1.. BSD LICENSE 2 Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 3 All rights reserved. 4 5 Redistribution and use in source and binary forms, with or without 6 modification, are permitted provided that the following conditions 7 are met: 8 9 * Redistributions of source code must retain the above copyright 10 notice, this list of conditions and the following disclaimer. 11 * Redistributions in binary form must reproduce the above copyright 12 notice, this list of conditions and the following disclaimer in 13 the documentation and/or other materials provided with the 14 distribution. 15 * Neither the name of Intel Corporation nor the names of its 16 contributors may be used to endorse or promote products derived 17 from this software without specific prior written permission. 18 19 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31Kernel NIC Interface Sample Application 32======================================= 33 34The Kernel NIC Interface (KNI) is a DPDK control plane solution that 35allows userspace applications to exchange packets with the kernel networking stack. 36To accomplish this, DPDK userspace applications use an IOCTL call 37to request the creation of a KNI virtual device in the Linux* kernel. 38The IOCTL call provides interface information and the DPDK's physical address space, 39which is re-mapped into the kernel address space by the KNI kernel loadable module 40that saves the information to a virtual device context. 41The DPDK creates FIFO queues for packet ingress and egress 42to the kernel module for each device allocated. 43 44The KNI kernel loadable module is a standard net driver, 45which upon receiving the IOCTL call access the DPDK's FIFO queue to 46receive/transmit packets from/to the DPDK userspace application. 47The FIFO queues contain pointers to data packets in the DPDK. This: 48 49* Provides a faster mechanism to interface with the kernel net stack and eliminates system calls 50 51* Facilitates the DPDK using standard Linux* userspace net tools (tcpdump, ftp, and so on) 52 53* Eliminate the copy_to_user and copy_from_user operations on packets. 54 55The Kernel NIC Interface sample application is a simple example that demonstrates the use 56of the DPDK to create a path for packets to go through the Linux* kernel. 57This is done by creating one or more kernel net devices for each of the DPDK ports. 58The application allows the use of standard Linux tools (ethtool, ifconfig, tcpdump) with the DPDK ports and 59also the exchange of packets between the DPDK application and the Linux* kernel. 60 61Overview 62-------- 63 64The Kernel NIC Interface sample application uses two threads in user space for each physical NIC port being used, 65and allocates one or more KNI device for each physical NIC port with kernel module's support. 66For a physical NIC port, one thread reads from the port and writes to KNI devices, 67and another thread reads from KNI devices and writes the data unmodified to the physical NIC port. 68It is recommended to configure one KNI device for each physical NIC port. 69If configured with more than one KNI devices for a physical NIC port, 70it is just for performance testing, or it can work together with VMDq support in future. 71 72The packet flow through the Kernel NIC Interface application is as shown in the following figure. 73 74.. _figure_kernel_nic: 75 76.. figure:: img/kernel_nic.* 77 78 Kernel NIC Application Packet Flow 79 80 81Compiling the Application 82------------------------- 83 84Compile the application as follows: 85 86#. Go to the example directory: 87 88 .. code-block:: console 89 90 export RTE_SDK=/path/to/rte_sdk 91 cd ${RTE_SDK}/examples/kni 92 93#. Set the target (a default target is used if not specified) 94 95 .. note:: 96 97 This application is intended as a linuxapp only. 98 99 .. code-block:: console 100 101 export RTE_TARGET=x86_64-native-linuxapp-gcc 102 103#. Build the application: 104 105 .. code-block:: console 106 107 make 108 109Loading the Kernel Module 110------------------------- 111 112Loading the KNI kernel module without any parameter is the typical way a DPDK application 113gets packets into and out of the kernel net stack. 114This way, only one kernel thread is created for all KNI devices for packet receiving in kernel side: 115 116.. code-block:: console 117 118 #insmod rte_kni.ko 119 120Pinning the kernel thread to a specific core can be done using a taskset command such as following: 121 122.. code-block:: console 123 124 #taskset -p 100000 `pgrep --fl kni_thread | awk '{print $1}'` 125 126This command line tries to pin the specific kni_thread on the 20th lcore (lcore numbering starts at 0), 127which means it needs to check if that lcore is available on the board. 128This command must be sent after the application has been launched, as insmod does not start the kni thread. 129 130For optimum performance, 131the lcore in the mask must be selected to be on the same socket as the lcores used in the KNI application. 132 133To provide flexibility of performance, the kernel module of the KNI, 134located in the kmod sub-directory of the DPDK target directory, 135can be loaded with parameter of kthread_mode as follows: 136 137* #insmod rte_kni.ko kthread_mode=single 138 139 This mode will create only one kernel thread for all KNI devices for packet receiving in kernel side. 140 By default, it is in this single kernel thread mode. 141 It can set core affinity for this kernel thread by using Linux command taskset. 142 143* #insmod rte_kni.ko kthread_mode =multiple 144 145 This mode will create a kernel thread for each KNI device for packet receiving in kernel side. 146 The core affinity of each kernel thread is set when creating the KNI device. 147 The lcore ID for each kernel thread is provided in the command line of launching the application. 148 Multiple kernel thread mode can provide scalable higher performance. 149 150To measure the throughput in a loopback mode, the kernel module of the KNI, 151located in the kmod sub-directory of the DPDK target directory, 152can be loaded with parameters as follows: 153 154* #insmod rte_kni.ko lo_mode=lo_mode_fifo 155 156 This loopback mode will involve ring enqueue/dequeue operations in kernel space. 157 158* #insmod rte_kni.ko lo_mode=lo_mode_fifo_skb 159 160 This loopback mode will involve ring enqueue/dequeue operations and sk buffer copies in kernel space. 161 162Running the Application 163----------------------- 164 165The application requires a number of command line options: 166 167.. code-block:: console 168 169 kni [EAL options] -- -P -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,port,lcore_rx,lcore_tx[,lcore_kthread,...]]" 170 171Where: 172 173* -P: Set all ports to promiscuous mode so that packets are accepted regardless of the packet's Ethernet MAC destination address. 174 Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted. 175 176* -p PORTMASK: Hexadecimal bitmask of ports to configure. 177 178* --config="(port,lcore_rx, lcore_tx[,lcore_kthread, ...]) [, port,lcore_rx, lcore_tx[,lcore_kthread, ...]]": 179 Determines which lcores of RX, TX, kernel thread are mapped to which ports. 180 181Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options. 182 183The -c coremask parameter of the EAL options should include the lcores indicated by the lcore_rx and lcore_tx, 184but does not need to include lcores indicated by lcore_kthread as they are used to pin the kernel thread on. 185The -p PORTMASK parameter should include the ports indicated by the port in --config, neither more nor less. 186 187The lcore_kthread in --config can be configured none, one or more lcore IDs. 188In multiple kernel thread mode, if configured none, a KNI device will be allocated for each port, 189while no specific lcore affinity will be set for its kernel thread. 190If configured one or more lcore IDs, one or more KNI devices will be allocated for each port, 191while specific lcore affinity will be set for its kernel thread. 192In single kernel thread mode, if configured none, a KNI device will be allocated for each port. 193If configured one or more lcore IDs, 194one or more KNI devices will be allocated for each port while 195no lcore affinity will be set as there is only one kernel thread for all KNI devices. 196 197For example, to run the application with two ports served by six lcores, one lcore of RX, one lcore of TX, 198and one lcore of kernel thread for each port: 199 200.. code-block:: console 201 202 ./build/kni -c 0xf0 -n 4 -- -P -p 0x3 -config="(0,4,6,8),(1,5,7,9)" 203 204KNI Operations 205-------------- 206 207Once the KNI application is started, one can use different Linux* commands to manage the net interfaces. 208If more than one KNI devices configured for a physical port, 209only the first KNI device will be paired to the physical device. 210Operations on other KNI devices will not affect the physical port handled in user space application. 211 212Assigning an IP address: 213 214.. code-block:: console 215 216 #ifconfig vEth0_0 192.168.0.1 217 218Displaying the NIC registers: 219 220.. code-block:: console 221 222 #ethtool -d vEth0_0 223 224Dumping the network traffic: 225 226.. code-block:: console 227 228 #tcpdump -i vEth0_0 229 230When the DPDK userspace application is closed, all the KNI devices are deleted from Linux*. 231 232Explanation 233----------- 234 235The following sections provide some explanation of code. 236 237Initialization 238~~~~~~~~~~~~~~ 239 240Setup of mbuf pool, driver and queues is similar to the setup done in the :doc:`l2_forward_real_virtual`.. 241In addition, one or more kernel NIC interfaces are allocated for each 242of the configured ports according to the command line parameters. 243 244The code for allocating the kernel NIC interfaces for a specific port is as follows: 245 246.. code-block:: c 247 248 static int 249 kni_alloc(uint8_t port_id) 250 { 251 uint8_t i; 252 struct rte_kni *kni; 253 struct rte_kni_conf conf; 254 struct kni_port_params **params = kni_port_params_array; 255 256 if (port_id >= RTE_MAX_ETHPORTS || !params[port_id]) 257 return -1; 258 259 params[port_id]->nb_kni = params[port_id]->nb_lcore_k ? params[port_id]->nb_lcore_k : 1; 260 261 for (i = 0; i < params[port_id]->nb_kni; i++) { 262 263 /* Clear conf at first */ 264 265 memset(&conf, 0, sizeof(conf)); 266 if (params[port_id]->nb_lcore_k) { 267 snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u_%u", port_id, i); 268 conf.core_id = params[port_id]->lcore_k[i]; 269 conf.force_bind = 1; 270 } else 271 snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u", port_id); 272 conf.group_id = (uint16_t)port_id; 273 conf.mbuf_size = MAX_PACKET_SZ; 274 275 /* 276 * The first KNI device associated to a port 277 * is the master, for multiple kernel thread 278 * environment. 279 */ 280 281 if (i == 0) { 282 struct rte_kni_ops ops; 283 struct rte_eth_dev_info dev_info; 284 285 memset(&dev_info, 0, sizeof(dev_info)); rte_eth_dev_info_get(port_id, &dev_info); 286 287 conf.addr = dev_info.pci_dev->addr; 288 conf.id = dev_info.pci_dev->id; 289 290 memset(&ops, 0, sizeof(ops)); 291 292 ops.port_id = port_id; 293 ops.change_mtu = kni_change_mtu; 294 ops.config_network_if = kni_config_network_interface; 295 296 kni = rte_kni_alloc(pktmbuf_pool, &conf, &ops); 297 } else 298 kni = rte_kni_alloc(pktmbuf_pool, &conf, NULL); 299 300 if (!kni) 301 rte_exit(EXIT_FAILURE, "Fail to create kni for " 302 "port: %d\n", port_id); 303 304 params[port_id]->kni[i] = kni; 305 } 306 return 0; 307 } 308 309The other step in the initialization process that is unique to this sample application 310is the association of each port with lcores for RX, TX and kernel threads. 311 312* One lcore to read from the port and write to the associated one or more KNI devices 313 314* Another lcore to read from one or more KNI devices and write to the port 315 316* Other lcores for pinning the kernel threads on one by one 317 318This is done by using the`kni_port_params_array[]` array, which is indexed by the port ID. 319The code is as follows: 320 321.. code-block:: console 322 323 static int 324 parse_config(const char *arg) 325 { 326 const char *p, *p0 = arg; 327 char s[256], *end; 328 unsigned size; 329 enum fieldnames { 330 FLD_PORT = 0, 331 FLD_LCORE_RX, 332 FLD_LCORE_TX, 333 _NUM_FLD = KNI_MAX_KTHREAD + 3, 334 }; 335 int i, j, nb_token; 336 char *str_fld[_NUM_FLD]; 337 unsigned long int_fld[_NUM_FLD]; 338 uint8_t port_id, nb_kni_port_params = 0; 339 340 memset(&kni_port_params_array, 0, sizeof(kni_port_params_array)); 341 342 while (((p = strchr(p0, '(')) != NULL) && nb_kni_port_params < RTE_MAX_ETHPORTS) { 343 p++; 344 if ((p0 = strchr(p, ')')) == NULL) 345 goto fail; 346 347 size = p0 - p; 348 349 if (size >= sizeof(s)) { 350 printf("Invalid config parameters\n"); 351 goto fail; 352 } 353 354 snprintf(s, sizeof(s), "%.*s", size, p); 355 nb_token = rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ','); 356 357 if (nb_token <= FLD_LCORE_TX) { 358 printf("Invalid config parameters\n"); 359 goto fail; 360 } 361 362 for (i = 0; i < nb_token; i++) { 363 errno = 0; 364 int_fld[i] = strtoul(str_fld[i], &end, 0); 365 if (errno != 0 || end == str_fld[i]) { 366 printf("Invalid config parameters\n"); 367 goto fail; 368 } 369 } 370 371 i = 0; 372 port_id = (uint8_t)int_fld[i++]; 373 374 if (port_id >= RTE_MAX_ETHPORTS) { 375 printf("Port ID %u could not exceed the maximum %u\n", port_id, RTE_MAX_ETHPORTS); 376 goto fail; 377 } 378 379 if (kni_port_params_array[port_id]) { 380 printf("Port %u has been configured\n", port_id); 381 goto fail; 382 } 383 384 kni_port_params_array[port_id] = (struct kni_port_params*)rte_zmalloc("KNI_port_params", sizeof(struct kni_port_params), RTE_CACHE_LINE_SIZE); 385 kni_port_params_array[port_id]->port_id = port_id; 386 kni_port_params_array[port_id]->lcore_rx = (uint8_t)int_fld[i++]; 387 kni_port_params_array[port_id]->lcore_tx = (uint8_t)int_fld[i++]; 388 389 if (kni_port_params_array[port_id]->lcore_rx >= RTE_MAX_LCORE || kni_port_params_array[port_id]->lcore_tx >= RTE_MAX_LCORE) { 390 printf("lcore_rx %u or lcore_tx %u ID could not " 391 "exceed the maximum %u\n", 392 kni_port_params_array[port_id]->lcore_rx, kni_port_params_array[port_id]->lcore_tx, RTE_MAX_LCORE); 393 goto fail; 394 } 395 396 for (j = 0; i < nb_token && j < KNI_MAX_KTHREAD; i++, j++) 397 kni_port_params_array[port_id]->lcore_k[j] = (uint8_t)int_fld[i]; 398 kni_port_params_array[port_id]->nb_lcore_k = j; 399 } 400 401 print_config(); 402 403 return 0; 404 405 fail: 406 407 for (i = 0; i < RTE_MAX_ETHPORTS; i++) { 408 if (kni_port_params_array[i]) { 409 rte_free(kni_port_params_array[i]); 410 kni_port_params_array[i] = NULL; 411 } 412 } 413 414 return -1; 415 416 } 417 418Packet Forwarding 419~~~~~~~~~~~~~~~~~ 420 421After the initialization steps are completed, the main_loop() function is run on each lcore. 422This function first checks the lcore_id against the user provided lcore_rx and lcore_tx 423to see if this lcore is reading from or writing to kernel NIC interfaces. 424 425For the case that reads from a NIC port and writes to the kernel NIC interfaces, 426the packet reception is the same as in L2 Forwarding sample application 427(see :ref:`l2_fwd_app_rx_tx_packets`). 428The packet transmission is done by sending mbufs into the kernel NIC interfaces by rte_kni_tx_burst(). 429The KNI library automatically frees the mbufs after the kernel successfully copied the mbufs. 430 431.. code-block:: c 432 433 /** 434 * Interface to burst rx and enqueue mbufs into rx_q 435 */ 436 437 static void 438 kni_ingress(struct kni_port_params *p) 439 { 440 uint8_t i, nb_kni, port_id; 441 unsigned nb_rx, num; 442 struct rte_mbuf *pkts_burst[PKT_BURST_SZ]; 443 444 if (p == NULL) 445 return; 446 447 nb_kni = p->nb_kni; 448 port_id = p->port_id; 449 450 for (i = 0; i < nb_kni; i++) { 451 /* Burst rx from eth */ 452 nb_rx = rte_eth_rx_burst(port_id, 0, pkts_burst, PKT_BURST_SZ); 453 if (unlikely(nb_rx > PKT_BURST_SZ)) { 454 RTE_LOG(ERR, APP, "Error receiving from eth\n"); 455 return; 456 } 457 458 /* Burst tx to kni */ 459 num = rte_kni_tx_burst(p->kni[i], pkts_burst, nb_rx); 460 kni_stats[port_id].rx_packets += num; 461 rte_kni_handle_request(p->kni[i]); 462 463 if (unlikely(num < nb_rx)) { 464 /* Free mbufs not tx to kni interface */ 465 kni_burst_free_mbufs(&pkts_burst[num], nb_rx - num); 466 kni_stats[port_id].rx_dropped += nb_rx - num; 467 } 468 } 469 } 470 471For the other case that reads from kernel NIC interfaces and writes to a physical NIC port, packets are retrieved by reading 472mbufs from kernel NIC interfaces by `rte_kni_rx_burst()`. 473The packet transmission is the same as in the L2 Forwarding sample application 474(see :ref:`l2_fwd_app_rx_tx_packets`). 475 476.. code-block:: c 477 478 /** 479 * Interface to dequeue mbufs from tx_q and burst tx 480 */ 481 482 static void 483 484 kni_egress(struct kni_port_params *p) 485 { 486 uint8_t i, nb_kni, port_id; 487 unsigned nb_tx, num; 488 struct rte_mbuf *pkts_burst[PKT_BURST_SZ]; 489 490 if (p == NULL) 491 return; 492 493 nb_kni = p->nb_kni; 494 port_id = p->port_id; 495 496 for (i = 0; i < nb_kni; i++) { 497 /* Burst rx from kni */ 498 num = rte_kni_rx_burst(p->kni[i], pkts_burst, PKT_BURST_SZ); 499 if (unlikely(num > PKT_BURST_SZ)) { 500 RTE_LOG(ERR, APP, "Error receiving from KNI\n"); 501 return; 502 } 503 504 /* Burst tx to eth */ 505 506 nb_tx = rte_eth_tx_burst(port_id, 0, pkts_burst, (uint16_t)num); 507 508 kni_stats[port_id].tx_packets += nb_tx; 509 510 if (unlikely(nb_tx < num)) { 511 /* Free mbufs not tx to NIC */ 512 kni_burst_free_mbufs(&pkts_burst[nb_tx], num - nb_tx); 513 kni_stats[port_id].tx_dropped += num - nb_tx; 514 } 515 } 516 } 517 518Callbacks for Kernel Requests 519~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 520 521To execute specific PMD operations in user space requested by some Linux* commands, 522callbacks must be implemented and filled in the struct rte_kni_ops structure. 523Currently, setting a new MTU and configuring the network interface (up/ down) are supported. 524 525.. code-block:: c 526 527 static struct rte_kni_ops kni_ops = { 528 .change_mtu = kni_change_mtu, 529 .config_network_if = kni_config_network_interface, 530 }; 531 532 /* Callback for request of changing MTU */ 533 534 static int 535 kni_change_mtu(uint8_t port_id, unsigned new_mtu) 536 { 537 int ret; 538 struct rte_eth_conf conf; 539 540 if (port_id >= rte_eth_dev_count()) { 541 RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id); 542 return -EINVAL; 543 } 544 545 RTE_LOG(INFO, APP, "Change MTU of port %d to %u\n", port_id, new_mtu); 546 547 /* Stop specific port */ 548 549 rte_eth_dev_stop(port_id); 550 551 memcpy(&conf, &port_conf, sizeof(conf)); 552 553 /* Set new MTU */ 554 555 if (new_mtu > ETHER_MAX_LEN) 556 conf.rxmode.jumbo_frame = 1; 557 else 558 conf.rxmode.jumbo_frame = 0; 559 560 /* mtu + length of header + length of FCS = max pkt length */ 561 562 conf.rxmode.max_rx_pkt_len = new_mtu + KNI_ENET_HEADER_SIZE + KNI_ENET_FCS_SIZE; 563 564 ret = rte_eth_dev_configure(port_id, 1, 1, &conf); 565 if (ret < 0) { 566 RTE_LOG(ERR, APP, "Fail to reconfigure port %d\n", port_id); 567 return ret; 568 } 569 570 /* Restart specific port */ 571 572 ret = rte_eth_dev_start(port_id); 573 if (ret < 0) { 574 RTE_LOG(ERR, APP, "Fail to restart port %d\n", port_id); 575 return ret; 576 } 577 578 return 0; 579 } 580 581 /* Callback for request of configuring network interface up/down */ 582 583 static int 584 kni_config_network_interface(uint8_t port_id, uint8_t if_up) 585 { 586 int ret = 0; 587 588 if (port_id >= rte_eth_dev_count() || port_id >= RTE_MAX_ETHPORTS) { 589 RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id); 590 return -EINVAL; 591 } 592 593 RTE_LOG(INFO, APP, "Configure network interface of %d %s\n", 594 595 port_id, if_up ? "up" : "down"); 596 597 if (if_up != 0) { 598 /* Configure network interface up */ 599 rte_eth_dev_stop(port_id); 600 ret = rte_eth_dev_start(port_id); 601 } else /* Configure network interface down */ 602 rte_eth_dev_stop(port_id); 603 604 if (ret < 0) 605 RTE_LOG(ERR, APP, "Failed to start port %d\n", port_id); 606 return ret; 607 } 608