1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2017 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdint.h>
35 #include <inttypes.h>
36 #include <getopt.h>
37 
38 #include <rte_eal.h>
39 #include <rte_ethdev.h>
40 #include <rte_cycles.h>
41 #include <rte_lcore.h>
42 #include <rte_mbuf.h>
43 #include <rte_flow.h>
44 #include <rte_flow_classify.h>
45 #include <rte_table_acl.h>
46 
47 #define RX_RING_SIZE 128
48 #define TX_RING_SIZE 512
49 
50 #define NUM_MBUFS 8191
51 #define MBUF_CACHE_SIZE 250
52 #define BURST_SIZE 32
53 
54 #define MAX_NUM_CLASSIFY 30
55 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
56 #define FLOW_CLASSIFY_MAX_PRIORITY 8
57 #define FLOW_CLASSIFIER_NAME_SIZE 64
58 
59 #define COMMENT_LEAD_CHAR	('#')
60 #define OPTION_RULE_IPV4	"rule_ipv4"
61 #define RTE_LOGTYPE_FLOW_CLASSIFY	RTE_LOGTYPE_USER3
62 #define flow_classify_log(format, ...) \
63 		RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
64 
65 #define uint32_t_to_char(ip, a, b, c, d) do {\
66 		*a = (unsigned char)(ip >> 24 & 0xff);\
67 		*b = (unsigned char)(ip >> 16 & 0xff);\
68 		*c = (unsigned char)(ip >> 8 & 0xff);\
69 		*d = (unsigned char)(ip & 0xff);\
70 	} while (0)
71 
72 enum {
73 	CB_FLD_SRC_ADDR,
74 	CB_FLD_DST_ADDR,
75 	CB_FLD_SRC_PORT,
76 	CB_FLD_SRC_PORT_DLM,
77 	CB_FLD_SRC_PORT_MASK,
78 	CB_FLD_DST_PORT,
79 	CB_FLD_DST_PORT_DLM,
80 	CB_FLD_DST_PORT_MASK,
81 	CB_FLD_PROTO,
82 	CB_FLD_PRIORITY,
83 	CB_FLD_NUM,
84 };
85 
86 static struct{
87 	const char *rule_ipv4_name;
88 } parm_config;
89 const char cb_port_delim[] = ":";
90 
91 static const struct rte_eth_conf port_conf_default = {
92 	.rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN }
93 };
94 
95 struct flow_classifier {
96 	struct rte_flow_classifier *cls;
97 	uint32_t table_id[RTE_FLOW_CLASSIFY_TABLE_MAX];
98 };
99 
100 struct flow_classifier_acl {
101 	struct flow_classifier cls;
102 } __rte_cache_aligned;
103 
104 /* ACL field definitions for IPv4 5 tuple rule */
105 
106 enum {
107 	PROTO_FIELD_IPV4,
108 	SRC_FIELD_IPV4,
109 	DST_FIELD_IPV4,
110 	SRCP_FIELD_IPV4,
111 	DSTP_FIELD_IPV4,
112 	NUM_FIELDS_IPV4
113 };
114 
115 enum {
116 	PROTO_INPUT_IPV4,
117 	SRC_INPUT_IPV4,
118 	DST_INPUT_IPV4,
119 	SRCP_DESTP_INPUT_IPV4
120 };
121 
122 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
123 	/* first input field - always one byte long. */
124 	{
125 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
126 		.size = sizeof(uint8_t),
127 		.field_index = PROTO_FIELD_IPV4,
128 		.input_index = PROTO_INPUT_IPV4,
129 		.offset = sizeof(struct ether_hdr) +
130 			offsetof(struct ipv4_hdr, next_proto_id),
131 	},
132 	/* next input field (IPv4 source address) - 4 consecutive bytes. */
133 	{
134 		/* rte_flow uses a bit mask for IPv4 addresses */
135 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
136 		.size = sizeof(uint32_t),
137 		.field_index = SRC_FIELD_IPV4,
138 		.input_index = SRC_INPUT_IPV4,
139 		.offset = sizeof(struct ether_hdr) +
140 			offsetof(struct ipv4_hdr, src_addr),
141 	},
142 	/* next input field (IPv4 destination address) - 4 consecutive bytes. */
143 	{
144 		/* rte_flow uses a bit mask for IPv4 addresses */
145 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
146 		.size = sizeof(uint32_t),
147 		.field_index = DST_FIELD_IPV4,
148 		.input_index = DST_INPUT_IPV4,
149 		.offset = sizeof(struct ether_hdr) +
150 			offsetof(struct ipv4_hdr, dst_addr),
151 	},
152 	/*
153 	 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
154 	 * They share the same input index.
155 	 */
156 	{
157 		/* rte_flow uses a bit mask for protocol ports */
158 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
159 		.size = sizeof(uint16_t),
160 		.field_index = SRCP_FIELD_IPV4,
161 		.input_index = SRCP_DESTP_INPUT_IPV4,
162 		.offset = sizeof(struct ether_hdr) +
163 			sizeof(struct ipv4_hdr) +
164 			offsetof(struct tcp_hdr, src_port),
165 	},
166 	{
167 		/* rte_flow uses a bit mask for protocol ports */
168 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
169 		.size = sizeof(uint16_t),
170 		.field_index = DSTP_FIELD_IPV4,
171 		.input_index = SRCP_DESTP_INPUT_IPV4,
172 		.offset = sizeof(struct ether_hdr) +
173 			sizeof(struct ipv4_hdr) +
174 			offsetof(struct tcp_hdr, dst_port),
175 	},
176 };
177 
178 /* flow classify data */
179 static int num_classify_rules;
180 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
181 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
182 static struct rte_flow_classify_stats classify_stats = {
183 		.stats = (void **)&ntuple_stats
184 };
185 
186 /* parameters for rte_flow_classify_validate and
187  * rte_flow_classify_table_entry_add functions
188  */
189 
190 static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
191 	0, 0, 0 };
192 static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
193 	0, 0, 0 };
194 
195 /* sample actions:
196  * "actions count / end"
197  */
198 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, 0};
199 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
200 static struct rte_flow_action actions[2];
201 
202 /* sample attributes */
203 static struct rte_flow_attr attr;
204 
205 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
206 
207 /*
208  * Initializes a given port using global settings and with the RX buffers
209  * coming from the mbuf_pool passed as a parameter.
210  */
211 static inline int
212 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
213 {
214 	struct rte_eth_conf port_conf = port_conf_default;
215 	struct ether_addr addr;
216 	const uint16_t rx_rings = 1, tx_rings = 1;
217 	int retval;
218 	uint16_t q;
219 
220 	if (port >= rte_eth_dev_count())
221 		return -1;
222 
223 	/* Configure the Ethernet device. */
224 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
225 	if (retval != 0)
226 		return retval;
227 
228 	/* Allocate and set up 1 RX queue per Ethernet port. */
229 	for (q = 0; q < rx_rings; q++) {
230 		retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
231 				rte_eth_dev_socket_id(port), NULL, mbuf_pool);
232 		if (retval < 0)
233 			return retval;
234 	}
235 
236 	/* Allocate and set up 1 TX queue per Ethernet port. */
237 	for (q = 0; q < tx_rings; q++) {
238 		retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
239 				rte_eth_dev_socket_id(port), NULL);
240 		if (retval < 0)
241 			return retval;
242 	}
243 
244 	/* Start the Ethernet port. */
245 	retval = rte_eth_dev_start(port);
246 	if (retval < 0)
247 		return retval;
248 
249 	/* Display the port MAC address. */
250 	rte_eth_macaddr_get(port, &addr);
251 	printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
252 			   " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
253 			port,
254 			addr.addr_bytes[0], addr.addr_bytes[1],
255 			addr.addr_bytes[2], addr.addr_bytes[3],
256 			addr.addr_bytes[4], addr.addr_bytes[5]);
257 
258 	/* Enable RX in promiscuous mode for the Ethernet device. */
259 	rte_eth_promiscuous_enable(port);
260 
261 	return 0;
262 }
263 
264 /*
265  * The lcore main. This is the main thread that does the work, reading from
266  * an input port classifying the packets and writing to an output port.
267  */
268 static __attribute__((noreturn)) void
269 lcore_main(struct flow_classifier *cls_app)
270 {
271 	const uint8_t nb_ports = rte_eth_dev_count();
272 	uint8_t port;
273 	int ret;
274 	int i = 0;
275 
276 	ret = rte_flow_classify_table_entry_delete(cls_app->cls,
277 			cls_app->table_id[0], rules[7]);
278 	if (ret)
279 		printf("table_entry_delete failed [7] %d\n\n", ret);
280 	else
281 		printf("table_entry_delete succeeded [7]\n\n");
282 
283 	/*
284 	 * Check that the port is on the same NUMA node as the polling thread
285 	 * for best performance.
286 	 */
287 	for (port = 0; port < nb_ports; port++)
288 		if (rte_eth_dev_socket_id(port) > 0 &&
289 			rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
290 			printf("\n\n");
291 			printf("WARNING: port %u is on remote NUMA node\n",
292 			       port);
293 			printf("to polling thread.\n");
294 			printf("Performance will not be optimal.\n");
295 
296 			printf("\nCore %u forwarding packets. ",
297 			       rte_lcore_id());
298 			printf("[Ctrl+C to quit]\n");
299 		}
300 	/* Run until the application is quit or killed. */
301 	for (;;) {
302 		/*
303 		 * Receive packets on a port, classify them and forward them
304 		 * on the paired port.
305 		 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
306 		 */
307 		for (port = 0; port < nb_ports; port++) {
308 			/* Get burst of RX packets, from first port of pair. */
309 			struct rte_mbuf *bufs[BURST_SIZE];
310 			const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
311 					bufs, BURST_SIZE);
312 
313 			if (unlikely(nb_rx == 0))
314 				continue;
315 
316 			for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
317 				if (rules[i]) {
318 					ret = rte_flow_classifier_query(
319 						cls_app->cls,
320 						cls_app->table_id[0],
321 						bufs, nb_rx, rules[i],
322 						&classify_stats);
323 					if (ret)
324 						printf(
325 							"rule [%d] query failed ret [%d]\n\n",
326 							i, ret);
327 					else {
328 						printf(
329 						"rule[%d] count=%"PRIu64"\n",
330 						i, ntuple_stats.counter1);
331 
332 						printf("proto = %d\n",
333 						ntuple_stats.ipv4_5tuple.proto);
334 					}
335 				}
336 			}
337 
338 			/* Send burst of TX packets, to second port of pair. */
339 			const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
340 					bufs, nb_rx);
341 
342 			/* Free any unsent packets. */
343 			if (unlikely(nb_tx < nb_rx)) {
344 				uint16_t buf;
345 
346 				for (buf = nb_tx; buf < nb_rx; buf++)
347 					rte_pktmbuf_free(bufs[buf]);
348 			}
349 		}
350 	}
351 }
352 
353 /*
354  * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
355  * Expected format:
356  * <src_ipv4_addr>'/'<masklen> <space> \
357  * <dst_ipv4_addr>'/'<masklen> <space> \
358  * <src_port> <space> ":" <src_port_mask> <space> \
359  * <dst_port> <space> ":" <dst_port_mask> <space> \
360  * <proto>'/'<proto_mask> <space> \
361  * <priority>
362  */
363 
364 static int
365 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
366 		char dlm)
367 {
368 	unsigned long val;
369 	char *end;
370 
371 	errno = 0;
372 	val = strtoul(*in, &end, base);
373 	if (errno != 0 || end[0] != dlm || val > lim)
374 		return -EINVAL;
375 	*fd = (uint32_t)val;
376 	*in = end + 1;
377 	return 0;
378 }
379 
380 static int
381 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
382 {
383 	uint32_t a, b, c, d, m;
384 
385 	if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
386 		return -EINVAL;
387 	if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
388 		return -EINVAL;
389 	if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
390 		return -EINVAL;
391 	if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
392 		return -EINVAL;
393 	if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
394 		return -EINVAL;
395 
396 	addr[0] = IPv4(a, b, c, d);
397 	mask_len[0] = m;
398 	return 0;
399 }
400 
401 static int
402 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
403 {
404 	int i, ret;
405 	char *s, *sp, *in[CB_FLD_NUM];
406 	static const char *dlm = " \t\n";
407 	int dim = CB_FLD_NUM;
408 	uint32_t temp;
409 
410 	s = str;
411 	for (i = 0; i != dim; i++, s = NULL) {
412 		in[i] = strtok_r(s, dlm, &sp);
413 		if (in[i] == NULL)
414 			return -EINVAL;
415 	}
416 
417 	ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
418 			&ntuple_filter->src_ip,
419 			&ntuple_filter->src_ip_mask);
420 	if (ret != 0) {
421 		flow_classify_log("failed to read source address/mask: %s\n",
422 			in[CB_FLD_SRC_ADDR]);
423 		return ret;
424 	}
425 
426 	ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
427 			&ntuple_filter->dst_ip,
428 			&ntuple_filter->dst_ip_mask);
429 	if (ret != 0) {
430 		flow_classify_log("failed to read source address/mask: %s\n",
431 			in[CB_FLD_DST_ADDR]);
432 		return ret;
433 	}
434 
435 	if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
436 		return -EINVAL;
437 	ntuple_filter->src_port = (uint16_t)temp;
438 
439 	if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
440 			sizeof(cb_port_delim)) != 0)
441 		return -EINVAL;
442 
443 	if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
444 		return -EINVAL;
445 	ntuple_filter->src_port_mask = (uint16_t)temp;
446 
447 	if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
448 		return -EINVAL;
449 	ntuple_filter->dst_port = (uint16_t)temp;
450 
451 	if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
452 			sizeof(cb_port_delim)) != 0)
453 		return -EINVAL;
454 
455 	if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
456 		return -EINVAL;
457 	ntuple_filter->dst_port_mask = (uint16_t)temp;
458 
459 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
460 		return -EINVAL;
461 	ntuple_filter->proto = (uint8_t)temp;
462 
463 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
464 		return -EINVAL;
465 	ntuple_filter->proto_mask = (uint8_t)temp;
466 
467 	if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
468 		return -EINVAL;
469 	ntuple_filter->priority = (uint16_t)temp;
470 	if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
471 		ret = -EINVAL;
472 
473 	return ret;
474 }
475 
476 /* Bypass comment and empty lines */
477 static inline int
478 is_bypass_line(char *buff)
479 {
480 	int i = 0;
481 
482 	/* comment line */
483 	if (buff[0] == COMMENT_LEAD_CHAR)
484 		return 1;
485 	/* empty line */
486 	while (buff[i] != '\0') {
487 		if (!isspace(buff[i]))
488 			return 0;
489 		i++;
490 	}
491 	return 1;
492 }
493 
494 static uint32_t
495 convert_depth_to_bitmask(uint32_t depth_val)
496 {
497 	uint32_t bitmask = 0;
498 	int i, j;
499 
500 	for (i = depth_val, j = 0; i > 0; i--, j++)
501 		bitmask |= (1 << (31 - j));
502 	return bitmask;
503 }
504 
505 static int
506 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
507 		struct flow_classifier *cls_app)
508 {
509 	int ret = -1;
510 	int key_found;
511 	struct rte_flow_error error;
512 	struct rte_flow_item_ipv4 ipv4_spec;
513 	struct rte_flow_item_ipv4 ipv4_mask;
514 	struct rte_flow_item ipv4_udp_item;
515 	struct rte_flow_item ipv4_tcp_item;
516 	struct rte_flow_item ipv4_sctp_item;
517 	struct rte_flow_item_udp udp_spec;
518 	struct rte_flow_item_udp udp_mask;
519 	struct rte_flow_item udp_item;
520 	struct rte_flow_item_tcp tcp_spec;
521 	struct rte_flow_item_tcp tcp_mask;
522 	struct rte_flow_item tcp_item;
523 	struct rte_flow_item_sctp sctp_spec;
524 	struct rte_flow_item_sctp sctp_mask;
525 	struct rte_flow_item sctp_item;
526 	struct rte_flow_item pattern_ipv4_5tuple[4];
527 	struct rte_flow_classify_rule *rule;
528 	uint8_t ipv4_proto;
529 
530 	if (num_classify_rules >= MAX_NUM_CLASSIFY) {
531 		printf(
532 			"\nINFO:  classify rule capacity %d reached\n",
533 			num_classify_rules);
534 		return ret;
535 	}
536 
537 	/* set up parameters for validate and add */
538 	memset(&ipv4_spec, 0, sizeof(ipv4_spec));
539 	ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
540 	ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
541 	ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
542 	ipv4_proto = ipv4_spec.hdr.next_proto_id;
543 
544 	memset(&ipv4_mask, 0, sizeof(ipv4_mask));
545 	ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
546 	ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
547 	ipv4_mask.hdr.src_addr =
548 		convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
549 	ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
550 	ipv4_mask.hdr.dst_addr =
551 		convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
552 
553 	switch (ipv4_proto) {
554 	case IPPROTO_UDP:
555 		ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
556 		ipv4_udp_item.spec = &ipv4_spec;
557 		ipv4_udp_item.mask = &ipv4_mask;
558 		ipv4_udp_item.last = NULL;
559 
560 		udp_spec.hdr.src_port = ntuple_filter->src_port;
561 		udp_spec.hdr.dst_port = ntuple_filter->dst_port;
562 		udp_spec.hdr.dgram_len = 0;
563 		udp_spec.hdr.dgram_cksum = 0;
564 
565 		udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
566 		udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
567 		udp_mask.hdr.dgram_len = 0;
568 		udp_mask.hdr.dgram_cksum = 0;
569 
570 		udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
571 		udp_item.spec = &udp_spec;
572 		udp_item.mask = &udp_mask;
573 		udp_item.last = NULL;
574 
575 		attr.priority = ntuple_filter->priority;
576 		pattern_ipv4_5tuple[1] = ipv4_udp_item;
577 		pattern_ipv4_5tuple[2] = udp_item;
578 		break;
579 	case IPPROTO_TCP:
580 		ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
581 		ipv4_tcp_item.spec = &ipv4_spec;
582 		ipv4_tcp_item.mask = &ipv4_mask;
583 		ipv4_tcp_item.last = NULL;
584 
585 		memset(&tcp_spec, 0, sizeof(tcp_spec));
586 		tcp_spec.hdr.src_port = ntuple_filter->src_port;
587 		tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
588 
589 		memset(&tcp_mask, 0, sizeof(tcp_mask));
590 		tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
591 		tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
592 
593 		tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
594 		tcp_item.spec = &tcp_spec;
595 		tcp_item.mask = &tcp_mask;
596 		tcp_item.last = NULL;
597 
598 		attr.priority = ntuple_filter->priority;
599 		pattern_ipv4_5tuple[1] = ipv4_tcp_item;
600 		pattern_ipv4_5tuple[2] = tcp_item;
601 		break;
602 	case IPPROTO_SCTP:
603 		ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
604 		ipv4_sctp_item.spec = &ipv4_spec;
605 		ipv4_sctp_item.mask = &ipv4_mask;
606 		ipv4_sctp_item.last = NULL;
607 
608 		sctp_spec.hdr.src_port = ntuple_filter->src_port;
609 		sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
610 		sctp_spec.hdr.cksum = 0;
611 		sctp_spec.hdr.tag = 0;
612 
613 		sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
614 		sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
615 		sctp_mask.hdr.cksum = 0;
616 		sctp_mask.hdr.tag = 0;
617 
618 		sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
619 		sctp_item.spec = &sctp_spec;
620 		sctp_item.mask = &sctp_mask;
621 		sctp_item.last = NULL;
622 
623 		attr.priority = ntuple_filter->priority;
624 		pattern_ipv4_5tuple[1] = ipv4_sctp_item;
625 		pattern_ipv4_5tuple[2] = sctp_item;
626 		break;
627 	default:
628 		return ret;
629 	}
630 
631 	attr.ingress = 1;
632 	pattern_ipv4_5tuple[0] = eth_item;
633 	pattern_ipv4_5tuple[3] = end_item;
634 	actions[0] = count_action;
635 	actions[1] = end_action;
636 
637 	rule = rte_flow_classify_table_entry_add(
638 			cls_app->cls, cls_app->table_id[0], &key_found,
639 			&attr, pattern_ipv4_5tuple, actions, &error);
640 	if (rule == NULL) {
641 		printf("table entry add failed ipv4_proto = %u\n",
642 			ipv4_proto);
643 		ret = -1;
644 		return ret;
645 	}
646 
647 	rules[num_classify_rules] = rule;
648 	num_classify_rules++;
649 	return 0;
650 }
651 
652 static int
653 add_rules(const char *rule_path, struct flow_classifier *cls_app)
654 {
655 	FILE *fh;
656 	char buff[LINE_MAX];
657 	unsigned int i = 0;
658 	unsigned int total_num = 0;
659 	struct rte_eth_ntuple_filter ntuple_filter;
660 	int ret;
661 
662 	fh = fopen(rule_path, "rb");
663 	if (fh == NULL)
664 		rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
665 			rule_path);
666 
667 	ret = fseek(fh, 0, SEEK_SET);
668 	if (ret)
669 		rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
670 			ret);
671 
672 	i = 0;
673 	while (fgets(buff, LINE_MAX, fh) != NULL) {
674 		i++;
675 
676 		if (is_bypass_line(buff))
677 			continue;
678 
679 		if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
680 			printf("\nINFO: classify rule capacity %d reached\n",
681 				total_num);
682 			break;
683 		}
684 
685 		if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
686 			rte_exit(EXIT_FAILURE,
687 				"%s Line %u: parse rules error\n",
688 				rule_path, i);
689 
690 		if (add_classify_rule(&ntuple_filter, cls_app) != 0)
691 			rte_exit(EXIT_FAILURE, "add rule error\n");
692 
693 		total_num++;
694 	}
695 
696 	fclose(fh);
697 	return 0;
698 }
699 
700 /* display usage */
701 static void
702 print_usage(const char *prgname)
703 {
704 	printf("%s usage:\n", prgname);
705 	printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
706 	printf("specify the ipv4 rules file.\n");
707 	printf("Each rule occupies one line in the file.\n");
708 }
709 
710 /* Parse the argument given in the command line of the application */
711 static int
712 parse_args(int argc, char **argv)
713 {
714 	int opt, ret;
715 	char **argvopt;
716 	int option_index;
717 	char *prgname = argv[0];
718 	static struct option lgopts[] = {
719 		{OPTION_RULE_IPV4, 1, 0, 0},
720 		{NULL, 0, 0, 0}
721 	};
722 
723 	argvopt = argv;
724 
725 	while ((opt = getopt_long(argc, argvopt, "",
726 				lgopts, &option_index)) != EOF) {
727 
728 		switch (opt) {
729 		/* long options */
730 		case 0:
731 			if (!strncmp(lgopts[option_index].name,
732 					OPTION_RULE_IPV4,
733 					sizeof(OPTION_RULE_IPV4)))
734 				parm_config.rule_ipv4_name = optarg;
735 			break;
736 		default:
737 			print_usage(prgname);
738 			return -1;
739 		}
740 	}
741 
742 	if (optind >= 0)
743 		argv[optind-1] = prgname;
744 
745 	ret = optind-1;
746 	optind = 1; /* reset getopt lib */
747 	return ret;
748 }
749 
750 /*
751  * The main function, which does initialization and calls the lcore_main
752  * function.
753  */
754 int
755 main(int argc, char *argv[])
756 {
757 	struct rte_mempool *mbuf_pool;
758 	uint8_t nb_ports;
759 	uint8_t portid;
760 	int ret;
761 	int socket_id;
762 	struct rte_table_acl_params table_acl_params;
763 	struct rte_flow_classify_table_params cls_table_params;
764 	struct flow_classifier *cls_app;
765 	struct rte_flow_classifier_params cls_params;
766 	uint32_t size;
767 
768 	/* Initialize the Environment Abstraction Layer (EAL). */
769 	ret = rte_eal_init(argc, argv);
770 	if (ret < 0)
771 		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
772 
773 	argc -= ret;
774 	argv += ret;
775 
776 	/* parse application arguments (after the EAL ones) */
777 	ret = parse_args(argc, argv);
778 	if (ret < 0)
779 		rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
780 
781 	/* Check that there is an even number of ports to send/receive on. */
782 	nb_ports = rte_eth_dev_count();
783 	if (nb_ports < 2 || (nb_ports & 1))
784 		rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
785 
786 	/* Creates a new mempool in memory to hold the mbufs. */
787 	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
788 		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
789 
790 	if (mbuf_pool == NULL)
791 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
792 
793 	/* Initialize all ports. */
794 	for (portid = 0; portid < nb_ports; portid++)
795 		if (port_init(portid, mbuf_pool) != 0)
796 			rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
797 					portid);
798 
799 	if (rte_lcore_count() > 1)
800 		printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
801 
802 	socket_id = rte_eth_dev_socket_id(0);
803 
804 	/* Memory allocation */
805 	size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
806 	cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
807 	if (cls_app == NULL)
808 		rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
809 
810 	cls_params.name = "flow_classifier";
811 	cls_params.socket_id = socket_id;
812 	cls_params.type = RTE_FLOW_CLASSIFY_TABLE_TYPE_ACL;
813 
814 	cls_app->cls = rte_flow_classifier_create(&cls_params);
815 	if (cls_app->cls == NULL) {
816 		rte_free(cls_app);
817 		rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
818 	}
819 
820 	/* initialise ACL table params */
821 	table_acl_params.name = "table_acl_ipv4_5tuple";
822 	table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
823 	table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
824 	memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
825 
826 	/* initialise table create params */
827 	cls_table_params.ops = &rte_table_acl_ops,
828 	cls_table_params.arg_create = &table_acl_params,
829 
830 	ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params,
831 			&cls_app->table_id[0]);
832 	if (ret) {
833 		rte_flow_classifier_free(cls_app->cls);
834 		rte_free(cls_app);
835 		rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
836 	}
837 
838 	/* read file of IPv4 5 tuple rules and initialize parameters
839 	 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
840 	 * API's.
841 	 */
842 	if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
843 		rte_flow_classifier_free(cls_app->cls);
844 		rte_free(cls_app);
845 		rte_exit(EXIT_FAILURE, "Failed to add rules\n");
846 	}
847 
848 	/* Call lcore_main on the master core only. */
849 	lcore_main(cls_app);
850 
851 	return 0;
852 }
853