1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 #include <signal.h> 45 #include <sys/param.h> 46 47 #include <rte_common.h> 48 #include <rte_byteorder.h> 49 #include <rte_log.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_eal.h> 53 #include <rte_launch.h> 54 #include <rte_atomic.h> 55 #include <rte_cycles.h> 56 #include <rte_prefetch.h> 57 #include <rte_lcore.h> 58 #include <rte_per_lcore.h> 59 #include <rte_branch_prediction.h> 60 #include <rte_interrupts.h> 61 #include <rte_random.h> 62 #include <rte_debug.h> 63 #include <rte_ether.h> 64 #include <rte_ethdev.h> 65 #include <rte_mempool.h> 66 #include <rte_mbuf.h> 67 #include <rte_malloc.h> 68 #include <rte_ip.h> 69 #include <rte_tcp.h> 70 #include <rte_udp.h> 71 #include <rte_string_fns.h> 72 #include <rte_lpm.h> 73 #include <rte_lpm6.h> 74 75 #include <rte_ip_frag.h> 76 77 #define MAX_PKT_BURST 32 78 79 80 #define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1 81 82 #define MAX_JUMBO_PKT_LEN 9600 83 84 #define BUF_SIZE RTE_MBUF_DEFAULT_DATAROOM 85 #define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 86 87 #define NB_MBUF 8192 88 #define MEMPOOL_CACHE_SIZE 256 89 90 /* allow max jumbo frame 9.5 KB */ 91 #define JUMBO_FRAME_MAX_SIZE 0x2600 92 93 #define MAX_FLOW_NUM UINT16_MAX 94 #define MIN_FLOW_NUM 1 95 #define DEF_FLOW_NUM 0x1000 96 97 /* TTL numbers are in ms. */ 98 #define MAX_FLOW_TTL (3600 * MS_PER_S) 99 #define MIN_FLOW_TTL 1 100 #define DEF_FLOW_TTL MS_PER_S 101 102 #define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG 103 104 /* Should be power of two. */ 105 #define IP_FRAG_TBL_BUCKET_ENTRIES 16 106 107 static uint32_t max_flow_num = DEF_FLOW_NUM; 108 static uint32_t max_flow_ttl = DEF_FLOW_TTL; 109 110 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 111 112 #define NB_SOCKETS 8 113 114 /* Configure how many packets ahead to prefetch, when reading packets */ 115 #define PREFETCH_OFFSET 3 116 117 /* 118 * Configurable number of RX/TX ring descriptors 119 */ 120 #define RTE_TEST_RX_DESC_DEFAULT 128 121 #define RTE_TEST_TX_DESC_DEFAULT 512 122 123 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 124 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 125 126 /* ethernet addresses of ports */ 127 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 128 129 #ifndef IPv4_BYTES 130 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 131 #define IPv4_BYTES(addr) \ 132 (uint8_t) (((addr) >> 24) & 0xFF),\ 133 (uint8_t) (((addr) >> 16) & 0xFF),\ 134 (uint8_t) (((addr) >> 8) & 0xFF),\ 135 (uint8_t) ((addr) & 0xFF) 136 #endif 137 138 #ifndef IPv6_BYTES 139 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 140 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 141 #define IPv6_BYTES(addr) \ 142 addr[0], addr[1], addr[2], addr[3], \ 143 addr[4], addr[5], addr[6], addr[7], \ 144 addr[8], addr[9], addr[10], addr[11],\ 145 addr[12], addr[13],addr[14], addr[15] 146 #endif 147 148 #define IPV6_ADDR_LEN 16 149 150 /* mask of enabled ports */ 151 static uint32_t enabled_port_mask = 0; 152 153 static int rx_queue_per_lcore = 1; 154 155 struct mbuf_table { 156 uint32_t len; 157 uint32_t head; 158 uint32_t tail; 159 struct rte_mbuf *m_table[0]; 160 }; 161 162 struct rx_queue { 163 struct rte_ip_frag_tbl *frag_tbl; 164 struct rte_mempool *pool; 165 struct rte_lpm *lpm; 166 struct rte_lpm6 *lpm6; 167 uint16_t portid; 168 }; 169 170 struct tx_lcore_stat { 171 uint64_t call; 172 uint64_t drop; 173 uint64_t queue; 174 uint64_t send; 175 }; 176 177 #define MAX_RX_QUEUE_PER_LCORE 16 178 #define MAX_TX_QUEUE_PER_PORT 16 179 #define MAX_RX_QUEUE_PER_PORT 128 180 181 struct lcore_queue_conf { 182 uint16_t n_rx_queue; 183 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 184 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 185 struct rte_ip_frag_death_row death_row; 186 struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS]; 187 struct tx_lcore_stat tx_stat; 188 } __rte_cache_aligned; 189 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 190 191 static struct rte_eth_conf port_conf = { 192 .rxmode = { 193 .mq_mode = ETH_MQ_RX_RSS, 194 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 195 .split_hdr_size = 0, 196 .header_split = 0, /**< Header Split disabled */ 197 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 198 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 199 .jumbo_frame = 1, /**< Jumbo Frame Support disabled */ 200 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 201 }, 202 .rx_adv_conf = { 203 .rss_conf = { 204 .rss_key = NULL, 205 .rss_hf = ETH_RSS_IP, 206 }, 207 }, 208 .txmode = { 209 .mq_mode = ETH_MQ_TX_NONE, 210 }, 211 }; 212 213 /* 214 * IPv4 forwarding table 215 */ 216 struct l3fwd_ipv4_route { 217 uint32_t ip; 218 uint8_t depth; 219 uint8_t if_out; 220 }; 221 222 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 223 {IPv4(100,10,0,0), 16, 0}, 224 {IPv4(100,20,0,0), 16, 1}, 225 {IPv4(100,30,0,0), 16, 2}, 226 {IPv4(100,40,0,0), 16, 3}, 227 {IPv4(100,50,0,0), 16, 4}, 228 {IPv4(100,60,0,0), 16, 5}, 229 {IPv4(100,70,0,0), 16, 6}, 230 {IPv4(100,80,0,0), 16, 7}, 231 }; 232 233 /* 234 * IPv6 forwarding table 235 */ 236 237 struct l3fwd_ipv6_route { 238 uint8_t ip[IPV6_ADDR_LEN]; 239 uint8_t depth; 240 uint8_t if_out; 241 }; 242 243 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 244 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 245 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 246 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 247 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 248 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 249 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 250 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 251 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 252 }; 253 254 #define LPM_MAX_RULES 1024 255 #define LPM6_MAX_RULES 1024 256 #define LPM6_NUMBER_TBL8S (1 << 16) 257 258 struct rte_lpm6_config lpm6_config = { 259 .max_rules = LPM6_MAX_RULES, 260 .number_tbl8s = LPM6_NUMBER_TBL8S, 261 .flags = 0 262 }; 263 264 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 265 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 266 267 #ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT 268 #define TX_LCORE_STAT_UPDATE(s, f, v) ((s)->f += (v)) 269 #else 270 #define TX_LCORE_STAT_UPDATE(s, f, v) do {} while (0) 271 #endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */ 272 273 /* 274 * If number of queued packets reached given threahold, then 275 * send burst of packets on an output interface. 276 */ 277 static inline uint32_t 278 send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint16_t port) 279 { 280 uint32_t fill, len, k, n; 281 struct mbuf_table *txmb; 282 283 txmb = qconf->tx_mbufs[port]; 284 len = txmb->len; 285 286 if ((int32_t)(fill = txmb->head - txmb->tail) < 0) 287 fill += len; 288 289 if (fill >= thresh) { 290 n = RTE_MIN(len - txmb->tail, fill); 291 292 k = rte_eth_tx_burst(port, qconf->tx_queue_id[port], 293 txmb->m_table + txmb->tail, (uint16_t)n); 294 295 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1); 296 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k); 297 298 fill -= k; 299 if ((txmb->tail += k) == len) 300 txmb->tail = 0; 301 } 302 303 return fill; 304 } 305 306 /* Enqueue a single packet, and send burst if queue is filled */ 307 static inline int 308 send_single_packet(struct rte_mbuf *m, uint16_t port) 309 { 310 uint32_t fill, lcore_id, len; 311 struct lcore_queue_conf *qconf; 312 struct mbuf_table *txmb; 313 314 lcore_id = rte_lcore_id(); 315 qconf = &lcore_queue_conf[lcore_id]; 316 317 txmb = qconf->tx_mbufs[port]; 318 len = txmb->len; 319 320 fill = send_burst(qconf, MAX_PKT_BURST, port); 321 322 if (fill == len - 1) { 323 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1); 324 rte_pktmbuf_free(txmb->m_table[txmb->tail]); 325 if (++txmb->tail == len) 326 txmb->tail = 0; 327 } 328 329 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1); 330 txmb->m_table[txmb->head] = m; 331 if(++txmb->head == len) 332 txmb->head = 0; 333 334 return 0; 335 } 336 337 static inline void 338 reassemble(struct rte_mbuf *m, uint16_t portid, uint32_t queue, 339 struct lcore_queue_conf *qconf, uint64_t tms) 340 { 341 struct ether_hdr *eth_hdr; 342 struct rte_ip_frag_tbl *tbl; 343 struct rte_ip_frag_death_row *dr; 344 struct rx_queue *rxq; 345 void *d_addr_bytes; 346 uint32_t next_hop; 347 uint16_t dst_port; 348 349 rxq = &qconf->rx_queue_list[queue]; 350 351 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 352 353 dst_port = portid; 354 355 /* if packet is IPv4 */ 356 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 357 struct ipv4_hdr *ip_hdr; 358 uint32_t ip_dst; 359 360 ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1); 361 362 /* if it is a fragmented packet, then try to reassemble. */ 363 if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) { 364 struct rte_mbuf *mo; 365 366 tbl = rxq->frag_tbl; 367 dr = &qconf->death_row; 368 369 /* prepare mbuf: setup l2_len/l3_len. */ 370 m->l2_len = sizeof(*eth_hdr); 371 m->l3_len = sizeof(*ip_hdr); 372 373 /* process this fragment. */ 374 mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr); 375 if (mo == NULL) 376 /* no packet to send out. */ 377 return; 378 379 /* we have our packet reassembled. */ 380 if (mo != m) { 381 m = mo; 382 eth_hdr = rte_pktmbuf_mtod(m, 383 struct ether_hdr *); 384 ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1); 385 } 386 } 387 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 388 389 /* Find destination port */ 390 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 391 (enabled_port_mask & 1 << next_hop) != 0) { 392 dst_port = next_hop; 393 } 394 395 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 396 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 397 /* if packet is IPv6 */ 398 struct ipv6_extension_fragment *frag_hdr; 399 struct ipv6_hdr *ip_hdr; 400 401 ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1); 402 403 frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr); 404 405 if (frag_hdr != NULL) { 406 struct rte_mbuf *mo; 407 408 tbl = rxq->frag_tbl; 409 dr = &qconf->death_row; 410 411 /* prepare mbuf: setup l2_len/l3_len. */ 412 m->l2_len = sizeof(*eth_hdr); 413 m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr); 414 415 mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr); 416 if (mo == NULL) 417 return; 418 419 if (mo != m) { 420 m = mo; 421 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 422 ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1); 423 } 424 } 425 426 /* Find destination port */ 427 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 428 &next_hop) == 0 && 429 (enabled_port_mask & 1 << next_hop) != 0) { 430 dst_port = next_hop; 431 } 432 433 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); 434 } 435 /* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */ 436 437 /* 02:00:00:00:00:xx */ 438 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 439 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40); 440 441 /* src addr */ 442 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 443 444 send_single_packet(m, dst_port); 445 } 446 447 /* main processing loop */ 448 static int 449 main_loop(__attribute__((unused)) void *dummy) 450 { 451 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 452 unsigned lcore_id; 453 uint64_t diff_tsc, cur_tsc, prev_tsc; 454 int i, j, nb_rx; 455 uint16_t portid; 456 struct lcore_queue_conf *qconf; 457 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 458 459 prev_tsc = 0; 460 461 lcore_id = rte_lcore_id(); 462 qconf = &lcore_queue_conf[lcore_id]; 463 464 if (qconf->n_rx_queue == 0) { 465 RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id); 466 return 0; 467 } 468 469 RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id); 470 471 for (i = 0; i < qconf->n_rx_queue; i++) { 472 473 portid = qconf->rx_queue_list[i].portid; 474 RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%u\n", lcore_id, 475 portid); 476 } 477 478 while (1) { 479 480 cur_tsc = rte_rdtsc(); 481 482 /* 483 * TX burst queue drain 484 */ 485 diff_tsc = cur_tsc - prev_tsc; 486 if (unlikely(diff_tsc > drain_tsc)) { 487 488 /* 489 * This could be optimized (use queueid instead of 490 * portid), but it is not called so often 491 */ 492 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 493 if ((enabled_port_mask & (1 << portid)) != 0) 494 send_burst(qconf, 1, portid); 495 } 496 497 prev_tsc = cur_tsc; 498 } 499 500 /* 501 * Read packet from RX queues 502 */ 503 for (i = 0; i < qconf->n_rx_queue; ++i) { 504 505 portid = qconf->rx_queue_list[i].portid; 506 507 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 508 MAX_PKT_BURST); 509 510 /* Prefetch first packets */ 511 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 512 rte_prefetch0(rte_pktmbuf_mtod( 513 pkts_burst[j], void *)); 514 } 515 516 /* Prefetch and forward already prefetched packets */ 517 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 518 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 519 j + PREFETCH_OFFSET], void *)); 520 reassemble(pkts_burst[j], portid, 521 i, qconf, cur_tsc); 522 } 523 524 /* Forward remaining prefetched packets */ 525 for (; j < nb_rx; j++) { 526 reassemble(pkts_burst[j], portid, 527 i, qconf, cur_tsc); 528 } 529 530 rte_ip_frag_free_death_row(&qconf->death_row, 531 PREFETCH_OFFSET); 532 } 533 } 534 } 535 536 /* display usage */ 537 static void 538 print_usage(const char *prgname) 539 { 540 printf("%s [EAL options] -- -p PORTMASK [-q NQ]" 541 " [--max-pkt-len PKTLEN]" 542 " [--maxflows=<flows>] [--flowttl=<ttl>[(s|ms)]]\n" 543 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 544 " -q NQ: number of RX queues per lcore\n" 545 " --maxflows=<flows>: optional, maximum number of flows " 546 "supported\n" 547 " --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each " 548 "flow\n", 549 prgname); 550 } 551 552 static uint32_t 553 parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val) 554 { 555 char *end; 556 uint64_t v; 557 558 /* parse decimal string */ 559 errno = 0; 560 v = strtoul(str, &end, 10); 561 if (errno != 0 || *end != '\0') 562 return -EINVAL; 563 564 if (v < min || v > max) 565 return -EINVAL; 566 567 *val = (uint32_t)v; 568 return 0; 569 } 570 571 static int 572 parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val) 573 { 574 char *end; 575 uint64_t v; 576 577 static const char frmt_sec[] = "s"; 578 static const char frmt_msec[] = "ms"; 579 580 /* parse decimal string */ 581 errno = 0; 582 v = strtoul(str, &end, 10); 583 if (errno != 0) 584 return -EINVAL; 585 586 if (*end != '\0') { 587 if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0) 588 v *= MS_PER_S; 589 else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0) 590 return -EINVAL; 591 } 592 593 if (v < min || v > max) 594 return -EINVAL; 595 596 *val = (uint32_t)v; 597 return 0; 598 } 599 600 static int 601 parse_portmask(const char *portmask) 602 { 603 char *end = NULL; 604 unsigned long pm; 605 606 /* parse hexadecimal string */ 607 pm = strtoul(portmask, &end, 16); 608 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 609 return -1; 610 611 if (pm == 0) 612 return -1; 613 614 return pm; 615 } 616 617 static int 618 parse_nqueue(const char *q_arg) 619 { 620 char *end = NULL; 621 unsigned long n; 622 623 printf("%p\n", q_arg); 624 625 /* parse hexadecimal string */ 626 n = strtoul(q_arg, &end, 10); 627 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 628 return -1; 629 if (n == 0) 630 return -1; 631 if (n >= MAX_RX_QUEUE_PER_LCORE) 632 return -1; 633 634 return n; 635 } 636 637 /* Parse the argument given in the command line of the application */ 638 static int 639 parse_args(int argc, char **argv) 640 { 641 int opt, ret; 642 char **argvopt; 643 int option_index; 644 char *prgname = argv[0]; 645 static struct option lgopts[] = { 646 {"max-pkt-len", 1, 0, 0}, 647 {"maxflows", 1, 0, 0}, 648 {"flowttl", 1, 0, 0}, 649 {NULL, 0, 0, 0} 650 }; 651 652 argvopt = argv; 653 654 while ((opt = getopt_long(argc, argvopt, "p:q:", 655 lgopts, &option_index)) != EOF) { 656 657 switch (opt) { 658 /* portmask */ 659 case 'p': 660 enabled_port_mask = parse_portmask(optarg); 661 if (enabled_port_mask == 0) { 662 printf("invalid portmask\n"); 663 print_usage(prgname); 664 return -1; 665 } 666 break; 667 668 /* nqueue */ 669 case 'q': 670 rx_queue_per_lcore = parse_nqueue(optarg); 671 if (rx_queue_per_lcore < 0) { 672 printf("invalid queue number\n"); 673 print_usage(prgname); 674 return -1; 675 } 676 break; 677 678 /* long options */ 679 case 0: 680 if (!strncmp(lgopts[option_index].name, 681 "maxflows", 8)) { 682 if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM, 683 MAX_FLOW_NUM, 684 &max_flow_num)) != 0) { 685 printf("invalid value: \"%s\" for " 686 "parameter %s\n", 687 optarg, 688 lgopts[option_index].name); 689 print_usage(prgname); 690 return ret; 691 } 692 } 693 694 if (!strncmp(lgopts[option_index].name, "flowttl", 7)) { 695 if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL, 696 MAX_FLOW_TTL, 697 &max_flow_ttl)) != 0) { 698 printf("invalid value: \"%s\" for " 699 "parameter %s\n", 700 optarg, 701 lgopts[option_index].name); 702 print_usage(prgname); 703 return ret; 704 } 705 } 706 707 break; 708 709 default: 710 print_usage(prgname); 711 return -1; 712 } 713 } 714 715 if (optind >= 0) 716 argv[optind-1] = prgname; 717 718 ret = optind-1; 719 optind = 1; /* reset getopt lib */ 720 return ret; 721 } 722 723 static void 724 print_ethaddr(const char *name, const struct ether_addr *eth_addr) 725 { 726 char buf[ETHER_ADDR_FMT_SIZE]; 727 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 728 printf("%s%s", name, buf); 729 } 730 731 /* Check the link status of all ports in up to 9s, and print them finally */ 732 static void 733 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask) 734 { 735 #define CHECK_INTERVAL 100 /* 100ms */ 736 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 737 uint16_t portid; 738 uint8_t count, all_ports_up, print_flag = 0; 739 struct rte_eth_link link; 740 741 printf("\nChecking link status"); 742 fflush(stdout); 743 for (count = 0; count <= MAX_CHECK_TIME; count++) { 744 all_ports_up = 1; 745 for (portid = 0; portid < port_num; portid++) { 746 if ((port_mask & (1 << portid)) == 0) 747 continue; 748 memset(&link, 0, sizeof(link)); 749 rte_eth_link_get_nowait(portid, &link); 750 /* print link status if flag set */ 751 if (print_flag == 1) { 752 if (link.link_status) 753 printf( 754 "Port%d Link Up. Speed %u Mbps - %s\n", 755 portid, link.link_speed, 756 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 757 ("full-duplex") : ("half-duplex\n")); 758 else 759 printf("Port %d Link Down\n", portid); 760 continue; 761 } 762 /* clear all_ports_up flag if any link down */ 763 if (link.link_status == ETH_LINK_DOWN) { 764 all_ports_up = 0; 765 break; 766 } 767 } 768 /* after finally printing all link status, get out */ 769 if (print_flag == 1) 770 break; 771 772 if (all_ports_up == 0) { 773 printf("."); 774 fflush(stdout); 775 rte_delay_ms(CHECK_INTERVAL); 776 } 777 778 /* set the print_flag if all ports up or timeout */ 779 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 780 print_flag = 1; 781 printf("\ndone\n"); 782 } 783 } 784 } 785 786 static int 787 init_routing_table(void) 788 { 789 struct rte_lpm *lpm; 790 struct rte_lpm6 *lpm6; 791 int socket, ret; 792 unsigned i; 793 794 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 795 if (socket_lpm[socket]) { 796 lpm = socket_lpm[socket]; 797 /* populate the LPM table */ 798 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 799 ret = rte_lpm_add(lpm, 800 l3fwd_ipv4_route_array[i].ip, 801 l3fwd_ipv4_route_array[i].depth, 802 l3fwd_ipv4_route_array[i].if_out); 803 804 if (ret < 0) { 805 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " 806 "LPM table\n", i); 807 return -1; 808 } 809 810 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT 811 "/%d (port %d)\n", 812 socket, 813 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 814 l3fwd_ipv4_route_array[i].depth, 815 l3fwd_ipv4_route_array[i].if_out); 816 } 817 } 818 819 if (socket_lpm6[socket]) { 820 lpm6 = socket_lpm6[socket]; 821 /* populate the LPM6 table */ 822 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 823 ret = rte_lpm6_add(lpm6, 824 l3fwd_ipv6_route_array[i].ip, 825 l3fwd_ipv6_route_array[i].depth, 826 l3fwd_ipv6_route_array[i].if_out); 827 828 if (ret < 0) { 829 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " 830 "LPM6 table\n", i); 831 return -1; 832 } 833 834 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT 835 "/%d (port %d)\n", 836 socket, 837 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 838 l3fwd_ipv6_route_array[i].depth, 839 l3fwd_ipv6_route_array[i].if_out); 840 } 841 } 842 } 843 return 0; 844 } 845 846 static int 847 setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket, 848 uint32_t port) 849 { 850 struct mbuf_table *mtb; 851 uint32_t n; 852 size_t sz; 853 854 n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST); 855 sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) * n; 856 857 if ((mtb = rte_zmalloc_socket(__func__, sz, RTE_CACHE_LINE_SIZE, 858 socket)) == NULL) { 859 RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u " 860 "failed to allocate %zu bytes\n", 861 __func__, lcore, port, sz); 862 return -1; 863 } 864 865 mtb->len = n; 866 qconf->tx_mbufs[port] = mtb; 867 868 return 0; 869 } 870 871 static int 872 setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue) 873 { 874 int socket; 875 uint32_t nb_mbuf; 876 uint64_t frag_cycles; 877 char buf[RTE_MEMPOOL_NAMESIZE]; 878 879 socket = rte_lcore_to_socket_id(lcore); 880 if (socket == SOCKET_ID_ANY) 881 socket = 0; 882 883 frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * 884 max_flow_ttl; 885 886 if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num, 887 IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles, 888 socket)) == NULL) { 889 RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " 890 "lcore: %u for queue: %u failed\n", 891 max_flow_num, lcore, queue); 892 return -1; 893 } 894 895 /* 896 * At any given moment up to <max_flow_num * (MAX_FRAG_NUM)> 897 * mbufs could be stored int the fragment table. 898 * Plus, each TX queue can hold up to <max_flow_num> packets. 899 */ 900 901 nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM; 902 nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE; 903 nb_mbuf *= 2; /* ipv4 and ipv6 */ 904 nb_mbuf += nb_rxd + nb_txd; 905 906 nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF); 907 908 snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue); 909 910 rxq->pool = rte_pktmbuf_pool_create(buf, nb_mbuf, MEMPOOL_CACHE_SIZE, 0, 911 MBUF_DATA_SIZE, socket); 912 if (rxq->pool == NULL) { 913 RTE_LOG(ERR, IP_RSMBL, 914 "rte_pktmbuf_pool_create(%s) failed", buf); 915 return -1; 916 } 917 918 return 0; 919 } 920 921 static int 922 init_mem(void) 923 { 924 char buf[PATH_MAX]; 925 struct rte_lpm *lpm; 926 struct rte_lpm6 *lpm6; 927 struct rte_lpm_config lpm_config; 928 int socket; 929 unsigned lcore_id; 930 931 /* traverse through lcores and initialize structures on each socket */ 932 933 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 934 935 if (rte_lcore_is_enabled(lcore_id) == 0) 936 continue; 937 938 socket = rte_lcore_to_socket_id(lcore_id); 939 940 if (socket == SOCKET_ID_ANY) 941 socket = 0; 942 943 if (socket_lpm[socket] == NULL) { 944 RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket); 945 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); 946 947 lpm_config.max_rules = LPM_MAX_RULES; 948 lpm_config.number_tbl8s = 256; 949 lpm_config.flags = 0; 950 951 lpm = rte_lpm_create(buf, socket, &lpm_config); 952 if (lpm == NULL) { 953 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); 954 return -1; 955 } 956 socket_lpm[socket] = lpm; 957 } 958 959 if (socket_lpm6[socket] == NULL) { 960 RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket); 961 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); 962 963 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 964 if (lpm6 == NULL) { 965 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); 966 return -1; 967 } 968 socket_lpm6[socket] = lpm6; 969 } 970 } 971 972 return 0; 973 } 974 975 static void 976 queue_dump_stat(void) 977 { 978 uint32_t i, lcore; 979 const struct lcore_queue_conf *qconf; 980 981 for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) { 982 if (rte_lcore_is_enabled(lcore) == 0) 983 continue; 984 985 qconf = &lcore_queue_conf[lcore]; 986 for (i = 0; i < qconf->n_rx_queue; i++) { 987 988 fprintf(stdout, " -- lcoreid=%u portid=%u " 989 "frag tbl stat:\n", 990 lcore, qconf->rx_queue_list[i].portid); 991 rte_ip_frag_table_statistics_dump(stdout, 992 qconf->rx_queue_list[i].frag_tbl); 993 fprintf(stdout, "TX bursts:\t%" PRIu64 "\n" 994 "TX packets _queued:\t%" PRIu64 "\n" 995 "TX packets dropped:\t%" PRIu64 "\n" 996 "TX packets send:\t%" PRIu64 "\n", 997 qconf->tx_stat.call, 998 qconf->tx_stat.queue, 999 qconf->tx_stat.drop, 1000 qconf->tx_stat.send); 1001 } 1002 } 1003 } 1004 1005 static void 1006 signal_handler(int signum) 1007 { 1008 queue_dump_stat(); 1009 if (signum != SIGUSR1) 1010 rte_exit(0, "received signal: %d, exiting\n", signum); 1011 } 1012 1013 int 1014 main(int argc, char **argv) 1015 { 1016 struct lcore_queue_conf *qconf; 1017 struct rte_eth_dev_info dev_info; 1018 struct rte_eth_txconf *txconf; 1019 struct rx_queue *rxq; 1020 int ret, socket; 1021 unsigned nb_ports; 1022 uint16_t queueid; 1023 unsigned lcore_id = 0, rx_lcore_id = 0; 1024 uint32_t n_tx_queue, nb_lcores; 1025 uint16_t portid; 1026 1027 /* init EAL */ 1028 ret = rte_eal_init(argc, argv); 1029 if (ret < 0) 1030 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1031 argc -= ret; 1032 argv += ret; 1033 1034 /* parse application arguments (after the EAL ones) */ 1035 ret = parse_args(argc, argv); 1036 if (ret < 0) 1037 rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n"); 1038 1039 nb_ports = rte_eth_dev_count(); 1040 if (nb_ports == 0) 1041 rte_exit(EXIT_FAILURE, "No ports found!\n"); 1042 1043 nb_lcores = rte_lcore_count(); 1044 1045 /* initialize structures (mempools, lpm etc.) */ 1046 if (init_mem() < 0) 1047 rte_panic("Cannot initialize memory structures!\n"); 1048 1049 /* check if portmask has non-existent ports */ 1050 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 1051 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 1052 1053 /* initialize all ports */ 1054 for (portid = 0; portid < nb_ports; portid++) { 1055 /* skip ports that are not enabled */ 1056 if ((enabled_port_mask & (1 << portid)) == 0) { 1057 printf("\nSkipping disabled port %d\n", portid); 1058 continue; 1059 } 1060 1061 qconf = &lcore_queue_conf[rx_lcore_id]; 1062 1063 /* limit the frame size to the maximum supported by NIC */ 1064 rte_eth_dev_info_get(portid, &dev_info); 1065 port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 1066 dev_info.max_rx_pktlen, port_conf.rxmode.max_rx_pkt_len); 1067 1068 /* get the lcore_id for this port */ 1069 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 1070 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 1071 1072 rx_lcore_id++; 1073 if (rx_lcore_id >= RTE_MAX_LCORE) 1074 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 1075 1076 qconf = &lcore_queue_conf[rx_lcore_id]; 1077 } 1078 1079 socket = rte_lcore_to_socket_id(portid); 1080 if (socket == SOCKET_ID_ANY) 1081 socket = 0; 1082 1083 queueid = qconf->n_rx_queue; 1084 rxq = &qconf->rx_queue_list[queueid]; 1085 rxq->portid = portid; 1086 rxq->lpm = socket_lpm[socket]; 1087 rxq->lpm6 = socket_lpm6[socket]; 1088 1089 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 1090 &nb_txd); 1091 if (ret < 0) 1092 rte_exit(EXIT_FAILURE, 1093 "Cannot adjust number of descriptors: err=%d, port=%d\n", 1094 ret, portid); 1095 1096 if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0) 1097 rte_exit(EXIT_FAILURE, "Failed to set up queue table\n"); 1098 qconf->n_rx_queue++; 1099 1100 /* init port */ 1101 printf("Initializing port %d ... ", portid ); 1102 fflush(stdout); 1103 1104 n_tx_queue = nb_lcores; 1105 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 1106 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 1107 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 1108 &port_conf); 1109 if (ret < 0) { 1110 printf("\n"); 1111 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1112 "err=%d, port=%d\n", 1113 ret, portid); 1114 } 1115 1116 /* init one RX queue */ 1117 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 1118 socket, NULL, 1119 rxq->pool); 1120 if (ret < 0) { 1121 printf("\n"); 1122 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 1123 "err=%d, port=%d\n", 1124 ret, portid); 1125 } 1126 1127 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1128 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1129 printf("\n"); 1130 1131 /* init one TX queue per couple (lcore,port) */ 1132 queueid = 0; 1133 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1134 if (rte_lcore_is_enabled(lcore_id) == 0) 1135 continue; 1136 1137 socket = (int) rte_lcore_to_socket_id(lcore_id); 1138 1139 printf("txq=%u,%d,%d ", lcore_id, queueid, socket); 1140 fflush(stdout); 1141 1142 txconf = &dev_info.default_txconf; 1143 txconf->txq_flags = 0; 1144 1145 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1146 socket, txconf); 1147 if (ret < 0) 1148 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 1149 "port=%d\n", ret, portid); 1150 1151 qconf = &lcore_queue_conf[lcore_id]; 1152 qconf->tx_queue_id[portid] = queueid; 1153 setup_port_tbl(qconf, lcore_id, socket, portid); 1154 queueid++; 1155 } 1156 printf("\n"); 1157 } 1158 1159 printf("\n"); 1160 1161 /* start ports */ 1162 for (portid = 0; portid < nb_ports; portid++) { 1163 if ((enabled_port_mask & (1 << portid)) == 0) { 1164 continue; 1165 } 1166 /* Start device */ 1167 ret = rte_eth_dev_start(portid); 1168 if (ret < 0) 1169 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1170 ret, portid); 1171 1172 rte_eth_promiscuous_enable(portid); 1173 } 1174 1175 if (init_routing_table() < 0) 1176 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1177 1178 check_all_ports_link_status(nb_ports, enabled_port_mask); 1179 1180 signal(SIGUSR1, signal_handler); 1181 signal(SIGTERM, signal_handler); 1182 signal(SIGINT, signal_handler); 1183 1184 /* launch per-lcore init on every lcore */ 1185 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1186 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1187 if (rte_eal_wait_lcore(lcore_id) < 0) 1188 return -1; 1189 } 1190 1191 return 0; 1192 } 1193