
3314 			ipv4_l3fwd_route_array[i].depth,
3315 			ipv4_l3fwd_route_array[i].if_out);
3316 
3317 		if (ret < 0) {
3318 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
3319 				"l3fwd LPM table on socket %d\n",
3320 				i, socketid);
3321 		}
3322 
3323 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
3324 			(unsigned)ipv4_l3fwd_route_array[i].ip,
3325 			ipv4_l3fwd_route_array[i].depth,
3326 			ipv4_l3fwd_route_array[i].if_out);
3327 	}
3328 
3329 	/* create the LPM6 table */
3330 	snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid);
3331 
3332 	config.max_rules = IPV6_L3FWD_LPM_MAX_RULES;
3333 	config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S;
3334 	config.flags = 0;
3335 	ipv6_l3fwd_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
3336 				&config);
3337 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
3338 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
3339 				" on socket %d\n", socketid);
3340 
3341 	/* populate the LPM table */
3342 	for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
3343 
3344 		/* skip unused ports */
3345 		if ((1 << ipv6_l3fwd_route_array[i].if_out &
3346 				enabled_port_mask) == 0)
3347 			continue;
3348 
3349 		ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid],
3350 			ipv6_l3fwd_route_array[i].ip,
3351 			ipv6_l3fwd_route_array[i].depth,
3352 			ipv6_l3fwd_route_array[i].if_out);
3353 
3354 		if (ret < 0) {
3355 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
3356 				"l3fwd LPM table on socket %d\n",
3357 				i, socketid);
3358 		}
3359 
3360 		printf("LPM: Adding route %s / %d (%d)\n",
3361 			"IPV6",
3362 			ipv6_l3fwd_route_array[i].depth,
3363 			ipv6_l3fwd_route_array[i].if_out);
3364 	}
3365 }
3366 #endif
3367 
3368 static int
3369 init_mem(unsigned nb_mbuf)
3370 {
3371 	struct lcore_conf *qconf;
3372 	int socketid;
3373 	unsigned lcore_id;
3374 	char s[64];
3375 
3376 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
3377 		if (rte_lcore_is_enabled(lcore_id) == 0)
3378 			continue;
3379 
3380 		if (numa_on)
3381 			socketid = rte_lcore_to_socket_id(lcore_id);
3382 		else
3383 			socketid = 0;
3384 
3385 		if (socketid >= NB_SOCKETS) {
3386 			rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is out of range %d\n",
3387 				socketid, lcore_id, NB_SOCKETS);
3388 		}
3389 		if (pktmbuf_pool[socketid] == NULL) {
3390 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
3391 			pktmbuf_pool[socketid] =
3392 				rte_pktmbuf_pool_create(s, nb_mbuf,
3393 					MEMPOOL_CACHE_SIZE, 0,
3394 					RTE_MBUF_DEFAULT_BUF_SIZE, socketid);
3395 			if (pktmbuf_pool[socketid] == NULL)
3396 				rte_exit(EXIT_FAILURE,
3397 						"Cannot init mbuf pool on socket %d\n", socketid);
3398 			else
3399 				printf("Allocated mbuf pool on socket %d\n", socketid);
3400 
3401 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
3402 			setup_lpm(socketid);
3403 #else
3404 			setup_hash(socketid);
3405 #endif
3406 		}
3407 		qconf = &lcore_conf[lcore_id];
3408 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
3409 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
3410 	}
3411 	return 0;
3412 }
3413 
3414 /* Check the link status of all ports in up to 9s, and print them finally */
3415 static void
3416 check_all_ports_link_status(uint32_t port_mask)
3417 {
3418 #define CHECK_INTERVAL 100 /* 100ms */
3419 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
3420 	uint16_t portid;
3421 	uint8_t count, all_ports_up, print_flag = 0;
3422 	struct rte_eth_link link;
3423 
3424 	printf("\nChecking link status");
3425 	fflush(stdout);
3426 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
3427 		all_ports_up = 1;
3428 		RTE_ETH_FOREACH_DEV(portid) {
3429 			if ((port_mask & (1 << portid)) == 0)
3430 				continue;
3431 			memset(&link, 0, sizeof(link));
3432 			rte_eth_link_get_nowait(portid, &link);
3433 			/* print link status if flag set */
3434 			if (print_flag == 1) {
3435 				if (link.link_status)
3436 					printf(
3437 					"Port%d Link Up. Speed %u Mbps - %s\n",
3438 						portid, link.link_speed,
3439 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
3440 					("full-duplex") : ("half-duplex\n"));
3441 				else
3442 					printf("Port %d Link Down\n", portid);
3443 				continue;
3444 			}
3445 			/* clear all_ports_up flag if any link down */
3446 			if (link.link_status == ETH_LINK_DOWN) {
3447 				all_ports_up = 0;
3448 				break;
3449 			}
3450 		}
3451 		/* after finally printing all link status, get out */
3452 		if (print_flag == 1)
3453 			break;
3454 
3455 		if (all_ports_up == 0) {
3456 			printf(".");
3457 			fflush(stdout);
3458 			rte_delay_ms(CHECK_INTERVAL);
3459 		}
3460 
3461 		/* set the print_flag if all ports up or timeout */
3462 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
3463 			print_flag = 1;
3464 			printf("done\n");
3465 		}
3466 	}
3467 }
3468 
3469 int
3470 main(int argc, char **argv)
3471 {
3472 	struct rte_eth_dev_info dev_info;
3473 	struct rte_eth_txconf *txconf;
3474 	int ret;
3475 	int i;
3476 	unsigned nb_ports;
3477 	uint16_t queueid, portid;
3478 	unsigned lcore_id;
3479 	uint32_t n_tx_queue, nb_lcores;
3480 	uint8_t nb_rx_queue, queue, socketid;
3481 
3482 	/* init EAL */
3483 	ret = rte_eal_init(argc, argv);
3484 	if (ret < 0)
3485 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
3486 	argc -= ret;
3487 	argv += ret;
3488 
3489 	/* pre-init dst MACs for all ports to 02:00:00:00:00:xx */
3490 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
3491 		dest_eth_addr[portid] = ETHER_LOCAL_ADMIN_ADDR +
3492 				((uint64_t)portid << 40);
3493 		*(uint64_t *)(val_eth + portid) = dest_eth_addr[portid];
3494 	}
3495 
3496 	/* parse application arguments (after the EAL ones) */
3497 	ret = parse_args(argc, argv);
3498 	if (ret < 0)
3499 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
3500 
3501 	if (check_lcore_params() < 0)
3502 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
3503 
3504 	printf("Initializing rx-queues...\n");
3505 	ret = init_rx_queues();
3506 	if (ret < 0)
3507 		rte_exit(EXIT_FAILURE, "init_rx_queues failed\n");
3508 
3509 	printf("Initializing tx-threads...\n");
3510 	ret = init_tx_threads();
3511 	if (ret < 0)
3512 		rte_exit(EXIT_FAILURE, "init_tx_threads failed\n");
3513 
3514 	printf("Initializing rings...\n");
3515 	ret = init_rx_rings();
3516 	if (ret < 0)
3517 		rte_exit(EXIT_FAILURE, "init_rx_rings failed\n");
3518 
3519 	nb_ports = rte_eth_dev_count_avail();
3520 
3521 	if (check_port_config() < 0)
3522 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
3523 
3524 	nb_lcores = rte_lcore_count();
3525 
3526 	/* initialize all ports */
3527 	RTE_ETH_FOREACH_DEV(portid) {
3528 		struct rte_eth_conf local_port_conf = port_conf;
3529 
3530 		/* skip ports that are not enabled */
3531 		if ((enabled_port_mask & (1 << portid)) == 0) {
3532 			printf("\nSkipping disabled port %d\n", portid);
3533 			continue;
3534 		}
3535 
3536 		/* init port */
3537 		printf("Initializing port %d ... ", portid);
3538 		fflush(stdout);
3539 
3540 		nb_rx_queue = get_port_n_rx_queues(portid);
3541 		n_tx_queue = nb_lcores;
3542 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
3543 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
3544 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
3545 			nb_rx_queue, (unsigned)n_tx_queue);
3546 		rte_eth_dev_info_get(portid, &dev_info);
3547 		if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
3548 			local_port_conf.txmode.offloads |=
3549 				DEV_TX_OFFLOAD_MBUF_FAST_FREE;
3550 
3551 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
3552 			dev_info.flow_type_rss_offloads;
3553 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
3554 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
3555 			printf("Port %u modified RSS hash function based on hardware support,"
3556 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
3557 				portid,
3558 				port_conf.rx_adv_conf.rss_conf.rss_hf,
3559 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
3560 		}
3561 
3562 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
3563 					(uint16_t)n_tx_queue, &local_port_conf);
3564 		if (ret < 0)
3565 			rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
3566 				ret, portid);
3567 
3568 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
3569 						       &nb_txd);
3570 		if (ret < 0)
3571 			rte_exit(EXIT_FAILURE,
3572 				 "rte_eth_dev_adjust_nb_rx_tx_desc: err=%d, port=%d\n",
3573 				 ret, portid);
3574 
3575 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
3576 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
3577 		printf(", ");
3578 		print_ethaddr("Destination:",
3579 			(const struct ether_addr *)&dest_eth_addr[portid]);
3580 		printf(", ");
3581 
3582 		/*
3583 		 * prepare src MACs for each port.
3584 		 */
3585 		ether_addr_copy(&ports_eth_addr[portid],
3586 			(struct ether_addr *)(val_eth + portid) + 1);
3587 
3588 		/* init memory */
3589 		ret = init_mem(NB_MBUF);
3590 		if (ret < 0)
3591 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
3592 
3593 		/* init one TX queue per couple (lcore,port) */
3594 		queueid = 0;
3595 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
3596 			if (rte_lcore_is_enabled(lcore_id) == 0)
3597 				continue;
3598 
3599 			if (numa_on)
3600 				socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
3601 			else
3602 				socketid = 0;
3603 
3604 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
3605 			fflush(stdout);
3606 
3607 			txconf = &dev_info.default_txconf;
3608 			txconf->offloads = local_port_conf.txmode.offloads;
3609 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
3610 						     socketid, txconf);
3611 			if (ret < 0)
3612 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
3613 					"port=%d\n", ret, portid);
3614 
3615 			tx_thread[lcore_id].tx_queue_id[portid] = queueid;
3616 			queueid++;
3617 		}
3618 		printf("\n");
3619 	}
3620 
3621 	for (i = 0; i < n_rx_thread; i++) {
3622 		lcore_id = rx_thread[i].conf.lcore_id;
3623 
3624 		if (rte_lcore_is_enabled(lcore_id) == 0) {
3625 			rte_exit(EXIT_FAILURE,
3626 					"Cannot start Rx thread on lcore %u: lcore disabled\n",
3627 					lcore_id
3628 				);
3629 		}
3630 
3631 		printf("\nInitializing rx queues for Rx thread %d on lcore %u ... ",
3632 				i, lcore_id);
3633 		fflush(stdout);
3634 
3635 		/* init RX queues */
3636 		for (queue = 0; queue < rx_thread[i].n_rx_queue; ++queue) {
3637 			struct rte_eth_dev *dev;
3638 			struct rte_eth_conf *conf;
3639 			struct rte_eth_rxconf rxq_conf;
3640 
3641 			portid = rx_thread[i].rx_queue_list[queue].port_id;
3642 			queueid = rx_thread[i].rx_queue_list[queue].queue_id;
3643 			dev = &rte_eth_devices[portid];
3644 			conf = &dev->data->dev_conf;
3645 
3646 			if (numa_on)
3647 				socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
3648 			else
3649 				socketid = 0;
3650 
3651 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
3652 			fflush(stdout);
3653 
3654 			rte_eth_dev_info_get(portid, &dev_info);
3655 			rxq_conf = dev_info.default_rxconf;
3656 			rxq_conf.offloads = conf->rxmode.offloads;
3657 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
3658 					socketid,
3659 					&rxq_conf,
3660 					pktmbuf_pool[socketid]);
3661 			if (ret < 0)
3662 				rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, "
3663 						"port=%d\n", ret, portid);
3664 		}
3665 	}
3666 
3667 	printf("\n");
3668 
3669 	/* start ports */
3670 	RTE_ETH_FOREACH_DEV(portid) {
3671 		if ((enabled_port_mask & (1 << portid)) == 0)
3672 			continue;
3673 
3674 		/* Start device */
3675 		ret = rte_eth_dev_start(portid);
3676 		if (ret < 0)
3677 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
3678 				ret, portid);
3679 
3680 		/*
3681 		 * If enabled, put device in promiscuous mode.
3682 		 * This allows IO forwarding mode to forward packets
3683 		 * to itself through 2 cross-connected  ports of the
3684 		 * target machine.
3685 		 */
3686 		if (promiscuous_on)
3687 			rte_eth_promiscuous_enable(portid);
3688 	}
3689 
3690 	for (i = 0; i < n_rx_thread; i++) {
3691 		lcore_id = rx_thread[i].conf.lcore_id;
3692 		if (rte_lcore_is_enabled(lcore_id) == 0)
3693 			continue;
3694 
3695 		/* check if hw packet type is supported */
3696 		for (queue = 0; queue < rx_thread[i].n_rx_queue; ++queue) {
3697 			portid = rx_thread[i].rx_queue_list[queue].port_id;
3698 			queueid = rx_thread[i].rx_queue_list[queue].queue_id;
3699 
3700 			if (parse_ptype_on) {
3701 				if (!rte_eth_add_rx_callback(portid, queueid,
3702 						cb_parse_ptype, NULL))
3703 					rte_exit(EXIT_FAILURE,
3704 						"Failed to add rx callback: "
3705 						"port=%d\n", portid);
3706 			} else if (!check_ptype(portid))
3707 				rte_exit(EXIT_FAILURE,
3708 					"Port %d cannot parse packet type.\n\n"
3709 					"Please add --parse-ptype to use sw "
3710 					"packet type analyzer.\n\n",
3711 					portid);
3712 		}
3713 	}
3714 
3715 	check_all_ports_link_status(enabled_port_mask);
3716 
3717 	if (lthreads_on) {
3718 		printf("Starting L-Threading Model\n");
3719 
3720 #if (APP_CPU_LOAD > 0)
3721 		if (cpu_load_lcore_id > 0)
3722 			/* Use one lcore for cpu load collector */
3723 			nb_lcores--;
3724 #endif
3725 
3726 		lthread_num_schedulers_set(nb_lcores);
3727 		rte_eal_mp_remote_launch(sched_spawner, NULL, SKIP_MASTER);
3728 		lthread_master_spawner(NULL);
3729 
3730 	} else {
3731 		printf("Starting P-Threading Model\n");
3732 		/* launch per-lcore init on every lcore */
3733 		rte_eal_mp_remote_launch(pthread_run, NULL, CALL_MASTER);
3734 		RTE_LCORE_FOREACH_SLAVE(lcore_id) {
3735 			if (rte_eal_wait_lcore(lcore_id) < 0)
3736 				return -1;
3737 		}
3738 	}
3739 
3740 	return 0;
3741 }
3742