xref: /f-stack/dpdk/drivers/net/sfc/sfc_ethdev.c (revision 4b05018f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 
18 #include "efx.h"
19 
20 #include "sfc.h"
21 #include "sfc_debug.h"
22 #include "sfc_log.h"
23 #include "sfc_kvargs.h"
24 #include "sfc_ev.h"
25 #include "sfc_rx.h"
26 #include "sfc_tx.h"
27 #include "sfc_flow.h"
28 #include "sfc_dp.h"
29 #include "sfc_dp_rx.h"
30 
31 uint32_t sfc_logtype_driver;
32 
33 static struct sfc_dp_list sfc_dp_head =
34 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
35 
36 static int
37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
38 {
39 	struct sfc_adapter *sa = dev->data->dev_private;
40 	efx_nic_fw_info_t enfi;
41 	int ret;
42 	int rc;
43 
44 	/*
45 	 * Return value of the callback is likely supposed to be
46 	 * equal to or greater than 0, nevertheless, if an error
47 	 * occurs, it will be desirable to pass it to the caller
48 	 */
49 	if ((fw_version == NULL) || (fw_size == 0))
50 		return -EINVAL;
51 
52 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
53 	if (rc != 0)
54 		return -rc;
55 
56 	ret = snprintf(fw_version, fw_size,
57 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
58 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
59 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
60 	if (ret < 0)
61 		return ret;
62 
63 	if (enfi.enfi_dpcpu_fw_ids_valid) {
64 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
65 		int ret_extra;
66 
67 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
68 				     fw_size - dpcpu_fw_ids_offset,
69 				     " rx%" PRIx16 " tx%" PRIx16,
70 				     enfi.enfi_rx_dpcpu_fw_id,
71 				     enfi.enfi_tx_dpcpu_fw_id);
72 		if (ret_extra < 0)
73 			return ret_extra;
74 
75 		ret += ret_extra;
76 	}
77 
78 	if (fw_size < (size_t)(++ret))
79 		return ret;
80 	else
81 		return 0;
82 }
83 
84 static void
85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
86 {
87 	struct sfc_adapter *sa = dev->data->dev_private;
88 	struct sfc_rss *rss = &sa->rss;
89 	uint64_t txq_offloads_def = 0;
90 
91 	sfc_log_init(sa, "entry");
92 
93 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
94 
95 	/* Autonegotiation may be disabled */
96 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
97 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
98 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
99 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
100 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
101 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
102 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
103 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
104 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
105 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
106 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
107 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
108 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
109 
110 	dev_info->max_rx_queues = sa->rxq_max;
111 	dev_info->max_tx_queues = sa->txq_max;
112 
113 	/* By default packets are dropped if no descriptors are available */
114 	dev_info->default_rxconf.rx_drop_en = 1;
115 
116 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
117 
118 	/*
119 	 * rx_offload_capa includes both device and queue offloads since
120 	 * the latter may be requested on a per device basis which makes
121 	 * sense when some offloads are needed to be set on all queues.
122 	 */
123 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
124 				    dev_info->rx_queue_offload_capa;
125 
126 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
127 
128 	/*
129 	 * tx_offload_capa includes both device and queue offloads since
130 	 * the latter may be requested on a per device basis which makes
131 	 * sense when some offloads are needed to be set on all queues.
132 	 */
133 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
134 				    dev_info->tx_queue_offload_capa;
135 
136 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
137 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
138 
139 	dev_info->default_txconf.offloads |= txq_offloads_def;
140 
141 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
142 		uint64_t rte_hf = 0;
143 		unsigned int i;
144 
145 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
146 			rte_hf |= rss->hf_map[i].rte;
147 
148 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
149 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
150 		dev_info->flow_type_rss_offloads = rte_hf;
151 	}
152 
153 	/* Initialize to hardware limits */
154 	dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS;
155 	dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS;
156 	/* The RXQ hardware requires that the descriptor count is a power
157 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
158 	 */
159 	dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS;
160 
161 	/* Initialize to hardware limits */
162 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
163 	dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS;
164 	/*
165 	 * The TXQ hardware requires that the descriptor count is a power
166 	 * of 2, but tx_desc_lim cannot properly describe that constraint
167 	 */
168 	dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS;
169 
170 	if (sa->dp_rx->get_dev_info != NULL)
171 		sa->dp_rx->get_dev_info(dev_info);
172 	if (sa->dp_tx->get_dev_info != NULL)
173 		sa->dp_tx->get_dev_info(dev_info);
174 
175 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
176 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
177 }
178 
179 static const uint32_t *
180 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
181 {
182 	struct sfc_adapter *sa = dev->data->dev_private;
183 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
184 	uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported;
185 
186 	return sa->dp_rx->supported_ptypes_get(tunnel_encaps);
187 }
188 
189 static int
190 sfc_dev_configure(struct rte_eth_dev *dev)
191 {
192 	struct rte_eth_dev_data *dev_data = dev->data;
193 	struct sfc_adapter *sa = dev_data->dev_private;
194 	int rc;
195 
196 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
197 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
198 
199 	sfc_adapter_lock(sa);
200 	switch (sa->state) {
201 	case SFC_ADAPTER_CONFIGURED:
202 		/* FALLTHROUGH */
203 	case SFC_ADAPTER_INITIALIZED:
204 		rc = sfc_configure(sa);
205 		break;
206 	default:
207 		sfc_err(sa, "unexpected adapter state %u to configure",
208 			sa->state);
209 		rc = EINVAL;
210 		break;
211 	}
212 	sfc_adapter_unlock(sa);
213 
214 	sfc_log_init(sa, "done %d", rc);
215 	SFC_ASSERT(rc >= 0);
216 	return -rc;
217 }
218 
219 static int
220 sfc_dev_start(struct rte_eth_dev *dev)
221 {
222 	struct sfc_adapter *sa = dev->data->dev_private;
223 	int rc;
224 
225 	sfc_log_init(sa, "entry");
226 
227 	sfc_adapter_lock(sa);
228 	rc = sfc_start(sa);
229 	sfc_adapter_unlock(sa);
230 
231 	sfc_log_init(sa, "done %d", rc);
232 	SFC_ASSERT(rc >= 0);
233 	return -rc;
234 }
235 
236 static int
237 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
238 {
239 	struct sfc_adapter *sa = dev->data->dev_private;
240 	struct rte_eth_link current_link;
241 	int ret;
242 
243 	sfc_log_init(sa, "entry");
244 
245 	if (sa->state != SFC_ADAPTER_STARTED) {
246 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
247 	} else if (wait_to_complete) {
248 		efx_link_mode_t link_mode;
249 
250 		if (efx_port_poll(sa->nic, &link_mode) != 0)
251 			link_mode = EFX_LINK_UNKNOWN;
252 		sfc_port_link_mode_to_info(link_mode, &current_link);
253 
254 	} else {
255 		sfc_ev_mgmt_qpoll(sa);
256 		rte_eth_linkstatus_get(dev, &current_link);
257 	}
258 
259 	ret = rte_eth_linkstatus_set(dev, &current_link);
260 	if (ret == 0)
261 		sfc_notice(sa, "Link status is %s",
262 			   current_link.link_status ? "UP" : "DOWN");
263 
264 	return ret;
265 }
266 
267 static void
268 sfc_dev_stop(struct rte_eth_dev *dev)
269 {
270 	struct sfc_adapter *sa = dev->data->dev_private;
271 
272 	sfc_log_init(sa, "entry");
273 
274 	sfc_adapter_lock(sa);
275 	sfc_stop(sa);
276 	sfc_adapter_unlock(sa);
277 
278 	sfc_log_init(sa, "done");
279 }
280 
281 static int
282 sfc_dev_set_link_up(struct rte_eth_dev *dev)
283 {
284 	struct sfc_adapter *sa = dev->data->dev_private;
285 	int rc;
286 
287 	sfc_log_init(sa, "entry");
288 
289 	sfc_adapter_lock(sa);
290 	rc = sfc_start(sa);
291 	sfc_adapter_unlock(sa);
292 
293 	SFC_ASSERT(rc >= 0);
294 	return -rc;
295 }
296 
297 static int
298 sfc_dev_set_link_down(struct rte_eth_dev *dev)
299 {
300 	struct sfc_adapter *sa = dev->data->dev_private;
301 
302 	sfc_log_init(sa, "entry");
303 
304 	sfc_adapter_lock(sa);
305 	sfc_stop(sa);
306 	sfc_adapter_unlock(sa);
307 
308 	return 0;
309 }
310 
311 static void
312 sfc_dev_close(struct rte_eth_dev *dev)
313 {
314 	struct sfc_adapter *sa = dev->data->dev_private;
315 
316 	sfc_log_init(sa, "entry");
317 
318 	sfc_adapter_lock(sa);
319 	switch (sa->state) {
320 	case SFC_ADAPTER_STARTED:
321 		sfc_stop(sa);
322 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
323 		/* FALLTHROUGH */
324 	case SFC_ADAPTER_CONFIGURED:
325 		sfc_close(sa);
326 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
327 		/* FALLTHROUGH */
328 	case SFC_ADAPTER_INITIALIZED:
329 		break;
330 	default:
331 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
332 		break;
333 	}
334 	sfc_adapter_unlock(sa);
335 
336 	sfc_log_init(sa, "done");
337 }
338 
339 static void
340 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
341 		   boolean_t enabled)
342 {
343 	struct sfc_port *port;
344 	boolean_t *toggle;
345 	struct sfc_adapter *sa = dev->data->dev_private;
346 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
347 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
348 
349 	sfc_adapter_lock(sa);
350 
351 	port = &sa->port;
352 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
353 
354 	if (*toggle != enabled) {
355 		*toggle = enabled;
356 
357 		if (port->isolated) {
358 			sfc_warn(sa, "isolated mode is active on the port");
359 			sfc_warn(sa, "the change is to be applied on the next "
360 				     "start provided that isolated mode is "
361 				     "disabled prior the next start");
362 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
363 			   (sfc_set_rx_mode(sa) != 0)) {
364 			*toggle = !(enabled);
365 			sfc_warn(sa, "Failed to %s %s mode",
366 				 ((enabled) ? "enable" : "disable"), desc);
367 		}
368 	}
369 
370 	sfc_adapter_unlock(sa);
371 }
372 
373 static void
374 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
375 {
376 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
377 }
378 
379 static void
380 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
381 {
382 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
383 }
384 
385 static void
386 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
387 {
388 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
389 }
390 
391 static void
392 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
393 {
394 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
395 }
396 
397 static int
398 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
399 		   uint16_t nb_rx_desc, unsigned int socket_id,
400 		   const struct rte_eth_rxconf *rx_conf,
401 		   struct rte_mempool *mb_pool)
402 {
403 	struct sfc_adapter *sa = dev->data->dev_private;
404 	int rc;
405 
406 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
407 		     rx_queue_id, nb_rx_desc, socket_id);
408 
409 	sfc_adapter_lock(sa);
410 
411 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
412 			  rx_conf, mb_pool);
413 	if (rc != 0)
414 		goto fail_rx_qinit;
415 
416 	dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp;
417 
418 	sfc_adapter_unlock(sa);
419 
420 	return 0;
421 
422 fail_rx_qinit:
423 	sfc_adapter_unlock(sa);
424 	SFC_ASSERT(rc > 0);
425 	return -rc;
426 }
427 
428 static void
429 sfc_rx_queue_release(void *queue)
430 {
431 	struct sfc_dp_rxq *dp_rxq = queue;
432 	struct sfc_rxq *rxq;
433 	struct sfc_adapter *sa;
434 	unsigned int sw_index;
435 
436 	if (dp_rxq == NULL)
437 		return;
438 
439 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
440 	sa = rxq->evq->sa;
441 	sfc_adapter_lock(sa);
442 
443 	sw_index = sfc_rxq_sw_index(rxq);
444 
445 	sfc_log_init(sa, "RxQ=%u", sw_index);
446 
447 	sfc_rx_qfini(sa, sw_index);
448 
449 	sfc_adapter_unlock(sa);
450 }
451 
452 static int
453 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
454 		   uint16_t nb_tx_desc, unsigned int socket_id,
455 		   const struct rte_eth_txconf *tx_conf)
456 {
457 	struct sfc_adapter *sa = dev->data->dev_private;
458 	int rc;
459 
460 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
461 		     tx_queue_id, nb_tx_desc, socket_id);
462 
463 	sfc_adapter_lock(sa);
464 
465 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
466 	if (rc != 0)
467 		goto fail_tx_qinit;
468 
469 	dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp;
470 
471 	sfc_adapter_unlock(sa);
472 	return 0;
473 
474 fail_tx_qinit:
475 	sfc_adapter_unlock(sa);
476 	SFC_ASSERT(rc > 0);
477 	return -rc;
478 }
479 
480 static void
481 sfc_tx_queue_release(void *queue)
482 {
483 	struct sfc_dp_txq *dp_txq = queue;
484 	struct sfc_txq *txq;
485 	unsigned int sw_index;
486 	struct sfc_adapter *sa;
487 
488 	if (dp_txq == NULL)
489 		return;
490 
491 	txq = sfc_txq_by_dp_txq(dp_txq);
492 	sw_index = sfc_txq_sw_index(txq);
493 
494 	SFC_ASSERT(txq->evq != NULL);
495 	sa = txq->evq->sa;
496 
497 	sfc_log_init(sa, "TxQ = %u", sw_index);
498 
499 	sfc_adapter_lock(sa);
500 
501 	sfc_tx_qfini(sa, sw_index);
502 
503 	sfc_adapter_unlock(sa);
504 }
505 
506 /*
507  * Some statistics are computed as A - B where A and B each increase
508  * monotonically with some hardware counter(s) and the counters are read
509  * asynchronously.
510  *
511  * If packet X is counted in A, but not counted in B yet, computed value is
512  * greater than real.
513  *
514  * If packet X is not counted in A at the moment of reading the counter,
515  * but counted in B at the moment of reading the counter, computed value
516  * is less than real.
517  *
518  * However, counter which grows backward is worse evil than slightly wrong
519  * value. So, let's try to guarantee that it never happens except may be
520  * the case when the MAC stats are zeroed as a result of a NIC reset.
521  */
522 static void
523 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
524 {
525 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
526 		*stat = newval;
527 }
528 
529 static int
530 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
531 {
532 	struct sfc_adapter *sa = dev->data->dev_private;
533 	struct sfc_port *port = &sa->port;
534 	uint64_t *mac_stats;
535 	int ret;
536 
537 	rte_spinlock_lock(&port->mac_stats_lock);
538 
539 	ret = sfc_port_update_mac_stats(sa);
540 	if (ret != 0)
541 		goto unlock;
542 
543 	mac_stats = port->mac_stats_buf;
544 
545 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
546 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
547 		stats->ipackets =
548 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
549 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
550 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
551 		stats->opackets =
552 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
553 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
554 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
555 		stats->ibytes =
556 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
557 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
558 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
559 		stats->obytes =
560 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
561 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
562 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
563 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
564 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
565 	} else {
566 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
567 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
568 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
569 		/*
570 		 * Take into account stats which are whenever supported
571 		 * on EF10. If some stat is not supported by current
572 		 * firmware variant or HW revision, it is guaranteed
573 		 * to be zero in mac_stats.
574 		 */
575 		stats->imissed =
576 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
577 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
578 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
579 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
580 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
581 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
582 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
583 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
584 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
585 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
586 		stats->ierrors =
587 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
588 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
589 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
590 		/* no oerrors counters supported on EF10 */
591 
592 		/* Exclude missed, errors and pauses from Rx packets */
593 		sfc_update_diff_stat(&port->ipackets,
594 			mac_stats[EFX_MAC_RX_PKTS] -
595 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
596 			stats->imissed - stats->ierrors);
597 		stats->ipackets = port->ipackets;
598 	}
599 
600 unlock:
601 	rte_spinlock_unlock(&port->mac_stats_lock);
602 	SFC_ASSERT(ret >= 0);
603 	return -ret;
604 }
605 
606 static void
607 sfc_stats_reset(struct rte_eth_dev *dev)
608 {
609 	struct sfc_adapter *sa = dev->data->dev_private;
610 	struct sfc_port *port = &sa->port;
611 	int rc;
612 
613 	if (sa->state != SFC_ADAPTER_STARTED) {
614 		/*
615 		 * The operation cannot be done if port is not started; it
616 		 * will be scheduled to be done during the next port start
617 		 */
618 		port->mac_stats_reset_pending = B_TRUE;
619 		return;
620 	}
621 
622 	rc = sfc_port_reset_mac_stats(sa);
623 	if (rc != 0)
624 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
625 }
626 
627 static int
628 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
629 	       unsigned int xstats_count)
630 {
631 	struct sfc_adapter *sa = dev->data->dev_private;
632 	struct sfc_port *port = &sa->port;
633 	uint64_t *mac_stats;
634 	int rc;
635 	unsigned int i;
636 	int nstats = 0;
637 
638 	rte_spinlock_lock(&port->mac_stats_lock);
639 
640 	rc = sfc_port_update_mac_stats(sa);
641 	if (rc != 0) {
642 		SFC_ASSERT(rc > 0);
643 		nstats = -rc;
644 		goto unlock;
645 	}
646 
647 	mac_stats = port->mac_stats_buf;
648 
649 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
650 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
651 			if (xstats != NULL && nstats < (int)xstats_count) {
652 				xstats[nstats].id = nstats;
653 				xstats[nstats].value = mac_stats[i];
654 			}
655 			nstats++;
656 		}
657 	}
658 
659 unlock:
660 	rte_spinlock_unlock(&port->mac_stats_lock);
661 
662 	return nstats;
663 }
664 
665 static int
666 sfc_xstats_get_names(struct rte_eth_dev *dev,
667 		     struct rte_eth_xstat_name *xstats_names,
668 		     unsigned int xstats_count)
669 {
670 	struct sfc_adapter *sa = dev->data->dev_private;
671 	struct sfc_port *port = &sa->port;
672 	unsigned int i;
673 	unsigned int nstats = 0;
674 
675 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
676 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
677 			if (xstats_names != NULL && nstats < xstats_count)
678 				strlcpy(xstats_names[nstats].name,
679 					efx_mac_stat_name(sa->nic, i),
680 					sizeof(xstats_names[0].name));
681 			nstats++;
682 		}
683 	}
684 
685 	return nstats;
686 }
687 
688 static int
689 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
690 		     uint64_t *values, unsigned int n)
691 {
692 	struct sfc_adapter *sa = dev->data->dev_private;
693 	struct sfc_port *port = &sa->port;
694 	uint64_t *mac_stats;
695 	unsigned int nb_supported = 0;
696 	unsigned int nb_written = 0;
697 	unsigned int i;
698 	int ret;
699 	int rc;
700 
701 	if (unlikely(values == NULL) ||
702 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
703 		return port->mac_stats_nb_supported;
704 
705 	rte_spinlock_lock(&port->mac_stats_lock);
706 
707 	rc = sfc_port_update_mac_stats(sa);
708 	if (rc != 0) {
709 		SFC_ASSERT(rc > 0);
710 		ret = -rc;
711 		goto unlock;
712 	}
713 
714 	mac_stats = port->mac_stats_buf;
715 
716 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
717 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
718 			continue;
719 
720 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
721 			values[nb_written++] = mac_stats[i];
722 
723 		++nb_supported;
724 	}
725 
726 	ret = nb_written;
727 
728 unlock:
729 	rte_spinlock_unlock(&port->mac_stats_lock);
730 
731 	return ret;
732 }
733 
734 static int
735 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
736 			   struct rte_eth_xstat_name *xstats_names,
737 			   const uint64_t *ids, unsigned int size)
738 {
739 	struct sfc_adapter *sa = dev->data->dev_private;
740 	struct sfc_port *port = &sa->port;
741 	unsigned int nb_supported = 0;
742 	unsigned int nb_written = 0;
743 	unsigned int i;
744 
745 	if (unlikely(xstats_names == NULL) ||
746 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
747 		return port->mac_stats_nb_supported;
748 
749 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
750 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
751 			continue;
752 
753 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
754 			char *name = xstats_names[nb_written++].name;
755 
756 			strlcpy(name, efx_mac_stat_name(sa->nic, i),
757 				sizeof(xstats_names[0].name));
758 		}
759 
760 		++nb_supported;
761 	}
762 
763 	return nb_written;
764 }
765 
766 static int
767 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
768 {
769 	struct sfc_adapter *sa = dev->data->dev_private;
770 	unsigned int wanted_fc, link_fc;
771 
772 	memset(fc_conf, 0, sizeof(*fc_conf));
773 
774 	sfc_adapter_lock(sa);
775 
776 	if (sa->state == SFC_ADAPTER_STARTED)
777 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
778 	else
779 		link_fc = sa->port.flow_ctrl;
780 
781 	switch (link_fc) {
782 	case 0:
783 		fc_conf->mode = RTE_FC_NONE;
784 		break;
785 	case EFX_FCNTL_RESPOND:
786 		fc_conf->mode = RTE_FC_RX_PAUSE;
787 		break;
788 	case EFX_FCNTL_GENERATE:
789 		fc_conf->mode = RTE_FC_TX_PAUSE;
790 		break;
791 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
792 		fc_conf->mode = RTE_FC_FULL;
793 		break;
794 	default:
795 		sfc_err(sa, "%s: unexpected flow control value %#x",
796 			__func__, link_fc);
797 	}
798 
799 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
800 
801 	sfc_adapter_unlock(sa);
802 
803 	return 0;
804 }
805 
806 static int
807 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
808 {
809 	struct sfc_adapter *sa = dev->data->dev_private;
810 	struct sfc_port *port = &sa->port;
811 	unsigned int fcntl;
812 	int rc;
813 
814 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
815 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
816 	    fc_conf->mac_ctrl_frame_fwd != 0) {
817 		sfc_err(sa, "unsupported flow control settings specified");
818 		rc = EINVAL;
819 		goto fail_inval;
820 	}
821 
822 	switch (fc_conf->mode) {
823 	case RTE_FC_NONE:
824 		fcntl = 0;
825 		break;
826 	case RTE_FC_RX_PAUSE:
827 		fcntl = EFX_FCNTL_RESPOND;
828 		break;
829 	case RTE_FC_TX_PAUSE:
830 		fcntl = EFX_FCNTL_GENERATE;
831 		break;
832 	case RTE_FC_FULL:
833 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
834 		break;
835 	default:
836 		rc = EINVAL;
837 		goto fail_inval;
838 	}
839 
840 	sfc_adapter_lock(sa);
841 
842 	if (sa->state == SFC_ADAPTER_STARTED) {
843 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
844 		if (rc != 0)
845 			goto fail_mac_fcntl_set;
846 	}
847 
848 	port->flow_ctrl = fcntl;
849 	port->flow_ctrl_autoneg = fc_conf->autoneg;
850 
851 	sfc_adapter_unlock(sa);
852 
853 	return 0;
854 
855 fail_mac_fcntl_set:
856 	sfc_adapter_unlock(sa);
857 fail_inval:
858 	SFC_ASSERT(rc > 0);
859 	return -rc;
860 }
861 
862 static int
863 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
864 {
865 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
866 	boolean_t scatter_enabled;
867 	const char *error;
868 	unsigned int i;
869 
870 	for (i = 0; i < sa->rxq_count; i++) {
871 		if ((sa->rxq_info[i].rxq->state & SFC_RXQ_INITIALIZED) == 0)
872 			continue;
873 
874 		scatter_enabled = (sa->rxq_info[i].type_flags &
875 				   EFX_RXQ_FLAG_SCATTER);
876 
877 		if (!sfc_rx_check_scatter(pdu, sa->rxq_info[i].rxq->buf_size,
878 					  encp->enc_rx_prefix_size,
879 					  scatter_enabled, &error)) {
880 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
881 				error);
882 			return EINVAL;
883 		}
884 	}
885 
886 	return 0;
887 }
888 
889 static int
890 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
891 {
892 	struct sfc_adapter *sa = dev->data->dev_private;
893 	size_t pdu = EFX_MAC_PDU(mtu);
894 	size_t old_pdu;
895 	int rc;
896 
897 	sfc_log_init(sa, "mtu=%u", mtu);
898 
899 	rc = EINVAL;
900 	if (pdu < EFX_MAC_PDU_MIN) {
901 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
902 			(unsigned int)mtu, (unsigned int)pdu,
903 			EFX_MAC_PDU_MIN);
904 		goto fail_inval;
905 	}
906 	if (pdu > EFX_MAC_PDU_MAX) {
907 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
908 			(unsigned int)mtu, (unsigned int)pdu,
909 			(unsigned int)EFX_MAC_PDU_MAX);
910 		goto fail_inval;
911 	}
912 
913 	sfc_adapter_lock(sa);
914 
915 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
916 	if (rc != 0)
917 		goto fail_check_scatter;
918 
919 	if (pdu != sa->port.pdu) {
920 		if (sa->state == SFC_ADAPTER_STARTED) {
921 			sfc_stop(sa);
922 
923 			old_pdu = sa->port.pdu;
924 			sa->port.pdu = pdu;
925 			rc = sfc_start(sa);
926 			if (rc != 0)
927 				goto fail_start;
928 		} else {
929 			sa->port.pdu = pdu;
930 		}
931 	}
932 
933 	/*
934 	 * The driver does not use it, but other PMDs update jumbo frame
935 	 * flag and max_rx_pkt_len when MTU is set.
936 	 */
937 	if (mtu > ETHER_MAX_LEN) {
938 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
939 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
940 	}
941 
942 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
943 
944 	sfc_adapter_unlock(sa);
945 
946 	sfc_log_init(sa, "done");
947 	return 0;
948 
949 fail_start:
950 	sa->port.pdu = old_pdu;
951 	if (sfc_start(sa) != 0)
952 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
953 			"PDU max size - port is stopped",
954 			(unsigned int)pdu, (unsigned int)old_pdu);
955 
956 fail_check_scatter:
957 	sfc_adapter_unlock(sa);
958 
959 fail_inval:
960 	sfc_log_init(sa, "failed %d", rc);
961 	SFC_ASSERT(rc > 0);
962 	return -rc;
963 }
964 static int
965 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
966 {
967 	struct sfc_adapter *sa = dev->data->dev_private;
968 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
969 	struct sfc_port *port = &sa->port;
970 	struct ether_addr *old_addr = &dev->data->mac_addrs[0];
971 	int rc = 0;
972 
973 	sfc_adapter_lock(sa);
974 
975 	/*
976 	 * Copy the address to the device private data so that
977 	 * it could be recalled in the case of adapter restart.
978 	 */
979 	ether_addr_copy(mac_addr, &port->default_mac_addr);
980 
981 	/*
982 	 * Neither of the two following checks can return
983 	 * an error. The new MAC address is preserved in
984 	 * the device private data and can be activated
985 	 * on the next port start if the user prevents
986 	 * isolated mode from being enabled.
987 	 */
988 	if (port->isolated) {
989 		sfc_warn(sa, "isolated mode is active on the port");
990 		sfc_warn(sa, "will not set MAC address");
991 		goto unlock;
992 	}
993 
994 	if (sa->state != SFC_ADAPTER_STARTED) {
995 		sfc_notice(sa, "the port is not started");
996 		sfc_notice(sa, "the new MAC address will be set on port start");
997 
998 		goto unlock;
999 	}
1000 
1001 	if (encp->enc_allow_set_mac_with_installed_filters) {
1002 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1003 		if (rc != 0) {
1004 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1005 			goto unlock;
1006 		}
1007 
1008 		/*
1009 		 * Changing the MAC address by means of MCDI request
1010 		 * has no effect on received traffic, therefore
1011 		 * we also need to update unicast filters
1012 		 */
1013 		rc = sfc_set_rx_mode(sa);
1014 		if (rc != 0) {
1015 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1016 			/* Rollback the old address */
1017 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1018 			(void)sfc_set_rx_mode(sa);
1019 		}
1020 	} else {
1021 		sfc_warn(sa, "cannot set MAC address with filters installed");
1022 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1023 		sfc_warn(sa, "(some traffic may be dropped)");
1024 
1025 		/*
1026 		 * Since setting MAC address with filters installed is not
1027 		 * allowed on the adapter, the new MAC address will be set
1028 		 * by means of adapter restart. sfc_start() shall retrieve
1029 		 * the new address from the device private data and set it.
1030 		 */
1031 		sfc_stop(sa);
1032 		rc = sfc_start(sa);
1033 		if (rc != 0)
1034 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1035 	}
1036 
1037 unlock:
1038 	if (rc != 0)
1039 		ether_addr_copy(old_addr, &port->default_mac_addr);
1040 
1041 	sfc_adapter_unlock(sa);
1042 
1043 	SFC_ASSERT(rc >= 0);
1044 	return -rc;
1045 }
1046 
1047 
1048 static int
1049 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
1050 		     uint32_t nb_mc_addr)
1051 {
1052 	struct sfc_adapter *sa = dev->data->dev_private;
1053 	struct sfc_port *port = &sa->port;
1054 	uint8_t *mc_addrs = port->mcast_addrs;
1055 	int rc;
1056 	unsigned int i;
1057 
1058 	if (port->isolated) {
1059 		sfc_err(sa, "isolated mode is active on the port");
1060 		sfc_err(sa, "will not set multicast address list");
1061 		return -ENOTSUP;
1062 	}
1063 
1064 	if (mc_addrs == NULL)
1065 		return -ENOBUFS;
1066 
1067 	if (nb_mc_addr > port->max_mcast_addrs) {
1068 		sfc_err(sa, "too many multicast addresses: %u > %u",
1069 			 nb_mc_addr, port->max_mcast_addrs);
1070 		return -EINVAL;
1071 	}
1072 
1073 	for (i = 0; i < nb_mc_addr; ++i) {
1074 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1075 				 EFX_MAC_ADDR_LEN);
1076 		mc_addrs += EFX_MAC_ADDR_LEN;
1077 	}
1078 
1079 	port->nb_mcast_addrs = nb_mc_addr;
1080 
1081 	if (sa->state != SFC_ADAPTER_STARTED)
1082 		return 0;
1083 
1084 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1085 					port->nb_mcast_addrs);
1086 	if (rc != 0)
1087 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1088 
1089 	SFC_ASSERT(rc >= 0);
1090 	return -rc;
1091 }
1092 
1093 /*
1094  * The function is used by the secondary process as well. It must not
1095  * use any process-local pointers from the adapter data.
1096  */
1097 static void
1098 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1099 		      struct rte_eth_rxq_info *qinfo)
1100 {
1101 	struct sfc_adapter *sa = dev->data->dev_private;
1102 	struct sfc_rxq_info *rxq_info;
1103 	struct sfc_rxq *rxq;
1104 
1105 	sfc_adapter_lock(sa);
1106 
1107 	SFC_ASSERT(rx_queue_id < sa->rxq_count);
1108 
1109 	rxq_info = &sa->rxq_info[rx_queue_id];
1110 	rxq = rxq_info->rxq;
1111 	SFC_ASSERT(rxq != NULL);
1112 
1113 	qinfo->mp = rxq->refill_mb_pool;
1114 	qinfo->conf.rx_free_thresh = rxq->refill_threshold;
1115 	qinfo->conf.rx_drop_en = 1;
1116 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1117 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1118 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1119 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1120 		qinfo->scattered_rx = 1;
1121 	}
1122 	qinfo->nb_desc = rxq_info->entries;
1123 
1124 	sfc_adapter_unlock(sa);
1125 }
1126 
1127 /*
1128  * The function is used by the secondary process as well. It must not
1129  * use any process-local pointers from the adapter data.
1130  */
1131 static void
1132 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1133 		      struct rte_eth_txq_info *qinfo)
1134 {
1135 	struct sfc_adapter *sa = dev->data->dev_private;
1136 	struct sfc_txq_info *txq_info;
1137 
1138 	sfc_adapter_lock(sa);
1139 
1140 	SFC_ASSERT(tx_queue_id < sa->txq_count);
1141 
1142 	txq_info = &sa->txq_info[tx_queue_id];
1143 	SFC_ASSERT(txq_info->txq != NULL);
1144 
1145 	memset(qinfo, 0, sizeof(*qinfo));
1146 
1147 	qinfo->conf.offloads = txq_info->txq->offloads;
1148 	qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh;
1149 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1150 	qinfo->nb_desc = txq_info->entries;
1151 
1152 	sfc_adapter_unlock(sa);
1153 }
1154 
1155 static uint32_t
1156 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1157 {
1158 	struct sfc_adapter *sa = dev->data->dev_private;
1159 
1160 	return sfc_rx_qdesc_npending(sa, rx_queue_id);
1161 }
1162 
1163 static int
1164 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1165 {
1166 	struct sfc_dp_rxq *dp_rxq = queue;
1167 
1168 	return sfc_rx_qdesc_done(dp_rxq, offset);
1169 }
1170 
1171 static int
1172 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1173 {
1174 	struct sfc_dp_rxq *dp_rxq = queue;
1175 	struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
1176 
1177 	return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset);
1178 }
1179 
1180 static int
1181 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1182 {
1183 	struct sfc_dp_txq *dp_txq = queue;
1184 	struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq);
1185 
1186 	return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset);
1187 }
1188 
1189 static int
1190 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1191 {
1192 	struct sfc_adapter *sa = dev->data->dev_private;
1193 	int rc;
1194 
1195 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1196 
1197 	sfc_adapter_lock(sa);
1198 
1199 	rc = EINVAL;
1200 	if (sa->state != SFC_ADAPTER_STARTED)
1201 		goto fail_not_started;
1202 
1203 	if (sa->rxq_info[rx_queue_id].rxq == NULL)
1204 		goto fail_not_setup;
1205 
1206 	rc = sfc_rx_qstart(sa, rx_queue_id);
1207 	if (rc != 0)
1208 		goto fail_rx_qstart;
1209 
1210 	sa->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1211 
1212 	sfc_adapter_unlock(sa);
1213 
1214 	return 0;
1215 
1216 fail_rx_qstart:
1217 fail_not_setup:
1218 fail_not_started:
1219 	sfc_adapter_unlock(sa);
1220 	SFC_ASSERT(rc > 0);
1221 	return -rc;
1222 }
1223 
1224 static int
1225 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1226 {
1227 	struct sfc_adapter *sa = dev->data->dev_private;
1228 
1229 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1230 
1231 	sfc_adapter_lock(sa);
1232 	sfc_rx_qstop(sa, rx_queue_id);
1233 
1234 	sa->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1235 
1236 	sfc_adapter_unlock(sa);
1237 
1238 	return 0;
1239 }
1240 
1241 static int
1242 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1243 {
1244 	struct sfc_adapter *sa = dev->data->dev_private;
1245 	int rc;
1246 
1247 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1248 
1249 	sfc_adapter_lock(sa);
1250 
1251 	rc = EINVAL;
1252 	if (sa->state != SFC_ADAPTER_STARTED)
1253 		goto fail_not_started;
1254 
1255 	if (sa->txq_info[tx_queue_id].txq == NULL)
1256 		goto fail_not_setup;
1257 
1258 	rc = sfc_tx_qstart(sa, tx_queue_id);
1259 	if (rc != 0)
1260 		goto fail_tx_qstart;
1261 
1262 	sa->txq_info[tx_queue_id].deferred_started = B_TRUE;
1263 
1264 	sfc_adapter_unlock(sa);
1265 	return 0;
1266 
1267 fail_tx_qstart:
1268 
1269 fail_not_setup:
1270 fail_not_started:
1271 	sfc_adapter_unlock(sa);
1272 	SFC_ASSERT(rc > 0);
1273 	return -rc;
1274 }
1275 
1276 static int
1277 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1278 {
1279 	struct sfc_adapter *sa = dev->data->dev_private;
1280 
1281 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1282 
1283 	sfc_adapter_lock(sa);
1284 
1285 	sfc_tx_qstop(sa, tx_queue_id);
1286 
1287 	sa->txq_info[tx_queue_id].deferred_started = B_FALSE;
1288 
1289 	sfc_adapter_unlock(sa);
1290 	return 0;
1291 }
1292 
1293 static efx_tunnel_protocol_t
1294 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1295 {
1296 	switch (rte_type) {
1297 	case RTE_TUNNEL_TYPE_VXLAN:
1298 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1299 	case RTE_TUNNEL_TYPE_GENEVE:
1300 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1301 	default:
1302 		return EFX_TUNNEL_NPROTOS;
1303 	}
1304 }
1305 
1306 enum sfc_udp_tunnel_op_e {
1307 	SFC_UDP_TUNNEL_ADD_PORT,
1308 	SFC_UDP_TUNNEL_DEL_PORT,
1309 };
1310 
1311 static int
1312 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1313 		      struct rte_eth_udp_tunnel *tunnel_udp,
1314 		      enum sfc_udp_tunnel_op_e op)
1315 {
1316 	struct sfc_adapter *sa = dev->data->dev_private;
1317 	efx_tunnel_protocol_t tunnel_proto;
1318 	int rc;
1319 
1320 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1321 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1322 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1323 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1324 
1325 	tunnel_proto =
1326 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1327 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1328 		rc = ENOTSUP;
1329 		goto fail_bad_proto;
1330 	}
1331 
1332 	sfc_adapter_lock(sa);
1333 
1334 	switch (op) {
1335 	case SFC_UDP_TUNNEL_ADD_PORT:
1336 		rc = efx_tunnel_config_udp_add(sa->nic,
1337 					       tunnel_udp->udp_port,
1338 					       tunnel_proto);
1339 		break;
1340 	case SFC_UDP_TUNNEL_DEL_PORT:
1341 		rc = efx_tunnel_config_udp_remove(sa->nic,
1342 						  tunnel_udp->udp_port,
1343 						  tunnel_proto);
1344 		break;
1345 	default:
1346 		rc = EINVAL;
1347 		goto fail_bad_op;
1348 	}
1349 
1350 	if (rc != 0)
1351 		goto fail_op;
1352 
1353 	if (sa->state == SFC_ADAPTER_STARTED) {
1354 		rc = efx_tunnel_reconfigure(sa->nic);
1355 		if (rc == EAGAIN) {
1356 			/*
1357 			 * Configuration is accepted by FW and MC reboot
1358 			 * is initiated to apply the changes. MC reboot
1359 			 * will be handled in a usual way (MC reboot
1360 			 * event on management event queue and adapter
1361 			 * restart).
1362 			 */
1363 			rc = 0;
1364 		} else if (rc != 0) {
1365 			goto fail_reconfigure;
1366 		}
1367 	}
1368 
1369 	sfc_adapter_unlock(sa);
1370 	return 0;
1371 
1372 fail_reconfigure:
1373 	/* Remove/restore entry since the change makes the trouble */
1374 	switch (op) {
1375 	case SFC_UDP_TUNNEL_ADD_PORT:
1376 		(void)efx_tunnel_config_udp_remove(sa->nic,
1377 						   tunnel_udp->udp_port,
1378 						   tunnel_proto);
1379 		break;
1380 	case SFC_UDP_TUNNEL_DEL_PORT:
1381 		(void)efx_tunnel_config_udp_add(sa->nic,
1382 						tunnel_udp->udp_port,
1383 						tunnel_proto);
1384 		break;
1385 	}
1386 
1387 fail_op:
1388 fail_bad_op:
1389 	sfc_adapter_unlock(sa);
1390 
1391 fail_bad_proto:
1392 	SFC_ASSERT(rc > 0);
1393 	return -rc;
1394 }
1395 
1396 static int
1397 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1398 			    struct rte_eth_udp_tunnel *tunnel_udp)
1399 {
1400 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1401 }
1402 
1403 static int
1404 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1405 			    struct rte_eth_udp_tunnel *tunnel_udp)
1406 {
1407 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1408 }
1409 
1410 static int
1411 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1412 			  struct rte_eth_rss_conf *rss_conf)
1413 {
1414 	struct sfc_adapter *sa = dev->data->dev_private;
1415 	struct sfc_rss *rss = &sa->rss;
1416 
1417 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1418 		return -ENOTSUP;
1419 
1420 	sfc_adapter_lock(sa);
1421 
1422 	/*
1423 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1424 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1425 	 * flags which corresponds to the active EFX configuration stored
1426 	 * locally in 'sfc_adapter' and kept up-to-date
1427 	 */
1428 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types);
1429 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1430 	if (rss_conf->rss_key != NULL)
1431 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1432 
1433 	sfc_adapter_unlock(sa);
1434 
1435 	return 0;
1436 }
1437 
1438 static int
1439 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1440 			struct rte_eth_rss_conf *rss_conf)
1441 {
1442 	struct sfc_adapter *sa = dev->data->dev_private;
1443 	struct sfc_rss *rss = &sa->rss;
1444 	struct sfc_port *port = &sa->port;
1445 	unsigned int efx_hash_types;
1446 	int rc = 0;
1447 
1448 	if (port->isolated)
1449 		return -ENOTSUP;
1450 
1451 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1452 		sfc_err(sa, "RSS is not available");
1453 		return -ENOTSUP;
1454 	}
1455 
1456 	if (rss->channels == 0) {
1457 		sfc_err(sa, "RSS is not configured");
1458 		return -EINVAL;
1459 	}
1460 
1461 	if ((rss_conf->rss_key != NULL) &&
1462 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1463 		sfc_err(sa, "RSS key size is wrong (should be %lu)",
1464 			sizeof(rss->key));
1465 		return -EINVAL;
1466 	}
1467 
1468 	sfc_adapter_lock(sa);
1469 
1470 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1471 	if (rc != 0)
1472 		goto fail_rx_hf_rte_to_efx;
1473 
1474 	rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1475 				   rss->hash_alg, efx_hash_types, B_TRUE);
1476 	if (rc != 0)
1477 		goto fail_scale_mode_set;
1478 
1479 	if (rss_conf->rss_key != NULL) {
1480 		if (sa->state == SFC_ADAPTER_STARTED) {
1481 			rc = efx_rx_scale_key_set(sa->nic,
1482 						  EFX_RSS_CONTEXT_DEFAULT,
1483 						  rss_conf->rss_key,
1484 						  sizeof(rss->key));
1485 			if (rc != 0)
1486 				goto fail_scale_key_set;
1487 		}
1488 
1489 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1490 	}
1491 
1492 	rss->hash_types = efx_hash_types;
1493 
1494 	sfc_adapter_unlock(sa);
1495 
1496 	return 0;
1497 
1498 fail_scale_key_set:
1499 	if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1500 				  EFX_RX_HASHALG_TOEPLITZ,
1501 				  rss->hash_types, B_TRUE) != 0)
1502 		sfc_err(sa, "failed to restore RSS mode");
1503 
1504 fail_scale_mode_set:
1505 fail_rx_hf_rte_to_efx:
1506 	sfc_adapter_unlock(sa);
1507 	return -rc;
1508 }
1509 
1510 static int
1511 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1512 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1513 		       uint16_t reta_size)
1514 {
1515 	struct sfc_adapter *sa = dev->data->dev_private;
1516 	struct sfc_rss *rss = &sa->rss;
1517 	struct sfc_port *port = &sa->port;
1518 	int entry;
1519 
1520 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated)
1521 		return -ENOTSUP;
1522 
1523 	if (rss->channels == 0)
1524 		return -EINVAL;
1525 
1526 	if (reta_size != EFX_RSS_TBL_SIZE)
1527 		return -EINVAL;
1528 
1529 	sfc_adapter_lock(sa);
1530 
1531 	for (entry = 0; entry < reta_size; entry++) {
1532 		int grp = entry / RTE_RETA_GROUP_SIZE;
1533 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1534 
1535 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1536 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1537 	}
1538 
1539 	sfc_adapter_unlock(sa);
1540 
1541 	return 0;
1542 }
1543 
1544 static int
1545 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1546 			struct rte_eth_rss_reta_entry64 *reta_conf,
1547 			uint16_t reta_size)
1548 {
1549 	struct sfc_adapter *sa = dev->data->dev_private;
1550 	struct sfc_rss *rss = &sa->rss;
1551 	struct sfc_port *port = &sa->port;
1552 	unsigned int *rss_tbl_new;
1553 	uint16_t entry;
1554 	int rc = 0;
1555 
1556 
1557 	if (port->isolated)
1558 		return -ENOTSUP;
1559 
1560 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1561 		sfc_err(sa, "RSS is not available");
1562 		return -ENOTSUP;
1563 	}
1564 
1565 	if (rss->channels == 0) {
1566 		sfc_err(sa, "RSS is not configured");
1567 		return -EINVAL;
1568 	}
1569 
1570 	if (reta_size != EFX_RSS_TBL_SIZE) {
1571 		sfc_err(sa, "RETA size is wrong (should be %u)",
1572 			EFX_RSS_TBL_SIZE);
1573 		return -EINVAL;
1574 	}
1575 
1576 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1577 	if (rss_tbl_new == NULL)
1578 		return -ENOMEM;
1579 
1580 	sfc_adapter_lock(sa);
1581 
1582 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1583 
1584 	for (entry = 0; entry < reta_size; entry++) {
1585 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1586 		struct rte_eth_rss_reta_entry64 *grp;
1587 
1588 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1589 
1590 		if (grp->mask & (1ull << grp_idx)) {
1591 			if (grp->reta[grp_idx] >= rss->channels) {
1592 				rc = EINVAL;
1593 				goto bad_reta_entry;
1594 			}
1595 			rss_tbl_new[entry] = grp->reta[grp_idx];
1596 		}
1597 	}
1598 
1599 	if (sa->state == SFC_ADAPTER_STARTED) {
1600 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1601 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1602 		if (rc != 0)
1603 			goto fail_scale_tbl_set;
1604 	}
1605 
1606 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1607 
1608 fail_scale_tbl_set:
1609 bad_reta_entry:
1610 	sfc_adapter_unlock(sa);
1611 
1612 	rte_free(rss_tbl_new);
1613 
1614 	SFC_ASSERT(rc >= 0);
1615 	return -rc;
1616 }
1617 
1618 static int
1619 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1620 		    enum rte_filter_op filter_op,
1621 		    void *arg)
1622 {
1623 	struct sfc_adapter *sa = dev->data->dev_private;
1624 	int rc = ENOTSUP;
1625 
1626 	sfc_log_init(sa, "entry");
1627 
1628 	switch (filter_type) {
1629 	case RTE_ETH_FILTER_NONE:
1630 		sfc_err(sa, "Global filters configuration not supported");
1631 		break;
1632 	case RTE_ETH_FILTER_MACVLAN:
1633 		sfc_err(sa, "MACVLAN filters not supported");
1634 		break;
1635 	case RTE_ETH_FILTER_ETHERTYPE:
1636 		sfc_err(sa, "EtherType filters not supported");
1637 		break;
1638 	case RTE_ETH_FILTER_FLEXIBLE:
1639 		sfc_err(sa, "Flexible filters not supported");
1640 		break;
1641 	case RTE_ETH_FILTER_SYN:
1642 		sfc_err(sa, "SYN filters not supported");
1643 		break;
1644 	case RTE_ETH_FILTER_NTUPLE:
1645 		sfc_err(sa, "NTUPLE filters not supported");
1646 		break;
1647 	case RTE_ETH_FILTER_TUNNEL:
1648 		sfc_err(sa, "Tunnel filters not supported");
1649 		break;
1650 	case RTE_ETH_FILTER_FDIR:
1651 		sfc_err(sa, "Flow Director filters not supported");
1652 		break;
1653 	case RTE_ETH_FILTER_HASH:
1654 		sfc_err(sa, "Hash filters not supported");
1655 		break;
1656 	case RTE_ETH_FILTER_GENERIC:
1657 		if (filter_op != RTE_ETH_FILTER_GET) {
1658 			rc = EINVAL;
1659 		} else {
1660 			*(const void **)arg = &sfc_flow_ops;
1661 			rc = 0;
1662 		}
1663 		break;
1664 	default:
1665 		sfc_err(sa, "Unknown filter type %u", filter_type);
1666 		break;
1667 	}
1668 
1669 	sfc_log_init(sa, "exit: %d", -rc);
1670 	SFC_ASSERT(rc >= 0);
1671 	return -rc;
1672 }
1673 
1674 static int
1675 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1676 {
1677 	struct sfc_adapter *sa = dev->data->dev_private;
1678 
1679 	/*
1680 	 * If Rx datapath does not provide callback to check mempool,
1681 	 * all pools are supported.
1682 	 */
1683 	if (sa->dp_rx->pool_ops_supported == NULL)
1684 		return 1;
1685 
1686 	return sa->dp_rx->pool_ops_supported(pool);
1687 }
1688 
1689 static const struct eth_dev_ops sfc_eth_dev_ops = {
1690 	.dev_configure			= sfc_dev_configure,
1691 	.dev_start			= sfc_dev_start,
1692 	.dev_stop			= sfc_dev_stop,
1693 	.dev_set_link_up		= sfc_dev_set_link_up,
1694 	.dev_set_link_down		= sfc_dev_set_link_down,
1695 	.dev_close			= sfc_dev_close,
1696 	.promiscuous_enable		= sfc_dev_promisc_enable,
1697 	.promiscuous_disable		= sfc_dev_promisc_disable,
1698 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1699 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1700 	.link_update			= sfc_dev_link_update,
1701 	.stats_get			= sfc_stats_get,
1702 	.stats_reset			= sfc_stats_reset,
1703 	.xstats_get			= sfc_xstats_get,
1704 	.xstats_reset			= sfc_stats_reset,
1705 	.xstats_get_names		= sfc_xstats_get_names,
1706 	.dev_infos_get			= sfc_dev_infos_get,
1707 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1708 	.mtu_set			= sfc_dev_set_mtu,
1709 	.rx_queue_start			= sfc_rx_queue_start,
1710 	.rx_queue_stop			= sfc_rx_queue_stop,
1711 	.tx_queue_start			= sfc_tx_queue_start,
1712 	.tx_queue_stop			= sfc_tx_queue_stop,
1713 	.rx_queue_setup			= sfc_rx_queue_setup,
1714 	.rx_queue_release		= sfc_rx_queue_release,
1715 	.rx_queue_count			= sfc_rx_queue_count,
1716 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1717 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1718 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1719 	.tx_queue_setup			= sfc_tx_queue_setup,
1720 	.tx_queue_release		= sfc_tx_queue_release,
1721 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1722 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1723 	.mac_addr_set			= sfc_mac_addr_set,
1724 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1725 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1726 	.reta_update			= sfc_dev_rss_reta_update,
1727 	.reta_query			= sfc_dev_rss_reta_query,
1728 	.rss_hash_update		= sfc_dev_rss_hash_update,
1729 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1730 	.filter_ctrl			= sfc_dev_filter_ctrl,
1731 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1732 	.rxq_info_get			= sfc_rx_queue_info_get,
1733 	.txq_info_get			= sfc_tx_queue_info_get,
1734 	.fw_version_get			= sfc_fw_version_get,
1735 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1736 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1737 	.pool_ops_supported		= sfc_pool_ops_supported,
1738 };
1739 
1740 /**
1741  * Duplicate a string in potentially shared memory required for
1742  * multi-process support.
1743  *
1744  * strdup() allocates from process-local heap/memory.
1745  */
1746 static char *
1747 sfc_strdup(const char *str)
1748 {
1749 	size_t size;
1750 	char *copy;
1751 
1752 	if (str == NULL)
1753 		return NULL;
1754 
1755 	size = strlen(str) + 1;
1756 	copy = rte_malloc(__func__, size, 0);
1757 	if (copy != NULL)
1758 		rte_memcpy(copy, str, size);
1759 
1760 	return copy;
1761 }
1762 
1763 static int
1764 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1765 {
1766 	struct sfc_adapter *sa = dev->data->dev_private;
1767 	const efx_nic_cfg_t *encp;
1768 	unsigned int avail_caps = 0;
1769 	const char *rx_name = NULL;
1770 	const char *tx_name = NULL;
1771 	int rc;
1772 
1773 	switch (sa->family) {
1774 	case EFX_FAMILY_HUNTINGTON:
1775 	case EFX_FAMILY_MEDFORD:
1776 	case EFX_FAMILY_MEDFORD2:
1777 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1778 		break;
1779 	default:
1780 		break;
1781 	}
1782 
1783 	encp = efx_nic_cfg_get(sa->nic);
1784 	if (encp->enc_rx_es_super_buffer_supported)
1785 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1786 
1787 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1788 				sfc_kvarg_string_handler, &rx_name);
1789 	if (rc != 0)
1790 		goto fail_kvarg_rx_datapath;
1791 
1792 	if (rx_name != NULL) {
1793 		sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1794 		if (sa->dp_rx == NULL) {
1795 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1796 			rc = ENOENT;
1797 			goto fail_dp_rx;
1798 		}
1799 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) {
1800 			sfc_err(sa,
1801 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1802 				rx_name);
1803 			rc = EINVAL;
1804 			goto fail_dp_rx_caps;
1805 		}
1806 	} else {
1807 		sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1808 		if (sa->dp_rx == NULL) {
1809 			sfc_err(sa, "Rx datapath by caps %#x not found",
1810 				avail_caps);
1811 			rc = ENOENT;
1812 			goto fail_dp_rx;
1813 		}
1814 	}
1815 
1816 	sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name);
1817 	if (sa->dp_rx_name == NULL) {
1818 		rc = ENOMEM;
1819 		goto fail_dp_rx_name;
1820 	}
1821 
1822 	sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name);
1823 
1824 	dev->rx_pkt_burst = sa->dp_rx->pkt_burst;
1825 
1826 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1827 				sfc_kvarg_string_handler, &tx_name);
1828 	if (rc != 0)
1829 		goto fail_kvarg_tx_datapath;
1830 
1831 	if (tx_name != NULL) {
1832 		sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1833 		if (sa->dp_tx == NULL) {
1834 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1835 			rc = ENOENT;
1836 			goto fail_dp_tx;
1837 		}
1838 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) {
1839 			sfc_err(sa,
1840 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1841 				tx_name);
1842 			rc = EINVAL;
1843 			goto fail_dp_tx_caps;
1844 		}
1845 	} else {
1846 		sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1847 		if (sa->dp_tx == NULL) {
1848 			sfc_err(sa, "Tx datapath by caps %#x not found",
1849 				avail_caps);
1850 			rc = ENOENT;
1851 			goto fail_dp_tx;
1852 		}
1853 	}
1854 
1855 	sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name);
1856 	if (sa->dp_tx_name == NULL) {
1857 		rc = ENOMEM;
1858 		goto fail_dp_tx_name;
1859 	}
1860 
1861 	sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name);
1862 
1863 	dev->tx_pkt_burst = sa->dp_tx->pkt_burst;
1864 
1865 	dev->dev_ops = &sfc_eth_dev_ops;
1866 
1867 	return 0;
1868 
1869 fail_dp_tx_name:
1870 fail_dp_tx_caps:
1871 	sa->dp_tx = NULL;
1872 
1873 fail_dp_tx:
1874 fail_kvarg_tx_datapath:
1875 	rte_free(sa->dp_rx_name);
1876 	sa->dp_rx_name = NULL;
1877 
1878 fail_dp_rx_name:
1879 fail_dp_rx_caps:
1880 	sa->dp_rx = NULL;
1881 
1882 fail_dp_rx:
1883 fail_kvarg_rx_datapath:
1884 	return rc;
1885 }
1886 
1887 static void
1888 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1889 {
1890 	struct sfc_adapter *sa = dev->data->dev_private;
1891 
1892 	dev->dev_ops = NULL;
1893 	dev->rx_pkt_burst = NULL;
1894 	dev->tx_pkt_burst = NULL;
1895 
1896 	rte_free(sa->dp_tx_name);
1897 	sa->dp_tx_name = NULL;
1898 	sa->dp_tx = NULL;
1899 
1900 	rte_free(sa->dp_rx_name);
1901 	sa->dp_rx_name = NULL;
1902 	sa->dp_rx = NULL;
1903 }
1904 
1905 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1906 	.rxq_info_get			= sfc_rx_queue_info_get,
1907 	.txq_info_get			= sfc_tx_queue_info_get,
1908 };
1909 
1910 static int
1911 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev, uint32_t logtype_main)
1912 {
1913 	/*
1914 	 * Device private data has really many process-local pointers.
1915 	 * Below code should be extremely careful to use data located
1916 	 * in shared memory only.
1917 	 */
1918 	struct sfc_adapter *sa = dev->data->dev_private;
1919 	const struct sfc_dp_rx *dp_rx;
1920 	const struct sfc_dp_tx *dp_tx;
1921 	int rc;
1922 
1923 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name);
1924 	if (dp_rx == NULL) {
1925 		SFC_LOG(sa, RTE_LOG_ERR, logtype_main,
1926 			"cannot find %s Rx datapath", sa->dp_rx_name);
1927 		rc = ENOENT;
1928 		goto fail_dp_rx;
1929 	}
1930 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
1931 		SFC_LOG(sa, RTE_LOG_ERR, logtype_main,
1932 			"%s Rx datapath does not support multi-process",
1933 			sa->dp_rx_name);
1934 		rc = EINVAL;
1935 		goto fail_dp_rx_multi_process;
1936 	}
1937 
1938 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name);
1939 	if (dp_tx == NULL) {
1940 		SFC_LOG(sa, RTE_LOG_ERR, logtype_main,
1941 			"cannot find %s Tx datapath", sa->dp_tx_name);
1942 		rc = ENOENT;
1943 		goto fail_dp_tx;
1944 	}
1945 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
1946 		SFC_LOG(sa, RTE_LOG_ERR, logtype_main,
1947 			"%s Tx datapath does not support multi-process",
1948 			sa->dp_tx_name);
1949 		rc = EINVAL;
1950 		goto fail_dp_tx_multi_process;
1951 	}
1952 
1953 	dev->rx_pkt_burst = dp_rx->pkt_burst;
1954 	dev->tx_pkt_burst = dp_tx->pkt_burst;
1955 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
1956 
1957 	return 0;
1958 
1959 fail_dp_tx_multi_process:
1960 fail_dp_tx:
1961 fail_dp_rx_multi_process:
1962 fail_dp_rx:
1963 	return rc;
1964 }
1965 
1966 static void
1967 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
1968 {
1969 	dev->dev_ops = NULL;
1970 	dev->tx_pkt_burst = NULL;
1971 	dev->rx_pkt_burst = NULL;
1972 }
1973 
1974 static void
1975 sfc_register_dp(void)
1976 {
1977 	/* Register once */
1978 	if (TAILQ_EMPTY(&sfc_dp_head)) {
1979 		/* Prefer EF10 datapath */
1980 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
1981 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
1982 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
1983 
1984 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
1985 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
1986 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
1987 	}
1988 }
1989 
1990 static int
1991 sfc_eth_dev_init(struct rte_eth_dev *dev)
1992 {
1993 	struct sfc_adapter *sa = dev->data->dev_private;
1994 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1995 	uint32_t logtype_main;
1996 	int rc;
1997 	const efx_nic_cfg_t *encp;
1998 	const struct ether_addr *from;
1999 
2000 	sfc_register_dp();
2001 
2002 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2003 					    SFC_LOGTYPE_MAIN_STR,
2004 					    RTE_LOG_NOTICE);
2005 
2006 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2007 		return -sfc_eth_dev_secondary_set_ops(dev, logtype_main);
2008 
2009 	/* Required for logging */
2010 	sa->pci_addr = pci_dev->addr;
2011 	sa->port_id = dev->data->port_id;
2012 	sa->logtype_main = logtype_main;
2013 
2014 	sa->eth_dev = dev;
2015 
2016 	/* Copy PCI device info to the dev->data */
2017 	rte_eth_copy_pci_info(dev, pci_dev);
2018 
2019 	rc = sfc_kvargs_parse(sa);
2020 	if (rc != 0)
2021 		goto fail_kvargs_parse;
2022 
2023 	sfc_log_init(sa, "entry");
2024 
2025 	dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
2026 	if (dev->data->mac_addrs == NULL) {
2027 		rc = ENOMEM;
2028 		goto fail_mac_addrs;
2029 	}
2030 
2031 	sfc_adapter_lock_init(sa);
2032 	sfc_adapter_lock(sa);
2033 
2034 	sfc_log_init(sa, "probing");
2035 	rc = sfc_probe(sa);
2036 	if (rc != 0)
2037 		goto fail_probe;
2038 
2039 	sfc_log_init(sa, "set device ops");
2040 	rc = sfc_eth_dev_set_ops(dev);
2041 	if (rc != 0)
2042 		goto fail_set_ops;
2043 
2044 	sfc_log_init(sa, "attaching");
2045 	rc = sfc_attach(sa);
2046 	if (rc != 0)
2047 		goto fail_attach;
2048 
2049 	encp = efx_nic_cfg_get(sa->nic);
2050 
2051 	/*
2052 	 * The arguments are really reverse order in comparison to
2053 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2054 	 */
2055 	from = (const struct ether_addr *)(encp->enc_mac_addr);
2056 	ether_addr_copy(from, &dev->data->mac_addrs[0]);
2057 
2058 	sfc_adapter_unlock(sa);
2059 
2060 	sfc_log_init(sa, "done");
2061 	return 0;
2062 
2063 fail_attach:
2064 	sfc_eth_dev_clear_ops(dev);
2065 
2066 fail_set_ops:
2067 	sfc_unprobe(sa);
2068 
2069 fail_probe:
2070 	sfc_adapter_unlock(sa);
2071 	sfc_adapter_lock_fini(sa);
2072 	rte_free(dev->data->mac_addrs);
2073 	dev->data->mac_addrs = NULL;
2074 
2075 fail_mac_addrs:
2076 	sfc_kvargs_cleanup(sa);
2077 
2078 fail_kvargs_parse:
2079 	sfc_log_init(sa, "failed %d", rc);
2080 	SFC_ASSERT(rc > 0);
2081 	return -rc;
2082 }
2083 
2084 static int
2085 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2086 {
2087 	struct sfc_adapter *sa;
2088 
2089 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2090 		sfc_eth_dev_secondary_clear_ops(dev);
2091 		return 0;
2092 	}
2093 
2094 	sfc_dev_close(dev);
2095 
2096 	sa = dev->data->dev_private;
2097 	sfc_log_init(sa, "entry");
2098 
2099 	sfc_adapter_lock(sa);
2100 
2101 	sfc_eth_dev_clear_ops(dev);
2102 
2103 	sfc_detach(sa);
2104 	sfc_unprobe(sa);
2105 
2106 	sfc_kvargs_cleanup(sa);
2107 
2108 	sfc_adapter_unlock(sa);
2109 	sfc_adapter_lock_fini(sa);
2110 
2111 	sfc_log_init(sa, "done");
2112 
2113 	/* Required for logging, so cleanup last */
2114 	sa->eth_dev = NULL;
2115 	return 0;
2116 }
2117 
2118 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2119 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2120 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2121 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2122 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2123 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2124 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2125 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2126 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2127 	{ .vendor_id = 0 /* sentinel */ }
2128 };
2129 
2130 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2131 	struct rte_pci_device *pci_dev)
2132 {
2133 	return rte_eth_dev_pci_generic_probe(pci_dev,
2134 		sizeof(struct sfc_adapter), sfc_eth_dev_init);
2135 }
2136 
2137 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2138 {
2139 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2140 }
2141 
2142 static struct rte_pci_driver sfc_efx_pmd = {
2143 	.id_table = pci_id_sfc_efx_map,
2144 	.drv_flags =
2145 		RTE_PCI_DRV_INTR_LSC |
2146 		RTE_PCI_DRV_NEED_MAPPING,
2147 	.probe = sfc_eth_dev_pci_probe,
2148 	.remove = sfc_eth_dev_pci_remove,
2149 };
2150 
2151 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2152 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2153 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2154 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2155 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2156 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2157 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2158 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2159 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2160 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2161 
2162 RTE_INIT(sfc_driver_register_logtype)
2163 {
2164 	int ret;
2165 
2166 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2167 						   RTE_LOG_NOTICE);
2168 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2169 }
2170