xref: /dpdk/drivers/net/iavf/iavf_ethdev.c (revision 29fd052d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15 
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_alarm.h>
20 #include <rte_atomic.h>
21 #include <rte_eal.h>
22 #include <rte_ether.h>
23 #include <ethdev_driver.h>
24 #include <ethdev_pci.h>
25 #include <rte_malloc.h>
26 #include <rte_memzone.h>
27 #include <rte_dev.h>
28 
29 #include "iavf.h"
30 #include "iavf_rxtx.h"
31 #include "iavf_generic_flow.h"
32 #include "rte_pmd_iavf.h"
33 #include "iavf_ipsec_crypto.h"
34 
35 /* devargs */
36 #define IAVF_PROTO_XTR_ARG         "proto_xtr"
37 
38 static const char * const iavf_valid_args[] = {
39 	IAVF_PROTO_XTR_ARG,
40 	NULL
41 };
42 
43 static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
44 	.name = "intel_pmd_dynfield_proto_xtr_metadata",
45 	.size = sizeof(uint32_t),
46 	.align = __alignof__(uint32_t),
47 	.flags = 0,
48 };
49 
50 struct iavf_proto_xtr_ol {
51 	const struct rte_mbuf_dynflag param;
52 	uint64_t *ol_flag;
53 	bool required;
54 };
55 
56 static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
57 	[IAVF_PROTO_XTR_VLAN] = {
58 		.param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
59 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
60 	[IAVF_PROTO_XTR_IPV4] = {
61 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
62 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
63 	[IAVF_PROTO_XTR_IPV6] = {
64 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
65 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
66 	[IAVF_PROTO_XTR_IPV6_FLOW] = {
67 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
68 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
69 	[IAVF_PROTO_XTR_TCP] = {
70 		.param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
71 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
72 	[IAVF_PROTO_XTR_IP_OFFSET] = {
73 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
74 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
75 	[IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID] = {
76 		.param = {
77 		.name = "intel_pmd_dynflag_proto_xtr_ipsec_crypto_said" },
78 		.ol_flag =
79 			&rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask },
80 };
81 
82 static int iavf_dev_configure(struct rte_eth_dev *dev);
83 static int iavf_dev_start(struct rte_eth_dev *dev);
84 static int iavf_dev_stop(struct rte_eth_dev *dev);
85 static int iavf_dev_close(struct rte_eth_dev *dev);
86 static int iavf_dev_reset(struct rte_eth_dev *dev);
87 static int iavf_dev_info_get(struct rte_eth_dev *dev,
88 			     struct rte_eth_dev_info *dev_info);
89 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
90 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
91 			     struct rte_eth_stats *stats);
92 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
93 static int iavf_dev_xstats_reset(struct rte_eth_dev *dev);
94 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
95 				 struct rte_eth_xstat *xstats, unsigned int n);
96 static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
97 				       struct rte_eth_xstat_name *xstats_names,
98 				       unsigned int limit);
99 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
100 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
101 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
102 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
103 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
104 				struct rte_ether_addr *addr,
105 				uint32_t index,
106 				uint32_t pool);
107 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
108 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
109 				   uint16_t vlan_id, int on);
110 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
111 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
112 				   struct rte_eth_rss_reta_entry64 *reta_conf,
113 				   uint16_t reta_size);
114 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
115 				  struct rte_eth_rss_reta_entry64 *reta_conf,
116 				  uint16_t reta_size);
117 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
118 				   struct rte_eth_rss_conf *rss_conf);
119 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
120 				     struct rte_eth_rss_conf *rss_conf);
121 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
122 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
123 					 struct rte_ether_addr *mac_addr);
124 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
125 					uint16_t queue_id);
126 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
127 					 uint16_t queue_id);
128 static int iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
129 				 const struct rte_flow_ops **ops);
130 static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
131 			struct rte_ether_addr *mc_addrs,
132 			uint32_t mc_addrs_num);
133 static int iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused, void *arg);
134 
135 static const struct rte_pci_id pci_id_iavf_map[] = {
136 	{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
137 	{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF) },
138 	{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF_HV) },
139 	{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_VF) },
140 	{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_A0_VF) },
141 	{ .vendor_id = 0, /* sentinel */ },
142 };
143 
144 struct rte_iavf_xstats_name_off {
145 	char name[RTE_ETH_XSTATS_NAME_SIZE];
146 	unsigned int offset;
147 };
148 
149 #define _OFF_OF(a) offsetof(struct iavf_eth_xstats, a)
150 static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
151 	{"rx_bytes", _OFF_OF(eth_stats.rx_bytes)},
152 	{"rx_unicast_packets", _OFF_OF(eth_stats.rx_unicast)},
153 	{"rx_multicast_packets", _OFF_OF(eth_stats.rx_multicast)},
154 	{"rx_broadcast_packets", _OFF_OF(eth_stats.rx_broadcast)},
155 	{"rx_dropped_packets", _OFF_OF(eth_stats.rx_discards)},
156 	{"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
157 		rx_unknown_protocol)},
158 	{"tx_bytes", _OFF_OF(eth_stats.tx_bytes)},
159 	{"tx_unicast_packets", _OFF_OF(eth_stats.tx_unicast)},
160 	{"tx_multicast_packets", _OFF_OF(eth_stats.tx_multicast)},
161 	{"tx_broadcast_packets", _OFF_OF(eth_stats.tx_broadcast)},
162 	{"tx_dropped_packets", _OFF_OF(eth_stats.tx_discards)},
163 	{"tx_error_packets", _OFF_OF(eth_stats.tx_errors)},
164 
165 	{"inline_ipsec_crypto_ipackets", _OFF_OF(ips_stats.icount)},
166 	{"inline_ipsec_crypto_ibytes", _OFF_OF(ips_stats.ibytes)},
167 	{"inline_ipsec_crypto_ierrors", _OFF_OF(ips_stats.ierrors.count)},
168 	{"inline_ipsec_crypto_ierrors_sad_lookup",
169 			_OFF_OF(ips_stats.ierrors.sad_miss)},
170 	{"inline_ipsec_crypto_ierrors_not_processed",
171 			_OFF_OF(ips_stats.ierrors.not_processed)},
172 	{"inline_ipsec_crypto_ierrors_icv_fail",
173 			_OFF_OF(ips_stats.ierrors.icv_check)},
174 	{"inline_ipsec_crypto_ierrors_length",
175 			_OFF_OF(ips_stats.ierrors.ipsec_length)},
176 	{"inline_ipsec_crypto_ierrors_misc",
177 			_OFF_OF(ips_stats.ierrors.misc)},
178 };
179 #undef _OFF_OF
180 
181 #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
182 		sizeof(rte_iavf_stats_strings[0]))
183 
184 static const struct eth_dev_ops iavf_eth_dev_ops = {
185 	.dev_configure              = iavf_dev_configure,
186 	.dev_start                  = iavf_dev_start,
187 	.dev_stop                   = iavf_dev_stop,
188 	.dev_close                  = iavf_dev_close,
189 	.dev_reset                  = iavf_dev_reset,
190 	.dev_infos_get              = iavf_dev_info_get,
191 	.dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
192 	.link_update                = iavf_dev_link_update,
193 	.stats_get                  = iavf_dev_stats_get,
194 	.stats_reset                = iavf_dev_stats_reset,
195 	.xstats_get                 = iavf_dev_xstats_get,
196 	.xstats_get_names           = iavf_dev_xstats_get_names,
197 	.xstats_reset               = iavf_dev_xstats_reset,
198 	.promiscuous_enable         = iavf_dev_promiscuous_enable,
199 	.promiscuous_disable        = iavf_dev_promiscuous_disable,
200 	.allmulticast_enable        = iavf_dev_allmulticast_enable,
201 	.allmulticast_disable       = iavf_dev_allmulticast_disable,
202 	.mac_addr_add               = iavf_dev_add_mac_addr,
203 	.mac_addr_remove            = iavf_dev_del_mac_addr,
204 	.set_mc_addr_list			= iavf_set_mc_addr_list,
205 	.vlan_filter_set            = iavf_dev_vlan_filter_set,
206 	.vlan_offload_set           = iavf_dev_vlan_offload_set,
207 	.rx_queue_start             = iavf_dev_rx_queue_start,
208 	.rx_queue_stop              = iavf_dev_rx_queue_stop,
209 	.tx_queue_start             = iavf_dev_tx_queue_start,
210 	.tx_queue_stop              = iavf_dev_tx_queue_stop,
211 	.rx_queue_setup             = iavf_dev_rx_queue_setup,
212 	.rx_queue_release           = iavf_dev_rx_queue_release,
213 	.tx_queue_setup             = iavf_dev_tx_queue_setup,
214 	.tx_queue_release           = iavf_dev_tx_queue_release,
215 	.mac_addr_set               = iavf_dev_set_default_mac_addr,
216 	.reta_update                = iavf_dev_rss_reta_update,
217 	.reta_query                 = iavf_dev_rss_reta_query,
218 	.rss_hash_update            = iavf_dev_rss_hash_update,
219 	.rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
220 	.rxq_info_get               = iavf_dev_rxq_info_get,
221 	.txq_info_get               = iavf_dev_txq_info_get,
222 	.mtu_set                    = iavf_dev_mtu_set,
223 	.rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
224 	.rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
225 	.flow_ops_get               = iavf_dev_flow_ops_get,
226 	.tx_done_cleanup	    = iavf_dev_tx_done_cleanup,
227 	.get_monitor_addr           = iavf_get_monitor_addr,
228 	.tm_ops_get                 = iavf_tm_ops_get,
229 };
230 
231 static int
232 iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused,
233 			void *arg)
234 {
235 	if (!arg)
236 		return -EINVAL;
237 
238 	*(const void **)arg = &iavf_tm_ops;
239 
240 	return 0;
241 }
242 
243 __rte_unused
244 static int
245 iavf_vfr_inprogress(struct iavf_hw *hw)
246 {
247 	int inprogress = 0;
248 
249 	if ((IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
250 		IAVF_VFGEN_RSTAT_VFR_STATE_MASK) ==
251 		VIRTCHNL_VFR_INPROGRESS)
252 		inprogress = 1;
253 
254 	if (inprogress)
255 		PMD_DRV_LOG(INFO, "Watchdog detected VFR in progress");
256 
257 	return inprogress;
258 }
259 
260 __rte_unused
261 static void
262 iavf_dev_watchdog(void *cb_arg)
263 {
264 	struct iavf_adapter *adapter = cb_arg;
265 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
266 	int vfr_inprogress = 0, rc = 0;
267 
268 	/* check if watchdog has been disabled since last call */
269 	if (!adapter->vf.watchdog_enabled)
270 		return;
271 
272 	/* If in reset then poll vfr_inprogress register for completion */
273 	if (adapter->vf.vf_reset) {
274 		vfr_inprogress = iavf_vfr_inprogress(hw);
275 
276 		if (!vfr_inprogress) {
277 			PMD_DRV_LOG(INFO, "VF \"%s\" reset has completed",
278 				adapter->vf.eth_dev->data->name);
279 			adapter->vf.vf_reset = false;
280 		}
281 	/* If not in reset then poll vfr_inprogress register for VFLR event */
282 	} else {
283 		vfr_inprogress = iavf_vfr_inprogress(hw);
284 
285 		if (vfr_inprogress) {
286 			PMD_DRV_LOG(INFO,
287 				"VF \"%s\" reset event detected by watchdog",
288 				adapter->vf.eth_dev->data->name);
289 
290 			/* enter reset state with VFLR event */
291 			adapter->vf.vf_reset = true;
292 
293 			rte_eth_dev_callback_process(adapter->vf.eth_dev,
294 				RTE_ETH_EVENT_INTR_RESET, NULL);
295 		}
296 	}
297 
298 	/* re-alarm watchdog */
299 	rc = rte_eal_alarm_set(IAVF_DEV_WATCHDOG_PERIOD,
300 			&iavf_dev_watchdog, cb_arg);
301 
302 	if (rc)
303 		PMD_DRV_LOG(ERR, "Failed \"%s\" to reset device watchdog alarm",
304 			adapter->vf.eth_dev->data->name);
305 }
306 
307 static void
308 iavf_dev_watchdog_enable(struct iavf_adapter *adapter __rte_unused)
309 {
310 #if (IAVF_DEV_WATCHDOG_PERIOD > 0)
311 	PMD_DRV_LOG(INFO, "Enabling device watchdog");
312 	adapter->vf.watchdog_enabled = true;
313 	if (rte_eal_alarm_set(IAVF_DEV_WATCHDOG_PERIOD,
314 			&iavf_dev_watchdog, (void *)adapter))
315 		PMD_DRV_LOG(ERR, "Failed to enabled device watchdog");
316 #endif
317 }
318 
319 static void
320 iavf_dev_watchdog_disable(struct iavf_adapter *adapter __rte_unused)
321 {
322 #if (IAVF_DEV_WATCHDOG_PERIOD > 0)
323 	PMD_DRV_LOG(INFO, "Disabling device watchdog");
324 	adapter->vf.watchdog_enabled = false;
325 #endif
326 }
327 
328 static int
329 iavf_set_mc_addr_list(struct rte_eth_dev *dev,
330 			struct rte_ether_addr *mc_addrs,
331 			uint32_t mc_addrs_num)
332 {
333 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
334 	struct iavf_adapter *adapter =
335 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
336 	int err, ret;
337 
338 	if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
339 		PMD_DRV_LOG(ERR,
340 			    "can't add more than a limited number (%u) of addresses.",
341 			    (uint32_t)IAVF_NUM_MACADDR_MAX);
342 		return -EINVAL;
343 	}
344 
345 	/* flush previous addresses */
346 	err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
347 					false);
348 	if (err)
349 		return err;
350 
351 	/* add new ones */
352 	err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
353 
354 	if (err) {
355 		/* if adding mac address list fails, should add the previous
356 		 * addresses back.
357 		 */
358 		ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
359 						vf->mc_addrs_num, true);
360 		if (ret)
361 			return ret;
362 	} else {
363 		vf->mc_addrs_num = mc_addrs_num;
364 		memcpy(vf->mc_addrs,
365 		       mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
366 	}
367 
368 	return err;
369 }
370 
371 static void
372 iavf_config_rss_hf(struct iavf_adapter *adapter, uint64_t rss_hf)
373 {
374 	static const uint64_t map_hena_rss[] = {
375 		/* IPv4 */
376 		[IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
377 				RTE_ETH_RSS_NONFRAG_IPV4_UDP,
378 		[IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
379 				RTE_ETH_RSS_NONFRAG_IPV4_UDP,
380 		[IAVF_FILTER_PCTYPE_NONF_IPV4_UDP] =
381 				RTE_ETH_RSS_NONFRAG_IPV4_UDP,
382 		[IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
383 				RTE_ETH_RSS_NONFRAG_IPV4_TCP,
384 		[IAVF_FILTER_PCTYPE_NONF_IPV4_TCP] =
385 				RTE_ETH_RSS_NONFRAG_IPV4_TCP,
386 		[IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP] =
387 				RTE_ETH_RSS_NONFRAG_IPV4_SCTP,
388 		[IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER] =
389 				RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
390 		[IAVF_FILTER_PCTYPE_FRAG_IPV4] = RTE_ETH_RSS_FRAG_IPV4,
391 
392 		/* IPv6 */
393 		[IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
394 				RTE_ETH_RSS_NONFRAG_IPV6_UDP,
395 		[IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
396 				RTE_ETH_RSS_NONFRAG_IPV6_UDP,
397 		[IAVF_FILTER_PCTYPE_NONF_IPV6_UDP] =
398 				RTE_ETH_RSS_NONFRAG_IPV6_UDP,
399 		[IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
400 				RTE_ETH_RSS_NONFRAG_IPV6_TCP,
401 		[IAVF_FILTER_PCTYPE_NONF_IPV6_TCP] =
402 				RTE_ETH_RSS_NONFRAG_IPV6_TCP,
403 		[IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP] =
404 				RTE_ETH_RSS_NONFRAG_IPV6_SCTP,
405 		[IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER] =
406 				RTE_ETH_RSS_NONFRAG_IPV6_OTHER,
407 		[IAVF_FILTER_PCTYPE_FRAG_IPV6] = RTE_ETH_RSS_FRAG_IPV6,
408 
409 		/* L2 Payload */
410 		[IAVF_FILTER_PCTYPE_L2_PAYLOAD] = RTE_ETH_RSS_L2_PAYLOAD
411 	};
412 
413 	const uint64_t ipv4_rss = RTE_ETH_RSS_NONFRAG_IPV4_UDP |
414 				  RTE_ETH_RSS_NONFRAG_IPV4_TCP |
415 				  RTE_ETH_RSS_NONFRAG_IPV4_SCTP |
416 				  RTE_ETH_RSS_NONFRAG_IPV4_OTHER |
417 				  RTE_ETH_RSS_FRAG_IPV4;
418 
419 	const uint64_t ipv6_rss = RTE_ETH_RSS_NONFRAG_IPV6_UDP |
420 				  RTE_ETH_RSS_NONFRAG_IPV6_TCP |
421 				  RTE_ETH_RSS_NONFRAG_IPV6_SCTP |
422 				  RTE_ETH_RSS_NONFRAG_IPV6_OTHER |
423 				  RTE_ETH_RSS_FRAG_IPV6;
424 
425 	struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
426 	uint64_t caps = 0, hena = 0, valid_rss_hf = 0;
427 	uint32_t i;
428 	int ret;
429 
430 	ret = iavf_get_hena_caps(adapter, &caps);
431 	if (ret) {
432 		/**
433 		 * RSS offload type configuration is not a necessary feature
434 		 * for VF, so here just print a warning and return.
435 		 */
436 		PMD_DRV_LOG(WARNING,
437 			    "fail to get RSS offload type caps, ret: %d", ret);
438 		return;
439 	}
440 
441 	/**
442 	 * RTE_ETH_RSS_IPV4 and RTE_ETH_RSS_IPV6 can be considered as 2
443 	 * generalizations of all other IPv4 and IPv6 RSS types.
444 	 */
445 	if (rss_hf & RTE_ETH_RSS_IPV4)
446 		rss_hf |= ipv4_rss;
447 
448 	if (rss_hf & RTE_ETH_RSS_IPV6)
449 		rss_hf |= ipv6_rss;
450 
451 	RTE_BUILD_BUG_ON(RTE_DIM(map_hena_rss) > sizeof(uint64_t) * CHAR_BIT);
452 
453 	for (i = 0; i < RTE_DIM(map_hena_rss); i++) {
454 		uint64_t bit = BIT_ULL(i);
455 
456 		if ((caps & bit) && (map_hena_rss[i] & rss_hf)) {
457 			valid_rss_hf |= map_hena_rss[i];
458 			hena |= bit;
459 		}
460 	}
461 
462 	ret = iavf_set_hena(adapter, hena);
463 	if (ret) {
464 		/**
465 		 * RSS offload type configuration is not a necessary feature
466 		 * for VF, so here just print a warning and return.
467 		 */
468 		PMD_DRV_LOG(WARNING,
469 			    "fail to set RSS offload types, ret: %d", ret);
470 		return;
471 	}
472 
473 	if (valid_rss_hf & ipv4_rss)
474 		valid_rss_hf |= rss_hf & RTE_ETH_RSS_IPV4;
475 
476 	if (valid_rss_hf & ipv6_rss)
477 		valid_rss_hf |= rss_hf & RTE_ETH_RSS_IPV6;
478 
479 	if (rss_hf & ~valid_rss_hf)
480 		PMD_DRV_LOG(WARNING, "Unsupported rss_hf 0x%" PRIx64,
481 			    rss_hf & ~valid_rss_hf);
482 
483 	vf->rss_hf = valid_rss_hf;
484 }
485 
486 static int
487 iavf_init_rss(struct iavf_adapter *adapter)
488 {
489 	struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
490 	struct rte_eth_rss_conf *rss_conf;
491 	uint16_t i, j, nb_q;
492 	int ret;
493 
494 	rss_conf = &adapter->dev_data->dev_conf.rx_adv_conf.rss_conf;
495 	nb_q = RTE_MIN(adapter->dev_data->nb_rx_queues,
496 		       vf->max_rss_qregion);
497 
498 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
499 		PMD_DRV_LOG(DEBUG, "RSS is not supported");
500 		return -ENOTSUP;
501 	}
502 
503 	/* configure RSS key */
504 	if (!rss_conf->rss_key) {
505 		/* Calculate the default hash key */
506 		for (i = 0; i < vf->vf_res->rss_key_size; i++)
507 			vf->rss_key[i] = (uint8_t)rte_rand();
508 	} else
509 		rte_memcpy(vf->rss_key, rss_conf->rss_key,
510 			   RTE_MIN(rss_conf->rss_key_len,
511 				   vf->vf_res->rss_key_size));
512 
513 	/* init RSS LUT table */
514 	for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
515 		if (j >= nb_q)
516 			j = 0;
517 		vf->rss_lut[i] = j;
518 	}
519 	/* send virtchnl ops to configure RSS */
520 	ret = iavf_configure_rss_lut(adapter);
521 	if (ret)
522 		return ret;
523 	ret = iavf_configure_rss_key(adapter);
524 	if (ret)
525 		return ret;
526 
527 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
528 		/* Set RSS hash configuration based on rss_conf->rss_hf. */
529 		ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
530 		if (ret) {
531 			PMD_DRV_LOG(ERR, "fail to set default RSS");
532 			return ret;
533 		}
534 	} else {
535 		iavf_config_rss_hf(adapter, rss_conf->rss_hf);
536 	}
537 
538 	return 0;
539 }
540 
541 static int
542 iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
543 {
544 	struct iavf_adapter *ad =
545 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
546 	struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
547 	int ret;
548 
549 	ret = iavf_request_queues(dev, num);
550 	if (ret) {
551 		PMD_DRV_LOG(ERR, "request queues from PF failed");
552 		return ret;
553 	}
554 	PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
555 			vf->vsi_res->num_queue_pairs, num);
556 
557 	ret = iavf_dev_reset(dev);
558 	if (ret) {
559 		PMD_DRV_LOG(ERR, "vf reset failed");
560 		return ret;
561 	}
562 
563 	return 0;
564 }
565 
566 static int
567 iavf_dev_vlan_insert_set(struct rte_eth_dev *dev)
568 {
569 	struct iavf_adapter *adapter =
570 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
571 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
572 	bool enable;
573 
574 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2))
575 		return 0;
576 
577 	enable = !!(dev->data->dev_conf.txmode.offloads &
578 		    RTE_ETH_TX_OFFLOAD_VLAN_INSERT);
579 	iavf_config_vlan_insert_v2(adapter, enable);
580 
581 	return 0;
582 }
583 
584 static int
585 iavf_dev_init_vlan(struct rte_eth_dev *dev)
586 {
587 	int err;
588 
589 	err = iavf_dev_vlan_offload_set(dev,
590 					RTE_ETH_VLAN_STRIP_MASK |
591 					RTE_ETH_QINQ_STRIP_MASK |
592 					RTE_ETH_VLAN_FILTER_MASK |
593 					RTE_ETH_VLAN_EXTEND_MASK);
594 	if (err) {
595 		PMD_DRV_LOG(ERR, "Failed to update vlan offload");
596 		return err;
597 	}
598 
599 	err = iavf_dev_vlan_insert_set(dev);
600 	if (err)
601 		PMD_DRV_LOG(ERR, "Failed to update vlan insertion");
602 
603 	return err;
604 }
605 
606 static int
607 iavf_dev_configure(struct rte_eth_dev *dev)
608 {
609 	struct iavf_adapter *ad =
610 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
611 	struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
612 	uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
613 		dev->data->nb_tx_queues);
614 	int ret;
615 
616 	ad->rx_bulk_alloc_allowed = true;
617 	/* Initialize to TRUE. If any of Rx queues doesn't meet the
618 	 * vector Rx/Tx preconditions, it will be reset.
619 	 */
620 	ad->rx_vec_allowed = true;
621 	ad->tx_vec_allowed = true;
622 
623 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
624 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
625 
626 	/* Large VF setting */
627 	if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
628 		if (!(vf->vf_res->vf_cap_flags &
629 				VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
630 			PMD_DRV_LOG(ERR, "large VF is not supported");
631 			return -1;
632 		}
633 
634 		if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
635 			PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
636 				IAVF_MAX_NUM_QUEUES_LV);
637 			return -1;
638 		}
639 
640 		ret = iavf_queues_req_reset(dev, num_queue_pairs);
641 		if (ret)
642 			return ret;
643 
644 		ret = iavf_get_max_rss_queue_region(ad);
645 		if (ret) {
646 			PMD_INIT_LOG(ERR, "get max rss queue region failed");
647 			return ret;
648 		}
649 
650 		vf->lv_enabled = true;
651 	} else {
652 		/* Check if large VF is already enabled. If so, disable and
653 		 * release redundant queue resource.
654 		 * Or check if enough queue pairs. If not, request them from PF.
655 		 */
656 		if (vf->lv_enabled ||
657 		    num_queue_pairs > vf->vsi_res->num_queue_pairs) {
658 			ret = iavf_queues_req_reset(dev, num_queue_pairs);
659 			if (ret)
660 				return ret;
661 
662 			vf->lv_enabled = false;
663 		}
664 		/* if large VF is not required, use default rss queue region */
665 		vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
666 	}
667 
668 	ret = iavf_dev_init_vlan(dev);
669 	if (ret)
670 		PMD_DRV_LOG(ERR, "configure VLAN failed: %d", ret);
671 
672 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
673 		if (iavf_init_rss(ad) != 0) {
674 			PMD_DRV_LOG(ERR, "configure rss failed");
675 			return -1;
676 		}
677 	}
678 	return 0;
679 }
680 
681 static int
682 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
683 {
684 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
685 	struct rte_eth_dev_data *dev_data = dev->data;
686 	uint16_t buf_size, max_pkt_len;
687 	uint32_t frame_size = dev->data->mtu + IAVF_ETH_OVERHEAD;
688 
689 	buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
690 
691 	/* Calculate the maximum packet length allowed */
692 	max_pkt_len = RTE_MIN((uint32_t)
693 			rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS,
694 			frame_size);
695 
696 	/* Check if maximum packet length is set correctly.  */
697 	if (max_pkt_len <= RTE_ETHER_MIN_LEN ||
698 	    max_pkt_len > IAVF_FRAME_SIZE_MAX) {
699 		PMD_DRV_LOG(ERR, "maximum packet length must be "
700 			    "larger than %u and smaller than %u",
701 			    (uint32_t)IAVF_ETH_MAX_LEN,
702 			    (uint32_t)IAVF_FRAME_SIZE_MAX);
703 		return -EINVAL;
704 	}
705 
706 	rxq->max_pkt_len = max_pkt_len;
707 	if ((dev_data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER) ||
708 	    rxq->max_pkt_len > buf_size) {
709 		dev_data->scattered_rx = 1;
710 	}
711 	IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
712 	IAVF_WRITE_FLUSH(hw);
713 
714 	return 0;
715 }
716 
717 static int
718 iavf_init_queues(struct rte_eth_dev *dev)
719 {
720 	struct iavf_rx_queue **rxq =
721 		(struct iavf_rx_queue **)dev->data->rx_queues;
722 	int i, ret = IAVF_SUCCESS;
723 
724 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
725 		if (!rxq[i] || !rxq[i]->q_set)
726 			continue;
727 		ret = iavf_init_rxq(dev, rxq[i]);
728 		if (ret != IAVF_SUCCESS)
729 			break;
730 	}
731 	/* set rx/tx function to vector/scatter/single-segment
732 	 * according to parameters
733 	 */
734 	iavf_set_rx_function(dev);
735 	iavf_set_tx_function(dev);
736 
737 	return ret;
738 }
739 
740 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
741 				     struct rte_intr_handle *intr_handle)
742 {
743 	struct iavf_adapter *adapter =
744 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
745 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
746 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
747 	struct iavf_qv_map *qv_map;
748 	uint16_t interval, i;
749 	int vec;
750 
751 	if (rte_intr_cap_multiple(intr_handle) &&
752 	    dev->data->dev_conf.intr_conf.rxq) {
753 		if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
754 			return -1;
755 	}
756 
757 	if (rte_intr_dp_is_en(intr_handle)) {
758 		if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
759 						    dev->data->nb_rx_queues)) {
760 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
761 				    dev->data->nb_rx_queues);
762 			return -1;
763 		}
764 	}
765 
766 
767 	qv_map = rte_zmalloc("qv_map",
768 		dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
769 	if (!qv_map) {
770 		PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
771 				dev->data->nb_rx_queues);
772 		goto qv_map_alloc_err;
773 	}
774 
775 	if (!dev->data->dev_conf.intr_conf.rxq ||
776 	    !rte_intr_dp_is_en(intr_handle)) {
777 		/* Rx interrupt disabled, Map interrupt only for writeback */
778 		vf->nb_msix = 1;
779 		if (vf->vf_res->vf_cap_flags &
780 		    VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
781 			/* If WB_ON_ITR supports, enable it */
782 			vf->msix_base = IAVF_RX_VEC_START;
783 			/* Set the ITR for index zero, to 2us to make sure that
784 			 * we leave time for aggregation to occur, but don't
785 			 * increase latency dramatically.
786 			 */
787 			IAVF_WRITE_REG(hw,
788 				       IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
789 				       (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
790 				       IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
791 				       (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
792 			/* debug - check for success! the return value
793 			 * should be 2, offset is 0x2800
794 			 */
795 			/* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
796 		} else {
797 			/* If no WB_ON_ITR offload flags, need to set
798 			 * interrupt for descriptor write back.
799 			 */
800 			vf->msix_base = IAVF_MISC_VEC_ID;
801 
802 			/* set ITR to default */
803 			interval = iavf_calc_itr_interval(
804 					IAVF_QUEUE_ITR_INTERVAL_DEFAULT);
805 			IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
806 				       IAVF_VFINT_DYN_CTL01_INTENA_MASK |
807 				       (IAVF_ITR_INDEX_DEFAULT <<
808 					IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
809 				       (interval <<
810 					IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
811 		}
812 		IAVF_WRITE_FLUSH(hw);
813 		/* map all queues to the same interrupt */
814 		for (i = 0; i < dev->data->nb_rx_queues; i++) {
815 			qv_map[i].queue_id = i;
816 			qv_map[i].vector_id = vf->msix_base;
817 		}
818 		vf->qv_map = qv_map;
819 	} else {
820 		if (!rte_intr_allow_others(intr_handle)) {
821 			vf->nb_msix = 1;
822 			vf->msix_base = IAVF_MISC_VEC_ID;
823 			for (i = 0; i < dev->data->nb_rx_queues; i++) {
824 				qv_map[i].queue_id = i;
825 				qv_map[i].vector_id = vf->msix_base;
826 				rte_intr_vec_list_index_set(intr_handle,
827 							i, IAVF_MISC_VEC_ID);
828 			}
829 			vf->qv_map = qv_map;
830 			PMD_DRV_LOG(DEBUG,
831 				    "vector %u are mapping to all Rx queues",
832 				    vf->msix_base);
833 		} else {
834 			/* If Rx interrupt is required, and we can use
835 			 * multi interrupts, then the vec is from 1
836 			 */
837 			vf->nb_msix =
838 				RTE_MIN(rte_intr_nb_efd_get(intr_handle),
839 				(uint16_t)(vf->vf_res->max_vectors - 1));
840 			vf->msix_base = IAVF_RX_VEC_START;
841 			vec = IAVF_RX_VEC_START;
842 			for (i = 0; i < dev->data->nb_rx_queues; i++) {
843 				qv_map[i].queue_id = i;
844 				qv_map[i].vector_id = vec;
845 				rte_intr_vec_list_index_set(intr_handle,
846 								   i, vec++);
847 				if (vec >= vf->nb_msix + IAVF_RX_VEC_START)
848 					vec = IAVF_RX_VEC_START;
849 			}
850 			vf->qv_map = qv_map;
851 			PMD_DRV_LOG(DEBUG,
852 				    "%u vectors are mapping to %u Rx queues",
853 				    vf->nb_msix, dev->data->nb_rx_queues);
854 		}
855 	}
856 
857 	if (!vf->lv_enabled) {
858 		if (iavf_config_irq_map(adapter)) {
859 			PMD_DRV_LOG(ERR, "config interrupt mapping failed");
860 			goto config_irq_map_err;
861 		}
862 	} else {
863 		uint16_t num_qv_maps = dev->data->nb_rx_queues;
864 		uint16_t index = 0;
865 
866 		while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
867 			if (iavf_config_irq_map_lv(adapter,
868 					IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
869 				PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
870 				goto config_irq_map_err;
871 			}
872 			num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
873 			index += IAVF_IRQ_MAP_NUM_PER_BUF;
874 		}
875 
876 		if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
877 			PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
878 			goto config_irq_map_err;
879 		}
880 	}
881 	return 0;
882 
883 config_irq_map_err:
884 	rte_free(vf->qv_map);
885 	vf->qv_map = NULL;
886 
887 qv_map_alloc_err:
888 	rte_intr_vec_list_free(intr_handle);
889 
890 	return -1;
891 }
892 
893 static int
894 iavf_start_queues(struct rte_eth_dev *dev)
895 {
896 	struct iavf_rx_queue *rxq;
897 	struct iavf_tx_queue *txq;
898 	int i;
899 
900 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
901 		txq = dev->data->tx_queues[i];
902 		if (txq->tx_deferred_start)
903 			continue;
904 		if (iavf_dev_tx_queue_start(dev, i) != 0) {
905 			PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
906 			return -1;
907 		}
908 	}
909 
910 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
911 		rxq = dev->data->rx_queues[i];
912 		if (rxq->rx_deferred_start)
913 			continue;
914 		if (iavf_dev_rx_queue_start(dev, i) != 0) {
915 			PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
916 			return -1;
917 		}
918 	}
919 
920 	return 0;
921 }
922 
923 static int
924 iavf_dev_start(struct rte_eth_dev *dev)
925 {
926 	struct iavf_adapter *adapter =
927 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
928 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
929 	struct rte_intr_handle *intr_handle = dev->intr_handle;
930 	uint16_t num_queue_pairs;
931 	uint16_t index = 0;
932 
933 	PMD_INIT_FUNC_TRACE();
934 
935 	adapter->stopped = 0;
936 
937 	vf->max_pkt_len = dev->data->mtu + IAVF_ETH_OVERHEAD;
938 	vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
939 				      dev->data->nb_tx_queues);
940 	num_queue_pairs = vf->num_queue_pairs;
941 
942 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
943 		if (iavf_get_qos_cap(adapter)) {
944 			PMD_INIT_LOG(ERR, "Failed to get qos capability");
945 			return -1;
946 		}
947 
948 	if (iavf_init_queues(dev) != 0) {
949 		PMD_DRV_LOG(ERR, "failed to do Queue init");
950 		return -1;
951 	}
952 
953 	/* If needed, send configure queues msg multiple times to make the
954 	 * adminq buffer length smaller than the 4K limitation.
955 	 */
956 	while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
957 		if (iavf_configure_queues(adapter,
958 				IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
959 			PMD_DRV_LOG(ERR, "configure queues failed");
960 			goto err_queue;
961 		}
962 		num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
963 		index += IAVF_CFG_Q_NUM_PER_BUF;
964 	}
965 
966 	if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
967 		PMD_DRV_LOG(ERR, "configure queues failed");
968 		goto err_queue;
969 	}
970 
971 	if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
972 		PMD_DRV_LOG(ERR, "configure irq failed");
973 		goto err_queue;
974 	}
975 	/* re-enable intr again, because efd assign may change */
976 	if (dev->data->dev_conf.intr_conf.rxq != 0) {
977 		if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
978 			rte_intr_disable(intr_handle);
979 		rte_intr_enable(intr_handle);
980 	}
981 
982 	/* Set all mac addrs */
983 	iavf_add_del_all_mac_addr(adapter, true);
984 
985 	/* Set all multicast addresses */
986 	iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
987 				  true);
988 
989 	if (iavf_start_queues(dev) != 0) {
990 		PMD_DRV_LOG(ERR, "enable queues failed");
991 		goto err_mac;
992 	}
993 
994 	return 0;
995 
996 err_mac:
997 	iavf_add_del_all_mac_addr(adapter, false);
998 err_queue:
999 	return -1;
1000 }
1001 
1002 static int
1003 iavf_dev_stop(struct rte_eth_dev *dev)
1004 {
1005 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1006 	struct iavf_adapter *adapter =
1007 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1008 	struct rte_intr_handle *intr_handle = dev->intr_handle;
1009 
1010 	PMD_INIT_FUNC_TRACE();
1011 
1012 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) &&
1013 	    dev->data->dev_conf.intr_conf.rxq != 0)
1014 		rte_intr_disable(intr_handle);
1015 
1016 	if (adapter->stopped == 1)
1017 		return 0;
1018 
1019 	iavf_stop_queues(dev);
1020 
1021 	/* Disable the interrupt for Rx */
1022 	rte_intr_efd_disable(intr_handle);
1023 	/* Rx interrupt vector mapping free */
1024 	rte_intr_vec_list_free(intr_handle);
1025 
1026 	/* remove all mac addrs */
1027 	iavf_add_del_all_mac_addr(adapter, false);
1028 
1029 	/* remove all multicast addresses */
1030 	iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
1031 				  false);
1032 
1033 	/* free iAVF security device context all related resources */
1034 	iavf_security_ctx_destroy(adapter);
1035 
1036 	adapter->stopped = 1;
1037 	dev->data->dev_started = 0;
1038 
1039 	return 0;
1040 }
1041 
1042 static int
1043 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1044 {
1045 	struct iavf_adapter *adapter =
1046 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1047 	struct iavf_info *vf = &adapter->vf;
1048 
1049 	dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
1050 	dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
1051 	dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
1052 	dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
1053 	dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
1054 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
1055 	dev_info->hash_key_size = vf->vf_res->rss_key_size;
1056 	dev_info->reta_size = vf->vf_res->rss_lut_size;
1057 	dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
1058 	dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
1059 	dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
1060 	dev_info->rx_offload_capa =
1061 		RTE_ETH_RX_OFFLOAD_VLAN_STRIP |
1062 		RTE_ETH_RX_OFFLOAD_QINQ_STRIP |
1063 		RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
1064 		RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
1065 		RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
1066 		RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1067 		RTE_ETH_RX_OFFLOAD_SCATTER |
1068 		RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
1069 		RTE_ETH_RX_OFFLOAD_RSS_HASH;
1070 
1071 	dev_info->tx_offload_capa =
1072 		RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
1073 		RTE_ETH_TX_OFFLOAD_QINQ_INSERT |
1074 		RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1075 		RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1076 		RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
1077 		RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
1078 		RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
1079 		RTE_ETH_TX_OFFLOAD_TCP_TSO |
1080 		RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
1081 		RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
1082 		RTE_ETH_TX_OFFLOAD_IPIP_TNL_TSO |
1083 		RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO |
1084 		RTE_ETH_TX_OFFLOAD_MULTI_SEGS |
1085 		RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
1086 
1087 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_CRC)
1088 		dev_info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_KEEP_CRC;
1089 
1090 	if (iavf_ipsec_crypto_supported(adapter)) {
1091 		dev_info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_SECURITY;
1092 		dev_info->tx_offload_capa |= RTE_ETH_TX_OFFLOAD_SECURITY;
1093 	}
1094 
1095 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
1096 		.rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
1097 		.rx_drop_en = 0,
1098 		.offloads = 0,
1099 	};
1100 
1101 	dev_info->default_txconf = (struct rte_eth_txconf) {
1102 		.tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
1103 		.tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
1104 		.offloads = 0,
1105 	};
1106 
1107 	dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1108 		.nb_max = IAVF_MAX_RING_DESC,
1109 		.nb_min = IAVF_MIN_RING_DESC,
1110 		.nb_align = IAVF_ALIGN_RING_DESC,
1111 	};
1112 
1113 	dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1114 		.nb_max = IAVF_MAX_RING_DESC,
1115 		.nb_min = IAVF_MIN_RING_DESC,
1116 		.nb_align = IAVF_ALIGN_RING_DESC,
1117 	};
1118 
1119 	return 0;
1120 }
1121 
1122 static const uint32_t *
1123 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1124 {
1125 	static const uint32_t ptypes[] = {
1126 		RTE_PTYPE_L2_ETHER,
1127 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1128 		RTE_PTYPE_L4_FRAG,
1129 		RTE_PTYPE_L4_ICMP,
1130 		RTE_PTYPE_L4_NONFRAG,
1131 		RTE_PTYPE_L4_SCTP,
1132 		RTE_PTYPE_L4_TCP,
1133 		RTE_PTYPE_L4_UDP,
1134 		RTE_PTYPE_UNKNOWN
1135 	};
1136 	return ptypes;
1137 }
1138 
1139 int
1140 iavf_dev_link_update(struct rte_eth_dev *dev,
1141 		    __rte_unused int wait_to_complete)
1142 {
1143 	struct rte_eth_link new_link;
1144 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1145 
1146 	memset(&new_link, 0, sizeof(new_link));
1147 
1148 	/* Only read status info stored in VF, and the info is updated
1149 	 *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
1150 	 */
1151 	switch (vf->link_speed) {
1152 	case 10:
1153 		new_link.link_speed = RTE_ETH_SPEED_NUM_10M;
1154 		break;
1155 	case 100:
1156 		new_link.link_speed = RTE_ETH_SPEED_NUM_100M;
1157 		break;
1158 	case 1000:
1159 		new_link.link_speed = RTE_ETH_SPEED_NUM_1G;
1160 		break;
1161 	case 10000:
1162 		new_link.link_speed = RTE_ETH_SPEED_NUM_10G;
1163 		break;
1164 	case 20000:
1165 		new_link.link_speed = RTE_ETH_SPEED_NUM_20G;
1166 		break;
1167 	case 25000:
1168 		new_link.link_speed = RTE_ETH_SPEED_NUM_25G;
1169 		break;
1170 	case 40000:
1171 		new_link.link_speed = RTE_ETH_SPEED_NUM_40G;
1172 		break;
1173 	case 50000:
1174 		new_link.link_speed = RTE_ETH_SPEED_NUM_50G;
1175 		break;
1176 	case 100000:
1177 		new_link.link_speed = RTE_ETH_SPEED_NUM_100G;
1178 		break;
1179 	default:
1180 		new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
1181 		break;
1182 	}
1183 
1184 	new_link.link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1185 	new_link.link_status = vf->link_up ? RTE_ETH_LINK_UP :
1186 					     RTE_ETH_LINK_DOWN;
1187 	new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1188 				RTE_ETH_LINK_SPEED_FIXED);
1189 
1190 	return rte_eth_linkstatus_set(dev, &new_link);
1191 }
1192 
1193 static int
1194 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
1195 {
1196 	struct iavf_adapter *adapter =
1197 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1198 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1199 
1200 	return iavf_config_promisc(adapter,
1201 				  true, vf->promisc_multicast_enabled);
1202 }
1203 
1204 static int
1205 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
1206 {
1207 	struct iavf_adapter *adapter =
1208 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1209 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1210 
1211 	return iavf_config_promisc(adapter,
1212 				  false, vf->promisc_multicast_enabled);
1213 }
1214 
1215 static int
1216 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
1217 {
1218 	struct iavf_adapter *adapter =
1219 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1220 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1221 
1222 	return iavf_config_promisc(adapter,
1223 				  vf->promisc_unicast_enabled, true);
1224 }
1225 
1226 static int
1227 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
1228 {
1229 	struct iavf_adapter *adapter =
1230 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1231 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1232 
1233 	return iavf_config_promisc(adapter,
1234 				  vf->promisc_unicast_enabled, false);
1235 }
1236 
1237 static int
1238 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
1239 		     __rte_unused uint32_t index,
1240 		     __rte_unused uint32_t pool)
1241 {
1242 	struct iavf_adapter *adapter =
1243 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1244 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1245 	int err;
1246 
1247 	if (rte_is_zero_ether_addr(addr)) {
1248 		PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
1249 		return -EINVAL;
1250 	}
1251 
1252 	err = iavf_add_del_eth_addr(adapter, addr, true, VIRTCHNL_ETHER_ADDR_EXTRA);
1253 	if (err) {
1254 		PMD_DRV_LOG(ERR, "fail to add MAC address");
1255 		return -EIO;
1256 	}
1257 
1258 	vf->mac_num++;
1259 
1260 	return 0;
1261 }
1262 
1263 static void
1264 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
1265 {
1266 	struct iavf_adapter *adapter =
1267 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1268 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1269 	struct rte_ether_addr *addr;
1270 	int err;
1271 
1272 	addr = &dev->data->mac_addrs[index];
1273 
1274 	err = iavf_add_del_eth_addr(adapter, addr, false, VIRTCHNL_ETHER_ADDR_EXTRA);
1275 	if (err)
1276 		PMD_DRV_LOG(ERR, "fail to delete MAC address");
1277 
1278 	vf->mac_num--;
1279 }
1280 
1281 static int
1282 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1283 {
1284 	struct iavf_adapter *adapter =
1285 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1286 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1287 	int err;
1288 
1289 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
1290 		err = iavf_add_del_vlan_v2(adapter, vlan_id, on);
1291 		if (err)
1292 			return -EIO;
1293 		return 0;
1294 	}
1295 
1296 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1297 		return -ENOTSUP;
1298 
1299 	err = iavf_add_del_vlan(adapter, vlan_id, on);
1300 	if (err)
1301 		return -EIO;
1302 	return 0;
1303 }
1304 
1305 static void
1306 iavf_iterate_vlan_filters_v2(struct rte_eth_dev *dev, bool enable)
1307 {
1308 	struct rte_vlan_filter_conf *vfc = &dev->data->vlan_filter_conf;
1309 	struct iavf_adapter *adapter =
1310 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1311 	uint32_t i, j;
1312 	uint64_t ids;
1313 
1314 	for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1315 		if (vfc->ids[i] == 0)
1316 			continue;
1317 
1318 		ids = vfc->ids[i];
1319 		for (j = 0; ids != 0 && j < 64; j++, ids >>= 1) {
1320 			if (ids & 1)
1321 				iavf_add_del_vlan_v2(adapter,
1322 						     64 * i + j, enable);
1323 		}
1324 	}
1325 }
1326 
1327 static int
1328 iavf_dev_vlan_offload_set_v2(struct rte_eth_dev *dev, int mask)
1329 {
1330 	struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1331 	struct iavf_adapter *adapter =
1332 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1333 	bool enable;
1334 	int err;
1335 
1336 	if (mask & RTE_ETH_VLAN_FILTER_MASK) {
1337 		enable = !!(rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER);
1338 
1339 		iavf_iterate_vlan_filters_v2(dev, enable);
1340 	}
1341 
1342 	if (mask & RTE_ETH_VLAN_STRIP_MASK) {
1343 		enable = !!(rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP);
1344 
1345 		err = iavf_config_vlan_strip_v2(adapter, enable);
1346 		/* If not support, the stripping is already disabled by PF */
1347 		if (err == -ENOTSUP && !enable)
1348 			err = 0;
1349 		if (err)
1350 			return -EIO;
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 static int
1357 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1358 {
1359 	struct iavf_adapter *adapter =
1360 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1361 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1362 	struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1363 	int err;
1364 
1365 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2)
1366 		return iavf_dev_vlan_offload_set_v2(dev, mask);
1367 
1368 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1369 		return -ENOTSUP;
1370 
1371 	/* Vlan stripping setting */
1372 	if (mask & RTE_ETH_VLAN_STRIP_MASK) {
1373 		/* Enable or disable VLAN stripping */
1374 		if (dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
1375 			err = iavf_enable_vlan_strip(adapter);
1376 		else
1377 			err = iavf_disable_vlan_strip(adapter);
1378 
1379 		if (err)
1380 			return -EIO;
1381 	}
1382 	return 0;
1383 }
1384 
1385 static int
1386 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
1387 			struct rte_eth_rss_reta_entry64 *reta_conf,
1388 			uint16_t reta_size)
1389 {
1390 	struct iavf_adapter *adapter =
1391 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1392 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1393 	uint8_t *lut;
1394 	uint16_t i, idx, shift;
1395 	int ret;
1396 
1397 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1398 		return -ENOTSUP;
1399 
1400 	if (reta_size != vf->vf_res->rss_lut_size) {
1401 		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1402 			"(%d) doesn't match the number of hardware can "
1403 			"support (%d)", reta_size, vf->vf_res->rss_lut_size);
1404 		return -EINVAL;
1405 	}
1406 
1407 	lut = rte_zmalloc("rss_lut", reta_size, 0);
1408 	if (!lut) {
1409 		PMD_DRV_LOG(ERR, "No memory can be allocated");
1410 		return -ENOMEM;
1411 	}
1412 	/* store the old lut table temporarily */
1413 	rte_memcpy(lut, vf->rss_lut, reta_size);
1414 
1415 	for (i = 0; i < reta_size; i++) {
1416 		idx = i / RTE_ETH_RETA_GROUP_SIZE;
1417 		shift = i % RTE_ETH_RETA_GROUP_SIZE;
1418 		if (reta_conf[idx].mask & (1ULL << shift))
1419 			lut[i] = reta_conf[idx].reta[shift];
1420 	}
1421 
1422 	rte_memcpy(vf->rss_lut, lut, reta_size);
1423 	/* send virtchnl ops to configure RSS */
1424 	ret = iavf_configure_rss_lut(adapter);
1425 	if (ret) /* revert back */
1426 		rte_memcpy(vf->rss_lut, lut, reta_size);
1427 	rte_free(lut);
1428 
1429 	return ret;
1430 }
1431 
1432 static int
1433 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
1434 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1435 		       uint16_t reta_size)
1436 {
1437 	struct iavf_adapter *adapter =
1438 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1439 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1440 	uint16_t i, idx, shift;
1441 
1442 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1443 		return -ENOTSUP;
1444 
1445 	if (reta_size != vf->vf_res->rss_lut_size) {
1446 		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1447 			"(%d) doesn't match the number of hardware can "
1448 			"support (%d)", reta_size, vf->vf_res->rss_lut_size);
1449 		return -EINVAL;
1450 	}
1451 
1452 	for (i = 0; i < reta_size; i++) {
1453 		idx = i / RTE_ETH_RETA_GROUP_SIZE;
1454 		shift = i % RTE_ETH_RETA_GROUP_SIZE;
1455 		if (reta_conf[idx].mask & (1ULL << shift))
1456 			reta_conf[idx].reta[shift] = vf->rss_lut[i];
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 static int
1463 iavf_set_rss_key(struct iavf_adapter *adapter, uint8_t *key, uint8_t key_len)
1464 {
1465 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1466 
1467 	/* HENA setting, it is enabled by default, no change */
1468 	if (!key || key_len == 0) {
1469 		PMD_DRV_LOG(DEBUG, "No key to be configured");
1470 		return 0;
1471 	} else if (key_len != vf->vf_res->rss_key_size) {
1472 		PMD_DRV_LOG(ERR, "The size of hash key configured "
1473 			"(%d) doesn't match the size of hardware can "
1474 			"support (%d)", key_len,
1475 			vf->vf_res->rss_key_size);
1476 		return -EINVAL;
1477 	}
1478 
1479 	rte_memcpy(vf->rss_key, key, key_len);
1480 
1481 	return iavf_configure_rss_key(adapter);
1482 }
1483 
1484 static int
1485 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
1486 			struct rte_eth_rss_conf *rss_conf)
1487 {
1488 	struct iavf_adapter *adapter =
1489 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1490 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1491 	int ret;
1492 
1493 	adapter->dev_data->dev_conf.rx_adv_conf.rss_conf = *rss_conf;
1494 
1495 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1496 		return -ENOTSUP;
1497 
1498 	/* Set hash key. */
1499 	ret = iavf_set_rss_key(adapter, rss_conf->rss_key,
1500 			       rss_conf->rss_key_len);
1501 	if (ret)
1502 		return ret;
1503 
1504 	if (rss_conf->rss_hf == 0) {
1505 		vf->rss_hf = 0;
1506 		ret = iavf_set_hena(adapter, 0);
1507 
1508 		/* It is a workaround, temporarily allow error to be returned
1509 		 * due to possible lack of PF handling for hena = 0.
1510 		 */
1511 		if (ret)
1512 			PMD_DRV_LOG(WARNING, "fail to clean existing RSS, lack PF support");
1513 		return 0;
1514 	}
1515 
1516 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
1517 		/* Clear existing RSS. */
1518 		ret = iavf_set_hena(adapter, 0);
1519 
1520 		/* It is a workaround, temporarily allow error to be returned
1521 		 * due to possible lack of PF handling for hena = 0.
1522 		 */
1523 		if (ret)
1524 			PMD_DRV_LOG(WARNING, "fail to clean existing RSS,"
1525 				    "lack PF support");
1526 
1527 		/* Set new RSS configuration. */
1528 		ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
1529 		if (ret) {
1530 			PMD_DRV_LOG(ERR, "fail to set new RSS");
1531 			return ret;
1532 		}
1533 	} else {
1534 		iavf_config_rss_hf(adapter, rss_conf->rss_hf);
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 static int
1541 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1542 			  struct rte_eth_rss_conf *rss_conf)
1543 {
1544 	struct iavf_adapter *adapter =
1545 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1546 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1547 
1548 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1549 		return -ENOTSUP;
1550 
1551 	rss_conf->rss_hf = vf->rss_hf;
1552 
1553 	if (!rss_conf->rss_key)
1554 		return 0;
1555 
1556 	rss_conf->rss_key_len = vf->vf_res->rss_key_size;
1557 	rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
1558 
1559 	return 0;
1560 }
1561 
1562 static int
1563 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu __rte_unused)
1564 {
1565 	/* mtu setting is forbidden if port is start */
1566 	if (dev->data->dev_started) {
1567 		PMD_DRV_LOG(ERR, "port must be stopped before configuration");
1568 		return -EBUSY;
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 static int
1575 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
1576 			     struct rte_ether_addr *mac_addr)
1577 {
1578 	struct iavf_adapter *adapter =
1579 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1580 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1581 	struct rte_ether_addr *old_addr;
1582 	int ret;
1583 
1584 	old_addr = (struct rte_ether_addr *)hw->mac.addr;
1585 
1586 	if (rte_is_same_ether_addr(old_addr, mac_addr))
1587 		return 0;
1588 
1589 	ret = iavf_add_del_eth_addr(adapter, old_addr, false, VIRTCHNL_ETHER_ADDR_PRIMARY);
1590 	if (ret)
1591 		PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
1592 			    RTE_ETHER_ADDR_PRT_FMT,
1593 				RTE_ETHER_ADDR_BYTES(old_addr));
1594 
1595 	ret = iavf_add_del_eth_addr(adapter, mac_addr, true, VIRTCHNL_ETHER_ADDR_PRIMARY);
1596 	if (ret)
1597 		PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1598 			    RTE_ETHER_ADDR_PRT_FMT,
1599 				RTE_ETHER_ADDR_BYTES(mac_addr));
1600 
1601 	if (ret)
1602 		return -EIO;
1603 
1604 	rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1605 	return 0;
1606 }
1607 
1608 static void
1609 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1610 {
1611 	if (*stat >= *offset)
1612 		*stat = *stat - *offset;
1613 	else
1614 		*stat = (uint64_t)((*stat +
1615 			((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1616 
1617 	*stat &= IAVF_48_BIT_MASK;
1618 }
1619 
1620 static void
1621 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1622 {
1623 	if (*stat >= *offset)
1624 		*stat = (uint64_t)(*stat - *offset);
1625 	else
1626 		*stat = (uint64_t)((*stat +
1627 			((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1628 }
1629 
1630 static void
1631 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1632 {
1633 	struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset.eth_stats;
1634 
1635 	iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1636 	iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1637 	iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1638 	iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1639 	iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1640 	iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1641 	iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1642 	iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1643 	iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1644 	iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1645 	iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1646 }
1647 
1648 static int
1649 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1650 {
1651 	struct iavf_adapter *adapter =
1652 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1653 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1654 	struct iavf_vsi *vsi = &vf->vsi;
1655 	struct virtchnl_eth_stats *pstats = NULL;
1656 	int ret;
1657 
1658 	ret = iavf_query_stats(adapter, &pstats);
1659 	if (ret == 0) {
1660 		uint8_t crc_stats_len = (dev->data->dev_conf.rxmode.offloads &
1661 					 RTE_ETH_RX_OFFLOAD_KEEP_CRC) ? 0 :
1662 					 RTE_ETHER_CRC_LEN;
1663 		iavf_update_stats(vsi, pstats);
1664 		stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1665 				pstats->rx_broadcast - pstats->rx_discards;
1666 		stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1667 						pstats->tx_unicast;
1668 		stats->imissed = pstats->rx_discards;
1669 		stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1670 		stats->ibytes = pstats->rx_bytes;
1671 		stats->ibytes -= stats->ipackets * crc_stats_len;
1672 		stats->obytes = pstats->tx_bytes;
1673 	} else {
1674 		PMD_DRV_LOG(ERR, "Get statistics failed");
1675 	}
1676 	return ret;
1677 }
1678 
1679 static int
1680 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1681 {
1682 	int ret;
1683 	struct iavf_adapter *adapter =
1684 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1685 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1686 	struct iavf_vsi *vsi = &vf->vsi;
1687 	struct virtchnl_eth_stats *pstats = NULL;
1688 
1689 	/* read stat values to clear hardware registers */
1690 	ret = iavf_query_stats(adapter, &pstats);
1691 	if (ret != 0)
1692 		return ret;
1693 
1694 	/* set stats offset base on current values */
1695 	vsi->eth_stats_offset.eth_stats = *pstats;
1696 
1697 	return 0;
1698 }
1699 
1700 static int
1701 iavf_dev_xstats_reset(struct rte_eth_dev *dev)
1702 {
1703 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1704 	iavf_dev_stats_reset(dev);
1705 	memset(&vf->vsi.eth_stats_offset.ips_stats, 0,
1706 			sizeof(struct iavf_ipsec_crypto_stats));
1707 	return 0;
1708 }
1709 
1710 static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1711 				      struct rte_eth_xstat_name *xstats_names,
1712 				      __rte_unused unsigned int limit)
1713 {
1714 	unsigned int i;
1715 
1716 	if (xstats_names != NULL)
1717 		for (i = 0; i < IAVF_NB_XSTATS; i++) {
1718 			snprintf(xstats_names[i].name,
1719 				sizeof(xstats_names[i].name),
1720 				"%s", rte_iavf_stats_strings[i].name);
1721 		}
1722 	return IAVF_NB_XSTATS;
1723 }
1724 
1725 static void
1726 iavf_dev_update_ipsec_xstats(struct rte_eth_dev *ethdev,
1727 		struct iavf_ipsec_crypto_stats *ips)
1728 {
1729 	uint16_t idx;
1730 	for (idx = 0; idx < ethdev->data->nb_rx_queues; idx++) {
1731 		struct iavf_rx_queue *rxq;
1732 		struct iavf_ipsec_crypto_stats *stats;
1733 		rxq = (struct iavf_rx_queue *)ethdev->data->rx_queues[idx];
1734 		stats = &rxq->stats.ipsec_crypto;
1735 		ips->icount += stats->icount;
1736 		ips->ibytes += stats->ibytes;
1737 		ips->ierrors.count += stats->ierrors.count;
1738 		ips->ierrors.sad_miss += stats->ierrors.sad_miss;
1739 		ips->ierrors.not_processed += stats->ierrors.not_processed;
1740 		ips->ierrors.icv_check += stats->ierrors.icv_check;
1741 		ips->ierrors.ipsec_length += stats->ierrors.ipsec_length;
1742 		ips->ierrors.misc += stats->ierrors.misc;
1743 	}
1744 }
1745 
1746 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
1747 				 struct rte_eth_xstat *xstats, unsigned int n)
1748 {
1749 	int ret;
1750 	unsigned int i;
1751 	struct iavf_adapter *adapter =
1752 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1753 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1754 	struct iavf_vsi *vsi = &vf->vsi;
1755 	struct virtchnl_eth_stats *pstats = NULL;
1756 	struct iavf_eth_xstats iavf_xtats = {{0}};
1757 
1758 	if (n < IAVF_NB_XSTATS)
1759 		return IAVF_NB_XSTATS;
1760 
1761 	ret = iavf_query_stats(adapter, &pstats);
1762 	if (ret != 0)
1763 		return 0;
1764 
1765 	if (!xstats)
1766 		return 0;
1767 
1768 	iavf_update_stats(vsi, pstats);
1769 	iavf_xtats.eth_stats = *pstats;
1770 
1771 	if (iavf_ipsec_crypto_supported(adapter))
1772 		iavf_dev_update_ipsec_xstats(dev, &iavf_xtats.ips_stats);
1773 
1774 	/* loop over xstats array and values from pstats */
1775 	for (i = 0; i < IAVF_NB_XSTATS; i++) {
1776 		xstats[i].id = i;
1777 		xstats[i].value = *(uint64_t *)(((char *)&iavf_xtats) +
1778 			rte_iavf_stats_strings[i].offset);
1779 	}
1780 
1781 	return IAVF_NB_XSTATS;
1782 }
1783 
1784 
1785 static int
1786 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1787 {
1788 	struct iavf_adapter *adapter =
1789 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1790 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1791 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1792 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1793 	uint16_t msix_intr;
1794 
1795 	msix_intr = rte_intr_vec_list_index_get(pci_dev->intr_handle,
1796 						       queue_id);
1797 	if (msix_intr == IAVF_MISC_VEC_ID) {
1798 		PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1799 		IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1800 			       IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1801 			       IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1802 			       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1803 	} else {
1804 		IAVF_WRITE_REG(hw,
1805 			       IAVF_VFINT_DYN_CTLN1
1806 				(msix_intr - IAVF_RX_VEC_START),
1807 			       IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1808 			       IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1809 			       IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1810 	}
1811 
1812 	IAVF_WRITE_FLUSH(hw);
1813 
1814 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1815 		rte_intr_ack(pci_dev->intr_handle);
1816 
1817 	return 0;
1818 }
1819 
1820 static int
1821 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1822 {
1823 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1824 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1825 	uint16_t msix_intr;
1826 
1827 	msix_intr = rte_intr_vec_list_index_get(pci_dev->intr_handle,
1828 						       queue_id);
1829 	if (msix_intr == IAVF_MISC_VEC_ID) {
1830 		PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1831 		return -EIO;
1832 	}
1833 
1834 	IAVF_WRITE_REG(hw,
1835 		      IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1836 		      0);
1837 
1838 	IAVF_WRITE_FLUSH(hw);
1839 	return 0;
1840 }
1841 
1842 static int
1843 iavf_check_vf_reset_done(struct iavf_hw *hw)
1844 {
1845 	int i, reset;
1846 
1847 	for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1848 		reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1849 			IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1850 		reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1851 		if (reset == VIRTCHNL_VFR_VFACTIVE ||
1852 		    reset == VIRTCHNL_VFR_COMPLETED)
1853 			break;
1854 		rte_delay_ms(20);
1855 	}
1856 
1857 	if (i >= IAVF_RESET_WAIT_CNT)
1858 		return -1;
1859 
1860 	return 0;
1861 }
1862 
1863 static int
1864 iavf_lookup_proto_xtr_type(const char *flex_name)
1865 {
1866 	static struct {
1867 		const char *name;
1868 		enum iavf_proto_xtr_type type;
1869 	} xtr_type_map[] = {
1870 		{ "vlan",      IAVF_PROTO_XTR_VLAN      },
1871 		{ "ipv4",      IAVF_PROTO_XTR_IPV4      },
1872 		{ "ipv6",      IAVF_PROTO_XTR_IPV6      },
1873 		{ "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
1874 		{ "tcp",       IAVF_PROTO_XTR_TCP       },
1875 		{ "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
1876 		{ "ipsec_crypto_said", IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID },
1877 	};
1878 	uint32_t i;
1879 
1880 	for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
1881 		if (strcmp(flex_name, xtr_type_map[i].name) == 0)
1882 			return xtr_type_map[i].type;
1883 	}
1884 
1885 	PMD_DRV_LOG(ERR, "wrong proto_xtr type, it should be: "
1886 			"vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset|ipsec_crypto_said");
1887 
1888 	return -1;
1889 }
1890 
1891 /**
1892  * Parse elem, the elem could be single number/range or '(' ')' group
1893  * 1) A single number elem, it's just a simple digit. e.g. 9
1894  * 2) A single range elem, two digits with a '-' between. e.g. 2-6
1895  * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
1896  *    Within group elem, '-' used for a range separator;
1897  *                       ',' used for a single number.
1898  */
1899 static int
1900 iavf_parse_queue_set(const char *input, int xtr_type,
1901 		     struct iavf_devargs *devargs)
1902 {
1903 	const char *str = input;
1904 	char *end = NULL;
1905 	uint32_t min, max;
1906 	uint32_t idx;
1907 
1908 	while (isblank(*str))
1909 		str++;
1910 
1911 	if (!isdigit(*str) && *str != '(')
1912 		return -1;
1913 
1914 	/* process single number or single range of number */
1915 	if (*str != '(') {
1916 		errno = 0;
1917 		idx = strtoul(str, &end, 10);
1918 		if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1919 			return -1;
1920 
1921 		while (isblank(*end))
1922 			end++;
1923 
1924 		min = idx;
1925 		max = idx;
1926 
1927 		/* process single <number>-<number> */
1928 		if (*end == '-') {
1929 			end++;
1930 			while (isblank(*end))
1931 				end++;
1932 			if (!isdigit(*end))
1933 				return -1;
1934 
1935 			errno = 0;
1936 			idx = strtoul(end, &end, 10);
1937 			if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1938 				return -1;
1939 
1940 			max = idx;
1941 			while (isblank(*end))
1942 				end++;
1943 		}
1944 
1945 		if (*end != ':')
1946 			return -1;
1947 
1948 		for (idx = RTE_MIN(min, max);
1949 		     idx <= RTE_MAX(min, max); idx++)
1950 			devargs->proto_xtr[idx] = xtr_type;
1951 
1952 		return 0;
1953 	}
1954 
1955 	/* process set within bracket */
1956 	str++;
1957 	while (isblank(*str))
1958 		str++;
1959 	if (*str == '\0')
1960 		return -1;
1961 
1962 	min = IAVF_MAX_QUEUE_NUM;
1963 	do {
1964 		/* go ahead to the first digit */
1965 		while (isblank(*str))
1966 			str++;
1967 		if (!isdigit(*str))
1968 			return -1;
1969 
1970 		/* get the digit value */
1971 		errno = 0;
1972 		idx = strtoul(str, &end, 10);
1973 		if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1974 			return -1;
1975 
1976 		/* go ahead to separator '-',',' and ')' */
1977 		while (isblank(*end))
1978 			end++;
1979 		if (*end == '-') {
1980 			if (min == IAVF_MAX_QUEUE_NUM)
1981 				min = idx;
1982 			else /* avoid continuous '-' */
1983 				return -1;
1984 		} else if (*end == ',' || *end == ')') {
1985 			max = idx;
1986 			if (min == IAVF_MAX_QUEUE_NUM)
1987 				min = idx;
1988 
1989 			for (idx = RTE_MIN(min, max);
1990 			     idx <= RTE_MAX(min, max); idx++)
1991 				devargs->proto_xtr[idx] = xtr_type;
1992 
1993 			min = IAVF_MAX_QUEUE_NUM;
1994 		} else {
1995 			return -1;
1996 		}
1997 
1998 		str = end + 1;
1999 	} while (*end != ')' && *end != '\0');
2000 
2001 	return 0;
2002 }
2003 
2004 static int
2005 iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
2006 {
2007 	const char *queue_start;
2008 	uint32_t idx;
2009 	int xtr_type;
2010 	char flex_name[32];
2011 
2012 	while (isblank(*queues))
2013 		queues++;
2014 
2015 	if (*queues != '[') {
2016 		xtr_type = iavf_lookup_proto_xtr_type(queues);
2017 		if (xtr_type < 0)
2018 			return -1;
2019 
2020 		devargs->proto_xtr_dflt = xtr_type;
2021 
2022 		return 0;
2023 	}
2024 
2025 	queues++;
2026 	do {
2027 		while (isblank(*queues))
2028 			queues++;
2029 		if (*queues == '\0')
2030 			return -1;
2031 
2032 		queue_start = queues;
2033 
2034 		/* go across a complete bracket */
2035 		if (*queue_start == '(') {
2036 			queues += strcspn(queues, ")");
2037 			if (*queues != ')')
2038 				return -1;
2039 		}
2040 
2041 		/* scan the separator ':' */
2042 		queues += strcspn(queues, ":");
2043 		if (*queues++ != ':')
2044 			return -1;
2045 		while (isblank(*queues))
2046 			queues++;
2047 
2048 		for (idx = 0; ; idx++) {
2049 			if (isblank(queues[idx]) ||
2050 			    queues[idx] == ',' ||
2051 			    queues[idx] == ']' ||
2052 			    queues[idx] == '\0')
2053 				break;
2054 
2055 			if (idx > sizeof(flex_name) - 2)
2056 				return -1;
2057 
2058 			flex_name[idx] = queues[idx];
2059 		}
2060 		flex_name[idx] = '\0';
2061 		xtr_type = iavf_lookup_proto_xtr_type(flex_name);
2062 		if (xtr_type < 0)
2063 			return -1;
2064 
2065 		queues += idx;
2066 
2067 		while (isblank(*queues) || *queues == ',' || *queues == ']')
2068 			queues++;
2069 
2070 		if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
2071 			return -1;
2072 	} while (*queues != '\0');
2073 
2074 	return 0;
2075 }
2076 
2077 static int
2078 iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
2079 			  void *extra_args)
2080 {
2081 	struct iavf_devargs *devargs = extra_args;
2082 
2083 	if (!value || !extra_args)
2084 		return -EINVAL;
2085 
2086 	if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
2087 		PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
2088 			    value);
2089 		return -1;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 static int iavf_parse_devargs(struct rte_eth_dev *dev)
2096 {
2097 	struct iavf_adapter *ad =
2098 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2099 	struct rte_devargs *devargs = dev->device->devargs;
2100 	struct rte_kvargs *kvlist;
2101 	int ret;
2102 
2103 	if (!devargs)
2104 		return 0;
2105 
2106 	kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
2107 	if (!kvlist) {
2108 		PMD_INIT_LOG(ERR, "invalid kvargs key\n");
2109 		return -EINVAL;
2110 	}
2111 
2112 	ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
2113 	memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
2114 	       sizeof(ad->devargs.proto_xtr));
2115 
2116 	ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
2117 				 &iavf_handle_proto_xtr_arg, &ad->devargs);
2118 	if (ret)
2119 		goto bail;
2120 
2121 bail:
2122 	rte_kvargs_free(kvlist);
2123 	return ret;
2124 }
2125 
2126 static void
2127 iavf_init_proto_xtr(struct rte_eth_dev *dev)
2128 {
2129 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2130 	struct iavf_adapter *ad =
2131 			IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2132 	const struct iavf_proto_xtr_ol *xtr_ol;
2133 	bool proto_xtr_enable = false;
2134 	int offset;
2135 	uint16_t i;
2136 
2137 	vf->proto_xtr = rte_zmalloc("vf proto xtr",
2138 				    vf->vsi_res->num_queue_pairs, 0);
2139 	if (unlikely(!(vf->proto_xtr))) {
2140 		PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
2141 		return;
2142 	}
2143 
2144 	for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
2145 		vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
2146 					IAVF_PROTO_XTR_NONE ?
2147 					ad->devargs.proto_xtr[i] :
2148 					ad->devargs.proto_xtr_dflt;
2149 
2150 		if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
2151 			uint8_t type = vf->proto_xtr[i];
2152 
2153 			iavf_proto_xtr_params[type].required = true;
2154 			proto_xtr_enable = true;
2155 		}
2156 	}
2157 
2158 	if (likely(!proto_xtr_enable))
2159 		return;
2160 
2161 	offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
2162 	if (unlikely(offset == -1)) {
2163 		PMD_DRV_LOG(ERR,
2164 			    "failed to extract protocol metadata, error %d",
2165 			    -rte_errno);
2166 		return;
2167 	}
2168 
2169 	PMD_DRV_LOG(DEBUG,
2170 		    "proto_xtr metadata offset in mbuf is : %d",
2171 		    offset);
2172 	rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
2173 
2174 	for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
2175 		xtr_ol = &iavf_proto_xtr_params[i];
2176 
2177 		uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
2178 
2179 		if (!xtr_ol->required)
2180 			continue;
2181 
2182 		if (!(vf->supported_rxdid & BIT(rxdid))) {
2183 			PMD_DRV_LOG(ERR,
2184 				    "rxdid[%u] is not supported in hardware",
2185 				    rxdid);
2186 			rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2187 			break;
2188 		}
2189 
2190 		offset = rte_mbuf_dynflag_register(&xtr_ol->param);
2191 		if (unlikely(offset == -1)) {
2192 			PMD_DRV_LOG(ERR,
2193 				    "failed to register proto_xtr offload '%s', error %d",
2194 				    xtr_ol->param.name, -rte_errno);
2195 
2196 			rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2197 			break;
2198 		}
2199 
2200 		PMD_DRV_LOG(DEBUG,
2201 			    "proto_xtr offload '%s' offset in mbuf is : %d",
2202 			    xtr_ol->param.name, offset);
2203 		*xtr_ol->ol_flag = 1ULL << offset;
2204 	}
2205 }
2206 
2207 static int
2208 iavf_init_vf(struct rte_eth_dev *dev)
2209 {
2210 	int err, bufsz;
2211 	struct iavf_adapter *adapter =
2212 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2213 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2214 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2215 
2216 	vf->eth_dev = dev;
2217 
2218 	err = iavf_parse_devargs(dev);
2219 	if (err) {
2220 		PMD_INIT_LOG(ERR, "Failed to parse devargs");
2221 		goto err;
2222 	}
2223 
2224 	err = iavf_set_mac_type(hw);
2225 	if (err) {
2226 		PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
2227 		goto err;
2228 	}
2229 
2230 	err = iavf_check_vf_reset_done(hw);
2231 	if (err) {
2232 		PMD_INIT_LOG(ERR, "VF is still resetting");
2233 		goto err;
2234 	}
2235 
2236 	iavf_init_adminq_parameter(hw);
2237 	err = iavf_init_adminq(hw);
2238 	if (err) {
2239 		PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
2240 		goto err;
2241 	}
2242 
2243 	vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
2244 	if (!vf->aq_resp) {
2245 		PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
2246 		goto err_aq;
2247 	}
2248 	if (iavf_check_api_version(adapter) != 0) {
2249 		PMD_INIT_LOG(ERR, "check_api version failed");
2250 		goto err_api;
2251 	}
2252 
2253 	bufsz = sizeof(struct virtchnl_vf_resource) +
2254 		(IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
2255 	vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
2256 	if (!vf->vf_res) {
2257 		PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
2258 		goto err_api;
2259 	}
2260 
2261 	if (iavf_get_vf_resource(adapter) != 0) {
2262 		PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
2263 		goto err_alloc;
2264 	}
2265 	/* Allocate memort for RSS info */
2266 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2267 		vf->rss_key = rte_zmalloc("rss_key",
2268 					  vf->vf_res->rss_key_size, 0);
2269 		if (!vf->rss_key) {
2270 			PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
2271 			goto err_rss;
2272 		}
2273 		vf->rss_lut = rte_zmalloc("rss_lut",
2274 					  vf->vf_res->rss_lut_size, 0);
2275 		if (!vf->rss_lut) {
2276 			PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
2277 			goto err_rss;
2278 		}
2279 	}
2280 
2281 	if (vf->vsi_res->num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT)
2282 		vf->lv_enabled = true;
2283 
2284 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2285 		if (iavf_get_supported_rxdid(adapter) != 0) {
2286 			PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
2287 			goto err_rss;
2288 		}
2289 	}
2290 
2291 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
2292 		if (iavf_get_vlan_offload_caps_v2(adapter) != 0) {
2293 			PMD_INIT_LOG(ERR, "failed to do get VLAN offload v2 capabilities");
2294 			goto err_rss;
2295 		}
2296 	}
2297 
2298 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS) {
2299 		bufsz = sizeof(struct virtchnl_qos_cap_list) +
2300 			IAVF_MAX_TRAFFIC_CLASS *
2301 			sizeof(struct virtchnl_qos_cap_elem);
2302 		vf->qos_cap = rte_zmalloc("qos_cap", bufsz, 0);
2303 		if (!vf->qos_cap) {
2304 			PMD_INIT_LOG(ERR, "unable to allocate qos_cap memory");
2305 			goto err_rss;
2306 		}
2307 		iavf_tm_conf_init(dev);
2308 	}
2309 
2310 	iavf_init_proto_xtr(dev);
2311 
2312 	return 0;
2313 err_rss:
2314 	rte_free(vf->rss_key);
2315 	rte_free(vf->rss_lut);
2316 err_alloc:
2317 	rte_free(vf->qos_cap);
2318 	rte_free(vf->vf_res);
2319 	vf->vsi_res = NULL;
2320 err_api:
2321 	rte_free(vf->aq_resp);
2322 err_aq:
2323 	iavf_shutdown_adminq(hw);
2324 err:
2325 	return -1;
2326 }
2327 
2328 static void
2329 iavf_uninit_vf(struct rte_eth_dev *dev)
2330 {
2331 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2332 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2333 
2334 	iavf_shutdown_adminq(hw);
2335 
2336 	rte_free(vf->vf_res);
2337 	vf->vsi_res = NULL;
2338 	vf->vf_res = NULL;
2339 
2340 	rte_free(vf->aq_resp);
2341 	vf->aq_resp = NULL;
2342 
2343 	rte_free(vf->qos_cap);
2344 	vf->qos_cap = NULL;
2345 
2346 	rte_free(vf->rss_lut);
2347 	vf->rss_lut = NULL;
2348 	rte_free(vf->rss_key);
2349 	vf->rss_key = NULL;
2350 }
2351 
2352 /* Enable default admin queue interrupt setting */
2353 static inline void
2354 iavf_enable_irq0(struct iavf_hw *hw)
2355 {
2356 	/* Enable admin queue interrupt trigger */
2357 	IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
2358 		       IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
2359 
2360 	IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2361 		       IAVF_VFINT_DYN_CTL01_INTENA_MASK |
2362 		       IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
2363 		       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2364 
2365 	IAVF_WRITE_FLUSH(hw);
2366 }
2367 
2368 static inline void
2369 iavf_disable_irq0(struct iavf_hw *hw)
2370 {
2371 	/* Disable all interrupt types */
2372 	IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
2373 	IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2374 		       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2375 	IAVF_WRITE_FLUSH(hw);
2376 }
2377 
2378 static void
2379 iavf_dev_interrupt_handler(void *param)
2380 {
2381 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2382 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2383 
2384 	iavf_disable_irq0(hw);
2385 
2386 	iavf_handle_virtchnl_msg(dev);
2387 
2388 	iavf_enable_irq0(hw);
2389 }
2390 
2391 void
2392 iavf_dev_alarm_handler(void *param)
2393 {
2394 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2395 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2396 	uint32_t icr0;
2397 
2398 	iavf_disable_irq0(hw);
2399 
2400 	/* read out interrupt causes */
2401 	icr0 = IAVF_READ_REG(hw, IAVF_VFINT_ICR01);
2402 
2403 	if (icr0 & IAVF_VFINT_ICR01_ADMINQ_MASK) {
2404 		PMD_DRV_LOG(DEBUG, "ICR01_ADMINQ is reported");
2405 		iavf_handle_virtchnl_msg(dev);
2406 	}
2407 
2408 	iavf_enable_irq0(hw);
2409 
2410 	rte_eal_alarm_set(IAVF_ALARM_INTERVAL,
2411 			  iavf_dev_alarm_handler, dev);
2412 }
2413 
2414 static int
2415 iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
2416 		      const struct rte_flow_ops **ops)
2417 {
2418 	if (!dev)
2419 		return -EINVAL;
2420 
2421 	*ops = &iavf_flow_ops;
2422 	return 0;
2423 }
2424 
2425 static void
2426 iavf_default_rss_disable(struct iavf_adapter *adapter)
2427 {
2428 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2429 	int ret = 0;
2430 
2431 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2432 		/* Set hena = 0 to ask PF to cleanup all existing RSS. */
2433 		ret = iavf_set_hena(adapter, 0);
2434 		if (ret)
2435 			/* It is a workaround, temporarily allow error to be
2436 			 * returned due to possible lack of PF handling for
2437 			 * hena = 0.
2438 			 */
2439 			PMD_INIT_LOG(WARNING, "fail to disable default RSS,"
2440 				    "lack PF support");
2441 	}
2442 }
2443 
2444 static int
2445 iavf_dev_init(struct rte_eth_dev *eth_dev)
2446 {
2447 	struct iavf_adapter *adapter =
2448 		IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2449 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
2450 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2451 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2452 	int ret = 0;
2453 
2454 	PMD_INIT_FUNC_TRACE();
2455 
2456 	/* assign ops func pointer */
2457 	eth_dev->dev_ops = &iavf_eth_dev_ops;
2458 	eth_dev->rx_queue_count = iavf_dev_rxq_count;
2459 	eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
2460 	eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
2461 	eth_dev->rx_pkt_burst = &iavf_recv_pkts;
2462 	eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
2463 	eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
2464 
2465 	/* For secondary processes, we don't initialise any further as primary
2466 	 * has already done this work. Only check if we need a different RX
2467 	 * and TX function.
2468 	 */
2469 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2470 		iavf_set_rx_function(eth_dev);
2471 		iavf_set_tx_function(eth_dev);
2472 		return 0;
2473 	}
2474 	rte_eth_copy_pci_info(eth_dev, pci_dev);
2475 
2476 	hw->vendor_id = pci_dev->id.vendor_id;
2477 	hw->device_id = pci_dev->id.device_id;
2478 	hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
2479 	hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
2480 	hw->bus.bus_id = pci_dev->addr.bus;
2481 	hw->bus.device = pci_dev->addr.devid;
2482 	hw->bus.func = pci_dev->addr.function;
2483 	hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
2484 	hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2485 	adapter->dev_data = eth_dev->data;
2486 	adapter->stopped = 1;
2487 
2488 	if (iavf_init_vf(eth_dev) != 0) {
2489 		PMD_INIT_LOG(ERR, "Init vf failed");
2490 		return -1;
2491 	}
2492 
2493 	/* set default ptype table */
2494 	iavf_set_default_ptype_table(eth_dev);
2495 
2496 	/* copy mac addr */
2497 	eth_dev->data->mac_addrs = rte_zmalloc(
2498 		"iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
2499 	if (!eth_dev->data->mac_addrs) {
2500 		PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
2501 			     " store MAC addresses",
2502 			     RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
2503 		ret = -ENOMEM;
2504 		goto init_vf_err;
2505 	}
2506 	/* If the MAC address is not configured by host,
2507 	 * generate a random one.
2508 	 */
2509 	if (!rte_is_valid_assigned_ether_addr(
2510 			(struct rte_ether_addr *)hw->mac.addr))
2511 		rte_eth_random_addr(hw->mac.addr);
2512 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
2513 			&eth_dev->data->mac_addrs[0]);
2514 
2515 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
2516 		/* register callback func to eal lib */
2517 		rte_intr_callback_register(pci_dev->intr_handle,
2518 					   iavf_dev_interrupt_handler,
2519 					   (void *)eth_dev);
2520 
2521 		/* enable uio intr after callback register */
2522 		rte_intr_enable(pci_dev->intr_handle);
2523 	} else {
2524 		rte_eal_alarm_set(IAVF_ALARM_INTERVAL,
2525 				  iavf_dev_alarm_handler, eth_dev);
2526 	}
2527 
2528 	/* configure and enable device interrupt */
2529 	iavf_enable_irq0(hw);
2530 
2531 	ret = iavf_flow_init(adapter);
2532 	if (ret) {
2533 		PMD_INIT_LOG(ERR, "Failed to initialize flow");
2534 		goto flow_init_err;
2535 	}
2536 
2537 	/** Check if the IPsec Crypto offload is supported and create
2538 	 *  security_ctx if it is.
2539 	 */
2540 	if (iavf_ipsec_crypto_supported(adapter)) {
2541 		/* Initialize security_ctx only for primary process*/
2542 		ret = iavf_security_ctx_create(adapter);
2543 		if (ret) {
2544 			PMD_INIT_LOG(ERR, "failed to create ipsec crypto security instance");
2545 			return ret;
2546 		}
2547 
2548 		ret = iavf_security_init(adapter);
2549 		if (ret) {
2550 			PMD_INIT_LOG(ERR, "failed to initialized ipsec crypto resources");
2551 			return ret;
2552 		}
2553 	}
2554 
2555 	iavf_default_rss_disable(adapter);
2556 
2557 
2558 	/* Start device watchdog */
2559 	iavf_dev_watchdog_enable(adapter);
2560 
2561 
2562 	return 0;
2563 
2564 flow_init_err:
2565 	rte_free(eth_dev->data->mac_addrs);
2566 	eth_dev->data->mac_addrs = NULL;
2567 
2568 init_vf_err:
2569 	iavf_uninit_vf(eth_dev);
2570 
2571 	return ret;
2572 }
2573 
2574 static int
2575 iavf_dev_close(struct rte_eth_dev *dev)
2576 {
2577 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2578 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2579 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
2580 	struct iavf_adapter *adapter =
2581 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2582 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2583 	int ret;
2584 
2585 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2586 		return 0;
2587 
2588 	ret = iavf_dev_stop(dev);
2589 
2590 	iavf_flow_flush(dev, NULL);
2591 	iavf_flow_uninit(adapter);
2592 
2593 	/*
2594 	 * disable promiscuous mode before reset vf
2595 	 * it is a workaround solution when work with kernel driver
2596 	 * and it is not the normal way
2597 	 */
2598 	if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
2599 		iavf_config_promisc(adapter, false, false);
2600 
2601 	iavf_shutdown_adminq(hw);
2602 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
2603 		/* disable uio intr before callback unregister */
2604 		rte_intr_disable(intr_handle);
2605 
2606 		/* unregister callback func from eal lib */
2607 		rte_intr_callback_unregister(intr_handle,
2608 					     iavf_dev_interrupt_handler, dev);
2609 	} else {
2610 		rte_eal_alarm_cancel(iavf_dev_alarm_handler, dev);
2611 	}
2612 	iavf_disable_irq0(hw);
2613 
2614 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
2615 		iavf_tm_conf_uninit(dev);
2616 
2617 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2618 		if (vf->rss_lut) {
2619 			rte_free(vf->rss_lut);
2620 			vf->rss_lut = NULL;
2621 		}
2622 		if (vf->rss_key) {
2623 			rte_free(vf->rss_key);
2624 			vf->rss_key = NULL;
2625 		}
2626 	}
2627 
2628 	rte_free(vf->vf_res);
2629 	vf->vsi_res = NULL;
2630 	vf->vf_res = NULL;
2631 
2632 	rte_free(vf->aq_resp);
2633 	vf->aq_resp = NULL;
2634 
2635 	/*
2636 	 * If the VF is reset via VFLR, the device will be knocked out of bus
2637 	 * master mode, and the driver will fail to recover from the reset. Fix
2638 	 * this by enabling bus mastering after every reset. In a non-VFLR case,
2639 	 * the bus master bit will not be disabled, and this call will have no
2640 	 * effect.
2641 	 */
2642 	if (vf->vf_reset && !rte_pci_set_bus_master(pci_dev, true))
2643 		vf->vf_reset = false;
2644 
2645 	/* disable watchdog */
2646 	iavf_dev_watchdog_disable(adapter);
2647 
2648 	return ret;
2649 }
2650 
2651 static int
2652 iavf_dev_uninit(struct rte_eth_dev *dev)
2653 {
2654 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2655 		return -EPERM;
2656 
2657 	iavf_dev_close(dev);
2658 
2659 	return 0;
2660 }
2661 
2662 /*
2663  * Reset VF device only to re-initialize resources in PMD layer
2664  */
2665 static int
2666 iavf_dev_reset(struct rte_eth_dev *dev)
2667 {
2668 	int ret;
2669 
2670 	ret = iavf_dev_uninit(dev);
2671 	if (ret)
2672 		return ret;
2673 
2674 	return iavf_dev_init(dev);
2675 }
2676 
2677 static int
2678 iavf_dcf_cap_check_handler(__rte_unused const char *key,
2679 			   const char *value, __rte_unused void *opaque)
2680 {
2681 	if (strcmp(value, "dcf"))
2682 		return -1;
2683 
2684 	return 0;
2685 }
2686 
2687 static int
2688 iavf_dcf_cap_selected(struct rte_devargs *devargs)
2689 {
2690 	struct rte_kvargs *kvlist;
2691 	const char *key = "cap";
2692 	int ret = 0;
2693 
2694 	if (devargs == NULL)
2695 		return 0;
2696 
2697 	kvlist = rte_kvargs_parse(devargs->args, NULL);
2698 	if (kvlist == NULL)
2699 		return 0;
2700 
2701 	if (!rte_kvargs_count(kvlist, key))
2702 		goto exit;
2703 
2704 	/* dcf capability selected when there's a key-value pair: cap=dcf */
2705 	if (rte_kvargs_process(kvlist, key,
2706 			       iavf_dcf_cap_check_handler, NULL) < 0)
2707 		goto exit;
2708 
2709 	ret = 1;
2710 
2711 exit:
2712 	rte_kvargs_free(kvlist);
2713 	return ret;
2714 }
2715 
2716 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2717 			     struct rte_pci_device *pci_dev)
2718 {
2719 	if (iavf_dcf_cap_selected(pci_dev->device.devargs))
2720 		return 1;
2721 
2722 	return rte_eth_dev_pci_generic_probe(pci_dev,
2723 		sizeof(struct iavf_adapter), iavf_dev_init);
2724 }
2725 
2726 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
2727 {
2728 	return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
2729 }
2730 
2731 /* Adaptive virtual function driver struct */
2732 static struct rte_pci_driver rte_iavf_pmd = {
2733 	.id_table = pci_id_iavf_map,
2734 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2735 	.probe = eth_iavf_pci_probe,
2736 	.remove = eth_iavf_pci_remove,
2737 };
2738 
2739 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
2740 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
2741 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
2742 RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf");
2743 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_init, init, NOTICE);
2744 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_driver, driver, NOTICE);
2745 #ifdef RTE_ETHDEV_DEBUG_RX
2746 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_rx, rx, DEBUG);
2747 #endif
2748 #ifdef RTE_ETHDEV_DEBUG_TX
2749 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_tx, tx, DEBUG);
2750 #endif
2751