1..  BSD LICENSE
2    Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
3    All rights reserved.
4
5    Redistribution and use in source and binary forms, with or without
6    modification, are permitted provided that the following conditions
7    are met:
8
9    * Redistributions of source code must retain the above copyright
10    notice, this list of conditions and the following disclaimer.
11    * Redistributions in binary form must reproduce the above copyright
12    notice, this list of conditions and the following disclaimer in
13    the documentation and/or other materials provided with the
14    distribution.
15    * Neither the name of Intel Corporation nor the names of its
16    contributors may be used to endorse or promote products derived
17    from this software without specific prior written permission.
18
19    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31Kernel NIC Interface Sample Application
32=======================================
33
34The Kernel NIC Interface (KNI) is a DPDK control plane solution that
35allows userspace applications to exchange packets with the kernel networking stack.
36To accomplish this, DPDK userspace applications use an IOCTL call
37to request the creation of a KNI virtual device in the Linux* kernel.
38The IOCTL call provides interface information and the DPDK's physical address space,
39which is re-mapped into the kernel address space by the KNI kernel loadable module
40that saves the information to a virtual device context.
41The DPDK creates FIFO queues for packet ingress and egress
42to the kernel module for each device allocated.
43
44The KNI kernel loadable module is a standard net driver,
45which upon receiving the IOCTL call access the DPDK's FIFO queue to
46receive/transmit packets from/to the DPDK userspace application.
47The FIFO queues contain pointers to data packets in the DPDK. This:
48
49*   Provides a faster mechanism to interface with the kernel net stack and eliminates system calls
50
51*   Facilitates the DPDK using standard Linux* userspace net tools (tcpdump, ftp, and so on)
52
53*   Eliminate the copy_to_user and copy_from_user operations on packets.
54
55The Kernel NIC Interface sample application is a simple example that demonstrates the use
56of the DPDK to create a path for packets to go through the Linux* kernel.
57This is done by creating one or more kernel net devices for each of the DPDK ports.
58The application allows the use of standard Linux tools (ethtool, ifconfig, tcpdump) with the DPDK ports and
59also the exchange of packets between the DPDK application and the Linux* kernel.
60
61Overview
62--------
63
64The Kernel NIC Interface sample application uses two threads in user space for each physical NIC port being used,
65and allocates one or more KNI device for each physical NIC port with kernel module's support.
66For a physical NIC port, one thread reads from the port and writes to KNI devices,
67and another thread reads from KNI devices and writes the data unmodified to the physical NIC port.
68It is recommended to configure one KNI device for each physical NIC port.
69If configured with more than one KNI devices for a physical NIC port,
70it is just for performance testing, or it can work together with VMDq support in future.
71
72The packet flow through the Kernel NIC Interface application is as shown in the following figure.
73
74.. _figure_kernel_nic:
75
76.. figure:: img/kernel_nic.*
77
78   Kernel NIC Application Packet Flow
79
80
81Compiling the Application
82-------------------------
83
84Compile the application as follows:
85
86#.  Go to the example directory:
87
88    .. code-block:: console
89
90        export RTE_SDK=/path/to/rte_sdk
91        cd ${RTE_SDK}/examples/kni
92
93#.  Set the target (a default target is used if not specified)
94
95    .. note::
96
97        This application is intended as a linuxapp only.
98
99    .. code-block:: console
100
101        export RTE_TARGET=x86_64-native-linuxapp-gcc
102
103#.  Build the application:
104
105    .. code-block:: console
106
107        make
108
109Loading the Kernel Module
110-------------------------
111
112Loading the KNI kernel module without any parameter is the typical way a DPDK application
113gets packets into and out of the kernel net stack.
114This way, only one kernel thread is created for all KNI devices for packet receiving in kernel side:
115
116.. code-block:: console
117
118    #insmod rte_kni.ko
119
120Pinning the kernel thread to a specific core can be done using a taskset command such as following:
121
122.. code-block:: console
123
124    #taskset -p 100000 `pgrep --fl kni_thread | awk '{print $1}'`
125
126This command line tries to pin the specific kni_thread on the 20th lcore (lcore numbering starts at 0),
127which means it needs to check if that lcore is available on the board.
128This command must be sent after the application has been launched, as insmod does not start the kni thread.
129
130For optimum performance,
131the lcore in the mask must be selected to be on the same socket as the lcores used in the KNI application.
132
133To provide flexibility of performance, the kernel module of the KNI,
134located in the kmod sub-directory of the DPDK target directory,
135can be loaded with parameter of kthread_mode as follows:
136
137*   #insmod rte_kni.ko kthread_mode=single
138
139    This mode will create only one kernel thread for all KNI devices for packet receiving in kernel side.
140    By default, it is in this single kernel thread mode.
141    It can set core affinity for this kernel thread by using Linux command taskset.
142
143*   #insmod rte_kni.ko kthread_mode =multiple
144
145    This mode will create a kernel thread for each KNI device for packet receiving in kernel side.
146    The core affinity of each kernel thread is set when creating the KNI device.
147    The lcore ID for each kernel thread is provided in the command line of launching the application.
148    Multiple kernel thread mode can provide scalable higher performance.
149
150To measure the throughput in a loopback mode, the kernel module of the KNI,
151located in the kmod sub-directory of the DPDK target directory,
152can be loaded with parameters as follows:
153
154*   #insmod rte_kni.ko lo_mode=lo_mode_fifo
155
156    This loopback mode will involve ring enqueue/dequeue operations in kernel space.
157
158*   #insmod rte_kni.ko lo_mode=lo_mode_fifo_skb
159
160    This loopback mode will involve ring enqueue/dequeue operations and sk buffer copies in kernel space.
161
162Running the Application
163-----------------------
164
165The application requires a number of command line options:
166
167.. code-block:: console
168
169    kni [EAL options] -- -P -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,port,lcore_rx,lcore_tx[,lcore_kthread,...]]"
170
171Where:
172
173*   -P: Set all ports to promiscuous mode so that packets are accepted regardless of the packet's Ethernet MAC destination address.
174    Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.
175
176*   -p PORTMASK: Hexadecimal bitmask of ports to configure.
177
178*   --config="(port,lcore_rx, lcore_tx[,lcore_kthread, ...]) [, port,lcore_rx, lcore_tx[,lcore_kthread, ...]]":
179    Determines which lcores of RX, TX, kernel thread are mapped to which ports.
180
181Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.
182
183The -c coremask parameter of the EAL options should include the lcores indicated by the lcore_rx and lcore_tx,
184but does not need to include lcores indicated by lcore_kthread as they are used to pin the kernel thread on.
185The -p PORTMASK parameter should include the ports indicated by the port in --config, neither more nor less.
186
187The lcore_kthread in --config can be configured none, one or more lcore IDs.
188In multiple kernel thread mode, if configured none, a KNI device will be allocated for each port,
189while no specific lcore affinity will be set for its kernel thread.
190If configured one or more lcore IDs, one or more KNI devices will be allocated for each port,
191while specific lcore affinity will be set for its kernel thread.
192In single kernel thread mode, if configured none, a KNI device will be allocated for each port.
193If configured one or more lcore IDs,
194one or more KNI devices will be allocated for each port while
195no lcore affinity will be set as there is only one kernel thread for all KNI devices.
196
197For example, to run the application with two ports served by six lcores, one lcore of RX, one lcore of TX,
198and one lcore of kernel thread for each port:
199
200.. code-block:: console
201
202    ./build/kni -c 0xf0 -n 4 -- -P -p 0x3 -config="(0,4,6,8),(1,5,7,9)"
203
204KNI Operations
205--------------
206
207Once the KNI application is started, one can use different Linux* commands to manage the net interfaces.
208If more than one KNI devices configured for a physical port,
209only the first KNI device will be paired to the physical device.
210Operations on other KNI devices will not affect the physical port handled in user space application.
211
212Assigning an IP address:
213
214.. code-block:: console
215
216    #ifconfig vEth0_0 192.168.0.1
217
218Displaying the NIC registers:
219
220.. code-block:: console
221
222    #ethtool -d vEth0_0
223
224Dumping the network traffic:
225
226.. code-block:: console
227
228    #tcpdump -i vEth0_0
229
230When the DPDK userspace application is closed, all the KNI devices are deleted from Linux*.
231
232Explanation
233-----------
234
235The following sections provide some explanation of code.
236
237Initialization
238~~~~~~~~~~~~~~
239
240Setup of mbuf pool, driver and queues is similar to the setup done in the :doc:`l2_forward_real_virtual`..
241In addition, one or more kernel NIC interfaces are allocated for each
242of the configured ports according to the command line parameters.
243
244The code for allocating the kernel NIC interfaces for a specific port is as follows:
245
246.. code-block:: c
247
248    static int
249    kni_alloc(uint8_t port_id)
250    {
251        uint8_t i;
252        struct rte_kni *kni;
253        struct rte_kni_conf conf;
254        struct kni_port_params **params = kni_port_params_array;
255
256        if (port_id >= RTE_MAX_ETHPORTS || !params[port_id])
257            return -1;
258
259        params[port_id]->nb_kni = params[port_id]->nb_lcore_k ? params[port_id]->nb_lcore_k : 1;
260
261        for (i = 0; i < params[port_id]->nb_kni; i++) {
262
263            /* Clear conf at first */
264
265            memset(&conf, 0, sizeof(conf));
266            if (params[port_id]->nb_lcore_k) {
267                snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u_%u", port_id, i);
268                conf.core_id = params[port_id]->lcore_k[i];
269                conf.force_bind = 1;
270            } else
271                snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u", port_id);
272                conf.group_id = (uint16_t)port_id;
273                conf.mbuf_size = MAX_PACKET_SZ;
274
275                /*
276                 *   The first KNI device associated to a port
277                 *   is the master, for multiple kernel thread
278                 *   environment.
279                 */
280
281                if (i == 0) {
282                    struct rte_kni_ops ops;
283                    struct rte_eth_dev_info dev_info;
284
285                    memset(&dev_info, 0, sizeof(dev_info)); rte_eth_dev_info_get(port_id, &dev_info);
286
287                    conf.addr = dev_info.pci_dev->addr;
288                    conf.id = dev_info.pci_dev->id;
289
290                    memset(&ops, 0, sizeof(ops));
291
292                    ops.port_id = port_id;
293                    ops.change_mtu = kni_change_mtu;
294                    ops.config_network_if = kni_config_network_interface;
295
296                    kni = rte_kni_alloc(pktmbuf_pool, &conf, &ops);
297                } else
298                    kni = rte_kni_alloc(pktmbuf_pool, &conf, NULL);
299
300                if (!kni)
301                    rte_exit(EXIT_FAILURE, "Fail to create kni for "
302                            "port: %d\n", port_id);
303
304                params[port_id]->kni[i] = kni;
305            }
306        return 0;
307   }
308
309The other step in the initialization process that is unique to this sample application
310is the association of each port with lcores for RX, TX and kernel threads.
311
312*   One lcore to read from the port and write to the associated one or more KNI devices
313
314*   Another lcore to read from one or more KNI devices and write to the port
315
316*   Other lcores for pinning the kernel threads on one by one
317
318This is done by using the`kni_port_params_array[]` array, which is indexed by the port ID.
319The code is as follows:
320
321.. code-block:: console
322
323    static int
324    parse_config(const char *arg)
325    {
326        const char *p, *p0 = arg;
327        char s[256], *end;
328        unsigned size;
329        enum fieldnames {
330            FLD_PORT = 0,
331            FLD_LCORE_RX,
332            FLD_LCORE_TX,
333            _NUM_FLD = KNI_MAX_KTHREAD + 3,
334        };
335        int i, j, nb_token;
336        char *str_fld[_NUM_FLD];
337        unsigned long int_fld[_NUM_FLD];
338        uint8_t port_id, nb_kni_port_params = 0;
339
340        memset(&kni_port_params_array, 0, sizeof(kni_port_params_array));
341
342        while (((p = strchr(p0, '(')) != NULL) && nb_kni_port_params < RTE_MAX_ETHPORTS) {
343            p++;
344            if ((p0 = strchr(p, ')')) == NULL)
345                goto fail;
346
347            size = p0 - p;
348
349            if (size >= sizeof(s)) {
350                printf("Invalid config parameters\n");
351                goto fail;
352            }
353
354            snprintf(s, sizeof(s), "%.*s", size, p);
355            nb_token = rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',');
356
357            if (nb_token <= FLD_LCORE_TX) {
358                printf("Invalid config parameters\n");
359                goto fail;
360            }
361
362            for (i = 0; i < nb_token; i++) {
363                errno = 0;
364                int_fld[i] = strtoul(str_fld[i], &end, 0);
365                if (errno != 0 || end == str_fld[i]) {
366                    printf("Invalid config parameters\n");
367                    goto fail;
368                }
369            }
370
371            i = 0;
372            port_id = (uint8_t)int_fld[i++];
373
374            if (port_id >= RTE_MAX_ETHPORTS) {
375                printf("Port ID %u could not exceed the maximum %u\n", port_id, RTE_MAX_ETHPORTS);
376                goto fail;
377            }
378
379            if (kni_port_params_array[port_id]) {
380                printf("Port %u has been configured\n", port_id);
381                goto fail;
382            }
383
384            kni_port_params_array[port_id] = (struct kni_port_params*)rte_zmalloc("KNI_port_params", sizeof(struct kni_port_params), RTE_CACHE_LINE_SIZE);
385            kni_port_params_array[port_id]->port_id = port_id;
386            kni_port_params_array[port_id]->lcore_rx = (uint8_t)int_fld[i++];
387            kni_port_params_array[port_id]->lcore_tx = (uint8_t)int_fld[i++];
388
389            if (kni_port_params_array[port_id]->lcore_rx >= RTE_MAX_LCORE || kni_port_params_array[port_id]->lcore_tx >= RTE_MAX_LCORE) {
390                printf("lcore_rx %u or lcore_tx %u ID could not "
391                        "exceed the maximum %u\n",
392                        kni_port_params_array[port_id]->lcore_rx, kni_port_params_array[port_id]->lcore_tx, RTE_MAX_LCORE);
393                goto fail;
394           }
395
396        for (j = 0; i < nb_token && j < KNI_MAX_KTHREAD; i++, j++)
397            kni_port_params_array[port_id]->lcore_k[j] = (uint8_t)int_fld[i];
398            kni_port_params_array[port_id]->nb_lcore_k = j;
399        }
400
401        print_config();
402
403        return 0;
404
405    fail:
406
407        for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
408            if (kni_port_params_array[i]) {
409                rte_free(kni_port_params_array[i]);
410                kni_port_params_array[i] = NULL;
411            }
412        }
413
414        return -1;
415
416    }
417
418Packet Forwarding
419~~~~~~~~~~~~~~~~~
420
421After the initialization steps are completed, the main_loop() function is run on each lcore.
422This function first checks the lcore_id against the user provided lcore_rx and lcore_tx
423to see if this lcore is reading from or writing to kernel NIC interfaces.
424
425For the case that reads from a NIC port and writes to the kernel NIC interfaces,
426the packet reception is the same as in L2 Forwarding sample application
427(see :ref:`l2_fwd_app_rx_tx_packets`).
428The packet transmission is done by sending mbufs into the kernel NIC interfaces by rte_kni_tx_burst().
429The KNI library automatically frees the mbufs after the kernel successfully copied the mbufs.
430
431.. code-block:: c
432
433    /**
434     *   Interface to burst rx and enqueue mbufs into rx_q
435     */
436
437    static void
438    kni_ingress(struct kni_port_params *p)
439    {
440        uint8_t i, nb_kni, port_id;
441        unsigned nb_rx, num;
442        struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
443
444        if (p == NULL)
445            return;
446
447        nb_kni = p->nb_kni;
448        port_id = p->port_id;
449
450        for (i = 0; i < nb_kni; i++) {
451            /* Burst rx from eth */
452            nb_rx = rte_eth_rx_burst(port_id, 0, pkts_burst, PKT_BURST_SZ);
453            if (unlikely(nb_rx > PKT_BURST_SZ)) {
454                RTE_LOG(ERR, APP, "Error receiving from eth\n");
455                return;
456            }
457
458            /* Burst tx to kni */
459            num = rte_kni_tx_burst(p->kni[i], pkts_burst, nb_rx);
460            kni_stats[port_id].rx_packets += num;
461            rte_kni_handle_request(p->kni[i]);
462
463            if (unlikely(num < nb_rx)) {
464                /* Free mbufs not tx to kni interface */
465                kni_burst_free_mbufs(&pkts_burst[num], nb_rx - num);
466                kni_stats[port_id].rx_dropped += nb_rx - num;
467            }
468        }
469    }
470
471For the other case that reads from kernel NIC interfaces and writes to a physical NIC port, packets are retrieved by reading
472mbufs from kernel NIC interfaces by `rte_kni_rx_burst()`.
473The packet transmission is the same as in the L2 Forwarding sample application
474(see :ref:`l2_fwd_app_rx_tx_packets`).
475
476.. code-block:: c
477
478    /**
479     *   Interface to dequeue mbufs from tx_q and burst tx
480     */
481
482    static void
483
484    kni_egress(struct kni_port_params *p)
485    {
486        uint8_t i, nb_kni, port_id;
487        unsigned nb_tx, num;
488        struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
489
490        if (p == NULL)
491            return;
492
493        nb_kni = p->nb_kni;
494        port_id = p->port_id;
495
496        for (i = 0; i < nb_kni; i++) {
497            /* Burst rx from kni */
498            num = rte_kni_rx_burst(p->kni[i], pkts_burst, PKT_BURST_SZ);
499            if (unlikely(num > PKT_BURST_SZ)) {
500                RTE_LOG(ERR, APP, "Error receiving from KNI\n");
501                return;
502            }
503
504            /* Burst tx to eth */
505
506            nb_tx = rte_eth_tx_burst(port_id, 0, pkts_burst, (uint16_t)num);
507
508            kni_stats[port_id].tx_packets += nb_tx;
509
510            if (unlikely(nb_tx < num)) {
511                /* Free mbufs not tx to NIC */
512                kni_burst_free_mbufs(&pkts_burst[nb_tx], num - nb_tx);
513                kni_stats[port_id].tx_dropped += num - nb_tx;
514            }
515        }
516    }
517
518Callbacks for Kernel Requests
519~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
520
521To execute specific PMD operations in user space requested by some Linux* commands,
522callbacks must be implemented and filled in the struct rte_kni_ops structure.
523Currently, setting a new MTU and configuring the network interface (up/ down) are supported.
524
525.. code-block:: c
526
527    static struct rte_kni_ops kni_ops = {
528        .change_mtu = kni_change_mtu,
529        .config_network_if = kni_config_network_interface,
530    };
531
532    /* Callback for request of changing MTU */
533
534    static int
535    kni_change_mtu(uint8_t port_id, unsigned new_mtu)
536    {
537        int ret;
538        struct rte_eth_conf conf;
539
540        if (port_id >= rte_eth_dev_count()) {
541            RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);
542            return -EINVAL;
543        }
544
545        RTE_LOG(INFO, APP, "Change MTU of port %d to %u\n", port_id, new_mtu);
546
547        /* Stop specific port */
548
549        rte_eth_dev_stop(port_id);
550
551        memcpy(&conf, &port_conf, sizeof(conf));
552
553        /* Set new MTU */
554
555        if (new_mtu > ETHER_MAX_LEN)
556            conf.rxmode.jumbo_frame = 1;
557        else
558            conf.rxmode.jumbo_frame = 0;
559
560        /* mtu + length of header + length of FCS = max pkt length */
561
562        conf.rxmode.max_rx_pkt_len = new_mtu + KNI_ENET_HEADER_SIZE + KNI_ENET_FCS_SIZE;
563
564        ret = rte_eth_dev_configure(port_id, 1, 1, &conf);
565        if (ret < 0) {
566            RTE_LOG(ERR, APP, "Fail to reconfigure port %d\n", port_id);
567            return ret;
568        }
569
570        /* Restart specific port */
571
572        ret = rte_eth_dev_start(port_id);
573        if (ret < 0) {
574             RTE_LOG(ERR, APP, "Fail to restart port %d\n", port_id);
575            return ret;
576        }
577
578        return 0;
579    }
580
581    /* Callback for request of configuring network interface up/down */
582
583    static int
584    kni_config_network_interface(uint8_t port_id, uint8_t if_up)
585    {
586        int ret = 0;
587
588        if (port_id >= rte_eth_dev_count() || port_id >= RTE_MAX_ETHPORTS) {
589            RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);
590            return -EINVAL;
591        }
592
593        RTE_LOG(INFO, APP, "Configure network interface of %d %s\n",
594
595        port_id, if_up ? "up" : "down");
596
597        if (if_up != 0) {
598            /* Configure network interface up */
599            rte_eth_dev_stop(port_id);
600            ret = rte_eth_dev_start(port_id);
601        } else /* Configure network interface down */
602            rte_eth_dev_stop(port_id);
603
604        if (ret < 0)
605            RTE_LOG(ERR, APP, "Failed to start port %d\n", port_id);
606        return ret;
607    }
608