xref: /dpdk/drivers/net/e1000/em_ethdev.c (revision cf435a07)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39 
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_eal.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
53 #include <rte_dev.h>
54 
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
58 
59 #define EM_EIAC			0x000DC
60 
61 #define PMD_ROUNDUP(x,y)	(((x) + (y) - 1)/(y) * (y))
62 
63 
64 static int eth_em_configure(struct rte_eth_dev *dev);
65 static int eth_em_start(struct rte_eth_dev *dev);
66 static void eth_em_stop(struct rte_eth_dev *dev);
67 static void eth_em_close(struct rte_eth_dev *dev);
68 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
70 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
72 static int eth_em_link_update(struct rte_eth_dev *dev,
73 				int wait_to_complete);
74 static void eth_em_stats_get(struct rte_eth_dev *dev,
75 				struct rte_eth_stats *rte_stats);
76 static void eth_em_stats_reset(struct rte_eth_dev *dev);
77 static void eth_em_infos_get(struct rte_eth_dev *dev,
78 				struct rte_eth_dev_info *dev_info);
79 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
80 				struct rte_eth_fc_conf *fc_conf);
81 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
82 				struct rte_eth_fc_conf *fc_conf);
83 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
84 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
85 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
86 static int eth_em_interrupt_action(struct rte_eth_dev *dev);
87 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
88 							void *param);
89 
90 static int em_hw_init(struct e1000_hw *hw);
91 static int em_hardware_init(struct e1000_hw *hw);
92 static void em_hw_control_acquire(struct e1000_hw *hw);
93 static void em_hw_control_release(struct e1000_hw *hw);
94 static void em_init_manageability(struct e1000_hw *hw);
95 static void em_release_manageability(struct e1000_hw *hw);
96 
97 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
98 
99 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
100 		uint16_t vlan_id, int on);
101 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
102 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
103 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
104 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
105 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
106 
107 /*
108 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
109 					uint16_t vlan_id, int on);
110 */
111 
112 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
113 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
114 static void em_lsc_intr_disable(struct e1000_hw *hw);
115 static void em_rxq_intr_enable(struct e1000_hw *hw);
116 static void em_rxq_intr_disable(struct e1000_hw *hw);
117 
118 static int eth_em_led_on(struct rte_eth_dev *dev);
119 static int eth_em_led_off(struct rte_eth_dev *dev);
120 
121 static int em_get_rx_buffer_size(struct e1000_hw *hw);
122 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
123 		uint32_t index, uint32_t pool);
124 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
125 
126 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
127 				   struct ether_addr *mc_addr_set,
128 				   uint32_t nb_mc_addr);
129 
130 #define EM_FC_PAUSE_TIME 0x0680
131 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
132 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
133 
134 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
135 
136 /*
137  * The set of PCI devices this driver supports
138  */
139 static const struct rte_pci_id pci_id_em_map[] = {
140 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
141 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
142 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
143 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
144 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
145 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
146 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
147 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
148 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
149 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
150 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
151 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
152 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
153 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
154 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
155 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
156 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
157 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
158 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
159 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
160 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
161 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
162 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
163 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
164 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
165 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
166 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
167 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
168 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
169 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
170 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
171 	{ .vendor_id = 0, /* sentinel */ },
172 };
173 
174 static const struct eth_dev_ops eth_em_ops = {
175 	.dev_configure        = eth_em_configure,
176 	.dev_start            = eth_em_start,
177 	.dev_stop             = eth_em_stop,
178 	.dev_close            = eth_em_close,
179 	.promiscuous_enable   = eth_em_promiscuous_enable,
180 	.promiscuous_disable  = eth_em_promiscuous_disable,
181 	.allmulticast_enable  = eth_em_allmulticast_enable,
182 	.allmulticast_disable = eth_em_allmulticast_disable,
183 	.link_update          = eth_em_link_update,
184 	.stats_get            = eth_em_stats_get,
185 	.stats_reset          = eth_em_stats_reset,
186 	.dev_infos_get        = eth_em_infos_get,
187 	.mtu_set              = eth_em_mtu_set,
188 	.vlan_filter_set      = eth_em_vlan_filter_set,
189 	.vlan_offload_set     = eth_em_vlan_offload_set,
190 	.rx_queue_setup       = eth_em_rx_queue_setup,
191 	.rx_queue_release     = eth_em_rx_queue_release,
192 	.rx_queue_count       = eth_em_rx_queue_count,
193 	.rx_descriptor_done   = eth_em_rx_descriptor_done,
194 	.tx_queue_setup       = eth_em_tx_queue_setup,
195 	.tx_queue_release     = eth_em_tx_queue_release,
196 	.rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
197 	.rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
198 	.dev_led_on           = eth_em_led_on,
199 	.dev_led_off          = eth_em_led_off,
200 	.flow_ctrl_get        = eth_em_flow_ctrl_get,
201 	.flow_ctrl_set        = eth_em_flow_ctrl_set,
202 	.mac_addr_add         = eth_em_rar_set,
203 	.mac_addr_remove      = eth_em_rar_clear,
204 	.set_mc_addr_list     = eth_em_set_mc_addr_list,
205 	.rxq_info_get         = em_rxq_info_get,
206 	.txq_info_get         = em_txq_info_get,
207 };
208 
209 /**
210  * Atomically reads the link status information from global
211  * structure rte_eth_dev.
212  *
213  * @param dev
214  *   - Pointer to the structure rte_eth_dev to read from.
215  *   - Pointer to the buffer to be saved with the link status.
216  *
217  * @return
218  *   - On success, zero.
219  *   - On failure, negative value.
220  */
221 static inline int
222 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
223 				struct rte_eth_link *link)
224 {
225 	struct rte_eth_link *dst = link;
226 	struct rte_eth_link *src = &(dev->data->dev_link);
227 
228 	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
229 					*(uint64_t *)src) == 0)
230 		return -1;
231 
232 	return 0;
233 }
234 
235 /**
236  * Atomically writes the link status information into global
237  * structure rte_eth_dev.
238  *
239  * @param dev
240  *   - Pointer to the structure rte_eth_dev to read from.
241  *   - Pointer to the buffer to be saved with the link status.
242  *
243  * @return
244  *   - On success, zero.
245  *   - On failure, negative value.
246  */
247 static inline int
248 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
249 				struct rte_eth_link *link)
250 {
251 	struct rte_eth_link *dst = &(dev->data->dev_link);
252 	struct rte_eth_link *src = link;
253 
254 	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
255 					*(uint64_t *)src) == 0)
256 		return -1;
257 
258 	return 0;
259 }
260 
261 /**
262  *  eth_em_dev_is_ich8 - Check for ICH8 device
263  *  @hw: pointer to the HW structure
264  *
265  *  return TRUE for ICH8, otherwise FALSE
266  **/
267 static bool
268 eth_em_dev_is_ich8(struct e1000_hw *hw)
269 {
270 	DEBUGFUNC("eth_em_dev_is_ich8");
271 
272 	switch (hw->device_id) {
273 	case E1000_DEV_ID_PCH_LPT_I217_LM:
274 	case E1000_DEV_ID_PCH_LPT_I217_V:
275 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
276 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
277 	case E1000_DEV_ID_PCH_I218_V2:
278 	case E1000_DEV_ID_PCH_I218_LM2:
279 	case E1000_DEV_ID_PCH_I218_V3:
280 	case E1000_DEV_ID_PCH_I218_LM3:
281 		return 1;
282 	default:
283 		return 0;
284 	}
285 }
286 
287 static int
288 eth_em_dev_init(struct rte_eth_dev *eth_dev)
289 {
290 	struct rte_pci_device *pci_dev;
291 	struct e1000_adapter *adapter =
292 		E1000_DEV_PRIVATE(eth_dev->data->dev_private);
293 	struct e1000_hw *hw =
294 		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
295 	struct e1000_vfta * shadow_vfta =
296 		E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
297 
298 	pci_dev = eth_dev->pci_dev;
299 
300 	eth_dev->dev_ops = &eth_em_ops;
301 	eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
302 	eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
303 
304 	/* for secondary processes, we don't initialise any further as primary
305 	 * has already done this work. Only check we don't need a different
306 	 * RX function */
307 	if (rte_eal_process_type() != RTE_PROC_PRIMARY){
308 		if (eth_dev->data->scattered_rx)
309 			eth_dev->rx_pkt_burst =
310 				(eth_rx_burst_t)&eth_em_recv_scattered_pkts;
311 		return 0;
312 	}
313 
314 	rte_eth_copy_pci_info(eth_dev, pci_dev);
315 
316 	hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
317 	hw->device_id = pci_dev->id.device_id;
318 	adapter->stopped = 0;
319 
320 	/* For ICH8 support we'll need to map the flash memory BAR */
321 	if (eth_em_dev_is_ich8(hw))
322 		hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
323 
324 	if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
325 			em_hw_init(hw) != 0) {
326 		PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
327 			"failed to init HW",
328 			eth_dev->data->port_id, pci_dev->id.vendor_id,
329 			pci_dev->id.device_id);
330 		return -ENODEV;
331 	}
332 
333 	/* Allocate memory for storing MAC addresses */
334 	eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
335 			hw->mac.rar_entry_count, 0);
336 	if (eth_dev->data->mac_addrs == NULL) {
337 		PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
338 			"store MAC addresses",
339 			ETHER_ADDR_LEN * hw->mac.rar_entry_count);
340 		return -ENOMEM;
341 	}
342 
343 	/* Copy the permanent MAC address */
344 	ether_addr_copy((struct ether_addr *) hw->mac.addr,
345 		eth_dev->data->mac_addrs);
346 
347 	/* initialize the vfta */
348 	memset(shadow_vfta, 0, sizeof(*shadow_vfta));
349 
350 	PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
351 		     eth_dev->data->port_id, pci_dev->id.vendor_id,
352 		     pci_dev->id.device_id);
353 
354 	rte_intr_callback_register(&(pci_dev->intr_handle),
355 		eth_em_interrupt_handler, (void *)eth_dev);
356 
357 	return 0;
358 }
359 
360 static int
361 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
362 {
363 	struct rte_pci_device *pci_dev;
364 	struct e1000_adapter *adapter =
365 		E1000_DEV_PRIVATE(eth_dev->data->dev_private);
366 
367 	PMD_INIT_FUNC_TRACE();
368 
369 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
370 		return -EPERM;
371 
372 	pci_dev = eth_dev->pci_dev;
373 
374 	if (adapter->stopped == 0)
375 		eth_em_close(eth_dev);
376 
377 	eth_dev->dev_ops = NULL;
378 	eth_dev->rx_pkt_burst = NULL;
379 	eth_dev->tx_pkt_burst = NULL;
380 
381 	rte_free(eth_dev->data->mac_addrs);
382 	eth_dev->data->mac_addrs = NULL;
383 
384 	/* disable uio intr before callback unregister */
385 	rte_intr_disable(&(pci_dev->intr_handle));
386 	rte_intr_callback_unregister(&(pci_dev->intr_handle),
387 		eth_em_interrupt_handler, (void *)eth_dev);
388 
389 	return 0;
390 }
391 
392 static struct eth_driver rte_em_pmd = {
393 	.pci_drv = {
394 		.id_table = pci_id_em_map,
395 		.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
396 			RTE_PCI_DRV_DETACHABLE,
397 		.probe = rte_eth_dev_pci_probe,
398 		.remove = rte_eth_dev_pci_remove,
399 	},
400 	.eth_dev_init = eth_em_dev_init,
401 	.eth_dev_uninit = eth_em_dev_uninit,
402 	.dev_private_size = sizeof(struct e1000_adapter),
403 };
404 
405 static int
406 em_hw_init(struct e1000_hw *hw)
407 {
408 	int diag;
409 
410 	diag = hw->mac.ops.init_params(hw);
411 	if (diag != 0) {
412 		PMD_INIT_LOG(ERR, "MAC Initialization Error");
413 		return diag;
414 	}
415 	diag = hw->nvm.ops.init_params(hw);
416 	if (diag != 0) {
417 		PMD_INIT_LOG(ERR, "NVM Initialization Error");
418 		return diag;
419 	}
420 	diag = hw->phy.ops.init_params(hw);
421 	if (diag != 0) {
422 		PMD_INIT_LOG(ERR, "PHY Initialization Error");
423 		return diag;
424 	}
425 	(void) e1000_get_bus_info(hw);
426 
427 	hw->mac.autoneg = 1;
428 	hw->phy.autoneg_wait_to_complete = 0;
429 	hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
430 
431 	e1000_init_script_state_82541(hw, TRUE);
432 	e1000_set_tbi_compatibility_82543(hw, TRUE);
433 
434 	/* Copper options */
435 	if (hw->phy.media_type == e1000_media_type_copper) {
436 		hw->phy.mdix = 0; /* AUTO_ALL_MODES */
437 		hw->phy.disable_polarity_correction = 0;
438 		hw->phy.ms_type = e1000_ms_hw_default;
439 	}
440 
441 	/*
442 	 * Start from a known state, this is important in reading the nvm
443 	 * and mac from that.
444 	 */
445 	e1000_reset_hw(hw);
446 
447 	/* Make sure we have a good EEPROM before we read from it */
448 	if (e1000_validate_nvm_checksum(hw) < 0) {
449 		/*
450 		 * Some PCI-E parts fail the first check due to
451 		 * the link being in sleep state, call it again,
452 		 * if it fails a second time its a real issue.
453 		 */
454 		diag = e1000_validate_nvm_checksum(hw);
455 		if (diag < 0) {
456 			PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
457 			goto error;
458 		}
459 	}
460 
461 	/* Read the permanent MAC address out of the EEPROM */
462 	diag = e1000_read_mac_addr(hw);
463 	if (diag != 0) {
464 		PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
465 		goto error;
466 	}
467 
468 	/* Now initialize the hardware */
469 	diag = em_hardware_init(hw);
470 	if (diag != 0) {
471 		PMD_INIT_LOG(ERR, "Hardware initialization failed");
472 		goto error;
473 	}
474 
475 	hw->mac.get_link_status = 1;
476 
477 	/* Indicate SOL/IDER usage */
478 	diag = e1000_check_reset_block(hw);
479 	if (diag < 0) {
480 		PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
481 			"SOL/IDER session");
482 	}
483 	return 0;
484 
485 error:
486 	em_hw_control_release(hw);
487 	return diag;
488 }
489 
490 static int
491 eth_em_configure(struct rte_eth_dev *dev)
492 {
493 	struct e1000_interrupt *intr =
494 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
495 
496 	PMD_INIT_FUNC_TRACE();
497 	intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
498 	PMD_INIT_FUNC_TRACE();
499 
500 	return 0;
501 }
502 
503 static void
504 em_set_pba(struct e1000_hw *hw)
505 {
506 	uint32_t pba;
507 
508 	/*
509 	 * Packet Buffer Allocation (PBA)
510 	 * Writing PBA sets the receive portion of the buffer
511 	 * the remainder is used for the transmit buffer.
512 	 * Devices before the 82547 had a Packet Buffer of 64K.
513 	 * After the 82547 the buffer was reduced to 40K.
514 	 */
515 	switch (hw->mac.type) {
516 		case e1000_82547:
517 		case e1000_82547_rev_2:
518 		/* 82547: Total Packet Buffer is 40K */
519 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
520 			break;
521 		case e1000_82571:
522 		case e1000_82572:
523 		case e1000_80003es2lan:
524 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
525 			break;
526 		case e1000_82573: /* 82573: Total Packet Buffer is 32K */
527 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
528 			break;
529 		case e1000_82574:
530 		case e1000_82583:
531 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
532 			break;
533 		case e1000_ich8lan:
534 			pba = E1000_PBA_8K;
535 			break;
536 		case e1000_ich9lan:
537 		case e1000_ich10lan:
538 			pba = E1000_PBA_10K;
539 			break;
540 		case e1000_pchlan:
541 		case e1000_pch2lan:
542 		case e1000_pch_lpt:
543 			pba = E1000_PBA_26K;
544 			break;
545 		default:
546 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
547 	}
548 
549 	E1000_WRITE_REG(hw, E1000_PBA, pba);
550 }
551 
552 static int
553 eth_em_start(struct rte_eth_dev *dev)
554 {
555 	struct e1000_adapter *adapter =
556 		E1000_DEV_PRIVATE(dev->data->dev_private);
557 	struct e1000_hw *hw =
558 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
559 	struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
560 	int ret, mask;
561 	uint32_t intr_vector = 0;
562 	uint32_t *speeds;
563 	int num_speeds;
564 	bool autoneg;
565 
566 	PMD_INIT_FUNC_TRACE();
567 
568 	eth_em_stop(dev);
569 
570 	e1000_power_up_phy(hw);
571 
572 	/* Set default PBA value */
573 	em_set_pba(hw);
574 
575 	/* Put the address into the Receive Address Array */
576 	e1000_rar_set(hw, hw->mac.addr, 0);
577 
578 	/*
579 	 * With the 82571 adapter, RAR[0] may be overwritten
580 	 * when the other port is reset, we make a duplicate
581 	 * in RAR[14] for that eventuality, this assures
582 	 * the interface continues to function.
583 	 */
584 	if (hw->mac.type == e1000_82571) {
585 		e1000_set_laa_state_82571(hw, TRUE);
586 		e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
587 	}
588 
589 	/* Initialize the hardware */
590 	if (em_hardware_init(hw)) {
591 		PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
592 		return -EIO;
593 	}
594 
595 	E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
596 
597 	/* Configure for OS presence */
598 	em_init_manageability(hw);
599 
600 	if (dev->data->dev_conf.intr_conf.rxq != 0) {
601 		intr_vector = dev->data->nb_rx_queues;
602 		if (rte_intr_efd_enable(intr_handle, intr_vector))
603 			return -1;
604 	}
605 
606 	if (rte_intr_dp_is_en(intr_handle)) {
607 		intr_handle->intr_vec =
608 			rte_zmalloc("intr_vec",
609 					dev->data->nb_rx_queues * sizeof(int), 0);
610 		if (intr_handle->intr_vec == NULL) {
611 			PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
612 						" intr_vec\n", dev->data->nb_rx_queues);
613 			return -ENOMEM;
614 		}
615 
616 		/* enable rx interrupt */
617 		em_rxq_intr_enable(hw);
618 	}
619 
620 	eth_em_tx_init(dev);
621 
622 	ret = eth_em_rx_init(dev);
623 	if (ret) {
624 		PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
625 		em_dev_clear_queues(dev);
626 		return ret;
627 	}
628 
629 	e1000_clear_hw_cntrs_base_generic(hw);
630 
631 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
632 			ETH_VLAN_EXTEND_MASK;
633 	eth_em_vlan_offload_set(dev, mask);
634 
635 	/* Set Interrupt Throttling Rate to maximum allowed value. */
636 	E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
637 
638 	/* Setup link speed and duplex */
639 	speeds = &dev->data->dev_conf.link_speeds;
640 	if (*speeds == ETH_LINK_SPEED_AUTONEG) {
641 		hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
642 	} else {
643 		num_speeds = 0;
644 		autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
645 
646 		/* Reset */
647 		hw->phy.autoneg_advertised = 0;
648 
649 		if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
650 				ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
651 				ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
652 			num_speeds = -1;
653 			goto error_invalid_config;
654 		}
655 		if (*speeds & ETH_LINK_SPEED_10M_HD) {
656 			hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
657 			num_speeds++;
658 		}
659 		if (*speeds & ETH_LINK_SPEED_10M) {
660 			hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
661 			num_speeds++;
662 		}
663 		if (*speeds & ETH_LINK_SPEED_100M_HD) {
664 			hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
665 			num_speeds++;
666 		}
667 		if (*speeds & ETH_LINK_SPEED_100M) {
668 			hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
669 			num_speeds++;
670 		}
671 		if (*speeds & ETH_LINK_SPEED_1G) {
672 			hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
673 			num_speeds++;
674 		}
675 		if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
676 			goto error_invalid_config;
677 	}
678 
679 	e1000_setup_link(hw);
680 
681 	if (rte_intr_allow_others(intr_handle)) {
682 		/* check if lsc interrupt is enabled */
683 		if (dev->data->dev_conf.intr_conf.lsc != 0) {
684 			ret = eth_em_interrupt_setup(dev);
685 			if (ret) {
686 				PMD_INIT_LOG(ERR, "Unable to setup interrupts");
687 				em_dev_clear_queues(dev);
688 				return ret;
689 			}
690 		}
691 	} else {
692 		rte_intr_callback_unregister(intr_handle,
693 						eth_em_interrupt_handler,
694 						(void *)dev);
695 		if (dev->data->dev_conf.intr_conf.lsc != 0)
696 			PMD_INIT_LOG(INFO, "lsc won't enable because of"
697 				     " no intr multiplex\n");
698 	}
699 	/* check if rxq interrupt is enabled */
700 	if (dev->data->dev_conf.intr_conf.rxq != 0)
701 		eth_em_rxq_interrupt_setup(dev);
702 
703 	rte_intr_enable(intr_handle);
704 
705 	adapter->stopped = 0;
706 
707 	PMD_INIT_LOG(DEBUG, "<<");
708 
709 	return 0;
710 
711 error_invalid_config:
712 	PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
713 		     dev->data->dev_conf.link_speeds, dev->data->port_id);
714 	em_dev_clear_queues(dev);
715 	return -EINVAL;
716 }
717 
718 /*********************************************************************
719  *
720  *  This routine disables all traffic on the adapter by issuing a
721  *  global reset on the MAC.
722  *
723  **********************************************************************/
724 static void
725 eth_em_stop(struct rte_eth_dev *dev)
726 {
727 	struct rte_eth_link link;
728 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
729 	struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
730 
731 	em_rxq_intr_disable(hw);
732 	em_lsc_intr_disable(hw);
733 
734 	e1000_reset_hw(hw);
735 	if (hw->mac.type >= e1000_82544)
736 		E1000_WRITE_REG(hw, E1000_WUC, 0);
737 
738 	/* Power down the phy. Needed to make the link go down */
739 	e1000_power_down_phy(hw);
740 
741 	em_dev_clear_queues(dev);
742 
743 	/* clear the recorded link status */
744 	memset(&link, 0, sizeof(link));
745 	rte_em_dev_atomic_write_link_status(dev, &link);
746 
747 	if (!rte_intr_allow_others(intr_handle))
748 		/* resume to the default handler */
749 		rte_intr_callback_register(intr_handle,
750 					   eth_em_interrupt_handler,
751 					   (void *)dev);
752 
753 	/* Clean datapath event and queue/vec mapping */
754 	rte_intr_efd_disable(intr_handle);
755 	if (intr_handle->intr_vec != NULL) {
756 		rte_free(intr_handle->intr_vec);
757 		intr_handle->intr_vec = NULL;
758 	}
759 }
760 
761 static void
762 eth_em_close(struct rte_eth_dev *dev)
763 {
764 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
765 	struct e1000_adapter *adapter =
766 		E1000_DEV_PRIVATE(dev->data->dev_private);
767 
768 	eth_em_stop(dev);
769 	adapter->stopped = 1;
770 	em_dev_free_queues(dev);
771 	e1000_phy_hw_reset(hw);
772 	em_release_manageability(hw);
773 	em_hw_control_release(hw);
774 }
775 
776 static int
777 em_get_rx_buffer_size(struct e1000_hw *hw)
778 {
779 	uint32_t rx_buf_size;
780 
781 	rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
782 	return rx_buf_size;
783 }
784 
785 /*********************************************************************
786  *
787  *  Initialize the hardware
788  *
789  **********************************************************************/
790 static int
791 em_hardware_init(struct e1000_hw *hw)
792 {
793 	uint32_t rx_buf_size;
794 	int diag;
795 
796 	/* Issue a global reset */
797 	e1000_reset_hw(hw);
798 
799 	/* Let the firmware know the OS is in control */
800 	em_hw_control_acquire(hw);
801 
802 	/*
803 	 * These parameters control the automatic generation (Tx) and
804 	 * response (Rx) to Ethernet PAUSE frames.
805 	 * - High water mark should allow for at least two standard size (1518)
806 	 *   frames to be received after sending an XOFF.
807 	 * - Low water mark works best when it is very near the high water mark.
808 	 *   This allows the receiver to restart by sending XON when it has
809 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
810 	 *   restart after one full frame is pulled from the buffer. There
811 	 *   could be several smaller frames in the buffer and if so they will
812 	 *   not trigger the XON until their total number reduces the buffer
813 	 *   by 1500.
814 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
815 	 */
816 	rx_buf_size = em_get_rx_buffer_size(hw);
817 
818 	hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
819 	hw->fc.low_water = hw->fc.high_water - 1500;
820 
821 	if (hw->mac.type == e1000_80003es2lan)
822 		hw->fc.pause_time = UINT16_MAX;
823 	else
824 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
825 
826 	hw->fc.send_xon = 1;
827 
828 	/* Set Flow control, use the tunable location if sane */
829 	if (em_fc_setting <= e1000_fc_full)
830 		hw->fc.requested_mode = em_fc_setting;
831 	else
832 		hw->fc.requested_mode = e1000_fc_none;
833 
834 	/* Workaround: no TX flow ctrl for PCH */
835 	if (hw->mac.type == e1000_pchlan)
836 		hw->fc.requested_mode = e1000_fc_rx_pause;
837 
838 	/* Override - settings for PCH2LAN, ya its magic :) */
839 	if (hw->mac.type == e1000_pch2lan) {
840 		hw->fc.high_water = 0x5C20;
841 		hw->fc.low_water = 0x5048;
842 		hw->fc.pause_time = 0x0650;
843 		hw->fc.refresh_time = 0x0400;
844 	} else if (hw->mac.type == e1000_pch_lpt) {
845 		hw->fc.requested_mode = e1000_fc_full;
846 	}
847 
848 	diag = e1000_init_hw(hw);
849 	if (diag < 0)
850 		return diag;
851 	e1000_check_for_link(hw);
852 	return 0;
853 }
854 
855 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
856 static void
857 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
858 {
859 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
860 	struct e1000_hw_stats *stats =
861 			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
862 	int pause_frames;
863 
864 	if(hw->phy.media_type == e1000_media_type_copper ||
865 			(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
866 		stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
867 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
868 	}
869 
870 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
871 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
872 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
873 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
874 
875 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
876 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
877 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
878 	stats->dc += E1000_READ_REG(hw, E1000_DC);
879 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
880 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
881 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
882 
883 	/*
884 	 * For watchdog management we need to know if we have been
885 	 * paused during the last interval, so capture that here.
886 	 */
887 	pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
888 	stats->xoffrxc += pause_frames;
889 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
890 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
891 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
892 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
893 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
894 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
895 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
896 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
897 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
898 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
899 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
900 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
901 
902 	/*
903 	 * For the 64-bit byte counters the low dword must be read first.
904 	 * Both registers clear on the read of the high dword.
905 	 */
906 
907 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
908 	stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
909 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
910 	stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
911 
912 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
913 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
914 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
915 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
916 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
917 
918 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
919 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
920 
921 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
922 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
923 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
924 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
925 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
926 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
927 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
928 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
929 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
930 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
931 
932 	/* Interrupt Counts */
933 
934 	if (hw->mac.type >= e1000_82571) {
935 		stats->iac += E1000_READ_REG(hw, E1000_IAC);
936 		stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
937 		stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
938 		stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
939 		stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
940 		stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
941 		stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
942 		stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
943 		stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
944 	}
945 
946 	if (hw->mac.type >= e1000_82543) {
947 		stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
948 		stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
949 		stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
950 		stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
951 		stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
952 		stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
953 	}
954 
955 	if (rte_stats == NULL)
956 		return;
957 
958 	/* Rx Errors */
959 	rte_stats->imissed = stats->mpc;
960 	rte_stats->ierrors = stats->crcerrs +
961 	                     stats->rlec + stats->ruc + stats->roc +
962 	                     stats->rxerrc + stats->algnerrc + stats->cexterr;
963 
964 	/* Tx Errors */
965 	rte_stats->oerrors = stats->ecol + stats->latecol;
966 
967 	rte_stats->ipackets = stats->gprc;
968 	rte_stats->opackets = stats->gptc;
969 	rte_stats->ibytes   = stats->gorc;
970 	rte_stats->obytes   = stats->gotc;
971 }
972 
973 static void
974 eth_em_stats_reset(struct rte_eth_dev *dev)
975 {
976 	struct e1000_hw_stats *hw_stats =
977 			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
978 
979 	/* HW registers are cleared on read */
980 	eth_em_stats_get(dev, NULL);
981 
982 	/* Reset software totals */
983 	memset(hw_stats, 0, sizeof(*hw_stats));
984 }
985 
986 static int
987 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
988 {
989 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
990 
991 	em_rxq_intr_enable(hw);
992 	rte_intr_enable(&dev->pci_dev->intr_handle);
993 
994 	return 0;
995 }
996 
997 static int
998 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
999 {
1000 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1001 
1002 	em_rxq_intr_disable(hw);
1003 
1004 	return 0;
1005 }
1006 
1007 static uint32_t
1008 em_get_max_pktlen(const struct e1000_hw *hw)
1009 {
1010 	switch (hw->mac.type) {
1011 	case e1000_82571:
1012 	case e1000_82572:
1013 	case e1000_ich9lan:
1014 	case e1000_ich10lan:
1015 	case e1000_pch2lan:
1016 	case e1000_pch_lpt:
1017 	case e1000_82574:
1018 	case e1000_80003es2lan: /* 9K Jumbo Frame size */
1019 	case e1000_82583:
1020 		return 0x2412;
1021 	case e1000_pchlan:
1022 		return 0x1000;
1023 	/* Adapters that do not support jumbo frames */
1024 	case e1000_ich8lan:
1025 		return ETHER_MAX_LEN;
1026 	default:
1027 		return MAX_JUMBO_FRAME_SIZE;
1028 	}
1029 }
1030 
1031 static void
1032 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1033 {
1034 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1035 
1036 	dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1037 	dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
1038 	dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1039 
1040 	/*
1041 	 * Starting with 631xESB hw supports 2 TX/RX queues per port.
1042 	 * Unfortunatelly, all these nics have just one TX context.
1043 	 * So we have few choises for TX:
1044 	 * - Use just one TX queue.
1045 	 * - Allow cksum offload only for one TX queue.
1046 	 * - Don't allow TX cksum offload at all.
1047 	 * For now, option #1 was chosen.
1048 	 * To use second RX queue we have to use extended RX descriptor
1049 	 * (Multiple Receive Queues are mutually exclusive with UDP
1050 	 * fragmentation and are not supported when a legacy receive
1051 	 * descriptor format is used).
1052 	 * Which means separate RX routinies - as legacy nics (82540, 82545)
1053 	 * don't support extended RXD.
1054 	 * To avoid it we support just one RX queue for now (no RSS).
1055 	 */
1056 
1057 	dev_info->max_rx_queues = 1;
1058 	dev_info->max_tx_queues = 1;
1059 
1060 	dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1061 		.nb_max = E1000_MAX_RING_DESC,
1062 		.nb_min = E1000_MIN_RING_DESC,
1063 		.nb_align = EM_RXD_ALIGN,
1064 	};
1065 
1066 	dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1067 		.nb_max = E1000_MAX_RING_DESC,
1068 		.nb_min = E1000_MIN_RING_DESC,
1069 		.nb_align = EM_TXD_ALIGN,
1070 	};
1071 
1072 	dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1073 			ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1074 			ETH_LINK_SPEED_1G;
1075 }
1076 
1077 /* return 0 means link status changed, -1 means not changed */
1078 static int
1079 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1080 {
1081 	struct e1000_hw *hw =
1082 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1083 	struct rte_eth_link link, old;
1084 	int link_check, count;
1085 
1086 	link_check = 0;
1087 	hw->mac.get_link_status = 1;
1088 
1089 	/* possible wait-to-complete in up to 9 seconds */
1090 	for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1091 		/* Read the real link status */
1092 		switch (hw->phy.media_type) {
1093 		case e1000_media_type_copper:
1094 			/* Do the work to read phy */
1095 			e1000_check_for_link(hw);
1096 			link_check = !hw->mac.get_link_status;
1097 			break;
1098 
1099 		case e1000_media_type_fiber:
1100 			e1000_check_for_link(hw);
1101 			link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1102 					E1000_STATUS_LU);
1103 			break;
1104 
1105 		case e1000_media_type_internal_serdes:
1106 			e1000_check_for_link(hw);
1107 			link_check = hw->mac.serdes_has_link;
1108 			break;
1109 
1110 		default:
1111 			break;
1112 		}
1113 		if (link_check || wait_to_complete == 0)
1114 			break;
1115 		rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1116 	}
1117 	memset(&link, 0, sizeof(link));
1118 	rte_em_dev_atomic_read_link_status(dev, &link);
1119 	old = link;
1120 
1121 	/* Now we check if a transition has happened */
1122 	if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1123 		uint16_t duplex, speed;
1124 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1125 		link.link_duplex = (duplex == FULL_DUPLEX) ?
1126 				ETH_LINK_FULL_DUPLEX :
1127 				ETH_LINK_HALF_DUPLEX;
1128 		link.link_speed = speed;
1129 		link.link_status = ETH_LINK_UP;
1130 		link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1131 				ETH_LINK_SPEED_FIXED);
1132 	} else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1133 		link.link_speed = 0;
1134 		link.link_duplex = ETH_LINK_HALF_DUPLEX;
1135 		link.link_status = ETH_LINK_DOWN;
1136 		link.link_autoneg = ETH_LINK_SPEED_FIXED;
1137 	}
1138 	rte_em_dev_atomic_write_link_status(dev, &link);
1139 
1140 	/* not changed */
1141 	if (old.link_status == link.link_status)
1142 		return -1;
1143 
1144 	/* changed */
1145 	return 0;
1146 }
1147 
1148 /*
1149  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1150  * For ASF and Pass Through versions of f/w this means
1151  * that the driver is loaded. For AMT version type f/w
1152  * this means that the network i/f is open.
1153  */
1154 static void
1155 em_hw_control_acquire(struct e1000_hw *hw)
1156 {
1157 	uint32_t ctrl_ext, swsm;
1158 
1159 	/* Let firmware know the driver has taken over */
1160 	if (hw->mac.type == e1000_82573) {
1161 		swsm = E1000_READ_REG(hw, E1000_SWSM);
1162 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1163 
1164 	} else {
1165 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1166 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1167 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1168 	}
1169 }
1170 
1171 /*
1172  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1173  * For ASF and Pass Through versions of f/w this means that the
1174  * driver is no longer loaded. For AMT versions of the
1175  * f/w this means that the network i/f is closed.
1176  */
1177 static void
1178 em_hw_control_release(struct e1000_hw *hw)
1179 {
1180 	uint32_t ctrl_ext, swsm;
1181 
1182 	/* Let firmware taken over control of h/w */
1183 	if (hw->mac.type == e1000_82573) {
1184 		swsm = E1000_READ_REG(hw, E1000_SWSM);
1185 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1186 	} else {
1187 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1188 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1189 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1190 	}
1191 }
1192 
1193 /*
1194  * Bit of a misnomer, what this really means is
1195  * to enable OS management of the system... aka
1196  * to disable special hardware management features.
1197  */
1198 static void
1199 em_init_manageability(struct e1000_hw *hw)
1200 {
1201 	if (e1000_enable_mng_pass_thru(hw)) {
1202 		uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1203 		uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1204 
1205 		/* disable hardware interception of ARP */
1206 		manc &= ~(E1000_MANC_ARP_EN);
1207 
1208 		/* enable receiving management packets to the host */
1209 		manc |= E1000_MANC_EN_MNG2HOST;
1210 		manc2h |= 1 << 5;  /* Mng Port 623 */
1211 		manc2h |= 1 << 6;  /* Mng Port 664 */
1212 		E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1213 		E1000_WRITE_REG(hw, E1000_MANC, manc);
1214 	}
1215 }
1216 
1217 /*
1218  * Give control back to hardware management
1219  * controller if there is one.
1220  */
1221 static void
1222 em_release_manageability(struct e1000_hw *hw)
1223 {
1224 	uint32_t manc;
1225 
1226 	if (e1000_enable_mng_pass_thru(hw)) {
1227 		manc = E1000_READ_REG(hw, E1000_MANC);
1228 
1229 		/* re-enable hardware interception of ARP */
1230 		manc |= E1000_MANC_ARP_EN;
1231 		manc &= ~E1000_MANC_EN_MNG2HOST;
1232 
1233 		E1000_WRITE_REG(hw, E1000_MANC, manc);
1234 	}
1235 }
1236 
1237 static void
1238 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1239 {
1240 	struct e1000_hw *hw =
1241 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1242 	uint32_t rctl;
1243 
1244 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1245 	rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1246 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1247 }
1248 
1249 static void
1250 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1251 {
1252 	struct e1000_hw *hw =
1253 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1254 	uint32_t rctl;
1255 
1256 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1257 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1258 	if (dev->data->all_multicast == 1)
1259 		rctl |= E1000_RCTL_MPE;
1260 	else
1261 		rctl &= (~E1000_RCTL_MPE);
1262 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1263 }
1264 
1265 static void
1266 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1267 {
1268 	struct e1000_hw *hw =
1269 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1270 	uint32_t rctl;
1271 
1272 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1273 	rctl |= E1000_RCTL_MPE;
1274 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1275 }
1276 
1277 static void
1278 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1279 {
1280 	struct e1000_hw *hw =
1281 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1282 	uint32_t rctl;
1283 
1284 	if (dev->data->promiscuous == 1)
1285 		return; /* must remain in all_multicast mode */
1286 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1287 	rctl &= (~E1000_RCTL_MPE);
1288 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1289 }
1290 
1291 static int
1292 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1293 {
1294 	struct e1000_hw *hw =
1295 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1296 	struct e1000_vfta * shadow_vfta =
1297 		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1298 	uint32_t vfta;
1299 	uint32_t vid_idx;
1300 	uint32_t vid_bit;
1301 
1302 	vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1303 			      E1000_VFTA_ENTRY_MASK);
1304 	vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1305 	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1306 	if (on)
1307 		vfta |= vid_bit;
1308 	else
1309 		vfta &= ~vid_bit;
1310 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1311 
1312 	/* update local VFTA copy */
1313 	shadow_vfta->vfta[vid_idx] = vfta;
1314 
1315 	return 0;
1316 }
1317 
1318 static void
1319 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1320 {
1321 	struct e1000_hw *hw =
1322 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1323 	uint32_t reg;
1324 
1325 	/* Filter Table Disable */
1326 	reg = E1000_READ_REG(hw, E1000_RCTL);
1327 	reg &= ~E1000_RCTL_CFIEN;
1328 	reg &= ~E1000_RCTL_VFE;
1329 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1330 }
1331 
1332 static void
1333 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1334 {
1335 	struct e1000_hw *hw =
1336 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1337 	struct e1000_vfta * shadow_vfta =
1338 		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1339 	uint32_t reg;
1340 	int i;
1341 
1342 	/* Filter Table Enable, CFI not used for packet acceptance */
1343 	reg = E1000_READ_REG(hw, E1000_RCTL);
1344 	reg &= ~E1000_RCTL_CFIEN;
1345 	reg |= E1000_RCTL_VFE;
1346 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1347 
1348 	/* restore vfta from local copy */
1349 	for (i = 0; i < IGB_VFTA_SIZE; i++)
1350 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1351 }
1352 
1353 static void
1354 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1355 {
1356 	struct e1000_hw *hw =
1357 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1358 	uint32_t reg;
1359 
1360 	/* VLAN Mode Disable */
1361 	reg = E1000_READ_REG(hw, E1000_CTRL);
1362 	reg &= ~E1000_CTRL_VME;
1363 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
1364 
1365 }
1366 
1367 static void
1368 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1369 {
1370 	struct e1000_hw *hw =
1371 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1372 	uint32_t reg;
1373 
1374 	/* VLAN Mode Enable */
1375 	reg = E1000_READ_REG(hw, E1000_CTRL);
1376 	reg |= E1000_CTRL_VME;
1377 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
1378 }
1379 
1380 static void
1381 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1382 {
1383 	if(mask & ETH_VLAN_STRIP_MASK){
1384 		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1385 			em_vlan_hw_strip_enable(dev);
1386 		else
1387 			em_vlan_hw_strip_disable(dev);
1388 	}
1389 
1390 	if(mask & ETH_VLAN_FILTER_MASK){
1391 		if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1392 			em_vlan_hw_filter_enable(dev);
1393 		else
1394 			em_vlan_hw_filter_disable(dev);
1395 	}
1396 }
1397 
1398 /*
1399  * It enables the interrupt mask and then enable the interrupt.
1400  *
1401  * @param dev
1402  *  Pointer to struct rte_eth_dev.
1403  *
1404  * @return
1405  *  - On success, zero.
1406  *  - On failure, a negative value.
1407  */
1408 static int
1409 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1410 {
1411 	uint32_t regval;
1412 	struct e1000_hw *hw =
1413 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1414 
1415 	/* clear interrupt */
1416 	E1000_READ_REG(hw, E1000_ICR);
1417 	regval = E1000_READ_REG(hw, E1000_IMS);
1418 	E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1419 	return 0;
1420 }
1421 
1422 /*
1423  * It clears the interrupt causes and enables the interrupt.
1424  * It will be called once only during nic initialized.
1425  *
1426  * @param dev
1427  *  Pointer to struct rte_eth_dev.
1428  *
1429  * @return
1430  *  - On success, zero.
1431  *  - On failure, a negative value.
1432  */
1433 static int
1434 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1435 {
1436 	struct e1000_hw *hw =
1437 	E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1438 
1439 	E1000_READ_REG(hw, E1000_ICR);
1440 	em_rxq_intr_enable(hw);
1441 	return 0;
1442 }
1443 
1444 /*
1445  * It enable receive packet interrupt.
1446  * @param hw
1447  * Pointer to struct e1000_hw
1448  *
1449  * @return
1450  */
1451 static void
1452 em_rxq_intr_enable(struct e1000_hw *hw)
1453 {
1454 	E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1455 	E1000_WRITE_FLUSH(hw);
1456 }
1457 
1458 /*
1459  * It disabled lsc interrupt.
1460  * @param hw
1461  * Pointer to struct e1000_hw
1462  *
1463  * @return
1464  */
1465 static void
1466 em_lsc_intr_disable(struct e1000_hw *hw)
1467 {
1468 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1469 	E1000_WRITE_FLUSH(hw);
1470 }
1471 
1472 /*
1473  * It disabled receive packet interrupt.
1474  * @param hw
1475  * Pointer to struct e1000_hw
1476  *
1477  * @return
1478  */
1479 static void
1480 em_rxq_intr_disable(struct e1000_hw *hw)
1481 {
1482 	E1000_READ_REG(hw, E1000_ICR);
1483 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1484 	E1000_WRITE_FLUSH(hw);
1485 }
1486 
1487 /*
1488  * It reads ICR and gets interrupt causes, check it and set a bit flag
1489  * to update link status.
1490  *
1491  * @param dev
1492  *  Pointer to struct rte_eth_dev.
1493  *
1494  * @return
1495  *  - On success, zero.
1496  *  - On failure, a negative value.
1497  */
1498 static int
1499 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1500 {
1501 	uint32_t icr;
1502 	struct e1000_hw *hw =
1503 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1504 	struct e1000_interrupt *intr =
1505 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1506 
1507 	/* read-on-clear nic registers here */
1508 	icr = E1000_READ_REG(hw, E1000_ICR);
1509 	if (icr & E1000_ICR_LSC) {
1510 		intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 /*
1517  * It executes link_update after knowing an interrupt is prsent.
1518  *
1519  * @param dev
1520  *  Pointer to struct rte_eth_dev.
1521  *
1522  * @return
1523  *  - On success, zero.
1524  *  - On failure, a negative value.
1525  */
1526 static int
1527 eth_em_interrupt_action(struct rte_eth_dev *dev)
1528 {
1529 	struct e1000_hw *hw =
1530 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1531 	struct e1000_interrupt *intr =
1532 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1533 	uint32_t tctl, rctl;
1534 	struct rte_eth_link link;
1535 	int ret;
1536 
1537 	if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1538 		return -1;
1539 
1540 	intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1541 	rte_intr_enable(&(dev->pci_dev->intr_handle));
1542 
1543 	/* set get_link_status to check register later */
1544 	hw->mac.get_link_status = 1;
1545 	ret = eth_em_link_update(dev, 0);
1546 
1547 	/* check if link has changed */
1548 	if (ret < 0)
1549 		return 0;
1550 
1551 	memset(&link, 0, sizeof(link));
1552 	rte_em_dev_atomic_read_link_status(dev, &link);
1553 	if (link.link_status) {
1554 		PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1555 			     dev->data->port_id, (unsigned)link.link_speed,
1556 			     link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1557 			     "full-duplex" : "half-duplex");
1558 	} else {
1559 		PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1560 	}
1561 	PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1562 		     dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
1563 		     dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
1564 
1565 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1566 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1567 	if (link.link_status) {
1568 		/* enable Tx/Rx */
1569 		tctl |= E1000_TCTL_EN;
1570 		rctl |= E1000_RCTL_EN;
1571 	} else {
1572 		/* disable Tx/Rx */
1573 		tctl &= ~E1000_TCTL_EN;
1574 		rctl &= ~E1000_RCTL_EN;
1575 	}
1576 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1577 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1578 	E1000_WRITE_FLUSH(hw);
1579 
1580 	return 0;
1581 }
1582 
1583 /**
1584  * Interrupt handler which shall be registered at first.
1585  *
1586  * @param handle
1587  *  Pointer to interrupt handle.
1588  * @param param
1589  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1590  *
1591  * @return
1592  *  void
1593  */
1594 static void
1595 eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1596 							void *param)
1597 {
1598 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1599 
1600 	eth_em_interrupt_get_status(dev);
1601 	eth_em_interrupt_action(dev);
1602 	_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1603 }
1604 
1605 static int
1606 eth_em_led_on(struct rte_eth_dev *dev)
1607 {
1608 	struct e1000_hw *hw;
1609 
1610 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1611 	return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1612 }
1613 
1614 static int
1615 eth_em_led_off(struct rte_eth_dev *dev)
1616 {
1617 	struct e1000_hw *hw;
1618 
1619 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1620 	return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1621 }
1622 
1623 static int
1624 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1625 {
1626 	struct e1000_hw *hw;
1627 	uint32_t ctrl;
1628 	int tx_pause;
1629 	int rx_pause;
1630 
1631 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1632 	fc_conf->pause_time = hw->fc.pause_time;
1633 	fc_conf->high_water = hw->fc.high_water;
1634 	fc_conf->low_water = hw->fc.low_water;
1635 	fc_conf->send_xon = hw->fc.send_xon;
1636 	fc_conf->autoneg = hw->mac.autoneg;
1637 
1638 	/*
1639 	 * Return rx_pause and tx_pause status according to actual setting of
1640 	 * the TFCE and RFCE bits in the CTRL register.
1641 	 */
1642 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1643 	if (ctrl & E1000_CTRL_TFCE)
1644 		tx_pause = 1;
1645 	else
1646 		tx_pause = 0;
1647 
1648 	if (ctrl & E1000_CTRL_RFCE)
1649 		rx_pause = 1;
1650 	else
1651 		rx_pause = 0;
1652 
1653 	if (rx_pause && tx_pause)
1654 		fc_conf->mode = RTE_FC_FULL;
1655 	else if (rx_pause)
1656 		fc_conf->mode = RTE_FC_RX_PAUSE;
1657 	else if (tx_pause)
1658 		fc_conf->mode = RTE_FC_TX_PAUSE;
1659 	else
1660 		fc_conf->mode = RTE_FC_NONE;
1661 
1662 	return 0;
1663 }
1664 
1665 static int
1666 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1667 {
1668 	struct e1000_hw *hw;
1669 	int err;
1670 	enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1671 		e1000_fc_none,
1672 		e1000_fc_rx_pause,
1673 		e1000_fc_tx_pause,
1674 		e1000_fc_full
1675 	};
1676 	uint32_t rx_buf_size;
1677 	uint32_t max_high_water;
1678 	uint32_t rctl;
1679 
1680 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1681 	if (fc_conf->autoneg != hw->mac.autoneg)
1682 		return -ENOTSUP;
1683 	rx_buf_size = em_get_rx_buffer_size(hw);
1684 	PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1685 
1686 	/* At least reserve one Ethernet frame for watermark */
1687 	max_high_water = rx_buf_size - ETHER_MAX_LEN;
1688 	if ((fc_conf->high_water > max_high_water) ||
1689 	    (fc_conf->high_water < fc_conf->low_water)) {
1690 		PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1691 		PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1692 		return -EINVAL;
1693 	}
1694 
1695 	hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1696 	hw->fc.pause_time     = fc_conf->pause_time;
1697 	hw->fc.high_water     = fc_conf->high_water;
1698 	hw->fc.low_water      = fc_conf->low_water;
1699 	hw->fc.send_xon	      = fc_conf->send_xon;
1700 
1701 	err = e1000_setup_link_generic(hw);
1702 	if (err == E1000_SUCCESS) {
1703 
1704 		/* check if we want to forward MAC frames - driver doesn't have native
1705 		 * capability to do that, so we'll write the registers ourselves */
1706 
1707 		rctl = E1000_READ_REG(hw, E1000_RCTL);
1708 
1709 		/* set or clear MFLCN.PMCF bit depending on configuration */
1710 		if (fc_conf->mac_ctrl_frame_fwd != 0)
1711 			rctl |= E1000_RCTL_PMCF;
1712 		else
1713 			rctl &= ~E1000_RCTL_PMCF;
1714 
1715 		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1716 		E1000_WRITE_FLUSH(hw);
1717 
1718 		return 0;
1719 	}
1720 
1721 	PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1722 	return -EIO;
1723 }
1724 
1725 static void
1726 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1727 		uint32_t index, __rte_unused uint32_t pool)
1728 {
1729 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1730 
1731 	e1000_rar_set(hw, mac_addr->addr_bytes, index);
1732 }
1733 
1734 static void
1735 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1736 {
1737 	uint8_t addr[ETHER_ADDR_LEN];
1738 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1739 
1740 	memset(addr, 0, sizeof(addr));
1741 
1742 	e1000_rar_set(hw, addr, index);
1743 }
1744 
1745 static int
1746 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1747 {
1748 	struct rte_eth_dev_info dev_info;
1749 	struct e1000_hw *hw;
1750 	uint32_t frame_size;
1751 	uint32_t rctl;
1752 
1753 	eth_em_infos_get(dev, &dev_info);
1754 	frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1755 
1756 	/* check that mtu is within the allowed range */
1757 	if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1758 		return -EINVAL;
1759 
1760 	/* refuse mtu that requires the support of scattered packets when this
1761 	 * feature has not been enabled before. */
1762 	if (!dev->data->scattered_rx &&
1763 	    frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1764 		return -EINVAL;
1765 
1766 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1767 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1768 
1769 	/* switch to jumbo mode if needed */
1770 	if (frame_size > ETHER_MAX_LEN) {
1771 		dev->data->dev_conf.rxmode.jumbo_frame = 1;
1772 		rctl |= E1000_RCTL_LPE;
1773 	} else {
1774 		dev->data->dev_conf.rxmode.jumbo_frame = 0;
1775 		rctl &= ~E1000_RCTL_LPE;
1776 	}
1777 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1778 
1779 	/* update max frame size */
1780 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1781 	return 0;
1782 }
1783 
1784 static int
1785 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1786 			struct ether_addr *mc_addr_set,
1787 			uint32_t nb_mc_addr)
1788 {
1789 	struct e1000_hw *hw;
1790 
1791 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1792 	e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1793 	return 0;
1794 }
1795 
1796 DRIVER_REGISTER_PCI(net_e1000_em, rte_em_pmd.pci_drv);
1797 DRIVER_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1798