1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <stdint.h> 6 #include <inttypes.h> 7 #include <getopt.h> 8 9 #include <rte_eal.h> 10 #include <rte_ethdev.h> 11 #include <rte_cycles.h> 12 #include <rte_lcore.h> 13 #include <rte_mbuf.h> 14 #include <rte_flow.h> 15 #include <rte_flow_classify.h> 16 #include <rte_table_acl.h> 17 18 #define RX_RING_SIZE 1024 19 #define TX_RING_SIZE 1024 20 21 #define NUM_MBUFS 8191 22 #define MBUF_CACHE_SIZE 250 23 #define BURST_SIZE 32 24 25 #define MAX_NUM_CLASSIFY 30 26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91 27 #define FLOW_CLASSIFY_MAX_PRIORITY 8 28 #define FLOW_CLASSIFIER_NAME_SIZE 64 29 30 #define COMMENT_LEAD_CHAR ('#') 31 #define OPTION_RULE_IPV4 "rule_ipv4" 32 #define RTE_LOGTYPE_FLOW_CLASSIFY RTE_LOGTYPE_USER3 33 #define flow_classify_log(format, ...) \ 34 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__) 35 36 #define uint32_t_to_char(ip, a, b, c, d) do {\ 37 *a = (unsigned char)(ip >> 24 & 0xff);\ 38 *b = (unsigned char)(ip >> 16 & 0xff);\ 39 *c = (unsigned char)(ip >> 8 & 0xff);\ 40 *d = (unsigned char)(ip & 0xff);\ 41 } while (0) 42 43 enum { 44 CB_FLD_SRC_ADDR, 45 CB_FLD_DST_ADDR, 46 CB_FLD_SRC_PORT, 47 CB_FLD_SRC_PORT_DLM, 48 CB_FLD_SRC_PORT_MASK, 49 CB_FLD_DST_PORT, 50 CB_FLD_DST_PORT_DLM, 51 CB_FLD_DST_PORT_MASK, 52 CB_FLD_PROTO, 53 CB_FLD_PRIORITY, 54 CB_FLD_NUM, 55 }; 56 57 static struct{ 58 const char *rule_ipv4_name; 59 } parm_config; 60 const char cb_port_delim[] = ":"; 61 62 static const struct rte_eth_conf port_conf_default = { 63 .rxmode = { 64 .max_rx_pkt_len = ETHER_MAX_LEN, 65 }, 66 }; 67 68 struct flow_classifier { 69 struct rte_flow_classifier *cls; 70 }; 71 72 struct flow_classifier_acl { 73 struct flow_classifier cls; 74 } __rte_cache_aligned; 75 76 /* ACL field definitions for IPv4 5 tuple rule */ 77 78 enum { 79 PROTO_FIELD_IPV4, 80 SRC_FIELD_IPV4, 81 DST_FIELD_IPV4, 82 SRCP_FIELD_IPV4, 83 DSTP_FIELD_IPV4, 84 NUM_FIELDS_IPV4 85 }; 86 87 enum { 88 PROTO_INPUT_IPV4, 89 SRC_INPUT_IPV4, 90 DST_INPUT_IPV4, 91 SRCP_DESTP_INPUT_IPV4 92 }; 93 94 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { 95 /* first input field - always one byte long. */ 96 { 97 .type = RTE_ACL_FIELD_TYPE_BITMASK, 98 .size = sizeof(uint8_t), 99 .field_index = PROTO_FIELD_IPV4, 100 .input_index = PROTO_INPUT_IPV4, 101 .offset = sizeof(struct ether_hdr) + 102 offsetof(struct ipv4_hdr, next_proto_id), 103 }, 104 /* next input field (IPv4 source address) - 4 consecutive bytes. */ 105 { 106 /* rte_flow uses a bit mask for IPv4 addresses */ 107 .type = RTE_ACL_FIELD_TYPE_BITMASK, 108 .size = sizeof(uint32_t), 109 .field_index = SRC_FIELD_IPV4, 110 .input_index = SRC_INPUT_IPV4, 111 .offset = sizeof(struct ether_hdr) + 112 offsetof(struct ipv4_hdr, src_addr), 113 }, 114 /* next input field (IPv4 destination address) - 4 consecutive bytes. */ 115 { 116 /* rte_flow uses a bit mask for IPv4 addresses */ 117 .type = RTE_ACL_FIELD_TYPE_BITMASK, 118 .size = sizeof(uint32_t), 119 .field_index = DST_FIELD_IPV4, 120 .input_index = DST_INPUT_IPV4, 121 .offset = sizeof(struct ether_hdr) + 122 offsetof(struct ipv4_hdr, dst_addr), 123 }, 124 /* 125 * Next 2 fields (src & dst ports) form 4 consecutive bytes. 126 * They share the same input index. 127 */ 128 { 129 /* rte_flow uses a bit mask for protocol ports */ 130 .type = RTE_ACL_FIELD_TYPE_BITMASK, 131 .size = sizeof(uint16_t), 132 .field_index = SRCP_FIELD_IPV4, 133 .input_index = SRCP_DESTP_INPUT_IPV4, 134 .offset = sizeof(struct ether_hdr) + 135 sizeof(struct ipv4_hdr) + 136 offsetof(struct tcp_hdr, src_port), 137 }, 138 { 139 /* rte_flow uses a bit mask for protocol ports */ 140 .type = RTE_ACL_FIELD_TYPE_BITMASK, 141 .size = sizeof(uint16_t), 142 .field_index = DSTP_FIELD_IPV4, 143 .input_index = SRCP_DESTP_INPUT_IPV4, 144 .offset = sizeof(struct ether_hdr) + 145 sizeof(struct ipv4_hdr) + 146 offsetof(struct tcp_hdr, dst_port), 147 }, 148 }; 149 150 /* flow classify data */ 151 static int num_classify_rules; 152 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY]; 153 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats; 154 static struct rte_flow_classify_stats classify_stats = { 155 .stats = (void **)&ntuple_stats 156 }; 157 158 /* parameters for rte_flow_classify_validate and 159 * rte_flow_classify_table_entry_add functions 160 */ 161 162 static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH, 163 0, 0, 0 }; 164 static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END, 165 0, 0, 0 }; 166 167 /* sample actions: 168 * "actions count / end" 169 */ 170 struct rte_flow_query_count count = { 171 .reset = 1, 172 .hits_set = 1, 173 .bytes_set = 1, 174 .hits = 0, 175 .bytes = 0, 176 }; 177 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, 178 &count}; 179 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; 180 static struct rte_flow_action actions[2]; 181 182 /* sample attributes */ 183 static struct rte_flow_attr attr; 184 185 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */ 186 187 /* 188 * Initializes a given port using global settings and with the RX buffers 189 * coming from the mbuf_pool passed as a parameter. 190 */ 191 static inline int 192 port_init(uint8_t port, struct rte_mempool *mbuf_pool) 193 { 194 struct rte_eth_conf port_conf = port_conf_default; 195 struct ether_addr addr; 196 const uint16_t rx_rings = 1, tx_rings = 1; 197 int retval; 198 uint16_t q; 199 struct rte_eth_dev_info dev_info; 200 struct rte_eth_txconf txconf; 201 202 if (!rte_eth_dev_is_valid_port(port)) 203 return -1; 204 205 rte_eth_dev_info_get(port, &dev_info); 206 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 207 port_conf.txmode.offloads |= 208 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 209 210 /* Configure the Ethernet device. */ 211 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); 212 if (retval != 0) 213 return retval; 214 215 /* Allocate and set up 1 RX queue per Ethernet port. */ 216 for (q = 0; q < rx_rings; q++) { 217 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE, 218 rte_eth_dev_socket_id(port), NULL, mbuf_pool); 219 if (retval < 0) 220 return retval; 221 } 222 223 txconf = dev_info.default_txconf; 224 txconf.offloads = port_conf.txmode.offloads; 225 /* Allocate and set up 1 TX queue per Ethernet port. */ 226 for (q = 0; q < tx_rings; q++) { 227 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE, 228 rte_eth_dev_socket_id(port), &txconf); 229 if (retval < 0) 230 return retval; 231 } 232 233 /* Start the Ethernet port. */ 234 retval = rte_eth_dev_start(port); 235 if (retval < 0) 236 return retval; 237 238 /* Display the port MAC address. */ 239 rte_eth_macaddr_get(port, &addr); 240 printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8 241 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n", 242 port, 243 addr.addr_bytes[0], addr.addr_bytes[1], 244 addr.addr_bytes[2], addr.addr_bytes[3], 245 addr.addr_bytes[4], addr.addr_bytes[5]); 246 247 /* Enable RX in promiscuous mode for the Ethernet device. */ 248 rte_eth_promiscuous_enable(port); 249 250 return 0; 251 } 252 253 /* 254 * The lcore main. This is the main thread that does the work, reading from 255 * an input port classifying the packets and writing to an output port. 256 */ 257 static __attribute__((noreturn)) void 258 lcore_main(struct flow_classifier *cls_app) 259 { 260 uint16_t port; 261 int ret; 262 int i = 0; 263 264 ret = rte_flow_classify_table_entry_delete(cls_app->cls, 265 rules[7]); 266 if (ret) 267 printf("table_entry_delete failed [7] %d\n\n", ret); 268 else 269 printf("table_entry_delete succeeded [7]\n\n"); 270 271 /* 272 * Check that the port is on the same NUMA node as the polling thread 273 * for best performance. 274 */ 275 RTE_ETH_FOREACH_DEV(port) 276 if (rte_eth_dev_socket_id(port) > 0 && 277 rte_eth_dev_socket_id(port) != (int)rte_socket_id()) { 278 printf("\n\n"); 279 printf("WARNING: port %u is on remote NUMA node\n", 280 port); 281 printf("to polling thread.\n"); 282 printf("Performance will not be optimal.\n"); 283 } 284 printf("\nCore %u forwarding packets. ", rte_lcore_id()); 285 printf("[Ctrl+C to quit]\n"); 286 287 /* Run until the application is quit or killed. */ 288 for (;;) { 289 /* 290 * Receive packets on a port, classify them and forward them 291 * on the paired port. 292 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc. 293 */ 294 RTE_ETH_FOREACH_DEV(port) { 295 /* Get burst of RX packets, from first port of pair. */ 296 struct rte_mbuf *bufs[BURST_SIZE]; 297 const uint16_t nb_rx = rte_eth_rx_burst(port, 0, 298 bufs, BURST_SIZE); 299 300 if (unlikely(nb_rx == 0)) 301 continue; 302 303 for (i = 0; i < MAX_NUM_CLASSIFY; i++) { 304 if (rules[i]) { 305 ret = rte_flow_classifier_query( 306 cls_app->cls, 307 bufs, nb_rx, rules[i], 308 &classify_stats); 309 if (ret) 310 printf( 311 "rule [%d] query failed ret [%d]\n\n", 312 i, ret); 313 else { 314 printf( 315 "rule[%d] count=%"PRIu64"\n", 316 i, ntuple_stats.counter1); 317 318 printf("proto = %d\n", 319 ntuple_stats.ipv4_5tuple.proto); 320 } 321 } 322 } 323 324 /* Send burst of TX packets, to second port of pair. */ 325 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0, 326 bufs, nb_rx); 327 328 /* Free any unsent packets. */ 329 if (unlikely(nb_tx < nb_rx)) { 330 uint16_t buf; 331 332 for (buf = nb_tx; buf < nb_rx; buf++) 333 rte_pktmbuf_free(bufs[buf]); 334 } 335 } 336 } 337 } 338 339 /* 340 * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt. 341 * Expected format: 342 * <src_ipv4_addr>'/'<masklen> <space> \ 343 * <dst_ipv4_addr>'/'<masklen> <space> \ 344 * <src_port> <space> ":" <src_port_mask> <space> \ 345 * <dst_port> <space> ":" <dst_port_mask> <space> \ 346 * <proto>'/'<proto_mask> <space> \ 347 * <priority> 348 */ 349 350 static int 351 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim, 352 char dlm) 353 { 354 unsigned long val; 355 char *end; 356 357 errno = 0; 358 val = strtoul(*in, &end, base); 359 if (errno != 0 || end[0] != dlm || val > lim) 360 return -EINVAL; 361 *fd = (uint32_t)val; 362 *in = end + 1; 363 return 0; 364 } 365 366 static int 367 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len) 368 { 369 uint32_t a, b, c, d, m; 370 371 if (get_cb_field(&in, &a, 0, UINT8_MAX, '.')) 372 return -EINVAL; 373 if (get_cb_field(&in, &b, 0, UINT8_MAX, '.')) 374 return -EINVAL; 375 if (get_cb_field(&in, &c, 0, UINT8_MAX, '.')) 376 return -EINVAL; 377 if (get_cb_field(&in, &d, 0, UINT8_MAX, '/')) 378 return -EINVAL; 379 if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0)) 380 return -EINVAL; 381 382 addr[0] = IPv4(a, b, c, d); 383 mask_len[0] = m; 384 return 0; 385 } 386 387 static int 388 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter) 389 { 390 int i, ret; 391 char *s, *sp, *in[CB_FLD_NUM]; 392 static const char *dlm = " \t\n"; 393 int dim = CB_FLD_NUM; 394 uint32_t temp; 395 396 s = str; 397 for (i = 0; i != dim; i++, s = NULL) { 398 in[i] = strtok_r(s, dlm, &sp); 399 if (in[i] == NULL) 400 return -EINVAL; 401 } 402 403 ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR], 404 &ntuple_filter->src_ip, 405 &ntuple_filter->src_ip_mask); 406 if (ret != 0) { 407 flow_classify_log("failed to read source address/mask: %s\n", 408 in[CB_FLD_SRC_ADDR]); 409 return ret; 410 } 411 412 ret = parse_ipv4_net(in[CB_FLD_DST_ADDR], 413 &ntuple_filter->dst_ip, 414 &ntuple_filter->dst_ip_mask); 415 if (ret != 0) { 416 flow_classify_log("failed to read source address/mask: %s\n", 417 in[CB_FLD_DST_ADDR]); 418 return ret; 419 } 420 421 if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0)) 422 return -EINVAL; 423 ntuple_filter->src_port = (uint16_t)temp; 424 425 if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim, 426 sizeof(cb_port_delim)) != 0) 427 return -EINVAL; 428 429 if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 430 return -EINVAL; 431 ntuple_filter->src_port_mask = (uint16_t)temp; 432 433 if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0)) 434 return -EINVAL; 435 ntuple_filter->dst_port = (uint16_t)temp; 436 437 if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim, 438 sizeof(cb_port_delim)) != 0) 439 return -EINVAL; 440 441 if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 442 return -EINVAL; 443 ntuple_filter->dst_port_mask = (uint16_t)temp; 444 445 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/')) 446 return -EINVAL; 447 ntuple_filter->proto = (uint8_t)temp; 448 449 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0)) 450 return -EINVAL; 451 ntuple_filter->proto_mask = (uint8_t)temp; 452 453 if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0)) 454 return -EINVAL; 455 ntuple_filter->priority = (uint16_t)temp; 456 if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY) 457 ret = -EINVAL; 458 459 return ret; 460 } 461 462 /* Bypass comment and empty lines */ 463 static inline int 464 is_bypass_line(char *buff) 465 { 466 int i = 0; 467 468 /* comment line */ 469 if (buff[0] == COMMENT_LEAD_CHAR) 470 return 1; 471 /* empty line */ 472 while (buff[i] != '\0') { 473 if (!isspace(buff[i])) 474 return 0; 475 i++; 476 } 477 return 1; 478 } 479 480 static uint32_t 481 convert_depth_to_bitmask(uint32_t depth_val) 482 { 483 uint32_t bitmask = 0; 484 int i, j; 485 486 for (i = depth_val, j = 0; i > 0; i--, j++) 487 bitmask |= (1 << (31 - j)); 488 return bitmask; 489 } 490 491 static int 492 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter, 493 struct flow_classifier *cls_app) 494 { 495 int ret = -1; 496 int key_found; 497 struct rte_flow_error error; 498 struct rte_flow_item_ipv4 ipv4_spec; 499 struct rte_flow_item_ipv4 ipv4_mask; 500 struct rte_flow_item ipv4_udp_item; 501 struct rte_flow_item ipv4_tcp_item; 502 struct rte_flow_item ipv4_sctp_item; 503 struct rte_flow_item_udp udp_spec; 504 struct rte_flow_item_udp udp_mask; 505 struct rte_flow_item udp_item; 506 struct rte_flow_item_tcp tcp_spec; 507 struct rte_flow_item_tcp tcp_mask; 508 struct rte_flow_item tcp_item; 509 struct rte_flow_item_sctp sctp_spec; 510 struct rte_flow_item_sctp sctp_mask; 511 struct rte_flow_item sctp_item; 512 struct rte_flow_item pattern_ipv4_5tuple[4]; 513 struct rte_flow_classify_rule *rule; 514 uint8_t ipv4_proto; 515 516 if (num_classify_rules >= MAX_NUM_CLASSIFY) { 517 printf( 518 "\nINFO: classify rule capacity %d reached\n", 519 num_classify_rules); 520 return ret; 521 } 522 523 /* set up parameters for validate and add */ 524 memset(&ipv4_spec, 0, sizeof(ipv4_spec)); 525 ipv4_spec.hdr.next_proto_id = ntuple_filter->proto; 526 ipv4_spec.hdr.src_addr = ntuple_filter->src_ip; 527 ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip; 528 ipv4_proto = ipv4_spec.hdr.next_proto_id; 529 530 memset(&ipv4_mask, 0, sizeof(ipv4_mask)); 531 ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask; 532 ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask; 533 ipv4_mask.hdr.src_addr = 534 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr); 535 ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask; 536 ipv4_mask.hdr.dst_addr = 537 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr); 538 539 switch (ipv4_proto) { 540 case IPPROTO_UDP: 541 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 542 ipv4_udp_item.spec = &ipv4_spec; 543 ipv4_udp_item.mask = &ipv4_mask; 544 ipv4_udp_item.last = NULL; 545 546 udp_spec.hdr.src_port = ntuple_filter->src_port; 547 udp_spec.hdr.dst_port = ntuple_filter->dst_port; 548 udp_spec.hdr.dgram_len = 0; 549 udp_spec.hdr.dgram_cksum = 0; 550 551 udp_mask.hdr.src_port = ntuple_filter->src_port_mask; 552 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 553 udp_mask.hdr.dgram_len = 0; 554 udp_mask.hdr.dgram_cksum = 0; 555 556 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP; 557 udp_item.spec = &udp_spec; 558 udp_item.mask = &udp_mask; 559 udp_item.last = NULL; 560 561 attr.priority = ntuple_filter->priority; 562 pattern_ipv4_5tuple[1] = ipv4_udp_item; 563 pattern_ipv4_5tuple[2] = udp_item; 564 break; 565 case IPPROTO_TCP: 566 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 567 ipv4_tcp_item.spec = &ipv4_spec; 568 ipv4_tcp_item.mask = &ipv4_mask; 569 ipv4_tcp_item.last = NULL; 570 571 memset(&tcp_spec, 0, sizeof(tcp_spec)); 572 tcp_spec.hdr.src_port = ntuple_filter->src_port; 573 tcp_spec.hdr.dst_port = ntuple_filter->dst_port; 574 575 memset(&tcp_mask, 0, sizeof(tcp_mask)); 576 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask; 577 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 578 579 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP; 580 tcp_item.spec = &tcp_spec; 581 tcp_item.mask = &tcp_mask; 582 tcp_item.last = NULL; 583 584 attr.priority = ntuple_filter->priority; 585 pattern_ipv4_5tuple[1] = ipv4_tcp_item; 586 pattern_ipv4_5tuple[2] = tcp_item; 587 break; 588 case IPPROTO_SCTP: 589 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 590 ipv4_sctp_item.spec = &ipv4_spec; 591 ipv4_sctp_item.mask = &ipv4_mask; 592 ipv4_sctp_item.last = NULL; 593 594 sctp_spec.hdr.src_port = ntuple_filter->src_port; 595 sctp_spec.hdr.dst_port = ntuple_filter->dst_port; 596 sctp_spec.hdr.cksum = 0; 597 sctp_spec.hdr.tag = 0; 598 599 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask; 600 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 601 sctp_mask.hdr.cksum = 0; 602 sctp_mask.hdr.tag = 0; 603 604 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP; 605 sctp_item.spec = &sctp_spec; 606 sctp_item.mask = &sctp_mask; 607 sctp_item.last = NULL; 608 609 attr.priority = ntuple_filter->priority; 610 pattern_ipv4_5tuple[1] = ipv4_sctp_item; 611 pattern_ipv4_5tuple[2] = sctp_item; 612 break; 613 default: 614 return ret; 615 } 616 617 attr.ingress = 1; 618 pattern_ipv4_5tuple[0] = eth_item; 619 pattern_ipv4_5tuple[3] = end_item; 620 actions[0] = count_action; 621 actions[1] = end_action; 622 623 /* Validate and add rule */ 624 ret = rte_flow_classify_validate(cls_app->cls, &attr, 625 pattern_ipv4_5tuple, actions, &error); 626 if (ret) { 627 printf("table entry validate failed ipv4_proto = %u\n", 628 ipv4_proto); 629 return ret; 630 } 631 632 rule = rte_flow_classify_table_entry_add( 633 cls_app->cls, &attr, pattern_ipv4_5tuple, 634 actions, &key_found, &error); 635 if (rule == NULL) { 636 printf("table entry add failed ipv4_proto = %u\n", 637 ipv4_proto); 638 ret = -1; 639 return ret; 640 } 641 642 rules[num_classify_rules] = rule; 643 num_classify_rules++; 644 return 0; 645 } 646 647 static int 648 add_rules(const char *rule_path, struct flow_classifier *cls_app) 649 { 650 FILE *fh; 651 char buff[LINE_MAX]; 652 unsigned int i = 0; 653 unsigned int total_num = 0; 654 struct rte_eth_ntuple_filter ntuple_filter; 655 int ret; 656 657 fh = fopen(rule_path, "rb"); 658 if (fh == NULL) 659 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__, 660 rule_path); 661 662 ret = fseek(fh, 0, SEEK_SET); 663 if (ret) 664 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__, 665 ret); 666 667 i = 0; 668 while (fgets(buff, LINE_MAX, fh) != NULL) { 669 i++; 670 671 if (is_bypass_line(buff)) 672 continue; 673 674 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) { 675 printf("\nINFO: classify rule capacity %d reached\n", 676 total_num); 677 break; 678 } 679 680 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0) 681 rte_exit(EXIT_FAILURE, 682 "%s Line %u: parse rules error\n", 683 rule_path, i); 684 685 if (add_classify_rule(&ntuple_filter, cls_app) != 0) 686 rte_exit(EXIT_FAILURE, "add rule error\n"); 687 688 total_num++; 689 } 690 691 fclose(fh); 692 return 0; 693 } 694 695 /* display usage */ 696 static void 697 print_usage(const char *prgname) 698 { 699 printf("%s usage:\n", prgname); 700 printf("[EAL options] -- --"OPTION_RULE_IPV4"=FILE: "); 701 printf("specify the ipv4 rules file.\n"); 702 printf("Each rule occupies one line in the file.\n"); 703 } 704 705 /* Parse the argument given in the command line of the application */ 706 static int 707 parse_args(int argc, char **argv) 708 { 709 int opt, ret; 710 char **argvopt; 711 int option_index; 712 char *prgname = argv[0]; 713 static struct option lgopts[] = { 714 {OPTION_RULE_IPV4, 1, 0, 0}, 715 {NULL, 0, 0, 0} 716 }; 717 718 argvopt = argv; 719 720 while ((opt = getopt_long(argc, argvopt, "", 721 lgopts, &option_index)) != EOF) { 722 723 switch (opt) { 724 /* long options */ 725 case 0: 726 if (!strncmp(lgopts[option_index].name, 727 OPTION_RULE_IPV4, 728 sizeof(OPTION_RULE_IPV4))) 729 parm_config.rule_ipv4_name = optarg; 730 break; 731 default: 732 print_usage(prgname); 733 return -1; 734 } 735 } 736 737 if (optind >= 0) 738 argv[optind-1] = prgname; 739 740 ret = optind-1; 741 optind = 1; /* reset getopt lib */ 742 return ret; 743 } 744 745 /* 746 * The main function, which does initialization and calls the lcore_main 747 * function. 748 */ 749 int 750 main(int argc, char *argv[]) 751 { 752 struct rte_mempool *mbuf_pool; 753 uint16_t nb_ports; 754 uint16_t portid; 755 int ret; 756 int socket_id; 757 struct rte_table_acl_params table_acl_params; 758 struct rte_flow_classify_table_params cls_table_params; 759 struct flow_classifier *cls_app; 760 struct rte_flow_classifier_params cls_params; 761 uint32_t size; 762 763 /* Initialize the Environment Abstraction Layer (EAL). */ 764 ret = rte_eal_init(argc, argv); 765 if (ret < 0) 766 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); 767 768 argc -= ret; 769 argv += ret; 770 771 /* parse application arguments (after the EAL ones) */ 772 ret = parse_args(argc, argv); 773 if (ret < 0) 774 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n"); 775 776 /* Check that there is an even number of ports to send/receive on. */ 777 nb_ports = rte_eth_dev_count_avail(); 778 if (nb_ports < 2 || (nb_ports & 1)) 779 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n"); 780 781 /* Creates a new mempool in memory to hold the mbufs. */ 782 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, 783 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 784 785 if (mbuf_pool == NULL) 786 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 787 788 /* Initialize all ports. */ 789 RTE_ETH_FOREACH_DEV(portid) 790 if (port_init(portid, mbuf_pool) != 0) 791 rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n", 792 portid); 793 794 if (rte_lcore_count() > 1) 795 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); 796 797 socket_id = rte_eth_dev_socket_id(0); 798 799 /* Memory allocation */ 800 size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl)); 801 cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); 802 if (cls_app == NULL) 803 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n"); 804 805 cls_params.name = "flow_classifier"; 806 cls_params.socket_id = socket_id; 807 808 cls_app->cls = rte_flow_classifier_create(&cls_params); 809 if (cls_app->cls == NULL) { 810 rte_free(cls_app); 811 rte_exit(EXIT_FAILURE, "Cannot create classifier\n"); 812 } 813 814 /* initialise ACL table params */ 815 table_acl_params.name = "table_acl_ipv4_5tuple"; 816 table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; 817 table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); 818 memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); 819 820 /* initialise table create params */ 821 cls_table_params.ops = &rte_table_acl_ops; 822 cls_table_params.arg_create = &table_acl_params; 823 cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; 824 825 ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params); 826 if (ret) { 827 rte_flow_classifier_free(cls_app->cls); 828 rte_free(cls_app); 829 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n"); 830 } 831 832 /* read file of IPv4 5 tuple rules and initialize parameters 833 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add 834 * API's. 835 */ 836 if (add_rules(parm_config.rule_ipv4_name, cls_app)) { 837 rte_flow_classifier_free(cls_app->cls); 838 rte_free(cls_app); 839 rte_exit(EXIT_FAILURE, "Failed to add rules\n"); 840 } 841 842 /* Call lcore_main on the master core only. */ 843 lcore_main(cls_app); 844 845 return 0; 846 } 847