xref: /dpdk/lib/member/rte_member_vbf.c (revision 29fd052d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <math.h>
6 #include <string.h>
7 
8 #include <rte_malloc.h>
9 #include <rte_errno.h>
10 #include <rte_log.h>
11 
12 #include "rte_member.h"
13 #include "rte_member_vbf.h"
14 
15 /*
16  * vBF currently implemented as a big array.
17  * The BFs have a vertical layout. Bits in same location of all bfs will stay
18  * in the same cache line.
19  * For example, if we have 32 bloom filters, we use a uint32_t array to
20  * represent all of them. array[0] represent the first location of all the
21  * bloom filters, array[1] represents the second location of all the
22  * bloom filters, etc. The advantage of this layout is to minimize the average
23  * number of memory accesses to test all bloom filters.
24  *
25  * Currently the implementation supports vBF containing 1,2,4,8,16,32 BFs.
26  */
27 int
28 rte_member_create_vbf(struct rte_member_setsum *ss,
29 		const struct rte_member_parameters *params)
30 {
31 
32 	if (params->num_set > RTE_MEMBER_MAX_BF ||
33 			!rte_is_power_of_2(params->num_set) ||
34 			params->num_keys == 0 ||
35 			params->false_positive_rate == 0 ||
36 			params->false_positive_rate > 1) {
37 		rte_errno = EINVAL;
38 		RTE_MEMBER_LOG(ERR, "Membership vBF create with invalid parameters\n");
39 		return -EINVAL;
40 	}
41 
42 	/* We assume expected keys evenly distribute to all BFs */
43 	uint32_t num_keys_per_bf = 1 + (params->num_keys - 1) / ss->num_set;
44 
45 	/*
46 	 * Note that the false positive rate is for all BFs in the vBF
47 	 * such that the single BF's false positive rate needs to be
48 	 * calculated.
49 	 * Assume each BF's False positive rate is fp_one_bf. The total false
50 	 * positive rate is fp = 1-(1-fp_one_bf)^n.
51 	 * => fp_one_bf = 1 - (1-fp)^(1/n)
52 	 */
53 
54 	float fp_one_bf = 1 - pow((1 - params->false_positive_rate),
55 					1.0 / ss->num_set);
56 
57 	if (fp_one_bf == 0) {
58 		rte_errno = EINVAL;
59 		RTE_MEMBER_LOG(ERR, "Membership BF false positive rate is too small\n");
60 		return -EINVAL;
61 	}
62 
63 	uint32_t bits = ceil((num_keys_per_bf *
64 				log(fp_one_bf)) /
65 				log(1.0 / (pow(2.0, log(2.0)))));
66 
67 	/* We round to power of 2 for performance during lookup */
68 	ss->bits = rte_align32pow2(bits);
69 
70 	ss->num_hashes = (uint32_t)(log(2.0) * bits / num_keys_per_bf);
71 	ss->bit_mask = ss->bits - 1;
72 
73 	/*
74 	 * Since we round the bits to power of 2, the final false positive
75 	 * rate will probably not be same as the user specified. We log the
76 	 * new value as debug message.
77 	 */
78 	float new_fp = pow((1 - pow((1 - 1.0 / ss->bits), num_keys_per_bf *
79 					ss->num_hashes)), ss->num_hashes);
80 	new_fp = 1 - pow((1 - new_fp), ss->num_set);
81 
82 	/*
83 	 * Reduce hash function count, until we approach the user specified
84 	 * false-positive rate. Otherwise it is too conservative
85 	 */
86 	int tmp_num_hash = ss->num_hashes;
87 
88 	while (tmp_num_hash > 1) {
89 		float tmp_fp = new_fp;
90 
91 		tmp_num_hash--;
92 		new_fp = pow((1 - pow((1 - 1.0 / ss->bits), num_keys_per_bf *
93 					tmp_num_hash)), tmp_num_hash);
94 		new_fp = 1 - pow((1 - new_fp), ss->num_set);
95 
96 		if (new_fp > params->false_positive_rate) {
97 			new_fp = tmp_fp;
98 			tmp_num_hash++;
99 			break;
100 		}
101 	}
102 
103 	ss->num_hashes = tmp_num_hash;
104 
105 	/*
106 	 * To avoid multiplication and division:
107 	 * mul_shift is used for multiplication shift during bit test
108 	 * div_shift is used for division shift, to be divided by number of bits
109 	 * represented by a uint32_t variable
110 	 */
111 	ss->mul_shift = __builtin_ctzl(ss->num_set);
112 	ss->div_shift = __builtin_ctzl(32 >> ss->mul_shift);
113 
114 	RTE_MEMBER_LOG(DEBUG, "vector bloom filter created, "
115 		"each bloom filter expects %u keys, needs %u bits, %u hashes, "
116 		"with false positive rate set as %.5f, "
117 		"The new calculated vBF false positive rate is %.5f\n",
118 		num_keys_per_bf, ss->bits, ss->num_hashes, fp_one_bf, new_fp);
119 
120 	ss->table = rte_zmalloc_socket(NULL, ss->num_set * (ss->bits >> 3),
121 					RTE_CACHE_LINE_SIZE, ss->socket_id);
122 	if (ss->table == NULL)
123 		return -ENOMEM;
124 
125 	return 0;
126 }
127 
128 static inline uint32_t
129 test_bit(uint32_t bit_loc, const struct rte_member_setsum *ss)
130 {
131 	uint32_t *vbf = ss->table;
132 	uint32_t n = ss->num_set;
133 	uint32_t div_shift = ss->div_shift;
134 	uint32_t mul_shift = ss->mul_shift;
135 	/*
136 	 * a is how many bits in one BF are represented by one 32bit
137 	 * variable.
138 	 */
139 	uint32_t a = 32 >> mul_shift;
140 	/*
141 	 * x>>b is the divide, x & (a-1) is the mod, & (1<<n-1) to mask out bits
142 	 * we do not need
143 	 */
144 	return (vbf[bit_loc >> div_shift] >>
145 			((bit_loc & (a - 1)) << mul_shift)) & ((1ULL << n) - 1);
146 }
147 
148 static inline void
149 set_bit(uint32_t bit_loc, const struct rte_member_setsum *ss, int32_t set)
150 {
151 	uint32_t *vbf = ss->table;
152 	uint32_t div_shift = ss->div_shift;
153 	uint32_t mul_shift = ss->mul_shift;
154 	uint32_t a = 32 >> mul_shift;
155 
156 	vbf[bit_loc >> div_shift] |=
157 			1UL << (((bit_loc & (a - 1)) << mul_shift) + set - 1);
158 }
159 
160 int
161 rte_member_lookup_vbf(const struct rte_member_setsum *ss, const void *key,
162 		member_set_t *set_id)
163 {
164 	uint32_t j;
165 	uint32_t h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
166 	uint32_t h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t),
167 						ss->sec_hash_seed);
168 	uint32_t mask = ~0;
169 	uint32_t bit_loc;
170 
171 	for (j = 0; j < ss->num_hashes; j++) {
172 		bit_loc = (h1 + j * h2) & ss->bit_mask;
173 		mask &= test_bit(bit_loc, ss);
174 	}
175 
176 	if (mask) {
177 		*set_id = __builtin_ctzl(mask) + 1;
178 		return 1;
179 	}
180 
181 	*set_id = RTE_MEMBER_NO_MATCH;
182 	return 0;
183 }
184 
185 uint32_t
186 rte_member_lookup_bulk_vbf(const struct rte_member_setsum *ss,
187 		const void **keys, uint32_t num_keys, member_set_t *set_ids)
188 {
189 	uint32_t i, k;
190 	uint32_t num_matches = 0;
191 	uint32_t mask[RTE_MEMBER_LOOKUP_BULK_MAX];
192 	uint32_t h1[RTE_MEMBER_LOOKUP_BULK_MAX], h2[RTE_MEMBER_LOOKUP_BULK_MAX];
193 	uint32_t bit_loc;
194 
195 	for (i = 0; i < num_keys; i++)
196 		h1[i] = MEMBER_HASH_FUNC(keys[i], ss->key_len,
197 						ss->prim_hash_seed);
198 	for (i = 0; i < num_keys; i++)
199 		h2[i] = MEMBER_HASH_FUNC(&h1[i], sizeof(uint32_t),
200 						ss->sec_hash_seed);
201 	for (i = 0; i < num_keys; i++) {
202 		mask[i] = ~0;
203 		for (k = 0; k < ss->num_hashes; k++) {
204 			bit_loc = (h1[i] + k * h2[i]) & ss->bit_mask;
205 			mask[i] &= test_bit(bit_loc, ss);
206 		}
207 	}
208 	for (i = 0; i < num_keys; i++) {
209 		if (mask[i]) {
210 			set_ids[i] = __builtin_ctzl(mask[i]) + 1;
211 			num_matches++;
212 		} else
213 			set_ids[i] = RTE_MEMBER_NO_MATCH;
214 	}
215 	return num_matches;
216 }
217 
218 uint32_t
219 rte_member_lookup_multi_vbf(const struct rte_member_setsum *ss,
220 		const void *key, uint32_t match_per_key,
221 		member_set_t *set_id)
222 {
223 	uint32_t num_matches = 0;
224 	uint32_t j;
225 	uint32_t h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
226 	uint32_t h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t),
227 						ss->sec_hash_seed);
228 	uint32_t mask = ~0;
229 	uint32_t bit_loc;
230 
231 	for (j = 0; j < ss->num_hashes; j++) {
232 		bit_loc = (h1 + j * h2) & ss->bit_mask;
233 		mask &= test_bit(bit_loc, ss);
234 	}
235 	while (mask) {
236 		uint32_t loc = __builtin_ctzl(mask);
237 		set_id[num_matches] = loc + 1;
238 		num_matches++;
239 		if (num_matches >= match_per_key)
240 			return num_matches;
241 		mask &= ~(1UL << loc);
242 	}
243 	return num_matches;
244 }
245 
246 uint32_t
247 rte_member_lookup_multi_bulk_vbf(const struct rte_member_setsum *ss,
248 		const void **keys, uint32_t num_keys, uint32_t match_per_key,
249 		uint32_t *match_count,
250 		member_set_t *set_ids)
251 {
252 	uint32_t i, k;
253 	uint32_t num_matches = 0;
254 	uint32_t match_cnt_t;
255 	uint32_t mask[RTE_MEMBER_LOOKUP_BULK_MAX];
256 	uint32_t h1[RTE_MEMBER_LOOKUP_BULK_MAX], h2[RTE_MEMBER_LOOKUP_BULK_MAX];
257 	uint32_t bit_loc;
258 
259 	for (i = 0; i < num_keys; i++)
260 		h1[i] = MEMBER_HASH_FUNC(keys[i], ss->key_len,
261 						ss->prim_hash_seed);
262 	for (i = 0; i < num_keys; i++)
263 		h2[i] = MEMBER_HASH_FUNC(&h1[i], sizeof(uint32_t),
264 						ss->sec_hash_seed);
265 	for (i = 0; i < num_keys; i++) {
266 		mask[i] = ~0;
267 		for (k = 0; k < ss->num_hashes; k++) {
268 			bit_loc = (h1[i] + k * h2[i]) & ss->bit_mask;
269 			mask[i] &= test_bit(bit_loc, ss);
270 		}
271 	}
272 	for (i = 0; i < num_keys; i++) {
273 		match_cnt_t = 0;
274 		while (mask[i]) {
275 			uint32_t loc = __builtin_ctzl(mask[i]);
276 			set_ids[i * match_per_key + match_cnt_t] = loc + 1;
277 			match_cnt_t++;
278 			if (match_cnt_t >= match_per_key)
279 				break;
280 			mask[i] &= ~(1UL << loc);
281 		}
282 		match_count[i] = match_cnt_t;
283 		if (match_cnt_t != 0)
284 			num_matches++;
285 	}
286 	return num_matches;
287 }
288 
289 int
290 rte_member_add_vbf(const struct rte_member_setsum *ss,
291 		const void *key, member_set_t set_id)
292 {
293 	uint32_t i, h1, h2;
294 	uint32_t bit_loc;
295 
296 	if (set_id > ss->num_set || set_id == RTE_MEMBER_NO_MATCH)
297 		return -EINVAL;
298 
299 	h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
300 	h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t), ss->sec_hash_seed);
301 
302 	for (i = 0; i < ss->num_hashes; i++) {
303 		bit_loc = (h1 + i * h2) & ss->bit_mask;
304 		set_bit(bit_loc, ss, set_id);
305 	}
306 	return 0;
307 }
308 
309 void
310 rte_member_free_vbf(struct rte_member_setsum *ss)
311 {
312 	rte_free(ss->table);
313 }
314 
315 void
316 rte_member_reset_vbf(const struct rte_member_setsum *ss)
317 {
318 	uint32_t *vbf = ss->table;
319 	memset(vbf, 0, (ss->num_set * ss->bits) >> 3);
320 }
321