xref: /dpdk/examples/ip_reassembly/main.c (revision ff4e52ef)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <signal.h>
16 #include <sys/param.h>
17 
18 #include <rte_common.h>
19 #include <rte_byteorder.h>
20 #include <rte_log.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_eal.h>
24 #include <rte_launch.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_malloc.h>
38 #include <rte_ip.h>
39 #include <rte_tcp.h>
40 #include <rte_udp.h>
41 #include <rte_string_fns.h>
42 #include <rte_lpm.h>
43 #include <rte_lpm6.h>
44 
45 #include <rte_ip_frag.h>
46 
47 #define MAX_PKT_BURST 32
48 
49 
50 #define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1
51 
52 #define MAX_JUMBO_PKT_LEN  9600
53 
54 #define	BUF_SIZE	RTE_MBUF_DEFAULT_DATAROOM
55 #define	MBUF_DATA_SIZE	RTE_MBUF_DEFAULT_BUF_SIZE
56 
57 #define NB_MBUF 8192
58 #define MEMPOOL_CACHE_SIZE 256
59 
60 /* allow max jumbo frame 9.5 KB */
61 #define JUMBO_FRAME_MAX_SIZE	0x2600
62 
63 #define	MAX_FLOW_NUM	UINT16_MAX
64 #define	MIN_FLOW_NUM	1
65 #define	DEF_FLOW_NUM	0x1000
66 
67 /* TTL numbers are in ms. */
68 #define	MAX_FLOW_TTL	(3600 * MS_PER_S)
69 #define	MIN_FLOW_TTL	1
70 #define	DEF_FLOW_TTL	MS_PER_S
71 
72 #define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG
73 
74 /* Should be power of two. */
75 #define	IP_FRAG_TBL_BUCKET_ENTRIES	16
76 
77 static uint32_t max_flow_num = DEF_FLOW_NUM;
78 static uint32_t max_flow_ttl = DEF_FLOW_TTL;
79 
80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
81 
82 #define NB_SOCKETS 8
83 
84 /* Configure how many packets ahead to prefetch, when reading packets */
85 #define PREFETCH_OFFSET	3
86 
87 /*
88  * Configurable number of RX/TX ring descriptors
89  */
90 #define RTE_TEST_RX_DESC_DEFAULT 1024
91 #define RTE_TEST_TX_DESC_DEFAULT 1024
92 
93 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
94 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
95 
96 /* ethernet addresses of ports */
97 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
98 
99 #ifndef IPv4_BYTES
100 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
101 #define IPv4_BYTES(addr) \
102 		(uint8_t) (((addr) >> 24) & 0xFF),\
103 		(uint8_t) (((addr) >> 16) & 0xFF),\
104 		(uint8_t) (((addr) >> 8) & 0xFF),\
105 		(uint8_t) ((addr) & 0xFF)
106 #endif
107 
108 #ifndef IPv6_BYTES
109 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
110                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
111 #define IPv6_BYTES(addr) \
112 	addr[0],  addr[1], addr[2],  addr[3], \
113 	addr[4],  addr[5], addr[6],  addr[7], \
114 	addr[8],  addr[9], addr[10], addr[11],\
115 	addr[12], addr[13],addr[14], addr[15]
116 #endif
117 
118 #define IPV6_ADDR_LEN 16
119 
120 /* mask of enabled ports */
121 static uint32_t enabled_port_mask = 0;
122 
123 static int rx_queue_per_lcore = 1;
124 
125 struct mbuf_table {
126 	uint32_t len;
127 	uint32_t head;
128 	uint32_t tail;
129 	struct rte_mbuf *m_table[0];
130 };
131 
132 struct rx_queue {
133 	struct rte_ip_frag_tbl *frag_tbl;
134 	struct rte_mempool *pool;
135 	struct rte_lpm *lpm;
136 	struct rte_lpm6 *lpm6;
137 	uint16_t portid;
138 };
139 
140 struct tx_lcore_stat {
141 	uint64_t call;
142 	uint64_t drop;
143 	uint64_t queue;
144 	uint64_t send;
145 };
146 
147 #define MAX_RX_QUEUE_PER_LCORE 16
148 #define MAX_TX_QUEUE_PER_PORT 16
149 #define MAX_RX_QUEUE_PER_PORT 128
150 
151 struct lcore_queue_conf {
152 	uint16_t n_rx_queue;
153 	struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
154 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
155 	struct rte_ip_frag_death_row death_row;
156 	struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS];
157 	struct tx_lcore_stat tx_stat;
158 } __rte_cache_aligned;
159 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
160 
161 static struct rte_eth_conf port_conf = {
162 	.rxmode = {
163 		.mq_mode        = ETH_MQ_RX_RSS,
164 		.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
165 		.split_hdr_size = 0,
166 		.offloads = (DEV_RX_OFFLOAD_CHECKSUM |
167 			     DEV_RX_OFFLOAD_JUMBO_FRAME),
168 	},
169 	.rx_adv_conf = {
170 			.rss_conf = {
171 				.rss_key = NULL,
172 				.rss_hf = ETH_RSS_IP,
173 		},
174 	},
175 	.txmode = {
176 		.mq_mode = ETH_MQ_TX_NONE,
177 		.offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
178 			     DEV_TX_OFFLOAD_MULTI_SEGS),
179 	},
180 };
181 
182 /*
183  * IPv4 forwarding table
184  */
185 struct l3fwd_ipv4_route {
186 	uint32_t ip;
187 	uint8_t  depth;
188 	uint8_t  if_out;
189 };
190 
191 /* Default l3fwd_ipv4_route_array table. 8< */
192 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
193 		{RTE_IPV4(100,10,0,0), 16, 0},
194 		{RTE_IPV4(100,20,0,0), 16, 1},
195 		{RTE_IPV4(100,30,0,0), 16, 2},
196 		{RTE_IPV4(100,40,0,0), 16, 3},
197 		{RTE_IPV4(100,50,0,0), 16, 4},
198 		{RTE_IPV4(100,60,0,0), 16, 5},
199 		{RTE_IPV4(100,70,0,0), 16, 6},
200 		{RTE_IPV4(100,80,0,0), 16, 7},
201 };
202 /* >8 End of default l3fwd_ipv4_route_array table. */
203 
204 /*
205  * IPv6 forwarding table
206  */
207 
208 struct l3fwd_ipv6_route {
209 	uint8_t ip[IPV6_ADDR_LEN];
210 	uint8_t depth;
211 	uint8_t if_out;
212 };
213 
214 /* Default l3fwd_ipv6_route_array table. 8< */
215 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
216 	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
217 	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
218 	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
219 	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
220 	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
221 	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
222 	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
223 	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
224 };
225 /* >8 End of default l3fwd_ipv6_route_array table. */
226 
227 #define LPM_MAX_RULES         1024
228 #define LPM6_MAX_RULES         1024
229 #define LPM6_NUMBER_TBL8S (1 << 16)
230 
231 struct rte_lpm6_config lpm6_config = {
232 		.max_rules = LPM6_MAX_RULES,
233 		.number_tbl8s = LPM6_NUMBER_TBL8S,
234 		.flags = 0
235 };
236 
237 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
238 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
239 
240 #ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT
241 #define TX_LCORE_STAT_UPDATE(s, f, v)   ((s)->f += (v))
242 #else
243 #define TX_LCORE_STAT_UPDATE(s, f, v)   do {} while (0)
244 #endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */
245 
246 /*
247  * If number of queued packets reached given threahold, then
248  * send burst of packets on an output interface.
249  */
250 static inline uint32_t
251 send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint16_t port)
252 {
253 	uint32_t fill, len, k, n;
254 	struct mbuf_table *txmb;
255 
256 	txmb = qconf->tx_mbufs[port];
257 	len = txmb->len;
258 
259 	if ((int32_t)(fill = txmb->head - txmb->tail) < 0)
260 		fill += len;
261 
262 	if (fill >= thresh) {
263 		n = RTE_MIN(len - txmb->tail, fill);
264 
265 		k = rte_eth_tx_burst(port, qconf->tx_queue_id[port],
266 			txmb->m_table + txmb->tail, (uint16_t)n);
267 
268 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1);
269 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k);
270 
271 		fill -= k;
272 		if ((txmb->tail += k) == len)
273 			txmb->tail = 0;
274 	}
275 
276 	return fill;
277 }
278 
279 /* Enqueue a single packet, and send burst if queue is filled */
280 static inline int
281 send_single_packet(struct rte_mbuf *m, uint16_t port)
282 {
283 	uint32_t fill, lcore_id, len;
284 	struct lcore_queue_conf *qconf;
285 	struct mbuf_table *txmb;
286 
287 	lcore_id = rte_lcore_id();
288 	qconf = &lcore_queue_conf[lcore_id];
289 
290 	txmb = qconf->tx_mbufs[port];
291 	len = txmb->len;
292 
293 	fill = send_burst(qconf, MAX_PKT_BURST, port);
294 
295 	if (fill == len - 1) {
296 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1);
297 		rte_pktmbuf_free(txmb->m_table[txmb->tail]);
298 		if (++txmb->tail == len)
299 			txmb->tail = 0;
300 	}
301 
302 	TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1);
303 	txmb->m_table[txmb->head] = m;
304 	if(++txmb->head == len)
305 		txmb->head = 0;
306 
307 	return 0;
308 }
309 
310 static inline void
311 reassemble(struct rte_mbuf *m, uint16_t portid, uint32_t queue,
312 	struct lcore_queue_conf *qconf, uint64_t tms)
313 {
314 	struct rte_ether_hdr *eth_hdr;
315 	struct rte_ip_frag_tbl *tbl;
316 	struct rte_ip_frag_death_row *dr;
317 	struct rx_queue *rxq;
318 	void *d_addr_bytes;
319 	uint32_t next_hop;
320 	uint16_t dst_port;
321 
322 	rxq = &qconf->rx_queue_list[queue];
323 
324 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
325 
326 	dst_port = portid;
327 
328 	/* if packet is IPv4 */
329 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
330 		struct rte_ipv4_hdr *ip_hdr;
331 		uint32_t ip_dst;
332 
333 		ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
334 
335 		 /* if it is a fragmented packet, then try to reassemble. */
336 		if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) {
337 			struct rte_mbuf *mo;
338 
339 			tbl = rxq->frag_tbl;
340 			dr = &qconf->death_row;
341 
342 			/* prepare mbuf: setup l2_len/l3_len. */
343 			m->l2_len = sizeof(*eth_hdr);
344 			m->l3_len = sizeof(*ip_hdr);
345 
346 			/* process this fragment. */
347 			mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr);
348 			if (mo == NULL)
349 				/* no packet to send out. */
350 				return;
351 
352 			/* we have our packet reassembled. */
353 			if (mo != m) {
354 				m = mo;
355 				eth_hdr = rte_pktmbuf_mtod(m,
356 					struct rte_ether_hdr *);
357 				ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
358 			}
359 
360 			/* update offloading flags */
361 			m->ol_flags |= (PKT_TX_IPV4 | PKT_TX_IP_CKSUM);
362 		}
363 		ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
364 
365 		/* Find destination port */
366 		if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
367 				(enabled_port_mask & 1 << next_hop) != 0) {
368 			dst_port = next_hop;
369 		}
370 
371 		eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);
372 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
373 		/* if packet is IPv6 */
374 		struct ipv6_extension_fragment *frag_hdr;
375 		struct rte_ipv6_hdr *ip_hdr;
376 
377 		ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
378 
379 		frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr);
380 
381 		if (frag_hdr != NULL) {
382 			struct rte_mbuf *mo;
383 
384 			tbl = rxq->frag_tbl;
385 			dr  = &qconf->death_row;
386 
387 			/* prepare mbuf: setup l2_len/l3_len. */
388 			m->l2_len = sizeof(*eth_hdr);
389 			m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr);
390 
391 			mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr);
392 			if (mo == NULL)
393 				return;
394 
395 			if (mo != m) {
396 				m = mo;
397 				eth_hdr = rte_pktmbuf_mtod(m,
398 							struct rte_ether_hdr *);
399 				ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
400 			}
401 		}
402 
403 		/* Find destination port */
404 		if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
405 						&next_hop) == 0 &&
406 				(enabled_port_mask & 1 << next_hop) != 0) {
407 			dst_port = next_hop;
408 		}
409 
410 		eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV6);
411 	}
412 	/* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */
413 
414 	/* 02:00:00:00:00:xx */
415 	d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
416 	*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
417 
418 	/* src addr */
419 	rte_ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->src_addr);
420 
421 	send_single_packet(m, dst_port);
422 }
423 
424 /* main processing loop */
425 static int
426 main_loop(__rte_unused void *dummy)
427 {
428 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
429 	unsigned lcore_id;
430 	uint64_t diff_tsc, cur_tsc, prev_tsc;
431 	int i, j, nb_rx;
432 	uint16_t portid;
433 	struct lcore_queue_conf *qconf;
434 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
435 
436 	prev_tsc = 0;
437 
438 	lcore_id = rte_lcore_id();
439 	qconf = &lcore_queue_conf[lcore_id];
440 
441 	if (qconf->n_rx_queue == 0) {
442 		RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id);
443 		return 0;
444 	}
445 
446 	RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id);
447 
448 	for (i = 0; i < qconf->n_rx_queue; i++) {
449 
450 		portid = qconf->rx_queue_list[i].portid;
451 		RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%u\n", lcore_id,
452 			portid);
453 	}
454 
455 	while (1) {
456 
457 		cur_tsc = rte_rdtsc();
458 
459 		/*
460 		 * TX burst queue drain
461 		 */
462 		diff_tsc = cur_tsc - prev_tsc;
463 		if (unlikely(diff_tsc > drain_tsc)) {
464 
465 			/*
466 			 * This could be optimized (use queueid instead of
467 			 * portid), but it is not called so often
468 			 */
469 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
470 				if ((enabled_port_mask & (1 << portid)) != 0)
471 					send_burst(qconf, 1, portid);
472 			}
473 
474 			prev_tsc = cur_tsc;
475 		}
476 
477 		/*
478 		 * Read packet from RX queues
479 		 */
480 		for (i = 0; i < qconf->n_rx_queue; ++i) {
481 
482 			portid = qconf->rx_queue_list[i].portid;
483 
484 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
485 				MAX_PKT_BURST);
486 
487 			/* Prefetch first packets */
488 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
489 				rte_prefetch0(rte_pktmbuf_mtod(
490 						pkts_burst[j], void *));
491 			}
492 
493 			/* Prefetch and forward already prefetched packets */
494 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
495 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
496 					j + PREFETCH_OFFSET], void *));
497 				reassemble(pkts_burst[j], portid,
498 					i, qconf, cur_tsc);
499 			}
500 
501 			/* Forward remaining prefetched packets */
502 			for (; j < nb_rx; j++) {
503 				reassemble(pkts_burst[j], portid,
504 					i, qconf, cur_tsc);
505 			}
506 
507 			rte_ip_frag_free_death_row(&qconf->death_row,
508 				PREFETCH_OFFSET);
509 		}
510 	}
511 }
512 
513 /* display usage */
514 static void
515 print_usage(const char *prgname)
516 {
517 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]"
518 		"  [--max-pkt-len PKTLEN]"
519 		"  [--maxflows=<flows>]  [--flowttl=<ttl>[(s|ms)]]\n"
520 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
521 		"  -q NQ: number of RX queues per lcore\n"
522 		"  --maxflows=<flows>: optional, maximum number of flows "
523 		"supported\n"
524 		"  --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each "
525 		"flow\n",
526 		prgname);
527 }
528 
529 static uint32_t
530 parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val)
531 {
532 	char *end;
533 	uint64_t v;
534 
535 	/* parse decimal string */
536 	errno = 0;
537 	v = strtoul(str, &end, 10);
538 	if (errno != 0 || *end != '\0')
539 		return -EINVAL;
540 
541 	if (v < min || v > max)
542 		return -EINVAL;
543 
544 	*val = (uint32_t)v;
545 	return 0;
546 }
547 
548 static int
549 parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val)
550 {
551 	char *end;
552 	uint64_t v;
553 
554 	static const char frmt_sec[] = "s";
555 	static const char frmt_msec[] = "ms";
556 
557 	/* parse decimal string */
558 	errno = 0;
559 	v = strtoul(str, &end, 10);
560 	if (errno != 0)
561 		return -EINVAL;
562 
563 	if (*end != '\0') {
564 		if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0)
565 			v *= MS_PER_S;
566 		else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0)
567 			return -EINVAL;
568 	}
569 
570 	if (v < min || v > max)
571 		return -EINVAL;
572 
573 	*val = (uint32_t)v;
574 	return 0;
575 }
576 
577 static int
578 parse_portmask(const char *portmask)
579 {
580 	char *end = NULL;
581 	unsigned long pm;
582 
583 	/* parse hexadecimal string */
584 	pm = strtoul(portmask, &end, 16);
585 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
586 		return 0;
587 
588 	return pm;
589 }
590 
591 static int
592 parse_nqueue(const char *q_arg)
593 {
594 	char *end = NULL;
595 	unsigned long n;
596 
597 	printf("%p\n", q_arg);
598 
599 	/* parse hexadecimal string */
600 	n = strtoul(q_arg, &end, 10);
601 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
602 		return -1;
603 	if (n == 0)
604 		return -1;
605 	if (n >= MAX_RX_QUEUE_PER_LCORE)
606 		return -1;
607 
608 	return n;
609 }
610 
611 /* Parse the argument given in the command line of the application */
612 static int
613 parse_args(int argc, char **argv)
614 {
615 	int opt, ret;
616 	char **argvopt;
617 	int option_index;
618 	char *prgname = argv[0];
619 	static struct option lgopts[] = {
620 		{"max-pkt-len", 1, 0, 0},
621 		{"maxflows", 1, 0, 0},
622 		{"flowttl", 1, 0, 0},
623 		{NULL, 0, 0, 0}
624 	};
625 
626 	argvopt = argv;
627 
628 	while ((opt = getopt_long(argc, argvopt, "p:q:",
629 				lgopts, &option_index)) != EOF) {
630 
631 		switch (opt) {
632 		/* portmask */
633 		case 'p':
634 			enabled_port_mask = parse_portmask(optarg);
635 			if (enabled_port_mask == 0) {
636 				printf("invalid portmask\n");
637 				print_usage(prgname);
638 				return -1;
639 			}
640 			break;
641 
642 		/* nqueue */
643 		case 'q':
644 			rx_queue_per_lcore = parse_nqueue(optarg);
645 			if (rx_queue_per_lcore < 0) {
646 				printf("invalid queue number\n");
647 				print_usage(prgname);
648 				return -1;
649 			}
650 			break;
651 
652 		/* long options */
653 		case 0:
654 			if (!strncmp(lgopts[option_index].name,
655 					"maxflows", 8)) {
656 				if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM,
657 						MAX_FLOW_NUM,
658 						&max_flow_num)) != 0) {
659 					printf("invalid value: \"%s\" for "
660 						"parameter %s\n",
661 						optarg,
662 						lgopts[option_index].name);
663 					print_usage(prgname);
664 					return ret;
665 				}
666 			}
667 
668 			if (!strncmp(lgopts[option_index].name, "flowttl", 7)) {
669 				if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL,
670 						MAX_FLOW_TTL,
671 						&max_flow_ttl)) != 0) {
672 					printf("invalid value: \"%s\" for "
673 						"parameter %s\n",
674 						optarg,
675 						lgopts[option_index].name);
676 					print_usage(prgname);
677 					return ret;
678 				}
679 			}
680 
681 			break;
682 
683 		default:
684 			print_usage(prgname);
685 			return -1;
686 		}
687 	}
688 
689 	if (optind >= 0)
690 		argv[optind-1] = prgname;
691 
692 	ret = optind-1;
693 	optind = 1; /* reset getopt lib */
694 	return ret;
695 }
696 
697 static void
698 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
699 {
700 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
701 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
702 	printf("%s%s", name, buf);
703 }
704 
705 /* Check the link status of all ports in up to 9s, and print them finally */
706 static void
707 check_all_ports_link_status(uint32_t port_mask)
708 {
709 #define CHECK_INTERVAL 100 /* 100ms */
710 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
711 	uint16_t portid;
712 	uint8_t count, all_ports_up, print_flag = 0;
713 	struct rte_eth_link link;
714 	int ret;
715 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
716 
717 	printf("\nChecking link status");
718 	fflush(stdout);
719 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
720 		all_ports_up = 1;
721 		RTE_ETH_FOREACH_DEV(portid) {
722 			if ((port_mask & (1 << portid)) == 0)
723 				continue;
724 			memset(&link, 0, sizeof(link));
725 			ret = rte_eth_link_get_nowait(portid, &link);
726 			if (ret < 0) {
727 				all_ports_up = 0;
728 				if (print_flag == 1)
729 					printf("Port %u link get failed: %s\n",
730 						portid, rte_strerror(-ret));
731 				continue;
732 			}
733 			/* print link status if flag set */
734 			if (print_flag == 1) {
735 				rte_eth_link_to_str(link_status_text,
736 					sizeof(link_status_text), &link);
737 				printf("Port %d %s\n", portid,
738 				       link_status_text);
739 				continue;
740 			}
741 			/* clear all_ports_up flag if any link down */
742 			if (link.link_status == ETH_LINK_DOWN) {
743 				all_ports_up = 0;
744 				break;
745 			}
746 		}
747 		/* after finally printing all link status, get out */
748 		if (print_flag == 1)
749 			break;
750 
751 		if (all_ports_up == 0) {
752 			printf(".");
753 			fflush(stdout);
754 			rte_delay_ms(CHECK_INTERVAL);
755 		}
756 
757 		/* set the print_flag if all ports up or timeout */
758 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
759 			print_flag = 1;
760 			printf("\ndone\n");
761 		}
762 	}
763 }
764 
765 static int
766 init_routing_table(void)
767 {
768 	struct rte_lpm *lpm;
769 	struct rte_lpm6 *lpm6;
770 	int socket, ret;
771 	unsigned i;
772 
773 	for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
774 		if (socket_lpm[socket]) {
775 			lpm = socket_lpm[socket];
776 			/* populate the LPM table */
777 			for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
778 				ret = rte_lpm_add(lpm,
779 					l3fwd_ipv4_route_array[i].ip,
780 					l3fwd_ipv4_route_array[i].depth,
781 					l3fwd_ipv4_route_array[i].if_out);
782 
783 				if (ret < 0) {
784 					RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
785 						"LPM table\n", i);
786 					return -1;
787 				}
788 
789 				RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT
790 						"/%d (port %d)\n",
791 					socket,
792 					IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
793 					l3fwd_ipv4_route_array[i].depth,
794 					l3fwd_ipv4_route_array[i].if_out);
795 			}
796 		}
797 
798 		if (socket_lpm6[socket]) {
799 			lpm6 = socket_lpm6[socket];
800 			/* populate the LPM6 table */
801 			for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
802 				ret = rte_lpm6_add(lpm6,
803 					l3fwd_ipv6_route_array[i].ip,
804 					l3fwd_ipv6_route_array[i].depth,
805 					l3fwd_ipv6_route_array[i].if_out);
806 
807 				if (ret < 0) {
808 					RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
809 						"LPM6 table\n", i);
810 					return -1;
811 				}
812 
813 				RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT
814 						"/%d (port %d)\n",
815 					socket,
816 					IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
817 					l3fwd_ipv6_route_array[i].depth,
818 					l3fwd_ipv6_route_array[i].if_out);
819 			}
820 		}
821 	}
822 	return 0;
823 }
824 
825 static int
826 setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket,
827 	uint32_t port)
828 {
829 	struct mbuf_table *mtb;
830 	uint32_t n;
831 	size_t sz;
832 
833 	n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST);
834 	sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) *  n;
835 
836 	if ((mtb = rte_zmalloc_socket(__func__, sz, RTE_CACHE_LINE_SIZE,
837 			socket)) == NULL) {
838 		RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u "
839 			"failed to allocate %zu bytes\n",
840 			__func__, lcore, port, sz);
841 		return -1;
842 	}
843 
844 	mtb->len = n;
845 	qconf->tx_mbufs[port] = mtb;
846 
847 	return 0;
848 }
849 
850 static int
851 setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue)
852 {
853 	int socket;
854 	uint32_t nb_mbuf;
855 	uint64_t frag_cycles;
856 	char buf[RTE_MEMPOOL_NAMESIZE];
857 
858 	socket = rte_lcore_to_socket_id(lcore);
859 	if (socket == SOCKET_ID_ANY)
860 		socket = 0;
861 
862 	/* Each table entry holds information about packet fragmentation. 8< */
863 	frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S *
864 		max_flow_ttl;
865 
866 	if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num,
867 			IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles,
868 			socket)) == NULL) {
869 		RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on "
870 			"lcore: %u for queue: %u failed\n",
871 			max_flow_num, lcore, queue);
872 		return -1;
873 	}
874 	/* >8 End of holding packet fragmentation. */
875 
876 	/*
877 	 * At any given moment up to <max_flow_num * (MAX_FRAG_NUM)>
878 	 * mbufs could be stored int the fragment table.
879 	 * Plus, each TX queue can hold up to <max_flow_num> packets.
880 	 */
881 
882 	/* mbufs stored int the gragment table. 8< */
883 	nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM;
884 	nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;
885 	nb_mbuf *= 2; /* ipv4 and ipv6 */
886 	nb_mbuf += nb_rxd + nb_txd;
887 
888 	nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);
889 
890 	snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);
891 
892 	rxq->pool = rte_pktmbuf_pool_create(buf, nb_mbuf, MEMPOOL_CACHE_SIZE, 0,
893 					    MBUF_DATA_SIZE, socket);
894 	if (rxq->pool == NULL) {
895 		RTE_LOG(ERR, IP_RSMBL,
896 			"rte_pktmbuf_pool_create(%s) failed", buf);
897 		return -1;
898 	}
899 	/* >8 End of mbufs stored int the fragmentation table. */
900 
901 	return 0;
902 }
903 
904 static int
905 init_mem(void)
906 {
907 	char buf[PATH_MAX];
908 	struct rte_lpm *lpm;
909 	struct rte_lpm6 *lpm6;
910 	struct rte_lpm_config lpm_config;
911 	int socket;
912 	unsigned lcore_id;
913 
914 	/* traverse through lcores and initialize structures on each socket */
915 
916 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
917 
918 		if (rte_lcore_is_enabled(lcore_id) == 0)
919 			continue;
920 
921 		socket = rte_lcore_to_socket_id(lcore_id);
922 
923 		if (socket == SOCKET_ID_ANY)
924 			socket = 0;
925 
926 		if (socket_lpm[socket] == NULL) {
927 			RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket);
928 			snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
929 
930 			lpm_config.max_rules = LPM_MAX_RULES;
931 			lpm_config.number_tbl8s = 256;
932 			lpm_config.flags = 0;
933 
934 			lpm = rte_lpm_create(buf, socket, &lpm_config);
935 			if (lpm == NULL) {
936 				RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
937 				return -1;
938 			}
939 			socket_lpm[socket] = lpm;
940 		}
941 
942 		if (socket_lpm6[socket] == NULL) {
943 			RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket);
944 			snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
945 
946 			lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
947 			if (lpm6 == NULL) {
948 				RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
949 				return -1;
950 			}
951 			socket_lpm6[socket] = lpm6;
952 		}
953 	}
954 
955 	return 0;
956 }
957 
958 static void
959 queue_dump_stat(void)
960 {
961 	uint32_t i, lcore;
962 	const struct lcore_queue_conf *qconf;
963 
964 	for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
965 		if (rte_lcore_is_enabled(lcore) == 0)
966 			continue;
967 
968 		qconf = &lcore_queue_conf[lcore];
969 		for (i = 0; i < qconf->n_rx_queue; i++) {
970 
971 			fprintf(stdout, " -- lcoreid=%u portid=%u "
972 				"frag tbl stat:\n",
973 				lcore,  qconf->rx_queue_list[i].portid);
974 			rte_ip_frag_table_statistics_dump(stdout,
975 					qconf->rx_queue_list[i].frag_tbl);
976 			fprintf(stdout, "TX bursts:\t%" PRIu64 "\n"
977 				"TX packets _queued:\t%" PRIu64 "\n"
978 				"TX packets dropped:\t%" PRIu64 "\n"
979 				"TX packets send:\t%" PRIu64 "\n",
980 				qconf->tx_stat.call,
981 				qconf->tx_stat.queue,
982 				qconf->tx_stat.drop,
983 				qconf->tx_stat.send);
984 		}
985 	}
986 }
987 
988 static void
989 signal_handler(int signum)
990 {
991 	queue_dump_stat();
992 	if (signum != SIGUSR1)
993 		rte_exit(0, "received signal: %d, exiting\n", signum);
994 }
995 
996 int
997 main(int argc, char **argv)
998 {
999 	struct lcore_queue_conf *qconf;
1000 	struct rte_eth_dev_info dev_info;
1001 	struct rte_eth_txconf *txconf;
1002 	struct rx_queue *rxq;
1003 	int ret, socket;
1004 	unsigned nb_ports;
1005 	uint16_t queueid;
1006 	unsigned lcore_id = 0, rx_lcore_id = 0;
1007 	uint32_t n_tx_queue, nb_lcores;
1008 	uint16_t portid;
1009 
1010 	/* init EAL */
1011 	ret = rte_eal_init(argc, argv);
1012 	if (ret < 0)
1013 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1014 	argc -= ret;
1015 	argv += ret;
1016 
1017 	/* parse application arguments (after the EAL ones) */
1018 	ret = parse_args(argc, argv);
1019 	if (ret < 0)
1020 		rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n");
1021 
1022 	nb_ports = rte_eth_dev_count_avail();
1023 	if (nb_ports == 0)
1024 		rte_exit(EXIT_FAILURE, "No ports found!\n");
1025 
1026 	nb_lcores = rte_lcore_count();
1027 
1028 	/* initialize structures (mempools, lpm etc.) */
1029 	if (init_mem() < 0)
1030 		rte_panic("Cannot initialize memory structures!\n");
1031 
1032 	/* check if portmask has non-existent ports */
1033 	if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
1034 		rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
1035 
1036 	/* initialize all ports */
1037 	RTE_ETH_FOREACH_DEV(portid) {
1038 		struct rte_eth_rxconf rxq_conf;
1039 		struct rte_eth_conf local_port_conf = port_conf;
1040 
1041 		/* skip ports that are not enabled */
1042 		if ((enabled_port_mask & (1 << portid)) == 0) {
1043 			printf("\nSkipping disabled port %d\n", portid);
1044 			continue;
1045 		}
1046 
1047 		qconf = &lcore_queue_conf[rx_lcore_id];
1048 
1049 		/* limit the frame size to the maximum supported by NIC */
1050 		ret = rte_eth_dev_info_get(portid, &dev_info);
1051 		if (ret != 0)
1052 			rte_exit(EXIT_FAILURE,
1053 				"Error during getting device (port %u) info: %s\n",
1054 				portid, strerror(-ret));
1055 
1056 		local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
1057 		    dev_info.max_rx_pktlen,
1058 		    local_port_conf.rxmode.max_rx_pkt_len);
1059 
1060 		/* get the lcore_id for this port */
1061 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
1062 			   qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
1063 
1064 			rx_lcore_id++;
1065 			if (rx_lcore_id >= RTE_MAX_LCORE)
1066 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
1067 
1068 			qconf = &lcore_queue_conf[rx_lcore_id];
1069 		}
1070 
1071 		socket = rte_lcore_to_socket_id(portid);
1072 		if (socket == SOCKET_ID_ANY)
1073 			socket = 0;
1074 
1075 		queueid = qconf->n_rx_queue;
1076 		rxq = &qconf->rx_queue_list[queueid];
1077 		rxq->portid = portid;
1078 		rxq->lpm = socket_lpm[socket];
1079 		rxq->lpm6 = socket_lpm6[socket];
1080 
1081 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
1082 						       &nb_txd);
1083 		if (ret < 0)
1084 			rte_exit(EXIT_FAILURE,
1085 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
1086 				 ret, portid);
1087 
1088 		if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0)
1089 			rte_exit(EXIT_FAILURE, "Failed to set up queue table\n");
1090 		qconf->n_rx_queue++;
1091 
1092 		/* init port */
1093 		printf("Initializing port %d ... ", portid );
1094 		fflush(stdout);
1095 
1096 		n_tx_queue = nb_lcores;
1097 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1098 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1099 		if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
1100 			local_port_conf.txmode.offloads |=
1101 				DEV_TX_OFFLOAD_MBUF_FAST_FREE;
1102 
1103 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1104 			dev_info.flow_type_rss_offloads;
1105 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1106 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
1107 			printf("Port %u modified RSS hash function based on hardware support,"
1108 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
1109 				portid,
1110 				port_conf.rx_adv_conf.rss_conf.rss_hf,
1111 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1112 		}
1113 
1114 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
1115 					    &local_port_conf);
1116 		if (ret < 0) {
1117 			printf("\n");
1118 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
1119 				"err=%d, port=%d\n",
1120 				ret, portid);
1121 		}
1122 
1123 		/* init one RX queue */
1124 		rxq_conf = dev_info.default_rxconf;
1125 		rxq_conf.offloads = local_port_conf.rxmode.offloads;
1126 		ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
1127 					     socket, &rxq_conf,
1128 					     rxq->pool);
1129 		if (ret < 0) {
1130 			printf("\n");
1131 			rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
1132 				"err=%d, port=%d\n",
1133 				ret, portid);
1134 		}
1135 
1136 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1137 		if (ret < 0) {
1138 			printf("\n");
1139 			rte_exit(EXIT_FAILURE,
1140 				"rte_eth_macaddr_get: err=%d, port=%d\n",
1141 				ret, portid);
1142 		}
1143 
1144 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1145 		printf("\n");
1146 
1147 		/* init one TX queue per couple (lcore,port) */
1148 		queueid = 0;
1149 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1150 			if (rte_lcore_is_enabled(lcore_id) == 0)
1151 				continue;
1152 
1153 			socket = (int) rte_lcore_to_socket_id(lcore_id);
1154 
1155 			printf("txq=%u,%d,%d ", lcore_id, queueid, socket);
1156 			fflush(stdout);
1157 
1158 			txconf = &dev_info.default_txconf;
1159 			txconf->offloads = local_port_conf.txmode.offloads;
1160 
1161 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1162 					socket, txconf);
1163 			if (ret < 0)
1164 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
1165 					"port=%d\n", ret, portid);
1166 
1167 			qconf = &lcore_queue_conf[lcore_id];
1168 			qconf->tx_queue_id[portid] = queueid;
1169 			setup_port_tbl(qconf, lcore_id, socket, portid);
1170 			queueid++;
1171 		}
1172 		printf("\n");
1173 	}
1174 
1175 	printf("\n");
1176 
1177 	/* start ports */
1178 	RTE_ETH_FOREACH_DEV(portid) {
1179 		if ((enabled_port_mask & (1 << portid)) == 0) {
1180 			continue;
1181 		}
1182 		/* Start device */
1183 		ret = rte_eth_dev_start(portid);
1184 		if (ret < 0)
1185 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1186 				ret, portid);
1187 
1188 		ret = rte_eth_promiscuous_enable(portid);
1189 		if (ret != 0)
1190 			rte_exit(EXIT_FAILURE,
1191 				"rte_eth_promiscuous_enable: err=%s, port=%d\n",
1192 				rte_strerror(-ret), portid);
1193 	}
1194 
1195 	if (init_routing_table() < 0)
1196 		rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1197 
1198 	check_all_ports_link_status(enabled_port_mask);
1199 
1200 	signal(SIGUSR1, signal_handler);
1201 	signal(SIGTERM, signal_handler);
1202 	signal(SIGINT, signal_handler);
1203 
1204 	/* launch per-lcore init on every lcore */
1205 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
1206 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
1207 		if (rte_eal_wait_lcore(lcore_id) < 0)
1208 			return -1;
1209 	}
1210 
1211 	/* clean up the EAL */
1212 	rte_eal_cleanup();
1213 
1214 	return 0;
1215 }
1216