1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <sys/param.h> 11 #include <string.h> 12 #include <sys/queue.h> 13 #include <stdarg.h> 14 #include <errno.h> 15 #include <getopt.h> 16 17 #include <rte_common.h> 18 #include <rte_byteorder.h> 19 #include <rte_log.h> 20 #include <rte_memory.h> 21 #include <rte_memcpy.h> 22 #include <rte_eal.h> 23 #include <rte_launch.h> 24 #include <rte_atomic.h> 25 #include <rte_cycles.h> 26 #include <rte_prefetch.h> 27 #include <rte_lcore.h> 28 #include <rte_per_lcore.h> 29 #include <rte_branch_prediction.h> 30 #include <rte_interrupts.h> 31 #include <rte_random.h> 32 #include <rte_debug.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_mempool.h> 36 #include <rte_mbuf.h> 37 #include <rte_lpm.h> 38 #include <rte_lpm6.h> 39 #include <rte_ip.h> 40 #include <rte_string_fns.h> 41 42 #include <rte_ip_frag.h> 43 44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 45 46 /* allow max jumbo frame 9.5 KB */ 47 #define JUMBO_FRAME_MAX_SIZE 0x2600 48 49 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) 50 51 /* 52 * Default byte size for the IPv6 Maximum Transfer Unit (MTU). 53 * This value includes the size of IPv6 header. 54 */ 55 #define IPV4_MTU_DEFAULT ETHER_MTU 56 #define IPV6_MTU_DEFAULT ETHER_MTU 57 58 /* 59 * Default payload in bytes for the IPv6 packet. 60 */ 61 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr)) 62 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr)) 63 64 /* 65 * Max number of fragments per packet expected - defined by config file. 66 */ 67 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG 68 69 #define NB_MBUF 8192 70 71 #define MAX_PKT_BURST 32 72 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 73 74 /* Configure how many packets ahead to prefetch, when reading packets */ 75 #define PREFETCH_OFFSET 3 76 77 /* 78 * Configurable number of RX/TX ring descriptors 79 */ 80 #define RTE_TEST_RX_DESC_DEFAULT 1024 81 #define RTE_TEST_TX_DESC_DEFAULT 1024 82 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 83 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 84 85 /* ethernet addresses of ports */ 86 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 87 88 #ifndef IPv4_BYTES 89 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 90 #define IPv4_BYTES(addr) \ 91 (uint8_t) (((addr) >> 24) & 0xFF),\ 92 (uint8_t) (((addr) >> 16) & 0xFF),\ 93 (uint8_t) (((addr) >> 8) & 0xFF),\ 94 (uint8_t) ((addr) & 0xFF) 95 #endif 96 97 #ifndef IPv6_BYTES 98 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 99 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 100 #define IPv6_BYTES(addr) \ 101 addr[0], addr[1], addr[2], addr[3], \ 102 addr[4], addr[5], addr[6], addr[7], \ 103 addr[8], addr[9], addr[10], addr[11],\ 104 addr[12], addr[13],addr[14], addr[15] 105 #endif 106 107 #define IPV6_ADDR_LEN 16 108 109 /* mask of enabled ports */ 110 static int enabled_port_mask = 0; 111 112 static int rx_queue_per_lcore = 1; 113 114 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) 115 116 struct mbuf_table { 117 uint16_t len; 118 struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; 119 }; 120 121 struct rx_queue { 122 struct rte_mempool *direct_pool; 123 struct rte_mempool *indirect_pool; 124 struct rte_lpm *lpm; 125 struct rte_lpm6 *lpm6; 126 uint16_t portid; 127 }; 128 129 #define MAX_RX_QUEUE_PER_LCORE 16 130 #define MAX_TX_QUEUE_PER_PORT 16 131 struct lcore_queue_conf { 132 uint16_t n_rx_queue; 133 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 134 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 135 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 136 } __rte_cache_aligned; 137 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 138 139 static struct rte_eth_conf port_conf = { 140 .rxmode = { 141 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 142 .split_hdr_size = 0, 143 .offloads = (DEV_RX_OFFLOAD_CHECKSUM | 144 DEV_RX_OFFLOAD_JUMBO_FRAME), 145 }, 146 .txmode = { 147 .mq_mode = ETH_MQ_TX_NONE, 148 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | 149 DEV_TX_OFFLOAD_MULTI_SEGS), 150 }, 151 }; 152 153 /* 154 * IPv4 forwarding table 155 */ 156 struct l3fwd_ipv4_route { 157 uint32_t ip; 158 uint8_t depth; 159 uint8_t if_out; 160 }; 161 162 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 163 {IPv4(100,10,0,0), 16, 0}, 164 {IPv4(100,20,0,0), 16, 1}, 165 {IPv4(100,30,0,0), 16, 2}, 166 {IPv4(100,40,0,0), 16, 3}, 167 {IPv4(100,50,0,0), 16, 4}, 168 {IPv4(100,60,0,0), 16, 5}, 169 {IPv4(100,70,0,0), 16, 6}, 170 {IPv4(100,80,0,0), 16, 7}, 171 }; 172 173 /* 174 * IPv6 forwarding table 175 */ 176 177 struct l3fwd_ipv6_route { 178 uint8_t ip[IPV6_ADDR_LEN]; 179 uint8_t depth; 180 uint8_t if_out; 181 }; 182 183 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 184 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 185 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 186 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 187 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 188 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 189 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 190 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 191 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 192 }; 193 194 #define LPM_MAX_RULES 1024 195 #define LPM6_MAX_RULES 1024 196 #define LPM6_NUMBER_TBL8S (1 << 16) 197 198 struct rte_lpm6_config lpm6_config = { 199 .max_rules = LPM6_MAX_RULES, 200 .number_tbl8s = LPM6_NUMBER_TBL8S, 201 .flags = 0 202 }; 203 204 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; 205 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; 206 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 207 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 208 209 /* Send burst of packets on an output interface */ 210 static inline int 211 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port) 212 { 213 struct rte_mbuf **m_table; 214 int ret; 215 uint16_t queueid; 216 217 queueid = qconf->tx_queue_id[port]; 218 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 219 220 ret = rte_eth_tx_burst(port, queueid, m_table, n); 221 if (unlikely(ret < n)) { 222 do { 223 rte_pktmbuf_free(m_table[ret]); 224 } while (++ret < n); 225 } 226 227 return 0; 228 } 229 230 static inline void 231 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, 232 uint8_t queueid, uint16_t port_in) 233 { 234 struct rx_queue *rxq; 235 uint32_t i, len, next_hop; 236 uint16_t port_out, ether_type; 237 int32_t len2; 238 const struct ether_hdr *eth; 239 240 rxq = &qconf->rx_queue_list[queueid]; 241 242 /* by default, send everything back to the source port */ 243 port_out = port_in; 244 245 /* save ether type of the incoming packet */ 246 eth = rte_pktmbuf_mtod(m, const struct ether_hdr *); 247 ether_type = eth->ether_type; 248 249 /* Remove the Ethernet header and trailer from the input packet */ 250 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 251 252 /* Build transmission burst */ 253 len = qconf->tx_mbufs[port_out].len; 254 255 /* if this is an IPv4 packet */ 256 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 257 struct ipv4_hdr *ip_hdr; 258 uint32_t ip_dst; 259 /* Read the lookup key (i.e. ip_dst) from the input packet */ 260 ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *); 261 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 262 263 /* Find destination port */ 264 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 265 (enabled_port_mask & 1 << next_hop) != 0) { 266 port_out = next_hop; 267 268 /* Build transmission burst for new port */ 269 len = qconf->tx_mbufs[port_out].len; 270 } 271 272 /* if we don't need to do any fragmentation */ 273 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { 274 qconf->tx_mbufs[port_out].m_table[len] = m; 275 len2 = 1; 276 } else { 277 len2 = rte_ipv4_fragment_packet(m, 278 &qconf->tx_mbufs[port_out].m_table[len], 279 (uint16_t)(MBUF_TABLE_SIZE - len), 280 IPV4_MTU_DEFAULT, 281 rxq->direct_pool, rxq->indirect_pool); 282 283 /* Free input packet */ 284 rte_pktmbuf_free(m); 285 286 /* If we fail to fragment the packet */ 287 if (unlikely (len2 < 0)) 288 return; 289 } 290 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 291 /* if this is an IPv6 packet */ 292 struct ipv6_hdr *ip_hdr; 293 294 /* Read the lookup key (i.e. ip_dst) from the input packet */ 295 ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *); 296 297 /* Find destination port */ 298 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 299 &next_hop) == 0 && 300 (enabled_port_mask & 1 << next_hop) != 0) { 301 port_out = next_hop; 302 303 /* Build transmission burst for new port */ 304 len = qconf->tx_mbufs[port_out].len; 305 } 306 307 /* if we don't need to do any fragmentation */ 308 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { 309 qconf->tx_mbufs[port_out].m_table[len] = m; 310 len2 = 1; 311 } else { 312 len2 = rte_ipv6_fragment_packet(m, 313 &qconf->tx_mbufs[port_out].m_table[len], 314 (uint16_t)(MBUF_TABLE_SIZE - len), 315 IPV6_MTU_DEFAULT, 316 rxq->direct_pool, rxq->indirect_pool); 317 318 /* Free input packet */ 319 rte_pktmbuf_free(m); 320 321 /* If we fail to fragment the packet */ 322 if (unlikely (len2 < 0)) 323 return; 324 } 325 } 326 /* else, just forward the packet */ 327 else { 328 qconf->tx_mbufs[port_out].m_table[len] = m; 329 len2 = 1; 330 } 331 332 for (i = len; i < len + len2; i ++) { 333 void *d_addr_bytes; 334 335 m = qconf->tx_mbufs[port_out].m_table[i]; 336 struct ether_hdr *eth_hdr = (struct ether_hdr *) 337 rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr)); 338 if (eth_hdr == NULL) { 339 rte_panic("No headroom in mbuf.\n"); 340 } 341 342 m->l2_len = sizeof(struct ether_hdr); 343 344 /* 02:00:00:00:00:xx */ 345 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 346 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40); 347 348 /* src addr */ 349 ether_addr_copy(&ports_eth_addr[port_out], ð_hdr->s_addr); 350 eth_hdr->ether_type = ether_type; 351 } 352 353 len += len2; 354 355 if (likely(len < MAX_PKT_BURST)) { 356 qconf->tx_mbufs[port_out].len = (uint16_t)len; 357 return; 358 } 359 360 /* Transmit packets */ 361 send_burst(qconf, (uint16_t)len, port_out); 362 qconf->tx_mbufs[port_out].len = 0; 363 } 364 365 /* main processing loop */ 366 static int 367 main_loop(__attribute__((unused)) void *dummy) 368 { 369 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 370 unsigned lcore_id; 371 uint64_t prev_tsc, diff_tsc, cur_tsc; 372 int i, j, nb_rx; 373 uint16_t portid; 374 struct lcore_queue_conf *qconf; 375 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 376 377 prev_tsc = 0; 378 379 lcore_id = rte_lcore_id(); 380 qconf = &lcore_queue_conf[lcore_id]; 381 382 if (qconf->n_rx_queue == 0) { 383 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); 384 return 0; 385 } 386 387 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); 388 389 for (i = 0; i < qconf->n_rx_queue; i++) { 390 391 portid = qconf->rx_queue_list[i].portid; 392 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, 393 portid); 394 } 395 396 while (1) { 397 398 cur_tsc = rte_rdtsc(); 399 400 /* 401 * TX burst queue drain 402 */ 403 diff_tsc = cur_tsc - prev_tsc; 404 if (unlikely(diff_tsc > drain_tsc)) { 405 406 /* 407 * This could be optimized (use queueid instead of 408 * portid), but it is not called so often 409 */ 410 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 411 if (qconf->tx_mbufs[portid].len == 0) 412 continue; 413 send_burst(&lcore_queue_conf[lcore_id], 414 qconf->tx_mbufs[portid].len, 415 portid); 416 qconf->tx_mbufs[portid].len = 0; 417 } 418 419 prev_tsc = cur_tsc; 420 } 421 422 /* 423 * Read packet from RX queues 424 */ 425 for (i = 0; i < qconf->n_rx_queue; i++) { 426 427 portid = qconf->rx_queue_list[i].portid; 428 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 429 MAX_PKT_BURST); 430 431 /* Prefetch first packets */ 432 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 433 rte_prefetch0(rte_pktmbuf_mtod( 434 pkts_burst[j], void *)); 435 } 436 437 /* Prefetch and forward already prefetched packets */ 438 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 439 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 440 j + PREFETCH_OFFSET], void *)); 441 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 442 } 443 444 /* Forward remaining prefetched packets */ 445 for (; j < nb_rx; j++) { 446 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 447 } 448 } 449 } 450 } 451 452 /* display usage */ 453 static void 454 print_usage(const char *prgname) 455 { 456 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 457 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 458 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 459 prgname); 460 } 461 462 static int 463 parse_portmask(const char *portmask) 464 { 465 char *end = NULL; 466 unsigned long pm; 467 468 /* parse hexadecimal string */ 469 pm = strtoul(portmask, &end, 16); 470 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 471 return -1; 472 473 if (pm == 0) 474 return -1; 475 476 return pm; 477 } 478 479 static int 480 parse_nqueue(const char *q_arg) 481 { 482 char *end = NULL; 483 unsigned long n; 484 485 /* parse hexadecimal string */ 486 n = strtoul(q_arg, &end, 10); 487 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 488 return -1; 489 if (n == 0) 490 return -1; 491 if (n >= MAX_RX_QUEUE_PER_LCORE) 492 return -1; 493 494 return n; 495 } 496 497 /* Parse the argument given in the command line of the application */ 498 static int 499 parse_args(int argc, char **argv) 500 { 501 int opt, ret; 502 char **argvopt; 503 int option_index; 504 char *prgname = argv[0]; 505 static struct option lgopts[] = { 506 {NULL, 0, 0, 0} 507 }; 508 509 argvopt = argv; 510 511 while ((opt = getopt_long(argc, argvopt, "p:q:", 512 lgopts, &option_index)) != EOF) { 513 514 switch (opt) { 515 /* portmask */ 516 case 'p': 517 enabled_port_mask = parse_portmask(optarg); 518 if (enabled_port_mask < 0) { 519 printf("invalid portmask\n"); 520 print_usage(prgname); 521 return -1; 522 } 523 break; 524 525 /* nqueue */ 526 case 'q': 527 rx_queue_per_lcore = parse_nqueue(optarg); 528 if (rx_queue_per_lcore < 0) { 529 printf("invalid queue number\n"); 530 print_usage(prgname); 531 return -1; 532 } 533 break; 534 535 /* long options */ 536 case 0: 537 print_usage(prgname); 538 return -1; 539 540 default: 541 print_usage(prgname); 542 return -1; 543 } 544 } 545 546 if (enabled_port_mask == 0) { 547 printf("portmask not specified\n"); 548 print_usage(prgname); 549 return -1; 550 } 551 552 if (optind >= 0) 553 argv[optind-1] = prgname; 554 555 ret = optind-1; 556 optind = 1; /* reset getopt lib */ 557 return ret; 558 } 559 560 static void 561 print_ethaddr(const char *name, struct ether_addr *eth_addr) 562 { 563 char buf[ETHER_ADDR_FMT_SIZE]; 564 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 565 printf("%s%s", name, buf); 566 } 567 568 /* Check the link status of all ports in up to 9s, and print them finally */ 569 static void 570 check_all_ports_link_status(uint32_t port_mask) 571 { 572 #define CHECK_INTERVAL 100 /* 100ms */ 573 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 574 uint16_t portid; 575 uint8_t count, all_ports_up, print_flag = 0; 576 struct rte_eth_link link; 577 578 printf("\nChecking link status"); 579 fflush(stdout); 580 for (count = 0; count <= MAX_CHECK_TIME; count++) { 581 all_ports_up = 1; 582 RTE_ETH_FOREACH_DEV(portid) { 583 if ((port_mask & (1 << portid)) == 0) 584 continue; 585 memset(&link, 0, sizeof(link)); 586 rte_eth_link_get_nowait(portid, &link); 587 /* print link status if flag set */ 588 if (print_flag == 1) { 589 if (link.link_status) 590 printf( 591 "Port%d Link Up .Speed %u Mbps - %s\n", 592 portid, link.link_speed, 593 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 594 ("full-duplex") : ("half-duplex\n")); 595 else 596 printf("Port %d Link Down\n", portid); 597 continue; 598 } 599 /* clear all_ports_up flag if any link down */ 600 if (link.link_status == ETH_LINK_DOWN) { 601 all_ports_up = 0; 602 break; 603 } 604 } 605 /* after finally printing all link status, get out */ 606 if (print_flag == 1) 607 break; 608 609 if (all_ports_up == 0) { 610 printf("."); 611 fflush(stdout); 612 rte_delay_ms(CHECK_INTERVAL); 613 } 614 615 /* set the print_flag if all ports up or timeout */ 616 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 617 print_flag = 1; 618 printf("\ndone\n"); 619 } 620 } 621 } 622 623 /* Check L3 packet type detection capablity of the NIC port */ 624 static int 625 check_ptype(int portid) 626 { 627 int i, ret; 628 int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0; 629 uint32_t ptype_mask = RTE_PTYPE_L3_MASK; 630 631 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); 632 if (ret <= 0) 633 return 0; 634 635 uint32_t ptypes[ret]; 636 637 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); 638 for (i = 0; i < ret; ++i) { 639 if (ptypes[i] & RTE_PTYPE_L3_IPV4) 640 ptype_l3_ipv4 = 1; 641 if (ptypes[i] & RTE_PTYPE_L3_IPV6) 642 ptype_l3_ipv6 = 1; 643 } 644 645 if (ptype_l3_ipv4 == 0) 646 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid); 647 648 if (ptype_l3_ipv6 == 0) 649 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid); 650 651 if (ptype_l3_ipv4 && ptype_l3_ipv6) 652 return 1; 653 654 return 0; 655 656 } 657 658 /* Parse packet type of a packet by SW */ 659 static inline void 660 parse_ptype(struct rte_mbuf *m) 661 { 662 struct ether_hdr *eth_hdr; 663 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 664 uint16_t ether_type; 665 666 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 667 ether_type = eth_hdr->ether_type; 668 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 669 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 670 else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) 671 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 672 673 m->packet_type = packet_type; 674 } 675 676 /* callback function to detect packet type for a queue of a port */ 677 static uint16_t 678 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused, 679 struct rte_mbuf *pkts[], uint16_t nb_pkts, 680 uint16_t max_pkts __rte_unused, 681 void *user_param __rte_unused) 682 { 683 uint16_t i; 684 685 for (i = 0; i < nb_pkts; ++i) 686 parse_ptype(pkts[i]); 687 688 return nb_pkts; 689 } 690 691 static int 692 init_routing_table(void) 693 { 694 struct rte_lpm *lpm; 695 struct rte_lpm6 *lpm6; 696 int socket, ret; 697 unsigned i; 698 699 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 700 if (socket_lpm[socket]) { 701 lpm = socket_lpm[socket]; 702 /* populate the LPM table */ 703 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 704 ret = rte_lpm_add(lpm, 705 l3fwd_ipv4_route_array[i].ip, 706 l3fwd_ipv4_route_array[i].depth, 707 l3fwd_ipv4_route_array[i].if_out); 708 709 if (ret < 0) { 710 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 711 "LPM table\n", i); 712 return -1; 713 } 714 715 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT 716 "/%d (port %d)\n", 717 socket, 718 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 719 l3fwd_ipv4_route_array[i].depth, 720 l3fwd_ipv4_route_array[i].if_out); 721 } 722 } 723 724 if (socket_lpm6[socket]) { 725 lpm6 = socket_lpm6[socket]; 726 /* populate the LPM6 table */ 727 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 728 ret = rte_lpm6_add(lpm6, 729 l3fwd_ipv6_route_array[i].ip, 730 l3fwd_ipv6_route_array[i].depth, 731 l3fwd_ipv6_route_array[i].if_out); 732 733 if (ret < 0) { 734 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 735 "LPM6 table\n", i); 736 return -1; 737 } 738 739 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT 740 "/%d (port %d)\n", 741 socket, 742 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 743 l3fwd_ipv6_route_array[i].depth, 744 l3fwd_ipv6_route_array[i].if_out); 745 } 746 } 747 } 748 return 0; 749 } 750 751 static int 752 init_mem(void) 753 { 754 char buf[PATH_MAX]; 755 struct rte_mempool *mp; 756 struct rte_lpm *lpm; 757 struct rte_lpm6 *lpm6; 758 struct rte_lpm_config lpm_config; 759 int socket; 760 unsigned lcore_id; 761 762 /* traverse through lcores and initialize structures on each socket */ 763 764 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 765 766 if (rte_lcore_is_enabled(lcore_id) == 0) 767 continue; 768 769 socket = rte_lcore_to_socket_id(lcore_id); 770 771 if (socket == SOCKET_ID_ANY) 772 socket = 0; 773 774 if (socket_direct_pool[socket] == NULL) { 775 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", 776 socket); 777 snprintf(buf, sizeof(buf), "pool_direct_%i", socket); 778 779 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 780 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); 781 if (mp == NULL) { 782 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); 783 return -1; 784 } 785 socket_direct_pool[socket] = mp; 786 } 787 788 if (socket_indirect_pool[socket] == NULL) { 789 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", 790 socket); 791 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); 792 793 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, 794 socket); 795 if (mp == NULL) { 796 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); 797 return -1; 798 } 799 socket_indirect_pool[socket] = mp; 800 } 801 802 if (socket_lpm[socket] == NULL) { 803 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); 804 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 805 806 lpm_config.max_rules = LPM_MAX_RULES; 807 lpm_config.number_tbl8s = 256; 808 lpm_config.flags = 0; 809 810 lpm = rte_lpm_create(buf, socket, &lpm_config); 811 if (lpm == NULL) { 812 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 813 return -1; 814 } 815 socket_lpm[socket] = lpm; 816 } 817 818 if (socket_lpm6[socket] == NULL) { 819 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); 820 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 821 822 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 823 if (lpm6 == NULL) { 824 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 825 return -1; 826 } 827 socket_lpm6[socket] = lpm6; 828 } 829 } 830 831 return 0; 832 } 833 834 int 835 main(int argc, char **argv) 836 { 837 struct lcore_queue_conf *qconf; 838 struct rte_eth_dev_info dev_info; 839 struct rte_eth_txconf *txconf; 840 struct rx_queue *rxq; 841 int socket, ret; 842 uint16_t nb_ports; 843 uint16_t queueid = 0; 844 unsigned lcore_id = 0, rx_lcore_id = 0; 845 uint32_t n_tx_queue, nb_lcores; 846 uint16_t portid; 847 848 /* init EAL */ 849 ret = rte_eal_init(argc, argv); 850 if (ret < 0) 851 rte_exit(EXIT_FAILURE, "rte_eal_init failed"); 852 argc -= ret; 853 argv += ret; 854 855 /* parse application arguments (after the EAL ones) */ 856 ret = parse_args(argc, argv); 857 if (ret < 0) 858 rte_exit(EXIT_FAILURE, "Invalid arguments"); 859 860 nb_ports = rte_eth_dev_count_avail(); 861 if (nb_ports == 0) 862 rte_exit(EXIT_FAILURE, "No ports found!\n"); 863 864 nb_lcores = rte_lcore_count(); 865 866 /* initialize structures (mempools, lpm etc.) */ 867 if (init_mem() < 0) 868 rte_panic("Cannot initialize memory structures!\n"); 869 870 /* check if portmask has non-existent ports */ 871 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 872 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 873 874 /* initialize all ports */ 875 RTE_ETH_FOREACH_DEV(portid) { 876 struct rte_eth_conf local_port_conf = port_conf; 877 struct rte_eth_rxconf rxq_conf; 878 879 /* skip ports that are not enabled */ 880 if ((enabled_port_mask & (1 << portid)) == 0) { 881 printf("Skipping disabled port %d\n", portid); 882 continue; 883 } 884 885 qconf = &lcore_queue_conf[rx_lcore_id]; 886 887 /* limit the frame size to the maximum supported by NIC */ 888 rte_eth_dev_info_get(portid, &dev_info); 889 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 890 dev_info.max_rx_pktlen, 891 local_port_conf.rxmode.max_rx_pkt_len); 892 893 /* get the lcore_id for this port */ 894 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 895 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 896 897 rx_lcore_id ++; 898 if (rx_lcore_id >= RTE_MAX_LCORE) 899 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 900 901 qconf = &lcore_queue_conf[rx_lcore_id]; 902 } 903 904 socket = (int) rte_lcore_to_socket_id(rx_lcore_id); 905 if (socket == SOCKET_ID_ANY) 906 socket = 0; 907 908 rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; 909 rxq->portid = portid; 910 rxq->direct_pool = socket_direct_pool[socket]; 911 rxq->indirect_pool = socket_indirect_pool[socket]; 912 rxq->lpm = socket_lpm[socket]; 913 rxq->lpm6 = socket_lpm6[socket]; 914 qconf->n_rx_queue++; 915 916 /* init port */ 917 printf("Initializing port %d on lcore %u...", portid, 918 rx_lcore_id); 919 fflush(stdout); 920 921 n_tx_queue = nb_lcores; 922 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 923 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 924 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 925 &local_port_conf); 926 if (ret < 0) { 927 printf("\n"); 928 rte_exit(EXIT_FAILURE, "Cannot configure device: " 929 "err=%d, port=%d\n", 930 ret, portid); 931 } 932 933 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 934 &nb_txd); 935 if (ret < 0) { 936 printf("\n"); 937 rte_exit(EXIT_FAILURE, "Cannot adjust number of " 938 "descriptors: err=%d, port=%d\n", ret, portid); 939 } 940 941 /* init one RX queue */ 942 rxq_conf = dev_info.default_rxconf; 943 rxq_conf.offloads = local_port_conf.rxmode.offloads; 944 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 945 socket, &rxq_conf, 946 socket_direct_pool[socket]); 947 if (ret < 0) { 948 printf("\n"); 949 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 950 "err=%d, port=%d\n", 951 ret, portid); 952 } 953 954 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 955 print_ethaddr(" Address:", &ports_eth_addr[portid]); 956 printf("\n"); 957 958 /* init one TX queue per couple (lcore,port) */ 959 rte_eth_dev_info_get(portid, &dev_info); 960 queueid = 0; 961 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 962 if (rte_lcore_is_enabled(lcore_id) == 0) 963 continue; 964 965 if (queueid >= dev_info.nb_tx_queues) 966 break; 967 968 socket = (int) rte_lcore_to_socket_id(lcore_id); 969 printf("txq=%u,%d ", lcore_id, queueid); 970 fflush(stdout); 971 972 txconf = &dev_info.default_txconf; 973 txconf->offloads = local_port_conf.txmode.offloads; 974 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 975 socket, txconf); 976 if (ret < 0) { 977 printf("\n"); 978 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 979 "err=%d, port=%d\n", ret, portid); 980 } 981 982 qconf = &lcore_queue_conf[lcore_id]; 983 qconf->tx_queue_id[portid] = queueid; 984 queueid++; 985 } 986 987 printf("\n"); 988 } 989 990 printf("\n"); 991 992 /* start ports */ 993 RTE_ETH_FOREACH_DEV(portid) { 994 if ((enabled_port_mask & (1 << portid)) == 0) { 995 continue; 996 } 997 /* Start device */ 998 ret = rte_eth_dev_start(portid); 999 if (ret < 0) 1000 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1001 ret, portid); 1002 1003 rte_eth_promiscuous_enable(portid); 1004 1005 if (check_ptype(portid) == 0) { 1006 rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL); 1007 printf("Add Rx callback function to detect L3 packet type by SW :" 1008 " port = %d\n", portid); 1009 } 1010 } 1011 1012 if (init_routing_table() < 0) 1013 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1014 1015 check_all_ports_link_status(enabled_port_mask); 1016 1017 /* launch per-lcore init on every lcore */ 1018 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1019 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1020 if (rte_eal_wait_lcore(lcore_id) < 0) 1021 return -1; 1022 } 1023 1024 return 0; 1025 } 1026