1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_log.h" 23 #include "sfc_kvargs.h" 24 #include "sfc_ev.h" 25 #include "sfc_rx.h" 26 #include "sfc_tx.h" 27 #include "sfc_flow.h" 28 #include "sfc_dp.h" 29 #include "sfc_dp_rx.h" 30 31 uint32_t sfc_logtype_driver; 32 33 static struct sfc_dp_list sfc_dp_head = 34 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 35 36 static int 37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 38 { 39 struct sfc_adapter *sa = dev->data->dev_private; 40 efx_nic_fw_info_t enfi; 41 int ret; 42 int rc; 43 44 /* 45 * Return value of the callback is likely supposed to be 46 * equal to or greater than 0, nevertheless, if an error 47 * occurs, it will be desirable to pass it to the caller 48 */ 49 if ((fw_version == NULL) || (fw_size == 0)) 50 return -EINVAL; 51 52 rc = efx_nic_get_fw_version(sa->nic, &enfi); 53 if (rc != 0) 54 return -rc; 55 56 ret = snprintf(fw_version, fw_size, 57 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 58 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 59 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 60 if (ret < 0) 61 return ret; 62 63 if (enfi.enfi_dpcpu_fw_ids_valid) { 64 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 65 int ret_extra; 66 67 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 68 fw_size - dpcpu_fw_ids_offset, 69 " rx%" PRIx16 " tx%" PRIx16, 70 enfi.enfi_rx_dpcpu_fw_id, 71 enfi.enfi_tx_dpcpu_fw_id); 72 if (ret_extra < 0) 73 return ret_extra; 74 75 ret += ret_extra; 76 } 77 78 if (fw_size < (size_t)(++ret)) 79 return ret; 80 else 81 return 0; 82 } 83 84 static void 85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 86 { 87 struct sfc_adapter *sa = dev->data->dev_private; 88 struct sfc_rss *rss = &sa->rss; 89 uint64_t txq_offloads_def = 0; 90 91 sfc_log_init(sa, "entry"); 92 93 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 94 95 /* Autonegotiation may be disabled */ 96 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 97 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 98 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 99 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 100 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 101 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 102 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 103 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 104 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 105 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 106 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 107 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 108 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 109 110 dev_info->max_rx_queues = sa->rxq_max; 111 dev_info->max_tx_queues = sa->txq_max; 112 113 /* By default packets are dropped if no descriptors are available */ 114 dev_info->default_rxconf.rx_drop_en = 1; 115 116 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 117 118 /* 119 * rx_offload_capa includes both device and queue offloads since 120 * the latter may be requested on a per device basis which makes 121 * sense when some offloads are needed to be set on all queues. 122 */ 123 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 124 dev_info->rx_queue_offload_capa; 125 126 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 127 128 /* 129 * tx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 134 dev_info->tx_queue_offload_capa; 135 136 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 137 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 138 139 dev_info->default_txconf.offloads |= txq_offloads_def; 140 141 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 142 uint64_t rte_hf = 0; 143 unsigned int i; 144 145 for (i = 0; i < rss->hf_map_nb_entries; ++i) 146 rte_hf |= rss->hf_map[i].rte; 147 148 dev_info->reta_size = EFX_RSS_TBL_SIZE; 149 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 150 dev_info->flow_type_rss_offloads = rte_hf; 151 } 152 153 /* Initialize to hardware limits */ 154 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 155 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 156 /* The RXQ hardware requires that the descriptor count is a power 157 * of 2, but rx_desc_lim cannot properly describe that constraint. 158 */ 159 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 160 161 /* Initialize to hardware limits */ 162 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 163 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 164 /* 165 * The TXQ hardware requires that the descriptor count is a power 166 * of 2, but tx_desc_lim cannot properly describe that constraint 167 */ 168 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 169 170 if (sa->dp_rx->get_dev_info != NULL) 171 sa->dp_rx->get_dev_info(dev_info); 172 if (sa->dp_tx->get_dev_info != NULL) 173 sa->dp_tx->get_dev_info(dev_info); 174 175 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 176 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 177 } 178 179 static const uint32_t * 180 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 181 { 182 struct sfc_adapter *sa = dev->data->dev_private; 183 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 184 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 185 186 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 187 } 188 189 static int 190 sfc_dev_configure(struct rte_eth_dev *dev) 191 { 192 struct rte_eth_dev_data *dev_data = dev->data; 193 struct sfc_adapter *sa = dev_data->dev_private; 194 int rc; 195 196 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 197 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 198 199 sfc_adapter_lock(sa); 200 switch (sa->state) { 201 case SFC_ADAPTER_CONFIGURED: 202 /* FALLTHROUGH */ 203 case SFC_ADAPTER_INITIALIZED: 204 rc = sfc_configure(sa); 205 break; 206 default: 207 sfc_err(sa, "unexpected adapter state %u to configure", 208 sa->state); 209 rc = EINVAL; 210 break; 211 } 212 sfc_adapter_unlock(sa); 213 214 sfc_log_init(sa, "done %d", rc); 215 SFC_ASSERT(rc >= 0); 216 return -rc; 217 } 218 219 static int 220 sfc_dev_start(struct rte_eth_dev *dev) 221 { 222 struct sfc_adapter *sa = dev->data->dev_private; 223 int rc; 224 225 sfc_log_init(sa, "entry"); 226 227 sfc_adapter_lock(sa); 228 rc = sfc_start(sa); 229 sfc_adapter_unlock(sa); 230 231 sfc_log_init(sa, "done %d", rc); 232 SFC_ASSERT(rc >= 0); 233 return -rc; 234 } 235 236 static int 237 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 238 { 239 struct sfc_adapter *sa = dev->data->dev_private; 240 struct rte_eth_link current_link; 241 int ret; 242 243 sfc_log_init(sa, "entry"); 244 245 if (sa->state != SFC_ADAPTER_STARTED) { 246 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 247 } else if (wait_to_complete) { 248 efx_link_mode_t link_mode; 249 250 if (efx_port_poll(sa->nic, &link_mode) != 0) 251 link_mode = EFX_LINK_UNKNOWN; 252 sfc_port_link_mode_to_info(link_mode, ¤t_link); 253 254 } else { 255 sfc_ev_mgmt_qpoll(sa); 256 rte_eth_linkstatus_get(dev, ¤t_link); 257 } 258 259 ret = rte_eth_linkstatus_set(dev, ¤t_link); 260 if (ret == 0) 261 sfc_notice(sa, "Link status is %s", 262 current_link.link_status ? "UP" : "DOWN"); 263 264 return ret; 265 } 266 267 static void 268 sfc_dev_stop(struct rte_eth_dev *dev) 269 { 270 struct sfc_adapter *sa = dev->data->dev_private; 271 272 sfc_log_init(sa, "entry"); 273 274 sfc_adapter_lock(sa); 275 sfc_stop(sa); 276 sfc_adapter_unlock(sa); 277 278 sfc_log_init(sa, "done"); 279 } 280 281 static int 282 sfc_dev_set_link_up(struct rte_eth_dev *dev) 283 { 284 struct sfc_adapter *sa = dev->data->dev_private; 285 int rc; 286 287 sfc_log_init(sa, "entry"); 288 289 sfc_adapter_lock(sa); 290 rc = sfc_start(sa); 291 sfc_adapter_unlock(sa); 292 293 SFC_ASSERT(rc >= 0); 294 return -rc; 295 } 296 297 static int 298 sfc_dev_set_link_down(struct rte_eth_dev *dev) 299 { 300 struct sfc_adapter *sa = dev->data->dev_private; 301 302 sfc_log_init(sa, "entry"); 303 304 sfc_adapter_lock(sa); 305 sfc_stop(sa); 306 sfc_adapter_unlock(sa); 307 308 return 0; 309 } 310 311 static void 312 sfc_dev_close(struct rte_eth_dev *dev) 313 { 314 struct sfc_adapter *sa = dev->data->dev_private; 315 316 sfc_log_init(sa, "entry"); 317 318 sfc_adapter_lock(sa); 319 switch (sa->state) { 320 case SFC_ADAPTER_STARTED: 321 sfc_stop(sa); 322 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 323 /* FALLTHROUGH */ 324 case SFC_ADAPTER_CONFIGURED: 325 sfc_close(sa); 326 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 327 /* FALLTHROUGH */ 328 case SFC_ADAPTER_INITIALIZED: 329 break; 330 default: 331 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 332 break; 333 } 334 sfc_adapter_unlock(sa); 335 336 sfc_log_init(sa, "done"); 337 } 338 339 static void 340 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 341 boolean_t enabled) 342 { 343 struct sfc_port *port; 344 boolean_t *toggle; 345 struct sfc_adapter *sa = dev->data->dev_private; 346 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 347 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 348 349 sfc_adapter_lock(sa); 350 351 port = &sa->port; 352 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 353 354 if (*toggle != enabled) { 355 *toggle = enabled; 356 357 if (port->isolated) { 358 sfc_warn(sa, "isolated mode is active on the port"); 359 sfc_warn(sa, "the change is to be applied on the next " 360 "start provided that isolated mode is " 361 "disabled prior the next start"); 362 } else if ((sa->state == SFC_ADAPTER_STARTED) && 363 (sfc_set_rx_mode(sa) != 0)) { 364 *toggle = !(enabled); 365 sfc_warn(sa, "Failed to %s %s mode", 366 ((enabled) ? "enable" : "disable"), desc); 367 } 368 } 369 370 sfc_adapter_unlock(sa); 371 } 372 373 static void 374 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 375 { 376 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 377 } 378 379 static void 380 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 381 { 382 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 383 } 384 385 static void 386 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 387 { 388 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 389 } 390 391 static void 392 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 393 { 394 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 395 } 396 397 static int 398 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 399 uint16_t nb_rx_desc, unsigned int socket_id, 400 const struct rte_eth_rxconf *rx_conf, 401 struct rte_mempool *mb_pool) 402 { 403 struct sfc_adapter *sa = dev->data->dev_private; 404 int rc; 405 406 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 407 rx_queue_id, nb_rx_desc, socket_id); 408 409 sfc_adapter_lock(sa); 410 411 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 412 rx_conf, mb_pool); 413 if (rc != 0) 414 goto fail_rx_qinit; 415 416 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 417 418 sfc_adapter_unlock(sa); 419 420 return 0; 421 422 fail_rx_qinit: 423 sfc_adapter_unlock(sa); 424 SFC_ASSERT(rc > 0); 425 return -rc; 426 } 427 428 static void 429 sfc_rx_queue_release(void *queue) 430 { 431 struct sfc_dp_rxq *dp_rxq = queue; 432 struct sfc_rxq *rxq; 433 struct sfc_adapter *sa; 434 unsigned int sw_index; 435 436 if (dp_rxq == NULL) 437 return; 438 439 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 440 sa = rxq->evq->sa; 441 sfc_adapter_lock(sa); 442 443 sw_index = sfc_rxq_sw_index(rxq); 444 445 sfc_log_init(sa, "RxQ=%u", sw_index); 446 447 sfc_rx_qfini(sa, sw_index); 448 449 sfc_adapter_unlock(sa); 450 } 451 452 static int 453 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 454 uint16_t nb_tx_desc, unsigned int socket_id, 455 const struct rte_eth_txconf *tx_conf) 456 { 457 struct sfc_adapter *sa = dev->data->dev_private; 458 int rc; 459 460 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 461 tx_queue_id, nb_tx_desc, socket_id); 462 463 sfc_adapter_lock(sa); 464 465 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 466 if (rc != 0) 467 goto fail_tx_qinit; 468 469 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 470 471 sfc_adapter_unlock(sa); 472 return 0; 473 474 fail_tx_qinit: 475 sfc_adapter_unlock(sa); 476 SFC_ASSERT(rc > 0); 477 return -rc; 478 } 479 480 static void 481 sfc_tx_queue_release(void *queue) 482 { 483 struct sfc_dp_txq *dp_txq = queue; 484 struct sfc_txq *txq; 485 unsigned int sw_index; 486 struct sfc_adapter *sa; 487 488 if (dp_txq == NULL) 489 return; 490 491 txq = sfc_txq_by_dp_txq(dp_txq); 492 sw_index = sfc_txq_sw_index(txq); 493 494 SFC_ASSERT(txq->evq != NULL); 495 sa = txq->evq->sa; 496 497 sfc_log_init(sa, "TxQ = %u", sw_index); 498 499 sfc_adapter_lock(sa); 500 501 sfc_tx_qfini(sa, sw_index); 502 503 sfc_adapter_unlock(sa); 504 } 505 506 /* 507 * Some statistics are computed as A - B where A and B each increase 508 * monotonically with some hardware counter(s) and the counters are read 509 * asynchronously. 510 * 511 * If packet X is counted in A, but not counted in B yet, computed value is 512 * greater than real. 513 * 514 * If packet X is not counted in A at the moment of reading the counter, 515 * but counted in B at the moment of reading the counter, computed value 516 * is less than real. 517 * 518 * However, counter which grows backward is worse evil than slightly wrong 519 * value. So, let's try to guarantee that it never happens except may be 520 * the case when the MAC stats are zeroed as a result of a NIC reset. 521 */ 522 static void 523 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 524 { 525 if ((int64_t)(newval - *stat) > 0 || newval == 0) 526 *stat = newval; 527 } 528 529 static int 530 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 531 { 532 struct sfc_adapter *sa = dev->data->dev_private; 533 struct sfc_port *port = &sa->port; 534 uint64_t *mac_stats; 535 int ret; 536 537 rte_spinlock_lock(&port->mac_stats_lock); 538 539 ret = sfc_port_update_mac_stats(sa); 540 if (ret != 0) 541 goto unlock; 542 543 mac_stats = port->mac_stats_buf; 544 545 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 546 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 547 stats->ipackets = 548 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 549 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 550 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 551 stats->opackets = 552 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 553 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 554 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 555 stats->ibytes = 556 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 557 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 558 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 559 stats->obytes = 560 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 561 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 562 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 563 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 564 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 565 } else { 566 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 567 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 568 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 569 /* 570 * Take into account stats which are whenever supported 571 * on EF10. If some stat is not supported by current 572 * firmware variant or HW revision, it is guaranteed 573 * to be zero in mac_stats. 574 */ 575 stats->imissed = 576 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 577 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 578 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 579 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 580 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 581 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 582 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 583 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 584 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 585 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 586 stats->ierrors = 587 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 588 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 589 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 590 /* no oerrors counters supported on EF10 */ 591 592 /* Exclude missed, errors and pauses from Rx packets */ 593 sfc_update_diff_stat(&port->ipackets, 594 mac_stats[EFX_MAC_RX_PKTS] - 595 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 596 stats->imissed - stats->ierrors); 597 stats->ipackets = port->ipackets; 598 } 599 600 unlock: 601 rte_spinlock_unlock(&port->mac_stats_lock); 602 SFC_ASSERT(ret >= 0); 603 return -ret; 604 } 605 606 static void 607 sfc_stats_reset(struct rte_eth_dev *dev) 608 { 609 struct sfc_adapter *sa = dev->data->dev_private; 610 struct sfc_port *port = &sa->port; 611 int rc; 612 613 if (sa->state != SFC_ADAPTER_STARTED) { 614 /* 615 * The operation cannot be done if port is not started; it 616 * will be scheduled to be done during the next port start 617 */ 618 port->mac_stats_reset_pending = B_TRUE; 619 return; 620 } 621 622 rc = sfc_port_reset_mac_stats(sa); 623 if (rc != 0) 624 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 625 } 626 627 static int 628 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 629 unsigned int xstats_count) 630 { 631 struct sfc_adapter *sa = dev->data->dev_private; 632 struct sfc_port *port = &sa->port; 633 uint64_t *mac_stats; 634 int rc; 635 unsigned int i; 636 int nstats = 0; 637 638 rte_spinlock_lock(&port->mac_stats_lock); 639 640 rc = sfc_port_update_mac_stats(sa); 641 if (rc != 0) { 642 SFC_ASSERT(rc > 0); 643 nstats = -rc; 644 goto unlock; 645 } 646 647 mac_stats = port->mac_stats_buf; 648 649 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 650 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 651 if (xstats != NULL && nstats < (int)xstats_count) { 652 xstats[nstats].id = nstats; 653 xstats[nstats].value = mac_stats[i]; 654 } 655 nstats++; 656 } 657 } 658 659 unlock: 660 rte_spinlock_unlock(&port->mac_stats_lock); 661 662 return nstats; 663 } 664 665 static int 666 sfc_xstats_get_names(struct rte_eth_dev *dev, 667 struct rte_eth_xstat_name *xstats_names, 668 unsigned int xstats_count) 669 { 670 struct sfc_adapter *sa = dev->data->dev_private; 671 struct sfc_port *port = &sa->port; 672 unsigned int i; 673 unsigned int nstats = 0; 674 675 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 676 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 677 if (xstats_names != NULL && nstats < xstats_count) 678 strlcpy(xstats_names[nstats].name, 679 efx_mac_stat_name(sa->nic, i), 680 sizeof(xstats_names[0].name)); 681 nstats++; 682 } 683 } 684 685 return nstats; 686 } 687 688 static int 689 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 690 uint64_t *values, unsigned int n) 691 { 692 struct sfc_adapter *sa = dev->data->dev_private; 693 struct sfc_port *port = &sa->port; 694 uint64_t *mac_stats; 695 unsigned int nb_supported = 0; 696 unsigned int nb_written = 0; 697 unsigned int i; 698 int ret; 699 int rc; 700 701 if (unlikely(values == NULL) || 702 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 703 return port->mac_stats_nb_supported; 704 705 rte_spinlock_lock(&port->mac_stats_lock); 706 707 rc = sfc_port_update_mac_stats(sa); 708 if (rc != 0) { 709 SFC_ASSERT(rc > 0); 710 ret = -rc; 711 goto unlock; 712 } 713 714 mac_stats = port->mac_stats_buf; 715 716 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 717 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 718 continue; 719 720 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 721 values[nb_written++] = mac_stats[i]; 722 723 ++nb_supported; 724 } 725 726 ret = nb_written; 727 728 unlock: 729 rte_spinlock_unlock(&port->mac_stats_lock); 730 731 return ret; 732 } 733 734 static int 735 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 736 struct rte_eth_xstat_name *xstats_names, 737 const uint64_t *ids, unsigned int size) 738 { 739 struct sfc_adapter *sa = dev->data->dev_private; 740 struct sfc_port *port = &sa->port; 741 unsigned int nb_supported = 0; 742 unsigned int nb_written = 0; 743 unsigned int i; 744 745 if (unlikely(xstats_names == NULL) || 746 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 747 return port->mac_stats_nb_supported; 748 749 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 750 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 751 continue; 752 753 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 754 char *name = xstats_names[nb_written++].name; 755 756 strlcpy(name, efx_mac_stat_name(sa->nic, i), 757 sizeof(xstats_names[0].name)); 758 } 759 760 ++nb_supported; 761 } 762 763 return nb_written; 764 } 765 766 static int 767 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 768 { 769 struct sfc_adapter *sa = dev->data->dev_private; 770 unsigned int wanted_fc, link_fc; 771 772 memset(fc_conf, 0, sizeof(*fc_conf)); 773 774 sfc_adapter_lock(sa); 775 776 if (sa->state == SFC_ADAPTER_STARTED) 777 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 778 else 779 link_fc = sa->port.flow_ctrl; 780 781 switch (link_fc) { 782 case 0: 783 fc_conf->mode = RTE_FC_NONE; 784 break; 785 case EFX_FCNTL_RESPOND: 786 fc_conf->mode = RTE_FC_RX_PAUSE; 787 break; 788 case EFX_FCNTL_GENERATE: 789 fc_conf->mode = RTE_FC_TX_PAUSE; 790 break; 791 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 792 fc_conf->mode = RTE_FC_FULL; 793 break; 794 default: 795 sfc_err(sa, "%s: unexpected flow control value %#x", 796 __func__, link_fc); 797 } 798 799 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 800 801 sfc_adapter_unlock(sa); 802 803 return 0; 804 } 805 806 static int 807 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 808 { 809 struct sfc_adapter *sa = dev->data->dev_private; 810 struct sfc_port *port = &sa->port; 811 unsigned int fcntl; 812 int rc; 813 814 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 815 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 816 fc_conf->mac_ctrl_frame_fwd != 0) { 817 sfc_err(sa, "unsupported flow control settings specified"); 818 rc = EINVAL; 819 goto fail_inval; 820 } 821 822 switch (fc_conf->mode) { 823 case RTE_FC_NONE: 824 fcntl = 0; 825 break; 826 case RTE_FC_RX_PAUSE: 827 fcntl = EFX_FCNTL_RESPOND; 828 break; 829 case RTE_FC_TX_PAUSE: 830 fcntl = EFX_FCNTL_GENERATE; 831 break; 832 case RTE_FC_FULL: 833 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 834 break; 835 default: 836 rc = EINVAL; 837 goto fail_inval; 838 } 839 840 sfc_adapter_lock(sa); 841 842 if (sa->state == SFC_ADAPTER_STARTED) { 843 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 844 if (rc != 0) 845 goto fail_mac_fcntl_set; 846 } 847 848 port->flow_ctrl = fcntl; 849 port->flow_ctrl_autoneg = fc_conf->autoneg; 850 851 sfc_adapter_unlock(sa); 852 853 return 0; 854 855 fail_mac_fcntl_set: 856 sfc_adapter_unlock(sa); 857 fail_inval: 858 SFC_ASSERT(rc > 0); 859 return -rc; 860 } 861 862 static int 863 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 864 { 865 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 866 boolean_t scatter_enabled; 867 const char *error; 868 unsigned int i; 869 870 for (i = 0; i < sa->rxq_count; i++) { 871 if ((sa->rxq_info[i].rxq->state & SFC_RXQ_INITIALIZED) == 0) 872 continue; 873 874 scatter_enabled = (sa->rxq_info[i].type_flags & 875 EFX_RXQ_FLAG_SCATTER); 876 877 if (!sfc_rx_check_scatter(pdu, sa->rxq_info[i].rxq->buf_size, 878 encp->enc_rx_prefix_size, 879 scatter_enabled, &error)) { 880 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 881 error); 882 return EINVAL; 883 } 884 } 885 886 return 0; 887 } 888 889 static int 890 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 891 { 892 struct sfc_adapter *sa = dev->data->dev_private; 893 size_t pdu = EFX_MAC_PDU(mtu); 894 size_t old_pdu; 895 int rc; 896 897 sfc_log_init(sa, "mtu=%u", mtu); 898 899 rc = EINVAL; 900 if (pdu < EFX_MAC_PDU_MIN) { 901 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 902 (unsigned int)mtu, (unsigned int)pdu, 903 EFX_MAC_PDU_MIN); 904 goto fail_inval; 905 } 906 if (pdu > EFX_MAC_PDU_MAX) { 907 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 908 (unsigned int)mtu, (unsigned int)pdu, 909 (unsigned int)EFX_MAC_PDU_MAX); 910 goto fail_inval; 911 } 912 913 sfc_adapter_lock(sa); 914 915 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 916 if (rc != 0) 917 goto fail_check_scatter; 918 919 if (pdu != sa->port.pdu) { 920 if (sa->state == SFC_ADAPTER_STARTED) { 921 sfc_stop(sa); 922 923 old_pdu = sa->port.pdu; 924 sa->port.pdu = pdu; 925 rc = sfc_start(sa); 926 if (rc != 0) 927 goto fail_start; 928 } else { 929 sa->port.pdu = pdu; 930 } 931 } 932 933 /* 934 * The driver does not use it, but other PMDs update jumbo frame 935 * flag and max_rx_pkt_len when MTU is set. 936 */ 937 if (mtu > ETHER_MAX_LEN) { 938 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 939 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 940 } 941 942 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 943 944 sfc_adapter_unlock(sa); 945 946 sfc_log_init(sa, "done"); 947 return 0; 948 949 fail_start: 950 sa->port.pdu = old_pdu; 951 if (sfc_start(sa) != 0) 952 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 953 "PDU max size - port is stopped", 954 (unsigned int)pdu, (unsigned int)old_pdu); 955 956 fail_check_scatter: 957 sfc_adapter_unlock(sa); 958 959 fail_inval: 960 sfc_log_init(sa, "failed %d", rc); 961 SFC_ASSERT(rc > 0); 962 return -rc; 963 } 964 static int 965 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 966 { 967 struct sfc_adapter *sa = dev->data->dev_private; 968 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 969 struct sfc_port *port = &sa->port; 970 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 971 int rc = 0; 972 973 sfc_adapter_lock(sa); 974 975 /* 976 * Copy the address to the device private data so that 977 * it could be recalled in the case of adapter restart. 978 */ 979 ether_addr_copy(mac_addr, &port->default_mac_addr); 980 981 /* 982 * Neither of the two following checks can return 983 * an error. The new MAC address is preserved in 984 * the device private data and can be activated 985 * on the next port start if the user prevents 986 * isolated mode from being enabled. 987 */ 988 if (port->isolated) { 989 sfc_warn(sa, "isolated mode is active on the port"); 990 sfc_warn(sa, "will not set MAC address"); 991 goto unlock; 992 } 993 994 if (sa->state != SFC_ADAPTER_STARTED) { 995 sfc_notice(sa, "the port is not started"); 996 sfc_notice(sa, "the new MAC address will be set on port start"); 997 998 goto unlock; 999 } 1000 1001 if (encp->enc_allow_set_mac_with_installed_filters) { 1002 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1003 if (rc != 0) { 1004 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1005 goto unlock; 1006 } 1007 1008 /* 1009 * Changing the MAC address by means of MCDI request 1010 * has no effect on received traffic, therefore 1011 * we also need to update unicast filters 1012 */ 1013 rc = sfc_set_rx_mode(sa); 1014 if (rc != 0) { 1015 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1016 /* Rollback the old address */ 1017 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1018 (void)sfc_set_rx_mode(sa); 1019 } 1020 } else { 1021 sfc_warn(sa, "cannot set MAC address with filters installed"); 1022 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1023 sfc_warn(sa, "(some traffic may be dropped)"); 1024 1025 /* 1026 * Since setting MAC address with filters installed is not 1027 * allowed on the adapter, the new MAC address will be set 1028 * by means of adapter restart. sfc_start() shall retrieve 1029 * the new address from the device private data and set it. 1030 */ 1031 sfc_stop(sa); 1032 rc = sfc_start(sa); 1033 if (rc != 0) 1034 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1035 } 1036 1037 unlock: 1038 if (rc != 0) 1039 ether_addr_copy(old_addr, &port->default_mac_addr); 1040 1041 sfc_adapter_unlock(sa); 1042 1043 SFC_ASSERT(rc >= 0); 1044 return -rc; 1045 } 1046 1047 1048 static int 1049 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1050 uint32_t nb_mc_addr) 1051 { 1052 struct sfc_adapter *sa = dev->data->dev_private; 1053 struct sfc_port *port = &sa->port; 1054 uint8_t *mc_addrs = port->mcast_addrs; 1055 int rc; 1056 unsigned int i; 1057 1058 if (port->isolated) { 1059 sfc_err(sa, "isolated mode is active on the port"); 1060 sfc_err(sa, "will not set multicast address list"); 1061 return -ENOTSUP; 1062 } 1063 1064 if (mc_addrs == NULL) 1065 return -ENOBUFS; 1066 1067 if (nb_mc_addr > port->max_mcast_addrs) { 1068 sfc_err(sa, "too many multicast addresses: %u > %u", 1069 nb_mc_addr, port->max_mcast_addrs); 1070 return -EINVAL; 1071 } 1072 1073 for (i = 0; i < nb_mc_addr; ++i) { 1074 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1075 EFX_MAC_ADDR_LEN); 1076 mc_addrs += EFX_MAC_ADDR_LEN; 1077 } 1078 1079 port->nb_mcast_addrs = nb_mc_addr; 1080 1081 if (sa->state != SFC_ADAPTER_STARTED) 1082 return 0; 1083 1084 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1085 port->nb_mcast_addrs); 1086 if (rc != 0) 1087 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1088 1089 SFC_ASSERT(rc >= 0); 1090 return -rc; 1091 } 1092 1093 /* 1094 * The function is used by the secondary process as well. It must not 1095 * use any process-local pointers from the adapter data. 1096 */ 1097 static void 1098 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1099 struct rte_eth_rxq_info *qinfo) 1100 { 1101 struct sfc_adapter *sa = dev->data->dev_private; 1102 struct sfc_rxq_info *rxq_info; 1103 struct sfc_rxq *rxq; 1104 1105 sfc_adapter_lock(sa); 1106 1107 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1108 1109 rxq_info = &sa->rxq_info[rx_queue_id]; 1110 rxq = rxq_info->rxq; 1111 SFC_ASSERT(rxq != NULL); 1112 1113 qinfo->mp = rxq->refill_mb_pool; 1114 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1115 qinfo->conf.rx_drop_en = 1; 1116 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1117 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1118 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1119 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1120 qinfo->scattered_rx = 1; 1121 } 1122 qinfo->nb_desc = rxq_info->entries; 1123 1124 sfc_adapter_unlock(sa); 1125 } 1126 1127 /* 1128 * The function is used by the secondary process as well. It must not 1129 * use any process-local pointers from the adapter data. 1130 */ 1131 static void 1132 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1133 struct rte_eth_txq_info *qinfo) 1134 { 1135 struct sfc_adapter *sa = dev->data->dev_private; 1136 struct sfc_txq_info *txq_info; 1137 1138 sfc_adapter_lock(sa); 1139 1140 SFC_ASSERT(tx_queue_id < sa->txq_count); 1141 1142 txq_info = &sa->txq_info[tx_queue_id]; 1143 SFC_ASSERT(txq_info->txq != NULL); 1144 1145 memset(qinfo, 0, sizeof(*qinfo)); 1146 1147 qinfo->conf.offloads = txq_info->txq->offloads; 1148 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1149 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1150 qinfo->nb_desc = txq_info->entries; 1151 1152 sfc_adapter_unlock(sa); 1153 } 1154 1155 static uint32_t 1156 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1157 { 1158 struct sfc_adapter *sa = dev->data->dev_private; 1159 1160 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1161 } 1162 1163 static int 1164 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1165 { 1166 struct sfc_dp_rxq *dp_rxq = queue; 1167 1168 return sfc_rx_qdesc_done(dp_rxq, offset); 1169 } 1170 1171 static int 1172 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1173 { 1174 struct sfc_dp_rxq *dp_rxq = queue; 1175 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1176 1177 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1178 } 1179 1180 static int 1181 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1182 { 1183 struct sfc_dp_txq *dp_txq = queue; 1184 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1185 1186 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1187 } 1188 1189 static int 1190 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1191 { 1192 struct sfc_adapter *sa = dev->data->dev_private; 1193 int rc; 1194 1195 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1196 1197 sfc_adapter_lock(sa); 1198 1199 rc = EINVAL; 1200 if (sa->state != SFC_ADAPTER_STARTED) 1201 goto fail_not_started; 1202 1203 if (sa->rxq_info[rx_queue_id].rxq == NULL) 1204 goto fail_not_setup; 1205 1206 rc = sfc_rx_qstart(sa, rx_queue_id); 1207 if (rc != 0) 1208 goto fail_rx_qstart; 1209 1210 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1211 1212 sfc_adapter_unlock(sa); 1213 1214 return 0; 1215 1216 fail_rx_qstart: 1217 fail_not_setup: 1218 fail_not_started: 1219 sfc_adapter_unlock(sa); 1220 SFC_ASSERT(rc > 0); 1221 return -rc; 1222 } 1223 1224 static int 1225 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1226 { 1227 struct sfc_adapter *sa = dev->data->dev_private; 1228 1229 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1230 1231 sfc_adapter_lock(sa); 1232 sfc_rx_qstop(sa, rx_queue_id); 1233 1234 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1235 1236 sfc_adapter_unlock(sa); 1237 1238 return 0; 1239 } 1240 1241 static int 1242 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1243 { 1244 struct sfc_adapter *sa = dev->data->dev_private; 1245 int rc; 1246 1247 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1248 1249 sfc_adapter_lock(sa); 1250 1251 rc = EINVAL; 1252 if (sa->state != SFC_ADAPTER_STARTED) 1253 goto fail_not_started; 1254 1255 if (sa->txq_info[tx_queue_id].txq == NULL) 1256 goto fail_not_setup; 1257 1258 rc = sfc_tx_qstart(sa, tx_queue_id); 1259 if (rc != 0) 1260 goto fail_tx_qstart; 1261 1262 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1263 1264 sfc_adapter_unlock(sa); 1265 return 0; 1266 1267 fail_tx_qstart: 1268 1269 fail_not_setup: 1270 fail_not_started: 1271 sfc_adapter_unlock(sa); 1272 SFC_ASSERT(rc > 0); 1273 return -rc; 1274 } 1275 1276 static int 1277 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1278 { 1279 struct sfc_adapter *sa = dev->data->dev_private; 1280 1281 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1282 1283 sfc_adapter_lock(sa); 1284 1285 sfc_tx_qstop(sa, tx_queue_id); 1286 1287 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1288 1289 sfc_adapter_unlock(sa); 1290 return 0; 1291 } 1292 1293 static efx_tunnel_protocol_t 1294 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1295 { 1296 switch (rte_type) { 1297 case RTE_TUNNEL_TYPE_VXLAN: 1298 return EFX_TUNNEL_PROTOCOL_VXLAN; 1299 case RTE_TUNNEL_TYPE_GENEVE: 1300 return EFX_TUNNEL_PROTOCOL_GENEVE; 1301 default: 1302 return EFX_TUNNEL_NPROTOS; 1303 } 1304 } 1305 1306 enum sfc_udp_tunnel_op_e { 1307 SFC_UDP_TUNNEL_ADD_PORT, 1308 SFC_UDP_TUNNEL_DEL_PORT, 1309 }; 1310 1311 static int 1312 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1313 struct rte_eth_udp_tunnel *tunnel_udp, 1314 enum sfc_udp_tunnel_op_e op) 1315 { 1316 struct sfc_adapter *sa = dev->data->dev_private; 1317 efx_tunnel_protocol_t tunnel_proto; 1318 int rc; 1319 1320 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1321 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1322 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1323 tunnel_udp->udp_port, tunnel_udp->prot_type); 1324 1325 tunnel_proto = 1326 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1327 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1328 rc = ENOTSUP; 1329 goto fail_bad_proto; 1330 } 1331 1332 sfc_adapter_lock(sa); 1333 1334 switch (op) { 1335 case SFC_UDP_TUNNEL_ADD_PORT: 1336 rc = efx_tunnel_config_udp_add(sa->nic, 1337 tunnel_udp->udp_port, 1338 tunnel_proto); 1339 break; 1340 case SFC_UDP_TUNNEL_DEL_PORT: 1341 rc = efx_tunnel_config_udp_remove(sa->nic, 1342 tunnel_udp->udp_port, 1343 tunnel_proto); 1344 break; 1345 default: 1346 rc = EINVAL; 1347 goto fail_bad_op; 1348 } 1349 1350 if (rc != 0) 1351 goto fail_op; 1352 1353 if (sa->state == SFC_ADAPTER_STARTED) { 1354 rc = efx_tunnel_reconfigure(sa->nic); 1355 if (rc == EAGAIN) { 1356 /* 1357 * Configuration is accepted by FW and MC reboot 1358 * is initiated to apply the changes. MC reboot 1359 * will be handled in a usual way (MC reboot 1360 * event on management event queue and adapter 1361 * restart). 1362 */ 1363 rc = 0; 1364 } else if (rc != 0) { 1365 goto fail_reconfigure; 1366 } 1367 } 1368 1369 sfc_adapter_unlock(sa); 1370 return 0; 1371 1372 fail_reconfigure: 1373 /* Remove/restore entry since the change makes the trouble */ 1374 switch (op) { 1375 case SFC_UDP_TUNNEL_ADD_PORT: 1376 (void)efx_tunnel_config_udp_remove(sa->nic, 1377 tunnel_udp->udp_port, 1378 tunnel_proto); 1379 break; 1380 case SFC_UDP_TUNNEL_DEL_PORT: 1381 (void)efx_tunnel_config_udp_add(sa->nic, 1382 tunnel_udp->udp_port, 1383 tunnel_proto); 1384 break; 1385 } 1386 1387 fail_op: 1388 fail_bad_op: 1389 sfc_adapter_unlock(sa); 1390 1391 fail_bad_proto: 1392 SFC_ASSERT(rc > 0); 1393 return -rc; 1394 } 1395 1396 static int 1397 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1398 struct rte_eth_udp_tunnel *tunnel_udp) 1399 { 1400 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1401 } 1402 1403 static int 1404 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1405 struct rte_eth_udp_tunnel *tunnel_udp) 1406 { 1407 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1408 } 1409 1410 static int 1411 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1412 struct rte_eth_rss_conf *rss_conf) 1413 { 1414 struct sfc_adapter *sa = dev->data->dev_private; 1415 struct sfc_rss *rss = &sa->rss; 1416 1417 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1418 return -ENOTSUP; 1419 1420 sfc_adapter_lock(sa); 1421 1422 /* 1423 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1424 * hence, conversion is done here to derive a correct set of ETH_RSS 1425 * flags which corresponds to the active EFX configuration stored 1426 * locally in 'sfc_adapter' and kept up-to-date 1427 */ 1428 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types); 1429 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1430 if (rss_conf->rss_key != NULL) 1431 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1432 1433 sfc_adapter_unlock(sa); 1434 1435 return 0; 1436 } 1437 1438 static int 1439 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1440 struct rte_eth_rss_conf *rss_conf) 1441 { 1442 struct sfc_adapter *sa = dev->data->dev_private; 1443 struct sfc_rss *rss = &sa->rss; 1444 struct sfc_port *port = &sa->port; 1445 unsigned int efx_hash_types; 1446 int rc = 0; 1447 1448 if (port->isolated) 1449 return -ENOTSUP; 1450 1451 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1452 sfc_err(sa, "RSS is not available"); 1453 return -ENOTSUP; 1454 } 1455 1456 if (rss->channels == 0) { 1457 sfc_err(sa, "RSS is not configured"); 1458 return -EINVAL; 1459 } 1460 1461 if ((rss_conf->rss_key != NULL) && 1462 (rss_conf->rss_key_len != sizeof(rss->key))) { 1463 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1464 sizeof(rss->key)); 1465 return -EINVAL; 1466 } 1467 1468 sfc_adapter_lock(sa); 1469 1470 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1471 if (rc != 0) 1472 goto fail_rx_hf_rte_to_efx; 1473 1474 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1475 rss->hash_alg, efx_hash_types, B_TRUE); 1476 if (rc != 0) 1477 goto fail_scale_mode_set; 1478 1479 if (rss_conf->rss_key != NULL) { 1480 if (sa->state == SFC_ADAPTER_STARTED) { 1481 rc = efx_rx_scale_key_set(sa->nic, 1482 EFX_RSS_CONTEXT_DEFAULT, 1483 rss_conf->rss_key, 1484 sizeof(rss->key)); 1485 if (rc != 0) 1486 goto fail_scale_key_set; 1487 } 1488 1489 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1490 } 1491 1492 rss->hash_types = efx_hash_types; 1493 1494 sfc_adapter_unlock(sa); 1495 1496 return 0; 1497 1498 fail_scale_key_set: 1499 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1500 EFX_RX_HASHALG_TOEPLITZ, 1501 rss->hash_types, B_TRUE) != 0) 1502 sfc_err(sa, "failed to restore RSS mode"); 1503 1504 fail_scale_mode_set: 1505 fail_rx_hf_rte_to_efx: 1506 sfc_adapter_unlock(sa); 1507 return -rc; 1508 } 1509 1510 static int 1511 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1512 struct rte_eth_rss_reta_entry64 *reta_conf, 1513 uint16_t reta_size) 1514 { 1515 struct sfc_adapter *sa = dev->data->dev_private; 1516 struct sfc_rss *rss = &sa->rss; 1517 struct sfc_port *port = &sa->port; 1518 int entry; 1519 1520 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1521 return -ENOTSUP; 1522 1523 if (rss->channels == 0) 1524 return -EINVAL; 1525 1526 if (reta_size != EFX_RSS_TBL_SIZE) 1527 return -EINVAL; 1528 1529 sfc_adapter_lock(sa); 1530 1531 for (entry = 0; entry < reta_size; entry++) { 1532 int grp = entry / RTE_RETA_GROUP_SIZE; 1533 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1534 1535 if ((reta_conf[grp].mask >> grp_idx) & 1) 1536 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1537 } 1538 1539 sfc_adapter_unlock(sa); 1540 1541 return 0; 1542 } 1543 1544 static int 1545 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1546 struct rte_eth_rss_reta_entry64 *reta_conf, 1547 uint16_t reta_size) 1548 { 1549 struct sfc_adapter *sa = dev->data->dev_private; 1550 struct sfc_rss *rss = &sa->rss; 1551 struct sfc_port *port = &sa->port; 1552 unsigned int *rss_tbl_new; 1553 uint16_t entry; 1554 int rc = 0; 1555 1556 1557 if (port->isolated) 1558 return -ENOTSUP; 1559 1560 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1561 sfc_err(sa, "RSS is not available"); 1562 return -ENOTSUP; 1563 } 1564 1565 if (rss->channels == 0) { 1566 sfc_err(sa, "RSS is not configured"); 1567 return -EINVAL; 1568 } 1569 1570 if (reta_size != EFX_RSS_TBL_SIZE) { 1571 sfc_err(sa, "RETA size is wrong (should be %u)", 1572 EFX_RSS_TBL_SIZE); 1573 return -EINVAL; 1574 } 1575 1576 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1577 if (rss_tbl_new == NULL) 1578 return -ENOMEM; 1579 1580 sfc_adapter_lock(sa); 1581 1582 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1583 1584 for (entry = 0; entry < reta_size; entry++) { 1585 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1586 struct rte_eth_rss_reta_entry64 *grp; 1587 1588 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1589 1590 if (grp->mask & (1ull << grp_idx)) { 1591 if (grp->reta[grp_idx] >= rss->channels) { 1592 rc = EINVAL; 1593 goto bad_reta_entry; 1594 } 1595 rss_tbl_new[entry] = grp->reta[grp_idx]; 1596 } 1597 } 1598 1599 if (sa->state == SFC_ADAPTER_STARTED) { 1600 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1601 rss_tbl_new, EFX_RSS_TBL_SIZE); 1602 if (rc != 0) 1603 goto fail_scale_tbl_set; 1604 } 1605 1606 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1607 1608 fail_scale_tbl_set: 1609 bad_reta_entry: 1610 sfc_adapter_unlock(sa); 1611 1612 rte_free(rss_tbl_new); 1613 1614 SFC_ASSERT(rc >= 0); 1615 return -rc; 1616 } 1617 1618 static int 1619 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1620 enum rte_filter_op filter_op, 1621 void *arg) 1622 { 1623 struct sfc_adapter *sa = dev->data->dev_private; 1624 int rc = ENOTSUP; 1625 1626 sfc_log_init(sa, "entry"); 1627 1628 switch (filter_type) { 1629 case RTE_ETH_FILTER_NONE: 1630 sfc_err(sa, "Global filters configuration not supported"); 1631 break; 1632 case RTE_ETH_FILTER_MACVLAN: 1633 sfc_err(sa, "MACVLAN filters not supported"); 1634 break; 1635 case RTE_ETH_FILTER_ETHERTYPE: 1636 sfc_err(sa, "EtherType filters not supported"); 1637 break; 1638 case RTE_ETH_FILTER_FLEXIBLE: 1639 sfc_err(sa, "Flexible filters not supported"); 1640 break; 1641 case RTE_ETH_FILTER_SYN: 1642 sfc_err(sa, "SYN filters not supported"); 1643 break; 1644 case RTE_ETH_FILTER_NTUPLE: 1645 sfc_err(sa, "NTUPLE filters not supported"); 1646 break; 1647 case RTE_ETH_FILTER_TUNNEL: 1648 sfc_err(sa, "Tunnel filters not supported"); 1649 break; 1650 case RTE_ETH_FILTER_FDIR: 1651 sfc_err(sa, "Flow Director filters not supported"); 1652 break; 1653 case RTE_ETH_FILTER_HASH: 1654 sfc_err(sa, "Hash filters not supported"); 1655 break; 1656 case RTE_ETH_FILTER_GENERIC: 1657 if (filter_op != RTE_ETH_FILTER_GET) { 1658 rc = EINVAL; 1659 } else { 1660 *(const void **)arg = &sfc_flow_ops; 1661 rc = 0; 1662 } 1663 break; 1664 default: 1665 sfc_err(sa, "Unknown filter type %u", filter_type); 1666 break; 1667 } 1668 1669 sfc_log_init(sa, "exit: %d", -rc); 1670 SFC_ASSERT(rc >= 0); 1671 return -rc; 1672 } 1673 1674 static int 1675 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1676 { 1677 struct sfc_adapter *sa = dev->data->dev_private; 1678 1679 /* 1680 * If Rx datapath does not provide callback to check mempool, 1681 * all pools are supported. 1682 */ 1683 if (sa->dp_rx->pool_ops_supported == NULL) 1684 return 1; 1685 1686 return sa->dp_rx->pool_ops_supported(pool); 1687 } 1688 1689 static const struct eth_dev_ops sfc_eth_dev_ops = { 1690 .dev_configure = sfc_dev_configure, 1691 .dev_start = sfc_dev_start, 1692 .dev_stop = sfc_dev_stop, 1693 .dev_set_link_up = sfc_dev_set_link_up, 1694 .dev_set_link_down = sfc_dev_set_link_down, 1695 .dev_close = sfc_dev_close, 1696 .promiscuous_enable = sfc_dev_promisc_enable, 1697 .promiscuous_disable = sfc_dev_promisc_disable, 1698 .allmulticast_enable = sfc_dev_allmulti_enable, 1699 .allmulticast_disable = sfc_dev_allmulti_disable, 1700 .link_update = sfc_dev_link_update, 1701 .stats_get = sfc_stats_get, 1702 .stats_reset = sfc_stats_reset, 1703 .xstats_get = sfc_xstats_get, 1704 .xstats_reset = sfc_stats_reset, 1705 .xstats_get_names = sfc_xstats_get_names, 1706 .dev_infos_get = sfc_dev_infos_get, 1707 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1708 .mtu_set = sfc_dev_set_mtu, 1709 .rx_queue_start = sfc_rx_queue_start, 1710 .rx_queue_stop = sfc_rx_queue_stop, 1711 .tx_queue_start = sfc_tx_queue_start, 1712 .tx_queue_stop = sfc_tx_queue_stop, 1713 .rx_queue_setup = sfc_rx_queue_setup, 1714 .rx_queue_release = sfc_rx_queue_release, 1715 .rx_queue_count = sfc_rx_queue_count, 1716 .rx_descriptor_done = sfc_rx_descriptor_done, 1717 .rx_descriptor_status = sfc_rx_descriptor_status, 1718 .tx_descriptor_status = sfc_tx_descriptor_status, 1719 .tx_queue_setup = sfc_tx_queue_setup, 1720 .tx_queue_release = sfc_tx_queue_release, 1721 .flow_ctrl_get = sfc_flow_ctrl_get, 1722 .flow_ctrl_set = sfc_flow_ctrl_set, 1723 .mac_addr_set = sfc_mac_addr_set, 1724 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1725 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1726 .reta_update = sfc_dev_rss_reta_update, 1727 .reta_query = sfc_dev_rss_reta_query, 1728 .rss_hash_update = sfc_dev_rss_hash_update, 1729 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1730 .filter_ctrl = sfc_dev_filter_ctrl, 1731 .set_mc_addr_list = sfc_set_mc_addr_list, 1732 .rxq_info_get = sfc_rx_queue_info_get, 1733 .txq_info_get = sfc_tx_queue_info_get, 1734 .fw_version_get = sfc_fw_version_get, 1735 .xstats_get_by_id = sfc_xstats_get_by_id, 1736 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1737 .pool_ops_supported = sfc_pool_ops_supported, 1738 }; 1739 1740 /** 1741 * Duplicate a string in potentially shared memory required for 1742 * multi-process support. 1743 * 1744 * strdup() allocates from process-local heap/memory. 1745 */ 1746 static char * 1747 sfc_strdup(const char *str) 1748 { 1749 size_t size; 1750 char *copy; 1751 1752 if (str == NULL) 1753 return NULL; 1754 1755 size = strlen(str) + 1; 1756 copy = rte_malloc(__func__, size, 0); 1757 if (copy != NULL) 1758 rte_memcpy(copy, str, size); 1759 1760 return copy; 1761 } 1762 1763 static int 1764 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1765 { 1766 struct sfc_adapter *sa = dev->data->dev_private; 1767 const efx_nic_cfg_t *encp; 1768 unsigned int avail_caps = 0; 1769 const char *rx_name = NULL; 1770 const char *tx_name = NULL; 1771 int rc; 1772 1773 switch (sa->family) { 1774 case EFX_FAMILY_HUNTINGTON: 1775 case EFX_FAMILY_MEDFORD: 1776 case EFX_FAMILY_MEDFORD2: 1777 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1778 break; 1779 default: 1780 break; 1781 } 1782 1783 encp = efx_nic_cfg_get(sa->nic); 1784 if (encp->enc_rx_es_super_buffer_supported) 1785 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1786 1787 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1788 sfc_kvarg_string_handler, &rx_name); 1789 if (rc != 0) 1790 goto fail_kvarg_rx_datapath; 1791 1792 if (rx_name != NULL) { 1793 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1794 if (sa->dp_rx == NULL) { 1795 sfc_err(sa, "Rx datapath %s not found", rx_name); 1796 rc = ENOENT; 1797 goto fail_dp_rx; 1798 } 1799 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1800 sfc_err(sa, 1801 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1802 rx_name); 1803 rc = EINVAL; 1804 goto fail_dp_rx_caps; 1805 } 1806 } else { 1807 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1808 if (sa->dp_rx == NULL) { 1809 sfc_err(sa, "Rx datapath by caps %#x not found", 1810 avail_caps); 1811 rc = ENOENT; 1812 goto fail_dp_rx; 1813 } 1814 } 1815 1816 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1817 if (sa->dp_rx_name == NULL) { 1818 rc = ENOMEM; 1819 goto fail_dp_rx_name; 1820 } 1821 1822 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1823 1824 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1825 1826 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1827 sfc_kvarg_string_handler, &tx_name); 1828 if (rc != 0) 1829 goto fail_kvarg_tx_datapath; 1830 1831 if (tx_name != NULL) { 1832 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1833 if (sa->dp_tx == NULL) { 1834 sfc_err(sa, "Tx datapath %s not found", tx_name); 1835 rc = ENOENT; 1836 goto fail_dp_tx; 1837 } 1838 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1839 sfc_err(sa, 1840 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1841 tx_name); 1842 rc = EINVAL; 1843 goto fail_dp_tx_caps; 1844 } 1845 } else { 1846 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1847 if (sa->dp_tx == NULL) { 1848 sfc_err(sa, "Tx datapath by caps %#x not found", 1849 avail_caps); 1850 rc = ENOENT; 1851 goto fail_dp_tx; 1852 } 1853 } 1854 1855 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1856 if (sa->dp_tx_name == NULL) { 1857 rc = ENOMEM; 1858 goto fail_dp_tx_name; 1859 } 1860 1861 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1862 1863 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1864 1865 dev->dev_ops = &sfc_eth_dev_ops; 1866 1867 return 0; 1868 1869 fail_dp_tx_name: 1870 fail_dp_tx_caps: 1871 sa->dp_tx = NULL; 1872 1873 fail_dp_tx: 1874 fail_kvarg_tx_datapath: 1875 rte_free(sa->dp_rx_name); 1876 sa->dp_rx_name = NULL; 1877 1878 fail_dp_rx_name: 1879 fail_dp_rx_caps: 1880 sa->dp_rx = NULL; 1881 1882 fail_dp_rx: 1883 fail_kvarg_rx_datapath: 1884 return rc; 1885 } 1886 1887 static void 1888 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1889 { 1890 struct sfc_adapter *sa = dev->data->dev_private; 1891 1892 dev->dev_ops = NULL; 1893 dev->rx_pkt_burst = NULL; 1894 dev->tx_pkt_burst = NULL; 1895 1896 rte_free(sa->dp_tx_name); 1897 sa->dp_tx_name = NULL; 1898 sa->dp_tx = NULL; 1899 1900 rte_free(sa->dp_rx_name); 1901 sa->dp_rx_name = NULL; 1902 sa->dp_rx = NULL; 1903 } 1904 1905 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1906 .rxq_info_get = sfc_rx_queue_info_get, 1907 .txq_info_get = sfc_tx_queue_info_get, 1908 }; 1909 1910 static int 1911 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev, uint32_t logtype_main) 1912 { 1913 /* 1914 * Device private data has really many process-local pointers. 1915 * Below code should be extremely careful to use data located 1916 * in shared memory only. 1917 */ 1918 struct sfc_adapter *sa = dev->data->dev_private; 1919 const struct sfc_dp_rx *dp_rx; 1920 const struct sfc_dp_tx *dp_tx; 1921 int rc; 1922 1923 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1924 if (dp_rx == NULL) { 1925 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1926 "cannot find %s Rx datapath", sa->dp_rx_name); 1927 rc = ENOENT; 1928 goto fail_dp_rx; 1929 } 1930 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1931 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1932 "%s Rx datapath does not support multi-process", 1933 sa->dp_rx_name); 1934 rc = EINVAL; 1935 goto fail_dp_rx_multi_process; 1936 } 1937 1938 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1939 if (dp_tx == NULL) { 1940 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1941 "cannot find %s Tx datapath", sa->dp_tx_name); 1942 rc = ENOENT; 1943 goto fail_dp_tx; 1944 } 1945 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1946 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1947 "%s Tx datapath does not support multi-process", 1948 sa->dp_tx_name); 1949 rc = EINVAL; 1950 goto fail_dp_tx_multi_process; 1951 } 1952 1953 dev->rx_pkt_burst = dp_rx->pkt_burst; 1954 dev->tx_pkt_burst = dp_tx->pkt_burst; 1955 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1956 1957 return 0; 1958 1959 fail_dp_tx_multi_process: 1960 fail_dp_tx: 1961 fail_dp_rx_multi_process: 1962 fail_dp_rx: 1963 return rc; 1964 } 1965 1966 static void 1967 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1968 { 1969 dev->dev_ops = NULL; 1970 dev->tx_pkt_burst = NULL; 1971 dev->rx_pkt_burst = NULL; 1972 } 1973 1974 static void 1975 sfc_register_dp(void) 1976 { 1977 /* Register once */ 1978 if (TAILQ_EMPTY(&sfc_dp_head)) { 1979 /* Prefer EF10 datapath */ 1980 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 1981 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1982 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1983 1984 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1985 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1986 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1987 } 1988 } 1989 1990 static int 1991 sfc_eth_dev_init(struct rte_eth_dev *dev) 1992 { 1993 struct sfc_adapter *sa = dev->data->dev_private; 1994 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1995 uint32_t logtype_main; 1996 int rc; 1997 const efx_nic_cfg_t *encp; 1998 const struct ether_addr *from; 1999 2000 sfc_register_dp(); 2001 2002 logtype_main = sfc_register_logtype(&pci_dev->addr, 2003 SFC_LOGTYPE_MAIN_STR, 2004 RTE_LOG_NOTICE); 2005 2006 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2007 return -sfc_eth_dev_secondary_set_ops(dev, logtype_main); 2008 2009 /* Required for logging */ 2010 sa->pci_addr = pci_dev->addr; 2011 sa->port_id = dev->data->port_id; 2012 sa->logtype_main = logtype_main; 2013 2014 sa->eth_dev = dev; 2015 2016 /* Copy PCI device info to the dev->data */ 2017 rte_eth_copy_pci_info(dev, pci_dev); 2018 2019 rc = sfc_kvargs_parse(sa); 2020 if (rc != 0) 2021 goto fail_kvargs_parse; 2022 2023 sfc_log_init(sa, "entry"); 2024 2025 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 2026 if (dev->data->mac_addrs == NULL) { 2027 rc = ENOMEM; 2028 goto fail_mac_addrs; 2029 } 2030 2031 sfc_adapter_lock_init(sa); 2032 sfc_adapter_lock(sa); 2033 2034 sfc_log_init(sa, "probing"); 2035 rc = sfc_probe(sa); 2036 if (rc != 0) 2037 goto fail_probe; 2038 2039 sfc_log_init(sa, "set device ops"); 2040 rc = sfc_eth_dev_set_ops(dev); 2041 if (rc != 0) 2042 goto fail_set_ops; 2043 2044 sfc_log_init(sa, "attaching"); 2045 rc = sfc_attach(sa); 2046 if (rc != 0) 2047 goto fail_attach; 2048 2049 encp = efx_nic_cfg_get(sa->nic); 2050 2051 /* 2052 * The arguments are really reverse order in comparison to 2053 * Linux kernel. Copy from NIC config to Ethernet device data. 2054 */ 2055 from = (const struct ether_addr *)(encp->enc_mac_addr); 2056 ether_addr_copy(from, &dev->data->mac_addrs[0]); 2057 2058 sfc_adapter_unlock(sa); 2059 2060 sfc_log_init(sa, "done"); 2061 return 0; 2062 2063 fail_attach: 2064 sfc_eth_dev_clear_ops(dev); 2065 2066 fail_set_ops: 2067 sfc_unprobe(sa); 2068 2069 fail_probe: 2070 sfc_adapter_unlock(sa); 2071 sfc_adapter_lock_fini(sa); 2072 rte_free(dev->data->mac_addrs); 2073 dev->data->mac_addrs = NULL; 2074 2075 fail_mac_addrs: 2076 sfc_kvargs_cleanup(sa); 2077 2078 fail_kvargs_parse: 2079 sfc_log_init(sa, "failed %d", rc); 2080 SFC_ASSERT(rc > 0); 2081 return -rc; 2082 } 2083 2084 static int 2085 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2086 { 2087 struct sfc_adapter *sa; 2088 2089 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2090 sfc_eth_dev_secondary_clear_ops(dev); 2091 return 0; 2092 } 2093 2094 sfc_dev_close(dev); 2095 2096 sa = dev->data->dev_private; 2097 sfc_log_init(sa, "entry"); 2098 2099 sfc_adapter_lock(sa); 2100 2101 sfc_eth_dev_clear_ops(dev); 2102 2103 sfc_detach(sa); 2104 sfc_unprobe(sa); 2105 2106 sfc_kvargs_cleanup(sa); 2107 2108 sfc_adapter_unlock(sa); 2109 sfc_adapter_lock_fini(sa); 2110 2111 sfc_log_init(sa, "done"); 2112 2113 /* Required for logging, so cleanup last */ 2114 sa->eth_dev = NULL; 2115 return 0; 2116 } 2117 2118 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2119 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2120 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2121 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2122 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2123 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2124 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2125 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2126 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2127 { .vendor_id = 0 /* sentinel */ } 2128 }; 2129 2130 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2131 struct rte_pci_device *pci_dev) 2132 { 2133 return rte_eth_dev_pci_generic_probe(pci_dev, 2134 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2135 } 2136 2137 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2138 { 2139 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2140 } 2141 2142 static struct rte_pci_driver sfc_efx_pmd = { 2143 .id_table = pci_id_sfc_efx_map, 2144 .drv_flags = 2145 RTE_PCI_DRV_INTR_LSC | 2146 RTE_PCI_DRV_NEED_MAPPING, 2147 .probe = sfc_eth_dev_pci_probe, 2148 .remove = sfc_eth_dev_pci_remove, 2149 }; 2150 2151 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2152 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2153 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2154 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2155 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2156 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2157 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2158 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2159 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2160 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2161 2162 RTE_INIT(sfc_driver_register_logtype) 2163 { 2164 int ret; 2165 2166 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2167 RTE_LOG_NOTICE); 2168 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2169 } 2170