1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #define _GNU_SOURCE 35 36 #include <stdio.h> 37 #include <stdlib.h> 38 #include <stdint.h> 39 #include <inttypes.h> 40 #include <sys/types.h> 41 #include <string.h> 42 #include <sys/queue.h> 43 #include <stdarg.h> 44 #include <errno.h> 45 #include <getopt.h> 46 47 #include <rte_common.h> 48 #include <rte_vect.h> 49 #include <rte_byteorder.h> 50 #include <rte_log.h> 51 #include <rte_memory.h> 52 #include <rte_memcpy.h> 53 #include <rte_eal.h> 54 #include <rte_launch.h> 55 #include <rte_atomic.h> 56 #include <rte_cycles.h> 57 #include <rte_prefetch.h> 58 #include <rte_lcore.h> 59 #include <rte_per_lcore.h> 60 #include <rte_branch_prediction.h> 61 #include <rte_interrupts.h> 62 #include <rte_random.h> 63 #include <rte_debug.h> 64 #include <rte_ether.h> 65 #include <rte_ethdev.h> 66 #include <rte_ring.h> 67 #include <rte_mempool.h> 68 #include <rte_mbuf.h> 69 #include <rte_ip.h> 70 #include <rte_tcp.h> 71 #include <rte_udp.h> 72 #include <rte_string_fns.h> 73 #include <rte_pause.h> 74 75 #include <cmdline_parse.h> 76 #include <cmdline_parse_etheraddr.h> 77 78 #include <lthread_api.h> 79 80 #define APP_LOOKUP_EXACT_MATCH 0 81 #define APP_LOOKUP_LPM 1 82 #define DO_RFC_1812_CHECKS 83 84 /* Enable cpu-load stats 0-off, 1-on */ 85 #define APP_CPU_LOAD 1 86 87 #ifndef APP_LOOKUP_METHOD 88 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM 89 #endif 90 91 #ifndef __GLIBC__ /* sched_getcpu() is glibc specific */ 92 #define sched_getcpu() rte_lcore_id() 93 #endif 94 95 static int 96 check_ptype(int portid) 97 { 98 int i, ret; 99 int ipv4 = 0, ipv6 = 0; 100 101 ret = rte_eth_dev_get_supported_ptypes(portid, RTE_PTYPE_L3_MASK, NULL, 102 0); 103 if (ret <= 0) 104 return 0; 105 106 uint32_t ptypes[ret]; 107 108 ret = rte_eth_dev_get_supported_ptypes(portid, RTE_PTYPE_L3_MASK, 109 ptypes, ret); 110 for (i = 0; i < ret; ++i) { 111 if (ptypes[i] & RTE_PTYPE_L3_IPV4) 112 ipv4 = 1; 113 if (ptypes[i] & RTE_PTYPE_L3_IPV6) 114 ipv6 = 1; 115 } 116 117 if (ipv4 && ipv6) 118 return 1; 119 120 return 0; 121 } 122 123 static inline void 124 parse_ptype(struct rte_mbuf *m) 125 { 126 struct ether_hdr *eth_hdr; 127 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 128 uint16_t ether_type; 129 130 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 131 ether_type = eth_hdr->ether_type; 132 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 133 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 134 else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) 135 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 136 137 m->packet_type = packet_type; 138 } 139 140 static uint16_t 141 cb_parse_ptype(__rte_unused uint16_t port, __rte_unused uint16_t queue, 142 struct rte_mbuf *pkts[], uint16_t nb_pkts, 143 __rte_unused uint16_t max_pkts, __rte_unused void *user_param) 144 { 145 unsigned int i; 146 147 for (i = 0; i < nb_pkts; i++) 148 parse_ptype(pkts[i]); 149 150 return nb_pkts; 151 } 152 153 /* 154 * When set to zero, simple forwaring path is eanbled. 155 * When set to one, optimized forwarding path is enabled. 156 * Note that LPM optimisation path uses SSE4.1 instructions. 157 */ 158 #define ENABLE_MULTI_BUFFER_OPTIMIZE 1 159 160 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 161 #include <rte_hash.h> 162 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 163 #include <rte_lpm.h> 164 #include <rte_lpm6.h> 165 #else 166 #error "APP_LOOKUP_METHOD set to incorrect value" 167 #endif 168 169 #define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1 170 171 #define MAX_JUMBO_PKT_LEN 9600 172 173 #define IPV6_ADDR_LEN 16 174 175 #define MEMPOOL_CACHE_SIZE 256 176 177 /* 178 * This expression is used to calculate the number of mbufs needed depending on 179 * user input, taking into account memory for rx and tx hardware rings, cache 180 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that 181 * NB_MBUF never goes below a minimum value of 8192 182 */ 183 184 #define NB_MBUF RTE_MAX(\ 185 (nb_ports*nb_rx_queue*nb_rxd + \ 186 nb_ports*nb_lcores*MAX_PKT_BURST + \ 187 nb_ports*n_tx_queue*nb_txd + \ 188 nb_lcores*MEMPOOL_CACHE_SIZE), \ 189 (unsigned)8192) 190 191 #define MAX_PKT_BURST 32 192 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 193 194 /* 195 * Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send. 196 */ 197 #define MAX_TX_BURST (MAX_PKT_BURST / 2) 198 #define BURST_SIZE MAX_TX_BURST 199 200 #define NB_SOCKETS 8 201 202 /* Configure how many packets ahead to prefetch, when reading packets */ 203 #define PREFETCH_OFFSET 3 204 205 /* Used to mark destination port as 'invalid'. */ 206 #define BAD_PORT ((uint16_t)-1) 207 208 #define FWDSTEP 4 209 210 /* 211 * Configurable number of RX/TX ring descriptors 212 */ 213 #define RTE_TEST_RX_DESC_DEFAULT 128 214 #define RTE_TEST_TX_DESC_DEFAULT 128 215 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 216 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 217 218 /* ethernet addresses of ports */ 219 static uint64_t dest_eth_addr[RTE_MAX_ETHPORTS]; 220 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 221 222 static xmm_t val_eth[RTE_MAX_ETHPORTS]; 223 224 /* replace first 12B of the ethernet header. */ 225 #define MASK_ETH 0x3f 226 227 /* mask of enabled ports */ 228 static uint32_t enabled_port_mask; 229 static int promiscuous_on; /**< Set in promiscuous mode off by default. */ 230 static int numa_on = 1; /**< NUMA is enabled by default. */ 231 static int parse_ptype_on; 232 233 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 234 static int ipv6; /**< ipv6 is false by default. */ 235 #endif 236 237 #if (APP_CPU_LOAD == 1) 238 239 #define MAX_CPU RTE_MAX_LCORE 240 #define CPU_LOAD_TIMEOUT_US (5 * 1000 * 1000) /**< Timeout for collecting 5s */ 241 242 #define CPU_PROCESS 0 243 #define CPU_POLL 1 244 #define MAX_CPU_COUNTER 2 245 246 struct cpu_load { 247 uint16_t n_cpu; 248 uint64_t counter; 249 uint64_t hits[MAX_CPU_COUNTER][MAX_CPU]; 250 } __rte_cache_aligned; 251 252 static struct cpu_load cpu_load; 253 static int cpu_load_lcore_id = -1; 254 255 #define SET_CPU_BUSY(thread, counter) \ 256 thread->conf.busy[counter] = 1 257 258 #define SET_CPU_IDLE(thread, counter) \ 259 thread->conf.busy[counter] = 0 260 261 #define IS_CPU_BUSY(thread, counter) \ 262 (thread->conf.busy[counter] > 0) 263 264 #else 265 266 #define SET_CPU_BUSY(thread, counter) 267 #define SET_CPU_IDLE(thread, counter) 268 #define IS_CPU_BUSY(thread, counter) 0 269 270 #endif 271 272 struct mbuf_table { 273 uint16_t len; 274 struct rte_mbuf *m_table[MAX_PKT_BURST]; 275 }; 276 277 struct lcore_rx_queue { 278 uint16_t port_id; 279 uint8_t queue_id; 280 } __rte_cache_aligned; 281 282 #define MAX_RX_QUEUE_PER_LCORE 16 283 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS 284 #define MAX_RX_QUEUE_PER_PORT 128 285 286 #define MAX_LCORE_PARAMS 1024 287 struct rx_thread_params { 288 uint16_t port_id; 289 uint8_t queue_id; 290 uint8_t lcore_id; 291 uint8_t thread_id; 292 } __rte_cache_aligned; 293 294 static struct rx_thread_params rx_thread_params_array[MAX_LCORE_PARAMS]; 295 static struct rx_thread_params rx_thread_params_array_default[] = { 296 {0, 0, 2, 0}, 297 {0, 1, 2, 1}, 298 {0, 2, 2, 2}, 299 {1, 0, 2, 3}, 300 {1, 1, 2, 4}, 301 {1, 2, 2, 5}, 302 {2, 0, 2, 6}, 303 {3, 0, 3, 7}, 304 {3, 1, 3, 8}, 305 }; 306 307 static struct rx_thread_params *rx_thread_params = 308 rx_thread_params_array_default; 309 static uint16_t nb_rx_thread_params = RTE_DIM(rx_thread_params_array_default); 310 311 struct tx_thread_params { 312 uint8_t lcore_id; 313 uint8_t thread_id; 314 } __rte_cache_aligned; 315 316 static struct tx_thread_params tx_thread_params_array[MAX_LCORE_PARAMS]; 317 static struct tx_thread_params tx_thread_params_array_default[] = { 318 {4, 0}, 319 {5, 1}, 320 {6, 2}, 321 {7, 3}, 322 {8, 4}, 323 {9, 5}, 324 {10, 6}, 325 {11, 7}, 326 {12, 8}, 327 }; 328 329 static struct tx_thread_params *tx_thread_params = 330 tx_thread_params_array_default; 331 static uint16_t nb_tx_thread_params = RTE_DIM(tx_thread_params_array_default); 332 333 static struct rte_eth_conf port_conf = { 334 .rxmode = { 335 .mq_mode = ETH_MQ_RX_RSS, 336 .max_rx_pkt_len = ETHER_MAX_LEN, 337 .split_hdr_size = 0, 338 .header_split = 0, /**< Header Split disabled */ 339 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 340 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 341 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 342 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 343 }, 344 .rx_adv_conf = { 345 .rss_conf = { 346 .rss_key = NULL, 347 .rss_hf = ETH_RSS_TCP, 348 }, 349 }, 350 .txmode = { 351 .mq_mode = ETH_MQ_TX_NONE, 352 }, 353 }; 354 355 static struct rte_mempool *pktmbuf_pool[NB_SOCKETS]; 356 357 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 358 359 #include <rte_hash_crc.h> 360 #define DEFAULT_HASH_FUNC rte_hash_crc 361 362 struct ipv4_5tuple { 363 uint32_t ip_dst; 364 uint32_t ip_src; 365 uint16_t port_dst; 366 uint16_t port_src; 367 uint8_t proto; 368 } __attribute__((__packed__)); 369 370 union ipv4_5tuple_host { 371 struct { 372 uint8_t pad0; 373 uint8_t proto; 374 uint16_t pad1; 375 uint32_t ip_src; 376 uint32_t ip_dst; 377 uint16_t port_src; 378 uint16_t port_dst; 379 }; 380 __m128i xmm; 381 }; 382 383 #define XMM_NUM_IN_IPV6_5TUPLE 3 384 385 struct ipv6_5tuple { 386 uint8_t ip_dst[IPV6_ADDR_LEN]; 387 uint8_t ip_src[IPV6_ADDR_LEN]; 388 uint16_t port_dst; 389 uint16_t port_src; 390 uint8_t proto; 391 } __attribute__((__packed__)); 392 393 union ipv6_5tuple_host { 394 struct { 395 uint16_t pad0; 396 uint8_t proto; 397 uint8_t pad1; 398 uint8_t ip_src[IPV6_ADDR_LEN]; 399 uint8_t ip_dst[IPV6_ADDR_LEN]; 400 uint16_t port_src; 401 uint16_t port_dst; 402 uint64_t reserve; 403 }; 404 __m128i xmm[XMM_NUM_IN_IPV6_5TUPLE]; 405 }; 406 407 struct ipv4_l3fwd_route { 408 struct ipv4_5tuple key; 409 uint8_t if_out; 410 }; 411 412 struct ipv6_l3fwd_route { 413 struct ipv6_5tuple key; 414 uint8_t if_out; 415 }; 416 417 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 418 {{IPv4(101, 0, 0, 0), IPv4(100, 10, 0, 1), 101, 11, IPPROTO_TCP}, 0}, 419 {{IPv4(201, 0, 0, 0), IPv4(200, 20, 0, 1), 102, 12, IPPROTO_TCP}, 1}, 420 {{IPv4(111, 0, 0, 0), IPv4(100, 30, 0, 1), 101, 11, IPPROTO_TCP}, 2}, 421 {{IPv4(211, 0, 0, 0), IPv4(200, 40, 0, 1), 102, 12, IPPROTO_TCP}, 3}, 422 }; 423 424 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = { 425 {{ 426 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, 427 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 428 0x05}, 429 101, 11, IPPROTO_TCP}, 0}, 430 431 {{ 432 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, 433 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 434 0x05}, 435 102, 12, IPPROTO_TCP}, 1}, 436 437 {{ 438 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, 439 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 440 0x05}, 441 101, 11, IPPROTO_TCP}, 2}, 442 443 {{ 444 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, 445 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 446 0x05}, 447 102, 12, IPPROTO_TCP}, 3}, 448 }; 449 450 typedef struct rte_hash lookup_struct_t; 451 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 452 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS]; 453 454 #ifdef RTE_ARCH_X86_64 455 /* default to 4 million hash entries (approx) */ 456 #define L3FWD_HASH_ENTRIES (1024*1024*4) 457 #else 458 /* 32-bit has less address-space for hugepage memory, limit to 1M entries */ 459 #define L3FWD_HASH_ENTRIES (1024*1024*1) 460 #endif 461 #define HASH_ENTRY_NUMBER_DEFAULT 4 462 463 static uint32_t hash_entry_number = HASH_ENTRY_NUMBER_DEFAULT; 464 465 static inline uint32_t 466 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len, 467 uint32_t init_val) 468 { 469 const union ipv4_5tuple_host *k; 470 uint32_t t; 471 const uint32_t *p; 472 473 k = data; 474 t = k->proto; 475 p = (const uint32_t *)&k->port_src; 476 477 init_val = rte_hash_crc_4byte(t, init_val); 478 init_val = rte_hash_crc_4byte(k->ip_src, init_val); 479 init_val = rte_hash_crc_4byte(k->ip_dst, init_val); 480 init_val = rte_hash_crc_4byte(*p, init_val); 481 return init_val; 482 } 483 484 static inline uint32_t 485 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len, 486 uint32_t init_val) 487 { 488 const union ipv6_5tuple_host *k; 489 uint32_t t; 490 const uint32_t *p; 491 const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3; 492 const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3; 493 494 k = data; 495 t = k->proto; 496 p = (const uint32_t *)&k->port_src; 497 498 ip_src0 = (const uint32_t *) k->ip_src; 499 ip_src1 = (const uint32_t *)(k->ip_src + 4); 500 ip_src2 = (const uint32_t *)(k->ip_src + 8); 501 ip_src3 = (const uint32_t *)(k->ip_src + 12); 502 ip_dst0 = (const uint32_t *) k->ip_dst; 503 ip_dst1 = (const uint32_t *)(k->ip_dst + 4); 504 ip_dst2 = (const uint32_t *)(k->ip_dst + 8); 505 ip_dst3 = (const uint32_t *)(k->ip_dst + 12); 506 init_val = rte_hash_crc_4byte(t, init_val); 507 init_val = rte_hash_crc_4byte(*ip_src0, init_val); 508 init_val = rte_hash_crc_4byte(*ip_src1, init_val); 509 init_val = rte_hash_crc_4byte(*ip_src2, init_val); 510 init_val = rte_hash_crc_4byte(*ip_src3, init_val); 511 init_val = rte_hash_crc_4byte(*ip_dst0, init_val); 512 init_val = rte_hash_crc_4byte(*ip_dst1, init_val); 513 init_val = rte_hash_crc_4byte(*ip_dst2, init_val); 514 init_val = rte_hash_crc_4byte(*ip_dst3, init_val); 515 init_val = rte_hash_crc_4byte(*p, init_val); 516 return init_val; 517 } 518 519 #define IPV4_L3FWD_NUM_ROUTES RTE_DIM(ipv4_l3fwd_route_array) 520 #define IPV6_L3FWD_NUM_ROUTES RTE_DIM(ipv6_l3fwd_route_array) 521 522 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 523 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; 524 525 #endif 526 527 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 528 struct ipv4_l3fwd_route { 529 uint32_t ip; 530 uint8_t depth; 531 uint8_t if_out; 532 }; 533 534 struct ipv6_l3fwd_route { 535 uint8_t ip[16]; 536 uint8_t depth; 537 uint8_t if_out; 538 }; 539 540 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { 541 {IPv4(1, 1, 1, 0), 24, 0}, 542 {IPv4(2, 1, 1, 0), 24, 1}, 543 {IPv4(3, 1, 1, 0), 24, 2}, 544 {IPv4(4, 1, 1, 0), 24, 3}, 545 {IPv4(5, 1, 1, 0), 24, 4}, 546 {IPv4(6, 1, 1, 0), 24, 5}, 547 {IPv4(7, 1, 1, 0), 24, 6}, 548 {IPv4(8, 1, 1, 0), 24, 7}, 549 }; 550 551 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = { 552 {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0}, 553 {{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1}, 554 {{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2}, 555 {{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3}, 556 {{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4}, 557 {{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5}, 558 {{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6}, 559 {{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7}, 560 }; 561 562 #define IPV4_L3FWD_NUM_ROUTES RTE_DIM(ipv4_l3fwd_route_array) 563 #define IPV6_L3FWD_NUM_ROUTES RTE_DIM(ipv6_l3fwd_route_array) 564 565 #define IPV4_L3FWD_LPM_MAX_RULES 1024 566 #define IPV6_L3FWD_LPM_MAX_RULES 1024 567 #define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16) 568 569 typedef struct rte_lpm lookup_struct_t; 570 typedef struct rte_lpm6 lookup6_struct_t; 571 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; 572 static lookup6_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS]; 573 #endif 574 575 struct lcore_conf { 576 lookup_struct_t *ipv4_lookup_struct; 577 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 578 lookup6_struct_t *ipv6_lookup_struct; 579 #else 580 lookup_struct_t *ipv6_lookup_struct; 581 #endif 582 void *data; 583 } __rte_cache_aligned; 584 585 static struct lcore_conf lcore_conf[RTE_MAX_LCORE]; 586 RTE_DEFINE_PER_LCORE(struct lcore_conf *, lcore_conf); 587 588 #define MAX_RX_QUEUE_PER_THREAD 16 589 #define MAX_TX_PORT_PER_THREAD RTE_MAX_ETHPORTS 590 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS 591 #define MAX_RX_QUEUE_PER_PORT 128 592 593 #define MAX_RX_THREAD 1024 594 #define MAX_TX_THREAD 1024 595 #define MAX_THREAD (MAX_RX_THREAD + MAX_TX_THREAD) 596 597 /** 598 * Producers and consumers threads configuration 599 */ 600 static int lthreads_on = 1; /**< Use lthreads for processing*/ 601 602 rte_atomic16_t rx_counter; /**< Number of spawned rx threads */ 603 rte_atomic16_t tx_counter; /**< Number of spawned tx threads */ 604 605 struct thread_conf { 606 uint16_t lcore_id; /**< Initial lcore for rx thread */ 607 uint16_t cpu_id; /**< Cpu id for cpu load stats counter */ 608 uint16_t thread_id; /**< Thread ID */ 609 610 #if (APP_CPU_LOAD > 0) 611 int busy[MAX_CPU_COUNTER]; 612 #endif 613 }; 614 615 struct thread_rx_conf { 616 struct thread_conf conf; 617 618 uint16_t n_rx_queue; 619 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 620 621 uint16_t n_ring; /**< Number of output rings */ 622 struct rte_ring *ring[RTE_MAX_LCORE]; 623 struct lthread_cond *ready[RTE_MAX_LCORE]; 624 625 #if (APP_CPU_LOAD > 0) 626 int busy[MAX_CPU_COUNTER]; 627 #endif 628 } __rte_cache_aligned; 629 630 uint16_t n_rx_thread; 631 struct thread_rx_conf rx_thread[MAX_RX_THREAD]; 632 633 struct thread_tx_conf { 634 struct thread_conf conf; 635 636 uint16_t tx_queue_id[RTE_MAX_LCORE]; 637 struct mbuf_table tx_mbufs[RTE_MAX_LCORE]; 638 639 struct rte_ring *ring; 640 struct lthread_cond **ready; 641 642 } __rte_cache_aligned; 643 644 uint16_t n_tx_thread; 645 struct thread_tx_conf tx_thread[MAX_TX_THREAD]; 646 647 /* Send burst of packets on an output interface */ 648 static inline int 649 send_burst(struct thread_tx_conf *qconf, uint16_t n, uint16_t port) 650 { 651 struct rte_mbuf **m_table; 652 int ret; 653 uint16_t queueid; 654 655 queueid = qconf->tx_queue_id[port]; 656 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 657 658 ret = rte_eth_tx_burst(port, queueid, m_table, n); 659 if (unlikely(ret < n)) { 660 do { 661 rte_pktmbuf_free(m_table[ret]); 662 } while (++ret < n); 663 } 664 665 return 0; 666 } 667 668 /* Enqueue a single packet, and send burst if queue is filled */ 669 static inline int 670 send_single_packet(struct rte_mbuf *m, uint16_t port) 671 { 672 uint16_t len; 673 struct thread_tx_conf *qconf; 674 675 if (lthreads_on) 676 qconf = (struct thread_tx_conf *)lthread_get_data(); 677 else 678 qconf = (struct thread_tx_conf *)RTE_PER_LCORE(lcore_conf)->data; 679 680 len = qconf->tx_mbufs[port].len; 681 qconf->tx_mbufs[port].m_table[len] = m; 682 len++; 683 684 /* enough pkts to be sent */ 685 if (unlikely(len == MAX_PKT_BURST)) { 686 send_burst(qconf, MAX_PKT_BURST, port); 687 len = 0; 688 } 689 690 qconf->tx_mbufs[port].len = len; 691 return 0; 692 } 693 694 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \ 695 (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) 696 static __rte_always_inline void 697 send_packetsx4(uint16_t port, 698 struct rte_mbuf *m[], uint32_t num) 699 { 700 uint32_t len, j, n; 701 struct thread_tx_conf *qconf; 702 703 if (lthreads_on) 704 qconf = (struct thread_tx_conf *)lthread_get_data(); 705 else 706 qconf = (struct thread_tx_conf *)RTE_PER_LCORE(lcore_conf)->data; 707 708 len = qconf->tx_mbufs[port].len; 709 710 /* 711 * If TX buffer for that queue is empty, and we have enough packets, 712 * then send them straightway. 713 */ 714 if (num >= MAX_TX_BURST && len == 0) { 715 n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num); 716 if (unlikely(n < num)) { 717 do { 718 rte_pktmbuf_free(m[n]); 719 } while (++n < num); 720 } 721 return; 722 } 723 724 /* 725 * Put packets into TX buffer for that queue. 726 */ 727 728 n = len + num; 729 n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num; 730 731 j = 0; 732 switch (n % FWDSTEP) { 733 while (j < n) { 734 case 0: 735 qconf->tx_mbufs[port].m_table[len + j] = m[j]; 736 j++; 737 /* fall-through */ 738 case 3: 739 qconf->tx_mbufs[port].m_table[len + j] = m[j]; 740 j++; 741 /* fall-through */ 742 case 2: 743 qconf->tx_mbufs[port].m_table[len + j] = m[j]; 744 j++; 745 /* fall-through */ 746 case 1: 747 qconf->tx_mbufs[port].m_table[len + j] = m[j]; 748 j++; 749 } 750 } 751 752 len += n; 753 754 /* enough pkts to be sent */ 755 if (unlikely(len == MAX_PKT_BURST)) { 756 757 send_burst(qconf, MAX_PKT_BURST, port); 758 759 /* copy rest of the packets into the TX buffer. */ 760 len = num - n; 761 j = 0; 762 switch (len % FWDSTEP) { 763 while (j < len) { 764 case 0: 765 qconf->tx_mbufs[port].m_table[j] = m[n + j]; 766 j++; 767 /* fall-through */ 768 case 3: 769 qconf->tx_mbufs[port].m_table[j] = m[n + j]; 770 j++; 771 /* fall-through */ 772 case 2: 773 qconf->tx_mbufs[port].m_table[j] = m[n + j]; 774 j++; 775 /* fall-through */ 776 case 1: 777 qconf->tx_mbufs[port].m_table[j] = m[n + j]; 778 j++; 779 } 780 } 781 } 782 783 qconf->tx_mbufs[port].len = len; 784 } 785 #endif /* APP_LOOKUP_LPM */ 786 787 #ifdef DO_RFC_1812_CHECKS 788 static inline int 789 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len) 790 { 791 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */ 792 /* 793 * 1. The packet length reported by the Link Layer must be large 794 * enough to hold the minimum length legal IP datagram (20 bytes). 795 */ 796 if (link_len < sizeof(struct ipv4_hdr)) 797 return -1; 798 799 /* 2. The IP checksum must be correct. */ 800 /* this is checked in H/W */ 801 802 /* 803 * 3. The IP version number must be 4. If the version number is not 4 804 * then the packet may be another version of IP, such as IPng or 805 * ST-II. 806 */ 807 if (((pkt->version_ihl) >> 4) != 4) 808 return -3; 809 /* 810 * 4. The IP header length field must be large enough to hold the 811 * minimum length legal IP datagram (20 bytes = 5 words). 812 */ 813 if ((pkt->version_ihl & 0xf) < 5) 814 return -4; 815 816 /* 817 * 5. The IP total length field must be large enough to hold the IP 818 * datagram header, whose length is specified in the IP header length 819 * field. 820 */ 821 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr)) 822 return -5; 823 824 return 0; 825 } 826 #endif 827 828 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 829 830 static __m128i mask0; 831 static __m128i mask1; 832 static __m128i mask2; 833 static inline uint16_t 834 get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, 835 lookup_struct_t *ipv4_l3fwd_lookup_struct) 836 { 837 int ret = 0; 838 union ipv4_5tuple_host key; 839 840 ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live); 841 __m128i data = _mm_loadu_si128((__m128i *)(ipv4_hdr)); 842 /* Get 5 tuple: dst port, src port, dst IP address, src IP address and 843 protocol */ 844 key.xmm = _mm_and_si128(data, mask0); 845 /* Find destination port */ 846 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key); 847 return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]); 848 } 849 850 static inline uint16_t 851 get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, 852 lookup_struct_t *ipv6_l3fwd_lookup_struct) 853 { 854 int ret = 0; 855 union ipv6_5tuple_host key; 856 857 ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len); 858 __m128i data0 = _mm_loadu_si128((__m128i *)(ipv6_hdr)); 859 __m128i data1 = _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr) + 860 sizeof(__m128i))); 861 __m128i data2 = _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr) + 862 sizeof(__m128i) + sizeof(__m128i))); 863 /* Get part of 5 tuple: src IP address lower 96 bits and protocol */ 864 key.xmm[0] = _mm_and_si128(data0, mask1); 865 /* Get part of 5 tuple: dst IP address lower 96 bits and src IP address 866 higher 32 bits */ 867 key.xmm[1] = data1; 868 /* Get part of 5 tuple: dst port and src port and dst IP address higher 869 32 bits */ 870 key.xmm[2] = _mm_and_si128(data2, mask2); 871 872 /* Find destination port */ 873 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key); 874 return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]); 875 } 876 #endif 877 878 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 879 880 static inline uint16_t 881 get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, 882 lookup_struct_t *ipv4_l3fwd_lookup_struct) 883 { 884 uint32_t next_hop; 885 886 return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, 887 rte_be_to_cpu_32(((struct ipv4_hdr *)ipv4_hdr)->dst_addr), 888 &next_hop) == 0) ? next_hop : portid); 889 } 890 891 static inline uint16_t 892 get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, 893 lookup6_struct_t *ipv6_l3fwd_lookup_struct) 894 { 895 uint32_t next_hop; 896 897 return ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct, 898 ((struct ipv6_hdr *)ipv6_hdr)->dst_addr, &next_hop) == 0) ? 899 next_hop : portid); 900 } 901 #endif 902 903 static inline void l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid) 904 __attribute__((unused)); 905 906 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) && \ 907 (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) 908 909 #define MASK_ALL_PKTS 0xff 910 #define EXCLUDE_1ST_PKT 0xfe 911 #define EXCLUDE_2ND_PKT 0xfd 912 #define EXCLUDE_3RD_PKT 0xfb 913 #define EXCLUDE_4TH_PKT 0xf7 914 #define EXCLUDE_5TH_PKT 0xef 915 #define EXCLUDE_6TH_PKT 0xdf 916 #define EXCLUDE_7TH_PKT 0xbf 917 #define EXCLUDE_8TH_PKT 0x7f 918 919 static inline void 920 simple_ipv4_fwd_8pkts(struct rte_mbuf *m[8], uint16_t portid) 921 { 922 struct ether_hdr *eth_hdr[8]; 923 struct ipv4_hdr *ipv4_hdr[8]; 924 uint16_t dst_port[8]; 925 int32_t ret[8]; 926 union ipv4_5tuple_host key[8]; 927 __m128i data[8]; 928 929 eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *); 930 eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *); 931 eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *); 932 eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *); 933 eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *); 934 eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *); 935 eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *); 936 eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *); 937 938 /* Handle IPv4 headers.*/ 939 ipv4_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv4_hdr *, 940 sizeof(struct ether_hdr)); 941 ipv4_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv4_hdr *, 942 sizeof(struct ether_hdr)); 943 ipv4_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv4_hdr *, 944 sizeof(struct ether_hdr)); 945 ipv4_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv4_hdr *, 946 sizeof(struct ether_hdr)); 947 ipv4_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv4_hdr *, 948 sizeof(struct ether_hdr)); 949 ipv4_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv4_hdr *, 950 sizeof(struct ether_hdr)); 951 ipv4_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv4_hdr *, 952 sizeof(struct ether_hdr)); 953 ipv4_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv4_hdr *, 954 sizeof(struct ether_hdr)); 955 956 #ifdef DO_RFC_1812_CHECKS 957 /* Check to make sure the packet is valid (RFC1812) */ 958 uint8_t valid_mask = MASK_ALL_PKTS; 959 960 if (is_valid_ipv4_pkt(ipv4_hdr[0], m[0]->pkt_len) < 0) { 961 rte_pktmbuf_free(m[0]); 962 valid_mask &= EXCLUDE_1ST_PKT; 963 } 964 if (is_valid_ipv4_pkt(ipv4_hdr[1], m[1]->pkt_len) < 0) { 965 rte_pktmbuf_free(m[1]); 966 valid_mask &= EXCLUDE_2ND_PKT; 967 } 968 if (is_valid_ipv4_pkt(ipv4_hdr[2], m[2]->pkt_len) < 0) { 969 rte_pktmbuf_free(m[2]); 970 valid_mask &= EXCLUDE_3RD_PKT; 971 } 972 if (is_valid_ipv4_pkt(ipv4_hdr[3], m[3]->pkt_len) < 0) { 973 rte_pktmbuf_free(m[3]); 974 valid_mask &= EXCLUDE_4TH_PKT; 975 } 976 if (is_valid_ipv4_pkt(ipv4_hdr[4], m[4]->pkt_len) < 0) { 977 rte_pktmbuf_free(m[4]); 978 valid_mask &= EXCLUDE_5TH_PKT; 979 } 980 if (is_valid_ipv4_pkt(ipv4_hdr[5], m[5]->pkt_len) < 0) { 981 rte_pktmbuf_free(m[5]); 982 valid_mask &= EXCLUDE_6TH_PKT; 983 } 984 if (is_valid_ipv4_pkt(ipv4_hdr[6], m[6]->pkt_len) < 0) { 985 rte_pktmbuf_free(m[6]); 986 valid_mask &= EXCLUDE_7TH_PKT; 987 } 988 if (is_valid_ipv4_pkt(ipv4_hdr[7], m[7]->pkt_len) < 0) { 989 rte_pktmbuf_free(m[7]); 990 valid_mask &= EXCLUDE_8TH_PKT; 991 } 992 if (unlikely(valid_mask != MASK_ALL_PKTS)) { 993 if (valid_mask == 0) 994 return; 995 996 uint8_t i = 0; 997 998 for (i = 0; i < 8; i++) 999 if ((0x1 << i) & valid_mask) 1000 l3fwd_simple_forward(m[i], portid); 1001 } 1002 #endif /* End of #ifdef DO_RFC_1812_CHECKS */ 1003 1004 data[0] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[0], __m128i *, 1005 sizeof(struct ether_hdr) + 1006 offsetof(struct ipv4_hdr, time_to_live))); 1007 data[1] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[1], __m128i *, 1008 sizeof(struct ether_hdr) + 1009 offsetof(struct ipv4_hdr, time_to_live))); 1010 data[2] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[2], __m128i *, 1011 sizeof(struct ether_hdr) + 1012 offsetof(struct ipv4_hdr, time_to_live))); 1013 data[3] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[3], __m128i *, 1014 sizeof(struct ether_hdr) + 1015 offsetof(struct ipv4_hdr, time_to_live))); 1016 data[4] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[4], __m128i *, 1017 sizeof(struct ether_hdr) + 1018 offsetof(struct ipv4_hdr, time_to_live))); 1019 data[5] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[5], __m128i *, 1020 sizeof(struct ether_hdr) + 1021 offsetof(struct ipv4_hdr, time_to_live))); 1022 data[6] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[6], __m128i *, 1023 sizeof(struct ether_hdr) + 1024 offsetof(struct ipv4_hdr, time_to_live))); 1025 data[7] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[7], __m128i *, 1026 sizeof(struct ether_hdr) + 1027 offsetof(struct ipv4_hdr, time_to_live))); 1028 1029 key[0].xmm = _mm_and_si128(data[0], mask0); 1030 key[1].xmm = _mm_and_si128(data[1], mask0); 1031 key[2].xmm = _mm_and_si128(data[2], mask0); 1032 key[3].xmm = _mm_and_si128(data[3], mask0); 1033 key[4].xmm = _mm_and_si128(data[4], mask0); 1034 key[5].xmm = _mm_and_si128(data[5], mask0); 1035 key[6].xmm = _mm_and_si128(data[6], mask0); 1036 key[7].xmm = _mm_and_si128(data[7], mask0); 1037 1038 const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3], 1039 &key[4], &key[5], &key[6], &key[7]}; 1040 1041 rte_hash_lookup_bulk(RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, 1042 &key_array[0], 8, ret); 1043 dst_port[0] = ((ret[0] < 0) ? portid : ipv4_l3fwd_out_if[ret[0]]); 1044 dst_port[1] = ((ret[1] < 0) ? portid : ipv4_l3fwd_out_if[ret[1]]); 1045 dst_port[2] = ((ret[2] < 0) ? portid : ipv4_l3fwd_out_if[ret[2]]); 1046 dst_port[3] = ((ret[3] < 0) ? portid : ipv4_l3fwd_out_if[ret[3]]); 1047 dst_port[4] = ((ret[4] < 0) ? portid : ipv4_l3fwd_out_if[ret[4]]); 1048 dst_port[5] = ((ret[5] < 0) ? portid : ipv4_l3fwd_out_if[ret[5]]); 1049 dst_port[6] = ((ret[6] < 0) ? portid : ipv4_l3fwd_out_if[ret[6]]); 1050 dst_port[7] = ((ret[7] < 0) ? portid : ipv4_l3fwd_out_if[ret[7]]); 1051 1052 if (dst_port[0] >= RTE_MAX_ETHPORTS || 1053 (enabled_port_mask & 1 << dst_port[0]) == 0) 1054 dst_port[0] = portid; 1055 if (dst_port[1] >= RTE_MAX_ETHPORTS || 1056 (enabled_port_mask & 1 << dst_port[1]) == 0) 1057 dst_port[1] = portid; 1058 if (dst_port[2] >= RTE_MAX_ETHPORTS || 1059 (enabled_port_mask & 1 << dst_port[2]) == 0) 1060 dst_port[2] = portid; 1061 if (dst_port[3] >= RTE_MAX_ETHPORTS || 1062 (enabled_port_mask & 1 << dst_port[3]) == 0) 1063 dst_port[3] = portid; 1064 if (dst_port[4] >= RTE_MAX_ETHPORTS || 1065 (enabled_port_mask & 1 << dst_port[4]) == 0) 1066 dst_port[4] = portid; 1067 if (dst_port[5] >= RTE_MAX_ETHPORTS || 1068 (enabled_port_mask & 1 << dst_port[5]) == 0) 1069 dst_port[5] = portid; 1070 if (dst_port[6] >= RTE_MAX_ETHPORTS || 1071 (enabled_port_mask & 1 << dst_port[6]) == 0) 1072 dst_port[6] = portid; 1073 if (dst_port[7] >= RTE_MAX_ETHPORTS || 1074 (enabled_port_mask & 1 << dst_port[7]) == 0) 1075 dst_port[7] = portid; 1076 1077 #ifdef DO_RFC_1812_CHECKS 1078 /* Update time to live and header checksum */ 1079 --(ipv4_hdr[0]->time_to_live); 1080 --(ipv4_hdr[1]->time_to_live); 1081 --(ipv4_hdr[2]->time_to_live); 1082 --(ipv4_hdr[3]->time_to_live); 1083 ++(ipv4_hdr[0]->hdr_checksum); 1084 ++(ipv4_hdr[1]->hdr_checksum); 1085 ++(ipv4_hdr[2]->hdr_checksum); 1086 ++(ipv4_hdr[3]->hdr_checksum); 1087 --(ipv4_hdr[4]->time_to_live); 1088 --(ipv4_hdr[5]->time_to_live); 1089 --(ipv4_hdr[6]->time_to_live); 1090 --(ipv4_hdr[7]->time_to_live); 1091 ++(ipv4_hdr[4]->hdr_checksum); 1092 ++(ipv4_hdr[5]->hdr_checksum); 1093 ++(ipv4_hdr[6]->hdr_checksum); 1094 ++(ipv4_hdr[7]->hdr_checksum); 1095 #endif 1096 1097 /* dst addr */ 1098 *(uint64_t *)ð_hdr[0]->d_addr = dest_eth_addr[dst_port[0]]; 1099 *(uint64_t *)ð_hdr[1]->d_addr = dest_eth_addr[dst_port[1]]; 1100 *(uint64_t *)ð_hdr[2]->d_addr = dest_eth_addr[dst_port[2]]; 1101 *(uint64_t *)ð_hdr[3]->d_addr = dest_eth_addr[dst_port[3]]; 1102 *(uint64_t *)ð_hdr[4]->d_addr = dest_eth_addr[dst_port[4]]; 1103 *(uint64_t *)ð_hdr[5]->d_addr = dest_eth_addr[dst_port[5]]; 1104 *(uint64_t *)ð_hdr[6]->d_addr = dest_eth_addr[dst_port[6]]; 1105 *(uint64_t *)ð_hdr[7]->d_addr = dest_eth_addr[dst_port[7]]; 1106 1107 /* src addr */ 1108 ether_addr_copy(&ports_eth_addr[dst_port[0]], ð_hdr[0]->s_addr); 1109 ether_addr_copy(&ports_eth_addr[dst_port[1]], ð_hdr[1]->s_addr); 1110 ether_addr_copy(&ports_eth_addr[dst_port[2]], ð_hdr[2]->s_addr); 1111 ether_addr_copy(&ports_eth_addr[dst_port[3]], ð_hdr[3]->s_addr); 1112 ether_addr_copy(&ports_eth_addr[dst_port[4]], ð_hdr[4]->s_addr); 1113 ether_addr_copy(&ports_eth_addr[dst_port[5]], ð_hdr[5]->s_addr); 1114 ether_addr_copy(&ports_eth_addr[dst_port[6]], ð_hdr[6]->s_addr); 1115 ether_addr_copy(&ports_eth_addr[dst_port[7]], ð_hdr[7]->s_addr); 1116 1117 send_single_packet(m[0], (uint8_t)dst_port[0]); 1118 send_single_packet(m[1], (uint8_t)dst_port[1]); 1119 send_single_packet(m[2], (uint8_t)dst_port[2]); 1120 send_single_packet(m[3], (uint8_t)dst_port[3]); 1121 send_single_packet(m[4], (uint8_t)dst_port[4]); 1122 send_single_packet(m[5], (uint8_t)dst_port[5]); 1123 send_single_packet(m[6], (uint8_t)dst_port[6]); 1124 send_single_packet(m[7], (uint8_t)dst_port[7]); 1125 1126 } 1127 1128 static inline void get_ipv6_5tuple(struct rte_mbuf *m0, __m128i mask0, 1129 __m128i mask1, union ipv6_5tuple_host *key) 1130 { 1131 __m128i tmpdata0 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, 1132 __m128i *, sizeof(struct ether_hdr) + 1133 offsetof(struct ipv6_hdr, payload_len))); 1134 __m128i tmpdata1 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, 1135 __m128i *, sizeof(struct ether_hdr) + 1136 offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i))); 1137 __m128i tmpdata2 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, 1138 __m128i *, sizeof(struct ether_hdr) + 1139 offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i) + 1140 sizeof(__m128i))); 1141 key->xmm[0] = _mm_and_si128(tmpdata0, mask0); 1142 key->xmm[1] = tmpdata1; 1143 key->xmm[2] = _mm_and_si128(tmpdata2, mask1); 1144 } 1145 1146 static inline void 1147 simple_ipv6_fwd_8pkts(struct rte_mbuf *m[8], uint16_t portid) 1148 { 1149 int32_t ret[8]; 1150 uint16_t dst_port[8]; 1151 struct ether_hdr *eth_hdr[8]; 1152 union ipv6_5tuple_host key[8]; 1153 1154 __attribute__((unused)) struct ipv6_hdr *ipv6_hdr[8]; 1155 1156 eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *); 1157 eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *); 1158 eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *); 1159 eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *); 1160 eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *); 1161 eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *); 1162 eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *); 1163 eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *); 1164 1165 /* Handle IPv6 headers.*/ 1166 ipv6_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv6_hdr *, 1167 sizeof(struct ether_hdr)); 1168 ipv6_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv6_hdr *, 1169 sizeof(struct ether_hdr)); 1170 ipv6_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv6_hdr *, 1171 sizeof(struct ether_hdr)); 1172 ipv6_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv6_hdr *, 1173 sizeof(struct ether_hdr)); 1174 ipv6_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv6_hdr *, 1175 sizeof(struct ether_hdr)); 1176 ipv6_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv6_hdr *, 1177 sizeof(struct ether_hdr)); 1178 ipv6_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv6_hdr *, 1179 sizeof(struct ether_hdr)); 1180 ipv6_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv6_hdr *, 1181 sizeof(struct ether_hdr)); 1182 1183 get_ipv6_5tuple(m[0], mask1, mask2, &key[0]); 1184 get_ipv6_5tuple(m[1], mask1, mask2, &key[1]); 1185 get_ipv6_5tuple(m[2], mask1, mask2, &key[2]); 1186 get_ipv6_5tuple(m[3], mask1, mask2, &key[3]); 1187 get_ipv6_5tuple(m[4], mask1, mask2, &key[4]); 1188 get_ipv6_5tuple(m[5], mask1, mask2, &key[5]); 1189 get_ipv6_5tuple(m[6], mask1, mask2, &key[6]); 1190 get_ipv6_5tuple(m[7], mask1, mask2, &key[7]); 1191 1192 const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3], 1193 &key[4], &key[5], &key[6], &key[7]}; 1194 1195 rte_hash_lookup_bulk(RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct, 1196 &key_array[0], 4, ret); 1197 dst_port[0] = ((ret[0] < 0) ? portid : ipv6_l3fwd_out_if[ret[0]]); 1198 dst_port[1] = ((ret[1] < 0) ? portid : ipv6_l3fwd_out_if[ret[1]]); 1199 dst_port[2] = ((ret[2] < 0) ? portid : ipv6_l3fwd_out_if[ret[2]]); 1200 dst_port[3] = ((ret[3] < 0) ? portid : ipv6_l3fwd_out_if[ret[3]]); 1201 dst_port[4] = ((ret[4] < 0) ? portid : ipv6_l3fwd_out_if[ret[4]]); 1202 dst_port[5] = ((ret[5] < 0) ? portid : ipv6_l3fwd_out_if[ret[5]]); 1203 dst_port[6] = ((ret[6] < 0) ? portid : ipv6_l3fwd_out_if[ret[6]]); 1204 dst_port[7] = ((ret[7] < 0) ? portid : ipv6_l3fwd_out_if[ret[7]]); 1205 1206 if (dst_port[0] >= RTE_MAX_ETHPORTS || 1207 (enabled_port_mask & 1 << dst_port[0]) == 0) 1208 dst_port[0] = portid; 1209 if (dst_port[1] >= RTE_MAX_ETHPORTS || 1210 (enabled_port_mask & 1 << dst_port[1]) == 0) 1211 dst_port[1] = portid; 1212 if (dst_port[2] >= RTE_MAX_ETHPORTS || 1213 (enabled_port_mask & 1 << dst_port[2]) == 0) 1214 dst_port[2] = portid; 1215 if (dst_port[3] >= RTE_MAX_ETHPORTS || 1216 (enabled_port_mask & 1 << dst_port[3]) == 0) 1217 dst_port[3] = portid; 1218 if (dst_port[4] >= RTE_MAX_ETHPORTS || 1219 (enabled_port_mask & 1 << dst_port[4]) == 0) 1220 dst_port[4] = portid; 1221 if (dst_port[5] >= RTE_MAX_ETHPORTS || 1222 (enabled_port_mask & 1 << dst_port[5]) == 0) 1223 dst_port[5] = portid; 1224 if (dst_port[6] >= RTE_MAX_ETHPORTS || 1225 (enabled_port_mask & 1 << dst_port[6]) == 0) 1226 dst_port[6] = portid; 1227 if (dst_port[7] >= RTE_MAX_ETHPORTS || 1228 (enabled_port_mask & 1 << dst_port[7]) == 0) 1229 dst_port[7] = portid; 1230 1231 /* dst addr */ 1232 *(uint64_t *)ð_hdr[0]->d_addr = dest_eth_addr[dst_port[0]]; 1233 *(uint64_t *)ð_hdr[1]->d_addr = dest_eth_addr[dst_port[1]]; 1234 *(uint64_t *)ð_hdr[2]->d_addr = dest_eth_addr[dst_port[2]]; 1235 *(uint64_t *)ð_hdr[3]->d_addr = dest_eth_addr[dst_port[3]]; 1236 *(uint64_t *)ð_hdr[4]->d_addr = dest_eth_addr[dst_port[4]]; 1237 *(uint64_t *)ð_hdr[5]->d_addr = dest_eth_addr[dst_port[5]]; 1238 *(uint64_t *)ð_hdr[6]->d_addr = dest_eth_addr[dst_port[6]]; 1239 *(uint64_t *)ð_hdr[7]->d_addr = dest_eth_addr[dst_port[7]]; 1240 1241 /* src addr */ 1242 ether_addr_copy(&ports_eth_addr[dst_port[0]], ð_hdr[0]->s_addr); 1243 ether_addr_copy(&ports_eth_addr[dst_port[1]], ð_hdr[1]->s_addr); 1244 ether_addr_copy(&ports_eth_addr[dst_port[2]], ð_hdr[2]->s_addr); 1245 ether_addr_copy(&ports_eth_addr[dst_port[3]], ð_hdr[3]->s_addr); 1246 ether_addr_copy(&ports_eth_addr[dst_port[4]], ð_hdr[4]->s_addr); 1247 ether_addr_copy(&ports_eth_addr[dst_port[5]], ð_hdr[5]->s_addr); 1248 ether_addr_copy(&ports_eth_addr[dst_port[6]], ð_hdr[6]->s_addr); 1249 ether_addr_copy(&ports_eth_addr[dst_port[7]], ð_hdr[7]->s_addr); 1250 1251 send_single_packet(m[0], dst_port[0]); 1252 send_single_packet(m[1], dst_port[1]); 1253 send_single_packet(m[2], dst_port[2]); 1254 send_single_packet(m[3], dst_port[3]); 1255 send_single_packet(m[4], dst_port[4]); 1256 send_single_packet(m[5], dst_port[5]); 1257 send_single_packet(m[6], dst_port[6]); 1258 send_single_packet(m[7], dst_port[7]); 1259 1260 } 1261 #endif /* APP_LOOKUP_METHOD */ 1262 1263 static __rte_always_inline void 1264 l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid) 1265 { 1266 struct ether_hdr *eth_hdr; 1267 struct ipv4_hdr *ipv4_hdr; 1268 uint16_t dst_port; 1269 1270 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 1271 1272 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 1273 /* Handle IPv4 headers.*/ 1274 ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, 1275 sizeof(struct ether_hdr)); 1276 1277 #ifdef DO_RFC_1812_CHECKS 1278 /* Check to make sure the packet is valid (RFC1812) */ 1279 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) { 1280 rte_pktmbuf_free(m); 1281 return; 1282 } 1283 #endif 1284 1285 dst_port = get_ipv4_dst_port(ipv4_hdr, portid, 1286 RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct); 1287 if (dst_port >= RTE_MAX_ETHPORTS || 1288 (enabled_port_mask & 1 << dst_port) == 0) 1289 dst_port = portid; 1290 1291 #ifdef DO_RFC_1812_CHECKS 1292 /* Update time to live and header checksum */ 1293 --(ipv4_hdr->time_to_live); 1294 ++(ipv4_hdr->hdr_checksum); 1295 #endif 1296 /* dst addr */ 1297 *(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port]; 1298 1299 /* src addr */ 1300 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 1301 1302 send_single_packet(m, dst_port); 1303 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 1304 /* Handle IPv6 headers.*/ 1305 struct ipv6_hdr *ipv6_hdr; 1306 1307 ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, 1308 sizeof(struct ether_hdr)); 1309 1310 dst_port = get_ipv6_dst_port(ipv6_hdr, portid, 1311 RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct); 1312 1313 if (dst_port >= RTE_MAX_ETHPORTS || 1314 (enabled_port_mask & 1 << dst_port) == 0) 1315 dst_port = portid; 1316 1317 /* dst addr */ 1318 *(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port]; 1319 1320 /* src addr */ 1321 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 1322 1323 send_single_packet(m, dst_port); 1324 } else 1325 /* Free the mbuf that contains non-IPV4/IPV6 packet */ 1326 rte_pktmbuf_free(m); 1327 } 1328 1329 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \ 1330 (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) 1331 #ifdef DO_RFC_1812_CHECKS 1332 1333 #define IPV4_MIN_VER_IHL 0x45 1334 #define IPV4_MAX_VER_IHL 0x4f 1335 #define IPV4_MAX_VER_IHL_DIFF (IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL) 1336 1337 /* Minimum value of IPV4 total length (20B) in network byte order. */ 1338 #define IPV4_MIN_LEN_BE (sizeof(struct ipv4_hdr) << 8) 1339 1340 /* 1341 * From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2: 1342 * - The IP version number must be 4. 1343 * - The IP header length field must be large enough to hold the 1344 * minimum length legal IP datagram (20 bytes = 5 words). 1345 * - The IP total length field must be large enough to hold the IP 1346 * datagram header, whose length is specified in the IP header length 1347 * field. 1348 * If we encounter invalid IPV4 packet, then set destination port for it 1349 * to BAD_PORT value. 1350 */ 1351 static __rte_always_inline void 1352 rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t ptype) 1353 { 1354 uint8_t ihl; 1355 1356 if (RTE_ETH_IS_IPV4_HDR(ptype)) { 1357 ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL; 1358 1359 ipv4_hdr->time_to_live--; 1360 ipv4_hdr->hdr_checksum++; 1361 1362 if (ihl > IPV4_MAX_VER_IHL_DIFF || 1363 ((uint8_t)ipv4_hdr->total_length == 0 && 1364 ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) { 1365 dp[0] = BAD_PORT; 1366 } 1367 } 1368 } 1369 1370 #else 1371 #define rfc1812_process(mb, dp, ptype) do { } while (0) 1372 #endif /* DO_RFC_1812_CHECKS */ 1373 #endif /* APP_LOOKUP_LPM && ENABLE_MULTI_BUFFER_OPTIMIZE */ 1374 1375 1376 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \ 1377 (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) 1378 1379 static __rte_always_inline uint16_t 1380 get_dst_port(struct rte_mbuf *pkt, uint32_t dst_ipv4, uint16_t portid) 1381 { 1382 uint32_t next_hop; 1383 struct ipv6_hdr *ipv6_hdr; 1384 struct ether_hdr *eth_hdr; 1385 1386 if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) { 1387 return (uint16_t) ((rte_lpm_lookup( 1388 RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, dst_ipv4, 1389 &next_hop) == 0) ? next_hop : portid); 1390 1391 } else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) { 1392 1393 eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *); 1394 ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1); 1395 1396 return (uint16_t) ((rte_lpm6_lookup( 1397 RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct, 1398 ipv6_hdr->dst_addr, &next_hop) == 0) ? 1399 next_hop : portid); 1400 1401 } 1402 1403 return portid; 1404 } 1405 1406 static inline void 1407 process_packet(struct rte_mbuf *pkt, uint16_t *dst_port, uint16_t portid) 1408 { 1409 struct ether_hdr *eth_hdr; 1410 struct ipv4_hdr *ipv4_hdr; 1411 uint32_t dst_ipv4; 1412 uint16_t dp; 1413 __m128i te, ve; 1414 1415 eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *); 1416 ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1); 1417 1418 dst_ipv4 = ipv4_hdr->dst_addr; 1419 dst_ipv4 = rte_be_to_cpu_32(dst_ipv4); 1420 dp = get_dst_port(pkt, dst_ipv4, portid); 1421 1422 te = _mm_load_si128((__m128i *)eth_hdr); 1423 ve = val_eth[dp]; 1424 1425 dst_port[0] = dp; 1426 rfc1812_process(ipv4_hdr, dst_port, pkt->packet_type); 1427 1428 te = _mm_blend_epi16(te, ve, MASK_ETH); 1429 _mm_store_si128((__m128i *)eth_hdr, te); 1430 } 1431 1432 /* 1433 * Read packet_type and destination IPV4 addresses from 4 mbufs. 1434 */ 1435 static inline void 1436 processx4_step1(struct rte_mbuf *pkt[FWDSTEP], 1437 __m128i *dip, 1438 uint32_t *ipv4_flag) 1439 { 1440 struct ipv4_hdr *ipv4_hdr; 1441 struct ether_hdr *eth_hdr; 1442 uint32_t x0, x1, x2, x3; 1443 1444 eth_hdr = rte_pktmbuf_mtod(pkt[0], struct ether_hdr *); 1445 ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1); 1446 x0 = ipv4_hdr->dst_addr; 1447 ipv4_flag[0] = pkt[0]->packet_type & RTE_PTYPE_L3_IPV4; 1448 1449 eth_hdr = rte_pktmbuf_mtod(pkt[1], struct ether_hdr *); 1450 ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1); 1451 x1 = ipv4_hdr->dst_addr; 1452 ipv4_flag[0] &= pkt[1]->packet_type; 1453 1454 eth_hdr = rte_pktmbuf_mtod(pkt[2], struct ether_hdr *); 1455 ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1); 1456 x2 = ipv4_hdr->dst_addr; 1457 ipv4_flag[0] &= pkt[2]->packet_type; 1458 1459 eth_hdr = rte_pktmbuf_mtod(pkt[3], struct ether_hdr *); 1460 ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1); 1461 x3 = ipv4_hdr->dst_addr; 1462 ipv4_flag[0] &= pkt[3]->packet_type; 1463 1464 dip[0] = _mm_set_epi32(x3, x2, x1, x0); 1465 } 1466 1467 /* 1468 * Lookup into LPM for destination port. 1469 * If lookup fails, use incoming port (portid) as destination port. 1470 */ 1471 static inline void 1472 processx4_step2(__m128i dip, 1473 uint32_t ipv4_flag, 1474 uint16_t portid, 1475 struct rte_mbuf *pkt[FWDSTEP], 1476 uint16_t dprt[FWDSTEP]) 1477 { 1478 rte_xmm_t dst; 1479 const __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11, 1480 4, 5, 6, 7, 0, 1, 2, 3); 1481 1482 /* Byte swap 4 IPV4 addresses. */ 1483 dip = _mm_shuffle_epi8(dip, bswap_mask); 1484 1485 /* if all 4 packets are IPV4. */ 1486 if (likely(ipv4_flag)) { 1487 rte_lpm_lookupx4(RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, dip, 1488 dst.u32, portid); 1489 1490 /* get rid of unused upper 16 bit for each dport. */ 1491 dst.x = _mm_packs_epi32(dst.x, dst.x); 1492 *(uint64_t *)dprt = dst.u64[0]; 1493 } else { 1494 dst.x = dip; 1495 dprt[0] = get_dst_port(pkt[0], dst.u32[0], portid); 1496 dprt[1] = get_dst_port(pkt[1], dst.u32[1], portid); 1497 dprt[2] = get_dst_port(pkt[2], dst.u32[2], portid); 1498 dprt[3] = get_dst_port(pkt[3], dst.u32[3], portid); 1499 } 1500 } 1501 1502 /* 1503 * Update source and destination MAC addresses in the ethernet header. 1504 * Perform RFC1812 checks and updates for IPV4 packets. 1505 */ 1506 static inline void 1507 processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP]) 1508 { 1509 __m128i te[FWDSTEP]; 1510 __m128i ve[FWDSTEP]; 1511 __m128i *p[FWDSTEP]; 1512 1513 p[0] = rte_pktmbuf_mtod(pkt[0], __m128i *); 1514 p[1] = rte_pktmbuf_mtod(pkt[1], __m128i *); 1515 p[2] = rte_pktmbuf_mtod(pkt[2], __m128i *); 1516 p[3] = rte_pktmbuf_mtod(pkt[3], __m128i *); 1517 1518 ve[0] = val_eth[dst_port[0]]; 1519 te[0] = _mm_load_si128(p[0]); 1520 1521 ve[1] = val_eth[dst_port[1]]; 1522 te[1] = _mm_load_si128(p[1]); 1523 1524 ve[2] = val_eth[dst_port[2]]; 1525 te[2] = _mm_load_si128(p[2]); 1526 1527 ve[3] = val_eth[dst_port[3]]; 1528 te[3] = _mm_load_si128(p[3]); 1529 1530 /* Update first 12 bytes, keep rest bytes intact. */ 1531 te[0] = _mm_blend_epi16(te[0], ve[0], MASK_ETH); 1532 te[1] = _mm_blend_epi16(te[1], ve[1], MASK_ETH); 1533 te[2] = _mm_blend_epi16(te[2], ve[2], MASK_ETH); 1534 te[3] = _mm_blend_epi16(te[3], ve[3], MASK_ETH); 1535 1536 _mm_store_si128(p[0], te[0]); 1537 _mm_store_si128(p[1], te[1]); 1538 _mm_store_si128(p[2], te[2]); 1539 _mm_store_si128(p[3], te[3]); 1540 1541 rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1), 1542 &dst_port[0], pkt[0]->packet_type); 1543 rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1), 1544 &dst_port[1], pkt[1]->packet_type); 1545 rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1), 1546 &dst_port[2], pkt[2]->packet_type); 1547 rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1), 1548 &dst_port[3], pkt[3]->packet_type); 1549 } 1550 1551 /* 1552 * We group consecutive packets with the same destionation port into one burst. 1553 * To avoid extra latency this is done together with some other packet 1554 * processing, but after we made a final decision about packet's destination. 1555 * To do this we maintain: 1556 * pnum - array of number of consecutive packets with the same dest port for 1557 * each packet in the input burst. 1558 * lp - pointer to the last updated element in the pnum. 1559 * dlp - dest port value lp corresponds to. 1560 */ 1561 1562 #define GRPSZ (1 << FWDSTEP) 1563 #define GRPMSK (GRPSZ - 1) 1564 1565 #define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx) do { \ 1566 if (likely((dlp) == (dcp)[(idx)])) { \ 1567 (lp)[0]++; \ 1568 } else { \ 1569 (dlp) = (dcp)[idx]; \ 1570 (lp) = (pn) + (idx); \ 1571 (lp)[0] = 1; \ 1572 } \ 1573 } while (0) 1574 1575 /* 1576 * Group consecutive packets with the same destination port in bursts of 4. 1577 * Suppose we have array of destionation ports: 1578 * dst_port[] = {a, b, c, d,, e, ... } 1579 * dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>. 1580 * We doing 4 comparisons at once and the result is 4 bit mask. 1581 * This mask is used as an index into prebuild array of pnum values. 1582 */ 1583 static inline uint16_t * 1584 port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2) 1585 { 1586 static const struct { 1587 uint64_t pnum; /* prebuild 4 values for pnum[]. */ 1588 int32_t idx; /* index for new last updated elemnet. */ 1589 uint16_t lpv; /* add value to the last updated element. */ 1590 } gptbl[GRPSZ] = { 1591 { 1592 /* 0: a != b, b != c, c != d, d != e */ 1593 .pnum = UINT64_C(0x0001000100010001), 1594 .idx = 4, 1595 .lpv = 0, 1596 }, 1597 { 1598 /* 1: a == b, b != c, c != d, d != e */ 1599 .pnum = UINT64_C(0x0001000100010002), 1600 .idx = 4, 1601 .lpv = 1, 1602 }, 1603 { 1604 /* 2: a != b, b == c, c != d, d != e */ 1605 .pnum = UINT64_C(0x0001000100020001), 1606 .idx = 4, 1607 .lpv = 0, 1608 }, 1609 { 1610 /* 3: a == b, b == c, c != d, d != e */ 1611 .pnum = UINT64_C(0x0001000100020003), 1612 .idx = 4, 1613 .lpv = 2, 1614 }, 1615 { 1616 /* 4: a != b, b != c, c == d, d != e */ 1617 .pnum = UINT64_C(0x0001000200010001), 1618 .idx = 4, 1619 .lpv = 0, 1620 }, 1621 { 1622 /* 5: a == b, b != c, c == d, d != e */ 1623 .pnum = UINT64_C(0x0001000200010002), 1624 .idx = 4, 1625 .lpv = 1, 1626 }, 1627 { 1628 /* 6: a != b, b == c, c == d, d != e */ 1629 .pnum = UINT64_C(0x0001000200030001), 1630 .idx = 4, 1631 .lpv = 0, 1632 }, 1633 { 1634 /* 7: a == b, b == c, c == d, d != e */ 1635 .pnum = UINT64_C(0x0001000200030004), 1636 .idx = 4, 1637 .lpv = 3, 1638 }, 1639 { 1640 /* 8: a != b, b != c, c != d, d == e */ 1641 .pnum = UINT64_C(0x0002000100010001), 1642 .idx = 3, 1643 .lpv = 0, 1644 }, 1645 { 1646 /* 9: a == b, b != c, c != d, d == e */ 1647 .pnum = UINT64_C(0x0002000100010002), 1648 .idx = 3, 1649 .lpv = 1, 1650 }, 1651 { 1652 /* 0xa: a != b, b == c, c != d, d == e */ 1653 .pnum = UINT64_C(0x0002000100020001), 1654 .idx = 3, 1655 .lpv = 0, 1656 }, 1657 { 1658 /* 0xb: a == b, b == c, c != d, d == e */ 1659 .pnum = UINT64_C(0x0002000100020003), 1660 .idx = 3, 1661 .lpv = 2, 1662 }, 1663 { 1664 /* 0xc: a != b, b != c, c == d, d == e */ 1665 .pnum = UINT64_C(0x0002000300010001), 1666 .idx = 2, 1667 .lpv = 0, 1668 }, 1669 { 1670 /* 0xd: a == b, b != c, c == d, d == e */ 1671 .pnum = UINT64_C(0x0002000300010002), 1672 .idx = 2, 1673 .lpv = 1, 1674 }, 1675 { 1676 /* 0xe: a != b, b == c, c == d, d == e */ 1677 .pnum = UINT64_C(0x0002000300040001), 1678 .idx = 1, 1679 .lpv = 0, 1680 }, 1681 { 1682 /* 0xf: a == b, b == c, c == d, d == e */ 1683 .pnum = UINT64_C(0x0002000300040005), 1684 .idx = 0, 1685 .lpv = 4, 1686 }, 1687 }; 1688 1689 union { 1690 uint16_t u16[FWDSTEP + 1]; 1691 uint64_t u64; 1692 } *pnum = (void *)pn; 1693 1694 int32_t v; 1695 1696 dp1 = _mm_cmpeq_epi16(dp1, dp2); 1697 dp1 = _mm_unpacklo_epi16(dp1, dp1); 1698 v = _mm_movemask_ps((__m128)dp1); 1699 1700 /* update last port counter. */ 1701 lp[0] += gptbl[v].lpv; 1702 1703 /* if dest port value has changed. */ 1704 if (v != GRPMSK) { 1705 pnum->u64 = gptbl[v].pnum; 1706 pnum->u16[FWDSTEP] = 1; 1707 lp = pnum->u16 + gptbl[v].idx; 1708 } 1709 1710 return lp; 1711 } 1712 1713 #endif /* APP_LOOKUP_METHOD */ 1714 1715 static void 1716 process_burst(struct rte_mbuf *pkts_burst[MAX_PKT_BURST], int nb_rx, 1717 uint16_t portid) 1718 { 1719 1720 int j; 1721 1722 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \ 1723 (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) 1724 int32_t k; 1725 uint16_t dlp; 1726 uint16_t *lp; 1727 uint16_t dst_port[MAX_PKT_BURST]; 1728 __m128i dip[MAX_PKT_BURST / FWDSTEP]; 1729 uint32_t ipv4_flag[MAX_PKT_BURST / FWDSTEP]; 1730 uint16_t pnum[MAX_PKT_BURST + 1]; 1731 #endif 1732 1733 1734 #if (ENABLE_MULTI_BUFFER_OPTIMIZE == 1) 1735 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 1736 { 1737 /* 1738 * Send nb_rx - nb_rx%8 packets 1739 * in groups of 8. 1740 */ 1741 int32_t n = RTE_ALIGN_FLOOR(nb_rx, 8); 1742 1743 for (j = 0; j < n; j += 8) { 1744 uint32_t pkt_type = 1745 pkts_burst[j]->packet_type & 1746 pkts_burst[j+1]->packet_type & 1747 pkts_burst[j+2]->packet_type & 1748 pkts_burst[j+3]->packet_type & 1749 pkts_burst[j+4]->packet_type & 1750 pkts_burst[j+5]->packet_type & 1751 pkts_burst[j+6]->packet_type & 1752 pkts_burst[j+7]->packet_type; 1753 if (pkt_type & RTE_PTYPE_L3_IPV4) { 1754 simple_ipv4_fwd_8pkts(&pkts_burst[j], portid); 1755 } else if (pkt_type & 1756 RTE_PTYPE_L3_IPV6) { 1757 simple_ipv6_fwd_8pkts(&pkts_burst[j], portid); 1758 } else { 1759 l3fwd_simple_forward(pkts_burst[j], portid); 1760 l3fwd_simple_forward(pkts_burst[j+1], portid); 1761 l3fwd_simple_forward(pkts_burst[j+2], portid); 1762 l3fwd_simple_forward(pkts_burst[j+3], portid); 1763 l3fwd_simple_forward(pkts_burst[j+4], portid); 1764 l3fwd_simple_forward(pkts_burst[j+5], portid); 1765 l3fwd_simple_forward(pkts_burst[j+6], portid); 1766 l3fwd_simple_forward(pkts_burst[j+7], portid); 1767 } 1768 } 1769 for (; j < nb_rx ; j++) 1770 l3fwd_simple_forward(pkts_burst[j], portid); 1771 } 1772 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 1773 1774 k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP); 1775 for (j = 0; j != k; j += FWDSTEP) 1776 processx4_step1(&pkts_burst[j], &dip[j / FWDSTEP], 1777 &ipv4_flag[j / FWDSTEP]); 1778 1779 k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP); 1780 for (j = 0; j != k; j += FWDSTEP) 1781 processx4_step2(dip[j / FWDSTEP], ipv4_flag[j / FWDSTEP], 1782 portid, &pkts_burst[j], &dst_port[j]); 1783 1784 /* 1785 * Finish packet processing and group consecutive 1786 * packets with the same destination port. 1787 */ 1788 k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP); 1789 if (k != 0) { 1790 __m128i dp1, dp2; 1791 1792 lp = pnum; 1793 lp[0] = 1; 1794 1795 processx4_step3(pkts_burst, dst_port); 1796 1797 /* dp1: <d[0], d[1], d[2], d[3], ... > */ 1798 dp1 = _mm_loadu_si128((__m128i *)dst_port); 1799 1800 for (j = FWDSTEP; j != k; j += FWDSTEP) { 1801 processx4_step3(&pkts_burst[j], &dst_port[j]); 1802 1803 /* 1804 * dp2: 1805 * <d[j-3], d[j-2], d[j-1], d[j], ... > 1806 */ 1807 dp2 = _mm_loadu_si128( 1808 (__m128i *)&dst_port[j - FWDSTEP + 1]); 1809 lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2); 1810 1811 /* 1812 * dp1: 1813 * <d[j], d[j+1], d[j+2], d[j+3], ... > 1814 */ 1815 dp1 = _mm_srli_si128(dp2, (FWDSTEP - 1) * 1816 sizeof(dst_port[0])); 1817 } 1818 1819 /* 1820 * dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... > 1821 */ 1822 dp2 = _mm_shufflelo_epi16(dp1, 0xf9); 1823 lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2); 1824 1825 /* 1826 * remove values added by the last repeated 1827 * dst port. 1828 */ 1829 lp[0]--; 1830 dlp = dst_port[j - 1]; 1831 } else { 1832 /* set dlp and lp to the never used values. */ 1833 dlp = BAD_PORT - 1; 1834 lp = pnum + MAX_PKT_BURST; 1835 } 1836 1837 /* Process up to last 3 packets one by one. */ 1838 switch (nb_rx % FWDSTEP) { 1839 case 3: 1840 process_packet(pkts_burst[j], dst_port + j, portid); 1841 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j); 1842 j++; 1843 /* fall-through */ 1844 case 2: 1845 process_packet(pkts_burst[j], dst_port + j, portid); 1846 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j); 1847 j++; 1848 /* fall-through */ 1849 case 1: 1850 process_packet(pkts_burst[j], dst_port + j, portid); 1851 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j); 1852 j++; 1853 } 1854 1855 /* 1856 * Send packets out, through destination port. 1857 * Consecuteve pacekts with the same destination port 1858 * are already grouped together. 1859 * If destination port for the packet equals BAD_PORT, 1860 * then free the packet without sending it out. 1861 */ 1862 for (j = 0; j < nb_rx; j += k) { 1863 1864 int32_t m; 1865 uint16_t pn; 1866 1867 pn = dst_port[j]; 1868 k = pnum[j]; 1869 1870 if (likely(pn != BAD_PORT)) 1871 send_packetsx4(pn, pkts_burst + j, k); 1872 else 1873 for (m = j; m != j + k; m++) 1874 rte_pktmbuf_free(pkts_burst[m]); 1875 1876 } 1877 1878 #endif /* APP_LOOKUP_METHOD */ 1879 #else /* ENABLE_MULTI_BUFFER_OPTIMIZE == 0 */ 1880 1881 /* Prefetch first packets */ 1882 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) 1883 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[j], void *)); 1884 1885 /* Prefetch and forward already prefetched packets */ 1886 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 1887 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 1888 j + PREFETCH_OFFSET], void *)); 1889 l3fwd_simple_forward(pkts_burst[j], portid); 1890 } 1891 1892 /* Forward remaining prefetched packets */ 1893 for (; j < nb_rx; j++) 1894 l3fwd_simple_forward(pkts_burst[j], portid); 1895 1896 #endif /* ENABLE_MULTI_BUFFER_OPTIMIZE */ 1897 1898 } 1899 1900 #if (APP_CPU_LOAD > 0) 1901 1902 /* 1903 * CPU-load stats collector 1904 */ 1905 static int 1906 cpu_load_collector(__rte_unused void *arg) { 1907 unsigned i, j, k; 1908 uint64_t hits; 1909 uint64_t prev_tsc, diff_tsc, cur_tsc; 1910 uint64_t total[MAX_CPU] = { 0 }; 1911 unsigned min_cpu = MAX_CPU; 1912 unsigned max_cpu = 0; 1913 unsigned cpu_id; 1914 int busy_total = 0; 1915 int busy_flag = 0; 1916 1917 unsigned int n_thread_per_cpu[MAX_CPU] = { 0 }; 1918 struct thread_conf *thread_per_cpu[MAX_CPU][MAX_THREAD]; 1919 1920 struct thread_conf *thread_conf; 1921 1922 const uint64_t interval_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 1923 US_PER_S * CPU_LOAD_TIMEOUT_US; 1924 1925 prev_tsc = 0; 1926 /* 1927 * Wait for all threads 1928 */ 1929 1930 printf("Waiting for %d rx threads and %d tx threads\n", n_rx_thread, 1931 n_tx_thread); 1932 1933 while (rte_atomic16_read(&rx_counter) < n_rx_thread) 1934 rte_pause(); 1935 1936 while (rte_atomic16_read(&tx_counter) < n_tx_thread) 1937 rte_pause(); 1938 1939 for (i = 0; i < n_rx_thread; i++) { 1940 1941 thread_conf = &rx_thread[i].conf; 1942 cpu_id = thread_conf->cpu_id; 1943 thread_per_cpu[cpu_id][n_thread_per_cpu[cpu_id]++] = thread_conf; 1944 1945 if (cpu_id > max_cpu) 1946 max_cpu = cpu_id; 1947 if (cpu_id < min_cpu) 1948 min_cpu = cpu_id; 1949 } 1950 for (i = 0; i < n_tx_thread; i++) { 1951 1952 thread_conf = &tx_thread[i].conf; 1953 cpu_id = thread_conf->cpu_id; 1954 thread_per_cpu[cpu_id][n_thread_per_cpu[cpu_id]++] = thread_conf; 1955 1956 if (thread_conf->cpu_id > max_cpu) 1957 max_cpu = thread_conf->cpu_id; 1958 if (thread_conf->cpu_id < min_cpu) 1959 min_cpu = thread_conf->cpu_id; 1960 } 1961 1962 while (1) { 1963 1964 cpu_load.counter++; 1965 for (i = min_cpu; i <= max_cpu; i++) { 1966 for (j = 0; j < MAX_CPU_COUNTER; j++) { 1967 for (k = 0; k < n_thread_per_cpu[i]; k++) 1968 if (thread_per_cpu[i][k]->busy[j]) { 1969 busy_flag = 1; 1970 break; 1971 } 1972 if (busy_flag) { 1973 cpu_load.hits[j][i]++; 1974 busy_total = 1; 1975 busy_flag = 0; 1976 } 1977 } 1978 1979 if (busy_total) { 1980 total[i]++; 1981 busy_total = 0; 1982 } 1983 } 1984 1985 cur_tsc = rte_rdtsc(); 1986 1987 diff_tsc = cur_tsc - prev_tsc; 1988 if (unlikely(diff_tsc > interval_tsc)) { 1989 1990 printf("\033c"); 1991 1992 printf("Cpu usage for %d rx threads and %d tx threads:\n\n", 1993 n_rx_thread, n_tx_thread); 1994 1995 printf("cpu# proc%% poll%% overhead%%\n\n"); 1996 1997 for (i = min_cpu; i <= max_cpu; i++) { 1998 hits = 0; 1999 printf("CPU %d:", i); 2000 for (j = 0; j < MAX_CPU_COUNTER; j++) { 2001 printf("%7" PRIu64 "", 2002 cpu_load.hits[j][i] * 100 / cpu_load.counter); 2003 hits += cpu_load.hits[j][i]; 2004 cpu_load.hits[j][i] = 0; 2005 } 2006 printf("%7" PRIu64 "\n", 2007 100 - total[i] * 100 / cpu_load.counter); 2008 total[i] = 0; 2009 } 2010 cpu_load.counter = 0; 2011 2012 prev_tsc = cur_tsc; 2013 } 2014 2015 } 2016 } 2017 #endif /* APP_CPU_LOAD */ 2018 2019 /* 2020 * Null processing lthread loop 2021 * 2022 * This loop is used to start empty scheduler on lcore. 2023 */ 2024 static void 2025 lthread_null(__rte_unused void *args) 2026 { 2027 int lcore_id = rte_lcore_id(); 2028 2029 RTE_LOG(INFO, L3FWD, "Starting scheduler on lcore %d.\n", lcore_id); 2030 lthread_exit(NULL); 2031 } 2032 2033 /* main processing loop */ 2034 static void 2035 lthread_tx_per_ring(void *dummy) 2036 { 2037 int nb_rx; 2038 uint16_t portid; 2039 struct rte_ring *ring; 2040 struct thread_tx_conf *tx_conf; 2041 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 2042 struct lthread_cond *ready; 2043 2044 tx_conf = (struct thread_tx_conf *)dummy; 2045 ring = tx_conf->ring; 2046 ready = *tx_conf->ready; 2047 2048 lthread_set_data((void *)tx_conf); 2049 2050 /* 2051 * Move this lthread to lcore 2052 */ 2053 lthread_set_affinity(tx_conf->conf.lcore_id); 2054 2055 RTE_LOG(INFO, L3FWD, "entering main tx loop on lcore %u\n", rte_lcore_id()); 2056 2057 nb_rx = 0; 2058 rte_atomic16_inc(&tx_counter); 2059 while (1) { 2060 2061 /* 2062 * Read packet from ring 2063 */ 2064 SET_CPU_BUSY(tx_conf, CPU_POLL); 2065 nb_rx = rte_ring_sc_dequeue_burst(ring, (void **)pkts_burst, 2066 MAX_PKT_BURST, NULL); 2067 SET_CPU_IDLE(tx_conf, CPU_POLL); 2068 2069 if (nb_rx > 0) { 2070 SET_CPU_BUSY(tx_conf, CPU_PROCESS); 2071 portid = pkts_burst[0]->port; 2072 process_burst(pkts_burst, nb_rx, portid); 2073 SET_CPU_IDLE(tx_conf, CPU_PROCESS); 2074 lthread_yield(); 2075 } else 2076 lthread_cond_wait(ready, 0); 2077 2078 } 2079 } 2080 2081 /* 2082 * Main tx-lthreads spawner lthread. 2083 * 2084 * This lthread is used to spawn one new lthread per ring from producers. 2085 * 2086 */ 2087 static void 2088 lthread_tx(void *args) 2089 { 2090 struct lthread *lt; 2091 2092 unsigned lcore_id; 2093 uint16_t portid; 2094 struct thread_tx_conf *tx_conf; 2095 2096 tx_conf = (struct thread_tx_conf *)args; 2097 lthread_set_data((void *)tx_conf); 2098 2099 /* 2100 * Move this lthread to the selected lcore 2101 */ 2102 lthread_set_affinity(tx_conf->conf.lcore_id); 2103 2104 /* 2105 * Spawn tx readers (one per input ring) 2106 */ 2107 lthread_create(<, tx_conf->conf.lcore_id, lthread_tx_per_ring, 2108 (void *)tx_conf); 2109 2110 lcore_id = rte_lcore_id(); 2111 2112 RTE_LOG(INFO, L3FWD, "Entering Tx main loop on lcore %u\n", lcore_id); 2113 2114 tx_conf->conf.cpu_id = sched_getcpu(); 2115 while (1) { 2116 2117 lthread_sleep(BURST_TX_DRAIN_US * 1000); 2118 2119 /* 2120 * TX burst queue drain 2121 */ 2122 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 2123 if (tx_conf->tx_mbufs[portid].len == 0) 2124 continue; 2125 SET_CPU_BUSY(tx_conf, CPU_PROCESS); 2126 send_burst(tx_conf, tx_conf->tx_mbufs[portid].len, portid); 2127 SET_CPU_IDLE(tx_conf, CPU_PROCESS); 2128 tx_conf->tx_mbufs[portid].len = 0; 2129 } 2130 2131 } 2132 } 2133 2134 static void 2135 lthread_rx(void *dummy) 2136 { 2137 int ret; 2138 uint16_t nb_rx; 2139 int i; 2140 uint16_t portid; 2141 uint8_t queueid; 2142 int worker_id; 2143 int len[RTE_MAX_LCORE] = { 0 }; 2144 int old_len, new_len; 2145 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 2146 struct thread_rx_conf *rx_conf; 2147 2148 rx_conf = (struct thread_rx_conf *)dummy; 2149 lthread_set_data((void *)rx_conf); 2150 2151 /* 2152 * Move this lthread to lcore 2153 */ 2154 lthread_set_affinity(rx_conf->conf.lcore_id); 2155 2156 if (rx_conf->n_rx_queue == 0) { 2157 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", rte_lcore_id()); 2158 return; 2159 } 2160 2161 RTE_LOG(INFO, L3FWD, "Entering main Rx loop on lcore %u\n", rte_lcore_id()); 2162 2163 for (i = 0; i < rx_conf->n_rx_queue; i++) { 2164 2165 portid = rx_conf->rx_queue_list[i].port_id; 2166 queueid = rx_conf->rx_queue_list[i].queue_id; 2167 RTE_LOG(INFO, L3FWD, 2168 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n", 2169 rte_lcore_id(), portid, queueid); 2170 } 2171 2172 /* 2173 * Init all condition variables (one per rx thread) 2174 */ 2175 for (i = 0; i < rx_conf->n_rx_queue; i++) 2176 lthread_cond_init(NULL, &rx_conf->ready[i], NULL); 2177 2178 worker_id = 0; 2179 2180 rx_conf->conf.cpu_id = sched_getcpu(); 2181 rte_atomic16_inc(&rx_counter); 2182 while (1) { 2183 2184 /* 2185 * Read packet from RX queues 2186 */ 2187 for (i = 0; i < rx_conf->n_rx_queue; ++i) { 2188 portid = rx_conf->rx_queue_list[i].port_id; 2189 queueid = rx_conf->rx_queue_list[i].queue_id; 2190 2191 SET_CPU_BUSY(rx_conf, CPU_POLL); 2192 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, 2193 MAX_PKT_BURST); 2194 SET_CPU_IDLE(rx_conf, CPU_POLL); 2195 2196 if (nb_rx != 0) { 2197 worker_id = (worker_id + 1) % rx_conf->n_ring; 2198 old_len = len[worker_id]; 2199 2200 SET_CPU_BUSY(rx_conf, CPU_PROCESS); 2201 ret = rte_ring_sp_enqueue_burst( 2202 rx_conf->ring[worker_id], 2203 (void **) pkts_burst, 2204 nb_rx, NULL); 2205 2206 new_len = old_len + ret; 2207 2208 if (new_len >= BURST_SIZE) { 2209 lthread_cond_signal(rx_conf->ready[worker_id]); 2210 new_len = 0; 2211 } 2212 2213 len[worker_id] = new_len; 2214 2215 if (unlikely(ret < nb_rx)) { 2216 uint32_t k; 2217 2218 for (k = ret; k < nb_rx; k++) { 2219 struct rte_mbuf *m = pkts_burst[k]; 2220 2221 rte_pktmbuf_free(m); 2222 } 2223 } 2224 SET_CPU_IDLE(rx_conf, CPU_PROCESS); 2225 } 2226 2227 lthread_yield(); 2228 } 2229 } 2230 } 2231 2232 /* 2233 * Start scheduler with initial lthread on lcore 2234 * 2235 * This lthread loop spawns all rx and tx lthreads on master lcore 2236 */ 2237 2238 static void 2239 lthread_spawner(__rte_unused void *arg) { 2240 struct lthread *lt[MAX_THREAD]; 2241 int i; 2242 int n_thread = 0; 2243 2244 printf("Entering lthread_spawner\n"); 2245 2246 /* 2247 * Create producers (rx threads) on default lcore 2248 */ 2249 for (i = 0; i < n_rx_thread; i++) { 2250 rx_thread[i].conf.thread_id = i; 2251 lthread_create(<[n_thread], -1, lthread_rx, 2252 (void *)&rx_thread[i]); 2253 n_thread++; 2254 } 2255 2256 /* 2257 * Wait for all producers. Until some producers can be started on the same 2258 * scheduler as this lthread, yielding is required to let them to run and 2259 * prevent deadlock here. 2260 */ 2261 while (rte_atomic16_read(&rx_counter) < n_rx_thread) 2262 lthread_sleep(100000); 2263 2264 /* 2265 * Create consumers (tx threads) on default lcore_id 2266 */ 2267 for (i = 0; i < n_tx_thread; i++) { 2268 tx_thread[i].conf.thread_id = i; 2269 lthread_create(<[n_thread], -1, lthread_tx, 2270 (void *)&tx_thread[i]); 2271 n_thread++; 2272 } 2273 2274 /* 2275 * Wait for all threads finished 2276 */ 2277 for (i = 0; i < n_thread; i++) 2278 lthread_join(lt[i], NULL); 2279 2280 } 2281 2282 /* 2283 * Start master scheduler with initial lthread spawning rx and tx lthreads 2284 * (main_lthread_master). 2285 */ 2286 static int 2287 lthread_master_spawner(__rte_unused void *arg) { 2288 struct lthread *lt; 2289 int lcore_id = rte_lcore_id(); 2290 2291 RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id]; 2292 lthread_create(<, -1, lthread_spawner, NULL); 2293 lthread_run(); 2294 2295 return 0; 2296 } 2297 2298 /* 2299 * Start scheduler on lcore. 2300 */ 2301 static int 2302 sched_spawner(__rte_unused void *arg) { 2303 struct lthread *lt; 2304 int lcore_id = rte_lcore_id(); 2305 2306 #if (APP_CPU_LOAD) 2307 if (lcore_id == cpu_load_lcore_id) { 2308 cpu_load_collector(arg); 2309 return 0; 2310 } 2311 #endif /* APP_CPU_LOAD */ 2312 2313 RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id]; 2314 lthread_create(<, -1, lthread_null, NULL); 2315 lthread_run(); 2316 2317 return 0; 2318 } 2319 2320 /* main processing loop */ 2321 static int 2322 pthread_tx(void *dummy) 2323 { 2324 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 2325 uint64_t prev_tsc, diff_tsc, cur_tsc; 2326 int nb_rx; 2327 uint16_t portid; 2328 struct thread_tx_conf *tx_conf; 2329 2330 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / 2331 US_PER_S * BURST_TX_DRAIN_US; 2332 2333 prev_tsc = 0; 2334 2335 tx_conf = (struct thread_tx_conf *)dummy; 2336 2337 RTE_LOG(INFO, L3FWD, "Entering main Tx loop on lcore %u\n", rte_lcore_id()); 2338 2339 tx_conf->conf.cpu_id = sched_getcpu(); 2340 rte_atomic16_inc(&tx_counter); 2341 while (1) { 2342 2343 cur_tsc = rte_rdtsc(); 2344 2345 /* 2346 * TX burst queue drain 2347 */ 2348 diff_tsc = cur_tsc - prev_tsc; 2349 if (unlikely(diff_tsc > drain_tsc)) { 2350 2351 /* 2352 * This could be optimized (use queueid instead of 2353 * portid), but it is not called so often 2354 */ 2355 SET_CPU_BUSY(tx_conf, CPU_PROCESS); 2356 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 2357 if (tx_conf->tx_mbufs[portid].len == 0) 2358 continue; 2359 send_burst(tx_conf, tx_conf->tx_mbufs[portid].len, portid); 2360 tx_conf->tx_mbufs[portid].len = 0; 2361 } 2362 SET_CPU_IDLE(tx_conf, CPU_PROCESS); 2363 2364 prev_tsc = cur_tsc; 2365 } 2366 2367 /* 2368 * Read packet from ring 2369 */ 2370 SET_CPU_BUSY(tx_conf, CPU_POLL); 2371 nb_rx = rte_ring_sc_dequeue_burst(tx_conf->ring, 2372 (void **)pkts_burst, MAX_PKT_BURST, NULL); 2373 SET_CPU_IDLE(tx_conf, CPU_POLL); 2374 2375 if (unlikely(nb_rx == 0)) { 2376 sched_yield(); 2377 continue; 2378 } 2379 2380 SET_CPU_BUSY(tx_conf, CPU_PROCESS); 2381 portid = pkts_burst[0]->port; 2382 process_burst(pkts_burst, nb_rx, portid); 2383 SET_CPU_IDLE(tx_conf, CPU_PROCESS); 2384 2385 } 2386 } 2387 2388 static int 2389 pthread_rx(void *dummy) 2390 { 2391 int i; 2392 int worker_id; 2393 uint32_t n; 2394 uint32_t nb_rx; 2395 unsigned lcore_id; 2396 uint8_t queueid; 2397 uint16_t portid; 2398 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 2399 2400 struct thread_rx_conf *rx_conf; 2401 2402 lcore_id = rte_lcore_id(); 2403 rx_conf = (struct thread_rx_conf *)dummy; 2404 2405 if (rx_conf->n_rx_queue == 0) { 2406 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id); 2407 return 0; 2408 } 2409 2410 RTE_LOG(INFO, L3FWD, "entering main rx loop on lcore %u\n", lcore_id); 2411 2412 for (i = 0; i < rx_conf->n_rx_queue; i++) { 2413 2414 portid = rx_conf->rx_queue_list[i].port_id; 2415 queueid = rx_conf->rx_queue_list[i].queue_id; 2416 RTE_LOG(INFO, L3FWD, 2417 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n", 2418 lcore_id, portid, queueid); 2419 } 2420 2421 worker_id = 0; 2422 rx_conf->conf.cpu_id = sched_getcpu(); 2423 rte_atomic16_inc(&rx_counter); 2424 while (1) { 2425 2426 /* 2427 * Read packet from RX queues 2428 */ 2429 for (i = 0; i < rx_conf->n_rx_queue; ++i) { 2430 portid = rx_conf->rx_queue_list[i].port_id; 2431 queueid = rx_conf->rx_queue_list[i].queue_id; 2432 2433 SET_CPU_BUSY(rx_conf, CPU_POLL); 2434 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, 2435 MAX_PKT_BURST); 2436 SET_CPU_IDLE(rx_conf, CPU_POLL); 2437 2438 if (nb_rx == 0) { 2439 sched_yield(); 2440 continue; 2441 } 2442 2443 SET_CPU_BUSY(rx_conf, CPU_PROCESS); 2444 worker_id = (worker_id + 1) % rx_conf->n_ring; 2445 n = rte_ring_sp_enqueue_burst(rx_conf->ring[worker_id], 2446 (void **)pkts_burst, nb_rx, NULL); 2447 2448 if (unlikely(n != nb_rx)) { 2449 uint32_t k; 2450 2451 for (k = n; k < nb_rx; k++) { 2452 struct rte_mbuf *m = pkts_burst[k]; 2453 2454 rte_pktmbuf_free(m); 2455 } 2456 } 2457 2458 SET_CPU_IDLE(rx_conf, CPU_PROCESS); 2459 2460 } 2461 } 2462 } 2463 2464 /* 2465 * P-Thread spawner. 2466 */ 2467 static int 2468 pthread_run(__rte_unused void *arg) { 2469 int lcore_id = rte_lcore_id(); 2470 int i; 2471 2472 for (i = 0; i < n_rx_thread; i++) 2473 if (rx_thread[i].conf.lcore_id == lcore_id) { 2474 printf("Start rx thread on %d...\n", lcore_id); 2475 RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id]; 2476 RTE_PER_LCORE(lcore_conf)->data = (void *)&rx_thread[i]; 2477 pthread_rx((void *)&rx_thread[i]); 2478 return 0; 2479 } 2480 2481 for (i = 0; i < n_tx_thread; i++) 2482 if (tx_thread[i].conf.lcore_id == lcore_id) { 2483 printf("Start tx thread on %d...\n", lcore_id); 2484 RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id]; 2485 RTE_PER_LCORE(lcore_conf)->data = (void *)&tx_thread[i]; 2486 pthread_tx((void *)&tx_thread[i]); 2487 return 0; 2488 } 2489 2490 #if (APP_CPU_LOAD) 2491 if (lcore_id == cpu_load_lcore_id) 2492 cpu_load_collector(arg); 2493 #endif /* APP_CPU_LOAD */ 2494 2495 return 0; 2496 } 2497 2498 static int 2499 check_lcore_params(void) 2500 { 2501 uint8_t queue, lcore; 2502 uint16_t i; 2503 int socketid; 2504 2505 for (i = 0; i < nb_rx_thread_params; ++i) { 2506 queue = rx_thread_params[i].queue_id; 2507 if (queue >= MAX_RX_QUEUE_PER_PORT) { 2508 printf("invalid queue number: %hhu\n", queue); 2509 return -1; 2510 } 2511 lcore = rx_thread_params[i].lcore_id; 2512 if (!rte_lcore_is_enabled(lcore)) { 2513 printf("error: lcore %hhu is not enabled in lcore mask\n", lcore); 2514 return -1; 2515 } 2516 socketid = rte_lcore_to_socket_id(lcore); 2517 if ((socketid != 0) && (numa_on == 0)) 2518 printf("warning: lcore %hhu is on socket %d with numa off\n", 2519 lcore, socketid); 2520 } 2521 return 0; 2522 } 2523 2524 static int 2525 check_port_config(const unsigned nb_ports) 2526 { 2527 unsigned portid; 2528 uint16_t i; 2529 2530 for (i = 0; i < nb_rx_thread_params; ++i) { 2531 portid = rx_thread_params[i].port_id; 2532 if ((enabled_port_mask & (1 << portid)) == 0) { 2533 printf("port %u is not enabled in port mask\n", portid); 2534 return -1; 2535 } 2536 if (portid >= nb_ports) { 2537 printf("port %u is not present on the board\n", portid); 2538 return -1; 2539 } 2540 } 2541 return 0; 2542 } 2543 2544 static uint8_t 2545 get_port_n_rx_queues(const uint16_t port) 2546 { 2547 int queue = -1; 2548 uint16_t i; 2549 2550 for (i = 0; i < nb_rx_thread_params; ++i) 2551 if (rx_thread_params[i].port_id == port && 2552 rx_thread_params[i].queue_id > queue) 2553 queue = rx_thread_params[i].queue_id; 2554 2555 return (uint8_t)(++queue); 2556 } 2557 2558 static int 2559 init_rx_rings(void) 2560 { 2561 unsigned socket_io; 2562 struct thread_rx_conf *rx_conf; 2563 struct thread_tx_conf *tx_conf; 2564 unsigned rx_thread_id, tx_thread_id; 2565 char name[256]; 2566 struct rte_ring *ring = NULL; 2567 2568 for (tx_thread_id = 0; tx_thread_id < n_tx_thread; tx_thread_id++) { 2569 2570 tx_conf = &tx_thread[tx_thread_id]; 2571 2572 printf("Connecting tx-thread %d with rx-thread %d\n", tx_thread_id, 2573 tx_conf->conf.thread_id); 2574 2575 rx_thread_id = tx_conf->conf.thread_id; 2576 if (rx_thread_id > n_tx_thread) { 2577 printf("connection from tx-thread %u to rx-thread %u fails " 2578 "(rx-thread not defined)\n", tx_thread_id, rx_thread_id); 2579 return -1; 2580 } 2581 2582 rx_conf = &rx_thread[rx_thread_id]; 2583 socket_io = rte_lcore_to_socket_id(rx_conf->conf.lcore_id); 2584 2585 snprintf(name, sizeof(name), "app_ring_s%u_rx%u_tx%u", 2586 socket_io, rx_thread_id, tx_thread_id); 2587 2588 ring = rte_ring_create(name, 1024 * 4, socket_io, 2589 RING_F_SP_ENQ | RING_F_SC_DEQ); 2590 2591 if (ring == NULL) { 2592 rte_panic("Cannot create ring to connect rx-thread %u " 2593 "with tx-thread %u\n", rx_thread_id, tx_thread_id); 2594 } 2595 2596 rx_conf->ring[rx_conf->n_ring] = ring; 2597 2598 tx_conf->ring = ring; 2599 tx_conf->ready = &rx_conf->ready[rx_conf->n_ring]; 2600 2601 rx_conf->n_ring++; 2602 } 2603 return 0; 2604 } 2605 2606 static int 2607 init_rx_queues(void) 2608 { 2609 uint16_t i, nb_rx_queue; 2610 uint8_t thread; 2611 2612 n_rx_thread = 0; 2613 2614 for (i = 0; i < nb_rx_thread_params; ++i) { 2615 thread = rx_thread_params[i].thread_id; 2616 nb_rx_queue = rx_thread[thread].n_rx_queue; 2617 2618 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { 2619 printf("error: too many queues (%u) for thread: %u\n", 2620 (unsigned)nb_rx_queue + 1, (unsigned)thread); 2621 return -1; 2622 } 2623 2624 rx_thread[thread].conf.thread_id = thread; 2625 rx_thread[thread].conf.lcore_id = rx_thread_params[i].lcore_id; 2626 rx_thread[thread].rx_queue_list[nb_rx_queue].port_id = 2627 rx_thread_params[i].port_id; 2628 rx_thread[thread].rx_queue_list[nb_rx_queue].queue_id = 2629 rx_thread_params[i].queue_id; 2630 rx_thread[thread].n_rx_queue++; 2631 2632 if (thread >= n_rx_thread) 2633 n_rx_thread = thread + 1; 2634 2635 } 2636 return 0; 2637 } 2638 2639 static int 2640 init_tx_threads(void) 2641 { 2642 int i; 2643 2644 n_tx_thread = 0; 2645 for (i = 0; i < nb_tx_thread_params; ++i) { 2646 tx_thread[n_tx_thread].conf.thread_id = tx_thread_params[i].thread_id; 2647 tx_thread[n_tx_thread].conf.lcore_id = tx_thread_params[i].lcore_id; 2648 n_tx_thread++; 2649 } 2650 return 0; 2651 } 2652 2653 /* display usage */ 2654 static void 2655 print_usage(const char *prgname) 2656 { 2657 printf("%s [EAL options] -- -p PORTMASK -P" 2658 " [--rx (port,queue,lcore,thread)[,(port,queue,lcore,thread]]" 2659 " [--tx (lcore,thread)[,(lcore,thread]]" 2660 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n" 2661 " [--parse-ptype]\n\n" 2662 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 2663 " -P : enable promiscuous mode\n" 2664 " --rx (port,queue,lcore,thread): rx queues configuration\n" 2665 " --tx (lcore,thread): tx threads configuration\n" 2666 " --stat-lcore LCORE: use lcore for stat collector\n" 2667 " --eth-dest=X,MM:MM:MM:MM:MM:MM: optional, ethernet destination for port X\n" 2668 " --no-numa: optional, disable numa awareness\n" 2669 " --ipv6: optional, specify it if running ipv6 packets\n" 2670 " --enable-jumbo: enable jumbo frame" 2671 " which max packet len is PKTLEN in decimal (64-9600)\n" 2672 " --hash-entry-num: specify the hash entry number in hexadecimal to be setup\n" 2673 " --no-lthreads: turn off lthread model\n" 2674 " --parse-ptype: set to use software to analyze packet type\n\n", 2675 prgname); 2676 } 2677 2678 static int parse_max_pkt_len(const char *pktlen) 2679 { 2680 char *end = NULL; 2681 unsigned long len; 2682 2683 /* parse decimal string */ 2684 len = strtoul(pktlen, &end, 10); 2685 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0')) 2686 return -1; 2687 2688 if (len == 0) 2689 return -1; 2690 2691 return len; 2692 } 2693 2694 static int 2695 parse_portmask(const char *portmask) 2696 { 2697 char *end = NULL; 2698 unsigned long pm; 2699 2700 /* parse hexadecimal string */ 2701 pm = strtoul(portmask, &end, 16); 2702 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 2703 return -1; 2704 2705 if (pm == 0) 2706 return -1; 2707 2708 return pm; 2709 } 2710 2711 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 2712 static int 2713 parse_hash_entry_number(const char *hash_entry_num) 2714 { 2715 char *end = NULL; 2716 unsigned long hash_en; 2717 2718 /* parse hexadecimal string */ 2719 hash_en = strtoul(hash_entry_num, &end, 16); 2720 if ((hash_entry_num[0] == '\0') || (end == NULL) || (*end != '\0')) 2721 return -1; 2722 2723 if (hash_en == 0) 2724 return -1; 2725 2726 return hash_en; 2727 } 2728 #endif 2729 2730 static int 2731 parse_rx_config(const char *q_arg) 2732 { 2733 char s[256]; 2734 const char *p, *p0 = q_arg; 2735 char *end; 2736 enum fieldnames { 2737 FLD_PORT = 0, 2738 FLD_QUEUE, 2739 FLD_LCORE, 2740 FLD_THREAD, 2741 _NUM_FLD 2742 }; 2743 unsigned long int_fld[_NUM_FLD]; 2744 char *str_fld[_NUM_FLD]; 2745 int i; 2746 unsigned size; 2747 2748 nb_rx_thread_params = 0; 2749 2750 while ((p = strchr(p0, '(')) != NULL) { 2751 ++p; 2752 p0 = strchr(p, ')'); 2753 if (p0 == NULL) 2754 return -1; 2755 2756 size = p0 - p; 2757 if (size >= sizeof(s)) 2758 return -1; 2759 2760 snprintf(s, sizeof(s), "%.*s", size, p); 2761 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD) 2762 return -1; 2763 for (i = 0; i < _NUM_FLD; i++) { 2764 errno = 0; 2765 int_fld[i] = strtoul(str_fld[i], &end, 0); 2766 if (errno != 0 || end == str_fld[i] || int_fld[i] > 255) 2767 return -1; 2768 } 2769 if (nb_rx_thread_params >= MAX_LCORE_PARAMS) { 2770 printf("exceeded max number of rx params: %hu\n", 2771 nb_rx_thread_params); 2772 return -1; 2773 } 2774 rx_thread_params_array[nb_rx_thread_params].port_id = 2775 int_fld[FLD_PORT]; 2776 rx_thread_params_array[nb_rx_thread_params].queue_id = 2777 (uint8_t)int_fld[FLD_QUEUE]; 2778 rx_thread_params_array[nb_rx_thread_params].lcore_id = 2779 (uint8_t)int_fld[FLD_LCORE]; 2780 rx_thread_params_array[nb_rx_thread_params].thread_id = 2781 (uint8_t)int_fld[FLD_THREAD]; 2782 ++nb_rx_thread_params; 2783 } 2784 rx_thread_params = rx_thread_params_array; 2785 return 0; 2786 } 2787 2788 static int 2789 parse_tx_config(const char *q_arg) 2790 { 2791 char s[256]; 2792 const char *p, *p0 = q_arg; 2793 char *end; 2794 enum fieldnames { 2795 FLD_LCORE = 0, 2796 FLD_THREAD, 2797 _NUM_FLD 2798 }; 2799 unsigned long int_fld[_NUM_FLD]; 2800 char *str_fld[_NUM_FLD]; 2801 int i; 2802 unsigned size; 2803 2804 nb_tx_thread_params = 0; 2805 2806 while ((p = strchr(p0, '(')) != NULL) { 2807 ++p; 2808 p0 = strchr(p, ')'); 2809 if (p0 == NULL) 2810 return -1; 2811 2812 size = p0 - p; 2813 if (size >= sizeof(s)) 2814 return -1; 2815 2816 snprintf(s, sizeof(s), "%.*s", size, p); 2817 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD) 2818 return -1; 2819 for (i = 0; i < _NUM_FLD; i++) { 2820 errno = 0; 2821 int_fld[i] = strtoul(str_fld[i], &end, 0); 2822 if (errno != 0 || end == str_fld[i] || int_fld[i] > 255) 2823 return -1; 2824 } 2825 if (nb_tx_thread_params >= MAX_LCORE_PARAMS) { 2826 printf("exceeded max number of tx params: %hu\n", 2827 nb_tx_thread_params); 2828 return -1; 2829 } 2830 tx_thread_params_array[nb_tx_thread_params].lcore_id = 2831 (uint8_t)int_fld[FLD_LCORE]; 2832 tx_thread_params_array[nb_tx_thread_params].thread_id = 2833 (uint8_t)int_fld[FLD_THREAD]; 2834 ++nb_tx_thread_params; 2835 } 2836 tx_thread_params = tx_thread_params_array; 2837 2838 return 0; 2839 } 2840 2841 #if (APP_CPU_LOAD > 0) 2842 static int 2843 parse_stat_lcore(const char *stat_lcore) 2844 { 2845 char *end = NULL; 2846 unsigned long lcore_id; 2847 2848 lcore_id = strtoul(stat_lcore, &end, 10); 2849 if ((stat_lcore[0] == '\0') || (end == NULL) || (*end != '\0')) 2850 return -1; 2851 2852 return lcore_id; 2853 } 2854 #endif 2855 2856 static void 2857 parse_eth_dest(const char *optarg) 2858 { 2859 uint16_t portid; 2860 char *port_end; 2861 uint8_t c, *dest, peer_addr[6]; 2862 2863 errno = 0; 2864 portid = strtoul(optarg, &port_end, 10); 2865 if (errno != 0 || port_end == optarg || *port_end++ != ',') 2866 rte_exit(EXIT_FAILURE, 2867 "Invalid eth-dest: %s", optarg); 2868 if (portid >= RTE_MAX_ETHPORTS) 2869 rte_exit(EXIT_FAILURE, 2870 "eth-dest: port %d >= RTE_MAX_ETHPORTS(%d)\n", 2871 portid, RTE_MAX_ETHPORTS); 2872 2873 if (cmdline_parse_etheraddr(NULL, port_end, 2874 &peer_addr, sizeof(peer_addr)) < 0) 2875 rte_exit(EXIT_FAILURE, 2876 "Invalid ethernet address: %s\n", 2877 port_end); 2878 dest = (uint8_t *)&dest_eth_addr[portid]; 2879 for (c = 0; c < 6; c++) 2880 dest[c] = peer_addr[c]; 2881 *(uint64_t *)(val_eth + portid) = dest_eth_addr[portid]; 2882 } 2883 2884 #define CMD_LINE_OPT_RX_CONFIG "rx" 2885 #define CMD_LINE_OPT_TX_CONFIG "tx" 2886 #define CMD_LINE_OPT_STAT_LCORE "stat-lcore" 2887 #define CMD_LINE_OPT_ETH_DEST "eth-dest" 2888 #define CMD_LINE_OPT_NO_NUMA "no-numa" 2889 #define CMD_LINE_OPT_IPV6 "ipv6" 2890 #define CMD_LINE_OPT_ENABLE_JUMBO "enable-jumbo" 2891 #define CMD_LINE_OPT_HASH_ENTRY_NUM "hash-entry-num" 2892 #define CMD_LINE_OPT_NO_LTHREADS "no-lthreads" 2893 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype" 2894 2895 /* Parse the argument given in the command line of the application */ 2896 static int 2897 parse_args(int argc, char **argv) 2898 { 2899 int opt, ret; 2900 char **argvopt; 2901 int option_index; 2902 char *prgname = argv[0]; 2903 static struct option lgopts[] = { 2904 {CMD_LINE_OPT_RX_CONFIG, 1, 0, 0}, 2905 {CMD_LINE_OPT_TX_CONFIG, 1, 0, 0}, 2906 {CMD_LINE_OPT_STAT_LCORE, 1, 0, 0}, 2907 {CMD_LINE_OPT_ETH_DEST, 1, 0, 0}, 2908 {CMD_LINE_OPT_NO_NUMA, 0, 0, 0}, 2909 {CMD_LINE_OPT_IPV6, 0, 0, 0}, 2910 {CMD_LINE_OPT_ENABLE_JUMBO, 0, 0, 0}, 2911 {CMD_LINE_OPT_HASH_ENTRY_NUM, 1, 0, 0}, 2912 {CMD_LINE_OPT_NO_LTHREADS, 0, 0, 0}, 2913 {CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0}, 2914 {NULL, 0, 0, 0} 2915 }; 2916 2917 argvopt = argv; 2918 2919 while ((opt = getopt_long(argc, argvopt, "p:P", 2920 lgopts, &option_index)) != EOF) { 2921 2922 switch (opt) { 2923 /* portmask */ 2924 case 'p': 2925 enabled_port_mask = parse_portmask(optarg); 2926 if (enabled_port_mask == 0) { 2927 printf("invalid portmask\n"); 2928 print_usage(prgname); 2929 return -1; 2930 } 2931 break; 2932 case 'P': 2933 printf("Promiscuous mode selected\n"); 2934 promiscuous_on = 1; 2935 break; 2936 2937 /* long options */ 2938 case 0: 2939 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_RX_CONFIG, 2940 sizeof(CMD_LINE_OPT_RX_CONFIG))) { 2941 ret = parse_rx_config(optarg); 2942 if (ret) { 2943 printf("invalid rx-config\n"); 2944 print_usage(prgname); 2945 return -1; 2946 } 2947 } 2948 2949 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_TX_CONFIG, 2950 sizeof(CMD_LINE_OPT_TX_CONFIG))) { 2951 ret = parse_tx_config(optarg); 2952 if (ret) { 2953 printf("invalid tx-config\n"); 2954 print_usage(prgname); 2955 return -1; 2956 } 2957 } 2958 2959 #if (APP_CPU_LOAD > 0) 2960 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_STAT_LCORE, 2961 sizeof(CMD_LINE_OPT_STAT_LCORE))) { 2962 cpu_load_lcore_id = parse_stat_lcore(optarg); 2963 } 2964 #endif 2965 2966 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ETH_DEST, 2967 sizeof(CMD_LINE_OPT_ETH_DEST))) 2968 parse_eth_dest(optarg); 2969 2970 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_NUMA, 2971 sizeof(CMD_LINE_OPT_NO_NUMA))) { 2972 printf("numa is disabled\n"); 2973 numa_on = 0; 2974 } 2975 2976 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 2977 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_IPV6, 2978 sizeof(CMD_LINE_OPT_IPV6))) { 2979 printf("ipv6 is specified\n"); 2980 ipv6 = 1; 2981 } 2982 #endif 2983 2984 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_LTHREADS, 2985 sizeof(CMD_LINE_OPT_NO_LTHREADS))) { 2986 printf("l-threads model is disabled\n"); 2987 lthreads_on = 0; 2988 } 2989 2990 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_PARSE_PTYPE, 2991 sizeof(CMD_LINE_OPT_PARSE_PTYPE))) { 2992 printf("software packet type parsing enabled\n"); 2993 parse_ptype_on = 1; 2994 } 2995 2996 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ENABLE_JUMBO, 2997 sizeof(CMD_LINE_OPT_ENABLE_JUMBO))) { 2998 struct option lenopts = {"max-pkt-len", required_argument, 0, 2999 0}; 3000 3001 printf("jumbo frame is enabled - disabling simple TX path\n"); 3002 port_conf.rxmode.jumbo_frame = 1; 3003 3004 /* if no max-pkt-len set, use the default value ETHER_MAX_LEN */ 3005 if (0 == getopt_long(argc, argvopt, "", &lenopts, 3006 &option_index)) { 3007 3008 ret = parse_max_pkt_len(optarg); 3009 if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)) { 3010 printf("invalid packet length\n"); 3011 print_usage(prgname); 3012 return -1; 3013 } 3014 port_conf.rxmode.max_rx_pkt_len = ret; 3015 } 3016 printf("set jumbo frame max packet length to %u\n", 3017 (unsigned int)port_conf.rxmode.max_rx_pkt_len); 3018 } 3019 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 3020 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_HASH_ENTRY_NUM, 3021 sizeof(CMD_LINE_OPT_HASH_ENTRY_NUM))) { 3022 ret = parse_hash_entry_number(optarg); 3023 if ((ret > 0) && (ret <= L3FWD_HASH_ENTRIES)) { 3024 hash_entry_number = ret; 3025 } else { 3026 printf("invalid hash entry number\n"); 3027 print_usage(prgname); 3028 return -1; 3029 } 3030 } 3031 #endif 3032 break; 3033 3034 default: 3035 print_usage(prgname); 3036 return -1; 3037 } 3038 } 3039 3040 if (optind >= 0) 3041 argv[optind-1] = prgname; 3042 3043 ret = optind-1; 3044 optind = 1; /* reset getopt lib */ 3045 return ret; 3046 } 3047 3048 static void 3049 print_ethaddr(const char *name, const struct ether_addr *eth_addr) 3050 { 3051 char buf[ETHER_ADDR_FMT_SIZE]; 3052 3053 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 3054 printf("%s%s", name, buf); 3055 } 3056 3057 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) 3058 3059 static void convert_ipv4_5tuple(struct ipv4_5tuple *key1, 3060 union ipv4_5tuple_host *key2) 3061 { 3062 key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst); 3063 key2->ip_src = rte_cpu_to_be_32(key1->ip_src); 3064 key2->port_dst = rte_cpu_to_be_16(key1->port_dst); 3065 key2->port_src = rte_cpu_to_be_16(key1->port_src); 3066 key2->proto = key1->proto; 3067 key2->pad0 = 0; 3068 key2->pad1 = 0; 3069 } 3070 3071 static void convert_ipv6_5tuple(struct ipv6_5tuple *key1, 3072 union ipv6_5tuple_host *key2) 3073 { 3074 uint32_t i; 3075 3076 for (i = 0; i < 16; i++) { 3077 key2->ip_dst[i] = key1->ip_dst[i]; 3078 key2->ip_src[i] = key1->ip_src[i]; 3079 } 3080 key2->port_dst = rte_cpu_to_be_16(key1->port_dst); 3081 key2->port_src = rte_cpu_to_be_16(key1->port_src); 3082 key2->proto = key1->proto; 3083 key2->pad0 = 0; 3084 key2->pad1 = 0; 3085 key2->reserve = 0; 3086 } 3087 3088 #define BYTE_VALUE_MAX 256 3089 #define ALL_32_BITS 0xffffffff 3090 #define BIT_8_TO_15 0x0000ff00 3091 static inline void 3092 populate_ipv4_few_flow_into_table(const struct rte_hash *h) 3093 { 3094 uint32_t i; 3095 int32_t ret; 3096 uint32_t array_len = RTE_DIM(ipv4_l3fwd_route_array); 3097 3098 mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15); 3099 for (i = 0; i < array_len; i++) { 3100 struct ipv4_l3fwd_route entry; 3101 union ipv4_5tuple_host newkey; 3102 3103 entry = ipv4_l3fwd_route_array[i]; 3104 convert_ipv4_5tuple(&entry.key, &newkey); 3105 ret = rte_hash_add_key(h, (void *)&newkey); 3106 if (ret < 0) { 3107 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32 3108 " to the l3fwd hash.\n", i); 3109 } 3110 ipv4_l3fwd_out_if[ret] = entry.if_out; 3111 } 3112 printf("Hash: Adding 0x%" PRIx32 " keys\n", array_len); 3113 } 3114 3115 #define BIT_16_TO_23 0x00ff0000 3116 static inline void 3117 populate_ipv6_few_flow_into_table(const struct rte_hash *h) 3118 { 3119 uint32_t i; 3120 int32_t ret; 3121 uint32_t array_len = RTE_DIM(ipv6_l3fwd_route_array); 3122 3123 mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23); 3124 mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS); 3125 for (i = 0; i < array_len; i++) { 3126 struct ipv6_l3fwd_route entry; 3127 union ipv6_5tuple_host newkey; 3128 3129 entry = ipv6_l3fwd_route_array[i]; 3130 convert_ipv6_5tuple(&entry.key, &newkey); 3131 ret = rte_hash_add_key(h, (void *)&newkey); 3132 if (ret < 0) { 3133 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32 3134 " to the l3fwd hash.\n", i); 3135 } 3136 ipv6_l3fwd_out_if[ret] = entry.if_out; 3137 } 3138 printf("Hash: Adding 0x%" PRIx32 "keys\n", array_len); 3139 } 3140 3141 #define NUMBER_PORT_USED 4 3142 static inline void 3143 populate_ipv4_many_flow_into_table(const struct rte_hash *h, 3144 unsigned int nr_flow) 3145 { 3146 unsigned i; 3147 3148 mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15); 3149 3150 for (i = 0; i < nr_flow; i++) { 3151 struct ipv4_l3fwd_route entry; 3152 union ipv4_5tuple_host newkey; 3153 uint8_t a = (uint8_t)((i / NUMBER_PORT_USED) % BYTE_VALUE_MAX); 3154 uint8_t b = (uint8_t)(((i / NUMBER_PORT_USED) / BYTE_VALUE_MAX) % 3155 BYTE_VALUE_MAX); 3156 uint8_t c = (uint8_t)((i / NUMBER_PORT_USED) / (BYTE_VALUE_MAX * 3157 BYTE_VALUE_MAX)); 3158 /* Create the ipv4 exact match flow */ 3159 memset(&entry, 0, sizeof(entry)); 3160 switch (i & (NUMBER_PORT_USED - 1)) { 3161 case 0: 3162 entry = ipv4_l3fwd_route_array[0]; 3163 entry.key.ip_dst = IPv4(101, c, b, a); 3164 break; 3165 case 1: 3166 entry = ipv4_l3fwd_route_array[1]; 3167 entry.key.ip_dst = IPv4(201, c, b, a); 3168 break; 3169 case 2: 3170 entry = ipv4_l3fwd_route_array[2]; 3171 entry.key.ip_dst = IPv4(111, c, b, a); 3172 break; 3173 case 3: 3174 entry = ipv4_l3fwd_route_array[3]; 3175 entry.key.ip_dst = IPv4(211, c, b, a); 3176 break; 3177 }; 3178 convert_ipv4_5tuple(&entry.key, &newkey); 3179 int32_t ret = rte_hash_add_key(h, (void *)&newkey); 3180 3181 if (ret < 0) 3182 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i); 3183 3184 ipv4_l3fwd_out_if[ret] = (uint8_t)entry.if_out; 3185 3186 } 3187 printf("Hash: Adding 0x%x keys\n", nr_flow); 3188 } 3189 3190 static inline void 3191 populate_ipv6_many_flow_into_table(const struct rte_hash *h, 3192 unsigned int nr_flow) 3193 { 3194 unsigned i; 3195 3196 mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23); 3197 mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS); 3198 for (i = 0; i < nr_flow; i++) { 3199 struct ipv6_l3fwd_route entry; 3200 union ipv6_5tuple_host newkey; 3201 3202 uint8_t a = (uint8_t) ((i / NUMBER_PORT_USED) % BYTE_VALUE_MAX); 3203 uint8_t b = (uint8_t) (((i / NUMBER_PORT_USED) / BYTE_VALUE_MAX) % 3204 BYTE_VALUE_MAX); 3205 uint8_t c = (uint8_t) ((i / NUMBER_PORT_USED) / (BYTE_VALUE_MAX * 3206 BYTE_VALUE_MAX)); 3207 3208 /* Create the ipv6 exact match flow */ 3209 memset(&entry, 0, sizeof(entry)); 3210 switch (i & (NUMBER_PORT_USED - 1)) { 3211 case 0: 3212 entry = ipv6_l3fwd_route_array[0]; 3213 break; 3214 case 1: 3215 entry = ipv6_l3fwd_route_array[1]; 3216 break; 3217 case 2: 3218 entry = ipv6_l3fwd_route_array[2]; 3219 break; 3220 case 3: 3221 entry = ipv6_l3fwd_route_array[3]; 3222 break; 3223 }; 3224 entry.key.ip_dst[13] = c; 3225 entry.key.ip_dst[14] = b; 3226 entry.key.ip_dst[15] = a; 3227 convert_ipv6_5tuple(&entry.key, &newkey); 3228 int32_t ret = rte_hash_add_key(h, (void *)&newkey); 3229 3230 if (ret < 0) 3231 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i); 3232 3233 ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out; 3234 3235 } 3236 printf("Hash: Adding 0x%x keys\n", nr_flow); 3237 } 3238 3239 static void 3240 setup_hash(int socketid) 3241 { 3242 struct rte_hash_parameters ipv4_l3fwd_hash_params = { 3243 .name = NULL, 3244 .entries = L3FWD_HASH_ENTRIES, 3245 .key_len = sizeof(union ipv4_5tuple_host), 3246 .hash_func = ipv4_hash_crc, 3247 .hash_func_init_val = 0, 3248 }; 3249 3250 struct rte_hash_parameters ipv6_l3fwd_hash_params = { 3251 .name = NULL, 3252 .entries = L3FWD_HASH_ENTRIES, 3253 .key_len = sizeof(union ipv6_5tuple_host), 3254 .hash_func = ipv6_hash_crc, 3255 .hash_func_init_val = 0, 3256 }; 3257 3258 char s[64]; 3259 3260 /* create ipv4 hash */ 3261 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid); 3262 ipv4_l3fwd_hash_params.name = s; 3263 ipv4_l3fwd_hash_params.socket_id = socketid; 3264 ipv4_l3fwd_lookup_struct[socketid] = 3265 rte_hash_create(&ipv4_l3fwd_hash_params); 3266 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 3267 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 3268 "socket %d\n", socketid); 3269 3270 /* create ipv6 hash */ 3271 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid); 3272 ipv6_l3fwd_hash_params.name = s; 3273 ipv6_l3fwd_hash_params.socket_id = socketid; 3274 ipv6_l3fwd_lookup_struct[socketid] = 3275 rte_hash_create(&ipv6_l3fwd_hash_params); 3276 if (ipv6_l3fwd_lookup_struct[socketid] == NULL) 3277 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " 3278 "socket %d\n", socketid); 3279 3280 if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) { 3281 /* For testing hash matching with a large number of flows we 3282 * generate millions of IP 5-tuples with an incremented dst 3283 * address to initialize the hash table. */ 3284 if (ipv6 == 0) { 3285 /* populate the ipv4 hash */ 3286 populate_ipv4_many_flow_into_table( 3287 ipv4_l3fwd_lookup_struct[socketid], hash_entry_number); 3288 } else { 3289 /* populate the ipv6 hash */ 3290 populate_ipv6_many_flow_into_table( 3291 ipv6_l3fwd_lookup_struct[socketid], hash_entry_number); 3292 } 3293 } else { 3294 /* Use data in ipv4/ipv6 l3fwd lookup table directly to initialize 3295 * the hash table */ 3296 if (ipv6 == 0) { 3297 /* populate the ipv4 hash */ 3298 populate_ipv4_few_flow_into_table( 3299 ipv4_l3fwd_lookup_struct[socketid]); 3300 } else { 3301 /* populate the ipv6 hash */ 3302 populate_ipv6_few_flow_into_table( 3303 ipv6_l3fwd_lookup_struct[socketid]); 3304 } 3305 } 3306 } 3307 #endif 3308 3309 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 3310 static void 3311 setup_lpm(int socketid) 3312 { 3313 struct rte_lpm6_config config; 3314 struct rte_lpm_config lpm_ipv4_config; 3315 unsigned i; 3316 int ret; 3317 char s[64]; 3318 3319 /* create the LPM table */ 3320 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid); 3321 lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES; 3322 lpm_ipv4_config.number_tbl8s = 256; 3323 lpm_ipv4_config.flags = 0; 3324 ipv4_l3fwd_lookup_struct[socketid] = 3325 rte_lpm_create(s, socketid, &lpm_ipv4_config); 3326 if (ipv4_l3fwd_lookup_struct[socketid] == NULL) 3327 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table" 3328 " on socket %d\n", socketid); 3329 3330 /* populate the LPM table */ 3331 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { 3332 3333 /* skip unused ports */ 3334 if ((1 << ipv4_l3fwd_route_array[i].if_out & 3335 enabled_port_mask) == 0) 3336 continue; 3337 3338 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], 3339 ipv4_l3fwd_route_array[i].ip, 3340 ipv4_l3fwd_route_array[i].depth, 3341 ipv4_l3fwd_route_array[i].if_out); 3342 3343 if (ret < 0) { 3344 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " 3345 "l3fwd LPM table on socket %d\n", 3346 i, socketid); 3347 } 3348 3349 printf("LPM: Adding route 0x%08x / %d (%d)\n", 3350 (unsigned)ipv4_l3fwd_route_array[i].ip, 3351 ipv4_l3fwd_route_array[i].depth, 3352 ipv4_l3fwd_route_array[i].if_out); 3353 } 3354 3355 /* create the LPM6 table */ 3356 snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid); 3357 3358 config.max_rules = IPV6_L3FWD_LPM_MAX_RULES; 3359 config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S; 3360 config.flags = 0; 3361 ipv6_l3fwd_lookup_struct[socketid] = rte_lpm6_create(s, socketid, 3362 &config); 3363 if (ipv6_l3fwd_lookup_struct[socketid] == NULL) 3364 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table" 3365 " on socket %d\n", socketid); 3366 3367 /* populate the LPM table */ 3368 for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) { 3369 3370 /* skip unused ports */ 3371 if ((1 << ipv6_l3fwd_route_array[i].if_out & 3372 enabled_port_mask) == 0) 3373 continue; 3374 3375 ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid], 3376 ipv6_l3fwd_route_array[i].ip, 3377 ipv6_l3fwd_route_array[i].depth, 3378 ipv6_l3fwd_route_array[i].if_out); 3379 3380 if (ret < 0) { 3381 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " 3382 "l3fwd LPM table on socket %d\n", 3383 i, socketid); 3384 } 3385 3386 printf("LPM: Adding route %s / %d (%d)\n", 3387 "IPV6", 3388 ipv6_l3fwd_route_array[i].depth, 3389 ipv6_l3fwd_route_array[i].if_out); 3390 } 3391 } 3392 #endif 3393 3394 static int 3395 init_mem(unsigned nb_mbuf) 3396 { 3397 struct lcore_conf *qconf; 3398 int socketid; 3399 unsigned lcore_id; 3400 char s[64]; 3401 3402 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 3403 if (rte_lcore_is_enabled(lcore_id) == 0) 3404 continue; 3405 3406 if (numa_on) 3407 socketid = rte_lcore_to_socket_id(lcore_id); 3408 else 3409 socketid = 0; 3410 3411 if (socketid >= NB_SOCKETS) { 3412 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is out of range %d\n", 3413 socketid, lcore_id, NB_SOCKETS); 3414 } 3415 if (pktmbuf_pool[socketid] == NULL) { 3416 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); 3417 pktmbuf_pool[socketid] = 3418 rte_pktmbuf_pool_create(s, nb_mbuf, 3419 MEMPOOL_CACHE_SIZE, 0, 3420 RTE_MBUF_DEFAULT_BUF_SIZE, socketid); 3421 if (pktmbuf_pool[socketid] == NULL) 3422 rte_exit(EXIT_FAILURE, 3423 "Cannot init mbuf pool on socket %d\n", socketid); 3424 else 3425 printf("Allocated mbuf pool on socket %d\n", socketid); 3426 3427 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 3428 setup_lpm(socketid); 3429 #else 3430 setup_hash(socketid); 3431 #endif 3432 } 3433 qconf = &lcore_conf[lcore_id]; 3434 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid]; 3435 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid]; 3436 } 3437 return 0; 3438 } 3439 3440 /* Check the link status of all ports in up to 9s, and print them finally */ 3441 static void 3442 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask) 3443 { 3444 #define CHECK_INTERVAL 100 /* 100ms */ 3445 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 3446 uint16_t portid; 3447 uint8_t count, all_ports_up, print_flag = 0; 3448 struct rte_eth_link link; 3449 3450 printf("\nChecking link status"); 3451 fflush(stdout); 3452 for (count = 0; count <= MAX_CHECK_TIME; count++) { 3453 all_ports_up = 1; 3454 for (portid = 0; portid < port_num; portid++) { 3455 if ((port_mask & (1 << portid)) == 0) 3456 continue; 3457 memset(&link, 0, sizeof(link)); 3458 rte_eth_link_get_nowait(portid, &link); 3459 /* print link status if flag set */ 3460 if (print_flag == 1) { 3461 if (link.link_status) 3462 printf( 3463 "Port%d Link Up. Speed %u Mbps - %s\n", 3464 portid, link.link_speed, 3465 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 3466 ("full-duplex") : ("half-duplex\n")); 3467 else 3468 printf("Port %d Link Down\n", portid); 3469 continue; 3470 } 3471 /* clear all_ports_up flag if any link down */ 3472 if (link.link_status == ETH_LINK_DOWN) { 3473 all_ports_up = 0; 3474 break; 3475 } 3476 } 3477 /* after finally printing all link status, get out */ 3478 if (print_flag == 1) 3479 break; 3480 3481 if (all_ports_up == 0) { 3482 printf("."); 3483 fflush(stdout); 3484 rte_delay_ms(CHECK_INTERVAL); 3485 } 3486 3487 /* set the print_flag if all ports up or timeout */ 3488 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 3489 print_flag = 1; 3490 printf("done\n"); 3491 } 3492 } 3493 } 3494 3495 int 3496 main(int argc, char **argv) 3497 { 3498 struct rte_eth_dev_info dev_info; 3499 struct rte_eth_txconf *txconf; 3500 int ret; 3501 int i; 3502 unsigned nb_ports; 3503 uint16_t queueid, portid; 3504 unsigned lcore_id; 3505 uint32_t n_tx_queue, nb_lcores; 3506 uint8_t nb_rx_queue, queue, socketid; 3507 3508 /* init EAL */ 3509 ret = rte_eal_init(argc, argv); 3510 if (ret < 0) 3511 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 3512 argc -= ret; 3513 argv += ret; 3514 3515 /* pre-init dst MACs for all ports to 02:00:00:00:00:xx */ 3516 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 3517 dest_eth_addr[portid] = ETHER_LOCAL_ADMIN_ADDR + 3518 ((uint64_t)portid << 40); 3519 *(uint64_t *)(val_eth + portid) = dest_eth_addr[portid]; 3520 } 3521 3522 /* parse application arguments (after the EAL ones) */ 3523 ret = parse_args(argc, argv); 3524 if (ret < 0) 3525 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n"); 3526 3527 if (check_lcore_params() < 0) 3528 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n"); 3529 3530 printf("Initializing rx-queues...\n"); 3531 ret = init_rx_queues(); 3532 if (ret < 0) 3533 rte_exit(EXIT_FAILURE, "init_rx_queues failed\n"); 3534 3535 printf("Initializing tx-threads...\n"); 3536 ret = init_tx_threads(); 3537 if (ret < 0) 3538 rte_exit(EXIT_FAILURE, "init_tx_threads failed\n"); 3539 3540 printf("Initializing rings...\n"); 3541 ret = init_rx_rings(); 3542 if (ret < 0) 3543 rte_exit(EXIT_FAILURE, "init_rx_rings failed\n"); 3544 3545 nb_ports = rte_eth_dev_count(); 3546 3547 if (check_port_config(nb_ports) < 0) 3548 rte_exit(EXIT_FAILURE, "check_port_config failed\n"); 3549 3550 nb_lcores = rte_lcore_count(); 3551 3552 /* initialize all ports */ 3553 for (portid = 0; portid < nb_ports; portid++) { 3554 /* skip ports that are not enabled */ 3555 if ((enabled_port_mask & (1 << portid)) == 0) { 3556 printf("\nSkipping disabled port %d\n", portid); 3557 continue; 3558 } 3559 3560 /* init port */ 3561 printf("Initializing port %d ... ", portid); 3562 fflush(stdout); 3563 3564 nb_rx_queue = get_port_n_rx_queues(portid); 3565 n_tx_queue = nb_lcores; 3566 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 3567 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 3568 printf("Creating queues: nb_rxq=%d nb_txq=%u... ", 3569 nb_rx_queue, (unsigned)n_tx_queue); 3570 ret = rte_eth_dev_configure(portid, nb_rx_queue, 3571 (uint16_t)n_tx_queue, &port_conf); 3572 if (ret < 0) 3573 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 3574 ret, portid); 3575 3576 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 3577 &nb_txd); 3578 if (ret < 0) 3579 rte_exit(EXIT_FAILURE, 3580 "rte_eth_dev_adjust_nb_rx_tx_desc: err=%d, port=%d\n", 3581 ret, portid); 3582 3583 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 3584 print_ethaddr(" Address:", &ports_eth_addr[portid]); 3585 printf(", "); 3586 print_ethaddr("Destination:", 3587 (const struct ether_addr *)&dest_eth_addr[portid]); 3588 printf(", "); 3589 3590 /* 3591 * prepare src MACs for each port. 3592 */ 3593 ether_addr_copy(&ports_eth_addr[portid], 3594 (struct ether_addr *)(val_eth + portid) + 1); 3595 3596 /* init memory */ 3597 ret = init_mem(NB_MBUF); 3598 if (ret < 0) 3599 rte_exit(EXIT_FAILURE, "init_mem failed\n"); 3600 3601 /* init one TX queue per couple (lcore,port) */ 3602 queueid = 0; 3603 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 3604 if (rte_lcore_is_enabled(lcore_id) == 0) 3605 continue; 3606 3607 if (numa_on) 3608 socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id); 3609 else 3610 socketid = 0; 3611 3612 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid); 3613 fflush(stdout); 3614 3615 rte_eth_dev_info_get(portid, &dev_info); 3616 txconf = &dev_info.default_txconf; 3617 if (port_conf.rxmode.jumbo_frame) 3618 txconf->txq_flags = 0; 3619 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 3620 socketid, txconf); 3621 if (ret < 0) 3622 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 3623 "port=%d\n", ret, portid); 3624 3625 tx_thread[lcore_id].tx_queue_id[portid] = queueid; 3626 queueid++; 3627 } 3628 printf("\n"); 3629 } 3630 3631 for (i = 0; i < n_rx_thread; i++) { 3632 lcore_id = rx_thread[i].conf.lcore_id; 3633 3634 if (rte_lcore_is_enabled(lcore_id) == 0) { 3635 rte_exit(EXIT_FAILURE, 3636 "Cannot start Rx thread on lcore %u: lcore disabled\n", 3637 lcore_id 3638 ); 3639 } 3640 3641 printf("\nInitializing rx queues for Rx thread %d on lcore %u ... ", 3642 i, lcore_id); 3643 fflush(stdout); 3644 3645 /* init RX queues */ 3646 for (queue = 0; queue < rx_thread[i].n_rx_queue; ++queue) { 3647 portid = rx_thread[i].rx_queue_list[queue].port_id; 3648 queueid = rx_thread[i].rx_queue_list[queue].queue_id; 3649 3650 if (numa_on) 3651 socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id); 3652 else 3653 socketid = 0; 3654 3655 printf("rxq=%d,%d,%d ", portid, queueid, socketid); 3656 fflush(stdout); 3657 3658 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 3659 socketid, 3660 NULL, 3661 pktmbuf_pool[socketid]); 3662 if (ret < 0) 3663 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, " 3664 "port=%d\n", ret, portid); 3665 } 3666 } 3667 3668 printf("\n"); 3669 3670 /* start ports */ 3671 for (portid = 0; portid < nb_ports; portid++) { 3672 if ((enabled_port_mask & (1 << portid)) == 0) 3673 continue; 3674 3675 /* Start device */ 3676 ret = rte_eth_dev_start(portid); 3677 if (ret < 0) 3678 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 3679 ret, portid); 3680 3681 /* 3682 * If enabled, put device in promiscuous mode. 3683 * This allows IO forwarding mode to forward packets 3684 * to itself through 2 cross-connected ports of the 3685 * target machine. 3686 */ 3687 if (promiscuous_on) 3688 rte_eth_promiscuous_enable(portid); 3689 } 3690 3691 for (i = 0; i < n_rx_thread; i++) { 3692 lcore_id = rx_thread[i].conf.lcore_id; 3693 if (rte_lcore_is_enabled(lcore_id) == 0) 3694 continue; 3695 3696 /* check if hw packet type is supported */ 3697 for (queue = 0; queue < rx_thread[i].n_rx_queue; ++queue) { 3698 portid = rx_thread[i].rx_queue_list[queue].port_id; 3699 queueid = rx_thread[i].rx_queue_list[queue].queue_id; 3700 3701 if (parse_ptype_on) { 3702 if (!rte_eth_add_rx_callback(portid, queueid, 3703 cb_parse_ptype, NULL)) 3704 rte_exit(EXIT_FAILURE, 3705 "Failed to add rx callback: " 3706 "port=%d\n", portid); 3707 } else if (!check_ptype(portid)) 3708 rte_exit(EXIT_FAILURE, 3709 "Port %d cannot parse packet type.\n\n" 3710 "Please add --parse-ptype to use sw " 3711 "packet type analyzer.\n\n", 3712 portid); 3713 } 3714 } 3715 3716 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 3717 3718 if (lthreads_on) { 3719 printf("Starting L-Threading Model\n"); 3720 3721 #if (APP_CPU_LOAD > 0) 3722 if (cpu_load_lcore_id > 0) 3723 /* Use one lcore for cpu load collector */ 3724 nb_lcores--; 3725 #endif 3726 3727 lthread_num_schedulers_set(nb_lcores); 3728 rte_eal_mp_remote_launch(sched_spawner, NULL, SKIP_MASTER); 3729 lthread_master_spawner(NULL); 3730 3731 } else { 3732 printf("Starting P-Threading Model\n"); 3733 /* launch per-lcore init on every lcore */ 3734 rte_eal_mp_remote_launch(pthread_run, NULL, CALL_MASTER); 3735 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 3736 if (rte_eal_wait_lcore(lcore_id) < 0) 3737 return -1; 3738 } 3739 } 3740 3741 return 0; 3742 } 3743