1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2017 Intel Corporation 3 */ 4 #include <sys/types.h> 5 #include <netinet/in.h> 6 #include <netinet/ip.h> 7 8 #include <rte_branch_prediction.h> 9 #include <rte_log.h> 10 #include <rte_cryptodev.h> 11 #include <rte_ethdev.h> 12 #include <rte_mbuf.h> 13 14 #include "ipsec.h" 15 16 #define SATP_OUT_IPV4(t) \ 17 ((((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TRANS && \ 18 (((t) & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4)) || \ 19 ((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TUNLV4) 20 21 /* helper routine to free bulk of packets */ 22 static inline void 23 free_pkts(struct rte_mbuf *mb[], uint32_t n) 24 { 25 uint32_t i; 26 27 for (i = 0; i != n; i++) 28 rte_pktmbuf_free(mb[i]); 29 } 30 31 /* helper routine to free bulk of crypto-ops and related packets */ 32 static inline void 33 free_cops(struct rte_crypto_op *cop[], uint32_t n) 34 { 35 uint32_t i; 36 37 for (i = 0; i != n; i++) 38 rte_pktmbuf_free(cop[i]->sym->m_src); 39 } 40 41 /* helper routine to enqueue bulk of crypto ops */ 42 static inline void 43 enqueue_cop_bulk(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num) 44 { 45 uint32_t i, k, len, n; 46 47 len = cqp->len; 48 49 /* 50 * if cqp is empty and we have enough ops, 51 * then queue them to the PMD straightway. 52 */ 53 if (num >= RTE_DIM(cqp->buf) * 3 / 4 && len == 0) { 54 n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, cop, num); 55 cqp->in_flight += n; 56 free_cops(cop + n, num - n); 57 return; 58 } 59 60 k = 0; 61 62 do { 63 n = RTE_DIM(cqp->buf) - len; 64 n = RTE_MIN(num - k, n); 65 66 /* put packets into cqp */ 67 for (i = 0; i != n; i++) 68 cqp->buf[len + i] = cop[k + i]; 69 70 len += n; 71 k += n; 72 73 /* if cqp is full then, enqueue crypto-ops to PMD */ 74 if (len == RTE_DIM(cqp->buf)) { 75 n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, 76 cqp->buf, len); 77 cqp->in_flight += n; 78 free_cops(cqp->buf + n, len - n); 79 len = 0; 80 } 81 82 83 } while (k != num); 84 85 cqp->len = len; 86 } 87 88 static inline int 89 fill_ipsec_session(struct rte_ipsec_session *ss, struct ipsec_ctx *ctx, 90 struct ipsec_sa *sa) 91 { 92 int32_t rc; 93 94 /* setup crypto section */ 95 if (ss->type == RTE_SECURITY_ACTION_TYPE_NONE) { 96 RTE_ASSERT(ss->crypto.ses == NULL); 97 rc = create_lookaside_session(ctx, sa, ss); 98 if (rc != 0) 99 return rc; 100 /* setup session action type */ 101 } else if (ss->type == RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) { 102 RTE_ASSERT(ss->security.ses == NULL); 103 rc = create_lookaside_session(ctx, sa, ss); 104 if (rc != 0) 105 return rc; 106 } else 107 RTE_ASSERT(0); 108 109 rc = rte_ipsec_session_prepare(ss); 110 if (rc != 0) 111 memset(ss, 0, sizeof(*ss)); 112 113 return rc; 114 } 115 116 /* 117 * group input packets byt the SA they belong to. 118 */ 119 static uint32_t 120 sa_group(void *sa_ptr[], struct rte_mbuf *pkts[], 121 struct rte_ipsec_group grp[], uint32_t num) 122 { 123 uint32_t i, n, spi; 124 void *sa; 125 void * const nosa = &spi; 126 127 sa = nosa; 128 grp[0].m = pkts; 129 for (i = 0, n = 0; i != num; i++) { 130 131 if (sa != sa_ptr[i]) { 132 grp[n].cnt = pkts + i - grp[n].m; 133 n += (sa != nosa); 134 grp[n].id.ptr = sa_ptr[i]; 135 grp[n].m = pkts + i; 136 sa = sa_ptr[i]; 137 } 138 } 139 140 /* terminate last group */ 141 if (sa != nosa) { 142 grp[n].cnt = pkts + i - grp[n].m; 143 n++; 144 } 145 146 return n; 147 } 148 149 /* 150 * helper function, splits processed packets into ipv4/ipv6 traffic. 151 */ 152 static inline void 153 copy_to_trf(struct ipsec_traffic *trf, uint64_t satp, struct rte_mbuf *mb[], 154 uint32_t num) 155 { 156 uint32_t j, ofs, s; 157 struct traffic_type *out; 158 159 /* 160 * determine traffic type(ipv4/ipv6) and offset for ACL classify 161 * based on SA type 162 */ 163 if ((satp & RTE_IPSEC_SATP_DIR_MASK) == RTE_IPSEC_SATP_DIR_IB) { 164 if ((satp & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4) { 165 out = &trf->ip4; 166 ofs = offsetof(struct ip, ip_p); 167 } else { 168 out = &trf->ip6; 169 ofs = offsetof(struct ip6_hdr, ip6_nxt); 170 } 171 } else if (SATP_OUT_IPV4(satp)) { 172 out = &trf->ip4; 173 ofs = offsetof(struct ip, ip_p); 174 } else { 175 out = &trf->ip6; 176 ofs = offsetof(struct ip6_hdr, ip6_nxt); 177 } 178 179 for (j = 0, s = out->num; j != num; j++) { 180 out->data[s + j] = rte_pktmbuf_mtod_offset(mb[j], 181 void *, ofs); 182 out->pkts[s + j] = mb[j]; 183 } 184 185 out->num += num; 186 } 187 188 static uint32_t 189 ipsec_prepare_crypto_group(struct ipsec_ctx *ctx, struct ipsec_sa *sa, 190 struct rte_ipsec_session *ips, struct rte_mbuf **m, 191 unsigned int cnt) 192 { 193 struct cdev_qp *cqp; 194 struct rte_crypto_op *cop[cnt]; 195 uint32_t j, k; 196 struct ipsec_mbuf_metadata *priv; 197 198 cqp = &ctx->tbl[sa->cdev_id_qp]; 199 200 /* for that app each mbuf has it's own crypto op */ 201 for (j = 0; j != cnt; j++) { 202 priv = get_priv(m[j]); 203 cop[j] = &priv->cop; 204 /* 205 * this is just to satisfy inbound_sa_check() 206 * should be removed in future. 207 */ 208 priv->sa = sa; 209 } 210 211 /* prepare and enqueue crypto ops */ 212 k = rte_ipsec_pkt_crypto_prepare(ips, m, cop, cnt); 213 if (k != 0) 214 enqueue_cop_bulk(cqp, cop, k); 215 216 return k; 217 } 218 219 /* 220 * Process ipsec packets. 221 * If packet belong to SA that is subject of inline-crypto, 222 * then process it immediately. 223 * Otherwise do necessary preparations and queue it to related 224 * crypto-dev queue. 225 */ 226 void 227 ipsec_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf) 228 { 229 uint64_t satp; 230 uint32_t i, j, k, n; 231 struct ipsec_sa *sa; 232 struct ipsec_mbuf_metadata *priv; 233 struct rte_ipsec_group *pg; 234 struct rte_ipsec_session *ips; 235 struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)]; 236 237 n = sa_group(trf->ipsec.saptr, trf->ipsec.pkts, grp, trf->ipsec.num); 238 239 for (i = 0; i != n; i++) { 240 pg = grp + i; 241 sa = ipsec_mask_saptr(pg->id.ptr); 242 243 ips = ipsec_get_primary_session(sa); 244 245 /* no valid HW session for that SA, try to create one */ 246 if (sa == NULL || (ips->crypto.ses == NULL && 247 fill_ipsec_session(ips, ctx, sa) != 0)) 248 k = 0; 249 250 /* process packets inline */ 251 else if (ips->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO || 252 ips->type == 253 RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL) { 254 255 /* get SA type */ 256 satp = rte_ipsec_sa_type(ips->sa); 257 258 /* 259 * This is just to satisfy inbound_sa_check() 260 * and get_hop_for_offload_pkt(). 261 * Should be removed in future. 262 */ 263 for (j = 0; j != pg->cnt; j++) { 264 priv = get_priv(pg->m[j]); 265 priv->sa = sa; 266 } 267 268 /* fallback to cryptodev with RX packets which inline 269 * processor was unable to process 270 */ 271 if (pg->id.val & IPSEC_SA_OFFLOAD_FALLBACK_FLAG) { 272 /* offload packets to cryptodev */ 273 struct rte_ipsec_session *fallback; 274 275 fallback = ipsec_get_fallback_session(sa); 276 if (fallback->crypto.ses == NULL && 277 fill_ipsec_session(fallback, ctx, sa) 278 != 0) 279 k = 0; 280 else 281 k = ipsec_prepare_crypto_group(ctx, sa, 282 fallback, pg->m, pg->cnt); 283 } else { 284 /* finish processing of packets successfully 285 * decrypted by an inline processor 286 */ 287 k = rte_ipsec_pkt_process(ips, pg->m, pg->cnt); 288 copy_to_trf(trf, satp, pg->m, k); 289 290 } 291 /* enqueue packets to crypto dev */ 292 } else { 293 k = ipsec_prepare_crypto_group(ctx, sa, ips, pg->m, 294 pg->cnt); 295 } 296 297 /* drop packets that cannot be enqueued/processed */ 298 if (k != pg->cnt) 299 free_pkts(pg->m + k, pg->cnt - k); 300 } 301 } 302 303 static inline uint32_t 304 cqp_dequeue(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num) 305 { 306 uint32_t n; 307 308 if (cqp->in_flight == 0) 309 return 0; 310 311 n = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp, cop, num); 312 RTE_ASSERT(cqp->in_flight >= n); 313 cqp->in_flight -= n; 314 315 return n; 316 } 317 318 static inline uint32_t 319 ctx_dequeue(struct ipsec_ctx *ctx, struct rte_crypto_op *cop[], uint32_t num) 320 { 321 uint32_t i, n; 322 323 n = 0; 324 325 for (i = ctx->last_qp; n != num && i != ctx->nb_qps; i++) 326 n += cqp_dequeue(ctx->tbl + i, cop + n, num - n); 327 328 for (i = 0; n != num && i != ctx->last_qp; i++) 329 n += cqp_dequeue(ctx->tbl + i, cop + n, num - n); 330 331 ctx->last_qp = i; 332 return n; 333 } 334 335 /* 336 * dequeue packets from crypto-queues and finalize processing. 337 */ 338 void 339 ipsec_cqp_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf) 340 { 341 uint64_t satp; 342 uint32_t i, k, n, ng; 343 struct rte_ipsec_session *ss; 344 struct traffic_type *out; 345 struct rte_ipsec_group *pg; 346 struct rte_crypto_op *cop[RTE_DIM(trf->ipsec.pkts)]; 347 struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)]; 348 349 trf->ip4.num = 0; 350 trf->ip6.num = 0; 351 352 out = &trf->ipsec; 353 354 /* dequeue completed crypto-ops */ 355 n = ctx_dequeue(ctx, cop, RTE_DIM(cop)); 356 if (n == 0) 357 return; 358 359 /* group them by ipsec session */ 360 ng = rte_ipsec_pkt_crypto_group((const struct rte_crypto_op **) 361 (uintptr_t)cop, out->pkts, grp, n); 362 363 /* process each group of packets */ 364 for (i = 0; i != ng; i++) { 365 366 pg = grp + i; 367 ss = pg->id.ptr; 368 satp = rte_ipsec_sa_type(ss->sa); 369 370 k = rte_ipsec_pkt_process(ss, pg->m, pg->cnt); 371 copy_to_trf(trf, satp, pg->m, k); 372 373 /* free bad packets, if any */ 374 free_pkts(pg->m + k, pg->cnt - k); 375 376 n -= pg->cnt; 377 } 378 379 /* we should never have packet with unknown SA here */ 380 RTE_VERIFY(n == 0); 381 } 382