xref: /f-stack/dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision e2d9b9ca)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) Broadcom Limited.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Broadcom Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <inttypes.h>
35 #include <stdbool.h>
36 
37 #include <rte_dev.h>
38 #include <rte_ethdev.h>
39 #include <rte_ethdev_pci.h>
40 #include <rte_malloc.h>
41 #include <rte_cycles.h>
42 
43 #include "bnxt.h"
44 #include "bnxt_cpr.h"
45 #include "bnxt_filter.h"
46 #include "bnxt_hwrm.h"
47 #include "bnxt_irq.h"
48 #include "bnxt_ring.h"
49 #include "bnxt_rxq.h"
50 #include "bnxt_rxr.h"
51 #include "bnxt_stats.h"
52 #include "bnxt_txq.h"
53 #include "bnxt_txr.h"
54 #include "bnxt_vnic.h"
55 #include "hsi_struct_def_dpdk.h"
56 #include "bnxt_nvm_defs.h"
57 
58 #define DRV_MODULE_NAME		"bnxt"
59 static const char bnxt_version[] =
60 	"Broadcom Cumulus driver " DRV_MODULE_NAME "\n";
61 
62 #define PCI_VENDOR_ID_BROADCOM 0x14E4
63 
64 #define BROADCOM_DEV_ID_STRATUS_NIC_VF 0x1609
65 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
66 #define BROADCOM_DEV_ID_57414_VF 0x16c1
67 #define BROADCOM_DEV_ID_57301 0x16c8
68 #define BROADCOM_DEV_ID_57302 0x16c9
69 #define BROADCOM_DEV_ID_57304_PF 0x16ca
70 #define BROADCOM_DEV_ID_57304_VF 0x16cb
71 #define BROADCOM_DEV_ID_57417_MF 0x16cc
72 #define BROADCOM_DEV_ID_NS2 0x16cd
73 #define BROADCOM_DEV_ID_57311 0x16ce
74 #define BROADCOM_DEV_ID_57312 0x16cf
75 #define BROADCOM_DEV_ID_57402 0x16d0
76 #define BROADCOM_DEV_ID_57404 0x16d1
77 #define BROADCOM_DEV_ID_57406_PF 0x16d2
78 #define BROADCOM_DEV_ID_57406_VF 0x16d3
79 #define BROADCOM_DEV_ID_57402_MF 0x16d4
80 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
81 #define BROADCOM_DEV_ID_57412 0x16d6
82 #define BROADCOM_DEV_ID_57414 0x16d7
83 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
84 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
85 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
86 #define BROADCOM_DEV_ID_57412_MF 0x16de
87 #define BROADCOM_DEV_ID_57314 0x16df
88 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
89 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
90 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
91 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
92 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
93 #define BROADCOM_DEV_ID_57404_MF 0x16e7
94 #define BROADCOM_DEV_ID_57406_MF 0x16e8
95 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
96 #define BROADCOM_DEV_ID_57407_MF 0x16ea
97 #define BROADCOM_DEV_ID_57414_MF 0x16ec
98 #define BROADCOM_DEV_ID_57416_MF 0x16ee
99 
100 static const struct rte_pci_id bnxt_pci_id_map[] = {
101 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
102 			 BROADCOM_DEV_ID_STRATUS_NIC_VF) },
103 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
104 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
105 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
106 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
107 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
108 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
109 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
110 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
111 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
112 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
113 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
114 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
115 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
116 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
117 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
118 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
119 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
120 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
121 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
122 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
123 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
124 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
125 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
126 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
127 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
128 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
129 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
130 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
131 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
132 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
133 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
134 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
135 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
136 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
137 	{ .vendor_id = 0, /* sentinel */ },
138 };
139 
140 #define BNXT_ETH_RSS_SUPPORT (	\
141 	ETH_RSS_IPV4 |		\
142 	ETH_RSS_NONFRAG_IPV4_TCP |	\
143 	ETH_RSS_NONFRAG_IPV4_UDP |	\
144 	ETH_RSS_IPV6 |		\
145 	ETH_RSS_NONFRAG_IPV6_TCP |	\
146 	ETH_RSS_NONFRAG_IPV6_UDP)
147 
148 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
149 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
150 
151 /***********************/
152 
153 /*
154  * High level utility functions
155  */
156 
157 static void bnxt_free_mem(struct bnxt *bp)
158 {
159 	bnxt_free_filter_mem(bp);
160 	bnxt_free_vnic_attributes(bp);
161 	bnxt_free_vnic_mem(bp);
162 
163 	bnxt_free_stats(bp);
164 	bnxt_free_tx_rings(bp);
165 	bnxt_free_rx_rings(bp);
166 	bnxt_free_def_cp_ring(bp);
167 }
168 
169 static int bnxt_alloc_mem(struct bnxt *bp)
170 {
171 	int rc;
172 
173 	/* Default completion ring */
174 	rc = bnxt_init_def_ring_struct(bp, SOCKET_ID_ANY);
175 	if (rc)
176 		goto alloc_mem_err;
177 
178 	rc = bnxt_alloc_rings(bp, 0, NULL, NULL,
179 			      bp->def_cp_ring, "def_cp");
180 	if (rc)
181 		goto alloc_mem_err;
182 
183 	rc = bnxt_alloc_vnic_mem(bp);
184 	if (rc)
185 		goto alloc_mem_err;
186 
187 	rc = bnxt_alloc_vnic_attributes(bp);
188 	if (rc)
189 		goto alloc_mem_err;
190 
191 	rc = bnxt_alloc_filter_mem(bp);
192 	if (rc)
193 		goto alloc_mem_err;
194 
195 	return 0;
196 
197 alloc_mem_err:
198 	bnxt_free_mem(bp);
199 	return rc;
200 }
201 
202 static int bnxt_init_chip(struct bnxt *bp)
203 {
204 	unsigned int i, rss_idx, fw_idx;
205 	struct rte_eth_link new;
206 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
207 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
208 	uint32_t intr_vector = 0;
209 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
210 	uint32_t vec = BNXT_MISC_VEC_ID;
211 	int rc;
212 
213 	/* disable uio/vfio intr/eventfd mapping */
214 	rte_intr_disable(intr_handle);
215 
216 	if (bp->eth_dev->data->mtu > ETHER_MTU) {
217 		bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
218 		bp->flags |= BNXT_FLAG_JUMBO;
219 	} else {
220 		bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
221 		bp->flags &= ~BNXT_FLAG_JUMBO;
222 	}
223 
224 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
225 	if (rc) {
226 		RTE_LOG(ERR, PMD, "HWRM stat ctx alloc failure rc: %x\n", rc);
227 		goto err_out;
228 	}
229 
230 	rc = bnxt_alloc_hwrm_rings(bp);
231 	if (rc) {
232 		RTE_LOG(ERR, PMD, "HWRM ring alloc failure rc: %x\n", rc);
233 		goto err_out;
234 	}
235 
236 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
237 	if (rc) {
238 		RTE_LOG(ERR, PMD, "HWRM ring grp alloc failure: %x\n", rc);
239 		goto err_out;
240 	}
241 
242 	rc = bnxt_mq_rx_configure(bp);
243 	if (rc) {
244 		RTE_LOG(ERR, PMD, "MQ mode configure failure rc: %x\n", rc);
245 		goto err_out;
246 	}
247 
248 	/* VNIC configuration */
249 	for (i = 0; i < bp->nr_vnics; i++) {
250 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
251 		uint32_t size = sizeof(*vnic->fw_grp_ids) * bp->max_ring_grps;
252 
253 		vnic->fw_grp_ids = rte_zmalloc("vnic_fw_grp_ids", size, 0);
254 		if (!vnic->fw_grp_ids) {
255 			RTE_LOG(ERR, PMD,
256 				"Failed to alloc %d bytes for group ids\n",
257 				size);
258 			rc = -ENOMEM;
259 			goto err_out;
260 		}
261 		memset(vnic->fw_grp_ids, -1, size);
262 
263 		rc = bnxt_hwrm_vnic_alloc(bp, vnic);
264 		if (rc) {
265 			RTE_LOG(ERR, PMD, "HWRM vnic %d alloc failure rc: %x\n",
266 				i, rc);
267 			goto err_out;
268 		}
269 
270 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic);
271 		if (rc) {
272 			RTE_LOG(ERR, PMD,
273 				"HWRM vnic %d ctx alloc failure rc: %x\n",
274 				i, rc);
275 			goto err_out;
276 		}
277 
278 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
279 		if (rc) {
280 			RTE_LOG(ERR, PMD, "HWRM vnic %d cfg failure rc: %x\n",
281 				i, rc);
282 			goto err_out;
283 		}
284 
285 		rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
286 		if (rc) {
287 			RTE_LOG(ERR, PMD,
288 				"HWRM vnic %d filter failure rc: %x\n",
289 				i, rc);
290 			goto err_out;
291 		}
292 		if (vnic->rss_table && vnic->hash_type) {
293 			/*
294 			 * Fill the RSS hash & redirection table with
295 			 * ring group ids for all VNICs
296 			 */
297 			for (rss_idx = 0, fw_idx = 0;
298 			     rss_idx < HW_HASH_INDEX_SIZE;
299 			     rss_idx++, fw_idx++) {
300 				if (vnic->fw_grp_ids[fw_idx] ==
301 				    INVALID_HW_RING_ID)
302 					fw_idx = 0;
303 				vnic->rss_table[rss_idx] =
304 						vnic->fw_grp_ids[fw_idx];
305 			}
306 			rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
307 			if (rc) {
308 				RTE_LOG(ERR, PMD,
309 					"HWRM vnic %d set RSS failure rc: %x\n",
310 					i, rc);
311 				goto err_out;
312 			}
313 		}
314 
315 		bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
316 
317 		if (bp->eth_dev->data->dev_conf.rxmode.enable_lro)
318 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
319 		else
320 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
321 	}
322 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
323 	if (rc) {
324 		RTE_LOG(ERR, PMD,
325 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
326 		goto err_out;
327 	}
328 
329 	/* check and configure queue intr-vector mapping */
330 	if ((rte_intr_cap_multiple(intr_handle) ||
331 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
332 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
333 		intr_vector = bp->eth_dev->data->nb_rx_queues;
334 		RTE_LOG(INFO, PMD, "%s(): intr_vector = %d\n", __func__,
335 			intr_vector);
336 		if (intr_vector > bp->rx_cp_nr_rings) {
337 			RTE_LOG(ERR, PMD, "At most %d intr queues supported",
338 					bp->rx_cp_nr_rings);
339 			return -ENOTSUP;
340 		}
341 		if (rte_intr_efd_enable(intr_handle, intr_vector))
342 			return -1;
343 	}
344 
345 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
346 		intr_handle->intr_vec =
347 			rte_zmalloc("intr_vec",
348 				    bp->eth_dev->data->nb_rx_queues *
349 				    sizeof(int), 0);
350 		if (intr_handle->intr_vec == NULL) {
351 			RTE_LOG(ERR, PMD, "Failed to allocate %d rx_queues"
352 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
353 			return -ENOMEM;
354 		}
355 		RTE_LOG(DEBUG, PMD, "%s(): intr_handle->intr_vec = %p "
356 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
357 			 __func__, intr_handle->intr_vec, intr_handle->nb_efd,
358 			intr_handle->max_intr);
359 	}
360 
361 	for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
362 	     queue_id++) {
363 		intr_handle->intr_vec[queue_id] = vec;
364 		if (vec < base + intr_handle->nb_efd - 1)
365 			vec++;
366 	}
367 
368 	/* enable uio/vfio intr/eventfd mapping */
369 	rte_intr_enable(intr_handle);
370 
371 	rc = bnxt_get_hwrm_link_config(bp, &new);
372 	if (rc) {
373 		RTE_LOG(ERR, PMD, "HWRM Get link config failure rc: %x\n", rc);
374 		goto err_out;
375 	}
376 
377 	if (!bp->link_info.link_up) {
378 		rc = bnxt_set_hwrm_link_config(bp, true);
379 		if (rc) {
380 			RTE_LOG(ERR, PMD,
381 				"HWRM link config failure rc: %x\n", rc);
382 			goto err_out;
383 		}
384 	}
385 	bnxt_print_link_info(bp->eth_dev);
386 
387 	return 0;
388 
389 err_out:
390 	bnxt_free_all_hwrm_resources(bp);
391 
392 	return rc;
393 }
394 
395 static int bnxt_shutdown_nic(struct bnxt *bp)
396 {
397 	bnxt_free_all_hwrm_resources(bp);
398 	bnxt_free_all_filters(bp);
399 	bnxt_free_all_vnics(bp);
400 	return 0;
401 }
402 
403 static int bnxt_init_nic(struct bnxt *bp)
404 {
405 	int rc;
406 
407 	rc = bnxt_init_ring_grps(bp);
408 	if (rc)
409 		return rc;
410 
411 	bnxt_init_vnics(bp);
412 	bnxt_init_filters(bp);
413 
414 	return 0;
415 }
416 
417 /*
418  * Device configuration and status function
419  */
420 
421 static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
422 				  struct rte_eth_dev_info *dev_info)
423 {
424 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
425 	uint16_t max_vnics, i, j, vpool, vrxq;
426 	unsigned int max_rx_rings;
427 
428 	dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
429 
430 	/* MAC Specifics */
431 	dev_info->max_mac_addrs = bp->max_l2_ctx;
432 	dev_info->max_hash_mac_addrs = 0;
433 
434 	/* PF/VF specifics */
435 	if (BNXT_PF(bp))
436 		dev_info->max_vfs = bp->pdev->max_vfs;
437 	max_rx_rings = RTE_MIN(bp->max_vnics, RTE_MIN(bp->max_l2_ctx,
438 						RTE_MIN(bp->max_rsscos_ctx,
439 						bp->max_stat_ctx)));
440 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
441 	dev_info->max_rx_queues = max_rx_rings;
442 	dev_info->max_tx_queues = max_rx_rings;
443 	dev_info->reta_size = HW_HASH_INDEX_SIZE;
444 	dev_info->hash_key_size = 40;
445 	max_vnics = bp->max_vnics;
446 
447 	/* Fast path specifics */
448 	dev_info->min_rx_bufsize = 1;
449 	dev_info->max_rx_pktlen = BNXT_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN
450 				  + VLAN_TAG_SIZE;
451 	dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
452 					DEV_RX_OFFLOAD_IPV4_CKSUM |
453 					DEV_RX_OFFLOAD_UDP_CKSUM |
454 					DEV_RX_OFFLOAD_TCP_CKSUM |
455 					DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
456 	dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
457 					DEV_TX_OFFLOAD_IPV4_CKSUM |
458 					DEV_TX_OFFLOAD_TCP_CKSUM |
459 					DEV_TX_OFFLOAD_UDP_CKSUM |
460 					DEV_TX_OFFLOAD_TCP_TSO |
461 					DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
462 					DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
463 					DEV_TX_OFFLOAD_GRE_TNL_TSO |
464 					DEV_TX_OFFLOAD_IPIP_TNL_TSO |
465 					DEV_TX_OFFLOAD_GENEVE_TNL_TSO;
466 
467 	/* *INDENT-OFF* */
468 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
469 		.rx_thresh = {
470 			.pthresh = 8,
471 			.hthresh = 8,
472 			.wthresh = 0,
473 		},
474 		.rx_free_thresh = 32,
475 		/* If no descriptors available, pkts are dropped by default */
476 		.rx_drop_en = 1,
477 	};
478 
479 	dev_info->default_txconf = (struct rte_eth_txconf) {
480 		.tx_thresh = {
481 			.pthresh = 32,
482 			.hthresh = 0,
483 			.wthresh = 0,
484 		},
485 		.tx_free_thresh = 32,
486 		.tx_rs_thresh = 32,
487 		.txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
488 			     ETH_TXQ_FLAGS_NOOFFLOADS,
489 	};
490 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
491 
492 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
493 
494 	/* *INDENT-ON* */
495 
496 	/*
497 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
498 	 *       need further investigation.
499 	 */
500 
501 	/* VMDq resources */
502 	vpool = 64; /* ETH_64_POOLS */
503 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
504 	for (i = 0; i < 4; vpool >>= 1, i++) {
505 		if (max_vnics > vpool) {
506 			for (j = 0; j < 5; vrxq >>= 1, j++) {
507 				if (dev_info->max_rx_queues > vrxq) {
508 					if (vpool > vrxq)
509 						vpool = vrxq;
510 					goto found;
511 				}
512 			}
513 			/* Not enough resources to support VMDq */
514 			break;
515 		}
516 	}
517 	/* Not enough resources to support VMDq */
518 	vpool = 0;
519 	vrxq = 0;
520 found:
521 	dev_info->max_vmdq_pools = vpool;
522 	dev_info->vmdq_queue_num = vrxq;
523 
524 	dev_info->vmdq_pool_base = 0;
525 	dev_info->vmdq_queue_base = 0;
526 }
527 
528 /* Configure the device based on the configuration provided */
529 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
530 {
531 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
532 
533 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
534 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
535 
536 	/* Inherit new configurations */
537 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
538 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
539 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
540 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
541 
542 	if (eth_dev->data->dev_conf.rxmode.jumbo_frame)
543 		eth_dev->data->mtu =
544 				eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
545 				ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE;
546 	return 0;
547 }
548 
549 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
550 {
551 	struct rte_eth_link *link = &eth_dev->data->dev_link;
552 
553 	if (link->link_status)
554 		RTE_LOG(INFO, PMD, "Port %d Link Up - speed %u Mbps - %s\n",
555 			eth_dev->data->port_id,
556 			(uint32_t)link->link_speed,
557 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
558 			("full-duplex") : ("half-duplex\n"));
559 	else
560 		RTE_LOG(INFO, PMD, "Port %d Link Down\n",
561 			eth_dev->data->port_id);
562 }
563 
564 static int bnxt_dev_lsc_intr_setup(struct rte_eth_dev *eth_dev)
565 {
566 	bnxt_print_link_info(eth_dev);
567 	return 0;
568 }
569 
570 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
571 {
572 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
573 	int vlan_mask = 0;
574 	int rc;
575 
576 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
577 		RTE_LOG(ERR, PMD,
578 			"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
579 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
580 	}
581 	bp->dev_stopped = 0;
582 
583 	rc = bnxt_init_chip(bp);
584 	if (rc)
585 		goto error;
586 
587 	bnxt_link_update_op(eth_dev, 1);
588 
589 	if (eth_dev->data->dev_conf.rxmode.hw_vlan_filter)
590 		vlan_mask |= ETH_VLAN_FILTER_MASK;
591 	if (eth_dev->data->dev_conf.rxmode.hw_vlan_strip)
592 		vlan_mask |= ETH_VLAN_STRIP_MASK;
593 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
594 	if (rc)
595 		goto error;
596 
597 	return 0;
598 
599 error:
600 	bnxt_shutdown_nic(bp);
601 	bnxt_free_tx_mbufs(bp);
602 	bnxt_free_rx_mbufs(bp);
603 	return rc;
604 }
605 
606 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
607 {
608 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
609 	int rc = 0;
610 
611 	if (!bp->link_info.link_up)
612 		rc = bnxt_set_hwrm_link_config(bp, true);
613 	if (!rc)
614 		eth_dev->data->dev_link.link_status = 1;
615 
616 	bnxt_print_link_info(eth_dev);
617 	return 0;
618 }
619 
620 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
621 {
622 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
623 
624 	eth_dev->data->dev_link.link_status = 0;
625 	bnxt_set_hwrm_link_config(bp, false);
626 	bp->link_info.link_up = 0;
627 
628 	return 0;
629 }
630 
631 /* Unload the driver, release resources */
632 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
633 {
634 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
635 
636 	if (bp->eth_dev->data->dev_started) {
637 		/* TBD: STOP HW queues DMA */
638 		eth_dev->data->dev_link.link_status = 0;
639 	}
640 	bnxt_set_hwrm_link_config(bp, false);
641 	bnxt_hwrm_port_clr_stats(bp);
642 	bnxt_free_tx_mbufs(bp);
643 	bnxt_free_rx_mbufs(bp);
644 	bnxt_shutdown_nic(bp);
645 	bp->dev_stopped = 1;
646 }
647 
648 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
649 {
650 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
651 
652 	if (bp->dev_stopped == 0)
653 		bnxt_dev_stop_op(eth_dev);
654 
655 	bnxt_free_mem(bp);
656 	if (eth_dev->data->mac_addrs != NULL) {
657 		rte_free(eth_dev->data->mac_addrs);
658 		eth_dev->data->mac_addrs = NULL;
659 	}
660 	if (bp->grp_info != NULL) {
661 		rte_free(bp->grp_info);
662 		bp->grp_info = NULL;
663 	}
664 }
665 
666 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
667 				    uint32_t index)
668 {
669 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
670 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
671 	struct bnxt_vnic_info *vnic;
672 	struct bnxt_filter_info *filter, *temp_filter;
673 	uint32_t pool = RTE_MIN(MAX_FF_POOLS, ETH_64_POOLS);
674 	uint32_t i;
675 
676 	/*
677 	 * Loop through all VNICs from the specified filter flow pools to
678 	 * remove the corresponding MAC addr filter
679 	 */
680 	for (i = 0; i < pool; i++) {
681 		if (!(pool_mask & (1ULL << i)))
682 			continue;
683 
684 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
685 			filter = STAILQ_FIRST(&vnic->filter);
686 			while (filter) {
687 				temp_filter = STAILQ_NEXT(filter, next);
688 				if (filter->mac_index == index) {
689 					STAILQ_REMOVE(&vnic->filter, filter,
690 						      bnxt_filter_info, next);
691 					bnxt_hwrm_clear_l2_filter(bp, filter);
692 					filter->mac_index = INVALID_MAC_INDEX;
693 					memset(&filter->l2_addr, 0,
694 					       ETHER_ADDR_LEN);
695 					STAILQ_INSERT_TAIL(
696 							&bp->free_filter_list,
697 							filter, next);
698 				}
699 				filter = temp_filter;
700 			}
701 		}
702 	}
703 }
704 
705 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
706 				struct ether_addr *mac_addr,
707 				uint32_t index, uint32_t pool)
708 {
709 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
710 	struct bnxt_vnic_info *vnic = STAILQ_FIRST(&bp->ff_pool[pool]);
711 	struct bnxt_filter_info *filter;
712 
713 	if (BNXT_VF(bp)) {
714 		RTE_LOG(ERR, PMD, "Cannot add MAC address to a VF interface\n");
715 		return -ENOTSUP;
716 	}
717 
718 	if (!vnic) {
719 		RTE_LOG(ERR, PMD, "VNIC not found for pool %d!\n", pool);
720 		return -EINVAL;
721 	}
722 	/* Attach requested MAC address to the new l2_filter */
723 	STAILQ_FOREACH(filter, &vnic->filter, next) {
724 		if (filter->mac_index == index) {
725 			RTE_LOG(ERR, PMD,
726 				"MAC addr already existed for pool %d\n", pool);
727 			return 0;
728 		}
729 	}
730 	filter = bnxt_alloc_filter(bp);
731 	if (!filter) {
732 		RTE_LOG(ERR, PMD, "L2 filter alloc failed\n");
733 		return -ENODEV;
734 	}
735 	STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
736 	filter->mac_index = index;
737 	memcpy(filter->l2_addr, mac_addr, ETHER_ADDR_LEN);
738 	return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
739 }
740 
741 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
742 {
743 	int rc = 0;
744 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
745 	struct rte_eth_link new;
746 	unsigned int cnt = BNXT_LINK_WAIT_CNT;
747 
748 	memset(&new, 0, sizeof(new));
749 	do {
750 		/* Retrieve link info from hardware */
751 		rc = bnxt_get_hwrm_link_config(bp, &new);
752 		if (rc) {
753 			new.link_speed = ETH_LINK_SPEED_100M;
754 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
755 			RTE_LOG(ERR, PMD,
756 				"Failed to retrieve link rc = 0x%x!\n", rc);
757 			goto out;
758 		}
759 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
760 
761 		if (!wait_to_complete)
762 			break;
763 	} while (!new.link_status && cnt--);
764 
765 out:
766 	/* Timed out or success */
767 	if (new.link_status != eth_dev->data->dev_link.link_status ||
768 	new.link_speed != eth_dev->data->dev_link.link_speed) {
769 		memcpy(&eth_dev->data->dev_link, &new,
770 			sizeof(struct rte_eth_link));
771 		bnxt_print_link_info(eth_dev);
772 	}
773 
774 	return rc;
775 }
776 
777 static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
778 {
779 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
780 	struct bnxt_vnic_info *vnic;
781 
782 	if (bp->vnic_info == NULL)
783 		return;
784 
785 	vnic = &bp->vnic_info[0];
786 
787 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
788 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
789 }
790 
791 static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
792 {
793 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
794 	struct bnxt_vnic_info *vnic;
795 
796 	if (bp->vnic_info == NULL)
797 		return;
798 
799 	vnic = &bp->vnic_info[0];
800 
801 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
802 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
803 }
804 
805 static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
806 {
807 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
808 	struct bnxt_vnic_info *vnic;
809 
810 	if (bp->vnic_info == NULL)
811 		return;
812 
813 	vnic = &bp->vnic_info[0];
814 
815 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
816 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
817 }
818 
819 static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
820 {
821 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
822 	struct bnxt_vnic_info *vnic;
823 
824 	if (bp->vnic_info == NULL)
825 		return;
826 
827 	vnic = &bp->vnic_info[0];
828 
829 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
830 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
831 }
832 
833 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
834 			    struct rte_eth_rss_reta_entry64 *reta_conf,
835 			    uint16_t reta_size)
836 {
837 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
838 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
839 	struct bnxt_vnic_info *vnic;
840 	int i;
841 
842 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
843 		return -EINVAL;
844 
845 	if (reta_size != HW_HASH_INDEX_SIZE) {
846 		RTE_LOG(ERR, PMD, "The configured hash table lookup size "
847 			"(%d) must equal the size supported by the hardware "
848 			"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
849 		return -EINVAL;
850 	}
851 	/* Update the RSS VNIC(s) */
852 	for (i = 0; i < MAX_FF_POOLS; i++) {
853 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
854 			memcpy(vnic->rss_table, reta_conf, reta_size);
855 
856 			bnxt_hwrm_vnic_rss_cfg(bp, vnic);
857 		}
858 	}
859 	return 0;
860 }
861 
862 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
863 			      struct rte_eth_rss_reta_entry64 *reta_conf,
864 			      uint16_t reta_size)
865 {
866 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
867 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
868 	struct rte_intr_handle *intr_handle
869 		= &bp->pdev->intr_handle;
870 
871 	/* Retrieve from the default VNIC */
872 	if (!vnic)
873 		return -EINVAL;
874 	if (!vnic->rss_table)
875 		return -EINVAL;
876 
877 	if (reta_size != HW_HASH_INDEX_SIZE) {
878 		RTE_LOG(ERR, PMD, "The configured hash table lookup size "
879 			"(%d) must equal the size supported by the hardware "
880 			"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
881 		return -EINVAL;
882 	}
883 	/* EW - need to revisit here copying from u64 to u16 */
884 	memcpy(reta_conf, vnic->rss_table, reta_size);
885 
886 	if (rte_intr_allow_others(intr_handle)) {
887 		if (eth_dev->data->dev_conf.intr_conf.lsc != 0)
888 			bnxt_dev_lsc_intr_setup(eth_dev);
889 	}
890 
891 	return 0;
892 }
893 
894 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
895 				   struct rte_eth_rss_conf *rss_conf)
896 {
897 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
898 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
899 	struct bnxt_vnic_info *vnic;
900 	uint16_t hash_type = 0;
901 	int i;
902 
903 	/*
904 	 * If RSS enablement were different than dev_configure,
905 	 * then return -EINVAL
906 	 */
907 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
908 		if (!rss_conf->rss_hf)
909 			RTE_LOG(ERR, PMD, "Hash type NONE\n");
910 	} else {
911 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
912 			return -EINVAL;
913 	}
914 
915 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
916 	memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
917 
918 	if (rss_conf->rss_hf & ETH_RSS_IPV4)
919 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
920 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
921 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
922 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
923 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
924 	if (rss_conf->rss_hf & ETH_RSS_IPV6)
925 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
926 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
927 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
928 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
929 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
930 
931 	/* Update the RSS VNIC(s) */
932 	for (i = 0; i < MAX_FF_POOLS; i++) {
933 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
934 			vnic->hash_type = hash_type;
935 
936 			/*
937 			 * Use the supplied key if the key length is
938 			 * acceptable and the rss_key is not NULL
939 			 */
940 			if (rss_conf->rss_key &&
941 			    rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
942 				memcpy(vnic->rss_hash_key, rss_conf->rss_key,
943 				       rss_conf->rss_key_len);
944 
945 			bnxt_hwrm_vnic_rss_cfg(bp, vnic);
946 		}
947 	}
948 	return 0;
949 }
950 
951 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
952 				     struct rte_eth_rss_conf *rss_conf)
953 {
954 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
955 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
956 	int len;
957 	uint32_t hash_types;
958 
959 	/* RSS configuration is the same for all VNICs */
960 	if (vnic && vnic->rss_hash_key) {
961 		if (rss_conf->rss_key) {
962 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
963 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
964 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
965 		}
966 
967 		hash_types = vnic->hash_type;
968 		rss_conf->rss_hf = 0;
969 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
970 			rss_conf->rss_hf |= ETH_RSS_IPV4;
971 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
972 		}
973 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
974 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
975 			hash_types &=
976 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
977 		}
978 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
979 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
980 			hash_types &=
981 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
982 		}
983 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
984 			rss_conf->rss_hf |= ETH_RSS_IPV6;
985 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
986 		}
987 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
988 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
989 			hash_types &=
990 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
991 		}
992 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
993 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
994 			hash_types &=
995 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
996 		}
997 		if (hash_types) {
998 			RTE_LOG(ERR, PMD,
999 				"Unknwon RSS config from firmware (%08x), RSS disabled",
1000 				vnic->hash_type);
1001 			return -ENOTSUP;
1002 		}
1003 	} else {
1004 		rss_conf->rss_hf = 0;
1005 	}
1006 	return 0;
1007 }
1008 
1009 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1010 			       struct rte_eth_fc_conf *fc_conf)
1011 {
1012 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1013 	struct rte_eth_link link_info;
1014 	int rc;
1015 
1016 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
1017 	if (rc)
1018 		return rc;
1019 
1020 	memset(fc_conf, 0, sizeof(*fc_conf));
1021 	if (bp->link_info.auto_pause)
1022 		fc_conf->autoneg = 1;
1023 	switch (bp->link_info.pause) {
1024 	case 0:
1025 		fc_conf->mode = RTE_FC_NONE;
1026 		break;
1027 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1028 		fc_conf->mode = RTE_FC_TX_PAUSE;
1029 		break;
1030 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1031 		fc_conf->mode = RTE_FC_RX_PAUSE;
1032 		break;
1033 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1034 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1035 		fc_conf->mode = RTE_FC_FULL;
1036 		break;
1037 	}
1038 	return 0;
1039 }
1040 
1041 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1042 			       struct rte_eth_fc_conf *fc_conf)
1043 {
1044 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1045 
1046 	if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
1047 		RTE_LOG(ERR, PMD, "Flow Control Settings cannot be modified\n");
1048 		return -ENOTSUP;
1049 	}
1050 
1051 	switch (fc_conf->mode) {
1052 	case RTE_FC_NONE:
1053 		bp->link_info.auto_pause = 0;
1054 		bp->link_info.force_pause = 0;
1055 		break;
1056 	case RTE_FC_RX_PAUSE:
1057 		if (fc_conf->autoneg) {
1058 			bp->link_info.auto_pause =
1059 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1060 			bp->link_info.force_pause = 0;
1061 		} else {
1062 			bp->link_info.auto_pause = 0;
1063 			bp->link_info.force_pause =
1064 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1065 		}
1066 		break;
1067 	case RTE_FC_TX_PAUSE:
1068 		if (fc_conf->autoneg) {
1069 			bp->link_info.auto_pause =
1070 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1071 			bp->link_info.force_pause = 0;
1072 		} else {
1073 			bp->link_info.auto_pause = 0;
1074 			bp->link_info.force_pause =
1075 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1076 		}
1077 		break;
1078 	case RTE_FC_FULL:
1079 		if (fc_conf->autoneg) {
1080 			bp->link_info.auto_pause =
1081 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1082 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1083 			bp->link_info.force_pause = 0;
1084 		} else {
1085 			bp->link_info.auto_pause = 0;
1086 			bp->link_info.force_pause =
1087 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1088 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1089 		}
1090 		break;
1091 	}
1092 	return bnxt_set_hwrm_link_config(bp, true);
1093 }
1094 
1095 /* Add UDP tunneling port */
1096 static int
1097 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1098 			 struct rte_eth_udp_tunnel *udp_tunnel)
1099 {
1100 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1101 	uint16_t tunnel_type = 0;
1102 	int rc = 0;
1103 
1104 	switch (udp_tunnel->prot_type) {
1105 	case RTE_TUNNEL_TYPE_VXLAN:
1106 		if (bp->vxlan_port_cnt) {
1107 			RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1108 				udp_tunnel->udp_port);
1109 			if (bp->vxlan_port != udp_tunnel->udp_port) {
1110 				RTE_LOG(ERR, PMD, "Only one port allowed\n");
1111 				return -ENOSPC;
1112 			}
1113 			bp->vxlan_port_cnt++;
1114 			return 0;
1115 		}
1116 		tunnel_type =
1117 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1118 		bp->vxlan_port_cnt++;
1119 		break;
1120 	case RTE_TUNNEL_TYPE_GENEVE:
1121 		if (bp->geneve_port_cnt) {
1122 			RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1123 				udp_tunnel->udp_port);
1124 			if (bp->geneve_port != udp_tunnel->udp_port) {
1125 				RTE_LOG(ERR, PMD, "Only one port allowed\n");
1126 				return -ENOSPC;
1127 			}
1128 			bp->geneve_port_cnt++;
1129 			return 0;
1130 		}
1131 		tunnel_type =
1132 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1133 		bp->geneve_port_cnt++;
1134 		break;
1135 	default:
1136 		RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1137 		return -ENOTSUP;
1138 	}
1139 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1140 					     tunnel_type);
1141 	return rc;
1142 }
1143 
1144 static int
1145 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1146 			 struct rte_eth_udp_tunnel *udp_tunnel)
1147 {
1148 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1149 	uint16_t tunnel_type = 0;
1150 	uint16_t port = 0;
1151 	int rc = 0;
1152 
1153 	switch (udp_tunnel->prot_type) {
1154 	case RTE_TUNNEL_TYPE_VXLAN:
1155 		if (!bp->vxlan_port_cnt) {
1156 			RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1157 			return -EINVAL;
1158 		}
1159 		if (bp->vxlan_port != udp_tunnel->udp_port) {
1160 			RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1161 				udp_tunnel->udp_port, bp->vxlan_port);
1162 			return -EINVAL;
1163 		}
1164 		if (--bp->vxlan_port_cnt)
1165 			return 0;
1166 
1167 		tunnel_type =
1168 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1169 		port = bp->vxlan_fw_dst_port_id;
1170 		break;
1171 	case RTE_TUNNEL_TYPE_GENEVE:
1172 		if (!bp->geneve_port_cnt) {
1173 			RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1174 			return -EINVAL;
1175 		}
1176 		if (bp->geneve_port != udp_tunnel->udp_port) {
1177 			RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1178 				udp_tunnel->udp_port, bp->geneve_port);
1179 			return -EINVAL;
1180 		}
1181 		if (--bp->geneve_port_cnt)
1182 			return 0;
1183 
1184 		tunnel_type =
1185 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1186 		port = bp->geneve_fw_dst_port_id;
1187 		break;
1188 	default:
1189 		RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1190 		return -ENOTSUP;
1191 	}
1192 
1193 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1194 	if (!rc) {
1195 		if (tunnel_type ==
1196 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1197 			bp->vxlan_port = 0;
1198 		if (tunnel_type ==
1199 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1200 			bp->geneve_port = 0;
1201 	}
1202 	return rc;
1203 }
1204 
1205 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1206 {
1207 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1208 	struct bnxt_vnic_info *vnic;
1209 	unsigned int i;
1210 	int rc = 0;
1211 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1212 
1213 	/* Cycle through all VNICs */
1214 	for (i = 0; i < bp->nr_vnics; i++) {
1215 		/*
1216 		 * For each VNIC and each associated filter(s)
1217 		 * if VLAN exists && VLAN matches vlan_id
1218 		 *      remove the MAC+VLAN filter
1219 		 *      add a new MAC only filter
1220 		 * else
1221 		 *      VLAN filter doesn't exist, just skip and continue
1222 		 */
1223 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1224 			filter = STAILQ_FIRST(&vnic->filter);
1225 			while (filter) {
1226 				temp_filter = STAILQ_NEXT(filter, next);
1227 
1228 				if (filter->enables & chk &&
1229 				    filter->l2_ovlan == vlan_id) {
1230 					/* Must delete the filter */
1231 					STAILQ_REMOVE(&vnic->filter, filter,
1232 						      bnxt_filter_info, next);
1233 					bnxt_hwrm_clear_l2_filter(bp, filter);
1234 					STAILQ_INSERT_TAIL(
1235 							&bp->free_filter_list,
1236 							filter, next);
1237 
1238 					/*
1239 					 * Need to examine to see if the MAC
1240 					 * filter already existed or not before
1241 					 * allocating a new one
1242 					 */
1243 
1244 					new_filter = bnxt_alloc_filter(bp);
1245 					if (!new_filter) {
1246 						RTE_LOG(ERR, PMD,
1247 							"MAC/VLAN filter alloc failed\n");
1248 						rc = -ENOMEM;
1249 						goto exit;
1250 					}
1251 					STAILQ_INSERT_TAIL(&vnic->filter,
1252 							   new_filter, next);
1253 					/* Inherit MAC from previous filter */
1254 					new_filter->mac_index =
1255 							filter->mac_index;
1256 					memcpy(new_filter->l2_addr,
1257 					       filter->l2_addr, ETHER_ADDR_LEN);
1258 					/* MAC only filter */
1259 					rc = bnxt_hwrm_set_l2_filter(bp,
1260 							vnic->fw_vnic_id,
1261 							new_filter);
1262 					if (rc)
1263 						goto exit;
1264 					RTE_LOG(INFO, PMD,
1265 						"Del Vlan filter for %d\n",
1266 						vlan_id);
1267 				}
1268 				filter = temp_filter;
1269 			}
1270 		}
1271 	}
1272 exit:
1273 	return rc;
1274 }
1275 
1276 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1277 {
1278 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1279 	struct bnxt_vnic_info *vnic;
1280 	unsigned int i;
1281 	int rc = 0;
1282 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
1283 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
1284 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
1285 
1286 	/* Cycle through all VNICs */
1287 	for (i = 0; i < bp->nr_vnics; i++) {
1288 		/*
1289 		 * For each VNIC and each associated filter(s)
1290 		 * if VLAN exists:
1291 		 *   if VLAN matches vlan_id
1292 		 *      VLAN filter already exists, just skip and continue
1293 		 *   else
1294 		 *      add a new MAC+VLAN filter
1295 		 * else
1296 		 *   Remove the old MAC only filter
1297 		 *    Add a new MAC+VLAN filter
1298 		 */
1299 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1300 			filter = STAILQ_FIRST(&vnic->filter);
1301 			while (filter) {
1302 				temp_filter = STAILQ_NEXT(filter, next);
1303 
1304 				if (filter->enables & chk) {
1305 					if (filter->l2_ovlan == vlan_id)
1306 						goto cont;
1307 				} else {
1308 					/* Must delete the MAC filter */
1309 					STAILQ_REMOVE(&vnic->filter, filter,
1310 						      bnxt_filter_info, next);
1311 					bnxt_hwrm_clear_l2_filter(bp, filter);
1312 					filter->l2_ovlan = 0;
1313 					STAILQ_INSERT_TAIL(
1314 							&bp->free_filter_list,
1315 							filter, next);
1316 				}
1317 				new_filter = bnxt_alloc_filter(bp);
1318 				if (!new_filter) {
1319 					RTE_LOG(ERR, PMD,
1320 						"MAC/VLAN filter alloc failed\n");
1321 					rc = -ENOMEM;
1322 					goto exit;
1323 				}
1324 				STAILQ_INSERT_TAIL(&vnic->filter, new_filter,
1325 						   next);
1326 				/* Inherit MAC from the previous filter */
1327 				new_filter->mac_index = filter->mac_index;
1328 				memcpy(new_filter->l2_addr, filter->l2_addr,
1329 				       ETHER_ADDR_LEN);
1330 				/* MAC + VLAN ID filter */
1331 				new_filter->l2_ivlan = vlan_id;
1332 				new_filter->l2_ivlan_mask = 0xF000;
1333 				new_filter->enables |= en;
1334 				rc = bnxt_hwrm_set_l2_filter(bp,
1335 							     vnic->fw_vnic_id,
1336 							     new_filter);
1337 				if (rc)
1338 					goto exit;
1339 				RTE_LOG(INFO, PMD,
1340 					"Added Vlan filter for %d\n", vlan_id);
1341 cont:
1342 				filter = temp_filter;
1343 			}
1344 		}
1345 	}
1346 exit:
1347 	return rc;
1348 }
1349 
1350 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1351 				   uint16_t vlan_id, int on)
1352 {
1353 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1354 
1355 	/* These operations apply to ALL existing MAC/VLAN filters */
1356 	if (on)
1357 		return bnxt_add_vlan_filter(bp, vlan_id);
1358 	else
1359 		return bnxt_del_vlan_filter(bp, vlan_id);
1360 }
1361 
1362 static int
1363 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1364 {
1365 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1366 	unsigned int i;
1367 
1368 	if (mask & ETH_VLAN_FILTER_MASK) {
1369 		if (!dev->data->dev_conf.rxmode.hw_vlan_filter) {
1370 			/* Remove any VLAN filters programmed */
1371 			for (i = 0; i < 4095; i++)
1372 				bnxt_del_vlan_filter(bp, i);
1373 		}
1374 		RTE_LOG(INFO, PMD, "VLAN Filtering: %d\n",
1375 			dev->data->dev_conf.rxmode.hw_vlan_filter);
1376 	}
1377 
1378 	if (mask & ETH_VLAN_STRIP_MASK) {
1379 		/* Enable or disable VLAN stripping */
1380 		for (i = 0; i < bp->nr_vnics; i++) {
1381 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1382 			if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1383 				vnic->vlan_strip = true;
1384 			else
1385 				vnic->vlan_strip = false;
1386 			bnxt_hwrm_vnic_cfg(bp, vnic);
1387 		}
1388 		RTE_LOG(INFO, PMD, "VLAN Strip Offload: %d\n",
1389 			dev->data->dev_conf.rxmode.hw_vlan_strip);
1390 	}
1391 
1392 	if (mask & ETH_VLAN_EXTEND_MASK)
1393 		RTE_LOG(ERR, PMD, "Extend VLAN Not supported\n");
1394 
1395 	return 0;
1396 }
1397 
1398 static void
1399 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct ether_addr *addr)
1400 {
1401 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1402 	/* Default Filter is tied to VNIC 0 */
1403 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1404 	struct bnxt_filter_info *filter;
1405 	int rc;
1406 
1407 	if (BNXT_VF(bp))
1408 		return;
1409 
1410 	memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr));
1411 	memcpy(&dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
1412 
1413 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1414 		/* Default Filter is at Index 0 */
1415 		if (filter->mac_index != 0)
1416 			continue;
1417 		rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1418 		if (rc)
1419 			break;
1420 		memcpy(filter->l2_addr, bp->mac_addr, ETHER_ADDR_LEN);
1421 		memset(filter->l2_addr_mask, 0xff, ETHER_ADDR_LEN);
1422 		filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1423 		filter->enables |=
1424 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1425 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1426 		rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1427 		if (rc)
1428 			break;
1429 		filter->mac_index = 0;
1430 		RTE_LOG(DEBUG, PMD, "Set MAC addr\n");
1431 	}
1432 }
1433 
1434 static int
1435 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1436 			  struct ether_addr *mc_addr_set,
1437 			  uint32_t nb_mc_addr)
1438 {
1439 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1440 	char *mc_addr_list = (char *)mc_addr_set;
1441 	struct bnxt_vnic_info *vnic;
1442 	uint32_t off = 0, i = 0;
1443 
1444 	vnic = &bp->vnic_info[0];
1445 
1446 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1447 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1448 		goto allmulti;
1449 	}
1450 
1451 	/* TODO Check for Duplicate mcast addresses */
1452 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1453 	for (i = 0; i < nb_mc_addr; i++) {
1454 		memcpy(vnic->mc_list + off, &mc_addr_list[i], ETHER_ADDR_LEN);
1455 		off += ETHER_ADDR_LEN;
1456 	}
1457 
1458 	vnic->mc_addr_cnt = i;
1459 
1460 allmulti:
1461 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1462 }
1463 
1464 static int
1465 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1466 {
1467 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1468 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1469 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1470 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1471 	int ret;
1472 
1473 	ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1474 			fw_major, fw_minor, fw_updt);
1475 
1476 	ret += 1; /* add the size of '\0' */
1477 	if (fw_size < (uint32_t)ret)
1478 		return ret;
1479 	else
1480 		return 0;
1481 }
1482 
1483 static void
1484 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1485 	struct rte_eth_rxq_info *qinfo)
1486 {
1487 	struct bnxt_rx_queue *rxq;
1488 
1489 	rxq = dev->data->rx_queues[queue_id];
1490 
1491 	qinfo->mp = rxq->mb_pool;
1492 	qinfo->scattered_rx = dev->data->scattered_rx;
1493 	qinfo->nb_desc = rxq->nb_rx_desc;
1494 
1495 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1496 	qinfo->conf.rx_drop_en = 0;
1497 	qinfo->conf.rx_deferred_start = 0;
1498 }
1499 
1500 static void
1501 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1502 	struct rte_eth_txq_info *qinfo)
1503 {
1504 	struct bnxt_tx_queue *txq;
1505 
1506 	txq = dev->data->tx_queues[queue_id];
1507 
1508 	qinfo->nb_desc = txq->nb_tx_desc;
1509 
1510 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1511 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1512 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1513 
1514 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1515 	qinfo->conf.tx_rs_thresh = 0;
1516 	qinfo->conf.txq_flags = txq->txq_flags;
1517 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1518 }
1519 
1520 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1521 {
1522 	struct bnxt *bp = eth_dev->data->dev_private;
1523 	struct rte_eth_dev_info dev_info;
1524 	uint32_t max_dev_mtu;
1525 	uint32_t rc = 0;
1526 	uint32_t i;
1527 
1528 	bnxt_dev_info_get_op(eth_dev, &dev_info);
1529 	max_dev_mtu = dev_info.max_rx_pktlen -
1530 		      ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE * 2;
1531 
1532 	if (new_mtu < ETHER_MIN_MTU || new_mtu > max_dev_mtu) {
1533 		RTE_LOG(ERR, PMD, "MTU requested must be within (%d, %d)\n",
1534 			ETHER_MIN_MTU, max_dev_mtu);
1535 		return -EINVAL;
1536 	}
1537 
1538 
1539 	if (new_mtu > ETHER_MTU) {
1540 		bp->flags |= BNXT_FLAG_JUMBO;
1541 		eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
1542 	} else {
1543 		eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
1544 		bp->flags &= ~BNXT_FLAG_JUMBO;
1545 	}
1546 
1547 	eth_dev->data->dev_conf.rxmode.max_rx_pkt_len =
1548 		new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1549 
1550 	eth_dev->data->mtu = new_mtu;
1551 	RTE_LOG(INFO, PMD, "New MTU is %d\n", eth_dev->data->mtu);
1552 
1553 	for (i = 0; i < bp->nr_vnics; i++) {
1554 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1555 		uint16_t size = 0;
1556 
1557 		vnic->mru = bp->eth_dev->data->mtu + ETHER_HDR_LEN +
1558 					ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1559 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1560 		if (rc)
1561 			break;
1562 
1563 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
1564 		size -= RTE_PKTMBUF_HEADROOM;
1565 
1566 		if (size < new_mtu) {
1567 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1568 			if (rc)
1569 				return rc;
1570 		}
1571 	}
1572 
1573 	return rc;
1574 }
1575 
1576 static int
1577 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1578 {
1579 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1580 	uint16_t vlan = bp->vlan;
1581 	int rc;
1582 
1583 	if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
1584 		RTE_LOG(ERR, PMD,
1585 			"PVID cannot be modified for this function\n");
1586 		return -ENOTSUP;
1587 	}
1588 	bp->vlan = on ? pvid : 0;
1589 
1590 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1591 	if (rc)
1592 		bp->vlan = vlan;
1593 	return rc;
1594 }
1595 
1596 static int
1597 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1598 {
1599 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1600 
1601 	return bnxt_hwrm_port_led_cfg(bp, true);
1602 }
1603 
1604 static int
1605 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1606 {
1607 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1608 
1609 	return bnxt_hwrm_port_led_cfg(bp, false);
1610 }
1611 
1612 static uint32_t
1613 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1614 {
1615 	uint32_t desc = 0, raw_cons = 0, cons;
1616 	struct bnxt_cp_ring_info *cpr;
1617 	struct bnxt_rx_queue *rxq;
1618 	struct rx_pkt_cmpl *rxcmp;
1619 	uint16_t cmp_type;
1620 	uint8_t cmp = 1;
1621 	bool valid;
1622 
1623 	rxq = dev->data->rx_queues[rx_queue_id];
1624 	cpr = rxq->cp_ring;
1625 	valid = cpr->valid;
1626 
1627 	while (raw_cons < rxq->nb_rx_desc) {
1628 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1629 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1630 
1631 		if (!CMPL_VALID(rxcmp, valid))
1632 			goto nothing_to_do;
1633 		valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1634 		cmp_type = CMP_TYPE(rxcmp);
1635 		if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1636 			cmp = (rte_le_to_cpu_32(
1637 					((struct rx_tpa_end_cmpl *)
1638 					 (rxcmp))->agg_bufs_v1) &
1639 			       RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1640 				RX_TPA_END_CMPL_AGG_BUFS_SFT;
1641 			desc++;
1642 		} else if (cmp_type == 0x11) {
1643 			desc++;
1644 			cmp = (rxcmp->agg_bufs_v1 &
1645 				   RX_PKT_CMPL_AGG_BUFS_MASK) >>
1646 				RX_PKT_CMPL_AGG_BUFS_SFT;
1647 		} else {
1648 			cmp = 1;
1649 		}
1650 nothing_to_do:
1651 		raw_cons += cmp ? cmp : 2;
1652 	}
1653 
1654 	return desc;
1655 }
1656 
1657 static int
1658 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1659 {
1660 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1661 	struct bnxt_rx_ring_info *rxr;
1662 	struct bnxt_cp_ring_info *cpr;
1663 	struct bnxt_sw_rx_bd *rx_buf;
1664 	struct rx_pkt_cmpl *rxcmp;
1665 	uint32_t cons, cp_cons;
1666 
1667 	if (!rxq)
1668 		return -EINVAL;
1669 
1670 	cpr = rxq->cp_ring;
1671 	rxr = rxq->rx_ring;
1672 
1673 	if (offset >= rxq->nb_rx_desc)
1674 		return -EINVAL;
1675 
1676 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1677 	cp_cons = cpr->cp_raw_cons;
1678 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1679 
1680 	if (cons > cp_cons) {
1681 		if (CMPL_VALID(rxcmp, cpr->valid))
1682 			return RTE_ETH_RX_DESC_DONE;
1683 	} else {
1684 		if (CMPL_VALID(rxcmp, !cpr->valid))
1685 			return RTE_ETH_RX_DESC_DONE;
1686 	}
1687 	rx_buf = &rxr->rx_buf_ring[cons];
1688 	if (rx_buf->mbuf == NULL)
1689 		return RTE_ETH_RX_DESC_UNAVAIL;
1690 
1691 
1692 	return RTE_ETH_RX_DESC_AVAIL;
1693 }
1694 
1695 static int
1696 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
1697 {
1698 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
1699 	struct bnxt_tx_ring_info *txr;
1700 	struct bnxt_cp_ring_info *cpr;
1701 	struct bnxt_sw_tx_bd *tx_buf;
1702 	struct tx_pkt_cmpl *txcmp;
1703 	uint32_t cons, cp_cons;
1704 
1705 	if (!txq)
1706 		return -EINVAL;
1707 
1708 	cpr = txq->cp_ring;
1709 	txr = txq->tx_ring;
1710 
1711 	if (offset >= txq->nb_tx_desc)
1712 		return -EINVAL;
1713 
1714 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1715 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1716 	cp_cons = cpr->cp_raw_cons;
1717 
1718 	if (cons > cp_cons) {
1719 		if (CMPL_VALID(txcmp, cpr->valid))
1720 			return RTE_ETH_TX_DESC_UNAVAIL;
1721 	} else {
1722 		if (CMPL_VALID(txcmp, !cpr->valid))
1723 			return RTE_ETH_TX_DESC_UNAVAIL;
1724 	}
1725 	tx_buf = &txr->tx_buf_ring[cons];
1726 	if (tx_buf->mbuf == NULL)
1727 		return RTE_ETH_TX_DESC_DONE;
1728 
1729 	return RTE_ETH_TX_DESC_FULL;
1730 }
1731 
1732 static struct bnxt_filter_info *
1733 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
1734 				struct rte_eth_ethertype_filter *efilter,
1735 				struct bnxt_vnic_info *vnic0,
1736 				struct bnxt_vnic_info *vnic,
1737 				int *ret)
1738 {
1739 	struct bnxt_filter_info *mfilter = NULL;
1740 	int match = 0;
1741 	*ret = 0;
1742 
1743 	if (efilter->ether_type == ETHER_TYPE_IPv4 ||
1744 		efilter->ether_type == ETHER_TYPE_IPv6) {
1745 		RTE_LOG(ERR, PMD, "invalid ether_type(0x%04x) in"
1746 			" ethertype filter.", efilter->ether_type);
1747 		*ret = -EINVAL;
1748 		goto exit;
1749 	}
1750 	if (efilter->queue >= bp->rx_nr_rings) {
1751 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1752 		*ret = -EINVAL;
1753 		goto exit;
1754 	}
1755 
1756 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1757 	vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1758 	if (vnic == NULL) {
1759 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1760 		*ret = -EINVAL;
1761 		goto exit;
1762 	}
1763 
1764 	if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1765 		STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
1766 			if ((!memcmp(efilter->mac_addr.addr_bytes,
1767 				     mfilter->l2_addr, ETHER_ADDR_LEN) &&
1768 			     mfilter->flags ==
1769 			     HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
1770 			     mfilter->ethertype == efilter->ether_type)) {
1771 				match = 1;
1772 				break;
1773 			}
1774 		}
1775 	} else {
1776 		STAILQ_FOREACH(mfilter, &vnic->filter, next)
1777 			if ((!memcmp(efilter->mac_addr.addr_bytes,
1778 				     mfilter->l2_addr, ETHER_ADDR_LEN) &&
1779 			     mfilter->ethertype == efilter->ether_type &&
1780 			     mfilter->flags ==
1781 			     HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
1782 				match = 1;
1783 				break;
1784 			}
1785 	}
1786 
1787 	if (match)
1788 		*ret = -EEXIST;
1789 
1790 exit:
1791 	return mfilter;
1792 }
1793 
1794 static int
1795 bnxt_ethertype_filter(struct rte_eth_dev *dev,
1796 			enum rte_filter_op filter_op,
1797 			void *arg)
1798 {
1799 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1800 	struct rte_eth_ethertype_filter *efilter =
1801 			(struct rte_eth_ethertype_filter *)arg;
1802 	struct bnxt_filter_info *bfilter, *filter1;
1803 	struct bnxt_vnic_info *vnic, *vnic0;
1804 	int ret;
1805 
1806 	if (filter_op == RTE_ETH_FILTER_NOP)
1807 		return 0;
1808 
1809 	if (arg == NULL) {
1810 		RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
1811 			    filter_op);
1812 		return -EINVAL;
1813 	}
1814 
1815 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1816 	vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1817 
1818 	switch (filter_op) {
1819 	case RTE_ETH_FILTER_ADD:
1820 		bnxt_match_and_validate_ether_filter(bp, efilter,
1821 							vnic0, vnic, &ret);
1822 		if (ret < 0)
1823 			return ret;
1824 
1825 		bfilter = bnxt_get_unused_filter(bp);
1826 		if (bfilter == NULL) {
1827 			RTE_LOG(ERR, PMD,
1828 				"Not enough resources for a new filter.\n");
1829 			return -ENOMEM;
1830 		}
1831 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
1832 		memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
1833 		       ETHER_ADDR_LEN);
1834 		memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
1835 		       ETHER_ADDR_LEN);
1836 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
1837 		bfilter->ethertype = efilter->ether_type;
1838 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
1839 
1840 		filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
1841 		if (filter1 == NULL) {
1842 			ret = -1;
1843 			goto cleanup;
1844 		}
1845 		bfilter->enables |=
1846 			HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
1847 		bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
1848 
1849 		bfilter->dst_id = vnic->fw_vnic_id;
1850 
1851 		if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1852 			bfilter->flags =
1853 				HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
1854 		}
1855 
1856 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
1857 		if (ret)
1858 			goto cleanup;
1859 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
1860 		break;
1861 	case RTE_ETH_FILTER_DELETE:
1862 		filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
1863 							vnic0, vnic, &ret);
1864 		if (ret == -EEXIST) {
1865 			ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
1866 
1867 			STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
1868 				      next);
1869 			bnxt_free_filter(bp, filter1);
1870 		} else if (ret == 0) {
1871 			RTE_LOG(ERR, PMD, "No matching filter found\n");
1872 		}
1873 		break;
1874 	default:
1875 		RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
1876 		ret = -EINVAL;
1877 		goto error;
1878 	}
1879 	return ret;
1880 cleanup:
1881 	bnxt_free_filter(bp, bfilter);
1882 error:
1883 	return ret;
1884 }
1885 
1886 static inline int
1887 parse_ntuple_filter(struct bnxt *bp,
1888 		    struct rte_eth_ntuple_filter *nfilter,
1889 		    struct bnxt_filter_info *bfilter)
1890 {
1891 	uint32_t en = 0;
1892 
1893 	if (nfilter->queue >= bp->rx_nr_rings) {
1894 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", nfilter->queue);
1895 		return -EINVAL;
1896 	}
1897 
1898 	switch (nfilter->dst_port_mask) {
1899 	case UINT16_MAX:
1900 		bfilter->dst_port_mask = -1;
1901 		bfilter->dst_port = nfilter->dst_port;
1902 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
1903 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
1904 		break;
1905 	default:
1906 		RTE_LOG(ERR, PMD, "invalid dst_port mask.");
1907 		return -EINVAL;
1908 	}
1909 
1910 	bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
1911 	en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1912 
1913 	switch (nfilter->proto_mask) {
1914 	case UINT8_MAX:
1915 		if (nfilter->proto == 17) /* IPPROTO_UDP */
1916 			bfilter->ip_protocol = 17;
1917 		else if (nfilter->proto == 6) /* IPPROTO_TCP */
1918 			bfilter->ip_protocol = 6;
1919 		else
1920 			return -EINVAL;
1921 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1922 		break;
1923 	default:
1924 		RTE_LOG(ERR, PMD, "invalid protocol mask.");
1925 		return -EINVAL;
1926 	}
1927 
1928 	switch (nfilter->dst_ip_mask) {
1929 	case UINT32_MAX:
1930 		bfilter->dst_ipaddr_mask[0] = -1;
1931 		bfilter->dst_ipaddr[0] = nfilter->dst_ip;
1932 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
1933 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
1934 		break;
1935 	default:
1936 		RTE_LOG(ERR, PMD, "invalid dst_ip mask.");
1937 		return -EINVAL;
1938 	}
1939 
1940 	switch (nfilter->src_ip_mask) {
1941 	case UINT32_MAX:
1942 		bfilter->src_ipaddr_mask[0] = -1;
1943 		bfilter->src_ipaddr[0] = nfilter->src_ip;
1944 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
1945 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
1946 		break;
1947 	default:
1948 		RTE_LOG(ERR, PMD, "invalid src_ip mask.");
1949 		return -EINVAL;
1950 	}
1951 
1952 	switch (nfilter->src_port_mask) {
1953 	case UINT16_MAX:
1954 		bfilter->src_port_mask = -1;
1955 		bfilter->src_port = nfilter->src_port;
1956 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
1957 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
1958 		break;
1959 	default:
1960 		RTE_LOG(ERR, PMD, "invalid src_port mask.");
1961 		return -EINVAL;
1962 	}
1963 
1964 	//TODO Priority
1965 	//nfilter->priority = (uint8_t)filter->priority;
1966 
1967 	bfilter->enables = en;
1968 	return 0;
1969 }
1970 
1971 static struct bnxt_filter_info*
1972 bnxt_match_ntuple_filter(struct bnxt *bp,
1973 			 struct bnxt_filter_info *bfilter,
1974 			 struct bnxt_vnic_info **mvnic)
1975 {
1976 	struct bnxt_filter_info *mfilter = NULL;
1977 	int i;
1978 
1979 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
1980 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1981 		STAILQ_FOREACH(mfilter, &vnic->filter, next) {
1982 			if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
1983 			    bfilter->src_ipaddr_mask[0] ==
1984 			    mfilter->src_ipaddr_mask[0] &&
1985 			    bfilter->src_port == mfilter->src_port &&
1986 			    bfilter->src_port_mask == mfilter->src_port_mask &&
1987 			    bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
1988 			    bfilter->dst_ipaddr_mask[0] ==
1989 			    mfilter->dst_ipaddr_mask[0] &&
1990 			    bfilter->dst_port == mfilter->dst_port &&
1991 			    bfilter->dst_port_mask == mfilter->dst_port_mask &&
1992 			    bfilter->flags == mfilter->flags &&
1993 			    bfilter->enables == mfilter->enables) {
1994 				if (mvnic)
1995 					*mvnic = vnic;
1996 				return mfilter;
1997 			}
1998 		}
1999 	}
2000 	return NULL;
2001 }
2002 
2003 static int
2004 bnxt_cfg_ntuple_filter(struct bnxt *bp,
2005 		       struct rte_eth_ntuple_filter *nfilter,
2006 		       enum rte_filter_op filter_op)
2007 {
2008 	struct bnxt_filter_info *bfilter, *mfilter, *filter1;
2009 	struct bnxt_vnic_info *vnic, *vnic0, *mvnic;
2010 	int ret;
2011 
2012 	if (nfilter->flags != RTE_5TUPLE_FLAGS) {
2013 		RTE_LOG(ERR, PMD, "only 5tuple is supported.");
2014 		return -EINVAL;
2015 	}
2016 
2017 	if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
2018 		RTE_LOG(ERR, PMD, "Ntuple filter: TCP flags not supported\n");
2019 		return -EINVAL;
2020 	}
2021 
2022 	bfilter = bnxt_get_unused_filter(bp);
2023 	if (bfilter == NULL) {
2024 		RTE_LOG(ERR, PMD,
2025 			"Not enough resources for a new filter.\n");
2026 		return -ENOMEM;
2027 	}
2028 	ret = parse_ntuple_filter(bp, nfilter, bfilter);
2029 	if (ret < 0)
2030 		goto free_filter;
2031 
2032 	vnic = STAILQ_FIRST(&bp->ff_pool[nfilter->queue]);
2033 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2034 	filter1 = STAILQ_FIRST(&vnic0->filter);
2035 	if (filter1 == NULL) {
2036 		ret = -1;
2037 		goto free_filter;
2038 	}
2039 
2040 	bfilter->dst_id = vnic->fw_vnic_id;
2041 	bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2042 	bfilter->enables |=
2043 		HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2044 	bfilter->ethertype = 0x800;
2045 	bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2046 
2047 	mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic);
2048 
2049 	if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2050 	    bfilter->dst_id == mfilter->dst_id) {
2051 		RTE_LOG(ERR, PMD, "filter exists.\n");
2052 		ret = -EEXIST;
2053 		goto free_filter;
2054 	} else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2055 		   bfilter->dst_id != mfilter->dst_id) {
2056 		mfilter->dst_id = vnic->fw_vnic_id;
2057 		ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter);
2058 		STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next);
2059 		STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next);
2060 		RTE_LOG(ERR, PMD, "filter with matching pattern exists.\n");
2061 		RTE_LOG(ERR, PMD, " Updated it to the new destination queue\n");
2062 		goto free_filter;
2063 	}
2064 	if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2065 		RTE_LOG(ERR, PMD, "filter doesn't exist.");
2066 		ret = -ENOENT;
2067 		goto free_filter;
2068 	}
2069 
2070 	if (filter_op == RTE_ETH_FILTER_ADD) {
2071 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2072 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2073 		if (ret)
2074 			goto free_filter;
2075 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2076 	} else {
2077 		if (mfilter == NULL) {
2078 			/* This should not happen. But for Coverity! */
2079 			ret = -ENOENT;
2080 			goto free_filter;
2081 		}
2082 		ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2083 
2084 		STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next);
2085 		bnxt_free_filter(bp, mfilter);
2086 		mfilter->fw_l2_filter_id = -1;
2087 		bnxt_free_filter(bp, bfilter);
2088 		bfilter->fw_l2_filter_id = -1;
2089 	}
2090 
2091 	return 0;
2092 free_filter:
2093 	bfilter->fw_l2_filter_id = -1;
2094 	bnxt_free_filter(bp, bfilter);
2095 	return ret;
2096 }
2097 
2098 static int
2099 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2100 			enum rte_filter_op filter_op,
2101 			void *arg)
2102 {
2103 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2104 	int ret;
2105 
2106 	if (filter_op == RTE_ETH_FILTER_NOP)
2107 		return 0;
2108 
2109 	if (arg == NULL) {
2110 		RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
2111 			    filter_op);
2112 		return -EINVAL;
2113 	}
2114 
2115 	switch (filter_op) {
2116 	case RTE_ETH_FILTER_ADD:
2117 		ret = bnxt_cfg_ntuple_filter(bp,
2118 			(struct rte_eth_ntuple_filter *)arg,
2119 			filter_op);
2120 		break;
2121 	case RTE_ETH_FILTER_DELETE:
2122 		ret = bnxt_cfg_ntuple_filter(bp,
2123 			(struct rte_eth_ntuple_filter *)arg,
2124 			filter_op);
2125 		break;
2126 	default:
2127 		RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
2128 		ret = -EINVAL;
2129 		break;
2130 	}
2131 	return ret;
2132 }
2133 
2134 static int
2135 bnxt_parse_fdir_filter(struct bnxt *bp,
2136 		       struct rte_eth_fdir_filter *fdir,
2137 		       struct bnxt_filter_info *filter)
2138 {
2139 	enum rte_fdir_mode fdir_mode =
2140 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
2141 	struct bnxt_vnic_info *vnic0, *vnic;
2142 	struct bnxt_filter_info *filter1;
2143 	uint32_t en = 0;
2144 	int i;
2145 
2146 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2147 		return -EINVAL;
2148 
2149 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2150 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2151 
2152 	switch (fdir->input.flow_type) {
2153 	case RTE_ETH_FLOW_IPV4:
2154 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2155 		/* FALLTHROUGH */
2156 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2157 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2158 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2159 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2160 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2161 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2162 		filter->ip_addr_type =
2163 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2164 		filter->src_ipaddr_mask[0] = 0xffffffff;
2165 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2166 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2167 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2168 		filter->ethertype = 0x800;
2169 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2170 		break;
2171 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2172 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2173 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2174 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2175 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2176 		filter->dst_port_mask = 0xffff;
2177 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2178 		filter->src_port_mask = 0xffff;
2179 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2180 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2181 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2182 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2183 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2184 		filter->ip_protocol = 6;
2185 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2186 		filter->ip_addr_type =
2187 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2188 		filter->src_ipaddr_mask[0] = 0xffffffff;
2189 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2190 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2191 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2192 		filter->ethertype = 0x800;
2193 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2194 		break;
2195 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2196 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
2197 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2198 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2199 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2200 		filter->dst_port_mask = 0xffff;
2201 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2202 		filter->src_port_mask = 0xffff;
2203 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2204 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2205 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2206 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2207 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2208 		filter->ip_protocol = 17;
2209 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2210 		filter->ip_addr_type =
2211 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2212 		filter->src_ipaddr_mask[0] = 0xffffffff;
2213 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2214 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2215 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2216 		filter->ethertype = 0x800;
2217 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2218 		break;
2219 	case RTE_ETH_FLOW_IPV6:
2220 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2221 		/* FALLTHROUGH */
2222 		filter->ip_addr_type =
2223 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2224 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2225 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2226 		rte_memcpy(filter->src_ipaddr,
2227 			   fdir->input.flow.ipv6_flow.src_ip, 16);
2228 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2229 		rte_memcpy(filter->dst_ipaddr,
2230 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
2231 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2232 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2233 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2234 		memset(filter->src_ipaddr_mask, 0xff, 16);
2235 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2236 		filter->ethertype = 0x86dd;
2237 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2238 		break;
2239 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2240 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2241 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2242 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2243 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2244 		filter->dst_port_mask = 0xffff;
2245 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2246 		filter->src_port_mask = 0xffff;
2247 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2248 		filter->ip_addr_type =
2249 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2250 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2251 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2252 		rte_memcpy(filter->src_ipaddr,
2253 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2254 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2255 		rte_memcpy(filter->dst_ipaddr,
2256 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2257 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2258 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2259 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2260 		memset(filter->src_ipaddr_mask, 0xff, 16);
2261 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2262 		filter->ethertype = 0x86dd;
2263 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2264 		break;
2265 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2266 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
2267 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2268 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2269 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2270 		filter->dst_port_mask = 0xffff;
2271 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2272 		filter->src_port_mask = 0xffff;
2273 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2274 		filter->ip_addr_type =
2275 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2276 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2277 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2278 		rte_memcpy(filter->src_ipaddr,
2279 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
2280 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2281 		rte_memcpy(filter->dst_ipaddr,
2282 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2283 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2284 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2285 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2286 		memset(filter->src_ipaddr_mask, 0xff, 16);
2287 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2288 		filter->ethertype = 0x86dd;
2289 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2290 		break;
2291 	case RTE_ETH_FLOW_L2_PAYLOAD:
2292 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2293 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2294 		break;
2295 	case RTE_ETH_FLOW_VXLAN:
2296 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2297 			return -EINVAL;
2298 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2299 		filter->tunnel_type =
2300 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2301 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2302 		break;
2303 	case RTE_ETH_FLOW_NVGRE:
2304 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2305 			return -EINVAL;
2306 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2307 		filter->tunnel_type =
2308 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2309 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2310 		break;
2311 	case RTE_ETH_FLOW_UNKNOWN:
2312 	case RTE_ETH_FLOW_RAW:
2313 	case RTE_ETH_FLOW_FRAG_IPV4:
2314 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2315 	case RTE_ETH_FLOW_FRAG_IPV6:
2316 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2317 	case RTE_ETH_FLOW_IPV6_EX:
2318 	case RTE_ETH_FLOW_IPV6_TCP_EX:
2319 	case RTE_ETH_FLOW_IPV6_UDP_EX:
2320 	case RTE_ETH_FLOW_GENEVE:
2321 		/* FALLTHROUGH */
2322 	default:
2323 		return -EINVAL;
2324 	}
2325 
2326 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2327 	vnic = STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2328 	if (vnic == NULL) {
2329 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", fdir->action.rx_queue);
2330 		return -EINVAL;
2331 	}
2332 
2333 
2334 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2335 		rte_memcpy(filter->dst_macaddr,
2336 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2337 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2338 	}
2339 
2340 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2341 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2342 		filter1 = STAILQ_FIRST(&vnic0->filter);
2343 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2344 	} else {
2345 		filter->dst_id = vnic->fw_vnic_id;
2346 		for (i = 0; i < ETHER_ADDR_LEN; i++)
2347 			if (filter->dst_macaddr[i] == 0x00)
2348 				filter1 = STAILQ_FIRST(&vnic0->filter);
2349 			else
2350 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2351 	}
2352 
2353 	if (filter1 == NULL)
2354 		return -EINVAL;
2355 
2356 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2357 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2358 
2359 	filter->enables = en;
2360 
2361 	return 0;
2362 }
2363 
2364 static struct bnxt_filter_info *
2365 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf)
2366 {
2367 	struct bnxt_filter_info *mf = NULL;
2368 	int i;
2369 
2370 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2371 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2372 
2373 		STAILQ_FOREACH(mf, &vnic->filter, next) {
2374 			if (mf->filter_type == nf->filter_type &&
2375 			    mf->flags == nf->flags &&
2376 			    mf->src_port == nf->src_port &&
2377 			    mf->src_port_mask == nf->src_port_mask &&
2378 			    mf->dst_port == nf->dst_port &&
2379 			    mf->dst_port_mask == nf->dst_port_mask &&
2380 			    mf->ip_protocol == nf->ip_protocol &&
2381 			    mf->ip_addr_type == nf->ip_addr_type &&
2382 			    mf->ethertype == nf->ethertype &&
2383 			    mf->vni == nf->vni &&
2384 			    mf->tunnel_type == nf->tunnel_type &&
2385 			    mf->l2_ovlan == nf->l2_ovlan &&
2386 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2387 			    mf->l2_ivlan == nf->l2_ivlan &&
2388 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2389 			    !memcmp(mf->l2_addr, nf->l2_addr, ETHER_ADDR_LEN) &&
2390 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2391 				    ETHER_ADDR_LEN) &&
2392 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
2393 				    ETHER_ADDR_LEN) &&
2394 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2395 				    ETHER_ADDR_LEN) &&
2396 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2397 				    sizeof(nf->src_ipaddr)) &&
2398 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2399 				    sizeof(nf->src_ipaddr_mask)) &&
2400 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2401 				    sizeof(nf->dst_ipaddr)) &&
2402 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2403 				    sizeof(nf->dst_ipaddr_mask)))
2404 				return mf;
2405 		}
2406 	}
2407 	return NULL;
2408 }
2409 
2410 static int
2411 bnxt_fdir_filter(struct rte_eth_dev *dev,
2412 		 enum rte_filter_op filter_op,
2413 		 void *arg)
2414 {
2415 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2416 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2417 	struct bnxt_filter_info *filter, *match;
2418 	struct bnxt_vnic_info *vnic;
2419 	int ret = 0, i;
2420 
2421 	if (filter_op == RTE_ETH_FILTER_NOP)
2422 		return 0;
2423 
2424 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2425 		return -EINVAL;
2426 
2427 	switch (filter_op) {
2428 	case RTE_ETH_FILTER_ADD:
2429 	case RTE_ETH_FILTER_DELETE:
2430 		/* FALLTHROUGH */
2431 		filter = bnxt_get_unused_filter(bp);
2432 		if (filter == NULL) {
2433 			RTE_LOG(ERR, PMD,
2434 				"Not enough resources for a new flow.\n");
2435 			return -ENOMEM;
2436 		}
2437 
2438 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2439 		if (ret != 0)
2440 			goto free_filter;
2441 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2442 
2443 		match = bnxt_match_fdir(bp, filter);
2444 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2445 			RTE_LOG(ERR, PMD, "Flow already exists.\n");
2446 			ret = -EEXIST;
2447 			goto free_filter;
2448 		}
2449 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2450 			RTE_LOG(ERR, PMD, "Flow does not exist.\n");
2451 			ret = -ENOENT;
2452 			goto free_filter;
2453 		}
2454 
2455 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2456 			vnic = STAILQ_FIRST(&bp->ff_pool[0]);
2457 		else
2458 			vnic =
2459 			STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2460 
2461 		if (filter_op == RTE_ETH_FILTER_ADD) {
2462 			ret = bnxt_hwrm_set_ntuple_filter(bp,
2463 							  filter->dst_id,
2464 							  filter);
2465 			if (ret)
2466 				goto free_filter;
2467 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2468 		} else {
2469 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2470 			STAILQ_REMOVE(&vnic->filter, match,
2471 				      bnxt_filter_info, next);
2472 			bnxt_free_filter(bp, match);
2473 			filter->fw_l2_filter_id = -1;
2474 			bnxt_free_filter(bp, filter);
2475 		}
2476 		break;
2477 	case RTE_ETH_FILTER_FLUSH:
2478 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
2479 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2480 
2481 			STAILQ_FOREACH(filter, &vnic->filter, next) {
2482 				if (filter->filter_type ==
2483 				    HWRM_CFA_NTUPLE_FILTER) {
2484 					ret =
2485 					bnxt_hwrm_clear_ntuple_filter(bp,
2486 								      filter);
2487 					STAILQ_REMOVE(&vnic->filter, filter,
2488 						      bnxt_filter_info, next);
2489 				}
2490 			}
2491 		}
2492 		return ret;
2493 	case RTE_ETH_FILTER_UPDATE:
2494 	case RTE_ETH_FILTER_STATS:
2495 	case RTE_ETH_FILTER_INFO:
2496 		/* FALLTHROUGH */
2497 		RTE_LOG(ERR, PMD, "operation %u not implemented", filter_op);
2498 		break;
2499 	default:
2500 		RTE_LOG(ERR, PMD, "unknown operation %u", filter_op);
2501 		ret = -EINVAL;
2502 		break;
2503 	}
2504 	return ret;
2505 
2506 free_filter:
2507 	filter->fw_l2_filter_id = -1;
2508 	bnxt_free_filter(bp, filter);
2509 	return ret;
2510 }
2511 
2512 static int
2513 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2514 		    enum rte_filter_type filter_type,
2515 		    enum rte_filter_op filter_op, void *arg)
2516 {
2517 	int ret = 0;
2518 
2519 	switch (filter_type) {
2520 	case RTE_ETH_FILTER_TUNNEL:
2521 		RTE_LOG(ERR, PMD,
2522 			"filter type: %d: To be implemented\n", filter_type);
2523 		break;
2524 	case RTE_ETH_FILTER_FDIR:
2525 		ret = bnxt_fdir_filter(dev, filter_op, arg);
2526 		break;
2527 	case RTE_ETH_FILTER_NTUPLE:
2528 		ret = bnxt_ntuple_filter(dev, filter_op, arg);
2529 		break;
2530 	case RTE_ETH_FILTER_ETHERTYPE:
2531 		ret = bnxt_ethertype_filter(dev, filter_op, arg);
2532 		break;
2533 	case RTE_ETH_FILTER_GENERIC:
2534 		if (filter_op != RTE_ETH_FILTER_GET)
2535 			return -EINVAL;
2536 		*(const void **)arg = &bnxt_flow_ops;
2537 		break;
2538 	default:
2539 		RTE_LOG(ERR, PMD,
2540 			"Filter type (%d) not supported", filter_type);
2541 		ret = -EINVAL;
2542 		break;
2543 	}
2544 	return ret;
2545 }
2546 
2547 static const uint32_t *
2548 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2549 {
2550 	static const uint32_t ptypes[] = {
2551 		RTE_PTYPE_L2_ETHER_VLAN,
2552 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2553 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2554 		RTE_PTYPE_L4_ICMP,
2555 		RTE_PTYPE_L4_TCP,
2556 		RTE_PTYPE_L4_UDP,
2557 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2558 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2559 		RTE_PTYPE_INNER_L4_ICMP,
2560 		RTE_PTYPE_INNER_L4_TCP,
2561 		RTE_PTYPE_INNER_L4_UDP,
2562 		RTE_PTYPE_UNKNOWN
2563 	};
2564 
2565 	if (dev->rx_pkt_burst == bnxt_recv_pkts)
2566 		return ptypes;
2567 	return NULL;
2568 }
2569 
2570 
2571 
2572 static int
2573 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
2574 {
2575 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2576 	int rc;
2577 	uint32_t dir_entries;
2578 	uint32_t entry_length;
2579 
2580 	RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x\n",
2581 		__func__, bp->pdev->addr.domain, bp->pdev->addr.bus,
2582 		bp->pdev->addr.devid, bp->pdev->addr.function);
2583 
2584 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
2585 	if (rc != 0)
2586 		return rc;
2587 
2588 	return dir_entries * entry_length;
2589 }
2590 
2591 static int
2592 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
2593 		struct rte_dev_eeprom_info *in_eeprom)
2594 {
2595 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2596 	uint32_t index;
2597 	uint32_t offset;
2598 
2599 	RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2600 		"len = %d\n", __func__, bp->pdev->addr.domain,
2601 		bp->pdev->addr.bus, bp->pdev->addr.devid,
2602 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2603 
2604 	if (in_eeprom->offset == 0) /* special offset value to get directory */
2605 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
2606 						in_eeprom->data);
2607 
2608 	index = in_eeprom->offset >> 24;
2609 	offset = in_eeprom->offset & 0xffffff;
2610 
2611 	if (index != 0)
2612 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
2613 					   in_eeprom->length, in_eeprom->data);
2614 
2615 	return 0;
2616 }
2617 
2618 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
2619 {
2620 	switch (dir_type) {
2621 	case BNX_DIR_TYPE_CHIMP_PATCH:
2622 	case BNX_DIR_TYPE_BOOTCODE:
2623 	case BNX_DIR_TYPE_BOOTCODE_2:
2624 	case BNX_DIR_TYPE_APE_FW:
2625 	case BNX_DIR_TYPE_APE_PATCH:
2626 	case BNX_DIR_TYPE_KONG_FW:
2627 	case BNX_DIR_TYPE_KONG_PATCH:
2628 	case BNX_DIR_TYPE_BONO_FW:
2629 	case BNX_DIR_TYPE_BONO_PATCH:
2630 		return true;
2631 	}
2632 
2633 	return false;
2634 }
2635 
2636 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
2637 {
2638 	switch (dir_type) {
2639 	case BNX_DIR_TYPE_AVS:
2640 	case BNX_DIR_TYPE_EXP_ROM_MBA:
2641 	case BNX_DIR_TYPE_PCIE:
2642 	case BNX_DIR_TYPE_TSCF_UCODE:
2643 	case BNX_DIR_TYPE_EXT_PHY:
2644 	case BNX_DIR_TYPE_CCM:
2645 	case BNX_DIR_TYPE_ISCSI_BOOT:
2646 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
2647 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
2648 		return true;
2649 	}
2650 
2651 	return false;
2652 }
2653 
2654 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
2655 {
2656 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
2657 		bnxt_dir_type_is_other_exec_format(dir_type);
2658 }
2659 
2660 static int
2661 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
2662 		struct rte_dev_eeprom_info *in_eeprom)
2663 {
2664 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2665 	uint8_t index, dir_op;
2666 	uint16_t type, ext, ordinal, attr;
2667 
2668 	RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2669 		"len = %d\n", __func__, bp->pdev->addr.domain,
2670 		bp->pdev->addr.bus, bp->pdev->addr.devid,
2671 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2672 
2673 	if (!BNXT_PF(bp)) {
2674 		RTE_LOG(ERR, PMD, "NVM write not supported from a VF\n");
2675 		return -EINVAL;
2676 	}
2677 
2678 	type = in_eeprom->magic >> 16;
2679 
2680 	if (type == 0xffff) { /* special value for directory operations */
2681 		index = in_eeprom->magic & 0xff;
2682 		dir_op = in_eeprom->magic >> 8;
2683 		if (index == 0)
2684 			return -EINVAL;
2685 		switch (dir_op) {
2686 		case 0x0e: /* erase */
2687 			if (in_eeprom->offset != ~in_eeprom->magic)
2688 				return -EINVAL;
2689 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
2690 		default:
2691 			return -EINVAL;
2692 		}
2693 	}
2694 
2695 	/* Create or re-write an NVM item: */
2696 	if (bnxt_dir_type_is_executable(type) == true)
2697 		return -EOPNOTSUPP;
2698 	ext = in_eeprom->magic & 0xffff;
2699 	ordinal = in_eeprom->offset >> 16;
2700 	attr = in_eeprom->offset & 0xffff;
2701 
2702 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
2703 				     in_eeprom->data, in_eeprom->length);
2704 	return 0;
2705 }
2706 
2707 /*
2708  * Initialization
2709  */
2710 
2711 static const struct eth_dev_ops bnxt_dev_ops = {
2712 	.dev_infos_get = bnxt_dev_info_get_op,
2713 	.dev_close = bnxt_dev_close_op,
2714 	.dev_configure = bnxt_dev_configure_op,
2715 	.dev_start = bnxt_dev_start_op,
2716 	.dev_stop = bnxt_dev_stop_op,
2717 	.dev_set_link_up = bnxt_dev_set_link_up_op,
2718 	.dev_set_link_down = bnxt_dev_set_link_down_op,
2719 	.stats_get = bnxt_stats_get_op,
2720 	.stats_reset = bnxt_stats_reset_op,
2721 	.rx_queue_setup = bnxt_rx_queue_setup_op,
2722 	.rx_queue_release = bnxt_rx_queue_release_op,
2723 	.tx_queue_setup = bnxt_tx_queue_setup_op,
2724 	.tx_queue_release = bnxt_tx_queue_release_op,
2725 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
2726 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
2727 	.reta_update = bnxt_reta_update_op,
2728 	.reta_query = bnxt_reta_query_op,
2729 	.rss_hash_update = bnxt_rss_hash_update_op,
2730 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
2731 	.link_update = bnxt_link_update_op,
2732 	.promiscuous_enable = bnxt_promiscuous_enable_op,
2733 	.promiscuous_disable = bnxt_promiscuous_disable_op,
2734 	.allmulticast_enable = bnxt_allmulticast_enable_op,
2735 	.allmulticast_disable = bnxt_allmulticast_disable_op,
2736 	.mac_addr_add = bnxt_mac_addr_add_op,
2737 	.mac_addr_remove = bnxt_mac_addr_remove_op,
2738 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
2739 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
2740 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
2741 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
2742 	.vlan_filter_set = bnxt_vlan_filter_set_op,
2743 	.vlan_offload_set = bnxt_vlan_offload_set_op,
2744 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
2745 	.mtu_set = bnxt_mtu_set_op,
2746 	.mac_addr_set = bnxt_set_default_mac_addr_op,
2747 	.xstats_get = bnxt_dev_xstats_get_op,
2748 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
2749 	.xstats_reset = bnxt_dev_xstats_reset_op,
2750 	.fw_version_get = bnxt_fw_version_get,
2751 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
2752 	.rxq_info_get = bnxt_rxq_info_get_op,
2753 	.txq_info_get = bnxt_txq_info_get_op,
2754 	.dev_led_on = bnxt_dev_led_on_op,
2755 	.dev_led_off = bnxt_dev_led_off_op,
2756 	.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
2757 	.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
2758 	.rx_queue_count = bnxt_rx_queue_count_op,
2759 	.rx_descriptor_status = bnxt_rx_descriptor_status_op,
2760 	.tx_descriptor_status = bnxt_tx_descriptor_status_op,
2761 	.filter_ctrl = bnxt_filter_ctrl_op,
2762 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
2763 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
2764 	.get_eeprom           = bnxt_get_eeprom_op,
2765 	.set_eeprom           = bnxt_set_eeprom_op,
2766 };
2767 
2768 static bool bnxt_vf_pciid(uint16_t id)
2769 {
2770 	if (id == BROADCOM_DEV_ID_57304_VF ||
2771 	    id == BROADCOM_DEV_ID_57406_VF ||
2772 	    id == BROADCOM_DEV_ID_5731X_VF ||
2773 	    id == BROADCOM_DEV_ID_5741X_VF ||
2774 	    id == BROADCOM_DEV_ID_57414_VF ||
2775 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF)
2776 		return true;
2777 	return false;
2778 }
2779 
2780 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
2781 {
2782 	struct bnxt *bp = eth_dev->data->dev_private;
2783 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2784 	int rc;
2785 
2786 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
2787 	if (!pci_dev->mem_resource[0].addr) {
2788 		RTE_LOG(ERR, PMD,
2789 			"Cannot find PCI device base address, aborting\n");
2790 		rc = -ENODEV;
2791 		goto init_err_disable;
2792 	}
2793 
2794 	bp->eth_dev = eth_dev;
2795 	bp->pdev = pci_dev;
2796 
2797 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
2798 	if (!bp->bar0) {
2799 		RTE_LOG(ERR, PMD, "Cannot map device registers, aborting\n");
2800 		rc = -ENOMEM;
2801 		goto init_err_release;
2802 	}
2803 	return 0;
2804 
2805 init_err_release:
2806 	if (bp->bar0)
2807 		bp->bar0 = NULL;
2808 
2809 init_err_disable:
2810 
2811 	return rc;
2812 }
2813 
2814 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
2815 
2816 #define ALLOW_FUNC(x)	\
2817 	{ \
2818 		typeof(x) arg = (x); \
2819 		bp->pf.vf_req_fwd[((arg) >> 5)] &= \
2820 		~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
2821 	}
2822 static int
2823 bnxt_dev_init(struct rte_eth_dev *eth_dev)
2824 {
2825 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2826 	char mz_name[RTE_MEMZONE_NAMESIZE];
2827 	const struct rte_memzone *mz = NULL;
2828 	static int version_printed;
2829 	uint32_t total_alloc_len;
2830 	rte_iova_t mz_phys_addr;
2831 	struct bnxt *bp;
2832 	int rc;
2833 
2834 	if (version_printed++ == 0)
2835 		RTE_LOG(INFO, PMD, "%s\n", bnxt_version);
2836 
2837 	rte_eth_copy_pci_info(eth_dev, pci_dev);
2838 
2839 	bp = eth_dev->data->dev_private;
2840 
2841 	rte_atomic64_init(&bp->rx_mbuf_alloc_fail);
2842 	bp->dev_stopped = 1;
2843 
2844 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2845 		goto skip_init;
2846 
2847 	if (bnxt_vf_pciid(pci_dev->id.device_id))
2848 		bp->flags |= BNXT_FLAG_VF;
2849 
2850 	rc = bnxt_init_board(eth_dev);
2851 	if (rc) {
2852 		RTE_LOG(ERR, PMD,
2853 			"Board initialization failed rc: %x\n", rc);
2854 		goto error;
2855 	}
2856 skip_init:
2857 	eth_dev->dev_ops = &bnxt_dev_ops;
2858 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2859 		return 0;
2860 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
2861 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
2862 
2863 	if (BNXT_PF(bp) && pci_dev->id.device_id != BROADCOM_DEV_ID_NS2) {
2864 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
2865 			 "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
2866 			 pci_dev->addr.bus, pci_dev->addr.devid,
2867 			 pci_dev->addr.function, "rx_port_stats");
2868 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
2869 		mz = rte_memzone_lookup(mz_name);
2870 		total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
2871 				sizeof(struct rx_port_stats) + 512);
2872 		if (!mz) {
2873 			mz = rte_memzone_reserve(mz_name, total_alloc_len,
2874 						 SOCKET_ID_ANY,
2875 						 RTE_MEMZONE_2MB |
2876 						 RTE_MEMZONE_SIZE_HINT_ONLY);
2877 			if (mz == NULL)
2878 				return -ENOMEM;
2879 		}
2880 		memset(mz->addr, 0, mz->len);
2881 		mz_phys_addr = mz->iova;
2882 		if ((unsigned long)mz->addr == mz_phys_addr) {
2883 			RTE_LOG(WARNING, PMD,
2884 				"Memzone physical address same as virtual.\n");
2885 			RTE_LOG(WARNING, PMD,
2886 				"Using rte_mem_virt2iova()\n");
2887 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
2888 			if (mz_phys_addr == 0) {
2889 				RTE_LOG(ERR, PMD,
2890 				"unable to map address to physical memory\n");
2891 				return -ENOMEM;
2892 			}
2893 		}
2894 
2895 		bp->rx_mem_zone = (const void *)mz;
2896 		bp->hw_rx_port_stats = mz->addr;
2897 		bp->hw_rx_port_stats_map = mz_phys_addr;
2898 
2899 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
2900 			 "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
2901 			 pci_dev->addr.bus, pci_dev->addr.devid,
2902 			 pci_dev->addr.function, "tx_port_stats");
2903 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
2904 		mz = rte_memzone_lookup(mz_name);
2905 		total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
2906 				sizeof(struct tx_port_stats) + 512);
2907 		if (!mz) {
2908 			mz = rte_memzone_reserve(mz_name, total_alloc_len,
2909 						 SOCKET_ID_ANY,
2910 						 RTE_MEMZONE_2MB |
2911 						 RTE_MEMZONE_SIZE_HINT_ONLY);
2912 			if (mz == NULL)
2913 				return -ENOMEM;
2914 		}
2915 		memset(mz->addr, 0, mz->len);
2916 		mz_phys_addr = mz->iova;
2917 		if ((unsigned long)mz->addr == mz_phys_addr) {
2918 			RTE_LOG(WARNING, PMD,
2919 				"Memzone physical address same as virtual.\n");
2920 			RTE_LOG(WARNING, PMD,
2921 				"Using rte_mem_virt2iova()\n");
2922 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
2923 			if (mz_phys_addr == 0) {
2924 				RTE_LOG(ERR, PMD,
2925 				"unable to map address to physical memory\n");
2926 				return -ENOMEM;
2927 			}
2928 		}
2929 
2930 		bp->tx_mem_zone = (const void *)mz;
2931 		bp->hw_tx_port_stats = mz->addr;
2932 		bp->hw_tx_port_stats_map = mz_phys_addr;
2933 
2934 		bp->flags |= BNXT_FLAG_PORT_STATS;
2935 	}
2936 
2937 	rc = bnxt_alloc_hwrm_resources(bp);
2938 	if (rc) {
2939 		RTE_LOG(ERR, PMD,
2940 			"hwrm resource allocation failure rc: %x\n", rc);
2941 		goto error_free;
2942 	}
2943 	rc = bnxt_hwrm_ver_get(bp);
2944 	if (rc)
2945 		goto error_free;
2946 	bnxt_hwrm_queue_qportcfg(bp);
2947 
2948 	bnxt_hwrm_func_qcfg(bp);
2949 
2950 	/* Get the MAX capabilities for this function */
2951 	rc = bnxt_hwrm_func_qcaps(bp);
2952 	if (rc) {
2953 		RTE_LOG(ERR, PMD, "hwrm query capability failure rc: %x\n", rc);
2954 		goto error_free;
2955 	}
2956 	if (bp->max_tx_rings == 0) {
2957 		RTE_LOG(ERR, PMD, "No TX rings available!\n");
2958 		rc = -EBUSY;
2959 		goto error_free;
2960 	}
2961 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
2962 					ETHER_ADDR_LEN * bp->max_l2_ctx, 0);
2963 	if (eth_dev->data->mac_addrs == NULL) {
2964 		RTE_LOG(ERR, PMD,
2965 			"Failed to alloc %u bytes needed to store MAC addr tbl",
2966 			ETHER_ADDR_LEN * bp->max_l2_ctx);
2967 		rc = -ENOMEM;
2968 		goto error_free;
2969 	}
2970 	/* Copy the permanent MAC from the qcap response address now. */
2971 	memcpy(bp->mac_addr, bp->dflt_mac_addr, sizeof(bp->mac_addr));
2972 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
2973 
2974 	if (bp->max_ring_grps < bp->rx_cp_nr_rings) {
2975 		/* 1 ring is for default completion ring */
2976 		RTE_LOG(ERR, PMD, "Insufficient resource: Ring Group\n");
2977 		rc = -ENOSPC;
2978 		goto error_free;
2979 	}
2980 
2981 	bp->grp_info = rte_zmalloc("bnxt_grp_info",
2982 				sizeof(*bp->grp_info) * bp->max_ring_grps, 0);
2983 	if (!bp->grp_info) {
2984 		RTE_LOG(ERR, PMD,
2985 			"Failed to alloc %zu bytes to store group info table\n",
2986 			sizeof(*bp->grp_info) * bp->max_ring_grps);
2987 		rc = -ENOMEM;
2988 		goto error_free;
2989 	}
2990 
2991 	/* Forward all requests if firmware is new enough */
2992 	if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
2993 	    (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
2994 	    ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
2995 		memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
2996 	} else {
2997 		RTE_LOG(WARNING, PMD,
2998 			"Firmware too old for VF mailbox functionality\n");
2999 		memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
3000 	}
3001 
3002 	/*
3003 	 * The following are used for driver cleanup.  If we disallow these,
3004 	 * VF drivers can't clean up cleanly.
3005 	 */
3006 	ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
3007 	ALLOW_FUNC(HWRM_VNIC_FREE);
3008 	ALLOW_FUNC(HWRM_RING_FREE);
3009 	ALLOW_FUNC(HWRM_RING_GRP_FREE);
3010 	ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
3011 	ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
3012 	ALLOW_FUNC(HWRM_STAT_CTX_FREE);
3013 	ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
3014 	ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
3015 	rc = bnxt_hwrm_func_driver_register(bp);
3016 	if (rc) {
3017 		RTE_LOG(ERR, PMD,
3018 			"Failed to register driver");
3019 		rc = -EBUSY;
3020 		goto error_free;
3021 	}
3022 
3023 	RTE_LOG(INFO, PMD,
3024 		DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
3025 		pci_dev->mem_resource[0].phys_addr,
3026 		pci_dev->mem_resource[0].addr);
3027 
3028 	rc = bnxt_hwrm_func_reset(bp);
3029 	if (rc) {
3030 		RTE_LOG(ERR, PMD, "hwrm chip reset failure rc: %x\n", rc);
3031 		rc = -1;
3032 		goto error_free;
3033 	}
3034 
3035 	if (BNXT_PF(bp)) {
3036 		//if (bp->pf.active_vfs) {
3037 			// TODO: Deallocate VF resources?
3038 		//}
3039 		if (bp->pdev->max_vfs) {
3040 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3041 			if (rc) {
3042 				RTE_LOG(ERR, PMD, "Failed to allocate VFs\n");
3043 				goto error_free;
3044 			}
3045 		} else {
3046 			rc = bnxt_hwrm_allocate_pf_only(bp);
3047 			if (rc) {
3048 				RTE_LOG(ERR, PMD,
3049 					"Failed to allocate PF resources\n");
3050 				goto error_free;
3051 			}
3052 		}
3053 	}
3054 
3055 	bnxt_hwrm_port_led_qcaps(bp);
3056 
3057 	rc = bnxt_setup_int(bp);
3058 	if (rc)
3059 		goto error_free;
3060 
3061 	rc = bnxt_alloc_mem(bp);
3062 	if (rc)
3063 		goto error_free_int;
3064 
3065 	rc = bnxt_request_int(bp);
3066 	if (rc)
3067 		goto error_free_int;
3068 
3069 	rc = bnxt_alloc_def_cp_ring(bp);
3070 	if (rc)
3071 		goto error_free_int;
3072 
3073 	bnxt_enable_int(bp);
3074 	bnxt_init_nic(bp);
3075 
3076 	return 0;
3077 
3078 error_free_int:
3079 	bnxt_disable_int(bp);
3080 	bnxt_free_def_cp_ring(bp);
3081 	bnxt_hwrm_func_buf_unrgtr(bp);
3082 	bnxt_free_int(bp);
3083 	bnxt_free_mem(bp);
3084 error_free:
3085 	bnxt_dev_uninit(eth_dev);
3086 error:
3087 	return rc;
3088 }
3089 
3090 static int
3091 bnxt_dev_uninit(struct rte_eth_dev *eth_dev) {
3092 	struct bnxt *bp = eth_dev->data->dev_private;
3093 	int rc;
3094 
3095 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3096 		return -EPERM;
3097 
3098 	bnxt_disable_int(bp);
3099 	bnxt_free_int(bp);
3100 	bnxt_free_mem(bp);
3101 	if (eth_dev->data->mac_addrs != NULL) {
3102 		rte_free(eth_dev->data->mac_addrs);
3103 		eth_dev->data->mac_addrs = NULL;
3104 	}
3105 	if (bp->grp_info != NULL) {
3106 		rte_free(bp->grp_info);
3107 		bp->grp_info = NULL;
3108 	}
3109 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
3110 	bnxt_free_hwrm_resources(bp);
3111 	rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
3112 	rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
3113 	if (bp->dev_stopped == 0)
3114 		bnxt_dev_close_op(eth_dev);
3115 	if (bp->pf.vf_info)
3116 		rte_free(bp->pf.vf_info);
3117 	eth_dev->dev_ops = NULL;
3118 	eth_dev->rx_pkt_burst = NULL;
3119 	eth_dev->tx_pkt_burst = NULL;
3120 
3121 	return rc;
3122 }
3123 
3124 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3125 	struct rte_pci_device *pci_dev)
3126 {
3127 	return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
3128 		bnxt_dev_init);
3129 }
3130 
3131 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
3132 {
3133 	return rte_eth_dev_pci_generic_remove(pci_dev, bnxt_dev_uninit);
3134 }
3135 
3136 static struct rte_pci_driver bnxt_rte_pmd = {
3137 	.id_table = bnxt_pci_id_map,
3138 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING |
3139 		RTE_PCI_DRV_INTR_LSC,
3140 	.probe = bnxt_pci_probe,
3141 	.remove = bnxt_pci_remove,
3142 };
3143 
3144 static bool
3145 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
3146 {
3147 	if (strcmp(dev->device->driver->name, drv->driver.name))
3148 		return false;
3149 
3150 	return true;
3151 }
3152 
3153 bool is_bnxt_supported(struct rte_eth_dev *dev)
3154 {
3155 	return is_device_supported(dev, &bnxt_rte_pmd);
3156 }
3157 
3158 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
3159 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
3160 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
3161