1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 #include <inttypes.h>
7 #include <getopt.h>
8 
9 #include <rte_eal.h>
10 #include <rte_ethdev.h>
11 #include <rte_cycles.h>
12 #include <rte_lcore.h>
13 #include <rte_mbuf.h>
14 #include <rte_flow.h>
15 #include <rte_flow_classify.h>
16 #include <rte_table_acl.h>
17 
18 #define RX_RING_SIZE 1024
19 #define TX_RING_SIZE 1024
20 
21 #define NUM_MBUFS 8191
22 #define MBUF_CACHE_SIZE 250
23 #define BURST_SIZE 32
24 
25 #define MAX_NUM_CLASSIFY 30
26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
27 #define FLOW_CLASSIFY_MAX_PRIORITY 8
28 #define FLOW_CLASSIFIER_NAME_SIZE 64
29 
30 #define COMMENT_LEAD_CHAR	('#')
31 #define OPTION_RULE_IPV4	"rule_ipv4"
32 #define RTE_LOGTYPE_FLOW_CLASSIFY	RTE_LOGTYPE_USER3
33 #define flow_classify_log(format, ...) \
34 		RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
35 
36 #define uint32_t_to_char(ip, a, b, c, d) do {\
37 		*a = (unsigned char)(ip >> 24 & 0xff);\
38 		*b = (unsigned char)(ip >> 16 & 0xff);\
39 		*c = (unsigned char)(ip >> 8 & 0xff);\
40 		*d = (unsigned char)(ip & 0xff);\
41 	} while (0)
42 
43 enum {
44 	CB_FLD_SRC_ADDR,
45 	CB_FLD_DST_ADDR,
46 	CB_FLD_SRC_PORT,
47 	CB_FLD_SRC_PORT_DLM,
48 	CB_FLD_SRC_PORT_MASK,
49 	CB_FLD_DST_PORT,
50 	CB_FLD_DST_PORT_DLM,
51 	CB_FLD_DST_PORT_MASK,
52 	CB_FLD_PROTO,
53 	CB_FLD_PRIORITY,
54 	CB_FLD_NUM,
55 };
56 
57 static struct{
58 	const char *rule_ipv4_name;
59 } parm_config;
60 const char cb_port_delim[] = ":";
61 
62 static const struct rte_eth_conf port_conf_default = {
63 	.rxmode = {
64 		.max_rx_pkt_len = ETHER_MAX_LEN,
65 	},
66 };
67 
68 struct flow_classifier {
69 	struct rte_flow_classifier *cls;
70 };
71 
72 struct flow_classifier_acl {
73 	struct flow_classifier cls;
74 } __rte_cache_aligned;
75 
76 /* ACL field definitions for IPv4 5 tuple rule */
77 
78 enum {
79 	PROTO_FIELD_IPV4,
80 	SRC_FIELD_IPV4,
81 	DST_FIELD_IPV4,
82 	SRCP_FIELD_IPV4,
83 	DSTP_FIELD_IPV4,
84 	NUM_FIELDS_IPV4
85 };
86 
87 enum {
88 	PROTO_INPUT_IPV4,
89 	SRC_INPUT_IPV4,
90 	DST_INPUT_IPV4,
91 	SRCP_DESTP_INPUT_IPV4
92 };
93 
94 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
95 	/* first input field - always one byte long. */
96 	{
97 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
98 		.size = sizeof(uint8_t),
99 		.field_index = PROTO_FIELD_IPV4,
100 		.input_index = PROTO_INPUT_IPV4,
101 		.offset = sizeof(struct ether_hdr) +
102 			offsetof(struct ipv4_hdr, next_proto_id),
103 	},
104 	/* next input field (IPv4 source address) - 4 consecutive bytes. */
105 	{
106 		/* rte_flow uses a bit mask for IPv4 addresses */
107 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
108 		.size = sizeof(uint32_t),
109 		.field_index = SRC_FIELD_IPV4,
110 		.input_index = SRC_INPUT_IPV4,
111 		.offset = sizeof(struct ether_hdr) +
112 			offsetof(struct ipv4_hdr, src_addr),
113 	},
114 	/* next input field (IPv4 destination address) - 4 consecutive bytes. */
115 	{
116 		/* rte_flow uses a bit mask for IPv4 addresses */
117 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
118 		.size = sizeof(uint32_t),
119 		.field_index = DST_FIELD_IPV4,
120 		.input_index = DST_INPUT_IPV4,
121 		.offset = sizeof(struct ether_hdr) +
122 			offsetof(struct ipv4_hdr, dst_addr),
123 	},
124 	/*
125 	 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
126 	 * They share the same input index.
127 	 */
128 	{
129 		/* rte_flow uses a bit mask for protocol ports */
130 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
131 		.size = sizeof(uint16_t),
132 		.field_index = SRCP_FIELD_IPV4,
133 		.input_index = SRCP_DESTP_INPUT_IPV4,
134 		.offset = sizeof(struct ether_hdr) +
135 			sizeof(struct ipv4_hdr) +
136 			offsetof(struct tcp_hdr, src_port),
137 	},
138 	{
139 		/* rte_flow uses a bit mask for protocol ports */
140 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
141 		.size = sizeof(uint16_t),
142 		.field_index = DSTP_FIELD_IPV4,
143 		.input_index = SRCP_DESTP_INPUT_IPV4,
144 		.offset = sizeof(struct ether_hdr) +
145 			sizeof(struct ipv4_hdr) +
146 			offsetof(struct tcp_hdr, dst_port),
147 	},
148 };
149 
150 /* flow classify data */
151 static int num_classify_rules;
152 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
153 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
154 static struct rte_flow_classify_stats classify_stats = {
155 		.stats = (void **)&ntuple_stats
156 };
157 
158 /* parameters for rte_flow_classify_validate and
159  * rte_flow_classify_table_entry_add functions
160  */
161 
162 static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
163 	0, 0, 0 };
164 static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
165 	0, 0, 0 };
166 
167 /* sample actions:
168  * "actions count / end"
169  */
170 struct rte_flow_query_count count = {
171 	.reset = 1,
172 	.hits_set = 1,
173 	.bytes_set = 1,
174 	.hits = 0,
175 	.bytes = 0,
176 };
177 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
178 	&count};
179 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
180 static struct rte_flow_action actions[2];
181 
182 /* sample attributes */
183 static struct rte_flow_attr attr;
184 
185 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
186 
187 /*
188  * Initializes a given port using global settings and with the RX buffers
189  * coming from the mbuf_pool passed as a parameter.
190  */
191 static inline int
192 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
193 {
194 	struct rte_eth_conf port_conf = port_conf_default;
195 	struct ether_addr addr;
196 	const uint16_t rx_rings = 1, tx_rings = 1;
197 	int retval;
198 	uint16_t q;
199 	struct rte_eth_dev_info dev_info;
200 	struct rte_eth_txconf txconf;
201 
202 	if (!rte_eth_dev_is_valid_port(port))
203 		return -1;
204 
205 	rte_eth_dev_info_get(port, &dev_info);
206 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
207 		port_conf.txmode.offloads |=
208 			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
209 
210 	/* Configure the Ethernet device. */
211 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
212 	if (retval != 0)
213 		return retval;
214 
215 	/* Allocate and set up 1 RX queue per Ethernet port. */
216 	for (q = 0; q < rx_rings; q++) {
217 		retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
218 				rte_eth_dev_socket_id(port), NULL, mbuf_pool);
219 		if (retval < 0)
220 			return retval;
221 	}
222 
223 	txconf = dev_info.default_txconf;
224 	txconf.offloads = port_conf.txmode.offloads;
225 	/* Allocate and set up 1 TX queue per Ethernet port. */
226 	for (q = 0; q < tx_rings; q++) {
227 		retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
228 				rte_eth_dev_socket_id(port), &txconf);
229 		if (retval < 0)
230 			return retval;
231 	}
232 
233 	/* Start the Ethernet port. */
234 	retval = rte_eth_dev_start(port);
235 	if (retval < 0)
236 		return retval;
237 
238 	/* Display the port MAC address. */
239 	rte_eth_macaddr_get(port, &addr);
240 	printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
241 			   " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
242 			port,
243 			addr.addr_bytes[0], addr.addr_bytes[1],
244 			addr.addr_bytes[2], addr.addr_bytes[3],
245 			addr.addr_bytes[4], addr.addr_bytes[5]);
246 
247 	/* Enable RX in promiscuous mode for the Ethernet device. */
248 	rte_eth_promiscuous_enable(port);
249 
250 	return 0;
251 }
252 
253 /*
254  * The lcore main. This is the main thread that does the work, reading from
255  * an input port classifying the packets and writing to an output port.
256  */
257 static __attribute__((noreturn)) void
258 lcore_main(struct flow_classifier *cls_app)
259 {
260 	uint16_t port;
261 	int ret;
262 	int i = 0;
263 
264 	ret = rte_flow_classify_table_entry_delete(cls_app->cls,
265 			rules[7]);
266 	if (ret)
267 		printf("table_entry_delete failed [7] %d\n\n", ret);
268 	else
269 		printf("table_entry_delete succeeded [7]\n\n");
270 
271 	/*
272 	 * Check that the port is on the same NUMA node as the polling thread
273 	 * for best performance.
274 	 */
275 	RTE_ETH_FOREACH_DEV(port)
276 		if (rte_eth_dev_socket_id(port) > 0 &&
277 			rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
278 			printf("\n\n");
279 			printf("WARNING: port %u is on remote NUMA node\n",
280 			       port);
281 			printf("to polling thread.\n");
282 			printf("Performance will not be optimal.\n");
283 		}
284 	printf("\nCore %u forwarding packets. ", rte_lcore_id());
285 	printf("[Ctrl+C to quit]\n");
286 
287 	/* Run until the application is quit or killed. */
288 	for (;;) {
289 		/*
290 		 * Receive packets on a port, classify them and forward them
291 		 * on the paired port.
292 		 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
293 		 */
294 		RTE_ETH_FOREACH_DEV(port) {
295 			/* Get burst of RX packets, from first port of pair. */
296 			struct rte_mbuf *bufs[BURST_SIZE];
297 			const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
298 					bufs, BURST_SIZE);
299 
300 			if (unlikely(nb_rx == 0))
301 				continue;
302 
303 			for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
304 				if (rules[i]) {
305 					ret = rte_flow_classifier_query(
306 						cls_app->cls,
307 						bufs, nb_rx, rules[i],
308 						&classify_stats);
309 					if (ret)
310 						printf(
311 							"rule [%d] query failed ret [%d]\n\n",
312 							i, ret);
313 					else {
314 						printf(
315 						"rule[%d] count=%"PRIu64"\n",
316 						i, ntuple_stats.counter1);
317 
318 						printf("proto = %d\n",
319 						ntuple_stats.ipv4_5tuple.proto);
320 					}
321 				}
322 			}
323 
324 			/* Send burst of TX packets, to second port of pair. */
325 			const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
326 					bufs, nb_rx);
327 
328 			/* Free any unsent packets. */
329 			if (unlikely(nb_tx < nb_rx)) {
330 				uint16_t buf;
331 
332 				for (buf = nb_tx; buf < nb_rx; buf++)
333 					rte_pktmbuf_free(bufs[buf]);
334 			}
335 		}
336 	}
337 }
338 
339 /*
340  * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
341  * Expected format:
342  * <src_ipv4_addr>'/'<masklen> <space> \
343  * <dst_ipv4_addr>'/'<masklen> <space> \
344  * <src_port> <space> ":" <src_port_mask> <space> \
345  * <dst_port> <space> ":" <dst_port_mask> <space> \
346  * <proto>'/'<proto_mask> <space> \
347  * <priority>
348  */
349 
350 static int
351 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
352 		char dlm)
353 {
354 	unsigned long val;
355 	char *end;
356 
357 	errno = 0;
358 	val = strtoul(*in, &end, base);
359 	if (errno != 0 || end[0] != dlm || val > lim)
360 		return -EINVAL;
361 	*fd = (uint32_t)val;
362 	*in = end + 1;
363 	return 0;
364 }
365 
366 static int
367 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
368 {
369 	uint32_t a, b, c, d, m;
370 
371 	if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
372 		return -EINVAL;
373 	if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
374 		return -EINVAL;
375 	if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
376 		return -EINVAL;
377 	if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
378 		return -EINVAL;
379 	if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
380 		return -EINVAL;
381 
382 	addr[0] = IPv4(a, b, c, d);
383 	mask_len[0] = m;
384 	return 0;
385 }
386 
387 static int
388 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
389 {
390 	int i, ret;
391 	char *s, *sp, *in[CB_FLD_NUM];
392 	static const char *dlm = " \t\n";
393 	int dim = CB_FLD_NUM;
394 	uint32_t temp;
395 
396 	s = str;
397 	for (i = 0; i != dim; i++, s = NULL) {
398 		in[i] = strtok_r(s, dlm, &sp);
399 		if (in[i] == NULL)
400 			return -EINVAL;
401 	}
402 
403 	ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
404 			&ntuple_filter->src_ip,
405 			&ntuple_filter->src_ip_mask);
406 	if (ret != 0) {
407 		flow_classify_log("failed to read source address/mask: %s\n",
408 			in[CB_FLD_SRC_ADDR]);
409 		return ret;
410 	}
411 
412 	ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
413 			&ntuple_filter->dst_ip,
414 			&ntuple_filter->dst_ip_mask);
415 	if (ret != 0) {
416 		flow_classify_log("failed to read source address/mask: %s\n",
417 			in[CB_FLD_DST_ADDR]);
418 		return ret;
419 	}
420 
421 	if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
422 		return -EINVAL;
423 	ntuple_filter->src_port = (uint16_t)temp;
424 
425 	if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
426 			sizeof(cb_port_delim)) != 0)
427 		return -EINVAL;
428 
429 	if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
430 		return -EINVAL;
431 	ntuple_filter->src_port_mask = (uint16_t)temp;
432 
433 	if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
434 		return -EINVAL;
435 	ntuple_filter->dst_port = (uint16_t)temp;
436 
437 	if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
438 			sizeof(cb_port_delim)) != 0)
439 		return -EINVAL;
440 
441 	if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
442 		return -EINVAL;
443 	ntuple_filter->dst_port_mask = (uint16_t)temp;
444 
445 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
446 		return -EINVAL;
447 	ntuple_filter->proto = (uint8_t)temp;
448 
449 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
450 		return -EINVAL;
451 	ntuple_filter->proto_mask = (uint8_t)temp;
452 
453 	if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
454 		return -EINVAL;
455 	ntuple_filter->priority = (uint16_t)temp;
456 	if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
457 		ret = -EINVAL;
458 
459 	return ret;
460 }
461 
462 /* Bypass comment and empty lines */
463 static inline int
464 is_bypass_line(char *buff)
465 {
466 	int i = 0;
467 
468 	/* comment line */
469 	if (buff[0] == COMMENT_LEAD_CHAR)
470 		return 1;
471 	/* empty line */
472 	while (buff[i] != '\0') {
473 		if (!isspace(buff[i]))
474 			return 0;
475 		i++;
476 	}
477 	return 1;
478 }
479 
480 static uint32_t
481 convert_depth_to_bitmask(uint32_t depth_val)
482 {
483 	uint32_t bitmask = 0;
484 	int i, j;
485 
486 	for (i = depth_val, j = 0; i > 0; i--, j++)
487 		bitmask |= (1 << (31 - j));
488 	return bitmask;
489 }
490 
491 static int
492 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
493 		struct flow_classifier *cls_app)
494 {
495 	int ret = -1;
496 	int key_found;
497 	struct rte_flow_error error;
498 	struct rte_flow_item_ipv4 ipv4_spec;
499 	struct rte_flow_item_ipv4 ipv4_mask;
500 	struct rte_flow_item ipv4_udp_item;
501 	struct rte_flow_item ipv4_tcp_item;
502 	struct rte_flow_item ipv4_sctp_item;
503 	struct rte_flow_item_udp udp_spec;
504 	struct rte_flow_item_udp udp_mask;
505 	struct rte_flow_item udp_item;
506 	struct rte_flow_item_tcp tcp_spec;
507 	struct rte_flow_item_tcp tcp_mask;
508 	struct rte_flow_item tcp_item;
509 	struct rte_flow_item_sctp sctp_spec;
510 	struct rte_flow_item_sctp sctp_mask;
511 	struct rte_flow_item sctp_item;
512 	struct rte_flow_item pattern_ipv4_5tuple[4];
513 	struct rte_flow_classify_rule *rule;
514 	uint8_t ipv4_proto;
515 
516 	if (num_classify_rules >= MAX_NUM_CLASSIFY) {
517 		printf(
518 			"\nINFO:  classify rule capacity %d reached\n",
519 			num_classify_rules);
520 		return ret;
521 	}
522 
523 	/* set up parameters for validate and add */
524 	memset(&ipv4_spec, 0, sizeof(ipv4_spec));
525 	ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
526 	ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
527 	ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
528 	ipv4_proto = ipv4_spec.hdr.next_proto_id;
529 
530 	memset(&ipv4_mask, 0, sizeof(ipv4_mask));
531 	ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
532 	ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
533 	ipv4_mask.hdr.src_addr =
534 		convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
535 	ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
536 	ipv4_mask.hdr.dst_addr =
537 		convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
538 
539 	switch (ipv4_proto) {
540 	case IPPROTO_UDP:
541 		ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
542 		ipv4_udp_item.spec = &ipv4_spec;
543 		ipv4_udp_item.mask = &ipv4_mask;
544 		ipv4_udp_item.last = NULL;
545 
546 		udp_spec.hdr.src_port = ntuple_filter->src_port;
547 		udp_spec.hdr.dst_port = ntuple_filter->dst_port;
548 		udp_spec.hdr.dgram_len = 0;
549 		udp_spec.hdr.dgram_cksum = 0;
550 
551 		udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
552 		udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
553 		udp_mask.hdr.dgram_len = 0;
554 		udp_mask.hdr.dgram_cksum = 0;
555 
556 		udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
557 		udp_item.spec = &udp_spec;
558 		udp_item.mask = &udp_mask;
559 		udp_item.last = NULL;
560 
561 		attr.priority = ntuple_filter->priority;
562 		pattern_ipv4_5tuple[1] = ipv4_udp_item;
563 		pattern_ipv4_5tuple[2] = udp_item;
564 		break;
565 	case IPPROTO_TCP:
566 		ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
567 		ipv4_tcp_item.spec = &ipv4_spec;
568 		ipv4_tcp_item.mask = &ipv4_mask;
569 		ipv4_tcp_item.last = NULL;
570 
571 		memset(&tcp_spec, 0, sizeof(tcp_spec));
572 		tcp_spec.hdr.src_port = ntuple_filter->src_port;
573 		tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
574 
575 		memset(&tcp_mask, 0, sizeof(tcp_mask));
576 		tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
577 		tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
578 
579 		tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
580 		tcp_item.spec = &tcp_spec;
581 		tcp_item.mask = &tcp_mask;
582 		tcp_item.last = NULL;
583 
584 		attr.priority = ntuple_filter->priority;
585 		pattern_ipv4_5tuple[1] = ipv4_tcp_item;
586 		pattern_ipv4_5tuple[2] = tcp_item;
587 		break;
588 	case IPPROTO_SCTP:
589 		ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
590 		ipv4_sctp_item.spec = &ipv4_spec;
591 		ipv4_sctp_item.mask = &ipv4_mask;
592 		ipv4_sctp_item.last = NULL;
593 
594 		sctp_spec.hdr.src_port = ntuple_filter->src_port;
595 		sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
596 		sctp_spec.hdr.cksum = 0;
597 		sctp_spec.hdr.tag = 0;
598 
599 		sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
600 		sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
601 		sctp_mask.hdr.cksum = 0;
602 		sctp_mask.hdr.tag = 0;
603 
604 		sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
605 		sctp_item.spec = &sctp_spec;
606 		sctp_item.mask = &sctp_mask;
607 		sctp_item.last = NULL;
608 
609 		attr.priority = ntuple_filter->priority;
610 		pattern_ipv4_5tuple[1] = ipv4_sctp_item;
611 		pattern_ipv4_5tuple[2] = sctp_item;
612 		break;
613 	default:
614 		return ret;
615 	}
616 
617 	attr.ingress = 1;
618 	pattern_ipv4_5tuple[0] = eth_item;
619 	pattern_ipv4_5tuple[3] = end_item;
620 	actions[0] = count_action;
621 	actions[1] = end_action;
622 
623 	/* Validate and add rule */
624 	ret = rte_flow_classify_validate(cls_app->cls, &attr,
625 			pattern_ipv4_5tuple, actions, &error);
626 	if (ret) {
627 		printf("table entry validate failed ipv4_proto = %u\n",
628 			ipv4_proto);
629 		return ret;
630 	}
631 
632 	rule = rte_flow_classify_table_entry_add(
633 			cls_app->cls, &attr, pattern_ipv4_5tuple,
634 			actions, &key_found, &error);
635 	if (rule == NULL) {
636 		printf("table entry add failed ipv4_proto = %u\n",
637 			ipv4_proto);
638 		ret = -1;
639 		return ret;
640 	}
641 
642 	rules[num_classify_rules] = rule;
643 	num_classify_rules++;
644 	return 0;
645 }
646 
647 static int
648 add_rules(const char *rule_path, struct flow_classifier *cls_app)
649 {
650 	FILE *fh;
651 	char buff[LINE_MAX];
652 	unsigned int i = 0;
653 	unsigned int total_num = 0;
654 	struct rte_eth_ntuple_filter ntuple_filter;
655 	int ret;
656 
657 	fh = fopen(rule_path, "rb");
658 	if (fh == NULL)
659 		rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
660 			rule_path);
661 
662 	ret = fseek(fh, 0, SEEK_SET);
663 	if (ret)
664 		rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
665 			ret);
666 
667 	i = 0;
668 	while (fgets(buff, LINE_MAX, fh) != NULL) {
669 		i++;
670 
671 		if (is_bypass_line(buff))
672 			continue;
673 
674 		if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
675 			printf("\nINFO: classify rule capacity %d reached\n",
676 				total_num);
677 			break;
678 		}
679 
680 		if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
681 			rte_exit(EXIT_FAILURE,
682 				"%s Line %u: parse rules error\n",
683 				rule_path, i);
684 
685 		if (add_classify_rule(&ntuple_filter, cls_app) != 0)
686 			rte_exit(EXIT_FAILURE, "add rule error\n");
687 
688 		total_num++;
689 	}
690 
691 	fclose(fh);
692 	return 0;
693 }
694 
695 /* display usage */
696 static void
697 print_usage(const char *prgname)
698 {
699 	printf("%s usage:\n", prgname);
700 	printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
701 	printf("specify the ipv4 rules file.\n");
702 	printf("Each rule occupies one line in the file.\n");
703 }
704 
705 /* Parse the argument given in the command line of the application */
706 static int
707 parse_args(int argc, char **argv)
708 {
709 	int opt, ret;
710 	char **argvopt;
711 	int option_index;
712 	char *prgname = argv[0];
713 	static struct option lgopts[] = {
714 		{OPTION_RULE_IPV4, 1, 0, 0},
715 		{NULL, 0, 0, 0}
716 	};
717 
718 	argvopt = argv;
719 
720 	while ((opt = getopt_long(argc, argvopt, "",
721 				lgopts, &option_index)) != EOF) {
722 
723 		switch (opt) {
724 		/* long options */
725 		case 0:
726 			if (!strncmp(lgopts[option_index].name,
727 					OPTION_RULE_IPV4,
728 					sizeof(OPTION_RULE_IPV4)))
729 				parm_config.rule_ipv4_name = optarg;
730 			break;
731 		default:
732 			print_usage(prgname);
733 			return -1;
734 		}
735 	}
736 
737 	if (optind >= 0)
738 		argv[optind-1] = prgname;
739 
740 	ret = optind-1;
741 	optind = 1; /* reset getopt lib */
742 	return ret;
743 }
744 
745 /*
746  * The main function, which does initialization and calls the lcore_main
747  * function.
748  */
749 int
750 main(int argc, char *argv[])
751 {
752 	struct rte_mempool *mbuf_pool;
753 	uint16_t nb_ports;
754 	uint16_t portid;
755 	int ret;
756 	int socket_id;
757 	struct rte_table_acl_params table_acl_params;
758 	struct rte_flow_classify_table_params cls_table_params;
759 	struct flow_classifier *cls_app;
760 	struct rte_flow_classifier_params cls_params;
761 	uint32_t size;
762 
763 	/* Initialize the Environment Abstraction Layer (EAL). */
764 	ret = rte_eal_init(argc, argv);
765 	if (ret < 0)
766 		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
767 
768 	argc -= ret;
769 	argv += ret;
770 
771 	/* parse application arguments (after the EAL ones) */
772 	ret = parse_args(argc, argv);
773 	if (ret < 0)
774 		rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
775 
776 	/* Check that there is an even number of ports to send/receive on. */
777 	nb_ports = rte_eth_dev_count_avail();
778 	if (nb_ports < 2 || (nb_ports & 1))
779 		rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
780 
781 	/* Creates a new mempool in memory to hold the mbufs. */
782 	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
783 		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
784 
785 	if (mbuf_pool == NULL)
786 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
787 
788 	/* Initialize all ports. */
789 	RTE_ETH_FOREACH_DEV(portid)
790 		if (port_init(portid, mbuf_pool) != 0)
791 			rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
792 					portid);
793 
794 	if (rte_lcore_count() > 1)
795 		printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
796 
797 	socket_id = rte_eth_dev_socket_id(0);
798 
799 	/* Memory allocation */
800 	size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
801 	cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
802 	if (cls_app == NULL)
803 		rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
804 
805 	cls_params.name = "flow_classifier";
806 	cls_params.socket_id = socket_id;
807 
808 	cls_app->cls = rte_flow_classifier_create(&cls_params);
809 	if (cls_app->cls == NULL) {
810 		rte_free(cls_app);
811 		rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
812 	}
813 
814 	/* initialise ACL table params */
815 	table_acl_params.name = "table_acl_ipv4_5tuple";
816 	table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
817 	table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
818 	memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
819 
820 	/* initialise table create params */
821 	cls_table_params.ops = &rte_table_acl_ops;
822 	cls_table_params.arg_create = &table_acl_params;
823 	cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;
824 
825 	ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
826 	if (ret) {
827 		rte_flow_classifier_free(cls_app->cls);
828 		rte_free(cls_app);
829 		rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
830 	}
831 
832 	/* read file of IPv4 5 tuple rules and initialize parameters
833 	 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
834 	 * API's.
835 	 */
836 	if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
837 		rte_flow_classifier_free(cls_app->cls);
838 		rte_free(cls_app);
839 		rte_exit(EXIT_FAILURE, "Failed to add rules\n");
840 	}
841 
842 	/* Call lcore_main on the master core only. */
843 	lcore_main(cls_app);
844 
845 	return 0;
846 }
847