xref: /f-stack/dpdk/examples/ipsec-secgw/sa.c (revision fa64a7ff)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 /*
6  * Security Associations
7  */
8 #include <sys/types.h>
9 #include <netinet/in.h>
10 #include <netinet/ip.h>
11 #include <netinet/ip6.h>
12 
13 #include <rte_memzone.h>
14 #include <rte_crypto.h>
15 #include <rte_security.h>
16 #include <rte_cryptodev.h>
17 #include <rte_byteorder.h>
18 #include <rte_errno.h>
19 #include <rte_ip.h>
20 #include <rte_random.h>
21 #include <rte_ethdev.h>
22 
23 #include "ipsec.h"
24 #include "esp.h"
25 #include "parser.h"
26 
27 #define IPDEFTTL 64
28 
29 #define IP4_FULL_MASK (sizeof(((struct ip_addr *)NULL)->ip.ip4) * CHAR_BIT)
30 
31 #define IP6_FULL_MASK (sizeof(((struct ip_addr *)NULL)->ip.ip6.ip6) * CHAR_BIT)
32 
33 struct supported_cipher_algo {
34 	const char *keyword;
35 	enum rte_crypto_cipher_algorithm algo;
36 	uint16_t iv_len;
37 	uint16_t block_size;
38 	uint16_t key_len;
39 };
40 
41 struct supported_auth_algo {
42 	const char *keyword;
43 	enum rte_crypto_auth_algorithm algo;
44 	uint16_t digest_len;
45 	uint16_t key_len;
46 	uint8_t key_not_req;
47 };
48 
49 struct supported_aead_algo {
50 	const char *keyword;
51 	enum rte_crypto_aead_algorithm algo;
52 	uint16_t iv_len;
53 	uint16_t block_size;
54 	uint16_t digest_len;
55 	uint16_t key_len;
56 	uint8_t aad_len;
57 };
58 
59 
60 const struct supported_cipher_algo cipher_algos[] = {
61 	{
62 		.keyword = "null",
63 		.algo = RTE_CRYPTO_CIPHER_NULL,
64 		.iv_len = 0,
65 		.block_size = 4,
66 		.key_len = 0
67 	},
68 	{
69 		.keyword = "aes-128-cbc",
70 		.algo = RTE_CRYPTO_CIPHER_AES_CBC,
71 		.iv_len = 16,
72 		.block_size = 16,
73 		.key_len = 16
74 	},
75 	{
76 		.keyword = "aes-256-cbc",
77 		.algo = RTE_CRYPTO_CIPHER_AES_CBC,
78 		.iv_len = 16,
79 		.block_size = 16,
80 		.key_len = 32
81 	},
82 	{
83 		.keyword = "aes-128-ctr",
84 		.algo = RTE_CRYPTO_CIPHER_AES_CTR,
85 		.iv_len = 8,
86 		.block_size = 4,
87 		.key_len = 20
88 	},
89 	{
90 		.keyword = "3des-cbc",
91 		.algo = RTE_CRYPTO_CIPHER_3DES_CBC,
92 		.iv_len = 8,
93 		.block_size = 8,
94 		.key_len = 24
95 	}
96 };
97 
98 const struct supported_auth_algo auth_algos[] = {
99 	{
100 		.keyword = "null",
101 		.algo = RTE_CRYPTO_AUTH_NULL,
102 		.digest_len = 0,
103 		.key_len = 0,
104 		.key_not_req = 1
105 	},
106 	{
107 		.keyword = "sha1-hmac",
108 		.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
109 		.digest_len = 12,
110 		.key_len = 20
111 	},
112 	{
113 		.keyword = "sha256-hmac",
114 		.algo = RTE_CRYPTO_AUTH_SHA256_HMAC,
115 		.digest_len = 12,
116 		.key_len = 32
117 	}
118 };
119 
120 const struct supported_aead_algo aead_algos[] = {
121 	{
122 		.keyword = "aes-128-gcm",
123 		.algo = RTE_CRYPTO_AEAD_AES_GCM,
124 		.iv_len = 8,
125 		.block_size = 4,
126 		.key_len = 20,
127 		.digest_len = 16,
128 		.aad_len = 8,
129 	}
130 };
131 
132 static struct ipsec_sa sa_out[IPSEC_SA_MAX_ENTRIES];
133 static uint32_t nb_sa_out;
134 
135 static struct ipsec_sa sa_in[IPSEC_SA_MAX_ENTRIES];
136 static uint32_t nb_sa_in;
137 
138 static const struct supported_cipher_algo *
139 find_match_cipher_algo(const char *cipher_keyword)
140 {
141 	size_t i;
142 
143 	for (i = 0; i < RTE_DIM(cipher_algos); i++) {
144 		const struct supported_cipher_algo *algo =
145 			&cipher_algos[i];
146 
147 		if (strcmp(cipher_keyword, algo->keyword) == 0)
148 			return algo;
149 	}
150 
151 	return NULL;
152 }
153 
154 static const struct supported_auth_algo *
155 find_match_auth_algo(const char *auth_keyword)
156 {
157 	size_t i;
158 
159 	for (i = 0; i < RTE_DIM(auth_algos); i++) {
160 		const struct supported_auth_algo *algo =
161 			&auth_algos[i];
162 
163 		if (strcmp(auth_keyword, algo->keyword) == 0)
164 			return algo;
165 	}
166 
167 	return NULL;
168 }
169 
170 static const struct supported_aead_algo *
171 find_match_aead_algo(const char *aead_keyword)
172 {
173 	size_t i;
174 
175 	for (i = 0; i < RTE_DIM(aead_algos); i++) {
176 		const struct supported_aead_algo *algo =
177 			&aead_algos[i];
178 
179 		if (strcmp(aead_keyword, algo->keyword) == 0)
180 			return algo;
181 	}
182 
183 	return NULL;
184 }
185 
186 /** parse_key_string
187  *  parse x:x:x:x.... hex number key string into uint8_t *key
188  *  return:
189  *  > 0: number of bytes parsed
190  *  0:   failed
191  */
192 static uint32_t
193 parse_key_string(const char *key_str, uint8_t *key)
194 {
195 	const char *pt_start = key_str, *pt_end = key_str;
196 	uint32_t nb_bytes = 0;
197 
198 	while (pt_end != NULL) {
199 		char sub_str[3] = {0};
200 
201 		pt_end = strchr(pt_start, ':');
202 
203 		if (pt_end == NULL) {
204 			if (strlen(pt_start) > 2)
205 				return 0;
206 			strncpy(sub_str, pt_start, 2);
207 		} else {
208 			if (pt_end - pt_start > 2)
209 				return 0;
210 
211 			strncpy(sub_str, pt_start, pt_end - pt_start);
212 			pt_start = pt_end + 1;
213 		}
214 
215 		key[nb_bytes++] = strtol(sub_str, NULL, 16);
216 	}
217 
218 	return nb_bytes;
219 }
220 
221 void
222 parse_sa_tokens(char **tokens, uint32_t n_tokens,
223 	struct parse_status *status)
224 {
225 	struct ipsec_sa *rule = NULL;
226 	uint32_t ti; /*token index*/
227 	uint32_t *ri /*rule index*/;
228 	uint32_t cipher_algo_p = 0;
229 	uint32_t auth_algo_p = 0;
230 	uint32_t aead_algo_p = 0;
231 	uint32_t src_p = 0;
232 	uint32_t dst_p = 0;
233 	uint32_t mode_p = 0;
234 	uint32_t type_p = 0;
235 	uint32_t portid_p = 0;
236 
237 	if (strcmp(tokens[0], "in") == 0) {
238 		ri = &nb_sa_in;
239 
240 		APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status,
241 			"too many sa rules, abort insertion\n");
242 		if (status->status < 0)
243 			return;
244 
245 		rule = &sa_in[*ri];
246 	} else {
247 		ri = &nb_sa_out;
248 
249 		APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status,
250 			"too many sa rules, abort insertion\n");
251 		if (status->status < 0)
252 			return;
253 
254 		rule = &sa_out[*ri];
255 	}
256 
257 	/* spi number */
258 	APP_CHECK_TOKEN_IS_NUM(tokens, 1, status);
259 	if (status->status < 0)
260 		return;
261 	if (atoi(tokens[1]) == INVALID_SPI)
262 		return;
263 	rule->spi = atoi(tokens[1]);
264 
265 	for (ti = 2; ti < n_tokens; ti++) {
266 		if (strcmp(tokens[ti], "mode") == 0) {
267 			APP_CHECK_PRESENCE(mode_p, tokens[ti], status);
268 			if (status->status < 0)
269 				return;
270 
271 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
272 			if (status->status < 0)
273 				return;
274 
275 			if (strcmp(tokens[ti], "ipv4-tunnel") == 0)
276 				rule->flags = IP4_TUNNEL;
277 			else if (strcmp(tokens[ti], "ipv6-tunnel") == 0)
278 				rule->flags = IP6_TUNNEL;
279 			else if (strcmp(tokens[ti], "transport") == 0)
280 				rule->flags = TRANSPORT;
281 			else {
282 				APP_CHECK(0, status, "unrecognized "
283 					"input \"%s\"", tokens[ti]);
284 				return;
285 			}
286 
287 			mode_p = 1;
288 			continue;
289 		}
290 
291 		if (strcmp(tokens[ti], "cipher_algo") == 0) {
292 			const struct supported_cipher_algo *algo;
293 			uint32_t key_len;
294 
295 			APP_CHECK_PRESENCE(cipher_algo_p, tokens[ti],
296 				status);
297 			if (status->status < 0)
298 				return;
299 
300 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
301 			if (status->status < 0)
302 				return;
303 
304 			algo = find_match_cipher_algo(tokens[ti]);
305 
306 			APP_CHECK(algo != NULL, status, "unrecognized "
307 				"input \"%s\"", tokens[ti]);
308 
309 			rule->cipher_algo = algo->algo;
310 			rule->block_size = algo->block_size;
311 			rule->iv_len = algo->iv_len;
312 			rule->cipher_key_len = algo->key_len;
313 
314 			/* for NULL algorithm, no cipher key required */
315 			if (rule->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
316 				cipher_algo_p = 1;
317 				continue;
318 			}
319 
320 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
321 			if (status->status < 0)
322 				return;
323 
324 			APP_CHECK(strcmp(tokens[ti], "cipher_key") == 0,
325 				status, "unrecognized input \"%s\", "
326 				"expect \"cipher_key\"", tokens[ti]);
327 			if (status->status < 0)
328 				return;
329 
330 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
331 			if (status->status < 0)
332 				return;
333 
334 			key_len = parse_key_string(tokens[ti],
335 				rule->cipher_key);
336 			APP_CHECK(key_len == rule->cipher_key_len, status,
337 				"unrecognized input \"%s\"", tokens[ti]);
338 			if (status->status < 0)
339 				return;
340 
341 			if (algo->algo == RTE_CRYPTO_CIPHER_AES_CBC ||
342 				algo->algo == RTE_CRYPTO_CIPHER_3DES_CBC)
343 				rule->salt = (uint32_t)rte_rand();
344 
345 			if (algo->algo == RTE_CRYPTO_CIPHER_AES_CTR) {
346 				key_len -= 4;
347 				rule->cipher_key_len = key_len;
348 				memcpy(&rule->salt,
349 					&rule->cipher_key[key_len], 4);
350 			}
351 
352 			cipher_algo_p = 1;
353 			continue;
354 		}
355 
356 		if (strcmp(tokens[ti], "auth_algo") == 0) {
357 			const struct supported_auth_algo *algo;
358 			uint32_t key_len;
359 
360 			APP_CHECK_PRESENCE(auth_algo_p, tokens[ti],
361 				status);
362 			if (status->status < 0)
363 				return;
364 
365 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
366 			if (status->status < 0)
367 				return;
368 
369 			algo = find_match_auth_algo(tokens[ti]);
370 			APP_CHECK(algo != NULL, status, "unrecognized "
371 				"input \"%s\"", tokens[ti]);
372 
373 			rule->auth_algo = algo->algo;
374 			rule->auth_key_len = algo->key_len;
375 			rule->digest_len = algo->digest_len;
376 
377 			/* NULL algorithm and combined algos do not
378 			 * require auth key
379 			 */
380 			if (algo->key_not_req) {
381 				auth_algo_p = 1;
382 				continue;
383 			}
384 
385 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
386 			if (status->status < 0)
387 				return;
388 
389 			APP_CHECK(strcmp(tokens[ti], "auth_key") == 0,
390 				status, "unrecognized input \"%s\", "
391 				"expect \"auth_key\"", tokens[ti]);
392 			if (status->status < 0)
393 				return;
394 
395 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
396 			if (status->status < 0)
397 				return;
398 
399 			key_len = parse_key_string(tokens[ti],
400 				rule->auth_key);
401 			APP_CHECK(key_len == rule->auth_key_len, status,
402 				"unrecognized input \"%s\"", tokens[ti]);
403 			if (status->status < 0)
404 				return;
405 
406 			auth_algo_p = 1;
407 			continue;
408 		}
409 
410 		if (strcmp(tokens[ti], "aead_algo") == 0) {
411 			const struct supported_aead_algo *algo;
412 			uint32_t key_len;
413 
414 			APP_CHECK_PRESENCE(aead_algo_p, tokens[ti],
415 				status);
416 			if (status->status < 0)
417 				return;
418 
419 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
420 			if (status->status < 0)
421 				return;
422 
423 			algo = find_match_aead_algo(tokens[ti]);
424 
425 			APP_CHECK(algo != NULL, status, "unrecognized "
426 				"input \"%s\"", tokens[ti]);
427 
428 			rule->aead_algo = algo->algo;
429 			rule->cipher_key_len = algo->key_len;
430 			rule->digest_len = algo->digest_len;
431 			rule->aad_len = algo->aad_len;
432 			rule->block_size = algo->block_size;
433 			rule->iv_len = algo->iv_len;
434 
435 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
436 			if (status->status < 0)
437 				return;
438 
439 			APP_CHECK(strcmp(tokens[ti], "aead_key") == 0,
440 				status, "unrecognized input \"%s\", "
441 				"expect \"aead_key\"", tokens[ti]);
442 			if (status->status < 0)
443 				return;
444 
445 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
446 			if (status->status < 0)
447 				return;
448 
449 			key_len = parse_key_string(tokens[ti],
450 				rule->cipher_key);
451 			APP_CHECK(key_len == rule->cipher_key_len, status,
452 				"unrecognized input \"%s\"", tokens[ti]);
453 			if (status->status < 0)
454 				return;
455 
456 			key_len -= 4;
457 			rule->cipher_key_len = key_len;
458 			memcpy(&rule->salt,
459 				&rule->cipher_key[key_len], 4);
460 
461 			aead_algo_p = 1;
462 			continue;
463 		}
464 
465 		if (strcmp(tokens[ti], "src") == 0) {
466 			APP_CHECK_PRESENCE(src_p, tokens[ti], status);
467 			if (status->status < 0)
468 				return;
469 
470 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
471 			if (status->status < 0)
472 				return;
473 
474 			if (IS_IP4_TUNNEL(rule->flags)) {
475 				struct in_addr ip;
476 
477 				APP_CHECK(parse_ipv4_addr(tokens[ti],
478 					&ip, NULL) == 0, status,
479 					"unrecognized input \"%s\", "
480 					"expect valid ipv4 addr",
481 					tokens[ti]);
482 				if (status->status < 0)
483 					return;
484 				rule->src.ip.ip4 = rte_bswap32(
485 					(uint32_t)ip.s_addr);
486 			} else if (IS_IP6_TUNNEL(rule->flags)) {
487 				struct in6_addr ip;
488 
489 				APP_CHECK(parse_ipv6_addr(tokens[ti], &ip,
490 					NULL) == 0, status,
491 					"unrecognized input \"%s\", "
492 					"expect valid ipv6 addr",
493 					tokens[ti]);
494 				if (status->status < 0)
495 					return;
496 				memcpy(rule->src.ip.ip6.ip6_b,
497 					ip.s6_addr, 16);
498 			} else if (IS_TRANSPORT(rule->flags)) {
499 				APP_CHECK(0, status, "unrecognized input "
500 					"\"%s\"", tokens[ti]);
501 				return;
502 			}
503 
504 			src_p = 1;
505 			continue;
506 		}
507 
508 		if (strcmp(tokens[ti], "dst") == 0) {
509 			APP_CHECK_PRESENCE(dst_p, tokens[ti], status);
510 			if (status->status < 0)
511 				return;
512 
513 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
514 			if (status->status < 0)
515 				return;
516 
517 			if (IS_IP4_TUNNEL(rule->flags)) {
518 				struct in_addr ip;
519 
520 				APP_CHECK(parse_ipv4_addr(tokens[ti],
521 					&ip, NULL) == 0, status,
522 					"unrecognized input \"%s\", "
523 					"expect valid ipv4 addr",
524 					tokens[ti]);
525 				if (status->status < 0)
526 					return;
527 				rule->dst.ip.ip4 = rte_bswap32(
528 					(uint32_t)ip.s_addr);
529 			} else if (IS_IP6_TUNNEL(rule->flags)) {
530 				struct in6_addr ip;
531 
532 				APP_CHECK(parse_ipv6_addr(tokens[ti], &ip,
533 					NULL) == 0, status,
534 					"unrecognized input \"%s\", "
535 					"expect valid ipv6 addr",
536 					tokens[ti]);
537 				if (status->status < 0)
538 					return;
539 				memcpy(rule->dst.ip.ip6.ip6_b, ip.s6_addr, 16);
540 			} else if (IS_TRANSPORT(rule->flags)) {
541 				APP_CHECK(0, status, "unrecognized "
542 					"input \"%s\"",	tokens[ti]);
543 				return;
544 			}
545 
546 			dst_p = 1;
547 			continue;
548 		}
549 
550 		if (strcmp(tokens[ti], "type") == 0) {
551 			APP_CHECK_PRESENCE(type_p, tokens[ti], status);
552 			if (status->status < 0)
553 				return;
554 
555 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
556 			if (status->status < 0)
557 				return;
558 
559 			if (strcmp(tokens[ti], "inline-crypto-offload") == 0)
560 				rule->type =
561 					RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO;
562 			else if (strcmp(tokens[ti],
563 					"inline-protocol-offload") == 0)
564 				rule->type =
565 				RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL;
566 			else if (strcmp(tokens[ti],
567 					"lookaside-protocol-offload") == 0)
568 				rule->type =
569 				RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL;
570 			else if (strcmp(tokens[ti], "no-offload") == 0)
571 				rule->type = RTE_SECURITY_ACTION_TYPE_NONE;
572 			else {
573 				APP_CHECK(0, status, "Invalid input \"%s\"",
574 						tokens[ti]);
575 				return;
576 			}
577 
578 			type_p = 1;
579 			continue;
580 		}
581 
582 		if (strcmp(tokens[ti], "port_id") == 0) {
583 			APP_CHECK_PRESENCE(portid_p, tokens[ti], status);
584 			if (status->status < 0)
585 				return;
586 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
587 			if (status->status < 0)
588 				return;
589 			rule->portid = atoi(tokens[ti]);
590 			if (status->status < 0)
591 				return;
592 			portid_p = 1;
593 			continue;
594 		}
595 
596 		/* unrecognizeable input */
597 		APP_CHECK(0, status, "unrecognized input \"%s\"",
598 			tokens[ti]);
599 		return;
600 	}
601 
602 	if (aead_algo_p) {
603 		APP_CHECK(cipher_algo_p == 0, status,
604 				"AEAD used, no need for cipher options");
605 		if (status->status < 0)
606 			return;
607 
608 		APP_CHECK(auth_algo_p == 0, status,
609 				"AEAD used, no need for auth options");
610 		if (status->status < 0)
611 			return;
612 	} else {
613 		APP_CHECK(cipher_algo_p == 1, status, "missing cipher or AEAD options");
614 		if (status->status < 0)
615 			return;
616 
617 		APP_CHECK(auth_algo_p == 1, status, "missing auth or AEAD options");
618 		if (status->status < 0)
619 			return;
620 	}
621 
622 	APP_CHECK(mode_p == 1, status, "missing mode option");
623 	if (status->status < 0)
624 		return;
625 
626 	if ((rule->type != RTE_SECURITY_ACTION_TYPE_NONE) && (portid_p == 0))
627 		printf("Missing portid option, falling back to non-offload\n");
628 
629 	if (!type_p || !portid_p) {
630 		rule->type = RTE_SECURITY_ACTION_TYPE_NONE;
631 		rule->portid = -1;
632 	}
633 
634 	*ri = *ri + 1;
635 }
636 
637 static void
638 print_one_sa_rule(const struct ipsec_sa *sa, int inbound)
639 {
640 	uint32_t i;
641 	uint8_t a, b, c, d;
642 
643 	printf("\tspi_%s(%3u):", inbound?"in":"out", sa->spi);
644 
645 	for (i = 0; i < RTE_DIM(cipher_algos); i++) {
646 		if (cipher_algos[i].algo == sa->cipher_algo &&
647 				cipher_algos[i].key_len == sa->cipher_key_len) {
648 			printf("%s ", cipher_algos[i].keyword);
649 			break;
650 		}
651 	}
652 
653 	for (i = 0; i < RTE_DIM(auth_algos); i++) {
654 		if (auth_algos[i].algo == sa->auth_algo) {
655 			printf("%s ", auth_algos[i].keyword);
656 			break;
657 		}
658 	}
659 
660 	for (i = 0; i < RTE_DIM(aead_algos); i++) {
661 		if (aead_algos[i].algo == sa->aead_algo) {
662 			printf("%s ", aead_algos[i].keyword);
663 			break;
664 		}
665 	}
666 
667 	printf("mode:");
668 
669 	switch (WITHOUT_TRANSPORT_VERSION(sa->flags)) {
670 	case IP4_TUNNEL:
671 		printf("IP4Tunnel ");
672 		uint32_t_to_char(sa->src.ip.ip4, &a, &b, &c, &d);
673 		printf("%hhu.%hhu.%hhu.%hhu ", d, c, b, a);
674 		uint32_t_to_char(sa->dst.ip.ip4, &a, &b, &c, &d);
675 		printf("%hhu.%hhu.%hhu.%hhu", d, c, b, a);
676 		break;
677 	case IP6_TUNNEL:
678 		printf("IP6Tunnel ");
679 		for (i = 0; i < 16; i++) {
680 			if (i % 2 && i != 15)
681 				printf("%.2x:", sa->src.ip.ip6.ip6_b[i]);
682 			else
683 				printf("%.2x", sa->src.ip.ip6.ip6_b[i]);
684 		}
685 		printf(" ");
686 		for (i = 0; i < 16; i++) {
687 			if (i % 2 && i != 15)
688 				printf("%.2x:", sa->dst.ip.ip6.ip6_b[i]);
689 			else
690 				printf("%.2x", sa->dst.ip.ip6.ip6_b[i]);
691 		}
692 		break;
693 	case TRANSPORT:
694 		printf("Transport ");
695 		break;
696 	}
697 	printf(" type:");
698 	switch (sa->type) {
699 	case RTE_SECURITY_ACTION_TYPE_NONE:
700 		printf("no-offload ");
701 		break;
702 	case RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO:
703 		printf("inline-crypto-offload ");
704 		break;
705 	case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
706 		printf("inline-protocol-offload ");
707 		break;
708 	case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL:
709 		printf("lookaside-protocol-offload ");
710 		break;
711 	}
712 	printf("\n");
713 }
714 
715 struct sa_ctx {
716 	struct ipsec_sa sa[IPSEC_SA_MAX_ENTRIES];
717 	union {
718 		struct {
719 			struct rte_crypto_sym_xform a;
720 			struct rte_crypto_sym_xform b;
721 		};
722 	} xf[IPSEC_SA_MAX_ENTRIES];
723 };
724 
725 static struct sa_ctx *
726 sa_create(const char *name, int32_t socket_id)
727 {
728 	char s[PATH_MAX];
729 	struct sa_ctx *sa_ctx;
730 	uint32_t mz_size;
731 	const struct rte_memzone *mz;
732 
733 	snprintf(s, sizeof(s), "%s_%u", name, socket_id);
734 
735 	/* Create SA array table */
736 	printf("Creating SA context with %u maximum entries on socket %d\n",
737 			IPSEC_SA_MAX_ENTRIES, socket_id);
738 
739 	mz_size = sizeof(struct sa_ctx);
740 	mz = rte_memzone_reserve(s, mz_size, socket_id,
741 			RTE_MEMZONE_1GB | RTE_MEMZONE_SIZE_HINT_ONLY);
742 	if (mz == NULL) {
743 		printf("Failed to allocate SA DB memory\n");
744 		rte_errno = ENOMEM;
745 		return NULL;
746 	}
747 
748 	sa_ctx = (struct sa_ctx *)mz->addr;
749 
750 	return sa_ctx;
751 }
752 
753 static int
754 check_eth_dev_caps(uint16_t portid, uint32_t inbound)
755 {
756 	struct rte_eth_dev_info dev_info;
757 
758 	rte_eth_dev_info_get(portid, &dev_info);
759 
760 	if (inbound) {
761 		if ((dev_info.rx_offload_capa &
762 				DEV_RX_OFFLOAD_SECURITY) == 0) {
763 			RTE_LOG(WARNING, PORT,
764 				"hardware RX IPSec offload is not supported\n");
765 			return -EINVAL;
766 		}
767 
768 	} else { /* outbound */
769 		if ((dev_info.tx_offload_capa &
770 				DEV_TX_OFFLOAD_SECURITY) == 0) {
771 			RTE_LOG(WARNING, PORT,
772 				"hardware TX IPSec offload is not supported\n");
773 			return -EINVAL;
774 		}
775 	}
776 	return 0;
777 }
778 
779 /*
780  * Helper function, tries to determine next_proto for SPI
781  * by searching though SP rules.
782  */
783 static int
784 get_spi_proto(uint32_t spi, enum rte_security_ipsec_sa_direction dir,
785 		struct ip_addr ip_addr[2], uint32_t mask[2])
786 {
787 	int32_t rc4, rc6;
788 
789 	rc4 = sp4_spi_present(spi, dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
790 				ip_addr, mask);
791 	rc6 = sp6_spi_present(spi, dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
792 				ip_addr, mask);
793 
794 	if (rc4 >= 0) {
795 		if (rc6 >= 0) {
796 			RTE_LOG(ERR, IPSEC,
797 				"%s: SPI %u used simultaeously by "
798 				"IPv4(%d) and IPv6 (%d) SP rules\n",
799 				__func__, spi, rc4, rc6);
800 			return -EINVAL;
801 		} else
802 			return IPPROTO_IPIP;
803 	} else if (rc6 < 0) {
804 		RTE_LOG(ERR, IPSEC,
805 			"%s: SPI %u is not used by any SP rule\n",
806 			__func__, spi);
807 		return -EINVAL;
808 	} else
809 		return IPPROTO_IPV6;
810 }
811 
812 /*
813  * Helper function for getting source and destination IP addresses
814  * from SP. Needed for inline crypto transport mode, as addresses are not
815  * provided in config file for that mode. It checks if SP for current SA exists,
816  * and based on what type of protocol is returned, it stores appropriate
817  * addresses got from SP into SA.
818  */
819 static int
820 sa_add_address_inline_crypto(struct ipsec_sa *sa)
821 {
822 	int protocol;
823 	struct ip_addr ip_addr[2];
824 	uint32_t mask[2];
825 
826 	protocol = get_spi_proto(sa->spi, sa->direction, ip_addr, mask);
827 	if (protocol < 0)
828 		return protocol;
829 	else if (protocol == IPPROTO_IPIP) {
830 		sa->flags |= IP4_TRANSPORT;
831 		if (mask[0] == IP4_FULL_MASK &&
832 				mask[1] == IP4_FULL_MASK &&
833 				ip_addr[0].ip.ip4 != 0 &&
834 				ip_addr[1].ip.ip4 != 0) {
835 
836 			sa->src.ip.ip4 = ip_addr[0].ip.ip4;
837 			sa->dst.ip.ip4 = ip_addr[1].ip.ip4;
838 		} else {
839 			RTE_LOG(ERR, IPSEC,
840 			"%s: No valid address or mask entry in"
841 			" IPv4 SP rule for SPI %u\n",
842 			__func__, sa->spi);
843 			return -EINVAL;
844 		}
845 	} else if (protocol == IPPROTO_IPV6) {
846 		sa->flags |= IP6_TRANSPORT;
847 		if (mask[0] == IP6_FULL_MASK &&
848 				mask[1] == IP6_FULL_MASK &&
849 				(ip_addr[0].ip.ip6.ip6[0] != 0 ||
850 				ip_addr[0].ip.ip6.ip6[1] != 0) &&
851 				(ip_addr[1].ip.ip6.ip6[0] != 0 ||
852 				ip_addr[1].ip.ip6.ip6[1] != 0)) {
853 
854 			sa->src.ip.ip6 = ip_addr[0].ip.ip6;
855 			sa->dst.ip.ip6 = ip_addr[1].ip.ip6;
856 		} else {
857 			RTE_LOG(ERR, IPSEC,
858 			"%s: No valid address or mask entry in"
859 			" IPv6 SP rule for SPI %u\n",
860 			__func__, sa->spi);
861 			return -EINVAL;
862 		}
863 	}
864 	return 0;
865 }
866 
867 static int
868 sa_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
869 		uint32_t nb_entries, uint32_t inbound)
870 {
871 	struct ipsec_sa *sa;
872 	uint32_t i, idx;
873 	uint16_t iv_length;
874 	int inline_status;
875 
876 	for (i = 0; i < nb_entries; i++) {
877 		idx = SPI2IDX(entries[i].spi);
878 		sa = &sa_ctx->sa[idx];
879 		if (sa->spi != 0) {
880 			printf("Index %u already in use by SPI %u\n",
881 					idx, sa->spi);
882 			return -EINVAL;
883 		}
884 		*sa = entries[i];
885 		sa->seq = 0;
886 
887 		if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL ||
888 			sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) {
889 			if (check_eth_dev_caps(sa->portid, inbound))
890 				return -EINVAL;
891 		}
892 
893 		sa->direction = (inbound == 1) ?
894 				RTE_SECURITY_IPSEC_SA_DIR_INGRESS :
895 				RTE_SECURITY_IPSEC_SA_DIR_EGRESS;
896 
897 		switch (WITHOUT_TRANSPORT_VERSION(sa->flags)) {
898 		case IP4_TUNNEL:
899 			sa->src.ip.ip4 = rte_cpu_to_be_32(sa->src.ip.ip4);
900 			sa->dst.ip.ip4 = rte_cpu_to_be_32(sa->dst.ip.ip4);
901 			break;
902 		case TRANSPORT:
903 			if (sa->type ==
904 				RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) {
905 				inline_status =
906 					sa_add_address_inline_crypto(sa);
907 				if (inline_status < 0)
908 					return inline_status;
909 			}
910 			break;
911 		}
912 
913 		if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) {
914 			iv_length = 16;
915 
916 			sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AEAD;
917 			sa_ctx->xf[idx].a.aead.algo = sa->aead_algo;
918 			sa_ctx->xf[idx].a.aead.key.data = sa->cipher_key;
919 			sa_ctx->xf[idx].a.aead.key.length =
920 				sa->cipher_key_len;
921 			sa_ctx->xf[idx].a.aead.op = (inbound == 1) ?
922 				RTE_CRYPTO_AEAD_OP_DECRYPT :
923 				RTE_CRYPTO_AEAD_OP_ENCRYPT;
924 			sa_ctx->xf[idx].a.next = NULL;
925 			sa_ctx->xf[idx].a.aead.iv.offset = IV_OFFSET;
926 			sa_ctx->xf[idx].a.aead.iv.length = iv_length;
927 			sa_ctx->xf[idx].a.aead.aad_length =
928 				sa->aad_len;
929 			sa_ctx->xf[idx].a.aead.digest_length =
930 				sa->digest_len;
931 
932 			sa->xforms = &sa_ctx->xf[idx].a;
933 
934 			print_one_sa_rule(sa, inbound);
935 		} else {
936 			switch (sa->cipher_algo) {
937 			case RTE_CRYPTO_CIPHER_NULL:
938 			case RTE_CRYPTO_CIPHER_3DES_CBC:
939 			case RTE_CRYPTO_CIPHER_AES_CBC:
940 				iv_length = sa->iv_len;
941 				break;
942 			case RTE_CRYPTO_CIPHER_AES_CTR:
943 				iv_length = 16;
944 				break;
945 			default:
946 				RTE_LOG(ERR, IPSEC_ESP,
947 						"unsupported cipher algorithm %u\n",
948 						sa->cipher_algo);
949 				return -EINVAL;
950 			}
951 
952 			if (inbound) {
953 				sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
954 				sa_ctx->xf[idx].b.cipher.algo = sa->cipher_algo;
955 				sa_ctx->xf[idx].b.cipher.key.data = sa->cipher_key;
956 				sa_ctx->xf[idx].b.cipher.key.length =
957 					sa->cipher_key_len;
958 				sa_ctx->xf[idx].b.cipher.op =
959 					RTE_CRYPTO_CIPHER_OP_DECRYPT;
960 				sa_ctx->xf[idx].b.next = NULL;
961 				sa_ctx->xf[idx].b.cipher.iv.offset = IV_OFFSET;
962 				sa_ctx->xf[idx].b.cipher.iv.length = iv_length;
963 
964 				sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AUTH;
965 				sa_ctx->xf[idx].a.auth.algo = sa->auth_algo;
966 				sa_ctx->xf[idx].a.auth.key.data = sa->auth_key;
967 				sa_ctx->xf[idx].a.auth.key.length =
968 					sa->auth_key_len;
969 				sa_ctx->xf[idx].a.auth.digest_length =
970 					sa->digest_len;
971 				sa_ctx->xf[idx].a.auth.op =
972 					RTE_CRYPTO_AUTH_OP_VERIFY;
973 			} else { /* outbound */
974 				sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
975 				sa_ctx->xf[idx].a.cipher.algo = sa->cipher_algo;
976 				sa_ctx->xf[idx].a.cipher.key.data = sa->cipher_key;
977 				sa_ctx->xf[idx].a.cipher.key.length =
978 					sa->cipher_key_len;
979 				sa_ctx->xf[idx].a.cipher.op =
980 					RTE_CRYPTO_CIPHER_OP_ENCRYPT;
981 				sa_ctx->xf[idx].a.next = NULL;
982 				sa_ctx->xf[idx].a.cipher.iv.offset = IV_OFFSET;
983 				sa_ctx->xf[idx].a.cipher.iv.length = iv_length;
984 
985 				sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_AUTH;
986 				sa_ctx->xf[idx].b.auth.algo = sa->auth_algo;
987 				sa_ctx->xf[idx].b.auth.key.data = sa->auth_key;
988 				sa_ctx->xf[idx].b.auth.key.length =
989 					sa->auth_key_len;
990 				sa_ctx->xf[idx].b.auth.digest_length =
991 					sa->digest_len;
992 				sa_ctx->xf[idx].b.auth.op =
993 					RTE_CRYPTO_AUTH_OP_GENERATE;
994 			}
995 
996 			sa_ctx->xf[idx].a.next = &sa_ctx->xf[idx].b;
997 			sa_ctx->xf[idx].b.next = NULL;
998 			sa->xforms = &sa_ctx->xf[idx].a;
999 
1000 			print_one_sa_rule(sa, inbound);
1001 		}
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static inline int
1008 sa_out_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
1009 		uint32_t nb_entries)
1010 {
1011 	return sa_add_rules(sa_ctx, entries, nb_entries, 0);
1012 }
1013 
1014 static inline int
1015 sa_in_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
1016 		uint32_t nb_entries)
1017 {
1018 	return sa_add_rules(sa_ctx, entries, nb_entries, 1);
1019 }
1020 
1021 /*
1022  * Walk through all SA rules to find an SA with given SPI
1023  */
1024 int
1025 sa_spi_present(uint32_t spi, int inbound)
1026 {
1027 	uint32_t i, num;
1028 	const struct ipsec_sa *sar;
1029 
1030 	if (inbound != 0) {
1031 		sar = sa_in;
1032 		num = nb_sa_in;
1033 	} else {
1034 		sar = sa_out;
1035 		num = nb_sa_out;
1036 	}
1037 
1038 	for (i = 0; i != num; i++) {
1039 		if (sar[i].spi == spi)
1040 			return i;
1041 	}
1042 
1043 	return -ENOENT;
1044 }
1045 
1046 void
1047 sa_init(struct socket_ctx *ctx, int32_t socket_id)
1048 {
1049 	const char *name;
1050 
1051 	if (ctx == NULL)
1052 		rte_exit(EXIT_FAILURE, "NULL context.\n");
1053 
1054 	if (ctx->sa_in != NULL)
1055 		rte_exit(EXIT_FAILURE, "Inbound SA DB for socket %u already "
1056 				"initialized\n", socket_id);
1057 
1058 	if (ctx->sa_out != NULL)
1059 		rte_exit(EXIT_FAILURE, "Outbound SA DB for socket %u already "
1060 				"initialized\n", socket_id);
1061 
1062 	if (nb_sa_in > 0) {
1063 		name = "sa_in";
1064 		ctx->sa_in = sa_create(name, socket_id);
1065 		if (ctx->sa_in == NULL)
1066 			rte_exit(EXIT_FAILURE, "Error [%d] creating SA "
1067 				"context %s in socket %d\n", rte_errno,
1068 				name, socket_id);
1069 
1070 		sa_in_add_rules(ctx->sa_in, sa_in, nb_sa_in);
1071 	} else
1072 		RTE_LOG(WARNING, IPSEC, "No SA Inbound rule specified\n");
1073 
1074 	if (nb_sa_out > 0) {
1075 		name = "sa_out";
1076 		ctx->sa_out = sa_create(name, socket_id);
1077 		if (ctx->sa_out == NULL)
1078 			rte_exit(EXIT_FAILURE, "Error [%d] creating SA "
1079 				"context %s in socket %d\n", rte_errno,
1080 				name, socket_id);
1081 
1082 		sa_out_add_rules(ctx->sa_out, sa_out, nb_sa_out);
1083 	} else
1084 		RTE_LOG(WARNING, IPSEC, "No SA Outbound rule "
1085 			"specified\n");
1086 }
1087 
1088 int
1089 inbound_sa_check(struct sa_ctx *sa_ctx, struct rte_mbuf *m, uint32_t sa_idx)
1090 {
1091 	struct ipsec_mbuf_metadata *priv;
1092 	struct ipsec_sa *sa;
1093 
1094 	priv = get_priv(m);
1095 	sa = priv->sa;
1096 	if (sa != NULL)
1097 		return (sa_ctx->sa[sa_idx].spi == sa->spi);
1098 
1099 	RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
1100 	return 0;
1101 }
1102 
1103 static inline void
1104 single_inbound_lookup(struct ipsec_sa *sadb, struct rte_mbuf *pkt,
1105 		struct ipsec_sa **sa_ret)
1106 {
1107 	struct esp_hdr *esp;
1108 	struct ip *ip;
1109 	uint32_t *src4_addr;
1110 	uint8_t *src6_addr;
1111 	struct ipsec_sa *sa;
1112 
1113 	*sa_ret = NULL;
1114 
1115 	ip = rte_pktmbuf_mtod(pkt, struct ip *);
1116 	if (ip->ip_v == IPVERSION)
1117 		esp = (struct esp_hdr *)(ip + 1);
1118 	else
1119 		esp = (struct esp_hdr *)(((struct ip6_hdr *)ip) + 1);
1120 
1121 	if (esp->spi == INVALID_SPI)
1122 		return;
1123 
1124 	sa = &sadb[SPI2IDX(rte_be_to_cpu_32(esp->spi))];
1125 	if (rte_be_to_cpu_32(esp->spi) != sa->spi)
1126 		return;
1127 
1128 	switch (WITHOUT_TRANSPORT_VERSION(sa->flags)) {
1129 	case IP4_TUNNEL:
1130 		src4_addr = RTE_PTR_ADD(ip, offsetof(struct ip, ip_src));
1131 		if ((ip->ip_v == IPVERSION) &&
1132 				(sa->src.ip.ip4 == *src4_addr) &&
1133 				(sa->dst.ip.ip4 == *(src4_addr + 1)))
1134 			*sa_ret = sa;
1135 		break;
1136 	case IP6_TUNNEL:
1137 		src6_addr = RTE_PTR_ADD(ip, offsetof(struct ip6_hdr, ip6_src));
1138 		if ((ip->ip_v == IP6_VERSION) &&
1139 				!memcmp(&sa->src.ip.ip6.ip6, src6_addr, 16) &&
1140 				!memcmp(&sa->dst.ip.ip6.ip6, src6_addr + 16, 16))
1141 			*sa_ret = sa;
1142 		break;
1143 	case TRANSPORT:
1144 		*sa_ret = sa;
1145 	}
1146 }
1147 
1148 void
1149 inbound_sa_lookup(struct sa_ctx *sa_ctx, struct rte_mbuf *pkts[],
1150 		struct ipsec_sa *sa[], uint16_t nb_pkts)
1151 {
1152 	uint32_t i;
1153 
1154 	for (i = 0; i < nb_pkts; i++)
1155 		single_inbound_lookup(sa_ctx->sa, pkts[i], &sa[i]);
1156 }
1157 
1158 void
1159 outbound_sa_lookup(struct sa_ctx *sa_ctx, uint32_t sa_idx[],
1160 		struct ipsec_sa *sa[], uint16_t nb_pkts)
1161 {
1162 	uint32_t i;
1163 
1164 	for (i = 0; i < nb_pkts; i++)
1165 		sa[i] = &sa_ctx->sa[sa_idx[i]];
1166 }
1167