xref: /f-stack/dpdk/drivers/net/ena/ena_ethdev.c (revision d30ea906)
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2015-2016 Amazon.com, Inc. or its affiliates.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of copyright holder nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 
34 #include <rte_ether.h>
35 #include <rte_ethdev_driver.h>
36 #include <rte_ethdev_pci.h>
37 #include <rte_tcp.h>
38 #include <rte_atomic.h>
39 #include <rte_dev.h>
40 #include <rte_errno.h>
41 #include <rte_version.h>
42 #include <rte_eal_memconfig.h>
43 #include <rte_net.h>
44 
45 #include "ena_ethdev.h"
46 #include "ena_logs.h"
47 #include "ena_platform.h"
48 #include "ena_com.h"
49 #include "ena_eth_com.h"
50 
51 #include <ena_common_defs.h>
52 #include <ena_regs_defs.h>
53 #include <ena_admin_defs.h>
54 #include <ena_eth_io_defs.h>
55 
56 #define DRV_MODULE_VER_MAJOR	1
57 #define DRV_MODULE_VER_MINOR	1
58 #define DRV_MODULE_VER_SUBMINOR	1
59 
60 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
61 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
62 /*reverse version of ENA_IO_RXQ_IDX*/
63 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
64 
65 /* While processing submitted and completed descriptors (rx and tx path
66  * respectively) in a loop it is desired to:
67  *  - perform batch submissions while populating sumbissmion queue
68  *  - avoid blocking transmission of other packets during cleanup phase
69  * Hence the utilization ratio of 1/8 of a queue size.
70  */
71 #define ENA_RING_DESCS_RATIO(ring_size)	(ring_size / 8)
72 
73 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
74 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
75 
76 #define GET_L4_HDR_LEN(mbuf)					\
77 	((rte_pktmbuf_mtod_offset(mbuf,	struct tcp_hdr *,	\
78 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
79 
80 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
81 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
82 #define ENA_HASH_KEY_SIZE	40
83 #define ENA_ETH_SS_STATS	0xFF
84 #define ETH_GSTRING_LEN	32
85 
86 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
87 
88 #define ENA_MAX_RING_DESC	ENA_DEFAULT_RING_SIZE
89 #define ENA_MIN_RING_DESC	128
90 
91 enum ethtool_stringset {
92 	ETH_SS_TEST             = 0,
93 	ETH_SS_STATS,
94 };
95 
96 struct ena_stats {
97 	char name[ETH_GSTRING_LEN];
98 	int stat_offset;
99 };
100 
101 #define ENA_STAT_ENA_COM_ENTRY(stat) { \
102 	.name = #stat, \
103 	.stat_offset = offsetof(struct ena_com_stats_admin, stat) \
104 }
105 
106 #define ENA_STAT_ENTRY(stat, stat_type) { \
107 	.name = #stat, \
108 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
109 }
110 
111 #define ENA_STAT_RX_ENTRY(stat) \
112 	ENA_STAT_ENTRY(stat, rx)
113 
114 #define ENA_STAT_TX_ENTRY(stat) \
115 	ENA_STAT_ENTRY(stat, tx)
116 
117 #define ENA_STAT_GLOBAL_ENTRY(stat) \
118 	ENA_STAT_ENTRY(stat, dev)
119 
120 /*
121  * Each rte_memzone should have unique name.
122  * To satisfy it, count number of allocation and add it to name.
123  */
124 uint32_t ena_alloc_cnt;
125 
126 static const struct ena_stats ena_stats_global_strings[] = {
127 	ENA_STAT_GLOBAL_ENTRY(tx_timeout),
128 	ENA_STAT_GLOBAL_ENTRY(io_suspend),
129 	ENA_STAT_GLOBAL_ENTRY(io_resume),
130 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
131 	ENA_STAT_GLOBAL_ENTRY(interface_up),
132 	ENA_STAT_GLOBAL_ENTRY(interface_down),
133 	ENA_STAT_GLOBAL_ENTRY(admin_q_pause),
134 };
135 
136 static const struct ena_stats ena_stats_tx_strings[] = {
137 	ENA_STAT_TX_ENTRY(cnt),
138 	ENA_STAT_TX_ENTRY(bytes),
139 	ENA_STAT_TX_ENTRY(queue_stop),
140 	ENA_STAT_TX_ENTRY(queue_wakeup),
141 	ENA_STAT_TX_ENTRY(dma_mapping_err),
142 	ENA_STAT_TX_ENTRY(linearize),
143 	ENA_STAT_TX_ENTRY(linearize_failed),
144 	ENA_STAT_TX_ENTRY(tx_poll),
145 	ENA_STAT_TX_ENTRY(doorbells),
146 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
147 	ENA_STAT_TX_ENTRY(missing_tx_comp),
148 	ENA_STAT_TX_ENTRY(bad_req_id),
149 };
150 
151 static const struct ena_stats ena_stats_rx_strings[] = {
152 	ENA_STAT_RX_ENTRY(cnt),
153 	ENA_STAT_RX_ENTRY(bytes),
154 	ENA_STAT_RX_ENTRY(refil_partial),
155 	ENA_STAT_RX_ENTRY(bad_csum),
156 	ENA_STAT_RX_ENTRY(page_alloc_fail),
157 	ENA_STAT_RX_ENTRY(skb_alloc_fail),
158 	ENA_STAT_RX_ENTRY(dma_mapping_err),
159 	ENA_STAT_RX_ENTRY(bad_desc_num),
160 	ENA_STAT_RX_ENTRY(small_copy_len_pkt),
161 };
162 
163 static const struct ena_stats ena_stats_ena_com_strings[] = {
164 	ENA_STAT_ENA_COM_ENTRY(aborted_cmd),
165 	ENA_STAT_ENA_COM_ENTRY(submitted_cmd),
166 	ENA_STAT_ENA_COM_ENTRY(completed_cmd),
167 	ENA_STAT_ENA_COM_ENTRY(out_of_space),
168 	ENA_STAT_ENA_COM_ENTRY(no_completion),
169 };
170 
171 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
172 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
173 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
174 #define ENA_STATS_ARRAY_ENA_COM	ARRAY_SIZE(ena_stats_ena_com_strings)
175 
176 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
177 			DEV_TX_OFFLOAD_UDP_CKSUM |\
178 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
179 			DEV_TX_OFFLOAD_TCP_TSO)
180 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
181 		       PKT_TX_IP_CKSUM |\
182 		       PKT_TX_TCP_SEG)
183 
184 /** Vendor ID used by Amazon devices */
185 #define PCI_VENDOR_ID_AMAZON 0x1D0F
186 /** Amazon devices */
187 #define PCI_DEVICE_ID_ENA_VF	0xEC20
188 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
189 
190 #define	ENA_TX_OFFLOAD_MASK	(\
191 	PKT_TX_L4_MASK |         \
192 	PKT_TX_IP_CKSUM |        \
193 	PKT_TX_TCP_SEG)
194 
195 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
196 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
197 
198 int ena_logtype_init;
199 int ena_logtype_driver;
200 
201 static const struct rte_pci_id pci_id_ena_map[] = {
202 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
203 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
204 	{ .device_id = 0 },
205 };
206 
207 static struct ena_aenq_handlers aenq_handlers;
208 
209 static int ena_device_init(struct ena_com_dev *ena_dev,
210 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
211 			   bool *wd_state);
212 static int ena_dev_configure(struct rte_eth_dev *dev);
213 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
214 				  uint16_t nb_pkts);
215 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
216 		uint16_t nb_pkts);
217 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
218 			      uint16_t nb_desc, unsigned int socket_id,
219 			      const struct rte_eth_txconf *tx_conf);
220 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
221 			      uint16_t nb_desc, unsigned int socket_id,
222 			      const struct rte_eth_rxconf *rx_conf,
223 			      struct rte_mempool *mp);
224 static uint16_t eth_ena_recv_pkts(void *rx_queue,
225 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
226 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
227 static void ena_init_rings(struct ena_adapter *adapter);
228 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
229 static int ena_start(struct rte_eth_dev *dev);
230 static void ena_stop(struct rte_eth_dev *dev);
231 static void ena_close(struct rte_eth_dev *dev);
232 static int ena_dev_reset(struct rte_eth_dev *dev);
233 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
234 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
235 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
236 static void ena_rx_queue_release(void *queue);
237 static void ena_tx_queue_release(void *queue);
238 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
239 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
240 static int ena_link_update(struct rte_eth_dev *dev,
241 			   int wait_to_complete);
242 static int ena_create_io_queue(struct ena_ring *ring);
243 static void ena_free_io_queues_all(struct ena_adapter *adapter);
244 static int ena_queue_restart(struct ena_ring *ring);
245 static int ena_queue_restart_all(struct rte_eth_dev *dev,
246 				 enum ena_ring_type ring_type);
247 static void ena_stats_restart(struct rte_eth_dev *dev);
248 static void ena_infos_get(struct rte_eth_dev *dev,
249 			  struct rte_eth_dev_info *dev_info);
250 static int ena_rss_reta_update(struct rte_eth_dev *dev,
251 			       struct rte_eth_rss_reta_entry64 *reta_conf,
252 			       uint16_t reta_size);
253 static int ena_rss_reta_query(struct rte_eth_dev *dev,
254 			      struct rte_eth_rss_reta_entry64 *reta_conf,
255 			      uint16_t reta_size);
256 static int ena_get_sset_count(struct rte_eth_dev *dev, int sset);
257 static void ena_interrupt_handler_rte(void *cb_arg);
258 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
259 
260 static const struct eth_dev_ops ena_dev_ops = {
261 	.dev_configure        = ena_dev_configure,
262 	.dev_infos_get        = ena_infos_get,
263 	.rx_queue_setup       = ena_rx_queue_setup,
264 	.tx_queue_setup       = ena_tx_queue_setup,
265 	.dev_start            = ena_start,
266 	.dev_stop             = ena_stop,
267 	.link_update          = ena_link_update,
268 	.stats_get            = ena_stats_get,
269 	.mtu_set              = ena_mtu_set,
270 	.rx_queue_release     = ena_rx_queue_release,
271 	.tx_queue_release     = ena_tx_queue_release,
272 	.dev_close            = ena_close,
273 	.dev_reset            = ena_dev_reset,
274 	.reta_update          = ena_rss_reta_update,
275 	.reta_query           = ena_rss_reta_query,
276 };
277 
278 #define NUMA_NO_NODE	SOCKET_ID_ANY
279 
280 static inline int ena_cpu_to_node(int cpu)
281 {
282 	struct rte_config *config = rte_eal_get_configuration();
283 	struct rte_fbarray *arr = &config->mem_config->memzones;
284 	const struct rte_memzone *mz;
285 
286 	if (unlikely(cpu >= RTE_MAX_MEMZONE))
287 		return NUMA_NO_NODE;
288 
289 	mz = rte_fbarray_get(arr, cpu);
290 
291 	return mz->socket_id;
292 }
293 
294 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
295 				       struct ena_com_rx_ctx *ena_rx_ctx)
296 {
297 	uint64_t ol_flags = 0;
298 	uint32_t packet_type = 0;
299 
300 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
301 		packet_type |= RTE_PTYPE_L4_TCP;
302 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
303 		packet_type |= RTE_PTYPE_L4_UDP;
304 
305 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
306 		packet_type |= RTE_PTYPE_L3_IPV4;
307 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
308 		packet_type |= RTE_PTYPE_L3_IPV6;
309 
310 	if (unlikely(ena_rx_ctx->l4_csum_err))
311 		ol_flags |= PKT_RX_L4_CKSUM_BAD;
312 	if (unlikely(ena_rx_ctx->l3_csum_err))
313 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
314 
315 	mbuf->ol_flags = ol_flags;
316 	mbuf->packet_type = packet_type;
317 }
318 
319 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
320 				       struct ena_com_tx_ctx *ena_tx_ctx,
321 				       uint64_t queue_offloads)
322 {
323 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
324 
325 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
326 	    (queue_offloads & QUEUE_OFFLOADS)) {
327 		/* check if TSO is required */
328 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
329 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
330 			ena_tx_ctx->tso_enable = true;
331 
332 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
333 		}
334 
335 		/* check if L3 checksum is needed */
336 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
337 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
338 			ena_tx_ctx->l3_csum_enable = true;
339 
340 		if (mbuf->ol_flags & PKT_TX_IPV6) {
341 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
342 		} else {
343 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
344 
345 			/* set don't fragment (DF) flag */
346 			if (mbuf->packet_type &
347 				(RTE_PTYPE_L4_NONFRAG
348 				 | RTE_PTYPE_INNER_L4_NONFRAG))
349 				ena_tx_ctx->df = true;
350 		}
351 
352 		/* check if L4 checksum is needed */
353 		if ((mbuf->ol_flags & PKT_TX_TCP_CKSUM) &&
354 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
355 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
356 			ena_tx_ctx->l4_csum_enable = true;
357 		} else if ((mbuf->ol_flags & PKT_TX_UDP_CKSUM) &&
358 			   (queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
359 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
360 			ena_tx_ctx->l4_csum_enable = true;
361 		} else {
362 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
363 			ena_tx_ctx->l4_csum_enable = false;
364 		}
365 
366 		ena_meta->mss = mbuf->tso_segsz;
367 		ena_meta->l3_hdr_len = mbuf->l3_len;
368 		ena_meta->l3_hdr_offset = mbuf->l2_len;
369 
370 		ena_tx_ctx->meta_valid = true;
371 	} else {
372 		ena_tx_ctx->meta_valid = false;
373 	}
374 }
375 
376 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
377 {
378 	if (likely(req_id < rx_ring->ring_size))
379 		return 0;
380 
381 	RTE_LOG(ERR, PMD, "Invalid rx req_id: %hu\n", req_id);
382 
383 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
384 	rx_ring->adapter->trigger_reset = true;
385 
386 	return -EFAULT;
387 }
388 
389 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
390 {
391 	struct ena_tx_buffer *tx_info = NULL;
392 
393 	if (likely(req_id < tx_ring->ring_size)) {
394 		tx_info = &tx_ring->tx_buffer_info[req_id];
395 		if (likely(tx_info->mbuf))
396 			return 0;
397 	}
398 
399 	if (tx_info)
400 		RTE_LOG(ERR, PMD, "tx_info doesn't have valid mbuf\n");
401 	else
402 		RTE_LOG(ERR, PMD, "Invalid req_id: %hu\n", req_id);
403 
404 	/* Trigger device reset */
405 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
406 	tx_ring->adapter->trigger_reset	= true;
407 	return -EFAULT;
408 }
409 
410 static void ena_config_host_info(struct ena_com_dev *ena_dev)
411 {
412 	struct ena_admin_host_info *host_info;
413 	int rc;
414 
415 	/* Allocate only the host info */
416 	rc = ena_com_allocate_host_info(ena_dev);
417 	if (rc) {
418 		RTE_LOG(ERR, PMD, "Cannot allocate host info\n");
419 		return;
420 	}
421 
422 	host_info = ena_dev->host_attr.host_info;
423 
424 	host_info->os_type = ENA_ADMIN_OS_DPDK;
425 	host_info->kernel_ver = RTE_VERSION;
426 	snprintf((char *)host_info->kernel_ver_str,
427 		 sizeof(host_info->kernel_ver_str),
428 		 "%s", rte_version());
429 	host_info->os_dist = RTE_VERSION;
430 	snprintf((char *)host_info->os_dist_str,
431 		 sizeof(host_info->os_dist_str),
432 		 "%s", rte_version());
433 	host_info->driver_version =
434 		(DRV_MODULE_VER_MAJOR) |
435 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
436 		(DRV_MODULE_VER_SUBMINOR <<
437 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
438 
439 	rc = ena_com_set_host_attributes(ena_dev);
440 	if (rc) {
441 		if (rc == -ENA_COM_UNSUPPORTED)
442 			RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
443 		else
444 			RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
445 
446 		goto err;
447 	}
448 
449 	return;
450 
451 err:
452 	ena_com_delete_host_info(ena_dev);
453 }
454 
455 static int
456 ena_get_sset_count(struct rte_eth_dev *dev, int sset)
457 {
458 	if (sset != ETH_SS_STATS)
459 		return -EOPNOTSUPP;
460 
461 	 /* Workaround for clang:
462 	 * touch internal structures to prevent
463 	 * compiler error
464 	 */
465 	ENA_TOUCH(ena_stats_global_strings);
466 	ENA_TOUCH(ena_stats_tx_strings);
467 	ENA_TOUCH(ena_stats_rx_strings);
468 	ENA_TOUCH(ena_stats_ena_com_strings);
469 
470 	return  dev->data->nb_tx_queues *
471 		(ENA_STATS_ARRAY_TX + ENA_STATS_ARRAY_RX) +
472 		ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENA_COM;
473 }
474 
475 static void ena_config_debug_area(struct ena_adapter *adapter)
476 {
477 	u32 debug_area_size;
478 	int rc, ss_count;
479 
480 	ss_count = ena_get_sset_count(adapter->rte_dev, ETH_SS_STATS);
481 	if (ss_count <= 0) {
482 		RTE_LOG(ERR, PMD, "SS count is negative\n");
483 		return;
484 	}
485 
486 	/* allocate 32 bytes for each string and 64bit for the value */
487 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
488 
489 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
490 	if (rc) {
491 		RTE_LOG(ERR, PMD, "Cannot allocate debug area\n");
492 		return;
493 	}
494 
495 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
496 	if (rc) {
497 		if (rc == -ENA_COM_UNSUPPORTED)
498 			RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
499 		else
500 			RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
501 
502 		goto err;
503 	}
504 
505 	return;
506 err:
507 	ena_com_delete_debug_area(&adapter->ena_dev);
508 }
509 
510 static void ena_close(struct rte_eth_dev *dev)
511 {
512 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
513 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
514 	struct ena_adapter *adapter =
515 		(struct ena_adapter *)(dev->data->dev_private);
516 
517 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
518 		ena_stop(dev);
519 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
520 
521 	ena_rx_queue_release_all(dev);
522 	ena_tx_queue_release_all(dev);
523 
524 	rte_free(adapter->drv_stats);
525 	adapter->drv_stats = NULL;
526 
527 	rte_intr_disable(intr_handle);
528 	rte_intr_callback_unregister(intr_handle,
529 				     ena_interrupt_handler_rte,
530 				     adapter);
531 
532 	/*
533 	 * MAC is not allocated dynamically. Setting NULL should prevent from
534 	 * release of the resource in the rte_eth_dev_release_port().
535 	 */
536 	dev->data->mac_addrs = NULL;
537 }
538 
539 static int
540 ena_dev_reset(struct rte_eth_dev *dev)
541 {
542 	struct rte_mempool *mb_pool_rx[ENA_MAX_NUM_QUEUES];
543 	struct rte_eth_dev *eth_dev;
544 	struct rte_pci_device *pci_dev;
545 	struct rte_intr_handle *intr_handle;
546 	struct ena_com_dev *ena_dev;
547 	struct ena_com_dev_get_features_ctx get_feat_ctx;
548 	struct ena_adapter *adapter;
549 	int nb_queues;
550 	int rc, i;
551 	bool wd_state;
552 
553 	adapter = (struct ena_adapter *)(dev->data->dev_private);
554 	ena_dev = &adapter->ena_dev;
555 	eth_dev = adapter->rte_dev;
556 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
557 	intr_handle = &pci_dev->intr_handle;
558 	nb_queues = eth_dev->data->nb_rx_queues;
559 
560 	ena_com_set_admin_running_state(ena_dev, false);
561 
562 	rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
563 	if (rc)
564 		RTE_LOG(ERR, PMD, "Device reset failed\n");
565 
566 	for (i = 0; i < nb_queues; i++)
567 		mb_pool_rx[i] = adapter->rx_ring[i].mb_pool;
568 
569 	ena_rx_queue_release_all(eth_dev);
570 	ena_tx_queue_release_all(eth_dev);
571 
572 	rte_intr_disable(intr_handle);
573 
574 	ena_com_abort_admin_commands(ena_dev);
575 	ena_com_wait_for_abort_completion(ena_dev);
576 	ena_com_admin_destroy(ena_dev);
577 	ena_com_mmio_reg_read_request_destroy(ena_dev);
578 
579 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
580 	if (rc) {
581 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
582 		return rc;
583 	}
584 	adapter->wd_state = wd_state;
585 
586 	rte_intr_enable(intr_handle);
587 	ena_com_set_admin_polling_mode(ena_dev, false);
588 	ena_com_admin_aenq_enable(ena_dev);
589 
590 	for (i = 0; i < nb_queues; ++i)
591 		ena_rx_queue_setup(eth_dev, i, adapter->rx_ring_size, 0, NULL,
592 			mb_pool_rx[i]);
593 
594 	for (i = 0; i < nb_queues; ++i)
595 		ena_tx_queue_setup(eth_dev, i, adapter->tx_ring_size, 0, NULL);
596 
597 	adapter->trigger_reset = false;
598 
599 	return 0;
600 }
601 
602 static int ena_rss_reta_update(struct rte_eth_dev *dev,
603 			       struct rte_eth_rss_reta_entry64 *reta_conf,
604 			       uint16_t reta_size)
605 {
606 	struct ena_adapter *adapter =
607 		(struct ena_adapter *)(dev->data->dev_private);
608 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
609 	int rc, i;
610 	u16 entry_value;
611 	int conf_idx;
612 	int idx;
613 
614 	if ((reta_size == 0) || (reta_conf == NULL))
615 		return -EINVAL;
616 
617 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
618 		RTE_LOG(WARNING, PMD,
619 			"indirection table %d is bigger than supported (%d)\n",
620 			reta_size, ENA_RX_RSS_TABLE_SIZE);
621 		return -EINVAL;
622 	}
623 
624 	for (i = 0 ; i < reta_size ; i++) {
625 		/* each reta_conf is for 64 entries.
626 		 * to support 128 we use 2 conf of 64
627 		 */
628 		conf_idx = i / RTE_RETA_GROUP_SIZE;
629 		idx = i % RTE_RETA_GROUP_SIZE;
630 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
631 			entry_value =
632 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
633 
634 			rc = ena_com_indirect_table_fill_entry(ena_dev,
635 							       i,
636 							       entry_value);
637 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
638 				RTE_LOG(ERR, PMD,
639 					"Cannot fill indirect table\n");
640 				return rc;
641 			}
642 		}
643 	}
644 
645 	rc = ena_com_indirect_table_set(ena_dev);
646 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
647 		RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
648 		return rc;
649 	}
650 
651 	RTE_LOG(DEBUG, PMD, "%s(): RSS configured %d entries  for port %d\n",
652 		__func__, reta_size, adapter->rte_dev->data->port_id);
653 
654 	return 0;
655 }
656 
657 /* Query redirection table. */
658 static int ena_rss_reta_query(struct rte_eth_dev *dev,
659 			      struct rte_eth_rss_reta_entry64 *reta_conf,
660 			      uint16_t reta_size)
661 {
662 	struct ena_adapter *adapter =
663 		(struct ena_adapter *)(dev->data->dev_private);
664 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
665 	int rc;
666 	int i;
667 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
668 	int reta_conf_idx;
669 	int reta_idx;
670 
671 	if (reta_size == 0 || reta_conf == NULL ||
672 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
673 		return -EINVAL;
674 
675 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
676 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
677 		RTE_LOG(ERR, PMD, "cannot get indirect table\n");
678 		return -ENOTSUP;
679 	}
680 
681 	for (i = 0 ; i < reta_size ; i++) {
682 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
683 		reta_idx = i % RTE_RETA_GROUP_SIZE;
684 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
685 			reta_conf[reta_conf_idx].reta[reta_idx] =
686 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
687 	}
688 
689 	return 0;
690 }
691 
692 static int ena_rss_init_default(struct ena_adapter *adapter)
693 {
694 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
695 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
696 	int rc, i;
697 	u32 val;
698 
699 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
700 	if (unlikely(rc)) {
701 		RTE_LOG(ERR, PMD, "Cannot init indirect table\n");
702 		goto err_rss_init;
703 	}
704 
705 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
706 		val = i % nb_rx_queues;
707 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
708 						       ENA_IO_RXQ_IDX(val));
709 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
710 			RTE_LOG(ERR, PMD, "Cannot fill indirect table\n");
711 			goto err_fill_indir;
712 		}
713 	}
714 
715 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
716 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
717 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
718 		RTE_LOG(INFO, PMD, "Cannot fill hash function\n");
719 		goto err_fill_indir;
720 	}
721 
722 	rc = ena_com_set_default_hash_ctrl(ena_dev);
723 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
724 		RTE_LOG(INFO, PMD, "Cannot fill hash control\n");
725 		goto err_fill_indir;
726 	}
727 
728 	rc = ena_com_indirect_table_set(ena_dev);
729 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
730 		RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
731 		goto err_fill_indir;
732 	}
733 	RTE_LOG(DEBUG, PMD, "RSS configured for port %d\n",
734 		adapter->rte_dev->data->port_id);
735 
736 	return 0;
737 
738 err_fill_indir:
739 	ena_com_rss_destroy(ena_dev);
740 err_rss_init:
741 
742 	return rc;
743 }
744 
745 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
746 {
747 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
748 	int nb_queues = dev->data->nb_rx_queues;
749 	int i;
750 
751 	for (i = 0; i < nb_queues; i++)
752 		ena_rx_queue_release(queues[i]);
753 }
754 
755 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
756 {
757 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
758 	int nb_queues = dev->data->nb_tx_queues;
759 	int i;
760 
761 	for (i = 0; i < nb_queues; i++)
762 		ena_tx_queue_release(queues[i]);
763 }
764 
765 static void ena_rx_queue_release(void *queue)
766 {
767 	struct ena_ring *ring = (struct ena_ring *)queue;
768 
769 	ena_assert_msg(ring->configured,
770 		       "API violation - releasing not configured queue");
771 	ena_assert_msg(ring->adapter->state != ENA_ADAPTER_STATE_RUNNING,
772 		       "API violation");
773 
774 	/* Free ring resources */
775 	if (ring->rx_buffer_info)
776 		rte_free(ring->rx_buffer_info);
777 	ring->rx_buffer_info = NULL;
778 
779 	if (ring->rx_refill_buffer)
780 		rte_free(ring->rx_refill_buffer);
781 	ring->rx_refill_buffer = NULL;
782 
783 	if (ring->empty_rx_reqs)
784 		rte_free(ring->empty_rx_reqs);
785 	ring->empty_rx_reqs = NULL;
786 
787 	ring->configured = 0;
788 
789 	RTE_LOG(NOTICE, PMD, "RX Queue %d:%d released\n",
790 		ring->port_id, ring->id);
791 }
792 
793 static void ena_tx_queue_release(void *queue)
794 {
795 	struct ena_ring *ring = (struct ena_ring *)queue;
796 
797 	ena_assert_msg(ring->configured,
798 		       "API violation. Releasing not configured queue");
799 	ena_assert_msg(ring->adapter->state != ENA_ADAPTER_STATE_RUNNING,
800 		       "API violation");
801 
802 	/* Free all bufs */
803 	ena_tx_queue_release_bufs(ring);
804 
805 	/* Free ring resources */
806 	if (ring->tx_buffer_info)
807 		rte_free(ring->tx_buffer_info);
808 
809 	if (ring->empty_tx_reqs)
810 		rte_free(ring->empty_tx_reqs);
811 
812 	ring->empty_tx_reqs = NULL;
813 	ring->tx_buffer_info = NULL;
814 
815 	ring->configured = 0;
816 
817 	RTE_LOG(NOTICE, PMD, "TX Queue %d:%d released\n",
818 		ring->port_id, ring->id);
819 }
820 
821 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
822 {
823 	unsigned int ring_mask = ring->ring_size - 1;
824 
825 	while (ring->next_to_clean != ring->next_to_use) {
826 		struct rte_mbuf *m =
827 			ring->rx_buffer_info[ring->next_to_clean & ring_mask];
828 
829 		if (m)
830 			rte_mbuf_raw_free(m);
831 
832 		ring->next_to_clean++;
833 	}
834 }
835 
836 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
837 {
838 	unsigned int i;
839 
840 	for (i = 0; i < ring->ring_size; ++i) {
841 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
842 
843 		if (tx_buf->mbuf)
844 			rte_pktmbuf_free(tx_buf->mbuf);
845 
846 		ring->next_to_clean++;
847 	}
848 }
849 
850 static int ena_link_update(struct rte_eth_dev *dev,
851 			   __rte_unused int wait_to_complete)
852 {
853 	struct rte_eth_link *link = &dev->data->dev_link;
854 	struct ena_adapter *adapter;
855 
856 	adapter = (struct ena_adapter *)(dev->data->dev_private);
857 
858 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
859 	link->link_speed = ETH_SPEED_NUM_NONE;
860 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
861 
862 	return 0;
863 }
864 
865 static int ena_queue_restart_all(struct rte_eth_dev *dev,
866 				 enum ena_ring_type ring_type)
867 {
868 	struct ena_adapter *adapter =
869 		(struct ena_adapter *)(dev->data->dev_private);
870 	struct ena_ring *queues = NULL;
871 	int nb_queues;
872 	int i = 0;
873 	int rc = 0;
874 
875 	if (ring_type == ENA_RING_TYPE_RX) {
876 		queues = adapter->rx_ring;
877 		nb_queues = dev->data->nb_rx_queues;
878 	} else {
879 		queues = adapter->tx_ring;
880 		nb_queues = dev->data->nb_tx_queues;
881 	}
882 	for (i = 0; i < nb_queues; i++) {
883 		if (queues[i].configured) {
884 			if (ring_type == ENA_RING_TYPE_RX) {
885 				ena_assert_msg(
886 					dev->data->rx_queues[i] == &queues[i],
887 					"Inconsistent state of rx queues\n");
888 			} else {
889 				ena_assert_msg(
890 					dev->data->tx_queues[i] == &queues[i],
891 					"Inconsistent state of tx queues\n");
892 			}
893 
894 			rc = ena_queue_restart(&queues[i]);
895 
896 			if (rc) {
897 				PMD_INIT_LOG(ERR,
898 					     "failed to restart queue %d type(%d)",
899 					     i, ring_type);
900 				return rc;
901 			}
902 		}
903 	}
904 
905 	return 0;
906 }
907 
908 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
909 {
910 	uint32_t max_frame_len = adapter->max_mtu;
911 
912 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
913 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
914 		max_frame_len =
915 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
916 
917 	return max_frame_len;
918 }
919 
920 static int ena_check_valid_conf(struct ena_adapter *adapter)
921 {
922 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
923 
924 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
925 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
926 				  "max mtu: %d, min mtu: %d\n",
927 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
928 		return ENA_COM_UNSUPPORTED;
929 	}
930 
931 	return 0;
932 }
933 
934 static int
935 ena_calc_queue_size(struct ena_com_dev *ena_dev,
936 		    u16 *max_tx_sgl_size,
937 		    struct ena_com_dev_get_features_ctx *get_feat_ctx)
938 {
939 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
940 
941 	queue_size = RTE_MIN(queue_size,
942 			     get_feat_ctx->max_queues.max_cq_depth);
943 	queue_size = RTE_MIN(queue_size,
944 			     get_feat_ctx->max_queues.max_sq_depth);
945 
946 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
947 		queue_size = RTE_MIN(queue_size,
948 				     get_feat_ctx->max_queues.max_llq_depth);
949 
950 	/* Round down to power of 2 */
951 	if (!rte_is_power_of_2(queue_size))
952 		queue_size = rte_align32pow2(queue_size >> 1);
953 
954 	if (unlikely(queue_size == 0)) {
955 		PMD_INIT_LOG(ERR, "Invalid queue size");
956 		return -EFAULT;
957 	}
958 
959 	*max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
960 		get_feat_ctx->max_queues.max_packet_tx_descs);
961 
962 	return queue_size;
963 }
964 
965 static void ena_stats_restart(struct rte_eth_dev *dev)
966 {
967 	struct ena_adapter *adapter =
968 		(struct ena_adapter *)(dev->data->dev_private);
969 
970 	rte_atomic64_init(&adapter->drv_stats->ierrors);
971 	rte_atomic64_init(&adapter->drv_stats->oerrors);
972 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
973 }
974 
975 static int ena_stats_get(struct rte_eth_dev *dev,
976 			  struct rte_eth_stats *stats)
977 {
978 	struct ena_admin_basic_stats ena_stats;
979 	struct ena_adapter *adapter =
980 		(struct ena_adapter *)(dev->data->dev_private);
981 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
982 	int rc;
983 
984 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
985 		return -ENOTSUP;
986 
987 	memset(&ena_stats, 0, sizeof(ena_stats));
988 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
989 	if (unlikely(rc)) {
990 		RTE_LOG(ERR, PMD, "Could not retrieve statistics from ENA");
991 		return rc;
992 	}
993 
994 	/* Set of basic statistics from ENA */
995 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
996 					  ena_stats.rx_pkts_low);
997 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
998 					  ena_stats.tx_pkts_low);
999 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1000 					ena_stats.rx_bytes_low);
1001 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1002 					ena_stats.tx_bytes_low);
1003 	stats->imissed = __MERGE_64B_H_L(ena_stats.rx_drops_high,
1004 					 ena_stats.rx_drops_low);
1005 
1006 	/* Driver related stats */
1007 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1008 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1009 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1010 	return 0;
1011 }
1012 
1013 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1014 {
1015 	struct ena_adapter *adapter;
1016 	struct ena_com_dev *ena_dev;
1017 	int rc = 0;
1018 
1019 	ena_assert_msg(dev->data != NULL, "Uninitialized device");
1020 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device");
1021 	adapter = (struct ena_adapter *)(dev->data->dev_private);
1022 
1023 	ena_dev = &adapter->ena_dev;
1024 	ena_assert_msg(ena_dev != NULL, "Uninitialized device");
1025 
1026 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1027 		RTE_LOG(ERR, PMD,
1028 			"Invalid MTU setting. new_mtu: %d "
1029 			"max mtu: %d min mtu: %d\n",
1030 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1031 		return -EINVAL;
1032 	}
1033 
1034 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1035 	if (rc)
1036 		RTE_LOG(ERR, PMD, "Could not set MTU: %d\n", mtu);
1037 	else
1038 		RTE_LOG(NOTICE, PMD, "Set MTU: %d\n", mtu);
1039 
1040 	return rc;
1041 }
1042 
1043 static int ena_start(struct rte_eth_dev *dev)
1044 {
1045 	struct ena_adapter *adapter =
1046 		(struct ena_adapter *)(dev->data->dev_private);
1047 	uint64_t ticks;
1048 	int rc = 0;
1049 
1050 	rc = ena_check_valid_conf(adapter);
1051 	if (rc)
1052 		return rc;
1053 
1054 	rc = ena_queue_restart_all(dev, ENA_RING_TYPE_RX);
1055 	if (rc)
1056 		return rc;
1057 
1058 	rc = ena_queue_restart_all(dev, ENA_RING_TYPE_TX);
1059 	if (rc)
1060 		return rc;
1061 
1062 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1063 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1064 		rc = ena_rss_init_default(adapter);
1065 		if (rc)
1066 			return rc;
1067 	}
1068 
1069 	ena_stats_restart(dev);
1070 
1071 	adapter->timestamp_wd = rte_get_timer_cycles();
1072 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1073 
1074 	ticks = rte_get_timer_hz();
1075 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1076 			ena_timer_wd_callback, adapter);
1077 
1078 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1079 
1080 	return 0;
1081 }
1082 
1083 static void ena_stop(struct rte_eth_dev *dev)
1084 {
1085 	struct ena_adapter *adapter =
1086 		(struct ena_adapter *)(dev->data->dev_private);
1087 
1088 	rte_timer_stop_sync(&adapter->timer_wd);
1089 	ena_free_io_queues_all(adapter);
1090 
1091 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1092 }
1093 
1094 static int ena_create_io_queue(struct ena_ring *ring)
1095 {
1096 	struct ena_adapter *adapter;
1097 	struct ena_com_dev *ena_dev;
1098 	struct ena_com_create_io_ctx ctx =
1099 		/* policy set to _HOST just to satisfy icc compiler */
1100 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1101 		  0, 0, 0, 0, 0 };
1102 	uint16_t ena_qid;
1103 	unsigned int i;
1104 	int rc;
1105 
1106 	adapter = ring->adapter;
1107 	ena_dev = &adapter->ena_dev;
1108 
1109 	if (ring->type == ENA_RING_TYPE_TX) {
1110 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1111 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1112 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1113 		ctx.queue_size = adapter->tx_ring_size;
1114 		for (i = 0; i < ring->ring_size; i++)
1115 			ring->empty_tx_reqs[i] = i;
1116 	} else {
1117 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1118 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1119 		ctx.queue_size = adapter->rx_ring_size;
1120 		for (i = 0; i < ring->ring_size; i++)
1121 			ring->empty_rx_reqs[i] = i;
1122 	}
1123 	ctx.qid = ena_qid;
1124 	ctx.msix_vector = -1; /* interrupts not used */
1125 	ctx.numa_node = ena_cpu_to_node(ring->id);
1126 
1127 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1128 	if (rc) {
1129 		RTE_LOG(ERR, PMD,
1130 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1131 			ring->id, ena_qid, rc);
1132 		return rc;
1133 	}
1134 
1135 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1136 				     &ring->ena_com_io_sq,
1137 				     &ring->ena_com_io_cq);
1138 	if (rc) {
1139 		RTE_LOG(ERR, PMD,
1140 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1141 			ring->id, rc);
1142 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1143 		return rc;
1144 	}
1145 
1146 	if (ring->type == ENA_RING_TYPE_TX)
1147 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1148 
1149 	return 0;
1150 }
1151 
1152 static void ena_free_io_queues_all(struct ena_adapter *adapter)
1153 {
1154 	struct rte_eth_dev *eth_dev = adapter->rte_dev;
1155 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1156 	int i;
1157 	uint16_t ena_qid;
1158 	uint16_t nb_rxq = eth_dev->data->nb_rx_queues;
1159 	uint16_t nb_txq = eth_dev->data->nb_tx_queues;
1160 
1161 	for (i = 0; i < nb_txq; ++i) {
1162 		ena_qid = ENA_IO_TXQ_IDX(i);
1163 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1164 
1165 		ena_tx_queue_release_bufs(&adapter->tx_ring[i]);
1166 	}
1167 
1168 	for (i = 0; i < nb_rxq; ++i) {
1169 		ena_qid = ENA_IO_RXQ_IDX(i);
1170 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1171 
1172 		ena_rx_queue_release_bufs(&adapter->rx_ring[i]);
1173 	}
1174 }
1175 
1176 static int ena_queue_restart(struct ena_ring *ring)
1177 {
1178 	int rc, bufs_num;
1179 
1180 	ena_assert_msg(ring->configured == 1,
1181 		       "Trying to restart unconfigured queue\n");
1182 
1183 	rc = ena_create_io_queue(ring);
1184 	if (rc) {
1185 		PMD_INIT_LOG(ERR, "Failed to create IO queue!\n");
1186 		return rc;
1187 	}
1188 
1189 	ring->next_to_clean = 0;
1190 	ring->next_to_use = 0;
1191 
1192 	if (ring->type == ENA_RING_TYPE_TX)
1193 		return 0;
1194 
1195 	bufs_num = ring->ring_size - 1;
1196 	rc = ena_populate_rx_queue(ring, bufs_num);
1197 	if (rc != bufs_num) {
1198 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1199 		return ENA_COM_FAULT;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1206 			      uint16_t queue_idx,
1207 			      uint16_t nb_desc,
1208 			      __rte_unused unsigned int socket_id,
1209 			      const struct rte_eth_txconf *tx_conf)
1210 {
1211 	struct ena_ring *txq = NULL;
1212 	struct ena_adapter *adapter =
1213 		(struct ena_adapter *)(dev->data->dev_private);
1214 	unsigned int i;
1215 
1216 	txq = &adapter->tx_ring[queue_idx];
1217 
1218 	if (txq->configured) {
1219 		RTE_LOG(CRIT, PMD,
1220 			"API violation. Queue %d is already configured\n",
1221 			queue_idx);
1222 		return ENA_COM_FAULT;
1223 	}
1224 
1225 	if (!rte_is_power_of_2(nb_desc)) {
1226 		RTE_LOG(ERR, PMD,
1227 			"Unsupported size of TX queue: %d is not a power of 2.",
1228 			nb_desc);
1229 		return -EINVAL;
1230 	}
1231 
1232 	if (nb_desc > adapter->tx_ring_size) {
1233 		RTE_LOG(ERR, PMD,
1234 			"Unsupported size of TX queue (max size: %d)\n",
1235 			adapter->tx_ring_size);
1236 		return -EINVAL;
1237 	}
1238 
1239 	txq->port_id = dev->data->port_id;
1240 	txq->next_to_clean = 0;
1241 	txq->next_to_use = 0;
1242 	txq->ring_size = nb_desc;
1243 
1244 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1245 					  sizeof(struct ena_tx_buffer) *
1246 					  txq->ring_size,
1247 					  RTE_CACHE_LINE_SIZE);
1248 	if (!txq->tx_buffer_info) {
1249 		RTE_LOG(ERR, PMD, "failed to alloc mem for tx buffer info\n");
1250 		return -ENOMEM;
1251 	}
1252 
1253 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1254 					 sizeof(u16) * txq->ring_size,
1255 					 RTE_CACHE_LINE_SIZE);
1256 	if (!txq->empty_tx_reqs) {
1257 		RTE_LOG(ERR, PMD, "failed to alloc mem for tx reqs\n");
1258 		rte_free(txq->tx_buffer_info);
1259 		return -ENOMEM;
1260 	}
1261 
1262 	for (i = 0; i < txq->ring_size; i++)
1263 		txq->empty_tx_reqs[i] = i;
1264 
1265 	if (tx_conf != NULL) {
1266 		txq->offloads =
1267 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1268 	}
1269 
1270 	/* Store pointer to this queue in upper layer */
1271 	txq->configured = 1;
1272 	dev->data->tx_queues[queue_idx] = txq;
1273 
1274 	return 0;
1275 }
1276 
1277 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1278 			      uint16_t queue_idx,
1279 			      uint16_t nb_desc,
1280 			      __rte_unused unsigned int socket_id,
1281 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1282 			      struct rte_mempool *mp)
1283 {
1284 	struct ena_adapter *adapter =
1285 		(struct ena_adapter *)(dev->data->dev_private);
1286 	struct ena_ring *rxq = NULL;
1287 	int i;
1288 
1289 	rxq = &adapter->rx_ring[queue_idx];
1290 	if (rxq->configured) {
1291 		RTE_LOG(CRIT, PMD,
1292 			"API violation. Queue %d is already configured\n",
1293 			queue_idx);
1294 		return ENA_COM_FAULT;
1295 	}
1296 
1297 	if (!rte_is_power_of_2(nb_desc)) {
1298 		RTE_LOG(ERR, PMD,
1299 			"Unsupported size of RX queue: %d is not a power of 2.",
1300 			nb_desc);
1301 		return -EINVAL;
1302 	}
1303 
1304 	if (nb_desc > adapter->rx_ring_size) {
1305 		RTE_LOG(ERR, PMD,
1306 			"Unsupported size of RX queue (max size: %d)\n",
1307 			adapter->rx_ring_size);
1308 		return -EINVAL;
1309 	}
1310 
1311 	rxq->port_id = dev->data->port_id;
1312 	rxq->next_to_clean = 0;
1313 	rxq->next_to_use = 0;
1314 	rxq->ring_size = nb_desc;
1315 	rxq->mb_pool = mp;
1316 
1317 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1318 					  sizeof(struct rte_mbuf *) * nb_desc,
1319 					  RTE_CACHE_LINE_SIZE);
1320 	if (!rxq->rx_buffer_info) {
1321 		RTE_LOG(ERR, PMD, "failed to alloc mem for rx buffer info\n");
1322 		return -ENOMEM;
1323 	}
1324 
1325 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1326 					    sizeof(struct rte_mbuf *) * nb_desc,
1327 					    RTE_CACHE_LINE_SIZE);
1328 
1329 	if (!rxq->rx_refill_buffer) {
1330 		RTE_LOG(ERR, PMD, "failed to alloc mem for rx refill buffer\n");
1331 		rte_free(rxq->rx_buffer_info);
1332 		rxq->rx_buffer_info = NULL;
1333 		return -ENOMEM;
1334 	}
1335 
1336 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1337 					 sizeof(uint16_t) * nb_desc,
1338 					 RTE_CACHE_LINE_SIZE);
1339 	if (!rxq->empty_rx_reqs) {
1340 		RTE_LOG(ERR, PMD, "failed to alloc mem for empty rx reqs\n");
1341 		rte_free(rxq->rx_buffer_info);
1342 		rxq->rx_buffer_info = NULL;
1343 		rte_free(rxq->rx_refill_buffer);
1344 		rxq->rx_refill_buffer = NULL;
1345 		return -ENOMEM;
1346 	}
1347 
1348 	for (i = 0; i < nb_desc; i++)
1349 		rxq->empty_tx_reqs[i] = i;
1350 
1351 	/* Store pointer to this queue in upper layer */
1352 	rxq->configured = 1;
1353 	dev->data->rx_queues[queue_idx] = rxq;
1354 
1355 	return 0;
1356 }
1357 
1358 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1359 {
1360 	unsigned int i;
1361 	int rc;
1362 	uint16_t ring_size = rxq->ring_size;
1363 	uint16_t ring_mask = ring_size - 1;
1364 	uint16_t next_to_use = rxq->next_to_use;
1365 	uint16_t in_use, req_id;
1366 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1367 
1368 	if (unlikely(!count))
1369 		return 0;
1370 
1371 	in_use = rxq->next_to_use - rxq->next_to_clean;
1372 	ena_assert_msg(((in_use + count) < ring_size), "bad ring state");
1373 
1374 	/* get resources for incoming packets */
1375 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1376 	if (unlikely(rc < 0)) {
1377 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1378 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1379 		return 0;
1380 	}
1381 
1382 	for (i = 0; i < count; i++) {
1383 		uint16_t next_to_use_masked = next_to_use & ring_mask;
1384 		struct rte_mbuf *mbuf = mbufs[i];
1385 		struct ena_com_buf ebuf;
1386 
1387 		if (likely((i + 4) < count))
1388 			rte_prefetch0(mbufs[i + 4]);
1389 
1390 		req_id = rxq->empty_rx_reqs[next_to_use_masked];
1391 		rc = validate_rx_req_id(rxq, req_id);
1392 		if (unlikely(rc < 0))
1393 			break;
1394 		rxq->rx_buffer_info[req_id] = mbuf;
1395 
1396 		/* prepare physical address for DMA transaction */
1397 		ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1398 		ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1399 		/* pass resource to device */
1400 		rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq,
1401 						&ebuf, req_id);
1402 		if (unlikely(rc)) {
1403 			RTE_LOG(WARNING, PMD, "failed adding rx desc\n");
1404 			rxq->rx_buffer_info[req_id] = NULL;
1405 			break;
1406 		}
1407 		next_to_use++;
1408 	}
1409 
1410 	if (unlikely(i < count)) {
1411 		RTE_LOG(WARNING, PMD, "refilled rx qid %d with only %d "
1412 			"buffers (from %d)\n", rxq->id, i, count);
1413 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1414 				     count - i);
1415 	}
1416 
1417 	/* When we submitted free recources to device... */
1418 	if (likely(i > 0)) {
1419 		/* ...let HW know that it can fill buffers with data
1420 		 *
1421 		 * Add memory barrier to make sure the desc were written before
1422 		 * issue a doorbell
1423 		 */
1424 		rte_wmb();
1425 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1426 
1427 		rxq->next_to_use = next_to_use;
1428 	}
1429 
1430 	return i;
1431 }
1432 
1433 static int ena_device_init(struct ena_com_dev *ena_dev,
1434 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1435 			   bool *wd_state)
1436 {
1437 	uint32_t aenq_groups;
1438 	int rc;
1439 	bool readless_supported;
1440 
1441 	/* Initialize mmio registers */
1442 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1443 	if (rc) {
1444 		RTE_LOG(ERR, PMD, "failed to init mmio read less\n");
1445 		return rc;
1446 	}
1447 
1448 	/* The PCIe configuration space revision id indicate if mmio reg
1449 	 * read is disabled.
1450 	 */
1451 	readless_supported =
1452 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1453 			       & ENA_MMIO_DISABLE_REG_READ);
1454 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1455 
1456 	/* reset device */
1457 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1458 	if (rc) {
1459 		RTE_LOG(ERR, PMD, "cannot reset device\n");
1460 		goto err_mmio_read_less;
1461 	}
1462 
1463 	/* check FW version */
1464 	rc = ena_com_validate_version(ena_dev);
1465 	if (rc) {
1466 		RTE_LOG(ERR, PMD, "device version is too low\n");
1467 		goto err_mmio_read_less;
1468 	}
1469 
1470 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1471 
1472 	/* ENA device administration layer init */
1473 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
1474 	if (rc) {
1475 		RTE_LOG(ERR, PMD,
1476 			"cannot initialize ena admin queue with device\n");
1477 		goto err_mmio_read_less;
1478 	}
1479 
1480 	/* To enable the msix interrupts the driver needs to know the number
1481 	 * of queues. So the driver uses polling mode to retrieve this
1482 	 * information.
1483 	 */
1484 	ena_com_set_admin_polling_mode(ena_dev, true);
1485 
1486 	ena_config_host_info(ena_dev);
1487 
1488 	/* Get Device Attributes and features */
1489 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1490 	if (rc) {
1491 		RTE_LOG(ERR, PMD,
1492 			"cannot get attribute for ena device rc= %d\n", rc);
1493 		goto err_admin_init;
1494 	}
1495 
1496 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1497 		      BIT(ENA_ADMIN_NOTIFICATION) |
1498 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1499 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1500 		      BIT(ENA_ADMIN_WARNING);
1501 
1502 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1503 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1504 	if (rc) {
1505 		RTE_LOG(ERR, PMD, "Cannot configure aenq groups rc: %d\n", rc);
1506 		goto err_admin_init;
1507 	}
1508 
1509 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1510 
1511 	return 0;
1512 
1513 err_admin_init:
1514 	ena_com_admin_destroy(ena_dev);
1515 
1516 err_mmio_read_less:
1517 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1518 
1519 	return rc;
1520 }
1521 
1522 static void ena_interrupt_handler_rte(void *cb_arg)
1523 {
1524 	struct ena_adapter *adapter = (struct ena_adapter *)cb_arg;
1525 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1526 
1527 	ena_com_admin_q_comp_intr_handler(ena_dev);
1528 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1529 		ena_com_aenq_intr_handler(ena_dev, adapter);
1530 }
1531 
1532 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1533 {
1534 	if (!adapter->wd_state)
1535 		return;
1536 
1537 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1538 		return;
1539 
1540 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1541 	    adapter->keep_alive_timeout)) {
1542 		RTE_LOG(ERR, PMD, "Keep alive timeout\n");
1543 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1544 		adapter->trigger_reset = true;
1545 	}
1546 }
1547 
1548 /* Check if admin queue is enabled */
1549 static void check_for_admin_com_state(struct ena_adapter *adapter)
1550 {
1551 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1552 		RTE_LOG(ERR, PMD, "ENA admin queue is not in running state!\n");
1553 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1554 		adapter->trigger_reset = true;
1555 	}
1556 }
1557 
1558 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1559 				  void *arg)
1560 {
1561 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
1562 	struct rte_eth_dev *dev = adapter->rte_dev;
1563 
1564 	check_for_missing_keep_alive(adapter);
1565 	check_for_admin_com_state(adapter);
1566 
1567 	if (unlikely(adapter->trigger_reset)) {
1568 		RTE_LOG(ERR, PMD, "Trigger reset is on\n");
1569 		_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1570 			NULL);
1571 	}
1572 }
1573 
1574 static int ena_calc_io_queue_num(__rte_unused struct ena_com_dev *ena_dev,
1575 				 struct ena_com_dev_get_features_ctx *get_feat_ctx)
1576 {
1577 	int io_sq_num, io_cq_num, io_queue_num;
1578 
1579 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
1580 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
1581 
1582 	io_queue_num = RTE_MIN(io_sq_num, io_cq_num);
1583 
1584 	if (unlikely(io_queue_num == 0)) {
1585 		RTE_LOG(ERR, PMD, "Number of IO queues should not be 0\n");
1586 		return -EFAULT;
1587 	}
1588 
1589 	return io_queue_num;
1590 }
1591 
1592 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1593 {
1594 	struct rte_pci_device *pci_dev;
1595 	struct rte_intr_handle *intr_handle;
1596 	struct ena_adapter *adapter =
1597 		(struct ena_adapter *)(eth_dev->data->dev_private);
1598 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1599 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1600 	int queue_size, rc;
1601 	u16 tx_sgl_size = 0;
1602 
1603 	static int adapters_found;
1604 	bool wd_state;
1605 
1606 	memset(adapter, 0, sizeof(struct ena_adapter));
1607 	ena_dev = &adapter->ena_dev;
1608 
1609 	eth_dev->dev_ops = &ena_dev_ops;
1610 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1611 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1612 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1613 	adapter->rte_eth_dev_data = eth_dev->data;
1614 	adapter->rte_dev = eth_dev;
1615 
1616 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1617 		return 0;
1618 
1619 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1620 	adapter->pdev = pci_dev;
1621 
1622 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1623 		     pci_dev->addr.domain,
1624 		     pci_dev->addr.bus,
1625 		     pci_dev->addr.devid,
1626 		     pci_dev->addr.function);
1627 
1628 	intr_handle = &pci_dev->intr_handle;
1629 
1630 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1631 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1632 
1633 	if (!adapter->regs) {
1634 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1635 			     ENA_REGS_BAR);
1636 		return -ENXIO;
1637 	}
1638 
1639 	ena_dev->reg_bar = adapter->regs;
1640 	ena_dev->dmadev = adapter->pdev;
1641 
1642 	adapter->id_number = adapters_found;
1643 
1644 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1645 		 adapter->id_number);
1646 
1647 	/* device specific initialization routine */
1648 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1649 	if (rc) {
1650 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1651 		goto err;
1652 	}
1653 	adapter->wd_state = wd_state;
1654 
1655 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1656 	adapter->num_queues = ena_calc_io_queue_num(ena_dev,
1657 						    &get_feat_ctx);
1658 
1659 	queue_size = ena_calc_queue_size(ena_dev, &tx_sgl_size, &get_feat_ctx);
1660 	if (queue_size <= 0 || adapter->num_queues <= 0) {
1661 		rc = -EFAULT;
1662 		goto err_device_destroy;
1663 	}
1664 
1665 	adapter->tx_ring_size = queue_size;
1666 	adapter->rx_ring_size = queue_size;
1667 
1668 	adapter->max_tx_sgl_size = tx_sgl_size;
1669 
1670 	/* prepare ring structures */
1671 	ena_init_rings(adapter);
1672 
1673 	ena_config_debug_area(adapter);
1674 
1675 	/* Set max MTU for this device */
1676 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1677 
1678 	/* set device support for TSO */
1679 	adapter->tso4_supported = get_feat_ctx.offload.tx &
1680 				  ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK;
1681 
1682 	/* Copy MAC address and point DPDK to it */
1683 	eth_dev->data->mac_addrs = (struct ether_addr *)adapter->mac_addr;
1684 	ether_addr_copy((struct ether_addr *)get_feat_ctx.dev_attr.mac_addr,
1685 			(struct ether_addr *)adapter->mac_addr);
1686 
1687 	/*
1688 	 * Pass the information to the rte_eth_dev_close() that it should also
1689 	 * release the private port resources.
1690 	 */
1691 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1692 
1693 	adapter->drv_stats = rte_zmalloc("adapter stats",
1694 					 sizeof(*adapter->drv_stats),
1695 					 RTE_CACHE_LINE_SIZE);
1696 	if (!adapter->drv_stats) {
1697 		RTE_LOG(ERR, PMD, "failed to alloc mem for adapter stats\n");
1698 		rc = -ENOMEM;
1699 		goto err_delete_debug_area;
1700 	}
1701 
1702 	rte_intr_callback_register(intr_handle,
1703 				   ena_interrupt_handler_rte,
1704 				   adapter);
1705 	rte_intr_enable(intr_handle);
1706 	ena_com_set_admin_polling_mode(ena_dev, false);
1707 	ena_com_admin_aenq_enable(ena_dev);
1708 
1709 	if (adapters_found == 0)
1710 		rte_timer_subsystem_init();
1711 	rte_timer_init(&adapter->timer_wd);
1712 
1713 	adapters_found++;
1714 	adapter->state = ENA_ADAPTER_STATE_INIT;
1715 
1716 	return 0;
1717 
1718 err_delete_debug_area:
1719 	ena_com_delete_debug_area(ena_dev);
1720 
1721 err_device_destroy:
1722 	ena_com_delete_host_info(ena_dev);
1723 	ena_com_admin_destroy(ena_dev);
1724 
1725 err:
1726 	return rc;
1727 }
1728 
1729 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1730 {
1731 	struct ena_adapter *adapter =
1732 		(struct ena_adapter *)(eth_dev->data->dev_private);
1733 
1734 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1735 		return 0;
1736 
1737 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1738 		ena_close(eth_dev);
1739 
1740 	eth_dev->dev_ops = NULL;
1741 	eth_dev->rx_pkt_burst = NULL;
1742 	eth_dev->tx_pkt_burst = NULL;
1743 	eth_dev->tx_pkt_prepare = NULL;
1744 
1745 	adapter->state = ENA_ADAPTER_STATE_FREE;
1746 
1747 	return 0;
1748 }
1749 
1750 static int ena_dev_configure(struct rte_eth_dev *dev)
1751 {
1752 	struct ena_adapter *adapter =
1753 		(struct ena_adapter *)(dev->data->dev_private);
1754 
1755 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1756 
1757 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1758 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1759 	return 0;
1760 }
1761 
1762 static void ena_init_rings(struct ena_adapter *adapter)
1763 {
1764 	int i;
1765 
1766 	for (i = 0; i < adapter->num_queues; i++) {
1767 		struct ena_ring *ring = &adapter->tx_ring[i];
1768 
1769 		ring->configured = 0;
1770 		ring->type = ENA_RING_TYPE_TX;
1771 		ring->adapter = adapter;
1772 		ring->id = i;
1773 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1774 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1775 		ring->sgl_size = adapter->max_tx_sgl_size;
1776 	}
1777 
1778 	for (i = 0; i < adapter->num_queues; i++) {
1779 		struct ena_ring *ring = &adapter->rx_ring[i];
1780 
1781 		ring->configured = 0;
1782 		ring->type = ENA_RING_TYPE_RX;
1783 		ring->adapter = adapter;
1784 		ring->id = i;
1785 	}
1786 }
1787 
1788 static void ena_infos_get(struct rte_eth_dev *dev,
1789 			  struct rte_eth_dev_info *dev_info)
1790 {
1791 	struct ena_adapter *adapter;
1792 	struct ena_com_dev *ena_dev;
1793 	struct ena_com_dev_get_features_ctx feat;
1794 	uint64_t rx_feat = 0, tx_feat = 0;
1795 	int rc = 0;
1796 
1797 	ena_assert_msg(dev->data != NULL, "Uninitialized device");
1798 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device");
1799 	adapter = (struct ena_adapter *)(dev->data->dev_private);
1800 
1801 	ena_dev = &adapter->ena_dev;
1802 	ena_assert_msg(ena_dev != NULL, "Uninitialized device");
1803 
1804 	dev_info->speed_capa =
1805 			ETH_LINK_SPEED_1G   |
1806 			ETH_LINK_SPEED_2_5G |
1807 			ETH_LINK_SPEED_5G   |
1808 			ETH_LINK_SPEED_10G  |
1809 			ETH_LINK_SPEED_25G  |
1810 			ETH_LINK_SPEED_40G  |
1811 			ETH_LINK_SPEED_50G  |
1812 			ETH_LINK_SPEED_100G;
1813 
1814 	/* Get supported features from HW */
1815 	rc = ena_com_get_dev_attr_feat(ena_dev, &feat);
1816 	if (unlikely(rc)) {
1817 		RTE_LOG(ERR, PMD,
1818 			"Cannot get attribute for ena device rc= %d\n", rc);
1819 		return;
1820 	}
1821 
1822 	/* Set Tx & Rx features available for device */
1823 	if (feat.offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1824 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
1825 
1826 	if (feat.offload.tx &
1827 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1828 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1829 			DEV_TX_OFFLOAD_UDP_CKSUM |
1830 			DEV_TX_OFFLOAD_TCP_CKSUM;
1831 
1832 	if (feat.offload.rx_supported &
1833 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1834 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1835 			DEV_RX_OFFLOAD_UDP_CKSUM  |
1836 			DEV_RX_OFFLOAD_TCP_CKSUM;
1837 
1838 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1839 
1840 	/* Inform framework about available features */
1841 	dev_info->rx_offload_capa = rx_feat;
1842 	dev_info->rx_queue_offload_capa = rx_feat;
1843 	dev_info->tx_offload_capa = tx_feat;
1844 	dev_info->tx_queue_offload_capa = tx_feat;
1845 
1846 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
1847 	dev_info->max_rx_pktlen  = adapter->max_mtu;
1848 	dev_info->max_mac_addrs = 1;
1849 
1850 	dev_info->max_rx_queues = adapter->num_queues;
1851 	dev_info->max_tx_queues = adapter->num_queues;
1852 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
1853 
1854 	adapter->tx_supported_offloads = tx_feat;
1855 	adapter->rx_supported_offloads = rx_feat;
1856 
1857 	dev_info->rx_desc_lim.nb_max = ENA_MAX_RING_DESC;
1858 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1859 
1860 	dev_info->tx_desc_lim.nb_max = ENA_MAX_RING_DESC;
1861 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1862 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1863 					feat.max_queues.max_packet_tx_descs);
1864 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1865 					feat.max_queues.max_packet_tx_descs);
1866 }
1867 
1868 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1869 				  uint16_t nb_pkts)
1870 {
1871 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
1872 	unsigned int ring_size = rx_ring->ring_size;
1873 	unsigned int ring_mask = ring_size - 1;
1874 	uint16_t next_to_clean = rx_ring->next_to_clean;
1875 	uint16_t desc_in_use = 0;
1876 	uint16_t req_id;
1877 	unsigned int recv_idx = 0;
1878 	struct rte_mbuf *mbuf = NULL;
1879 	struct rte_mbuf *mbuf_head = NULL;
1880 	struct rte_mbuf *mbuf_prev = NULL;
1881 	struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info;
1882 	unsigned int completed;
1883 
1884 	struct ena_com_rx_ctx ena_rx_ctx;
1885 	int rc = 0;
1886 
1887 	/* Check adapter state */
1888 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
1889 		RTE_LOG(ALERT, PMD,
1890 			"Trying to receive pkts while device is NOT running\n");
1891 		return 0;
1892 	}
1893 
1894 	desc_in_use = rx_ring->next_to_use - next_to_clean;
1895 	if (unlikely(nb_pkts > desc_in_use))
1896 		nb_pkts = desc_in_use;
1897 
1898 	for (completed = 0; completed < nb_pkts; completed++) {
1899 		int segments = 0;
1900 
1901 		ena_rx_ctx.max_bufs = rx_ring->ring_size;
1902 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1903 		ena_rx_ctx.descs = 0;
1904 		/* receive packet context */
1905 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1906 				    rx_ring->ena_com_io_sq,
1907 				    &ena_rx_ctx);
1908 		if (unlikely(rc)) {
1909 			RTE_LOG(ERR, PMD, "ena_com_rx_pkt error %d\n", rc);
1910 			rx_ring->adapter->trigger_reset = true;
1911 			return 0;
1912 		}
1913 
1914 		if (unlikely(ena_rx_ctx.descs == 0))
1915 			break;
1916 
1917 		while (segments < ena_rx_ctx.descs) {
1918 			req_id = ena_rx_ctx.ena_bufs[segments].req_id;
1919 			rc = validate_rx_req_id(rx_ring, req_id);
1920 			if (unlikely(rc))
1921 				break;
1922 
1923 			mbuf = rx_buff_info[req_id];
1924 			mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len;
1925 			mbuf->data_off = RTE_PKTMBUF_HEADROOM;
1926 			mbuf->refcnt = 1;
1927 			mbuf->next = NULL;
1928 			if (unlikely(segments == 0)) {
1929 				mbuf->nb_segs = ena_rx_ctx.descs;
1930 				mbuf->port = rx_ring->port_id;
1931 				mbuf->pkt_len = 0;
1932 				mbuf_head = mbuf;
1933 			} else {
1934 				/* for multi-segment pkts create mbuf chain */
1935 				mbuf_prev->next = mbuf;
1936 			}
1937 			mbuf_head->pkt_len += mbuf->data_len;
1938 
1939 			mbuf_prev = mbuf;
1940 			rx_ring->empty_rx_reqs[next_to_clean & ring_mask] =
1941 				req_id;
1942 			segments++;
1943 			next_to_clean++;
1944 		}
1945 
1946 		/* fill mbuf attributes if any */
1947 		ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx);
1948 		mbuf_head->hash.rss = ena_rx_ctx.hash;
1949 
1950 		/* pass to DPDK application head mbuf */
1951 		rx_pkts[recv_idx] = mbuf_head;
1952 		recv_idx++;
1953 	}
1954 
1955 	rx_ring->next_to_clean = next_to_clean;
1956 
1957 	desc_in_use = desc_in_use - completed + 1;
1958 	/* Burst refill to save doorbells, memory barriers, const interval */
1959 	if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size))
1960 		ena_populate_rx_queue(rx_ring, ring_size - desc_in_use);
1961 
1962 	return recv_idx;
1963 }
1964 
1965 static uint16_t
1966 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
1967 		uint16_t nb_pkts)
1968 {
1969 	int32_t ret;
1970 	uint32_t i;
1971 	struct rte_mbuf *m;
1972 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
1973 	struct ipv4_hdr *ip_hdr;
1974 	uint64_t ol_flags;
1975 	uint16_t frag_field;
1976 
1977 	for (i = 0; i != nb_pkts; i++) {
1978 		m = tx_pkts[i];
1979 		ol_flags = m->ol_flags;
1980 
1981 		if (!(ol_flags & PKT_TX_IPV4))
1982 			continue;
1983 
1984 		/* If there was not L2 header length specified, assume it is
1985 		 * length of the ethernet header.
1986 		 */
1987 		if (unlikely(m->l2_len == 0))
1988 			m->l2_len = sizeof(struct ether_hdr);
1989 
1990 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
1991 						 m->l2_len);
1992 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
1993 
1994 		if ((frag_field & IPV4_HDR_DF_FLAG) != 0) {
1995 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
1996 
1997 			/* If IPv4 header has DF flag enabled and TSO support is
1998 			 * disabled, partial chcecksum should not be calculated.
1999 			 */
2000 			if (!tx_ring->adapter->tso4_supported)
2001 				continue;
2002 		}
2003 
2004 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2005 				(ol_flags & PKT_TX_L4_MASK) ==
2006 				PKT_TX_SCTP_CKSUM) {
2007 			rte_errno = -ENOTSUP;
2008 			return i;
2009 		}
2010 
2011 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2012 		ret = rte_validate_tx_offload(m);
2013 		if (ret != 0) {
2014 			rte_errno = ret;
2015 			return i;
2016 		}
2017 #endif
2018 
2019 		/* In case we are supposed to TSO and have DF not set (DF=0)
2020 		 * hardware must be provided with partial checksum, otherwise
2021 		 * it will take care of necessary calculations.
2022 		 */
2023 
2024 		ret = rte_net_intel_cksum_flags_prepare(m,
2025 			ol_flags & ~PKT_TX_TCP_SEG);
2026 		if (ret != 0) {
2027 			rte_errno = ret;
2028 			return i;
2029 		}
2030 	}
2031 
2032 	return i;
2033 }
2034 
2035 static void ena_update_hints(struct ena_adapter *adapter,
2036 			     struct ena_admin_ena_hw_hints *hints)
2037 {
2038 	if (hints->admin_completion_tx_timeout)
2039 		adapter->ena_dev.admin_queue.completion_timeout =
2040 			hints->admin_completion_tx_timeout * 1000;
2041 
2042 	if (hints->mmio_read_timeout)
2043 		/* convert to usec */
2044 		adapter->ena_dev.mmio_read.reg_read_to =
2045 			hints->mmio_read_timeout * 1000;
2046 
2047 	if (hints->driver_watchdog_timeout) {
2048 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2049 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2050 		else
2051 			// Convert msecs to ticks
2052 			adapter->keep_alive_timeout =
2053 				(hints->driver_watchdog_timeout *
2054 				rte_get_timer_hz()) / 1000;
2055 	}
2056 }
2057 
2058 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2059 					struct rte_mbuf *mbuf)
2060 {
2061 	int num_segments, rc;
2062 
2063 	num_segments = mbuf->nb_segs;
2064 
2065 	if (likely(num_segments < tx_ring->sgl_size))
2066 		return 0;
2067 
2068 	rc = rte_pktmbuf_linearize(mbuf);
2069 	if (unlikely(rc))
2070 		RTE_LOG(WARNING, PMD, "Mbuf linearize failed\n");
2071 
2072 	return rc;
2073 }
2074 
2075 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2076 				  uint16_t nb_pkts)
2077 {
2078 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2079 	uint16_t next_to_use = tx_ring->next_to_use;
2080 	uint16_t next_to_clean = tx_ring->next_to_clean;
2081 	struct rte_mbuf *mbuf;
2082 	unsigned int ring_size = tx_ring->ring_size;
2083 	unsigned int ring_mask = ring_size - 1;
2084 	struct ena_com_tx_ctx ena_tx_ctx;
2085 	struct ena_tx_buffer *tx_info;
2086 	struct ena_com_buf *ebuf;
2087 	uint16_t rc, req_id, total_tx_descs = 0;
2088 	uint16_t sent_idx = 0, empty_tx_reqs;
2089 	int nb_hw_desc;
2090 
2091 	/* Check adapter state */
2092 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2093 		RTE_LOG(ALERT, PMD,
2094 			"Trying to xmit pkts while device is NOT running\n");
2095 		return 0;
2096 	}
2097 
2098 	empty_tx_reqs = ring_size - (next_to_use - next_to_clean);
2099 	if (nb_pkts > empty_tx_reqs)
2100 		nb_pkts = empty_tx_reqs;
2101 
2102 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2103 		mbuf = tx_pkts[sent_idx];
2104 
2105 		rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2106 		if (unlikely(rc))
2107 			break;
2108 
2109 		req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask];
2110 		tx_info = &tx_ring->tx_buffer_info[req_id];
2111 		tx_info->mbuf = mbuf;
2112 		tx_info->num_of_bufs = 0;
2113 		ebuf = tx_info->bufs;
2114 
2115 		/* Prepare TX context */
2116 		memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2117 		memset(&ena_tx_ctx.ena_meta, 0x0,
2118 		       sizeof(struct ena_com_tx_meta));
2119 		ena_tx_ctx.ena_bufs = ebuf;
2120 		ena_tx_ctx.req_id = req_id;
2121 		if (tx_ring->tx_mem_queue_type ==
2122 				ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2123 			/* prepare the push buffer with
2124 			 * virtual address of the data
2125 			 */
2126 			ena_tx_ctx.header_len =
2127 				RTE_MIN(mbuf->data_len,
2128 					tx_ring->tx_max_header_size);
2129 			ena_tx_ctx.push_header =
2130 				(void *)((char *)mbuf->buf_addr +
2131 					 mbuf->data_off);
2132 		} /* there's no else as we take advantage of memset zeroing */
2133 
2134 		/* Set TX offloads flags, if applicable */
2135 		ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads);
2136 
2137 		if (unlikely(mbuf->ol_flags &
2138 			     (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD)))
2139 			rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2140 
2141 		rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]);
2142 
2143 		/* Process first segment taking into
2144 		 * consideration pushed header
2145 		 */
2146 		if (mbuf->data_len > ena_tx_ctx.header_len) {
2147 			ebuf->paddr = mbuf->buf_iova +
2148 				      mbuf->data_off +
2149 				      ena_tx_ctx.header_len;
2150 			ebuf->len = mbuf->data_len - ena_tx_ctx.header_len;
2151 			ebuf++;
2152 			tx_info->num_of_bufs++;
2153 		}
2154 
2155 		while ((mbuf = mbuf->next) != NULL) {
2156 			ebuf->paddr = mbuf->buf_iova + mbuf->data_off;
2157 			ebuf->len = mbuf->data_len;
2158 			ebuf++;
2159 			tx_info->num_of_bufs++;
2160 		}
2161 
2162 		ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2163 
2164 		/* Write data to device */
2165 		rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,
2166 					&ena_tx_ctx, &nb_hw_desc);
2167 		if (unlikely(rc))
2168 			break;
2169 
2170 		tx_info->tx_descs = nb_hw_desc;
2171 
2172 		next_to_use++;
2173 	}
2174 
2175 	/* If there are ready packets to be xmitted... */
2176 	if (sent_idx > 0) {
2177 		/* ...let HW do its best :-) */
2178 		rte_wmb();
2179 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2180 
2181 		tx_ring->next_to_use = next_to_use;
2182 	}
2183 
2184 	/* Clear complete packets  */
2185 	while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) {
2186 		rc = validate_tx_req_id(tx_ring, req_id);
2187 		if (rc)
2188 			break;
2189 
2190 		/* Get Tx info & store how many descs were processed  */
2191 		tx_info = &tx_ring->tx_buffer_info[req_id];
2192 		total_tx_descs += tx_info->tx_descs;
2193 
2194 		/* Free whole mbuf chain  */
2195 		mbuf = tx_info->mbuf;
2196 		rte_pktmbuf_free(mbuf);
2197 		tx_info->mbuf = NULL;
2198 
2199 		/* Put back descriptor to the ring for reuse */
2200 		tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id;
2201 		next_to_clean++;
2202 
2203 		/* If too many descs to clean, leave it for another run */
2204 		if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size)))
2205 			break;
2206 	}
2207 
2208 	if (total_tx_descs > 0) {
2209 		/* acknowledge completion of sent packets */
2210 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2211 		tx_ring->next_to_clean = next_to_clean;
2212 	}
2213 
2214 	return sent_idx;
2215 }
2216 
2217 /*********************************************************************
2218  *  PMD configuration
2219  *********************************************************************/
2220 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2221 	struct rte_pci_device *pci_dev)
2222 {
2223 	return rte_eth_dev_pci_generic_probe(pci_dev,
2224 		sizeof(struct ena_adapter), eth_ena_dev_init);
2225 }
2226 
2227 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2228 {
2229 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2230 }
2231 
2232 static struct rte_pci_driver rte_ena_pmd = {
2233 	.id_table = pci_id_ena_map,
2234 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2235 		     RTE_PCI_DRV_WC_ACTIVATE,
2236 	.probe = eth_ena_pci_probe,
2237 	.remove = eth_ena_pci_remove,
2238 };
2239 
2240 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2241 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2242 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2243 
2244 RTE_INIT(ena_init_log)
2245 {
2246 	ena_logtype_init = rte_log_register("pmd.net.ena.init");
2247 	if (ena_logtype_init >= 0)
2248 		rte_log_set_level(ena_logtype_init, RTE_LOG_NOTICE);
2249 	ena_logtype_driver = rte_log_register("pmd.net.ena.driver");
2250 	if (ena_logtype_driver >= 0)
2251 		rte_log_set_level(ena_logtype_driver, RTE_LOG_NOTICE);
2252 }
2253 
2254 /******************************************************************************
2255  ******************************** AENQ Handlers *******************************
2256  *****************************************************************************/
2257 static void ena_update_on_link_change(void *adapter_data,
2258 				      struct ena_admin_aenq_entry *aenq_e)
2259 {
2260 	struct rte_eth_dev *eth_dev;
2261 	struct ena_adapter *adapter;
2262 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2263 	uint32_t status;
2264 
2265 	adapter = (struct ena_adapter *)adapter_data;
2266 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2267 	eth_dev = adapter->rte_dev;
2268 
2269 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2270 	adapter->link_status = status;
2271 
2272 	ena_link_update(eth_dev, 0);
2273 	_rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2274 }
2275 
2276 static void ena_notification(void *data,
2277 			     struct ena_admin_aenq_entry *aenq_e)
2278 {
2279 	struct ena_adapter *adapter = (struct ena_adapter *)data;
2280 	struct ena_admin_ena_hw_hints *hints;
2281 
2282 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2283 		RTE_LOG(WARNING, PMD, "Invalid group(%x) expected %x\n",
2284 			aenq_e->aenq_common_desc.group,
2285 			ENA_ADMIN_NOTIFICATION);
2286 
2287 	switch (aenq_e->aenq_common_desc.syndrom) {
2288 	case ENA_ADMIN_UPDATE_HINTS:
2289 		hints = (struct ena_admin_ena_hw_hints *)
2290 			(&aenq_e->inline_data_w4);
2291 		ena_update_hints(adapter, hints);
2292 		break;
2293 	default:
2294 		RTE_LOG(ERR, PMD, "Invalid aenq notification link state %d\n",
2295 			aenq_e->aenq_common_desc.syndrom);
2296 	}
2297 }
2298 
2299 static void ena_keep_alive(void *adapter_data,
2300 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2301 {
2302 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
2303 
2304 	adapter->timestamp_wd = rte_get_timer_cycles();
2305 }
2306 
2307 /**
2308  * This handler will called for unknown event group or unimplemented handlers
2309  **/
2310 static void unimplemented_aenq_handler(__rte_unused void *data,
2311 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
2312 {
2313 	RTE_LOG(ERR, PMD, "Unknown event was received or event with "
2314 			  "unimplemented handler\n");
2315 }
2316 
2317 static struct ena_aenq_handlers aenq_handlers = {
2318 	.handlers = {
2319 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
2320 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
2321 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
2322 	},
2323 	.unimplemented_handler = unimplemented_aenq_handler
2324 };
2325