xref: /dpdk/examples/server_node_efd/server/main.c (revision 70febdcf)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <unistd.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <inttypes.h>
12 #include <sys/queue.h>
13 #include <errno.h>
14 #include <netinet/ip.h>
15 
16 #include <rte_common.h>
17 #include <rte_memory.h>
18 #include <rte_eal.h>
19 #include <rte_launch.h>
20 #include <rte_per_lcore.h>
21 #include <rte_lcore.h>
22 #include <rte_branch_prediction.h>
23 #include <rte_atomic.h>
24 #include <rte_ring.h>
25 #include <rte_log.h>
26 #include <rte_debug.h>
27 #include <rte_mempool.h>
28 #include <rte_memcpy.h>
29 #include <rte_mbuf.h>
30 #include <rte_ether.h>
31 #include <rte_interrupts.h>
32 #include <rte_ethdev.h>
33 #include <rte_byteorder.h>
34 #include <rte_malloc.h>
35 #include <rte_string_fns.h>
36 #include <rte_efd.h>
37 #include <rte_ip.h>
38 
39 #include "common.h"
40 #include "args.h"
41 #include "init.h"
42 
43 /*
44  * When doing reads from the NIC or the node queues,
45  * use this batch size
46  */
47 #define PACKET_READ_SIZE 32
48 
49 /*
50  * Local buffers to put packets in, used to send packets in bursts to the
51  * nodes
52  */
53 struct node_rx_buf {
54 	struct rte_mbuf *buffer[PACKET_READ_SIZE];
55 	uint16_t count;
56 };
57 
58 struct efd_stats {
59 	uint64_t distributed;
60 	uint64_t drop;
61 } flow_dist_stats;
62 
63 /* One buffer per node rx queue - dynamically allocate array */
64 static struct node_rx_buf *cl_rx_buf;
65 
66 static const char *
67 get_printable_mac_addr(uint16_t port)
68 {
69 	static const char err_address[] = "00:00:00:00:00:00";
70 	static char addresses[RTE_MAX_ETHPORTS][sizeof(err_address)];
71 	struct rte_ether_addr mac;
72 	int ret;
73 
74 	if (unlikely(port >= RTE_MAX_ETHPORTS))
75 		return err_address;
76 	if (unlikely(addresses[port][0] == '\0')) {
77 		ret = rte_eth_macaddr_get(port, &mac);
78 		if (ret != 0) {
79 			printf("Failed to get MAC address (port %u): %s\n",
80 			       port, rte_strerror(-ret));
81 			return err_address;
82 		}
83 
84 		snprintf(addresses[port], sizeof(addresses[port]),
85 				"%02x:%02x:%02x:%02x:%02x:%02x\n",
86 				mac.addr_bytes[0], mac.addr_bytes[1],
87 				mac.addr_bytes[2], mac.addr_bytes[3],
88 				mac.addr_bytes[4], mac.addr_bytes[5]);
89 	}
90 	return addresses[port];
91 }
92 
93 /*
94  * This function displays the recorded statistics for each port
95  * and for each node. It uses ANSI terminal codes to clear
96  * screen when called. It is called from a single non-master
97  * thread in the server process, when the process is run with more
98  * than one lcore enabled.
99  */
100 static void
101 do_stats_display(void)
102 {
103 	unsigned int i, j;
104 	const char clr[] = {27, '[', '2', 'J', '\0'};
105 	const char topLeft[] = {27, '[', '1', ';', '1', 'H', '\0'};
106 	uint64_t port_tx[RTE_MAX_ETHPORTS], port_tx_drop[RTE_MAX_ETHPORTS];
107 	uint64_t node_tx[MAX_NODES], node_tx_drop[MAX_NODES];
108 
109 	/* to get TX stats, we need to do some summing calculations */
110 	memset(port_tx, 0, sizeof(port_tx));
111 	memset(port_tx_drop, 0, sizeof(port_tx_drop));
112 	memset(node_tx, 0, sizeof(node_tx));
113 	memset(node_tx_drop, 0, sizeof(node_tx_drop));
114 
115 	for (i = 0; i < num_nodes; i++) {
116 		const struct tx_stats *tx = &info->tx_stats[i];
117 
118 		for (j = 0; j < info->num_ports; j++) {
119 			const uint64_t tx_val = tx->tx[info->id[j]];
120 			const uint64_t drop_val = tx->tx_drop[info->id[j]];
121 
122 			port_tx[j] += tx_val;
123 			port_tx_drop[j] += drop_val;
124 			node_tx[i] += tx_val;
125 			node_tx_drop[i] += drop_val;
126 		}
127 	}
128 
129 	/* Clear screen and move to top left */
130 	printf("%s%s", clr, topLeft);
131 
132 	printf("PORTS\n");
133 	printf("-----\n");
134 	for (i = 0; i < info->num_ports; i++)
135 		printf("Port %u: '%s'\t", (unsigned int)info->id[i],
136 				get_printable_mac_addr(info->id[i]));
137 	printf("\n\n");
138 	for (i = 0; i < info->num_ports; i++) {
139 		printf("Port %u - rx: %9"PRIu64"\t"
140 				"tx: %9"PRIu64"\n",
141 				(unsigned int)info->id[i], info->rx_stats.rx[i],
142 				port_tx[i]);
143 	}
144 
145 	printf("\nSERVER\n");
146 	printf("-----\n");
147 	printf("distributed: %9"PRIu64", drop: %9"PRIu64"\n",
148 			flow_dist_stats.distributed, flow_dist_stats.drop);
149 
150 	printf("\nNODES\n");
151 	printf("-------\n");
152 	for (i = 0; i < num_nodes; i++) {
153 		const unsigned long long rx = nodes[i].stats.rx;
154 		const unsigned long long rx_drop = nodes[i].stats.rx_drop;
155 		const struct filter_stats *filter = &info->filter_stats[i];
156 
157 		printf("Node %2u - rx: %9llu, rx_drop: %9llu\n"
158 				"            tx: %9"PRIu64", tx_drop: %9"PRIu64"\n"
159 				"            filter_passed: %9"PRIu64", "
160 				"filter_drop: %9"PRIu64"\n",
161 				i, rx, rx_drop, node_tx[i], node_tx_drop[i],
162 				filter->passed, filter->drop);
163 	}
164 
165 	printf("\n");
166 }
167 
168 /*
169  * The function called from each non-master lcore used by the process.
170  * The test_and_set function is used to randomly pick a single lcore on which
171  * the code to display the statistics will run. Otherwise, the code just
172  * repeatedly sleeps.
173  */
174 static int
175 sleep_lcore(__attribute__((unused)) void *dummy)
176 {
177 	/* Used to pick a display thread - static, so zero-initialised */
178 	static rte_atomic32_t display_stats;
179 
180 	/* Only one core should display stats */
181 	if (rte_atomic32_test_and_set(&display_stats)) {
182 		const unsigned int sleeptime = 1;
183 
184 		printf("Core %u displaying statistics\n", rte_lcore_id());
185 
186 		/* Longer initial pause so above printf is seen */
187 		sleep(sleeptime * 3);
188 
189 		/* Loop forever: sleep always returns 0 or <= param */
190 		while (sleep(sleeptime) <= sleeptime)
191 			do_stats_display();
192 	}
193 	return 0;
194 }
195 
196 /*
197  * Function to set all the node statistic values to zero.
198  * Called at program startup.
199  */
200 static void
201 clear_stats(void)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num_nodes; i++)
206 		nodes[i].stats.rx = nodes[i].stats.rx_drop = 0;
207 }
208 
209 /*
210  * send a burst of traffic to a node, assuming there are packets
211  * available to be sent to this node
212  */
213 static void
214 flush_rx_queue(uint16_t node)
215 {
216 	uint16_t j;
217 	struct node *cl;
218 
219 	if (cl_rx_buf[node].count == 0)
220 		return;
221 
222 	cl = &nodes[node];
223 	if (rte_ring_enqueue_bulk(cl->rx_q, (void **)cl_rx_buf[node].buffer,
224 			cl_rx_buf[node].count, NULL) != cl_rx_buf[node].count){
225 		for (j = 0; j < cl_rx_buf[node].count; j++)
226 			rte_pktmbuf_free(cl_rx_buf[node].buffer[j]);
227 		cl->stats.rx_drop += cl_rx_buf[node].count;
228 	} else
229 		cl->stats.rx += cl_rx_buf[node].count;
230 
231 	cl_rx_buf[node].count = 0;
232 }
233 
234 /*
235  * marks a packet down to be sent to a particular node process
236  */
237 static inline void
238 enqueue_rx_packet(uint8_t node, struct rte_mbuf *buf)
239 {
240 	cl_rx_buf[node].buffer[cl_rx_buf[node].count++] = buf;
241 }
242 
243 /*
244  * This function takes a group of packets and routes them
245  * individually to the node process. Very simply round-robins the packets
246  * without checking any of the packet contents.
247  */
248 static void
249 process_packets(uint32_t port_num __rte_unused, struct rte_mbuf *pkts[],
250 		uint16_t rx_count, unsigned int socket_id)
251 {
252 	uint16_t i;
253 	uint8_t node;
254 	efd_value_t data[RTE_EFD_BURST_MAX];
255 	const void *key_ptrs[RTE_EFD_BURST_MAX];
256 
257 	struct rte_ipv4_hdr *ipv4_hdr;
258 	uint32_t ipv4_dst_ip[RTE_EFD_BURST_MAX];
259 
260 	for (i = 0; i < rx_count; i++) {
261 		/* Handle IPv4 header.*/
262 		ipv4_hdr = rte_pktmbuf_mtod_offset(pkts[i],
263 			struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr));
264 		ipv4_dst_ip[i] = ipv4_hdr->dst_addr;
265 		key_ptrs[i] = (void *)&ipv4_dst_ip[i];
266 	}
267 
268 	rte_efd_lookup_bulk(efd_table, socket_id, rx_count,
269 				(const void **) key_ptrs, data);
270 	for (i = 0; i < rx_count; i++) {
271 		node = (uint8_t) ((uintptr_t)data[i]);
272 
273 		if (node >= num_nodes) {
274 			/*
275 			 * Node is out of range, which means that
276 			 * flow has not been inserted
277 			 */
278 			flow_dist_stats.drop++;
279 			rte_pktmbuf_free(pkts[i]);
280 		} else {
281 			flow_dist_stats.distributed++;
282 			enqueue_rx_packet(node, pkts[i]);
283 		}
284 	}
285 
286 	for (i = 0; i < num_nodes; i++)
287 		flush_rx_queue(i);
288 }
289 
290 /*
291  * Function called by the master lcore of the DPDK process.
292  */
293 static void
294 do_packet_forwarding(void)
295 {
296 	unsigned int port_num = 0; /* indexes the port[] array */
297 	unsigned int socket_id = rte_socket_id();
298 
299 	for (;;) {
300 		struct rte_mbuf *buf[PACKET_READ_SIZE];
301 		uint16_t rx_count;
302 
303 		/* read a port */
304 		rx_count = rte_eth_rx_burst(info->id[port_num], 0,
305 				buf, PACKET_READ_SIZE);
306 		info->rx_stats.rx[port_num] += rx_count;
307 
308 		/* Now process the NIC packets read */
309 		if (likely(rx_count > 0))
310 			process_packets(port_num, buf, rx_count, socket_id);
311 
312 		/* move to next port */
313 		if (++port_num == info->num_ports)
314 			port_num = 0;
315 	}
316 }
317 
318 int
319 main(int argc, char *argv[])
320 {
321 	/* initialise the system */
322 	if (init(argc, argv) < 0)
323 		return -1;
324 	RTE_LOG(INFO, APP, "Finished Process Init.\n");
325 
326 	cl_rx_buf = calloc(num_nodes, sizeof(cl_rx_buf[0]));
327 
328 	/* clear statistics */
329 	clear_stats();
330 
331 	/* put all other cores to sleep bar master */
332 	rte_eal_mp_remote_launch(sleep_lcore, NULL, SKIP_MASTER);
333 
334 	do_packet_forwarding();
335 	return 0;
336 }
337