xref: /dpdk/examples/server_node_efd/server/main.c (revision 09e4ecea)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <unistd.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <inttypes.h>
12 #include <sys/queue.h>
13 #include <errno.h>
14 #include <sys/types.h>
15 #include <netinet/in.h>
16 #include <netinet/ip.h>
17 
18 #include <rte_common.h>
19 #include <rte_memory.h>
20 #include <rte_eal.h>
21 #include <rte_launch.h>
22 #include <rte_per_lcore.h>
23 #include <rte_lcore.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_atomic.h>
26 #include <rte_ring.h>
27 #include <rte_log.h>
28 #include <rte_debug.h>
29 #include <rte_mempool.h>
30 #include <rte_memcpy.h>
31 #include <rte_mbuf.h>
32 #include <rte_ether.h>
33 #include <rte_interrupts.h>
34 #include <rte_ethdev.h>
35 #include <rte_byteorder.h>
36 #include <rte_malloc.h>
37 #include <rte_string_fns.h>
38 #include <rte_efd.h>
39 #include <rte_ip.h>
40 
41 #include "common.h"
42 #include "args.h"
43 #include "init.h"
44 
45 /*
46  * When doing reads from the NIC or the node queues,
47  * use this batch size
48  */
49 #define PACKET_READ_SIZE 32
50 
51 /*
52  * Local buffers to put packets in, used to send packets in bursts to the
53  * nodes
54  */
55 struct node_rx_buf {
56 	struct rte_mbuf *buffer[PACKET_READ_SIZE];
57 	uint16_t count;
58 };
59 
60 struct efd_stats {
61 	uint64_t distributed;
62 	uint64_t drop;
63 } flow_dist_stats;
64 
65 /* One buffer per node rx queue - dynamically allocate array */
66 static struct node_rx_buf *cl_rx_buf;
67 
68 static const char *
69 get_printable_mac_addr(uint16_t port)
70 {
71 	static const char err_address[] = "00:00:00:00:00:00";
72 	static char addresses[RTE_MAX_ETHPORTS][sizeof(err_address)];
73 	struct rte_ether_addr mac;
74 	int ret;
75 
76 	if (unlikely(port >= RTE_MAX_ETHPORTS))
77 		return err_address;
78 	if (unlikely(addresses[port][0] == '\0')) {
79 		ret = rte_eth_macaddr_get(port, &mac);
80 		if (ret != 0) {
81 			printf("Failed to get MAC address (port %u): %s\n",
82 			       port, rte_strerror(-ret));
83 			return err_address;
84 		}
85 
86 		snprintf(addresses[port], sizeof(addresses[port]),
87 				RTE_ETHER_ADDR_PRT_FMT "\n",
88 				RTE_ETHER_ADDR_BYTES(&mac));
89 	}
90 	return addresses[port];
91 }
92 
93 /*
94  * This function displays the recorded statistics for each port
95  * and for each node. It uses ANSI terminal codes to clear
96  * screen when called. It is called from a single worker
97  * thread in the server process, when the process is run with more
98  * than one lcore enabled.
99  */
100 
101 /* Display recorded statistics. 8< */
102 static void
103 do_stats_display(void)
104 {
105 	unsigned int i, j;
106 	const char clr[] = {27, '[', '2', 'J', '\0'};
107 	const char topLeft[] = {27, '[', '1', ';', '1', 'H', '\0'};
108 	uint64_t port_tx[RTE_MAX_ETHPORTS], port_tx_drop[RTE_MAX_ETHPORTS];
109 	uint64_t node_tx[MAX_NODES], node_tx_drop[MAX_NODES];
110 
111 	/* to get TX stats, we need to do some summing calculations */
112 	memset(port_tx, 0, sizeof(port_tx));
113 	memset(port_tx_drop, 0, sizeof(port_tx_drop));
114 	memset(node_tx, 0, sizeof(node_tx));
115 	memset(node_tx_drop, 0, sizeof(node_tx_drop));
116 
117 	for (i = 0; i < num_nodes; i++) {
118 		const struct tx_stats *tx = &info->tx_stats[i];
119 
120 		for (j = 0; j < info->num_ports; j++) {
121 			const uint64_t tx_val = tx->tx[info->id[j]];
122 			const uint64_t drop_val = tx->tx_drop[info->id[j]];
123 
124 			port_tx[j] += tx_val;
125 			port_tx_drop[j] += drop_val;
126 			node_tx[i] += tx_val;
127 			node_tx_drop[i] += drop_val;
128 		}
129 	}
130 
131 	/* Clear screen and move to top left */
132 	printf("%s%s", clr, topLeft);
133 
134 	printf("PORTS\n");
135 	printf("-----\n");
136 	for (i = 0; i < info->num_ports; i++)
137 		printf("Port %u: '%s'\t", (unsigned int)info->id[i],
138 				get_printable_mac_addr(info->id[i]));
139 	printf("\n\n");
140 	for (i = 0; i < info->num_ports; i++) {
141 		printf("Port %u - rx: %9"PRIu64"\t"
142 				"tx: %9"PRIu64"\n",
143 				(unsigned int)info->id[i], info->rx_stats.rx[i],
144 				port_tx[i]);
145 	}
146 
147 	printf("\nSERVER\n");
148 	printf("-----\n");
149 	printf("distributed: %9"PRIu64", drop: %9"PRIu64"\n",
150 			flow_dist_stats.distributed, flow_dist_stats.drop);
151 
152 	printf("\nNODES\n");
153 	printf("-------\n");
154 	for (i = 0; i < num_nodes; i++) {
155 		const unsigned long long rx = nodes[i].stats.rx;
156 		const unsigned long long rx_drop = nodes[i].stats.rx_drop;
157 		const struct filter_stats *filter = &info->filter_stats[i];
158 
159 		printf("Node %2u - rx: %9llu, rx_drop: %9llu\n"
160 				"            tx: %9"PRIu64", tx_drop: %9"PRIu64"\n"
161 				"            filter_passed: %9"PRIu64", "
162 				"filter_drop: %9"PRIu64"\n",
163 				i, rx, rx_drop, node_tx[i], node_tx_drop[i],
164 				filter->passed, filter->drop);
165 	}
166 
167 	printf("\n");
168 }
169 /* >8 End of displaying the recorded statistics. */
170 
171 /*
172  * The function called from each non-main lcore used by the process.
173  * The test_and_set function is used to randomly pick a single lcore on which
174  * the code to display the statistics will run. Otherwise, the code just
175  * repeatedly sleeps.
176  */
177 static int
178 sleep_lcore(__rte_unused void *dummy)
179 {
180 	/* Used to pick a display thread - static, so zero-initialised */
181 	static rte_atomic32_t display_stats;
182 
183 	/* Only one core should display stats */
184 	if (rte_atomic32_test_and_set(&display_stats)) {
185 		const unsigned int sleeptime = 1;
186 
187 		printf("Core %u displaying statistics\n", rte_lcore_id());
188 
189 		/* Longer initial pause so above printf is seen */
190 		sleep(sleeptime * 3);
191 
192 		/* Loop forever: sleep always returns 0 or <= param */
193 		while (sleep(sleeptime) <= sleeptime)
194 			do_stats_display();
195 	}
196 	return 0;
197 }
198 
199 /*
200  * Function to set all the node statistic values to zero.
201  * Called at program startup.
202  */
203 static void
204 clear_stats(void)
205 {
206 	unsigned int i;
207 
208 	for (i = 0; i < num_nodes; i++)
209 		nodes[i].stats.rx = nodes[i].stats.rx_drop = 0;
210 }
211 
212 /*
213  * send a burst of traffic to a node, assuming there are packets
214  * available to be sent to this node
215  */
216 
217 /* Flush rx queue. 8< */
218 static void
219 flush_rx_queue(uint16_t node)
220 {
221 	uint16_t j;
222 	struct node *cl;
223 
224 	if (cl_rx_buf[node].count == 0)
225 		return;
226 
227 	cl = &nodes[node];
228 	if (rte_ring_enqueue_bulk(cl->rx_q, (void **)cl_rx_buf[node].buffer,
229 			cl_rx_buf[node].count, NULL) != cl_rx_buf[node].count){
230 		for (j = 0; j < cl_rx_buf[node].count; j++)
231 			rte_pktmbuf_free(cl_rx_buf[node].buffer[j]);
232 		cl->stats.rx_drop += cl_rx_buf[node].count;
233 	} else
234 		cl->stats.rx += cl_rx_buf[node].count;
235 
236 	cl_rx_buf[node].count = 0;
237 }
238 /* >8 End of sending a burst of traffic to a node. */
239 
240 /*
241  * marks a packet down to be sent to a particular node process
242  */
243 static inline void
244 enqueue_rx_packet(uint8_t node, struct rte_mbuf *buf)
245 {
246 	cl_rx_buf[node].buffer[cl_rx_buf[node].count++] = buf;
247 }
248 
249 /*
250  * This function takes a group of packets and routes them
251  * individually to the node process. Very simply round-robins the packets
252  * without checking any of the packet contents. 8<
253  */
254 
255 /* Processing packets. 8< */
256 static void
257 process_packets(uint32_t port_num __rte_unused, struct rte_mbuf *pkts[],
258 		uint16_t rx_count, unsigned int socket_id)
259 {
260 	uint16_t i;
261 	uint8_t node;
262 	efd_value_t data[RTE_EFD_BURST_MAX];
263 	const void *key_ptrs[RTE_EFD_BURST_MAX];
264 
265 	struct rte_ipv4_hdr *ipv4_hdr;
266 	uint32_t ipv4_dst_ip[RTE_EFD_BURST_MAX];
267 
268 	for (i = 0; i < rx_count; i++) {
269 		/* Handle IPv4 header.*/
270 		ipv4_hdr = rte_pktmbuf_mtod_offset(pkts[i],
271 			struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr));
272 		ipv4_dst_ip[i] = ipv4_hdr->dst_addr;
273 		key_ptrs[i] = (void *)&ipv4_dst_ip[i];
274 	}
275 
276 	rte_efd_lookup_bulk(efd_table, socket_id, rx_count,
277 				(const void **) key_ptrs, data);
278 	for (i = 0; i < rx_count; i++) {
279 		node = (uint8_t) ((uintptr_t)data[i]);
280 
281 		if (node >= num_nodes) {
282 			/*
283 			 * Node is out of range, which means that
284 			 * flow has not been inserted
285 			 */
286 			flow_dist_stats.drop++;
287 			rte_pktmbuf_free(pkts[i]);
288 		} else {
289 			flow_dist_stats.distributed++;
290 			enqueue_rx_packet(node, pkts[i]);
291 		}
292 	}
293 
294 	for (i = 0; i < num_nodes; i++)
295 		flush_rx_queue(i);
296 }
297 /* >8 End of process_packets. */
298 
299 /*
300  * Function called by the main lcore of the DPDK process.
301  */
302 static void
303 do_packet_forwarding(void)
304 {
305 	unsigned int port_num = 0; /* indexes the port[] array */
306 	unsigned int socket_id = rte_socket_id();
307 
308 	for (;;) {
309 		struct rte_mbuf *buf[PACKET_READ_SIZE];
310 		uint16_t rx_count;
311 
312 		/* read a port */
313 		rx_count = rte_eth_rx_burst(info->id[port_num], 0,
314 				buf, PACKET_READ_SIZE);
315 		info->rx_stats.rx[port_num] += rx_count;
316 
317 		/* Now process the NIC packets read */
318 		if (likely(rx_count > 0))
319 			process_packets(port_num, buf, rx_count, socket_id);
320 
321 		/* move to next port */
322 		if (++port_num == info->num_ports)
323 			port_num = 0;
324 	}
325 }
326 
327 int
328 main(int argc, char *argv[])
329 {
330 	/* initialise the system */
331 	if (init(argc, argv) < 0)
332 		return -1;
333 	RTE_LOG(INFO, APP, "Finished Process Init.\n");
334 
335 	cl_rx_buf = calloc(num_nodes, sizeof(cl_rx_buf[0]));
336 
337 	/* clear statistics */
338 	clear_stats();
339 
340 	/* put all other cores to sleep except main */
341 	rte_eal_mp_remote_launch(sleep_lcore, NULL, SKIP_MAIN);
342 
343 	do_packet_forwarding();
344 
345 	/* clean up the EAL */
346 	rte_eal_cleanup();
347 
348 	return 0;
349 }
350