1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) 2015-2016 Amazon.com, Inc. or its affiliates. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of copyright holder nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <rte_ether.h> 35 #include <rte_ethdev.h> 36 #include <rte_ethdev_pci.h> 37 #include <rte_tcp.h> 38 #include <rte_atomic.h> 39 #include <rte_dev.h> 40 #include <rte_errno.h> 41 #include <rte_version.h> 42 #include <rte_eal_memconfig.h> 43 #include <rte_net.h> 44 45 #include "ena_ethdev.h" 46 #include "ena_logs.h" 47 #include "ena_platform.h" 48 #include "ena_com.h" 49 #include "ena_eth_com.h" 50 51 #include <ena_common_defs.h> 52 #include <ena_regs_defs.h> 53 #include <ena_admin_defs.h> 54 #include <ena_eth_io_defs.h> 55 56 #define DRV_MODULE_VER_MAJOR 1 57 #define DRV_MODULE_VER_MINOR 0 58 #define DRV_MODULE_VER_SUBMINOR 0 59 60 #define ENA_IO_TXQ_IDX(q) (2 * (q)) 61 #define ENA_IO_RXQ_IDX(q) (2 * (q) + 1) 62 /*reverse version of ENA_IO_RXQ_IDX*/ 63 #define ENA_IO_RXQ_IDX_REV(q) ((q - 1) / 2) 64 65 /* While processing submitted and completed descriptors (rx and tx path 66 * respectively) in a loop it is desired to: 67 * - perform batch submissions while populating sumbissmion queue 68 * - avoid blocking transmission of other packets during cleanup phase 69 * Hence the utilization ratio of 1/8 of a queue size. 70 */ 71 #define ENA_RING_DESCS_RATIO(ring_size) (ring_size / 8) 72 73 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l) 74 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift)) 75 76 #define GET_L4_HDR_LEN(mbuf) \ 77 ((rte_pktmbuf_mtod_offset(mbuf, struct tcp_hdr *, \ 78 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4) 79 80 #define ENA_RX_RSS_TABLE_LOG_SIZE 7 81 #define ENA_RX_RSS_TABLE_SIZE (1 << ENA_RX_RSS_TABLE_LOG_SIZE) 82 #define ENA_HASH_KEY_SIZE 40 83 #define ENA_ETH_SS_STATS 0xFF 84 #define ETH_GSTRING_LEN 32 85 86 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 87 88 enum ethtool_stringset { 89 ETH_SS_TEST = 0, 90 ETH_SS_STATS, 91 }; 92 93 struct ena_stats { 94 char name[ETH_GSTRING_LEN]; 95 int stat_offset; 96 }; 97 98 #define ENA_STAT_ENA_COM_ENTRY(stat) { \ 99 .name = #stat, \ 100 .stat_offset = offsetof(struct ena_com_stats_admin, stat) \ 101 } 102 103 #define ENA_STAT_ENTRY(stat, stat_type) { \ 104 .name = #stat, \ 105 .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \ 106 } 107 108 #define ENA_STAT_RX_ENTRY(stat) \ 109 ENA_STAT_ENTRY(stat, rx) 110 111 #define ENA_STAT_TX_ENTRY(stat) \ 112 ENA_STAT_ENTRY(stat, tx) 113 114 #define ENA_STAT_GLOBAL_ENTRY(stat) \ 115 ENA_STAT_ENTRY(stat, dev) 116 117 static const struct ena_stats ena_stats_global_strings[] = { 118 ENA_STAT_GLOBAL_ENTRY(tx_timeout), 119 ENA_STAT_GLOBAL_ENTRY(io_suspend), 120 ENA_STAT_GLOBAL_ENTRY(io_resume), 121 ENA_STAT_GLOBAL_ENTRY(wd_expired), 122 ENA_STAT_GLOBAL_ENTRY(interface_up), 123 ENA_STAT_GLOBAL_ENTRY(interface_down), 124 ENA_STAT_GLOBAL_ENTRY(admin_q_pause), 125 }; 126 127 static const struct ena_stats ena_stats_tx_strings[] = { 128 ENA_STAT_TX_ENTRY(cnt), 129 ENA_STAT_TX_ENTRY(bytes), 130 ENA_STAT_TX_ENTRY(queue_stop), 131 ENA_STAT_TX_ENTRY(queue_wakeup), 132 ENA_STAT_TX_ENTRY(dma_mapping_err), 133 ENA_STAT_TX_ENTRY(linearize), 134 ENA_STAT_TX_ENTRY(linearize_failed), 135 ENA_STAT_TX_ENTRY(tx_poll), 136 ENA_STAT_TX_ENTRY(doorbells), 137 ENA_STAT_TX_ENTRY(prepare_ctx_err), 138 ENA_STAT_TX_ENTRY(missing_tx_comp), 139 ENA_STAT_TX_ENTRY(bad_req_id), 140 }; 141 142 static const struct ena_stats ena_stats_rx_strings[] = { 143 ENA_STAT_RX_ENTRY(cnt), 144 ENA_STAT_RX_ENTRY(bytes), 145 ENA_STAT_RX_ENTRY(refil_partial), 146 ENA_STAT_RX_ENTRY(bad_csum), 147 ENA_STAT_RX_ENTRY(page_alloc_fail), 148 ENA_STAT_RX_ENTRY(skb_alloc_fail), 149 ENA_STAT_RX_ENTRY(dma_mapping_err), 150 ENA_STAT_RX_ENTRY(bad_desc_num), 151 ENA_STAT_RX_ENTRY(small_copy_len_pkt), 152 }; 153 154 static const struct ena_stats ena_stats_ena_com_strings[] = { 155 ENA_STAT_ENA_COM_ENTRY(aborted_cmd), 156 ENA_STAT_ENA_COM_ENTRY(submitted_cmd), 157 ENA_STAT_ENA_COM_ENTRY(completed_cmd), 158 ENA_STAT_ENA_COM_ENTRY(out_of_space), 159 ENA_STAT_ENA_COM_ENTRY(no_completion), 160 }; 161 162 #define ENA_STATS_ARRAY_GLOBAL ARRAY_SIZE(ena_stats_global_strings) 163 #define ENA_STATS_ARRAY_TX ARRAY_SIZE(ena_stats_tx_strings) 164 #define ENA_STATS_ARRAY_RX ARRAY_SIZE(ena_stats_rx_strings) 165 #define ENA_STATS_ARRAY_ENA_COM ARRAY_SIZE(ena_stats_ena_com_strings) 166 167 /** Vendor ID used by Amazon devices */ 168 #define PCI_VENDOR_ID_AMAZON 0x1D0F 169 /** Amazon devices */ 170 #define PCI_DEVICE_ID_ENA_VF 0xEC20 171 #define PCI_DEVICE_ID_ENA_LLQ_VF 0xEC21 172 173 #define ENA_TX_OFFLOAD_MASK (\ 174 PKT_TX_L4_MASK | \ 175 PKT_TX_IP_CKSUM | \ 176 PKT_TX_TCP_SEG) 177 178 #define ENA_TX_OFFLOAD_NOTSUP_MASK \ 179 (PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK) 180 181 static const struct rte_pci_id pci_id_ena_map[] = { 182 { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) }, 183 { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) }, 184 { .device_id = 0 }, 185 }; 186 187 static int ena_device_init(struct ena_com_dev *ena_dev, 188 struct ena_com_dev_get_features_ctx *get_feat_ctx); 189 static int ena_dev_configure(struct rte_eth_dev *dev); 190 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, 191 uint16_t nb_pkts); 192 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, 193 uint16_t nb_pkts); 194 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, 195 uint16_t nb_desc, unsigned int socket_id, 196 const struct rte_eth_txconf *tx_conf); 197 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, 198 uint16_t nb_desc, unsigned int socket_id, 199 const struct rte_eth_rxconf *rx_conf, 200 struct rte_mempool *mp); 201 static uint16_t eth_ena_recv_pkts(void *rx_queue, 202 struct rte_mbuf **rx_pkts, uint16_t nb_pkts); 203 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count); 204 static void ena_init_rings(struct ena_adapter *adapter); 205 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); 206 static int ena_start(struct rte_eth_dev *dev); 207 static void ena_close(struct rte_eth_dev *dev); 208 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats); 209 static void ena_rx_queue_release_all(struct rte_eth_dev *dev); 210 static void ena_tx_queue_release_all(struct rte_eth_dev *dev); 211 static void ena_rx_queue_release(void *queue); 212 static void ena_tx_queue_release(void *queue); 213 static void ena_rx_queue_release_bufs(struct ena_ring *ring); 214 static void ena_tx_queue_release_bufs(struct ena_ring *ring); 215 static int ena_link_update(struct rte_eth_dev *dev, 216 int wait_to_complete); 217 static int ena_queue_restart(struct ena_ring *ring); 218 static int ena_queue_restart_all(struct rte_eth_dev *dev, 219 enum ena_ring_type ring_type); 220 static void ena_stats_restart(struct rte_eth_dev *dev); 221 static void ena_infos_get(struct rte_eth_dev *dev, 222 struct rte_eth_dev_info *dev_info); 223 static int ena_rss_reta_update(struct rte_eth_dev *dev, 224 struct rte_eth_rss_reta_entry64 *reta_conf, 225 uint16_t reta_size); 226 static int ena_rss_reta_query(struct rte_eth_dev *dev, 227 struct rte_eth_rss_reta_entry64 *reta_conf, 228 uint16_t reta_size); 229 static int ena_get_sset_count(struct rte_eth_dev *dev, int sset); 230 231 static const struct eth_dev_ops ena_dev_ops = { 232 .dev_configure = ena_dev_configure, 233 .dev_infos_get = ena_infos_get, 234 .rx_queue_setup = ena_rx_queue_setup, 235 .tx_queue_setup = ena_tx_queue_setup, 236 .dev_start = ena_start, 237 .link_update = ena_link_update, 238 .stats_get = ena_stats_get, 239 .mtu_set = ena_mtu_set, 240 .rx_queue_release = ena_rx_queue_release, 241 .tx_queue_release = ena_tx_queue_release, 242 .dev_close = ena_close, 243 .reta_update = ena_rss_reta_update, 244 .reta_query = ena_rss_reta_query, 245 }; 246 247 #define NUMA_NO_NODE SOCKET_ID_ANY 248 249 static inline int ena_cpu_to_node(int cpu) 250 { 251 struct rte_config *config = rte_eal_get_configuration(); 252 253 if (likely(cpu < RTE_MAX_MEMZONE)) 254 return config->mem_config->memzone[cpu].socket_id; 255 256 return NUMA_NO_NODE; 257 } 258 259 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf, 260 struct ena_com_rx_ctx *ena_rx_ctx) 261 { 262 uint64_t ol_flags = 0; 263 uint32_t packet_type = 0; 264 265 if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) 266 packet_type |= RTE_PTYPE_L4_TCP; 267 else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP) 268 packet_type |= RTE_PTYPE_L4_UDP; 269 270 if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) 271 packet_type |= RTE_PTYPE_L3_IPV4; 272 else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) 273 packet_type |= RTE_PTYPE_L3_IPV6; 274 275 if (unlikely(ena_rx_ctx->l4_csum_err)) 276 ol_flags |= PKT_RX_L4_CKSUM_BAD; 277 if (unlikely(ena_rx_ctx->l3_csum_err)) 278 ol_flags |= PKT_RX_IP_CKSUM_BAD; 279 280 mbuf->ol_flags = ol_flags; 281 mbuf->packet_type = packet_type; 282 } 283 284 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf, 285 struct ena_com_tx_ctx *ena_tx_ctx) 286 { 287 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 288 289 if (mbuf->ol_flags & 290 (PKT_TX_L4_MASK | PKT_TX_IP_CKSUM | PKT_TX_TCP_SEG)) { 291 /* check if TSO is required */ 292 if (mbuf->ol_flags & PKT_TX_TCP_SEG) { 293 ena_tx_ctx->tso_enable = true; 294 295 ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf); 296 } 297 298 /* check if L3 checksum is needed */ 299 if (mbuf->ol_flags & PKT_TX_IP_CKSUM) 300 ena_tx_ctx->l3_csum_enable = true; 301 302 if (mbuf->ol_flags & PKT_TX_IPV6) { 303 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 304 } else { 305 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 306 307 /* set don't fragment (DF) flag */ 308 if (mbuf->packet_type & 309 (RTE_PTYPE_L4_NONFRAG 310 | RTE_PTYPE_INNER_L4_NONFRAG)) 311 ena_tx_ctx->df = true; 312 } 313 314 /* check if L4 checksum is needed */ 315 switch (mbuf->ol_flags & PKT_TX_L4_MASK) { 316 case PKT_TX_TCP_CKSUM: 317 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 318 ena_tx_ctx->l4_csum_enable = true; 319 break; 320 case PKT_TX_UDP_CKSUM: 321 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 322 ena_tx_ctx->l4_csum_enable = true; 323 break; 324 default: 325 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN; 326 ena_tx_ctx->l4_csum_enable = false; 327 break; 328 } 329 330 ena_meta->mss = mbuf->tso_segsz; 331 ena_meta->l3_hdr_len = mbuf->l3_len; 332 ena_meta->l3_hdr_offset = mbuf->l2_len; 333 /* this param needed only for TSO */ 334 ena_meta->l3_outer_hdr_len = 0; 335 ena_meta->l3_outer_hdr_offset = 0; 336 337 ena_tx_ctx->meta_valid = true; 338 } else { 339 ena_tx_ctx->meta_valid = false; 340 } 341 } 342 343 static void ena_config_host_info(struct ena_com_dev *ena_dev) 344 { 345 struct ena_admin_host_info *host_info; 346 int rc; 347 348 /* Allocate only the host info */ 349 rc = ena_com_allocate_host_info(ena_dev); 350 if (rc) { 351 RTE_LOG(ERR, PMD, "Cannot allocate host info\n"); 352 return; 353 } 354 355 host_info = ena_dev->host_attr.host_info; 356 357 host_info->os_type = ENA_ADMIN_OS_DPDK; 358 host_info->kernel_ver = RTE_VERSION; 359 snprintf((char *)host_info->kernel_ver_str, 360 sizeof(host_info->kernel_ver_str), 361 "%s", rte_version()); 362 host_info->os_dist = RTE_VERSION; 363 snprintf((char *)host_info->os_dist_str, 364 sizeof(host_info->os_dist_str), 365 "%s", rte_version()); 366 host_info->driver_version = 367 (DRV_MODULE_VER_MAJOR) | 368 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 369 (DRV_MODULE_VER_SUBMINOR << 370 ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT); 371 372 rc = ena_com_set_host_attributes(ena_dev); 373 if (rc) { 374 RTE_LOG(ERR, PMD, "Cannot set host attributes\n"); 375 if (rc != -EPERM) 376 goto err; 377 } 378 379 return; 380 381 err: 382 ena_com_delete_host_info(ena_dev); 383 } 384 385 static int 386 ena_get_sset_count(struct rte_eth_dev *dev, int sset) 387 { 388 if (sset != ETH_SS_STATS) 389 return -EOPNOTSUPP; 390 391 /* Workaround for clang: 392 * touch internal structures to prevent 393 * compiler error 394 */ 395 ENA_TOUCH(ena_stats_global_strings); 396 ENA_TOUCH(ena_stats_tx_strings); 397 ENA_TOUCH(ena_stats_rx_strings); 398 ENA_TOUCH(ena_stats_ena_com_strings); 399 400 return dev->data->nb_tx_queues * 401 (ENA_STATS_ARRAY_TX + ENA_STATS_ARRAY_RX) + 402 ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENA_COM; 403 } 404 405 static void ena_config_debug_area(struct ena_adapter *adapter) 406 { 407 u32 debug_area_size; 408 int rc, ss_count; 409 410 ss_count = ena_get_sset_count(adapter->rte_dev, ETH_SS_STATS); 411 if (ss_count <= 0) { 412 RTE_LOG(ERR, PMD, "SS count is negative\n"); 413 return; 414 } 415 416 /* allocate 32 bytes for each string and 64bit for the value */ 417 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 418 419 rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size); 420 if (rc) { 421 RTE_LOG(ERR, PMD, "Cannot allocate debug area\n"); 422 return; 423 } 424 425 rc = ena_com_set_host_attributes(&adapter->ena_dev); 426 if (rc) { 427 RTE_LOG(WARNING, PMD, "Cannot set host attributes\n"); 428 if (rc != -EPERM) 429 goto err; 430 } 431 432 return; 433 err: 434 ena_com_delete_debug_area(&adapter->ena_dev); 435 } 436 437 static void ena_close(struct rte_eth_dev *dev) 438 { 439 struct ena_adapter *adapter = 440 (struct ena_adapter *)(dev->data->dev_private); 441 442 adapter->state = ENA_ADAPTER_STATE_STOPPED; 443 444 ena_rx_queue_release_all(dev); 445 ena_tx_queue_release_all(dev); 446 } 447 448 static int ena_rss_reta_update(struct rte_eth_dev *dev, 449 struct rte_eth_rss_reta_entry64 *reta_conf, 450 uint16_t reta_size) 451 { 452 struct ena_adapter *adapter = 453 (struct ena_adapter *)(dev->data->dev_private); 454 struct ena_com_dev *ena_dev = &adapter->ena_dev; 455 int ret, i; 456 u16 entry_value; 457 int conf_idx; 458 int idx; 459 460 if ((reta_size == 0) || (reta_conf == NULL)) 461 return -EINVAL; 462 463 if (reta_size > ENA_RX_RSS_TABLE_SIZE) { 464 RTE_LOG(WARNING, PMD, 465 "indirection table %d is bigger than supported (%d)\n", 466 reta_size, ENA_RX_RSS_TABLE_SIZE); 467 ret = -EINVAL; 468 goto err; 469 } 470 471 for (i = 0 ; i < reta_size ; i++) { 472 /* each reta_conf is for 64 entries. 473 * to support 128 we use 2 conf of 64 474 */ 475 conf_idx = i / RTE_RETA_GROUP_SIZE; 476 idx = i % RTE_RETA_GROUP_SIZE; 477 if (TEST_BIT(reta_conf[conf_idx].mask, idx)) { 478 entry_value = 479 ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]); 480 ret = ena_com_indirect_table_fill_entry(ena_dev, 481 i, 482 entry_value); 483 if (unlikely(ret && (ret != ENA_COM_PERMISSION))) { 484 RTE_LOG(ERR, PMD, 485 "Cannot fill indirect table\n"); 486 ret = -ENOTSUP; 487 goto err; 488 } 489 } 490 } 491 492 ret = ena_com_indirect_table_set(ena_dev); 493 if (unlikely(ret && (ret != ENA_COM_PERMISSION))) { 494 RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n"); 495 ret = -ENOTSUP; 496 goto err; 497 } 498 499 RTE_LOG(DEBUG, PMD, "%s(): RSS configured %d entries for port %d\n", 500 __func__, reta_size, adapter->rte_dev->data->port_id); 501 err: 502 return ret; 503 } 504 505 /* Query redirection table. */ 506 static int ena_rss_reta_query(struct rte_eth_dev *dev, 507 struct rte_eth_rss_reta_entry64 *reta_conf, 508 uint16_t reta_size) 509 { 510 struct ena_adapter *adapter = 511 (struct ena_adapter *)(dev->data->dev_private); 512 struct ena_com_dev *ena_dev = &adapter->ena_dev; 513 int ret; 514 int i; 515 u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0}; 516 int reta_conf_idx; 517 int reta_idx; 518 519 if (reta_size == 0 || reta_conf == NULL || 520 (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL))) 521 return -EINVAL; 522 523 ret = ena_com_indirect_table_get(ena_dev, indirect_table); 524 if (unlikely(ret && (ret != ENA_COM_PERMISSION))) { 525 RTE_LOG(ERR, PMD, "cannot get indirect table\n"); 526 ret = -ENOTSUP; 527 goto err; 528 } 529 530 for (i = 0 ; i < reta_size ; i++) { 531 reta_conf_idx = i / RTE_RETA_GROUP_SIZE; 532 reta_idx = i % RTE_RETA_GROUP_SIZE; 533 if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx)) 534 reta_conf[reta_conf_idx].reta[reta_idx] = 535 ENA_IO_RXQ_IDX_REV(indirect_table[i]); 536 } 537 err: 538 return ret; 539 } 540 541 static int ena_rss_init_default(struct ena_adapter *adapter) 542 { 543 struct ena_com_dev *ena_dev = &adapter->ena_dev; 544 uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues; 545 int rc, i; 546 u32 val; 547 548 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 549 if (unlikely(rc)) { 550 RTE_LOG(ERR, PMD, "Cannot init indirect table\n"); 551 goto err_rss_init; 552 } 553 554 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 555 val = i % nb_rx_queues; 556 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 557 ENA_IO_RXQ_IDX(val)); 558 if (unlikely(rc && (rc != ENA_COM_PERMISSION))) { 559 RTE_LOG(ERR, PMD, "Cannot fill indirect table\n"); 560 goto err_fill_indir; 561 } 562 } 563 564 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL, 565 ENA_HASH_KEY_SIZE, 0xFFFFFFFF); 566 if (unlikely(rc && (rc != ENA_COM_PERMISSION))) { 567 RTE_LOG(INFO, PMD, "Cannot fill hash function\n"); 568 goto err_fill_indir; 569 } 570 571 rc = ena_com_set_default_hash_ctrl(ena_dev); 572 if (unlikely(rc && (rc != ENA_COM_PERMISSION))) { 573 RTE_LOG(INFO, PMD, "Cannot fill hash control\n"); 574 goto err_fill_indir; 575 } 576 577 rc = ena_com_indirect_table_set(ena_dev); 578 if (unlikely(rc && (rc != ENA_COM_PERMISSION))) { 579 RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n"); 580 goto err_fill_indir; 581 } 582 RTE_LOG(DEBUG, PMD, "RSS configured for port %d\n", 583 adapter->rte_dev->data->port_id); 584 585 return 0; 586 587 err_fill_indir: 588 ena_com_rss_destroy(ena_dev); 589 err_rss_init: 590 591 return rc; 592 } 593 594 static void ena_rx_queue_release_all(struct rte_eth_dev *dev) 595 { 596 struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues; 597 int nb_queues = dev->data->nb_rx_queues; 598 int i; 599 600 for (i = 0; i < nb_queues; i++) 601 ena_rx_queue_release(queues[i]); 602 } 603 604 static void ena_tx_queue_release_all(struct rte_eth_dev *dev) 605 { 606 struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues; 607 int nb_queues = dev->data->nb_tx_queues; 608 int i; 609 610 for (i = 0; i < nb_queues; i++) 611 ena_tx_queue_release(queues[i]); 612 } 613 614 static void ena_rx_queue_release(void *queue) 615 { 616 struct ena_ring *ring = (struct ena_ring *)queue; 617 struct ena_adapter *adapter = ring->adapter; 618 int ena_qid; 619 620 ena_assert_msg(ring->configured, 621 "API violation - releasing not configured queue"); 622 ena_assert_msg(ring->adapter->state != ENA_ADAPTER_STATE_RUNNING, 623 "API violation"); 624 625 /* Destroy HW queue */ 626 ena_qid = ENA_IO_RXQ_IDX(ring->id); 627 ena_com_destroy_io_queue(&adapter->ena_dev, ena_qid); 628 629 /* Free all bufs */ 630 ena_rx_queue_release_bufs(ring); 631 632 /* Free ring resources */ 633 if (ring->rx_buffer_info) 634 rte_free(ring->rx_buffer_info); 635 ring->rx_buffer_info = NULL; 636 637 ring->configured = 0; 638 639 RTE_LOG(NOTICE, PMD, "RX Queue %d:%d released\n", 640 ring->port_id, ring->id); 641 } 642 643 static void ena_tx_queue_release(void *queue) 644 { 645 struct ena_ring *ring = (struct ena_ring *)queue; 646 struct ena_adapter *adapter = ring->adapter; 647 int ena_qid; 648 649 ena_assert_msg(ring->configured, 650 "API violation. Releasing not configured queue"); 651 ena_assert_msg(ring->adapter->state != ENA_ADAPTER_STATE_RUNNING, 652 "API violation"); 653 654 /* Destroy HW queue */ 655 ena_qid = ENA_IO_TXQ_IDX(ring->id); 656 ena_com_destroy_io_queue(&adapter->ena_dev, ena_qid); 657 658 /* Free all bufs */ 659 ena_tx_queue_release_bufs(ring); 660 661 /* Free ring resources */ 662 if (ring->tx_buffer_info) 663 rte_free(ring->tx_buffer_info); 664 665 if (ring->empty_tx_reqs) 666 rte_free(ring->empty_tx_reqs); 667 668 ring->empty_tx_reqs = NULL; 669 ring->tx_buffer_info = NULL; 670 671 ring->configured = 0; 672 673 RTE_LOG(NOTICE, PMD, "TX Queue %d:%d released\n", 674 ring->port_id, ring->id); 675 } 676 677 static void ena_rx_queue_release_bufs(struct ena_ring *ring) 678 { 679 unsigned int ring_mask = ring->ring_size - 1; 680 681 while (ring->next_to_clean != ring->next_to_use) { 682 struct rte_mbuf *m = 683 ring->rx_buffer_info[ring->next_to_clean & ring_mask]; 684 685 if (m) 686 rte_mbuf_raw_free(m); 687 688 ring->next_to_clean++; 689 } 690 } 691 692 static void ena_tx_queue_release_bufs(struct ena_ring *ring) 693 { 694 unsigned int i; 695 696 for (i = 0; i < ring->ring_size; ++i) { 697 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i]; 698 699 if (tx_buf->mbuf) 700 rte_pktmbuf_free(tx_buf->mbuf); 701 702 ring->next_to_clean++; 703 } 704 } 705 706 static int ena_link_update(struct rte_eth_dev *dev, 707 __rte_unused int wait_to_complete) 708 { 709 struct rte_eth_link *link = &dev->data->dev_link; 710 711 link->link_status = 1; 712 link->link_speed = ETH_SPEED_NUM_10G; 713 link->link_duplex = ETH_LINK_FULL_DUPLEX; 714 715 return 0; 716 } 717 718 static int ena_queue_restart_all(struct rte_eth_dev *dev, 719 enum ena_ring_type ring_type) 720 { 721 struct ena_adapter *adapter = 722 (struct ena_adapter *)(dev->data->dev_private); 723 struct ena_ring *queues = NULL; 724 int i = 0; 725 int rc = 0; 726 727 queues = (ring_type == ENA_RING_TYPE_RX) ? 728 adapter->rx_ring : adapter->tx_ring; 729 730 for (i = 0; i < adapter->num_queues; i++) { 731 if (queues[i].configured) { 732 if (ring_type == ENA_RING_TYPE_RX) { 733 ena_assert_msg( 734 dev->data->rx_queues[i] == &queues[i], 735 "Inconsistent state of rx queues\n"); 736 } else { 737 ena_assert_msg( 738 dev->data->tx_queues[i] == &queues[i], 739 "Inconsistent state of tx queues\n"); 740 } 741 742 rc = ena_queue_restart(&queues[i]); 743 744 if (rc) { 745 PMD_INIT_LOG(ERR, 746 "failed to restart queue %d type(%d)", 747 i, ring_type); 748 return -1; 749 } 750 } 751 } 752 753 return 0; 754 } 755 756 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter) 757 { 758 uint32_t max_frame_len = adapter->max_mtu; 759 760 if (adapter->rte_eth_dev_data->dev_conf.rxmode.jumbo_frame == 1) 761 max_frame_len = 762 adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len; 763 764 return max_frame_len; 765 } 766 767 static int ena_check_valid_conf(struct ena_adapter *adapter) 768 { 769 uint32_t max_frame_len = ena_get_mtu_conf(adapter); 770 771 if (max_frame_len > adapter->max_mtu) { 772 PMD_INIT_LOG(ERR, "Unsupported MTU of %d", max_frame_len); 773 return -1; 774 } 775 776 return 0; 777 } 778 779 static int 780 ena_calc_queue_size(struct ena_com_dev *ena_dev, 781 struct ena_com_dev_get_features_ctx *get_feat_ctx) 782 { 783 uint32_t queue_size = ENA_DEFAULT_RING_SIZE; 784 785 queue_size = RTE_MIN(queue_size, 786 get_feat_ctx->max_queues.max_cq_depth); 787 queue_size = RTE_MIN(queue_size, 788 get_feat_ctx->max_queues.max_sq_depth); 789 790 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 791 queue_size = RTE_MIN(queue_size, 792 get_feat_ctx->max_queues.max_llq_depth); 793 794 /* Round down to power of 2 */ 795 if (!rte_is_power_of_2(queue_size)) 796 queue_size = rte_align32pow2(queue_size >> 1); 797 798 if (queue_size == 0) { 799 PMD_INIT_LOG(ERR, "Invalid queue size"); 800 return -EFAULT; 801 } 802 803 return queue_size; 804 } 805 806 static void ena_stats_restart(struct rte_eth_dev *dev) 807 { 808 struct ena_adapter *adapter = 809 (struct ena_adapter *)(dev->data->dev_private); 810 811 rte_atomic64_init(&adapter->drv_stats->ierrors); 812 rte_atomic64_init(&adapter->drv_stats->oerrors); 813 rte_atomic64_init(&adapter->drv_stats->rx_nombuf); 814 } 815 816 static int ena_stats_get(struct rte_eth_dev *dev, 817 struct rte_eth_stats *stats) 818 { 819 struct ena_admin_basic_stats ena_stats; 820 struct ena_adapter *adapter = 821 (struct ena_adapter *)(dev->data->dev_private); 822 struct ena_com_dev *ena_dev = &adapter->ena_dev; 823 int rc; 824 825 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 826 return -ENOTSUP; 827 828 memset(&ena_stats, 0, sizeof(ena_stats)); 829 rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats); 830 if (unlikely(rc)) { 831 RTE_LOG(ERR, PMD, "Could not retrieve statistics from ENA"); 832 return rc; 833 } 834 835 /* Set of basic statistics from ENA */ 836 stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high, 837 ena_stats.rx_pkts_low); 838 stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high, 839 ena_stats.tx_pkts_low); 840 stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high, 841 ena_stats.rx_bytes_low); 842 stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high, 843 ena_stats.tx_bytes_low); 844 stats->imissed = __MERGE_64B_H_L(ena_stats.rx_drops_high, 845 ena_stats.rx_drops_low); 846 847 /* Driver related stats */ 848 stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors); 849 stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors); 850 stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf); 851 return 0; 852 } 853 854 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) 855 { 856 struct ena_adapter *adapter; 857 struct ena_com_dev *ena_dev; 858 int rc = 0; 859 860 ena_assert_msg(dev->data != NULL, "Uninitialized device"); 861 ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device"); 862 adapter = (struct ena_adapter *)(dev->data->dev_private); 863 864 ena_dev = &adapter->ena_dev; 865 ena_assert_msg(ena_dev != NULL, "Uninitialized device"); 866 867 if (mtu > ena_get_mtu_conf(adapter)) { 868 RTE_LOG(ERR, PMD, 869 "Given MTU (%d) exceeds maximum MTU supported (%d)\n", 870 mtu, ena_get_mtu_conf(adapter)); 871 rc = -EINVAL; 872 goto err; 873 } 874 875 rc = ena_com_set_dev_mtu(ena_dev, mtu); 876 if (rc) 877 RTE_LOG(ERR, PMD, "Could not set MTU: %d\n", mtu); 878 else 879 RTE_LOG(NOTICE, PMD, "Set MTU: %d\n", mtu); 880 881 err: 882 return rc; 883 } 884 885 static int ena_start(struct rte_eth_dev *dev) 886 { 887 struct ena_adapter *adapter = 888 (struct ena_adapter *)(dev->data->dev_private); 889 int rc = 0; 890 891 if (!(adapter->state == ENA_ADAPTER_STATE_CONFIG || 892 adapter->state == ENA_ADAPTER_STATE_STOPPED)) { 893 PMD_INIT_LOG(ERR, "API violation"); 894 return -1; 895 } 896 897 rc = ena_check_valid_conf(adapter); 898 if (rc) 899 return rc; 900 901 rc = ena_queue_restart_all(dev, ENA_RING_TYPE_RX); 902 if (rc) 903 return rc; 904 905 rc = ena_queue_restart_all(dev, ENA_RING_TYPE_TX); 906 if (rc) 907 return rc; 908 909 if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode & 910 ETH_MQ_RX_RSS_FLAG) { 911 rc = ena_rss_init_default(adapter); 912 if (rc) 913 return rc; 914 } 915 916 ena_stats_restart(dev); 917 918 adapter->state = ENA_ADAPTER_STATE_RUNNING; 919 920 return 0; 921 } 922 923 static int ena_queue_restart(struct ena_ring *ring) 924 { 925 int rc, bufs_num; 926 927 ena_assert_msg(ring->configured == 1, 928 "Trying to restart unconfigured queue\n"); 929 930 ring->next_to_clean = 0; 931 ring->next_to_use = 0; 932 933 if (ring->type == ENA_RING_TYPE_TX) 934 return 0; 935 936 bufs_num = ring->ring_size - 1; 937 rc = ena_populate_rx_queue(ring, bufs_num); 938 if (rc != bufs_num) { 939 PMD_INIT_LOG(ERR, "Failed to populate rx ring !"); 940 return (-1); 941 } 942 943 return 0; 944 } 945 946 static int ena_tx_queue_setup(struct rte_eth_dev *dev, 947 uint16_t queue_idx, 948 uint16_t nb_desc, 949 __rte_unused unsigned int socket_id, 950 __rte_unused const struct rte_eth_txconf *tx_conf) 951 { 952 struct ena_com_create_io_ctx ctx = 953 /* policy set to _HOST just to satisfy icc compiler */ 954 { ENA_ADMIN_PLACEMENT_POLICY_HOST, 955 ENA_COM_IO_QUEUE_DIRECTION_TX, 0, 0, 0, 0 }; 956 struct ena_ring *txq = NULL; 957 struct ena_adapter *adapter = 958 (struct ena_adapter *)(dev->data->dev_private); 959 unsigned int i; 960 int ena_qid; 961 int rc; 962 struct ena_com_dev *ena_dev = &adapter->ena_dev; 963 964 txq = &adapter->tx_ring[queue_idx]; 965 966 if (txq->configured) { 967 RTE_LOG(CRIT, PMD, 968 "API violation. Queue %d is already configured\n", 969 queue_idx); 970 return -1; 971 } 972 973 if (!rte_is_power_of_2(nb_desc)) { 974 RTE_LOG(ERR, PMD, 975 "Unsupported size of RX queue: %d is not a power of 2.", 976 nb_desc); 977 return -EINVAL; 978 } 979 980 if (nb_desc > adapter->tx_ring_size) { 981 RTE_LOG(ERR, PMD, 982 "Unsupported size of TX queue (max size: %d)\n", 983 adapter->tx_ring_size); 984 return -EINVAL; 985 } 986 987 ena_qid = ENA_IO_TXQ_IDX(queue_idx); 988 989 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 990 ctx.qid = ena_qid; 991 ctx.msix_vector = -1; /* admin interrupts not used */ 992 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 993 ctx.queue_size = adapter->tx_ring_size; 994 ctx.numa_node = ena_cpu_to_node(queue_idx); 995 996 rc = ena_com_create_io_queue(ena_dev, &ctx); 997 if (rc) { 998 RTE_LOG(ERR, PMD, 999 "failed to create io TX queue #%d (qid:%d) rc: %d\n", 1000 queue_idx, ena_qid, rc); 1001 } 1002 txq->ena_com_io_cq = &ena_dev->io_cq_queues[ena_qid]; 1003 txq->ena_com_io_sq = &ena_dev->io_sq_queues[ena_qid]; 1004 1005 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1006 &txq->ena_com_io_sq, 1007 &txq->ena_com_io_cq); 1008 if (rc) { 1009 RTE_LOG(ERR, PMD, 1010 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 1011 queue_idx, rc); 1012 ena_com_destroy_io_queue(ena_dev, ena_qid); 1013 goto err; 1014 } 1015 1016 txq->port_id = dev->data->port_id; 1017 txq->next_to_clean = 0; 1018 txq->next_to_use = 0; 1019 txq->ring_size = nb_desc; 1020 1021 txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info", 1022 sizeof(struct ena_tx_buffer) * 1023 txq->ring_size, 1024 RTE_CACHE_LINE_SIZE); 1025 if (!txq->tx_buffer_info) { 1026 RTE_LOG(ERR, PMD, "failed to alloc mem for tx buffer info\n"); 1027 return -ENOMEM; 1028 } 1029 1030 txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs", 1031 sizeof(u16) * txq->ring_size, 1032 RTE_CACHE_LINE_SIZE); 1033 if (!txq->empty_tx_reqs) { 1034 RTE_LOG(ERR, PMD, "failed to alloc mem for tx reqs\n"); 1035 rte_free(txq->tx_buffer_info); 1036 return -ENOMEM; 1037 } 1038 for (i = 0; i < txq->ring_size; i++) 1039 txq->empty_tx_reqs[i] = i; 1040 1041 /* Store pointer to this queue in upper layer */ 1042 txq->configured = 1; 1043 dev->data->tx_queues[queue_idx] = txq; 1044 err: 1045 return rc; 1046 } 1047 1048 static int ena_rx_queue_setup(struct rte_eth_dev *dev, 1049 uint16_t queue_idx, 1050 uint16_t nb_desc, 1051 __rte_unused unsigned int socket_id, 1052 __rte_unused const struct rte_eth_rxconf *rx_conf, 1053 struct rte_mempool *mp) 1054 { 1055 struct ena_com_create_io_ctx ctx = 1056 /* policy set to _HOST just to satisfy icc compiler */ 1057 { ENA_ADMIN_PLACEMENT_POLICY_HOST, 1058 ENA_COM_IO_QUEUE_DIRECTION_RX, 0, 0, 0, 0 }; 1059 struct ena_adapter *adapter = 1060 (struct ena_adapter *)(dev->data->dev_private); 1061 struct ena_ring *rxq = NULL; 1062 uint16_t ena_qid = 0; 1063 int rc = 0; 1064 struct ena_com_dev *ena_dev = &adapter->ena_dev; 1065 1066 rxq = &adapter->rx_ring[queue_idx]; 1067 if (rxq->configured) { 1068 RTE_LOG(CRIT, PMD, 1069 "API violation. Queue %d is already configured\n", 1070 queue_idx); 1071 return -1; 1072 } 1073 1074 if (!rte_is_power_of_2(nb_desc)) { 1075 RTE_LOG(ERR, PMD, 1076 "Unsupported size of TX queue: %d is not a power of 2.", 1077 nb_desc); 1078 return -EINVAL; 1079 } 1080 1081 if (nb_desc > adapter->rx_ring_size) { 1082 RTE_LOG(ERR, PMD, 1083 "Unsupported size of RX queue (max size: %d)\n", 1084 adapter->rx_ring_size); 1085 return -EINVAL; 1086 } 1087 1088 ena_qid = ENA_IO_RXQ_IDX(queue_idx); 1089 1090 ctx.qid = ena_qid; 1091 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 1092 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1093 ctx.msix_vector = -1; /* admin interrupts not used */ 1094 ctx.queue_size = adapter->rx_ring_size; 1095 ctx.numa_node = ena_cpu_to_node(queue_idx); 1096 1097 rc = ena_com_create_io_queue(ena_dev, &ctx); 1098 if (rc) 1099 RTE_LOG(ERR, PMD, "failed to create io RX queue #%d rc: %d\n", 1100 queue_idx, rc); 1101 1102 rxq->ena_com_io_cq = &ena_dev->io_cq_queues[ena_qid]; 1103 rxq->ena_com_io_sq = &ena_dev->io_sq_queues[ena_qid]; 1104 1105 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1106 &rxq->ena_com_io_sq, 1107 &rxq->ena_com_io_cq); 1108 if (rc) { 1109 RTE_LOG(ERR, PMD, 1110 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 1111 queue_idx, rc); 1112 ena_com_destroy_io_queue(ena_dev, ena_qid); 1113 } 1114 1115 rxq->port_id = dev->data->port_id; 1116 rxq->next_to_clean = 0; 1117 rxq->next_to_use = 0; 1118 rxq->ring_size = nb_desc; 1119 rxq->mb_pool = mp; 1120 1121 rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info", 1122 sizeof(struct rte_mbuf *) * nb_desc, 1123 RTE_CACHE_LINE_SIZE); 1124 if (!rxq->rx_buffer_info) { 1125 RTE_LOG(ERR, PMD, "failed to alloc mem for rx buffer info\n"); 1126 return -ENOMEM; 1127 } 1128 1129 /* Store pointer to this queue in upper layer */ 1130 rxq->configured = 1; 1131 dev->data->rx_queues[queue_idx] = rxq; 1132 1133 return rc; 1134 } 1135 1136 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count) 1137 { 1138 unsigned int i; 1139 int rc; 1140 uint16_t ring_size = rxq->ring_size; 1141 uint16_t ring_mask = ring_size - 1; 1142 uint16_t next_to_use = rxq->next_to_use; 1143 uint16_t in_use; 1144 struct rte_mbuf **mbufs = &rxq->rx_buffer_info[0]; 1145 1146 if (unlikely(!count)) 1147 return 0; 1148 1149 in_use = rxq->next_to_use - rxq->next_to_clean; 1150 ena_assert_msg(((in_use + count) < ring_size), "bad ring state"); 1151 1152 count = RTE_MIN(count, 1153 (uint16_t)(ring_size - (next_to_use & ring_mask))); 1154 1155 /* get resources for incoming packets */ 1156 rc = rte_mempool_get_bulk(rxq->mb_pool, 1157 (void **)(&mbufs[next_to_use & ring_mask]), 1158 count); 1159 if (unlikely(rc < 0)) { 1160 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf); 1161 PMD_RX_LOG(DEBUG, "there are no enough free buffers"); 1162 return 0; 1163 } 1164 1165 for (i = 0; i < count; i++) { 1166 uint16_t next_to_use_masked = next_to_use & ring_mask; 1167 struct rte_mbuf *mbuf = mbufs[next_to_use_masked]; 1168 struct ena_com_buf ebuf; 1169 1170 rte_prefetch0(mbufs[((next_to_use + 4) & ring_mask)]); 1171 /* prepare physical address for DMA transaction */ 1172 ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM; 1173 ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM; 1174 /* pass resource to device */ 1175 rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq, 1176 &ebuf, next_to_use_masked); 1177 if (unlikely(rc)) { 1178 rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbuf), 1179 count - i); 1180 RTE_LOG(WARNING, PMD, "failed adding rx desc\n"); 1181 break; 1182 } 1183 next_to_use++; 1184 } 1185 1186 /* When we submitted free recources to device... */ 1187 if (i > 0) { 1188 /* ...let HW know that it can fill buffers with data */ 1189 rte_wmb(); 1190 ena_com_write_sq_doorbell(rxq->ena_com_io_sq); 1191 1192 rxq->next_to_use = next_to_use; 1193 } 1194 1195 return i; 1196 } 1197 1198 static int ena_device_init(struct ena_com_dev *ena_dev, 1199 struct ena_com_dev_get_features_ctx *get_feat_ctx) 1200 { 1201 int rc; 1202 bool readless_supported; 1203 1204 /* Initialize mmio registers */ 1205 rc = ena_com_mmio_reg_read_request_init(ena_dev); 1206 if (rc) { 1207 RTE_LOG(ERR, PMD, "failed to init mmio read less\n"); 1208 return rc; 1209 } 1210 1211 /* The PCIe configuration space revision id indicate if mmio reg 1212 * read is disabled. 1213 */ 1214 readless_supported = 1215 !(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id 1216 & ENA_MMIO_DISABLE_REG_READ); 1217 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 1218 1219 /* reset device */ 1220 rc = ena_com_dev_reset(ena_dev); 1221 if (rc) { 1222 RTE_LOG(ERR, PMD, "cannot reset device\n"); 1223 goto err_mmio_read_less; 1224 } 1225 1226 /* check FW version */ 1227 rc = ena_com_validate_version(ena_dev); 1228 if (rc) { 1229 RTE_LOG(ERR, PMD, "device version is too low\n"); 1230 goto err_mmio_read_less; 1231 } 1232 1233 ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev); 1234 1235 /* ENA device administration layer init */ 1236 rc = ena_com_admin_init(ena_dev, NULL, true); 1237 if (rc) { 1238 RTE_LOG(ERR, PMD, 1239 "cannot initialize ena admin queue with device\n"); 1240 goto err_mmio_read_less; 1241 } 1242 1243 /* To enable the msix interrupts the driver needs to know the number 1244 * of queues. So the driver uses polling mode to retrieve this 1245 * information. 1246 */ 1247 ena_com_set_admin_polling_mode(ena_dev, true); 1248 1249 ena_config_host_info(ena_dev); 1250 1251 /* Get Device Attributes and features */ 1252 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 1253 if (rc) { 1254 RTE_LOG(ERR, PMD, 1255 "cannot get attribute for ena device rc= %d\n", rc); 1256 goto err_admin_init; 1257 } 1258 1259 return 0; 1260 1261 err_admin_init: 1262 ena_com_admin_destroy(ena_dev); 1263 1264 err_mmio_read_less: 1265 ena_com_mmio_reg_read_request_destroy(ena_dev); 1266 1267 return rc; 1268 } 1269 1270 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev) 1271 { 1272 struct rte_pci_device *pci_dev; 1273 struct ena_adapter *adapter = 1274 (struct ena_adapter *)(eth_dev->data->dev_private); 1275 struct ena_com_dev *ena_dev = &adapter->ena_dev; 1276 struct ena_com_dev_get_features_ctx get_feat_ctx; 1277 int queue_size, rc; 1278 1279 static int adapters_found; 1280 1281 memset(adapter, 0, sizeof(struct ena_adapter)); 1282 ena_dev = &adapter->ena_dev; 1283 1284 eth_dev->dev_ops = &ena_dev_ops; 1285 eth_dev->rx_pkt_burst = ð_ena_recv_pkts; 1286 eth_dev->tx_pkt_burst = ð_ena_xmit_pkts; 1287 eth_dev->tx_pkt_prepare = ð_ena_prep_pkts; 1288 adapter->rte_eth_dev_data = eth_dev->data; 1289 adapter->rte_dev = eth_dev; 1290 1291 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1292 return 0; 1293 1294 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 1295 adapter->pdev = pci_dev; 1296 1297 PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d", 1298 pci_dev->addr.domain, 1299 pci_dev->addr.bus, 1300 pci_dev->addr.devid, 1301 pci_dev->addr.function); 1302 1303 adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr; 1304 adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr; 1305 1306 /* Present ENA_MEM_BAR indicates available LLQ mode. 1307 * Use corresponding policy 1308 */ 1309 if (adapter->dev_mem_base) 1310 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_DEV; 1311 else if (adapter->regs) 1312 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1313 else 1314 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)", 1315 ENA_REGS_BAR); 1316 1317 ena_dev->reg_bar = adapter->regs; 1318 ena_dev->dmadev = adapter->pdev; 1319 1320 adapter->id_number = adapters_found; 1321 1322 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", 1323 adapter->id_number); 1324 1325 /* device specific initialization routine */ 1326 rc = ena_device_init(ena_dev, &get_feat_ctx); 1327 if (rc) { 1328 PMD_INIT_LOG(CRIT, "Failed to init ENA device"); 1329 return -1; 1330 } 1331 1332 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 1333 if (get_feat_ctx.max_queues.max_llq_num == 0) { 1334 PMD_INIT_LOG(ERR, 1335 "Trying to use LLQ but llq_num is 0.\n" 1336 "Fall back into regular queues."); 1337 ena_dev->tx_mem_queue_type = 1338 ENA_ADMIN_PLACEMENT_POLICY_HOST; 1339 adapter->num_queues = 1340 get_feat_ctx.max_queues.max_sq_num; 1341 } else { 1342 adapter->num_queues = 1343 get_feat_ctx.max_queues.max_llq_num; 1344 } 1345 } else { 1346 adapter->num_queues = get_feat_ctx.max_queues.max_sq_num; 1347 } 1348 1349 queue_size = ena_calc_queue_size(ena_dev, &get_feat_ctx); 1350 if ((queue_size <= 0) || (adapter->num_queues <= 0)) 1351 return -EFAULT; 1352 1353 adapter->tx_ring_size = queue_size; 1354 adapter->rx_ring_size = queue_size; 1355 1356 /* prepare ring structures */ 1357 ena_init_rings(adapter); 1358 1359 ena_config_debug_area(adapter); 1360 1361 /* Set max MTU for this device */ 1362 adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu; 1363 1364 /* set device support for TSO */ 1365 adapter->tso4_supported = get_feat_ctx.offload.tx & 1366 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK; 1367 1368 /* Copy MAC address and point DPDK to it */ 1369 eth_dev->data->mac_addrs = (struct ether_addr *)adapter->mac_addr; 1370 ether_addr_copy((struct ether_addr *)get_feat_ctx.dev_attr.mac_addr, 1371 (struct ether_addr *)adapter->mac_addr); 1372 1373 adapter->drv_stats = rte_zmalloc("adapter stats", 1374 sizeof(*adapter->drv_stats), 1375 RTE_CACHE_LINE_SIZE); 1376 if (!adapter->drv_stats) { 1377 RTE_LOG(ERR, PMD, "failed to alloc mem for adapter stats\n"); 1378 return -ENOMEM; 1379 } 1380 1381 adapters_found++; 1382 adapter->state = ENA_ADAPTER_STATE_INIT; 1383 1384 return 0; 1385 } 1386 1387 static int ena_dev_configure(struct rte_eth_dev *dev) 1388 { 1389 struct ena_adapter *adapter = 1390 (struct ena_adapter *)(dev->data->dev_private); 1391 1392 if (!(adapter->state == ENA_ADAPTER_STATE_INIT || 1393 adapter->state == ENA_ADAPTER_STATE_STOPPED)) { 1394 PMD_INIT_LOG(ERR, "Illegal adapter state: %d", 1395 adapter->state); 1396 return -1; 1397 } 1398 1399 switch (adapter->state) { 1400 case ENA_ADAPTER_STATE_INIT: 1401 case ENA_ADAPTER_STATE_STOPPED: 1402 adapter->state = ENA_ADAPTER_STATE_CONFIG; 1403 break; 1404 case ENA_ADAPTER_STATE_CONFIG: 1405 RTE_LOG(WARNING, PMD, 1406 "Ivalid driver state while trying to configure device\n"); 1407 break; 1408 default: 1409 break; 1410 } 1411 1412 return 0; 1413 } 1414 1415 static void ena_init_rings(struct ena_adapter *adapter) 1416 { 1417 int i; 1418 1419 for (i = 0; i < adapter->num_queues; i++) { 1420 struct ena_ring *ring = &adapter->tx_ring[i]; 1421 1422 ring->configured = 0; 1423 ring->type = ENA_RING_TYPE_TX; 1424 ring->adapter = adapter; 1425 ring->id = i; 1426 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type; 1427 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size; 1428 } 1429 1430 for (i = 0; i < adapter->num_queues; i++) { 1431 struct ena_ring *ring = &adapter->rx_ring[i]; 1432 1433 ring->configured = 0; 1434 ring->type = ENA_RING_TYPE_RX; 1435 ring->adapter = adapter; 1436 ring->id = i; 1437 } 1438 } 1439 1440 static void ena_infos_get(struct rte_eth_dev *dev, 1441 struct rte_eth_dev_info *dev_info) 1442 { 1443 struct ena_adapter *adapter; 1444 struct ena_com_dev *ena_dev; 1445 struct ena_com_dev_get_features_ctx feat; 1446 uint32_t rx_feat = 0, tx_feat = 0; 1447 int rc = 0; 1448 1449 ena_assert_msg(dev->data != NULL, "Uninitialized device"); 1450 ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device"); 1451 adapter = (struct ena_adapter *)(dev->data->dev_private); 1452 1453 ena_dev = &adapter->ena_dev; 1454 ena_assert_msg(ena_dev != NULL, "Uninitialized device"); 1455 1456 dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1457 1458 dev_info->speed_capa = 1459 ETH_LINK_SPEED_1G | 1460 ETH_LINK_SPEED_2_5G | 1461 ETH_LINK_SPEED_5G | 1462 ETH_LINK_SPEED_10G | 1463 ETH_LINK_SPEED_25G | 1464 ETH_LINK_SPEED_40G | 1465 ETH_LINK_SPEED_50G | 1466 ETH_LINK_SPEED_100G; 1467 1468 /* Get supported features from HW */ 1469 rc = ena_com_get_dev_attr_feat(ena_dev, &feat); 1470 if (unlikely(rc)) { 1471 RTE_LOG(ERR, PMD, 1472 "Cannot get attribute for ena device rc= %d\n", rc); 1473 return; 1474 } 1475 1476 /* Set Tx & Rx features available for device */ 1477 if (feat.offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 1478 tx_feat |= DEV_TX_OFFLOAD_TCP_TSO; 1479 1480 if (feat.offload.tx & 1481 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 1482 tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM | 1483 DEV_TX_OFFLOAD_UDP_CKSUM | 1484 DEV_TX_OFFLOAD_TCP_CKSUM; 1485 1486 if (feat.offload.rx_supported & 1487 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 1488 rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM | 1489 DEV_RX_OFFLOAD_UDP_CKSUM | 1490 DEV_RX_OFFLOAD_TCP_CKSUM; 1491 1492 /* Inform framework about available features */ 1493 dev_info->rx_offload_capa = rx_feat; 1494 dev_info->tx_offload_capa = tx_feat; 1495 1496 dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN; 1497 dev_info->max_rx_pktlen = adapter->max_mtu; 1498 dev_info->max_mac_addrs = 1; 1499 1500 dev_info->max_rx_queues = adapter->num_queues; 1501 dev_info->max_tx_queues = adapter->num_queues; 1502 dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE; 1503 } 1504 1505 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, 1506 uint16_t nb_pkts) 1507 { 1508 struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue); 1509 unsigned int ring_size = rx_ring->ring_size; 1510 unsigned int ring_mask = ring_size - 1; 1511 uint16_t next_to_clean = rx_ring->next_to_clean; 1512 uint16_t desc_in_use = 0; 1513 unsigned int recv_idx = 0; 1514 struct rte_mbuf *mbuf = NULL; 1515 struct rte_mbuf *mbuf_head = NULL; 1516 struct rte_mbuf *mbuf_prev = NULL; 1517 struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info; 1518 unsigned int completed; 1519 1520 struct ena_com_rx_ctx ena_rx_ctx; 1521 int rc = 0; 1522 1523 /* Check adapter state */ 1524 if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) { 1525 RTE_LOG(ALERT, PMD, 1526 "Trying to receive pkts while device is NOT running\n"); 1527 return 0; 1528 } 1529 1530 desc_in_use = rx_ring->next_to_use - next_to_clean; 1531 if (unlikely(nb_pkts > desc_in_use)) 1532 nb_pkts = desc_in_use; 1533 1534 for (completed = 0; completed < nb_pkts; completed++) { 1535 int segments = 0; 1536 1537 ena_rx_ctx.max_bufs = rx_ring->ring_size; 1538 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1539 ena_rx_ctx.descs = 0; 1540 /* receive packet context */ 1541 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1542 rx_ring->ena_com_io_sq, 1543 &ena_rx_ctx); 1544 if (unlikely(rc)) { 1545 RTE_LOG(ERR, PMD, "ena_com_rx_pkt error %d\n", rc); 1546 return 0; 1547 } 1548 1549 if (unlikely(ena_rx_ctx.descs == 0)) 1550 break; 1551 1552 while (segments < ena_rx_ctx.descs) { 1553 mbuf = rx_buff_info[next_to_clean & ring_mask]; 1554 mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len; 1555 mbuf->data_off = RTE_PKTMBUF_HEADROOM; 1556 mbuf->refcnt = 1; 1557 mbuf->next = NULL; 1558 if (segments == 0) { 1559 mbuf->nb_segs = ena_rx_ctx.descs; 1560 mbuf->port = rx_ring->port_id; 1561 mbuf->pkt_len = 0; 1562 mbuf_head = mbuf; 1563 } else { 1564 /* for multi-segment pkts create mbuf chain */ 1565 mbuf_prev->next = mbuf; 1566 } 1567 mbuf_head->pkt_len += mbuf->data_len; 1568 1569 mbuf_prev = mbuf; 1570 segments++; 1571 next_to_clean++; 1572 } 1573 1574 /* fill mbuf attributes if any */ 1575 ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx); 1576 mbuf_head->hash.rss = (uint32_t)rx_ring->id; 1577 1578 /* pass to DPDK application head mbuf */ 1579 rx_pkts[recv_idx] = mbuf_head; 1580 recv_idx++; 1581 } 1582 1583 rx_ring->next_to_clean = next_to_clean; 1584 1585 desc_in_use = desc_in_use - completed + 1; 1586 /* Burst refill to save doorbells, memory barriers, const interval */ 1587 if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size)) 1588 ena_populate_rx_queue(rx_ring, ring_size - desc_in_use); 1589 1590 return recv_idx; 1591 } 1592 1593 static uint16_t 1594 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, 1595 uint16_t nb_pkts) 1596 { 1597 int32_t ret; 1598 uint32_t i; 1599 struct rte_mbuf *m; 1600 struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue); 1601 struct ipv4_hdr *ip_hdr; 1602 uint64_t ol_flags; 1603 uint16_t frag_field; 1604 1605 for (i = 0; i != nb_pkts; i++) { 1606 m = tx_pkts[i]; 1607 ol_flags = m->ol_flags; 1608 1609 if (!(ol_flags & PKT_TX_IPV4)) 1610 continue; 1611 1612 /* If there was not L2 header length specified, assume it is 1613 * length of the ethernet header. 1614 */ 1615 if (unlikely(m->l2_len == 0)) 1616 m->l2_len = sizeof(struct ether_hdr); 1617 1618 ip_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, 1619 m->l2_len); 1620 frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset); 1621 1622 if ((frag_field & IPV4_HDR_DF_FLAG) != 0) { 1623 m->packet_type |= RTE_PTYPE_L4_NONFRAG; 1624 1625 /* If IPv4 header has DF flag enabled and TSO support is 1626 * disabled, partial chcecksum should not be calculated. 1627 */ 1628 if (!tx_ring->adapter->tso4_supported) 1629 continue; 1630 } 1631 1632 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 || 1633 (ol_flags & PKT_TX_L4_MASK) == 1634 PKT_TX_SCTP_CKSUM) { 1635 rte_errno = -ENOTSUP; 1636 return i; 1637 } 1638 1639 #ifdef RTE_LIBRTE_ETHDEV_DEBUG 1640 ret = rte_validate_tx_offload(m); 1641 if (ret != 0) { 1642 rte_errno = ret; 1643 return i; 1644 } 1645 #endif 1646 1647 /* In case we are supposed to TSO and have DF not set (DF=0) 1648 * hardware must be provided with partial checksum, otherwise 1649 * it will take care of necessary calculations. 1650 */ 1651 1652 ret = rte_net_intel_cksum_flags_prepare(m, 1653 ol_flags & ~PKT_TX_TCP_SEG); 1654 if (ret != 0) { 1655 rte_errno = ret; 1656 return i; 1657 } 1658 } 1659 1660 return i; 1661 } 1662 1663 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, 1664 uint16_t nb_pkts) 1665 { 1666 struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue); 1667 uint16_t next_to_use = tx_ring->next_to_use; 1668 uint16_t next_to_clean = tx_ring->next_to_clean; 1669 struct rte_mbuf *mbuf; 1670 unsigned int ring_size = tx_ring->ring_size; 1671 unsigned int ring_mask = ring_size - 1; 1672 struct ena_com_tx_ctx ena_tx_ctx; 1673 struct ena_tx_buffer *tx_info; 1674 struct ena_com_buf *ebuf; 1675 uint16_t rc, req_id, total_tx_descs = 0; 1676 uint16_t sent_idx = 0, empty_tx_reqs; 1677 int nb_hw_desc; 1678 1679 /* Check adapter state */ 1680 if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) { 1681 RTE_LOG(ALERT, PMD, 1682 "Trying to xmit pkts while device is NOT running\n"); 1683 return 0; 1684 } 1685 1686 empty_tx_reqs = ring_size - (next_to_use - next_to_clean); 1687 if (nb_pkts > empty_tx_reqs) 1688 nb_pkts = empty_tx_reqs; 1689 1690 for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) { 1691 mbuf = tx_pkts[sent_idx]; 1692 1693 req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask]; 1694 tx_info = &tx_ring->tx_buffer_info[req_id]; 1695 tx_info->mbuf = mbuf; 1696 tx_info->num_of_bufs = 0; 1697 ebuf = tx_info->bufs; 1698 1699 /* Prepare TX context */ 1700 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 1701 memset(&ena_tx_ctx.ena_meta, 0x0, 1702 sizeof(struct ena_com_tx_meta)); 1703 ena_tx_ctx.ena_bufs = ebuf; 1704 ena_tx_ctx.req_id = req_id; 1705 if (tx_ring->tx_mem_queue_type == 1706 ENA_ADMIN_PLACEMENT_POLICY_DEV) { 1707 /* prepare the push buffer with 1708 * virtual address of the data 1709 */ 1710 ena_tx_ctx.header_len = 1711 RTE_MIN(mbuf->data_len, 1712 tx_ring->tx_max_header_size); 1713 ena_tx_ctx.push_header = 1714 (void *)((char *)mbuf->buf_addr + 1715 mbuf->data_off); 1716 } /* there's no else as we take advantage of memset zeroing */ 1717 1718 /* Set TX offloads flags, if applicable */ 1719 ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx); 1720 1721 if (unlikely(mbuf->ol_flags & 1722 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD))) 1723 rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors); 1724 1725 rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]); 1726 1727 /* Process first segment taking into 1728 * consideration pushed header 1729 */ 1730 if (mbuf->data_len > ena_tx_ctx.header_len) { 1731 ebuf->paddr = mbuf->buf_iova + 1732 mbuf->data_off + 1733 ena_tx_ctx.header_len; 1734 ebuf->len = mbuf->data_len - ena_tx_ctx.header_len; 1735 ebuf++; 1736 tx_info->num_of_bufs++; 1737 } 1738 1739 while ((mbuf = mbuf->next) != NULL) { 1740 ebuf->paddr = mbuf->buf_iova + mbuf->data_off; 1741 ebuf->len = mbuf->data_len; 1742 ebuf++; 1743 tx_info->num_of_bufs++; 1744 } 1745 1746 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 1747 1748 /* Write data to device */ 1749 rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, 1750 &ena_tx_ctx, &nb_hw_desc); 1751 if (unlikely(rc)) 1752 break; 1753 1754 tx_info->tx_descs = nb_hw_desc; 1755 1756 next_to_use++; 1757 } 1758 1759 /* If there are ready packets to be xmitted... */ 1760 if (sent_idx > 0) { 1761 /* ...let HW do its best :-) */ 1762 rte_wmb(); 1763 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 1764 1765 tx_ring->next_to_use = next_to_use; 1766 } 1767 1768 /* Clear complete packets */ 1769 while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) { 1770 /* Get Tx info & store how many descs were processed */ 1771 tx_info = &tx_ring->tx_buffer_info[req_id]; 1772 total_tx_descs += tx_info->tx_descs; 1773 1774 /* Free whole mbuf chain */ 1775 mbuf = tx_info->mbuf; 1776 rte_pktmbuf_free(mbuf); 1777 tx_info->mbuf = NULL; 1778 1779 /* Put back descriptor to the ring for reuse */ 1780 tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id; 1781 next_to_clean++; 1782 1783 /* If too many descs to clean, leave it for another run */ 1784 if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size))) 1785 break; 1786 } 1787 1788 if (total_tx_descs > 0) { 1789 /* acknowledge completion of sent packets */ 1790 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs); 1791 tx_ring->next_to_clean = next_to_clean; 1792 } 1793 1794 return sent_idx; 1795 } 1796 1797 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 1798 struct rte_pci_device *pci_dev) 1799 { 1800 return rte_eth_dev_pci_generic_probe(pci_dev, 1801 sizeof(struct ena_adapter), eth_ena_dev_init); 1802 } 1803 1804 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev) 1805 { 1806 return rte_eth_dev_pci_generic_remove(pci_dev, NULL); 1807 } 1808 1809 static struct rte_pci_driver rte_ena_pmd = { 1810 .id_table = pci_id_ena_map, 1811 .drv_flags = RTE_PCI_DRV_NEED_MAPPING, 1812 .probe = eth_ena_pci_probe, 1813 .remove = eth_ena_pci_remove, 1814 }; 1815 1816 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd); 1817 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map); 1818 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci"); 1819