1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2014-2018 Chelsio Communications. 3 * All rights reserved. 4 */ 5 6 #include <sys/queue.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <string.h> 11 #include <unistd.h> 12 #include <stdarg.h> 13 #include <inttypes.h> 14 #include <netinet/in.h> 15 16 #include <rte_byteorder.h> 17 #include <rte_common.h> 18 #include <rte_cycles.h> 19 #include <rte_interrupts.h> 20 #include <rte_log.h> 21 #include <rte_debug.h> 22 #include <rte_pci.h> 23 #include <rte_branch_prediction.h> 24 #include <rte_memory.h> 25 #include <rte_memzone.h> 26 #include <rte_tailq.h> 27 #include <rte_eal.h> 28 #include <rte_alarm.h> 29 #include <rte_ether.h> 30 #include <ethdev_driver.h> 31 #include <rte_malloc.h> 32 #include <rte_random.h> 33 #include <rte_dev.h> 34 35 #include "base/common.h" 36 #include "base/t4_regs.h" 37 #include "base/t4_msg.h" 38 #include "cxgbe.h" 39 40 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap, 41 struct sge_eth_txq *txq); 42 43 /* 44 * Max number of Rx buffers we replenish at a time. 45 */ 46 #define MAX_RX_REFILL 64U 47 48 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 49 50 /* 51 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 52 * into a WR. 53 */ 54 #define MAX_IMM_TX_PKT_LEN 256 55 56 /* 57 * Max size of a WR sent through a control Tx queue. 58 */ 59 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 60 61 /* 62 * Rx buffer sizes for "usembufs" Free List buffers (one ingress packet 63 * per mbuf buffer). We currently only support two sizes for 1500- and 64 * 9000-byte MTUs. We could easily support more but there doesn't seem to be 65 * much need for that ... 66 */ 67 #define FL_MTU_SMALL 1500 68 #define FL_MTU_LARGE 9000 69 70 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 71 unsigned int mtu) 72 { 73 struct sge *s = &adapter->sge; 74 75 return CXGBE_ALIGN(s->pktshift + RTE_ETHER_HDR_LEN + RTE_VLAN_HLEN + mtu, 76 s->fl_align); 77 } 78 79 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 80 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 81 82 /* 83 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 84 * these to specify the buffer size as an index into the SGE Free List Buffer 85 * Size register array. We also use bit 4, when the buffer has been unmapped 86 * for DMA, but this is of course never sent to the hardware and is only used 87 * to prevent double unmappings. All of the above requires that the Free List 88 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 89 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 90 * Free List Buffer alignment is 32 bytes, this works out for us ... 91 */ 92 enum { 93 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 94 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 95 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 96 97 /* 98 * XXX We shouldn't depend on being able to use these indices. 99 * XXX Especially when some other Master PF has initialized the 100 * XXX adapter or we use the Firmware Configuration File. We 101 * XXX should really search through the Host Buffer Size register 102 * XXX array for the appropriately sized buffer indices. 103 */ 104 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 105 RX_LARGE_PG_BUF = 0x1, /* buffer large page buffer */ 106 107 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 108 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 109 }; 110 111 /** 112 * txq_avail - return the number of available slots in a Tx queue 113 * @q: the Tx queue 114 * 115 * Returns the number of descriptors in a Tx queue available to write new 116 * packets. 117 */ 118 static inline unsigned int txq_avail(const struct sge_txq *q) 119 { 120 return q->size - 1 - q->in_use; 121 } 122 123 static int map_mbuf(struct rte_mbuf *mbuf, dma_addr_t *addr) 124 { 125 struct rte_mbuf *m = mbuf; 126 127 for (; m; m = m->next, addr++) { 128 *addr = m->buf_iova + rte_pktmbuf_headroom(m); 129 if (*addr == 0) 130 goto out_err; 131 } 132 return 0; 133 134 out_err: 135 return -ENOMEM; 136 } 137 138 /** 139 * free_tx_desc - reclaims Tx descriptors and their buffers 140 * @q: the Tx queue to reclaim descriptors from 141 * @n: the number of descriptors to reclaim 142 * 143 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 144 * Tx buffers. Called with the Tx queue lock held. 145 */ 146 static void free_tx_desc(struct sge_txq *q, unsigned int n) 147 { 148 struct tx_sw_desc *d; 149 unsigned int cidx = 0; 150 151 d = &q->sdesc[cidx]; 152 while (n--) { 153 if (d->mbuf) { /* an SGL is present */ 154 rte_pktmbuf_free(d->mbuf); 155 d->mbuf = NULL; 156 } 157 if (d->coalesce.idx) { 158 int i; 159 160 for (i = 0; i < d->coalesce.idx; i++) { 161 rte_pktmbuf_free(d->coalesce.mbuf[i]); 162 d->coalesce.mbuf[i] = NULL; 163 } 164 d->coalesce.idx = 0; 165 } 166 ++d; 167 if (++cidx == q->size) { 168 cidx = 0; 169 d = q->sdesc; 170 } 171 RTE_MBUF_PREFETCH_TO_FREE(&q->sdesc->mbuf->pool); 172 } 173 } 174 175 static void reclaim_tx_desc(struct sge_txq *q, unsigned int n) 176 { 177 struct tx_sw_desc *d; 178 unsigned int cidx = q->cidx; 179 180 d = &q->sdesc[cidx]; 181 while (n--) { 182 if (d->mbuf) { /* an SGL is present */ 183 rte_pktmbuf_free(d->mbuf); 184 d->mbuf = NULL; 185 } 186 ++d; 187 if (++cidx == q->size) { 188 cidx = 0; 189 d = q->sdesc; 190 } 191 } 192 q->cidx = cidx; 193 } 194 195 /** 196 * fl_cap - return the capacity of a free-buffer list 197 * @fl: the FL 198 * 199 * Returns the capacity of a free-buffer list. The capacity is less than 200 * the size because one descriptor needs to be left unpopulated, otherwise 201 * HW will think the FL is empty. 202 */ 203 static inline unsigned int fl_cap(const struct sge_fl *fl) 204 { 205 return fl->size - 8; /* 1 descriptor = 8 buffers */ 206 } 207 208 /** 209 * fl_starving - return whether a Free List is starving. 210 * @adapter: pointer to the adapter 211 * @fl: the Free List 212 * 213 * Tests specified Free List to see whether the number of buffers 214 * available to the hardware has fallen below our "starvation" 215 * threshold. 216 */ 217 static inline bool fl_starving(const struct adapter *adapter, 218 const struct sge_fl *fl) 219 { 220 const struct sge *s = &adapter->sge; 221 222 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 223 } 224 225 static inline unsigned int get_buf_size(struct adapter *adapter, 226 const struct rx_sw_desc *d) 227 { 228 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 229 unsigned int buf_size = 0; 230 231 switch (rx_buf_size_idx) { 232 case RX_SMALL_MTU_BUF: 233 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 234 break; 235 236 case RX_LARGE_MTU_BUF: 237 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 238 break; 239 240 default: 241 BUG_ON(1); 242 /* NOT REACHED */ 243 } 244 245 return buf_size; 246 } 247 248 /** 249 * free_rx_bufs - free the Rx buffers on an SGE free list 250 * @q: the SGE free list to free buffers from 251 * @n: how many buffers to free 252 * 253 * Release the next @n buffers on an SGE free-buffer Rx queue. The 254 * buffers must be made inaccessible to HW before calling this function. 255 */ 256 static void free_rx_bufs(struct sge_fl *q, int n) 257 { 258 unsigned int cidx = q->cidx; 259 struct rx_sw_desc *d; 260 261 d = &q->sdesc[cidx]; 262 while (n--) { 263 if (d->buf) { 264 rte_pktmbuf_free(d->buf); 265 d->buf = NULL; 266 } 267 ++d; 268 if (++cidx == q->size) { 269 cidx = 0; 270 d = q->sdesc; 271 } 272 q->avail--; 273 } 274 q->cidx = cidx; 275 } 276 277 /** 278 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 279 * @q: the SGE free list 280 * 281 * Unmap the current buffer on an SGE free-buffer Rx queue. The 282 * buffer must be made inaccessible to HW before calling this function. 283 * 284 * This is similar to @free_rx_bufs above but does not free the buffer. 285 * Do note that the FL still loses any further access to the buffer. 286 */ 287 static void unmap_rx_buf(struct sge_fl *q) 288 { 289 if (++q->cidx == q->size) 290 q->cidx = 0; 291 q->avail--; 292 } 293 294 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 295 { 296 if (q->pend_cred >= 64) { 297 u32 val = adap->params.arch.sge_fl_db; 298 299 if (is_t4(adap->params.chip)) 300 val |= V_PIDX(q->pend_cred / 8); 301 else 302 val |= V_PIDX_T5(q->pend_cred / 8); 303 304 /* 305 * Make sure all memory writes to the Free List queue are 306 * committed before we tell the hardware about them. 307 */ 308 wmb(); 309 310 /* 311 * If we don't have access to the new User Doorbell (T5+), use 312 * the old doorbell mechanism; otherwise use the new BAR2 313 * mechanism. 314 */ 315 if (unlikely(!q->bar2_addr)) { 316 u32 reg = is_pf4(adap) ? MYPF_REG(A_SGE_PF_KDOORBELL) : 317 T4VF_SGE_BASE_ADDR + 318 A_SGE_VF_KDOORBELL; 319 320 t4_write_reg_relaxed(adap, reg, 321 val | V_QID(q->cntxt_id)); 322 } else { 323 writel_relaxed(val | V_QID(q->bar2_qid), 324 (void *)((uintptr_t)q->bar2_addr + 325 SGE_UDB_KDOORBELL)); 326 327 /* 328 * This Write memory Barrier will force the write to 329 * the User Doorbell area to be flushed. 330 */ 331 wmb(); 332 } 333 q->pend_cred &= 7; 334 } 335 } 336 337 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, void *buf, 338 dma_addr_t mapping) 339 { 340 sd->buf = buf; 341 sd->dma_addr = mapping; /* includes size low bits */ 342 } 343 344 /** 345 * refill_fl_usembufs - refill an SGE Rx buffer ring with mbufs 346 * @adap: the adapter 347 * @q: the ring to refill 348 * @n: the number of new buffers to allocate 349 * 350 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 351 * allocated with the supplied gfp flags. The caller must assure that 352 * @n does not exceed the queue's capacity. If afterwards the queue is 353 * found critically low mark it as starving in the bitmap of starving FLs. 354 * 355 * Returns the number of buffers allocated. 356 */ 357 static unsigned int refill_fl_usembufs(struct adapter *adap, struct sge_fl *q, 358 int n) 359 { 360 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl); 361 unsigned int cred = q->avail; 362 __be64 *d = &q->desc[q->pidx]; 363 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 364 unsigned int buf_size_idx = RX_SMALL_MTU_BUF; 365 struct rte_mbuf *buf_bulk[n]; 366 int ret, i; 367 struct rte_pktmbuf_pool_private *mbp_priv; 368 369 /* Use jumbo mtu buffers if mbuf data room size can fit jumbo data. */ 370 mbp_priv = rte_mempool_get_priv(rxq->rspq.mb_pool); 371 if ((mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM) >= 9000) 372 buf_size_idx = RX_LARGE_MTU_BUF; 373 374 ret = rte_mempool_get_bulk(rxq->rspq.mb_pool, (void *)buf_bulk, n); 375 if (unlikely(ret != 0)) { 376 dev_debug(adap, "%s: failed to allocated fl entries in bulk ..\n", 377 __func__); 378 q->alloc_failed++; 379 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++; 380 goto out; 381 } 382 383 for (i = 0; i < n; i++) { 384 struct rte_mbuf *mbuf = buf_bulk[i]; 385 dma_addr_t mapping; 386 387 if (!mbuf) { 388 dev_debug(adap, "%s: mbuf alloc failed\n", __func__); 389 q->alloc_failed++; 390 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++; 391 goto out; 392 } 393 394 rte_mbuf_refcnt_set(mbuf, 1); 395 mbuf->data_off = 396 (uint16_t)((char *) 397 RTE_PTR_ALIGN((char *)mbuf->buf_addr + 398 RTE_PKTMBUF_HEADROOM, 399 adap->sge.fl_align) - 400 (char *)mbuf->buf_addr); 401 mbuf->next = NULL; 402 mbuf->nb_segs = 1; 403 mbuf->port = rxq->rspq.port_id; 404 405 mapping = (dma_addr_t)RTE_ALIGN(mbuf->buf_iova + 406 mbuf->data_off, 407 adap->sge.fl_align); 408 mapping |= buf_size_idx; 409 *d++ = cpu_to_be64(mapping); 410 set_rx_sw_desc(sd, mbuf, mapping); 411 sd++; 412 413 q->avail++; 414 if (++q->pidx == q->size) { 415 q->pidx = 0; 416 sd = q->sdesc; 417 d = q->desc; 418 } 419 } 420 421 out: cred = q->avail - cred; 422 q->pend_cred += cred; 423 ring_fl_db(adap, q); 424 425 if (unlikely(fl_starving(adap, q))) { 426 /* 427 * Make sure data has been written to free list 428 */ 429 wmb(); 430 q->low++; 431 } 432 433 return cred; 434 } 435 436 /** 437 * refill_fl - refill an SGE Rx buffer ring with mbufs 438 * @adap: the adapter 439 * @q: the ring to refill 440 * @n: the number of new buffers to allocate 441 * 442 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 443 * allocated with the supplied gfp flags. The caller must assure that 444 * @n does not exceed the queue's capacity. Returns the number of buffers 445 * allocated. 446 */ 447 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n) 448 { 449 return refill_fl_usembufs(adap, q, n); 450 } 451 452 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 453 { 454 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail)); 455 } 456 457 /* 458 * Return the number of reclaimable descriptors in a Tx queue. 459 */ 460 static inline int reclaimable(const struct sge_txq *q) 461 { 462 int hw_cidx = ntohs(q->stat->cidx); 463 464 hw_cidx -= q->cidx; 465 if (hw_cidx < 0) 466 return hw_cidx + q->size; 467 return hw_cidx; 468 } 469 470 /** 471 * reclaim_completed_tx - reclaims completed Tx descriptors 472 * @q: the Tx queue to reclaim completed descriptors from 473 * 474 * Reclaims Tx descriptors that the SGE has indicated it has processed. 475 */ 476 void reclaim_completed_tx(struct sge_txq *q) 477 { 478 unsigned int avail = reclaimable(q); 479 480 do { 481 /* reclaim as much as possible */ 482 reclaim_tx_desc(q, avail); 483 q->in_use -= avail; 484 avail = reclaimable(q); 485 } while (avail); 486 } 487 488 /** 489 * sgl_len - calculates the size of an SGL of the given capacity 490 * @n: the number of SGL entries 491 * 492 * Calculates the number of flits needed for a scatter/gather list that 493 * can hold the given number of entries. 494 */ 495 static inline unsigned int sgl_len(unsigned int n) 496 { 497 /* 498 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 499 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 500 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 501 * repeated sequences of { Length[i], Length[i+1], Address[i], 502 * Address[i+1] } (this ensures that all addresses are on 64-bit 503 * boundaries). If N is even, then Length[N+1] should be set to 0 and 504 * Address[N+1] is omitted. 505 * 506 * The following calculation incorporates all of the above. It's 507 * somewhat hard to follow but, briefly: the "+2" accounts for the 508 * first two flits which include the DSGL header, Length0 and 509 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 510 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 511 * finally the "+((n-1)&1)" adds the one remaining flit needed if 512 * (n-1) is odd ... 513 */ 514 n--; 515 return (3 * n) / 2 + (n & 1) + 2; 516 } 517 518 /** 519 * flits_to_desc - returns the num of Tx descriptors for the given flits 520 * @n: the number of flits 521 * 522 * Returns the number of Tx descriptors needed for the supplied number 523 * of flits. 524 */ 525 static inline unsigned int flits_to_desc(unsigned int n) 526 { 527 return DIV_ROUND_UP(n, 8); 528 } 529 530 /** 531 * is_eth_imm - can an Ethernet packet be sent as immediate data? 532 * @m: the packet 533 * 534 * Returns whether an Ethernet packet is small enough to fit as 535 * immediate data. Return value corresponds to the headroom required. 536 */ 537 static inline int is_eth_imm(const struct rte_mbuf *m) 538 { 539 unsigned int hdrlen = (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) ? 540 sizeof(struct cpl_tx_pkt_lso_core) : 0; 541 542 hdrlen += sizeof(struct cpl_tx_pkt); 543 if (m->pkt_len <= MAX_IMM_TX_PKT_LEN - hdrlen) 544 return hdrlen; 545 546 return 0; 547 } 548 549 /** 550 * calc_tx_flits - calculate the number of flits for a packet Tx WR 551 * @m: the packet 552 * @adap: adapter structure pointer 553 * 554 * Returns the number of flits needed for a Tx WR for the given Ethernet 555 * packet, including the needed WR and CPL headers. 556 */ 557 static inline unsigned int calc_tx_flits(const struct rte_mbuf *m, 558 struct adapter *adap) 559 { 560 size_t wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkt_wr) : 561 sizeof(struct fw_eth_tx_pkt_vm_wr); 562 unsigned int flits; 563 int hdrlen; 564 565 /* 566 * If the mbuf is small enough, we can pump it out as a work request 567 * with only immediate data. In that case we just have to have the 568 * TX Packet header plus the mbuf data in the Work Request. 569 */ 570 571 hdrlen = is_eth_imm(m); 572 if (hdrlen) 573 return DIV_ROUND_UP(m->pkt_len + hdrlen, sizeof(__be64)); 574 575 /* 576 * Otherwise, we're going to have to construct a Scatter gather list 577 * of the mbuf body and fragments. We also include the flits necessary 578 * for the TX Packet Work Request and CPL. We always have a firmware 579 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 580 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 581 * message or, if we're doing a Large Send Offload, an LSO CPL message 582 * with an embedded TX Packet Write CPL message. 583 */ 584 flits = sgl_len(m->nb_segs); 585 if (m->tso_segsz) 586 flits += (wr_size + sizeof(struct cpl_tx_pkt_lso_core) + 587 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 588 else 589 flits += (wr_size + 590 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 591 return flits; 592 } 593 594 /** 595 * write_sgl - populate a scatter/gather list for a packet 596 * @mbuf: the packet 597 * @q: the Tx queue we are writing into 598 * @sgl: starting location for writing the SGL 599 * @end: points right after the end of the SGL 600 * @start: start offset into mbuf main-body data to include in the SGL 601 * @addr: address of mapped region 602 * 603 * Generates a scatter/gather list for the buffers that make up a packet. 604 * The caller must provide adequate space for the SGL that will be written. 605 * The SGL includes all of the packet's page fragments and the data in its 606 * main body except for the first @start bytes. @sgl must be 16-byte 607 * aligned and within a Tx descriptor with available space. @end points 608 * write after the end of the SGL but does not account for any potential 609 * wrap around, i.e., @end > @sgl. 610 */ 611 static void write_sgl(struct rte_mbuf *mbuf, struct sge_txq *q, 612 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 613 const dma_addr_t *addr) 614 { 615 unsigned int i, len; 616 struct ulptx_sge_pair *to; 617 struct rte_mbuf *m = mbuf; 618 unsigned int nfrags = m->nb_segs; 619 struct ulptx_sge_pair buf[nfrags / 2]; 620 621 len = m->data_len - start; 622 sgl->len0 = htonl(len); 623 sgl->addr0 = rte_cpu_to_be_64(addr[0]); 624 625 sgl->cmd_nsge = htonl(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 626 V_ULPTX_NSGE(nfrags)); 627 if (likely(--nfrags == 0)) 628 return; 629 /* 630 * Most of the complexity below deals with the possibility we hit the 631 * end of the queue in the middle of writing the SGL. For this case 632 * only we create the SGL in a temporary buffer and then copy it. 633 */ 634 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 635 636 for (i = 0; nfrags >= 2; nfrags -= 2, to++) { 637 m = m->next; 638 to->len[0] = rte_cpu_to_be_32(m->data_len); 639 to->addr[0] = rte_cpu_to_be_64(addr[++i]); 640 m = m->next; 641 to->len[1] = rte_cpu_to_be_32(m->data_len); 642 to->addr[1] = rte_cpu_to_be_64(addr[++i]); 643 } 644 if (nfrags) { 645 m = m->next; 646 to->len[0] = rte_cpu_to_be_32(m->data_len); 647 to->len[1] = rte_cpu_to_be_32(0); 648 to->addr[0] = rte_cpu_to_be_64(addr[i + 1]); 649 } 650 if (unlikely((u8 *)end > (u8 *)q->stat)) { 651 unsigned int part0 = RTE_PTR_DIFF((u8 *)q->stat, 652 (u8 *)sgl->sge); 653 unsigned int part1; 654 655 if (likely(part0)) 656 memcpy(sgl->sge, buf, part0); 657 part1 = RTE_PTR_DIFF((u8 *)end, (u8 *)q->stat); 658 rte_memcpy(q->desc, RTE_PTR_ADD((u8 *)buf, part0), part1); 659 end = RTE_PTR_ADD((void *)q->desc, part1); 660 } 661 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 662 *(u64 *)end = 0; 663 } 664 665 #define IDXDIFF(head, tail, wrap) \ 666 ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head)) 667 668 #define Q_IDXDIFF(q, idx) IDXDIFF((q)->pidx, (q)->idx, (q)->size) 669 #define R_IDXDIFF(q, idx) IDXDIFF((q)->cidx, (q)->idx, (q)->size) 670 671 #define PIDXDIFF(head, tail, wrap) \ 672 ((tail) >= (head) ? (tail) - (head) : (wrap) - (head) + (tail)) 673 #define P_IDXDIFF(q, idx) PIDXDIFF((q)->cidx, idx, (q)->size) 674 675 /** 676 * ring_tx_db - ring a Tx queue's doorbell 677 * @adap: the adapter 678 * @q: the Tx queue 679 * @n: number of new descriptors to give to HW 680 * 681 * Ring the doorbell for a Tx queue. 682 */ 683 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q) 684 { 685 int n = Q_IDXDIFF(q, dbidx); 686 687 /* 688 * Make sure that all writes to the TX Descriptors are committed 689 * before we tell the hardware about them. 690 */ 691 rte_wmb(); 692 693 /* 694 * If we don't have access to the new User Doorbell (T5+), use the old 695 * doorbell mechanism; otherwise use the new BAR2 mechanism. 696 */ 697 if (unlikely(!q->bar2_addr)) { 698 u32 val = V_PIDX(n); 699 700 /* 701 * For T4 we need to participate in the Doorbell Recovery 702 * mechanism. 703 */ 704 if (!q->db_disabled) 705 t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL), 706 V_QID(q->cntxt_id) | val); 707 else 708 q->db_pidx_inc += n; 709 q->db_pidx = q->pidx; 710 } else { 711 u32 val = V_PIDX_T5(n); 712 713 /* 714 * T4 and later chips share the same PIDX field offset within 715 * the doorbell, but T5 and later shrank the field in order to 716 * gain a bit for Doorbell Priority. The field was absurdly 717 * large in the first place (14 bits) so we just use the T5 718 * and later limits and warn if a Queue ID is too large. 719 */ 720 WARN_ON(val & F_DBPRIO); 721 722 writel(val | V_QID(q->bar2_qid), 723 (void *)((uintptr_t)q->bar2_addr + SGE_UDB_KDOORBELL)); 724 725 /* 726 * This Write Memory Barrier will force the write to the User 727 * Doorbell area to be flushed. This is needed to prevent 728 * writes on different CPUs for the same queue from hitting 729 * the adapter out of order. This is required when some Work 730 * Requests take the Write Combine Gather Buffer path (user 731 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 732 * take the traditional path where we simply increment the 733 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 734 * hardware DMA read the actual Work Request. 735 */ 736 rte_wmb(); 737 } 738 q->dbidx = q->pidx; 739 } 740 741 /* 742 * Figure out what HW csum a packet wants and return the appropriate control 743 * bits. 744 */ 745 static u64 hwcsum(enum chip_type chip, const struct rte_mbuf *m) 746 { 747 int csum_type; 748 749 if (m->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) { 750 switch (m->ol_flags & RTE_MBUF_F_TX_L4_MASK) { 751 case RTE_MBUF_F_TX_TCP_CKSUM: 752 csum_type = TX_CSUM_TCPIP; 753 break; 754 case RTE_MBUF_F_TX_UDP_CKSUM: 755 csum_type = TX_CSUM_UDPIP; 756 break; 757 default: 758 goto nocsum; 759 } 760 } else { 761 goto nocsum; 762 } 763 764 if (likely(csum_type >= TX_CSUM_TCPIP)) { 765 u64 hdr_len = V_TXPKT_IPHDR_LEN(m->l3_len); 766 int eth_hdr_len = m->l2_len; 767 768 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 769 hdr_len |= V_TXPKT_ETHHDR_LEN(eth_hdr_len); 770 else 771 hdr_len |= V_T6_TXPKT_ETHHDR_LEN(eth_hdr_len); 772 return V_TXPKT_CSUM_TYPE(csum_type) | hdr_len; 773 } 774 nocsum: 775 /* 776 * unknown protocol, disable HW csum 777 * and hope a bad packet is detected 778 */ 779 return F_TXPKT_L4CSUM_DIS; 780 } 781 782 static inline void txq_advance(struct sge_txq *q, unsigned int n) 783 { 784 q->in_use += n; 785 q->pidx += n; 786 if (q->pidx >= q->size) 787 q->pidx -= q->size; 788 } 789 790 #define MAX_COALESCE_LEN 64000 791 792 static inline int wraps_around(struct sge_txq *q, int ndesc) 793 { 794 return (q->pidx + ndesc) > q->size ? 1 : 0; 795 } 796 797 static void tx_timer_cb(void *data) 798 { 799 struct adapter *adap = (struct adapter *)data; 800 struct sge_eth_txq *txq = &adap->sge.ethtxq[0]; 801 int i; 802 unsigned int coal_idx; 803 804 /* monitor any pending tx */ 805 for (i = 0; i < adap->sge.max_ethqsets; i++, txq++) { 806 if (t4_os_trylock(&txq->txq_lock)) { 807 coal_idx = txq->q.coalesce.idx; 808 if (coal_idx) { 809 if (coal_idx == txq->q.last_coal_idx && 810 txq->q.pidx == txq->q.last_pidx) { 811 ship_tx_pkt_coalesce_wr(adap, txq); 812 } else { 813 txq->q.last_coal_idx = coal_idx; 814 txq->q.last_pidx = txq->q.pidx; 815 } 816 } 817 t4_os_unlock(&txq->txq_lock); 818 } 819 } 820 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap); 821 } 822 823 /** 824 * ship_tx_pkt_coalesce_wr - finalizes and ships a coalesce WR 825 * @ adap: adapter structure 826 * @txq: tx queue 827 * 828 * writes the different fields of the pkts WR and sends it. 829 */ 830 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap, 831 struct sge_eth_txq *txq) 832 { 833 struct fw_eth_tx_pkts_vm_wr *vmwr; 834 const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) + 835 sizeof(vmwr->ethmacsrc) + 836 sizeof(vmwr->ethtype) + 837 sizeof(vmwr->vlantci)); 838 struct fw_eth_tx_pkts_wr *wr; 839 struct sge_txq *q = &txq->q; 840 unsigned int ndesc; 841 u32 wr_mid; 842 843 /* fill the pkts WR header */ 844 wr = (void *)&q->desc[q->pidx]; 845 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR)); 846 vmwr = (void *)&q->desc[q->pidx]; 847 848 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(q->coalesce.flits, 2)); 849 ndesc = flits_to_desc(q->coalesce.flits); 850 wr->equiq_to_len16 = htonl(wr_mid); 851 wr->plen = cpu_to_be16(q->coalesce.len); 852 wr->npkt = q->coalesce.idx; 853 wr->r3 = 0; 854 if (is_pf4(adap)) { 855 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR)); 856 wr->type = q->coalesce.type; 857 } else { 858 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR)); 859 vmwr->r4 = 0; 860 memcpy((void *)vmwr->ethmacdst, (void *)q->coalesce.ethmacdst, 861 fw_hdr_copy_len); 862 } 863 864 /* zero out coalesce structure members */ 865 memset((void *)&q->coalesce, 0, sizeof(struct eth_coalesce)); 866 867 txq_advance(q, ndesc); 868 txq->stats.coal_wr++; 869 txq->stats.coal_pkts += wr->npkt; 870 871 if (Q_IDXDIFF(q, equeidx) >= q->size / 2) { 872 q->equeidx = q->pidx; 873 wr_mid |= F_FW_WR_EQUEQ; 874 wr->equiq_to_len16 = htonl(wr_mid); 875 } 876 ring_tx_db(adap, q); 877 } 878 879 /** 880 * should_tx_packet_coalesce - decides whether to coalesce an mbuf or not 881 * @txq: tx queue where the mbuf is sent 882 * @mbuf: mbuf to be sent 883 * @nflits: return value for number of flits needed 884 * @adap: adapter structure 885 * 886 * This function decides if a packet should be coalesced or not. 887 */ 888 static inline int should_tx_packet_coalesce(struct sge_eth_txq *txq, 889 struct rte_mbuf *mbuf, 890 unsigned int *nflits, 891 struct adapter *adap) 892 { 893 struct fw_eth_tx_pkts_vm_wr *wr; 894 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) + 895 sizeof(wr->ethmacsrc) + 896 sizeof(wr->ethtype) + 897 sizeof(wr->vlantci)); 898 struct sge_txq *q = &txq->q; 899 unsigned int flits, ndesc; 900 unsigned char type = 0; 901 int credits, wr_size; 902 903 /* use coal WR type 1 when no frags are present */ 904 type = (mbuf->nb_segs == 1) ? 1 : 0; 905 if (!is_pf4(adap)) { 906 if (!type) 907 return 0; 908 909 if (q->coalesce.idx && memcmp((void *)q->coalesce.ethmacdst, 910 rte_pktmbuf_mtod(mbuf, void *), 911 fw_hdr_copy_len)) 912 ship_tx_pkt_coalesce_wr(adap, txq); 913 } 914 915 if (unlikely(type != q->coalesce.type && q->coalesce.idx)) 916 ship_tx_pkt_coalesce_wr(adap, txq); 917 918 /* calculate the number of flits required for coalescing this packet 919 * without the 2 flits of the WR header. These are added further down 920 * if we are just starting in new PKTS WR. sgl_len doesn't account for 921 * the possible 16 bytes alignment ULP TX commands so we do it here. 922 */ 923 flits = (sgl_len(mbuf->nb_segs) + 1) & ~1U; 924 if (type == 0) 925 flits += (sizeof(struct ulp_txpkt) + 926 sizeof(struct ulptx_idata)) / sizeof(__be64); 927 flits += sizeof(struct cpl_tx_pkt_core) / sizeof(__be64); 928 *nflits = flits; 929 930 /* If coalescing is on, the mbuf is added to a pkts WR */ 931 if (q->coalesce.idx) { 932 ndesc = DIV_ROUND_UP(q->coalesce.flits + flits, 8); 933 credits = txq_avail(q) - ndesc; 934 935 /* If we are wrapping or this is last mbuf then, send the 936 * already coalesced mbufs and let the non-coalesce pass 937 * handle the mbuf. 938 */ 939 if (unlikely(credits < 0 || wraps_around(q, ndesc))) { 940 ship_tx_pkt_coalesce_wr(adap, txq); 941 return 0; 942 } 943 944 /* If the max coalesce len or the max WR len is reached 945 * ship the WR and keep coalescing on. 946 */ 947 if (unlikely((q->coalesce.len + mbuf->pkt_len > 948 MAX_COALESCE_LEN) || 949 (q->coalesce.flits + flits > 950 q->coalesce.max))) { 951 ship_tx_pkt_coalesce_wr(adap, txq); 952 goto new; 953 } 954 return 1; 955 } 956 957 new: 958 /* start a new pkts WR, the WR header is not filled below */ 959 wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkts_wr) : 960 sizeof(struct fw_eth_tx_pkts_vm_wr); 961 flits += wr_size / sizeof(__be64); 962 ndesc = flits_to_desc(q->coalesce.flits + flits); 963 credits = txq_avail(q) - ndesc; 964 965 if (unlikely(credits < 0 || wraps_around(q, ndesc))) 966 return 0; 967 q->coalesce.flits += wr_size / sizeof(__be64); 968 q->coalesce.type = type; 969 q->coalesce.ptr = (unsigned char *)&q->desc[q->pidx] + 970 q->coalesce.flits * sizeof(__be64); 971 if (!is_pf4(adap)) 972 memcpy((void *)q->coalesce.ethmacdst, 973 rte_pktmbuf_mtod(mbuf, void *), fw_hdr_copy_len); 974 return 1; 975 } 976 977 /** 978 * tx_do_packet_coalesce - add an mbuf to a coalesce WR 979 * @txq: sge_eth_txq used send the mbuf 980 * @mbuf: mbuf to be sent 981 * @flits: flits needed for this mbuf 982 * @adap: adapter structure 983 * @pi: port_info structure 984 * @addr: mapped address of the mbuf 985 * 986 * Adds an mbuf to be sent as part of a coalesce WR by filling a 987 * ulp_tx_pkt command, ulp_tx_sc_imm command, cpl message and 988 * ulp_tx_sc_dsgl command. 989 */ 990 static inline int tx_do_packet_coalesce(struct sge_eth_txq *txq, 991 struct rte_mbuf *mbuf, 992 int flits, struct adapter *adap, 993 const struct port_info *pi, 994 dma_addr_t *addr, uint16_t nb_pkts) 995 { 996 u64 cntrl, *end; 997 struct sge_txq *q = &txq->q; 998 struct ulp_txpkt *mc; 999 struct ulptx_idata *sc_imm; 1000 struct cpl_tx_pkt_core *cpl; 1001 struct tx_sw_desc *sd; 1002 unsigned int idx = q->coalesce.idx, len = mbuf->pkt_len; 1003 1004 if (q->coalesce.type == 0) { 1005 mc = (struct ulp_txpkt *)q->coalesce.ptr; 1006 mc->cmd_dest = htonl(V_ULPTX_CMD(4) | V_ULP_TXPKT_DEST(0) | 1007 V_ULP_TXPKT_FID(adap->sge.fw_evtq.cntxt_id) | 1008 F_ULP_TXPKT_RO); 1009 mc->len = htonl(DIV_ROUND_UP(flits, 2)); 1010 sc_imm = (struct ulptx_idata *)(mc + 1); 1011 sc_imm->cmd_more = htonl(V_ULPTX_CMD(ULP_TX_SC_IMM) | 1012 F_ULP_TX_SC_MORE); 1013 sc_imm->len = htonl(sizeof(*cpl)); 1014 end = (u64 *)mc + flits; 1015 cpl = (struct cpl_tx_pkt_core *)(sc_imm + 1); 1016 } else { 1017 end = (u64 *)q->coalesce.ptr + flits; 1018 cpl = (struct cpl_tx_pkt_core *)q->coalesce.ptr; 1019 } 1020 1021 /* update coalesce structure for this txq */ 1022 q->coalesce.flits += flits; 1023 q->coalesce.ptr += flits * sizeof(__be64); 1024 q->coalesce.len += mbuf->pkt_len; 1025 1026 /* fill the cpl message, same as in t4_eth_xmit, this should be kept 1027 * similar to t4_eth_xmit 1028 */ 1029 if (mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) { 1030 cntrl = hwcsum(adap->params.chip, mbuf) | 1031 F_TXPKT_IPCSUM_DIS; 1032 txq->stats.tx_cso++; 1033 } else { 1034 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS; 1035 } 1036 1037 if (mbuf->ol_flags & RTE_MBUF_F_TX_VLAN) { 1038 txq->stats.vlan_ins++; 1039 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(mbuf->vlan_tci); 1040 } 1041 1042 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT)); 1043 if (is_pf4(adap)) 1044 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) | 1045 V_TXPKT_PF(adap->pf)); 1046 else 1047 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id)); 1048 cpl->pack = htons(0); 1049 cpl->len = htons(len); 1050 cpl->ctrl1 = cpu_to_be64(cntrl); 1051 write_sgl(mbuf, q, (struct ulptx_sgl *)(cpl + 1), end, 0, addr); 1052 txq->stats.pkts++; 1053 txq->stats.tx_bytes += len; 1054 1055 sd = &q->sdesc[q->pidx + (idx >> 1)]; 1056 if (!(idx & 1)) { 1057 if (sd->coalesce.idx) { 1058 int i; 1059 1060 for (i = 0; i < sd->coalesce.idx; i++) { 1061 rte_pktmbuf_free(sd->coalesce.mbuf[i]); 1062 sd->coalesce.mbuf[i] = NULL; 1063 } 1064 } 1065 } 1066 1067 /* store pointers to the mbuf and the sgl used in free_tx_desc. 1068 * each tx desc can hold two pointers corresponding to the value 1069 * of ETH_COALESCE_PKT_PER_DESC 1070 */ 1071 sd->coalesce.mbuf[idx & 1] = mbuf; 1072 sd->coalesce.sgl[idx & 1] = (struct ulptx_sgl *)(cpl + 1); 1073 sd->coalesce.idx = (idx & 1) + 1; 1074 1075 /* Send the coalesced work request, only if max reached. However, 1076 * if lower latency is preferred over throughput, then don't wait 1077 * for coalescing the next Tx burst and send the packets now. 1078 */ 1079 q->coalesce.idx++; 1080 if (q->coalesce.idx == adap->params.max_tx_coalesce_num || 1081 (adap->devargs.tx_mode_latency && q->coalesce.idx >= nb_pkts)) 1082 ship_tx_pkt_coalesce_wr(adap, txq); 1083 1084 return 0; 1085 } 1086 1087 /** 1088 * t4_eth_xmit - add a packet to an Ethernet Tx queue 1089 * @txq: the egress queue 1090 * @mbuf: the packet 1091 * 1092 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1093 */ 1094 int t4_eth_xmit(struct sge_eth_txq *txq, struct rte_mbuf *mbuf, 1095 uint16_t nb_pkts) 1096 { 1097 const struct port_info *pi; 1098 struct cpl_tx_pkt_lso_core *lso; 1099 struct adapter *adap; 1100 struct rte_mbuf *m = mbuf; 1101 struct fw_eth_tx_pkt_wr *wr; 1102 struct fw_eth_tx_pkt_vm_wr *vmwr; 1103 struct cpl_tx_pkt_core *cpl; 1104 struct tx_sw_desc *d; 1105 dma_addr_t addr[m->nb_segs]; 1106 unsigned int flits, ndesc, cflits; 1107 int l3hdr_len, l4hdr_len, eth_xtra_len; 1108 int len, last_desc; 1109 int credits; 1110 u32 wr_mid; 1111 u64 cntrl, *end; 1112 bool v6; 1113 u32 max_pkt_len; 1114 1115 /* Reject xmit if queue is stopped */ 1116 if (unlikely(txq->flags & EQ_STOPPED)) 1117 return -(EBUSY); 1118 1119 /* 1120 * The chip min packet length is 10 octets but play safe and reject 1121 * anything shorter than an Ethernet header. 1122 */ 1123 if (unlikely(m->pkt_len < RTE_ETHER_HDR_LEN)) { 1124 out_free: 1125 rte_pktmbuf_free(m); 1126 return 0; 1127 } 1128 1129 max_pkt_len = txq->data->mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN; 1130 if ((!(m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) && 1131 (unlikely(m->pkt_len > max_pkt_len))) 1132 goto out_free; 1133 1134 pi = txq->data->dev_private; 1135 adap = pi->adapter; 1136 1137 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS; 1138 /* align the end of coalesce WR to a 512 byte boundary */ 1139 txq->q.coalesce.max = (8 - (txq->q.pidx & 7)) * 8; 1140 1141 if (!((m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) || 1142 m->pkt_len > RTE_ETHER_MAX_LEN)) { 1143 if (should_tx_packet_coalesce(txq, mbuf, &cflits, adap)) { 1144 if (unlikely(map_mbuf(mbuf, addr) < 0)) { 1145 dev_warn(adap, "%s: mapping err for coalesce\n", 1146 __func__); 1147 txq->stats.mapping_err++; 1148 goto out_free; 1149 } 1150 return tx_do_packet_coalesce(txq, mbuf, cflits, adap, 1151 pi, addr, nb_pkts); 1152 } else { 1153 return -EBUSY; 1154 } 1155 } 1156 1157 if (txq->q.coalesce.idx) 1158 ship_tx_pkt_coalesce_wr(adap, txq); 1159 1160 flits = calc_tx_flits(m, adap); 1161 ndesc = flits_to_desc(flits); 1162 credits = txq_avail(&txq->q) - ndesc; 1163 1164 if (unlikely(credits < 0)) { 1165 dev_debug(adap, "%s: Tx ring %u full; credits = %d\n", 1166 __func__, txq->q.cntxt_id, credits); 1167 return -EBUSY; 1168 } 1169 1170 if (unlikely(map_mbuf(m, addr) < 0)) { 1171 txq->stats.mapping_err++; 1172 goto out_free; 1173 } 1174 1175 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(flits, 2)); 1176 if (Q_IDXDIFF(&txq->q, equeidx) >= 64) { 1177 txq->q.equeidx = txq->q.pidx; 1178 wr_mid |= F_FW_WR_EQUEQ; 1179 } 1180 1181 wr = (void *)&txq->q.desc[txq->q.pidx]; 1182 vmwr = (void *)&txq->q.desc[txq->q.pidx]; 1183 wr->equiq_to_len16 = htonl(wr_mid); 1184 if (is_pf4(adap)) { 1185 wr->r3 = rte_cpu_to_be_64(0); 1186 end = (u64 *)wr + flits; 1187 } else { 1188 const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) + 1189 sizeof(vmwr->ethmacsrc) + 1190 sizeof(vmwr->ethtype) + 1191 sizeof(vmwr->vlantci)); 1192 1193 vmwr->r3[0] = rte_cpu_to_be_32(0); 1194 vmwr->r3[1] = rte_cpu_to_be_32(0); 1195 memcpy((void *)vmwr->ethmacdst, rte_pktmbuf_mtod(m, void *), 1196 fw_hdr_copy_len); 1197 end = (u64 *)vmwr + flits; 1198 } 1199 1200 len = 0; 1201 len += sizeof(*cpl); 1202 1203 /* Coalescing skipped and we send through normal path */ 1204 if (!(m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) { 1205 wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ? 1206 FW_ETH_TX_PKT_WR : 1207 FW_ETH_TX_PKT_VM_WR) | 1208 V_FW_WR_IMMDLEN(len)); 1209 if (is_pf4(adap)) 1210 cpl = (void *)(wr + 1); 1211 else 1212 cpl = (void *)(vmwr + 1); 1213 if (m->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) { 1214 cntrl = hwcsum(adap->params.chip, m) | 1215 F_TXPKT_IPCSUM_DIS; 1216 txq->stats.tx_cso++; 1217 } 1218 } else { 1219 if (is_pf4(adap)) 1220 lso = (void *)(wr + 1); 1221 else 1222 lso = (void *)(vmwr + 1); 1223 v6 = (m->ol_flags & RTE_MBUF_F_TX_IPV6) != 0; 1224 l3hdr_len = m->l3_len; 1225 l4hdr_len = m->l4_len; 1226 eth_xtra_len = m->l2_len - RTE_ETHER_HDR_LEN; 1227 len += sizeof(*lso); 1228 wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ? 1229 FW_ETH_TX_PKT_WR : 1230 FW_ETH_TX_PKT_VM_WR) | 1231 V_FW_WR_IMMDLEN(len)); 1232 lso->lso_ctrl = htonl(V_LSO_OPCODE(CPL_TX_PKT_LSO) | 1233 F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE | 1234 V_LSO_IPV6(v6) | 1235 V_LSO_ETHHDR_LEN(eth_xtra_len / 4) | 1236 V_LSO_IPHDR_LEN(l3hdr_len / 4) | 1237 V_LSO_TCPHDR_LEN(l4hdr_len / 4)); 1238 lso->ipid_ofst = htons(0); 1239 lso->mss = htons(m->tso_segsz); 1240 lso->seqno_offset = htonl(0); 1241 if (is_t4(adap->params.chip)) 1242 lso->len = htonl(m->pkt_len); 1243 else 1244 lso->len = htonl(V_LSO_T5_XFER_SIZE(m->pkt_len)); 1245 cpl = (void *)(lso + 1); 1246 1247 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1248 cntrl = V_TXPKT_ETHHDR_LEN(eth_xtra_len); 1249 else 1250 cntrl = V_T6_TXPKT_ETHHDR_LEN(eth_xtra_len); 1251 1252 cntrl |= V_TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : 1253 TX_CSUM_TCPIP) | 1254 V_TXPKT_IPHDR_LEN(l3hdr_len); 1255 txq->stats.tso++; 1256 txq->stats.tx_cso += m->tso_segsz; 1257 } 1258 1259 if (m->ol_flags & RTE_MBUF_F_TX_VLAN) { 1260 txq->stats.vlan_ins++; 1261 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->vlan_tci); 1262 } 1263 1264 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT)); 1265 if (is_pf4(adap)) 1266 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) | 1267 V_TXPKT_PF(adap->pf)); 1268 else 1269 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id) | 1270 V_TXPKT_PF(0)); 1271 1272 cpl->pack = htons(0); 1273 cpl->len = htons(m->pkt_len); 1274 cpl->ctrl1 = cpu_to_be64(cntrl); 1275 1276 txq->stats.pkts++; 1277 txq->stats.tx_bytes += m->pkt_len; 1278 last_desc = txq->q.pidx + ndesc - 1; 1279 if (last_desc >= (int)txq->q.size) 1280 last_desc -= txq->q.size; 1281 1282 d = &txq->q.sdesc[last_desc]; 1283 if (d->coalesce.idx) { 1284 int i; 1285 1286 for (i = 0; i < d->coalesce.idx; i++) { 1287 rte_pktmbuf_free(d->coalesce.mbuf[i]); 1288 d->coalesce.mbuf[i] = NULL; 1289 } 1290 d->coalesce.idx = 0; 1291 } 1292 write_sgl(m, &txq->q, (struct ulptx_sgl *)(cpl + 1), end, 0, 1293 addr); 1294 txq->q.sdesc[last_desc].mbuf = m; 1295 txq->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); 1296 txq_advance(&txq->q, ndesc); 1297 ring_tx_db(adap, &txq->q); 1298 return 0; 1299 } 1300 1301 /** 1302 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1303 * @q: the SGE control Tx queue 1304 * 1305 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1306 * that send only immediate data (presently just the control queues) and 1307 * thus do not have any mbufs to release. 1308 */ 1309 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1310 { 1311 int hw_cidx = ntohs(q->stat->cidx); 1312 int reclaim = hw_cidx - q->cidx; 1313 1314 if (reclaim < 0) 1315 reclaim += q->size; 1316 1317 q->in_use -= reclaim; 1318 q->cidx = hw_cidx; 1319 } 1320 1321 /** 1322 * is_imm - check whether a packet can be sent as immediate data 1323 * @mbuf: the packet 1324 * 1325 * Returns true if a packet can be sent as a WR with immediate data. 1326 */ 1327 static inline int is_imm(const struct rte_mbuf *mbuf) 1328 { 1329 return mbuf->pkt_len <= MAX_CTRL_WR_LEN; 1330 } 1331 1332 /** 1333 * inline_tx_mbuf: inline a packet's data into TX descriptors 1334 * @q: the TX queue where the packet will be inlined 1335 * @from: pointer to data portion of packet 1336 * @to: pointer after cpl where data has to be inlined 1337 * @len: length of data to inline 1338 * 1339 * Inline a packet's contents directly to TX descriptors, starting at 1340 * the given position within the TX DMA ring. 1341 * Most of the complexity of this operation is dealing with wrap arounds 1342 * in the middle of the packet we want to inline. 1343 */ 1344 static void inline_tx_mbuf(const struct sge_txq *q, caddr_t from, caddr_t *to, 1345 int len) 1346 { 1347 int left = RTE_PTR_DIFF(q->stat, *to); 1348 1349 if (likely((uintptr_t)*to + len <= (uintptr_t)q->stat)) { 1350 rte_memcpy(*to, from, len); 1351 *to = RTE_PTR_ADD(*to, len); 1352 } else { 1353 rte_memcpy(*to, from, left); 1354 from = RTE_PTR_ADD(from, left); 1355 left = len - left; 1356 rte_memcpy((void *)q->desc, from, left); 1357 *to = RTE_PTR_ADD((void *)q->desc, left); 1358 } 1359 } 1360 1361 /** 1362 * ctrl_xmit - send a packet through an SGE control Tx queue 1363 * @q: the control queue 1364 * @mbuf: the packet 1365 * 1366 * Send a packet through an SGE control Tx queue. Packets sent through 1367 * a control queue must fit entirely as immediate data. 1368 */ 1369 static int ctrl_xmit(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf) 1370 { 1371 unsigned int ndesc; 1372 struct fw_wr_hdr *wr; 1373 caddr_t dst; 1374 1375 if (unlikely(!is_imm(mbuf))) { 1376 WARN_ON(1); 1377 rte_pktmbuf_free(mbuf); 1378 return -1; 1379 } 1380 1381 reclaim_completed_tx_imm(&q->q); 1382 ndesc = DIV_ROUND_UP(mbuf->pkt_len, sizeof(struct tx_desc)); 1383 t4_os_lock(&q->ctrlq_lock); 1384 1385 q->full = txq_avail(&q->q) < ndesc ? 1 : 0; 1386 if (unlikely(q->full)) { 1387 t4_os_unlock(&q->ctrlq_lock); 1388 return -1; 1389 } 1390 1391 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1392 dst = (void *)wr; 1393 inline_tx_mbuf(&q->q, rte_pktmbuf_mtod(mbuf, caddr_t), 1394 &dst, mbuf->data_len); 1395 1396 txq_advance(&q->q, ndesc); 1397 if (unlikely(txq_avail(&q->q) < 64)) 1398 wr->lo |= htonl(F_FW_WR_EQUEQ); 1399 1400 q->txp++; 1401 1402 ring_tx_db(q->adapter, &q->q); 1403 t4_os_unlock(&q->ctrlq_lock); 1404 1405 rte_pktmbuf_free(mbuf); 1406 return 0; 1407 } 1408 1409 /** 1410 * t4_mgmt_tx - send a management message 1411 * @q: the control queue 1412 * @mbuf: the packet containing the management message 1413 * 1414 * Send a management message through control queue. 1415 */ 1416 int t4_mgmt_tx(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf) 1417 { 1418 return ctrl_xmit(q, mbuf); 1419 } 1420 1421 /** 1422 * alloc_ring - allocate resources for an SGE descriptor ring 1423 * @dev: the port associated with the queue 1424 * @z_name: memzone's name 1425 * @queue_id: queue index 1426 * @socket_id: preferred socket id for memory allocations 1427 * @nelem: the number of descriptors 1428 * @elem_size: the size of each descriptor 1429 * @stat_size: extra space in HW ring for status information 1430 * @sw_size: the size of the SW state associated with each ring element 1431 * @phys: the physical address of the allocated ring 1432 * @metadata: address of the array holding the SW state for the ring 1433 * 1434 * Allocates resources for an SGE descriptor ring, such as Tx queues, 1435 * free buffer lists, or response queues. Each SGE ring requires 1436 * space for its HW descriptors plus, optionally, space for the SW state 1437 * associated with each HW entry (the metadata). The function returns 1438 * three values: the virtual address for the HW ring (the return value 1439 * of the function), the bus address of the HW ring, and the address 1440 * of the SW ring. 1441 */ 1442 static void *alloc_ring(struct rte_eth_dev *dev, const char *z_name, 1443 uint16_t queue_id, int socket_id, size_t nelem, 1444 size_t elem_size, size_t stat_size, size_t sw_size, 1445 dma_addr_t *phys, void *metadata) 1446 { 1447 size_t len = CXGBE_MAX_RING_DESC_SIZE * elem_size + stat_size; 1448 char z_name_sw[RTE_MEMZONE_NAMESIZE]; 1449 const struct rte_memzone *tz; 1450 void *s = NULL; 1451 1452 snprintf(z_name_sw, sizeof(z_name_sw), "eth_p%d_q%d_%s_sw_ring", 1453 dev->data->port_id, queue_id, z_name); 1454 1455 dev_debug(adapter, "%s: nelem = %zu; elem_size = %zu; sw_size = %zu; " 1456 "stat_size = %zu; queue_id = %u; socket_id = %d; z_name = %s;" 1457 " z_name_sw = %s\n", __func__, nelem, elem_size, sw_size, 1458 stat_size, queue_id, socket_id, z_name, z_name_sw); 1459 1460 /* 1461 * Allocate TX/RX ring hardware descriptors. A memzone large enough to 1462 * handle the maximum ring size is allocated in order to allow for 1463 * resizing in later calls to the queue setup function. 1464 */ 1465 tz = rte_eth_dma_zone_reserve(dev, z_name, queue_id, len, 4096, 1466 socket_id); 1467 if (!tz) 1468 return NULL; 1469 1470 memset(tz->addr, 0, len); 1471 if (sw_size) { 1472 s = rte_zmalloc_socket(z_name_sw, nelem * sw_size, 1473 RTE_CACHE_LINE_SIZE, socket_id); 1474 1475 if (!s) { 1476 dev_err(adapter, "%s: failed to get sw_ring memory\n", 1477 __func__); 1478 return NULL; 1479 } 1480 } 1481 if (metadata) 1482 *(void **)metadata = s; 1483 1484 *phys = (uint64_t)tz->iova; 1485 return tz->addr; 1486 } 1487 1488 #define CXGB4_MSG_AN ((void *)1) 1489 1490 /** 1491 * rspq_next - advance to the next entry in a response queue 1492 * @q: the queue 1493 * 1494 * Updates the state of a response queue to advance it to the next entry. 1495 */ 1496 static inline void rspq_next(struct sge_rspq *q) 1497 { 1498 q->cur_desc = (const __be64 *)((const char *)q->cur_desc + q->iqe_len); 1499 if (unlikely(++q->cidx == q->size)) { 1500 q->cidx = 0; 1501 q->gen ^= 1; 1502 q->cur_desc = q->desc; 1503 } 1504 } 1505 1506 static inline void cxgbe_set_mbuf_info(struct rte_mbuf *pkt, uint32_t ptype, 1507 uint64_t ol_flags) 1508 { 1509 pkt->packet_type |= ptype; 1510 pkt->ol_flags |= ol_flags; 1511 } 1512 1513 static inline void cxgbe_fill_mbuf_info(struct adapter *adap, 1514 const struct cpl_rx_pkt *cpl, 1515 struct rte_mbuf *pkt) 1516 { 1517 bool csum_ok; 1518 u16 err_vec; 1519 1520 if (adap->params.tp.rx_pkt_encap) 1521 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec)); 1522 else 1523 err_vec = ntohs(cpl->err_vec); 1524 1525 csum_ok = cpl->csum_calc && !err_vec; 1526 1527 if (cpl->vlan_ex) 1528 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER_VLAN, 1529 RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED); 1530 else 1531 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER, 0); 1532 1533 if (cpl->l2info & htonl(F_RXF_IP)) 1534 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV4, 1535 csum_ok ? RTE_MBUF_F_RX_IP_CKSUM_GOOD : 1536 RTE_MBUF_F_RX_IP_CKSUM_BAD); 1537 else if (cpl->l2info & htonl(F_RXF_IP6)) 1538 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV6, 1539 csum_ok ? RTE_MBUF_F_RX_IP_CKSUM_GOOD : 1540 RTE_MBUF_F_RX_IP_CKSUM_BAD); 1541 1542 if (cpl->l2info & htonl(F_RXF_TCP)) 1543 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_TCP, 1544 csum_ok ? RTE_MBUF_F_RX_L4_CKSUM_GOOD : 1545 RTE_MBUF_F_RX_L4_CKSUM_BAD); 1546 else if (cpl->l2info & htonl(F_RXF_UDP)) 1547 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_UDP, 1548 csum_ok ? RTE_MBUF_F_RX_L4_CKSUM_GOOD : 1549 RTE_MBUF_F_RX_L4_CKSUM_BAD); 1550 } 1551 1552 /** 1553 * process_responses - process responses from an SGE response queue 1554 * @q: the ingress queue to process 1555 * @budget: how many responses can be processed in this round 1556 * @rx_pkts: mbuf to put the pkts 1557 * 1558 * Process responses from an SGE response queue up to the supplied budget. 1559 * Responses include received packets as well as control messages from FW 1560 * or HW. 1561 * 1562 * Additionally choose the interrupt holdoff time for the next interrupt 1563 * on this queue. If the system is under memory shortage use a fairly 1564 * long delay to help recovery. 1565 */ 1566 static int process_responses(struct sge_rspq *q, int budget, 1567 struct rte_mbuf **rx_pkts) 1568 { 1569 int ret = 0, rsp_type; 1570 int budget_left = budget; 1571 const struct rsp_ctrl *rc; 1572 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1573 1574 while (likely(budget_left)) { 1575 if (q->cidx == ntohs(q->stat->pidx)) 1576 break; 1577 1578 rc = (const struct rsp_ctrl *) 1579 ((const char *)q->cur_desc + (q->iqe_len - sizeof(*rc))); 1580 1581 /* 1582 * Ensure response has been read 1583 */ 1584 rmb(); 1585 rsp_type = G_RSPD_TYPE(rc->u.type_gen); 1586 1587 if (likely(rsp_type == X_RSPD_TYPE_FLBUF)) { 1588 struct sge *s = &q->adapter->sge; 1589 unsigned int stat_pidx; 1590 int stat_pidx_diff; 1591 1592 stat_pidx = ntohs(q->stat->pidx); 1593 stat_pidx_diff = P_IDXDIFF(q, stat_pidx); 1594 while (stat_pidx_diff && budget_left) { 1595 const struct rx_sw_desc *rsd = 1596 &rxq->fl.sdesc[rxq->fl.cidx]; 1597 const struct rss_header *rss_hdr = 1598 (const void *)q->cur_desc; 1599 const struct cpl_rx_pkt *cpl = 1600 (const void *)&q->cur_desc[1]; 1601 struct rte_mbuf *pkt, *npkt; 1602 u32 len, bufsz; 1603 1604 rc = (const struct rsp_ctrl *) 1605 ((const char *)q->cur_desc + 1606 (q->iqe_len - sizeof(*rc))); 1607 1608 rsp_type = G_RSPD_TYPE(rc->u.type_gen); 1609 if (unlikely(rsp_type != X_RSPD_TYPE_FLBUF)) 1610 break; 1611 1612 len = ntohl(rc->pldbuflen_qid); 1613 BUG_ON(!(len & F_RSPD_NEWBUF)); 1614 pkt = rsd->buf; 1615 npkt = pkt; 1616 len = G_RSPD_LEN(len); 1617 pkt->pkt_len = len; 1618 1619 /* Chain mbufs into len if necessary */ 1620 while (len) { 1621 struct rte_mbuf *new_pkt = rsd->buf; 1622 1623 bufsz = min(get_buf_size(q->adapter, 1624 rsd), len); 1625 new_pkt->data_len = bufsz; 1626 unmap_rx_buf(&rxq->fl); 1627 len -= bufsz; 1628 npkt->next = new_pkt; 1629 npkt = new_pkt; 1630 pkt->nb_segs++; 1631 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 1632 } 1633 npkt->next = NULL; 1634 pkt->nb_segs--; 1635 1636 cxgbe_fill_mbuf_info(q->adapter, cpl, pkt); 1637 1638 if (!rss_hdr->filter_tid && 1639 rss_hdr->hash_type) { 1640 pkt->ol_flags |= RTE_MBUF_F_RX_RSS_HASH; 1641 pkt->hash.rss = 1642 ntohl(rss_hdr->hash_val); 1643 } 1644 1645 if (cpl->vlan_ex) 1646 pkt->vlan_tci = ntohs(cpl->vlan); 1647 1648 rte_pktmbuf_adj(pkt, s->pktshift); 1649 rxq->stats.pkts++; 1650 rxq->stats.rx_bytes += pkt->pkt_len; 1651 rx_pkts[budget - budget_left] = pkt; 1652 1653 rspq_next(q); 1654 budget_left--; 1655 stat_pidx_diff--; 1656 } 1657 continue; 1658 } else if (likely(rsp_type == X_RSPD_TYPE_CPL)) { 1659 ret = q->handler(q, q->cur_desc, NULL); 1660 } else { 1661 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 1662 } 1663 1664 if (unlikely(ret)) { 1665 /* couldn't process descriptor, back off for recovery */ 1666 q->next_intr_params = V_QINTR_TIMER_IDX(NOMEM_TMR_IDX); 1667 break; 1668 } 1669 1670 rspq_next(q); 1671 budget_left--; 1672 } 1673 1674 /* 1675 * If this is a Response Queue with an associated Free List and 1676 * there's room for another chunk of new Free List buffer pointers, 1677 * refill the Free List. 1678 */ 1679 1680 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64) 1681 __refill_fl(q->adapter, &rxq->fl); 1682 1683 return budget - budget_left; 1684 } 1685 1686 int cxgbe_poll(struct sge_rspq *q, struct rte_mbuf **rx_pkts, 1687 unsigned int budget, unsigned int *work_done) 1688 { 1689 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1690 unsigned int cidx_inc; 1691 unsigned int params; 1692 u32 val; 1693 1694 if (unlikely(rxq->flags & IQ_STOPPED)) { 1695 *work_done = 0; 1696 return 0; 1697 } 1698 1699 *work_done = process_responses(q, budget, rx_pkts); 1700 1701 if (*work_done) { 1702 cidx_inc = R_IDXDIFF(q, gts_idx); 1703 1704 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64) 1705 __refill_fl(q->adapter, &rxq->fl); 1706 1707 params = q->intr_params; 1708 q->next_intr_params = params; 1709 val = V_CIDXINC(cidx_inc) | V_SEINTARM(params); 1710 1711 if (unlikely(!q->bar2_addr)) { 1712 u32 reg = is_pf4(q->adapter) ? MYPF_REG(A_SGE_PF_GTS) : 1713 T4VF_SGE_BASE_ADDR + 1714 A_SGE_VF_GTS; 1715 1716 t4_write_reg(q->adapter, reg, 1717 val | V_INGRESSQID((u32)q->cntxt_id)); 1718 } else { 1719 writel(val | V_INGRESSQID(q->bar2_qid), 1720 (void *)((uintptr_t)q->bar2_addr + SGE_UDB_GTS)); 1721 /* This Write memory Barrier will force the 1722 * write to the User Doorbell area to be 1723 * flushed. 1724 */ 1725 wmb(); 1726 } 1727 q->gts_idx = q->cidx; 1728 } 1729 return 0; 1730 } 1731 1732 /** 1733 * bar2_address - return the BAR2 address for an SGE Queue's Registers 1734 * @adapter: the adapter 1735 * @qid: the SGE Queue ID 1736 * @qtype: the SGE Queue Type (Egress or Ingress) 1737 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 1738 * 1739 * Returns the BAR2 address for the SGE Queue Registers associated with 1740 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 1741 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 1742 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 1743 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 1744 */ 1745 static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid, 1746 enum t4_bar2_qtype qtype, 1747 unsigned int *pbar2_qid) 1748 { 1749 u64 bar2_qoffset; 1750 int ret; 1751 1752 ret = t4_bar2_sge_qregs(adapter, qid, qtype, &bar2_qoffset, pbar2_qid); 1753 if (ret) 1754 return NULL; 1755 1756 return adapter->bar2 + bar2_qoffset; 1757 } 1758 1759 int t4_sge_eth_rxq_start(struct adapter *adap, struct sge_eth_rxq *rxq) 1760 { 1761 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff; 1762 1763 rxq->flags &= ~IQ_STOPPED; 1764 return t4_iq_start_stop(adap, adap->mbox, true, adap->pf, 0, 1765 rxq->rspq.cntxt_id, fl_id, 0xffff); 1766 } 1767 1768 int t4_sge_eth_rxq_stop(struct adapter *adap, struct sge_eth_rxq *rxq) 1769 { 1770 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff; 1771 1772 rxq->flags |= IQ_STOPPED; 1773 return t4_iq_start_stop(adap, adap->mbox, false, adap->pf, 0, 1774 rxq->rspq.cntxt_id, fl_id, 0xffff); 1775 } 1776 1777 /* 1778 * @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 1779 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 1780 */ 1781 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 1782 struct rte_eth_dev *eth_dev, int intr_idx, 1783 struct sge_fl *fl, rspq_handler_t hnd, int cong, 1784 struct rte_mempool *mp, int queue_id, int socket_id) 1785 { 1786 int ret, flsz = 0; 1787 struct fw_iq_cmd c; 1788 struct sge *s = &adap->sge; 1789 struct port_info *pi = eth_dev->data->dev_private; 1790 unsigned int nb_refill; 1791 u8 pciechan; 1792 1793 /* Size needs to be multiple of 16, including status entry. */ 1794 iq->size = cxgbe_roundup(iq->size, 16); 1795 1796 iq->desc = alloc_ring(eth_dev, fwevtq ? "fwq_ring" : "rx_ring", 1797 queue_id, socket_id, iq->size, iq->iqe_len, 1798 0, 0, &iq->phys_addr, NULL); 1799 if (!iq->desc) 1800 return -ENOMEM; 1801 1802 memset(&c, 0, sizeof(c)); 1803 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 1804 F_FW_CMD_WRITE | F_FW_CMD_EXEC); 1805 1806 if (is_pf4(adap)) { 1807 pciechan = pi->tx_chan; 1808 c.op_to_vfn |= htonl(V_FW_IQ_CMD_PFN(adap->pf) | 1809 V_FW_IQ_CMD_VFN(0)); 1810 if (cong >= 0) 1811 c.iqns_to_fl0congen = 1812 htonl(F_FW_IQ_CMD_IQFLINTCONGEN | 1813 V_FW_IQ_CMD_IQTYPE(cong ? 1814 FW_IQ_IQTYPE_NIC : 1815 FW_IQ_IQTYPE_OFLD) | 1816 F_FW_IQ_CMD_IQRO); 1817 } else { 1818 pciechan = pi->port_id; 1819 } 1820 1821 c.alloc_to_len16 = htonl(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 1822 (sizeof(c) / 16)); 1823 c.type_to_iqandstindex = 1824 htonl(V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 1825 V_FW_IQ_CMD_IQASYNCH(fwevtq) | 1826 V_FW_IQ_CMD_VIID(pi->viid) | 1827 V_FW_IQ_CMD_IQANDST(intr_idx < 0) | 1828 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_STATUS_PAGE) | 1829 V_FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx : 1830 -intr_idx - 1)); 1831 c.iqdroprss_to_iqesize = 1832 htons(V_FW_IQ_CMD_IQPCIECH(pciechan) | 1833 F_FW_IQ_CMD_IQGTSMODE | 1834 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) | 1835 V_FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4)); 1836 c.iqsize = htons(iq->size); 1837 c.iqaddr = cpu_to_be64(iq->phys_addr); 1838 1839 if (fl) { 1840 struct sge_eth_rxq *rxq = container_of(fl, struct sge_eth_rxq, 1841 fl); 1842 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1843 1844 /* 1845 * Allocate the ring for the hardware free list (with space 1846 * for its status page) along with the associated software 1847 * descriptor ring. The free list size needs to be a multiple 1848 * of the Egress Queue Unit and at least 2 Egress Units larger 1849 * than the SGE's Egress Congestion Threshold 1850 * (fl_starve_thres - 1). 1851 */ 1852 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 1853 fl->size = s->fl_starve_thres - 1 + 2 * 8; 1854 fl->size = cxgbe_roundup(fl->size, 8); 1855 1856 fl->desc = alloc_ring(eth_dev, "fl_ring", queue_id, socket_id, 1857 fl->size, sizeof(__be64), s->stat_len, 1858 sizeof(struct rx_sw_desc), 1859 &fl->addr, &fl->sdesc); 1860 if (!fl->desc) { 1861 ret = -ENOMEM; 1862 goto err; 1863 } 1864 1865 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 1866 c.iqns_to_fl0congen |= 1867 htonl(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 1868 (unlikely(rxq->usembufs) ? 1869 0 : F_FW_IQ_CMD_FL0PACKEN) | 1870 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 1871 F_FW_IQ_CMD_FL0PADEN); 1872 if (is_pf4(adap) && cong >= 0) 1873 c.iqns_to_fl0congen |= 1874 htonl(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 1875 F_FW_IQ_CMD_FL0CONGCIF | 1876 F_FW_IQ_CMD_FL0CONGEN); 1877 1878 /* In T6, for egress queue type FL there is internal overhead 1879 * of 16B for header going into FLM module. 1880 * Hence maximum allowed burst size will be 448 bytes. 1881 */ 1882 c.fl0dcaen_to_fl0cidxfthresh = 1883 htons(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ? 1884 X_FETCHBURSTMIN_128B : 1885 X_FETCHBURSTMIN_64B) | 1886 V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ? 1887 X_FETCHBURSTMAX_512B : 1888 X_FETCHBURSTMAX_256B)); 1889 c.fl0size = htons(flsz); 1890 c.fl0addr = cpu_to_be64(fl->addr); 1891 } 1892 1893 if (is_pf4(adap)) 1894 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 1895 else 1896 ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c); 1897 if (ret) 1898 goto err; 1899 1900 iq->cur_desc = iq->desc; 1901 iq->cidx = 0; 1902 iq->gts_idx = 0; 1903 iq->gen = 1; 1904 iq->next_intr_params = iq->intr_params; 1905 iq->cntxt_id = ntohs(c.iqid); 1906 iq->abs_id = ntohs(c.physiqid); 1907 iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS, 1908 &iq->bar2_qid); 1909 iq->size--; /* subtract status entry */ 1910 iq->stat = (void *)&iq->desc[iq->size * 8]; 1911 iq->eth_dev = eth_dev; 1912 iq->handler = hnd; 1913 iq->port_id = pi->pidx; 1914 iq->mb_pool = mp; 1915 1916 /* set offset to -1 to distinguish ingress queues without FL */ 1917 iq->offset = fl ? 0 : -1; 1918 1919 if (fl) { 1920 fl->cntxt_id = ntohs(c.fl0id); 1921 fl->avail = 0; 1922 fl->pend_cred = 0; 1923 fl->pidx = 0; 1924 fl->cidx = 0; 1925 fl->alloc_failed = 0; 1926 1927 /* 1928 * Note, we must initialize the BAR2 Free List User Doorbell 1929 * information before refilling the Free List! 1930 */ 1931 fl->bar2_addr = bar2_address(adap, fl->cntxt_id, 1932 T4_BAR2_QTYPE_EGRESS, 1933 &fl->bar2_qid); 1934 1935 nb_refill = refill_fl(adap, fl, fl_cap(fl)); 1936 if (nb_refill != fl_cap(fl)) { 1937 ret = -ENOMEM; 1938 dev_err(adap, "%s: mbuf alloc failed with error: %d\n", 1939 __func__, ret); 1940 goto refill_fl_err; 1941 } 1942 } 1943 1944 /* 1945 * For T5 and later we attempt to set up the Congestion Manager values 1946 * of the new RX Ethernet Queue. This should really be handled by 1947 * firmware because it's more complex than any host driver wants to 1948 * get involved with and it's different per chip and this is almost 1949 * certainly wrong. Formware would be wrong as well, but it would be 1950 * a lot easier to fix in one place ... For now we do something very 1951 * simple (and hopefully less wrong). 1952 */ 1953 if (is_pf4(adap) && !is_t4(adap->params.chip) && cong >= 0) { 1954 u8 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 1955 u32 param, val, ch_map = 0; 1956 int i; 1957 1958 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 1959 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 1960 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id)); 1961 if (cong == 0) { 1962 val = V_CONMCTXT_CNGTPMODE(X_CONMCTXT_CNGTPMODE_QUEUE); 1963 } else { 1964 val = V_CONMCTXT_CNGTPMODE( 1965 X_CONMCTXT_CNGTPMODE_CHANNEL); 1966 for (i = 0; i < 4; i++) { 1967 if (cong & (1 << i)) 1968 ch_map |= 1 << (i << cng_ch_bits_log); 1969 } 1970 val |= V_CONMCTXT_CNGCHMAP(ch_map); 1971 } 1972 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1973 ¶m, &val); 1974 if (ret) 1975 dev_warn(adap->pdev_dev, "Failed to set Congestion Manager Context for Ingress Queue %d: %d\n", 1976 iq->cntxt_id, -ret); 1977 } 1978 1979 return 0; 1980 1981 refill_fl_err: 1982 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 1983 iq->cntxt_id, fl->cntxt_id, 0xffff); 1984 err: 1985 iq->cntxt_id = 0; 1986 iq->abs_id = 0; 1987 if (iq->desc) 1988 iq->desc = NULL; 1989 1990 if (fl && fl->desc) { 1991 rte_free(fl->sdesc); 1992 fl->cntxt_id = 0; 1993 fl->sdesc = NULL; 1994 fl->desc = NULL; 1995 } 1996 return ret; 1997 } 1998 1999 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id, 2000 unsigned int abs_id) 2001 { 2002 q->cntxt_id = id; 2003 q->abs_id = abs_id; 2004 q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS, 2005 &q->bar2_qid); 2006 q->cidx = 0; 2007 q->pidx = 0; 2008 q->dbidx = 0; 2009 q->in_use = 0; 2010 q->equeidx = 0; 2011 q->coalesce.idx = 0; 2012 q->coalesce.len = 0; 2013 q->coalesce.flits = 0; 2014 q->last_coal_idx = 0; 2015 q->last_pidx = 0; 2016 q->stat = (void *)&q->desc[q->size]; 2017 } 2018 2019 int t4_sge_eth_txq_start(struct sge_eth_txq *txq) 2020 { 2021 /* 2022 * TODO: For flow-control, queue may be stopped waiting to reclaim 2023 * credits. 2024 * Ensure queue is in EQ_STOPPED state before starting it. 2025 */ 2026 if (!(txq->flags & EQ_STOPPED)) 2027 return -(EBUSY); 2028 2029 txq->flags &= ~EQ_STOPPED; 2030 2031 return 0; 2032 } 2033 2034 int t4_sge_eth_txq_stop(struct sge_eth_txq *txq) 2035 { 2036 txq->flags |= EQ_STOPPED; 2037 2038 return 0; 2039 } 2040 2041 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 2042 struct rte_eth_dev *eth_dev, uint16_t queue_id, 2043 unsigned int iqid, int socket_id) 2044 { 2045 int ret, nentries; 2046 struct fw_eq_eth_cmd c; 2047 struct sge *s = &adap->sge; 2048 struct port_info *pi = eth_dev->data->dev_private; 2049 u8 pciechan; 2050 2051 /* Add status entries */ 2052 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2053 2054 txq->q.desc = alloc_ring(eth_dev, "tx_ring", queue_id, socket_id, 2055 txq->q.size, sizeof(struct tx_desc), 2056 s->stat_len, sizeof(struct tx_sw_desc), 2057 &txq->q.phys_addr, &txq->q.sdesc); 2058 if (!txq->q.desc) 2059 return -ENOMEM; 2060 2061 memset(&c, 0, sizeof(c)); 2062 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 2063 F_FW_CMD_WRITE | F_FW_CMD_EXEC); 2064 if (is_pf4(adap)) { 2065 pciechan = pi->tx_chan; 2066 c.op_to_vfn |= htonl(V_FW_EQ_ETH_CMD_PFN(adap->pf) | 2067 V_FW_EQ_ETH_CMD_VFN(0)); 2068 } else { 2069 pciechan = pi->port_id; 2070 } 2071 2072 c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_ALLOC | 2073 F_FW_EQ_ETH_CMD_EQSTART | (sizeof(c) / 16)); 2074 c.autoequiqe_to_viid = htonl(F_FW_EQ_ETH_CMD_AUTOEQUEQE | 2075 V_FW_EQ_ETH_CMD_VIID(pi->viid)); 2076 c.fetchszm_to_iqid = 2077 htonl(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 2078 V_FW_EQ_ETH_CMD_PCIECHN(pciechan) | 2079 F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(iqid)); 2080 c.dcaen_to_eqsize = 2081 htonl(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 2082 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 2083 V_FW_EQ_ETH_CMD_EQSIZE(nentries)); 2084 c.eqaddr = rte_cpu_to_be_64(txq->q.phys_addr); 2085 2086 if (is_pf4(adap)) 2087 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 2088 else 2089 ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c); 2090 if (ret) { 2091 rte_free(txq->q.sdesc); 2092 txq->q.sdesc = NULL; 2093 txq->q.desc = NULL; 2094 return ret; 2095 } 2096 2097 init_txq(adap, &txq->q, G_FW_EQ_ETH_CMD_EQID(ntohl(c.eqid_pkd)), 2098 G_FW_EQ_ETH_CMD_PHYSEQID(ntohl(c.physeqid_pkd))); 2099 txq->stats.tso = 0; 2100 txq->stats.pkts = 0; 2101 txq->stats.tx_cso = 0; 2102 txq->stats.coal_wr = 0; 2103 txq->stats.vlan_ins = 0; 2104 txq->stats.tx_bytes = 0; 2105 txq->stats.coal_pkts = 0; 2106 txq->stats.mapping_err = 0; 2107 txq->flags |= EQ_STOPPED; 2108 txq->eth_dev = eth_dev; 2109 txq->data = eth_dev->data; 2110 t4_os_lock_init(&txq->txq_lock); 2111 return 0; 2112 } 2113 2114 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 2115 struct rte_eth_dev *eth_dev, uint16_t queue_id, 2116 unsigned int iqid, int socket_id) 2117 { 2118 int ret, nentries; 2119 struct fw_eq_ctrl_cmd c; 2120 struct sge *s = &adap->sge; 2121 struct port_info *pi = eth_dev->data->dev_private; 2122 2123 /* Add status entries */ 2124 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2125 2126 txq->q.desc = alloc_ring(eth_dev, "ctrl_tx_ring", queue_id, 2127 socket_id, txq->q.size, sizeof(struct tx_desc), 2128 0, 0, &txq->q.phys_addr, NULL); 2129 if (!txq->q.desc) 2130 return -ENOMEM; 2131 2132 memset(&c, 0, sizeof(c)); 2133 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 2134 F_FW_CMD_WRITE | F_FW_CMD_EXEC | 2135 V_FW_EQ_CTRL_CMD_PFN(adap->pf) | 2136 V_FW_EQ_CTRL_CMD_VFN(0)); 2137 c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_ALLOC | 2138 F_FW_EQ_CTRL_CMD_EQSTART | (sizeof(c) / 16)); 2139 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(0)); 2140 c.physeqid_pkd = htonl(0); 2141 c.fetchszm_to_iqid = 2142 htonl(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 2143 V_FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) | 2144 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(iqid)); 2145 c.dcaen_to_eqsize = 2146 htonl(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 2147 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 2148 V_FW_EQ_CTRL_CMD_EQSIZE(nentries)); 2149 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2150 2151 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 2152 if (ret) { 2153 txq->q.desc = NULL; 2154 return ret; 2155 } 2156 2157 init_txq(adap, &txq->q, G_FW_EQ_CTRL_CMD_EQID(ntohl(c.cmpliqid_eqid)), 2158 G_FW_EQ_CTRL_CMD_EQID(ntohl(c. physeqid_pkd))); 2159 txq->adapter = adap; 2160 txq->full = 0; 2161 return 0; 2162 } 2163 2164 static void free_txq(struct sge_txq *q) 2165 { 2166 q->cntxt_id = 0; 2167 q->sdesc = NULL; 2168 q->desc = NULL; 2169 } 2170 2171 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 2172 struct sge_fl *fl) 2173 { 2174 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 2175 2176 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 2177 rq->cntxt_id, fl_id, 0xffff); 2178 rq->cntxt_id = 0; 2179 rq->abs_id = 0; 2180 rq->desc = NULL; 2181 2182 if (fl) { 2183 free_rx_bufs(fl, fl->avail); 2184 rte_free(fl->sdesc); 2185 fl->sdesc = NULL; 2186 fl->cntxt_id = 0; 2187 fl->desc = NULL; 2188 } 2189 } 2190 2191 /* 2192 * Clear all queues of the port 2193 * 2194 * Note: This function must only be called after rx and tx path 2195 * of the port have been disabled. 2196 */ 2197 void t4_sge_eth_clear_queues(struct port_info *pi) 2198 { 2199 struct adapter *adap = pi->adapter; 2200 struct sge_eth_rxq *rxq; 2201 struct sge_eth_txq *txq; 2202 int i; 2203 2204 rxq = &adap->sge.ethrxq[pi->first_rxqset]; 2205 for (i = 0; i < pi->n_rx_qsets; i++, rxq++) { 2206 if (rxq->rspq.desc) 2207 t4_sge_eth_rxq_stop(adap, rxq); 2208 } 2209 2210 txq = &adap->sge.ethtxq[pi->first_txqset]; 2211 for (i = 0; i < pi->n_tx_qsets; i++, txq++) { 2212 if (txq->q.desc) { 2213 struct sge_txq *q = &txq->q; 2214 2215 t4_sge_eth_txq_stop(txq); 2216 reclaim_completed_tx(q); 2217 free_tx_desc(q, q->size); 2218 q->equeidx = q->pidx; 2219 } 2220 } 2221 } 2222 2223 void t4_sge_eth_rxq_release(struct adapter *adap, struct sge_eth_rxq *rxq) 2224 { 2225 if (rxq->rspq.desc) { 2226 t4_sge_eth_rxq_stop(adap, rxq); 2227 free_rspq_fl(adap, &rxq->rspq, rxq->fl.size ? &rxq->fl : NULL); 2228 } 2229 } 2230 2231 void t4_sge_eth_txq_release(struct adapter *adap, struct sge_eth_txq *txq) 2232 { 2233 if (txq->q.desc) { 2234 t4_sge_eth_txq_stop(txq); 2235 reclaim_completed_tx(&txq->q); 2236 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, txq->q.cntxt_id); 2237 free_tx_desc(&txq->q, txq->q.size); 2238 rte_free(txq->q.sdesc); 2239 free_txq(&txq->q); 2240 } 2241 } 2242 2243 void t4_sge_eth_release_queues(struct port_info *pi) 2244 { 2245 struct adapter *adap = pi->adapter; 2246 struct sge_eth_rxq *rxq; 2247 struct sge_eth_txq *txq; 2248 unsigned int i; 2249 2250 rxq = &adap->sge.ethrxq[pi->first_rxqset]; 2251 /* clean up Ethernet Tx/Rx queues */ 2252 for (i = 0; i < pi->n_rx_qsets; i++, rxq++) { 2253 /* Free only the queues allocated */ 2254 if (rxq->rspq.desc) { 2255 t4_sge_eth_rxq_release(adap, rxq); 2256 rte_eth_dma_zone_free(rxq->rspq.eth_dev, "fl_ring", i); 2257 rte_eth_dma_zone_free(rxq->rspq.eth_dev, "rx_ring", i); 2258 rxq->rspq.eth_dev = NULL; 2259 } 2260 } 2261 2262 txq = &adap->sge.ethtxq[pi->first_txqset]; 2263 for (i = 0; i < pi->n_tx_qsets; i++, txq++) { 2264 /* Free only the queues allocated */ 2265 if (txq->q.desc) { 2266 t4_sge_eth_txq_release(adap, txq); 2267 rte_eth_dma_zone_free(txq->eth_dev, "tx_ring", i); 2268 txq->eth_dev = NULL; 2269 } 2270 } 2271 } 2272 2273 void t4_sge_tx_monitor_start(struct adapter *adap) 2274 { 2275 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap); 2276 } 2277 2278 void t4_sge_tx_monitor_stop(struct adapter *adap) 2279 { 2280 rte_eal_alarm_cancel(tx_timer_cb, (void *)adap); 2281 } 2282 2283 /** 2284 * t4_free_sge_resources - free SGE resources 2285 * @adap: the adapter 2286 * 2287 * Frees resources used by the SGE queue sets. 2288 */ 2289 void t4_free_sge_resources(struct adapter *adap) 2290 { 2291 unsigned int i; 2292 2293 /* clean up control Tx queues */ 2294 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 2295 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 2296 2297 if (cq->q.desc) { 2298 reclaim_completed_tx_imm(&cq->q); 2299 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 2300 cq->q.cntxt_id); 2301 rte_eth_dma_zone_free(adap->eth_dev, "ctrl_tx_ring", i); 2302 rte_mempool_free(cq->mb_pool); 2303 free_txq(&cq->q); 2304 } 2305 } 2306 2307 /* clean up firmware event queue */ 2308 if (adap->sge.fw_evtq.desc) { 2309 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 2310 rte_eth_dma_zone_free(adap->eth_dev, "fwq_ring", 0); 2311 } 2312 } 2313 2314 /** 2315 * t4_sge_init - initialize SGE 2316 * @adap: the adapter 2317 * 2318 * Performs SGE initialization needed every time after a chip reset. 2319 * We do not initialize any of the queues here, instead the driver 2320 * top-level must request those individually. 2321 * 2322 * Called in two different modes: 2323 * 2324 * 1. Perform actual hardware initialization and record hard-coded 2325 * parameters which were used. This gets used when we're the 2326 * Master PF and the Firmware Configuration File support didn't 2327 * work for some reason. 2328 * 2329 * 2. We're not the Master PF or initialization was performed with 2330 * a Firmware Configuration File. In this case we need to grab 2331 * any of the SGE operating parameters that we need to have in 2332 * order to do our job and make sure we can live with them ... 2333 */ 2334 static int t4_sge_init_soft(struct adapter *adap) 2335 { 2336 struct sge *s = &adap->sge; 2337 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 2338 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 2339 u32 ingress_rx_threshold; 2340 2341 /* 2342 * Verify that CPL messages are going to the Ingress Queue for 2343 * process_responses() and that only packet data is going to the 2344 * Free Lists. 2345 */ 2346 if ((t4_read_reg(adap, A_SGE_CONTROL) & F_RXPKTCPLMODE) != 2347 V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) { 2348 dev_err(adap, "bad SGE CPL MODE\n"); 2349 return -EINVAL; 2350 } 2351 2352 /* 2353 * Validate the Host Buffer Register Array indices that we want to 2354 * use ... 2355 * 2356 * XXX Note that we should really read through the Host Buffer Size 2357 * XXX register array and find the indices of the Buffer Sizes which 2358 * XXX meet our needs! 2359 */ 2360 #define READ_FL_BUF(x) \ 2361 t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE0 + (x) * sizeof(u32)) 2362 2363 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 2364 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 2365 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 2366 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 2367 2368 /* 2369 * We only bother using the Large Page logic if the Large Page Buffer 2370 * is larger than our Page Size Buffer. 2371 */ 2372 if (fl_large_pg <= fl_small_pg) 2373 fl_large_pg = 0; 2374 2375 #undef READ_FL_BUF 2376 2377 /* 2378 * The Page Size Buffer must be exactly equal to our Page Size and the 2379 * Large Page Size Buffer should be 0 (per above) or a power of 2. 2380 */ 2381 if (fl_small_pg != CXGBE_PAGE_SIZE || 2382 (fl_large_pg & (fl_large_pg - 1)) != 0) { 2383 dev_err(adap, "bad SGE FL page buffer sizes [%d, %d]\n", 2384 fl_small_pg, fl_large_pg); 2385 return -EINVAL; 2386 } 2387 if (fl_large_pg) 2388 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 2389 2390 if (adap->use_unpacked_mode) { 2391 int err = 0; 2392 2393 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap)) { 2394 dev_err(adap, "bad SGE FL small MTU %d\n", 2395 fl_small_mtu); 2396 err = -EINVAL; 2397 } 2398 if (fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 2399 dev_err(adap, "bad SGE FL large MTU %d\n", 2400 fl_large_mtu); 2401 err = -EINVAL; 2402 } 2403 if (err) 2404 return err; 2405 } 2406 2407 /* 2408 * Retrieve our RX interrupt holdoff timer values and counter 2409 * threshold values from the SGE parameters. 2410 */ 2411 timer_value_0_and_1 = t4_read_reg(adap, A_SGE_TIMER_VALUE_0_AND_1); 2412 timer_value_2_and_3 = t4_read_reg(adap, A_SGE_TIMER_VALUE_2_AND_3); 2413 timer_value_4_and_5 = t4_read_reg(adap, A_SGE_TIMER_VALUE_4_AND_5); 2414 s->timer_val[0] = core_ticks_to_us(adap, 2415 G_TIMERVALUE0(timer_value_0_and_1)); 2416 s->timer_val[1] = core_ticks_to_us(adap, 2417 G_TIMERVALUE1(timer_value_0_and_1)); 2418 s->timer_val[2] = core_ticks_to_us(adap, 2419 G_TIMERVALUE2(timer_value_2_and_3)); 2420 s->timer_val[3] = core_ticks_to_us(adap, 2421 G_TIMERVALUE3(timer_value_2_and_3)); 2422 s->timer_val[4] = core_ticks_to_us(adap, 2423 G_TIMERVALUE4(timer_value_4_and_5)); 2424 s->timer_val[5] = core_ticks_to_us(adap, 2425 G_TIMERVALUE5(timer_value_4_and_5)); 2426 2427 ingress_rx_threshold = t4_read_reg(adap, A_SGE_INGRESS_RX_THRESHOLD); 2428 s->counter_val[0] = G_THRESHOLD_0(ingress_rx_threshold); 2429 s->counter_val[1] = G_THRESHOLD_1(ingress_rx_threshold); 2430 s->counter_val[2] = G_THRESHOLD_2(ingress_rx_threshold); 2431 s->counter_val[3] = G_THRESHOLD_3(ingress_rx_threshold); 2432 2433 return 0; 2434 } 2435 2436 int t4_sge_init(struct adapter *adap) 2437 { 2438 struct sge *s = &adap->sge; 2439 u32 sge_control, sge_conm_ctrl; 2440 int ret, egress_threshold; 2441 2442 /* 2443 * Ingress Padding Boundary and Egress Status Page Size are set up by 2444 * t4_fixup_host_params(). 2445 */ 2446 sge_control = t4_read_reg(adap, A_SGE_CONTROL); 2447 s->pktshift = G_PKTSHIFT(sge_control); 2448 s->stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64; 2449 s->fl_align = t4_fl_pkt_align(adap); 2450 ret = t4_sge_init_soft(adap); 2451 if (ret < 0) { 2452 dev_err(adap, "%s: t4_sge_init_soft failed, error %d\n", 2453 __func__, -ret); 2454 return ret; 2455 } 2456 2457 /* 2458 * A FL with <= fl_starve_thres buffers is starving and a periodic 2459 * timer will attempt to refill it. This needs to be larger than the 2460 * SGE's Egress Congestion Threshold. If it isn't, then we can get 2461 * stuck waiting for new packets while the SGE is waiting for us to 2462 * give it more Free List entries. (Note that the SGE's Egress 2463 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 2464 * there was only a single field to control this. For T5 there's the 2465 * original field which now only applies to Unpacked Mode Free List 2466 * buffers and a new field which only applies to Packed Mode Free List 2467 * buffers. 2468 */ 2469 sge_conm_ctrl = t4_read_reg(adap, A_SGE_CONM_CTRL); 2470 if (is_t4(adap->params.chip) || adap->use_unpacked_mode) 2471 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl); 2472 else 2473 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl); 2474 s->fl_starve_thres = 2 * egress_threshold + 1; 2475 2476 return 0; 2477 } 2478 2479 int t4vf_sge_init(struct adapter *adap) 2480 { 2481 struct sge_params *sge_params = &adap->params.sge; 2482 u32 sge_ingress_queues_per_page; 2483 u32 sge_egress_queues_per_page; 2484 u32 sge_control, sge_control2; 2485 u32 fl_small_pg, fl_large_pg; 2486 u32 sge_ingress_rx_threshold; 2487 u32 sge_timer_value_0_and_1; 2488 u32 sge_timer_value_2_and_3; 2489 u32 sge_timer_value_4_and_5; 2490 u32 sge_congestion_control; 2491 struct sge *s = &adap->sge; 2492 unsigned int s_hps, s_qpp; 2493 u32 sge_host_page_size; 2494 u32 params[7], vals[7]; 2495 int v; 2496 2497 /* query basic params from fw */ 2498 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2499 V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL)); 2500 params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2501 V_FW_PARAMS_PARAM_XYZ(A_SGE_HOST_PAGE_SIZE)); 2502 params[2] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2503 V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE0)); 2504 params[3] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2505 V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE1)); 2506 params[4] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2507 V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_0_AND_1)); 2508 params[5] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2509 V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_2_AND_3)); 2510 params[6] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2511 V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_4_AND_5)); 2512 v = t4vf_query_params(adap, 7, params, vals); 2513 if (v != FW_SUCCESS) 2514 return v; 2515 2516 sge_control = vals[0]; 2517 sge_host_page_size = vals[1]; 2518 fl_small_pg = vals[2]; 2519 fl_large_pg = vals[3]; 2520 sge_timer_value_0_and_1 = vals[4]; 2521 sge_timer_value_2_and_3 = vals[5]; 2522 sge_timer_value_4_and_5 = vals[6]; 2523 2524 /* 2525 * Start by vetting the basic SGE parameters which have been set up by 2526 * the Physical Function Driver. 2527 */ 2528 2529 /* We only bother using the Large Page logic if the Large Page Buffer 2530 * is larger than our Page Size Buffer. 2531 */ 2532 if (fl_large_pg <= fl_small_pg) 2533 fl_large_pg = 0; 2534 2535 /* The Page Size Buffer must be exactly equal to our Page Size and the 2536 * Large Page Size Buffer should be 0 (per above) or a power of 2. 2537 */ 2538 if (fl_small_pg != CXGBE_PAGE_SIZE || 2539 (fl_large_pg & (fl_large_pg - 1)) != 0) { 2540 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n", 2541 fl_small_pg, fl_large_pg); 2542 return -EINVAL; 2543 } 2544 2545 if ((sge_control & F_RXPKTCPLMODE) != 2546 V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) { 2547 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n"); 2548 return -EINVAL; 2549 } 2550 2551 2552 /* Grab ingress packing boundary from SGE_CONTROL2 for */ 2553 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2554 V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL2)); 2555 v = t4vf_query_params(adap, 1, params, vals); 2556 if (v != FW_SUCCESS) { 2557 dev_err(adapter, "Unable to get SGE Control2; " 2558 "probably old firmware.\n"); 2559 return v; 2560 } 2561 sge_control2 = vals[0]; 2562 2563 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2564 V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_RX_THRESHOLD)); 2565 params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2566 V_FW_PARAMS_PARAM_XYZ(A_SGE_CONM_CTRL)); 2567 v = t4vf_query_params(adap, 2, params, vals); 2568 if (v != FW_SUCCESS) 2569 return v; 2570 sge_ingress_rx_threshold = vals[0]; 2571 sge_congestion_control = vals[1]; 2572 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2573 V_FW_PARAMS_PARAM_XYZ(A_SGE_EGRESS_QUEUES_PER_PAGE_VF)); 2574 params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 2575 V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_QUEUES_PER_PAGE_VF)); 2576 v = t4vf_query_params(adap, 2, params, vals); 2577 if (v != FW_SUCCESS) { 2578 dev_warn(adap, "Unable to get VF SGE Queues/Page; " 2579 "probably old firmware.\n"); 2580 return v; 2581 } 2582 sge_egress_queues_per_page = vals[0]; 2583 sge_ingress_queues_per_page = vals[1]; 2584 2585 /* 2586 * We need the Queues/Page for our VF. This is based on the 2587 * PF from which we're instantiated and is indexed in the 2588 * register we just read. 2589 */ 2590 s_hps = (S_HOSTPAGESIZEPF0 + 2591 (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adap->pf); 2592 sge_params->hps = 2593 ((sge_host_page_size >> s_hps) & M_HOSTPAGESIZEPF0); 2594 2595 s_qpp = (S_QUEUESPERPAGEPF0 + 2596 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adap->pf); 2597 sge_params->eq_qpp = 2598 ((sge_egress_queues_per_page >> s_qpp) 2599 & M_QUEUESPERPAGEPF0); 2600 sge_params->iq_qpp = 2601 ((sge_ingress_queues_per_page >> s_qpp) 2602 & M_QUEUESPERPAGEPF0); 2603 2604 /* 2605 * Now translate the queried parameters into our internal forms. 2606 */ 2607 if (fl_large_pg) 2608 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 2609 s->stat_len = ((sge_control & F_EGRSTATUSPAGESIZE) 2610 ? 128 : 64); 2611 s->pktshift = G_PKTSHIFT(sge_control); 2612 s->fl_align = t4vf_fl_pkt_align(adap, sge_control, sge_control2); 2613 2614 /* 2615 * A FL with <= fl_starve_thres buffers is starving and a periodic 2616 * timer will attempt to refill it. This needs to be larger than the 2617 * SGE's Egress Congestion Threshold. If it isn't, then we can get 2618 * stuck waiting for new packets while the SGE is waiting for us to 2619 * give it more Free List entries. (Note that the SGE's Egress 2620 * Congestion Threshold is in units of 2 Free List pointers.) 2621 */ 2622 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 2623 case CHELSIO_T5: 2624 s->fl_starve_thres = 2625 G_EGRTHRESHOLDPACKING(sge_congestion_control); 2626 break; 2627 case CHELSIO_T6: 2628 default: 2629 s->fl_starve_thres = 2630 G_T6_EGRTHRESHOLDPACKING(sge_congestion_control); 2631 break; 2632 } 2633 s->fl_starve_thres = s->fl_starve_thres * 2 + 1; 2634 2635 /* 2636 * Save RX interrupt holdoff timer values and counter 2637 * threshold values from the SGE parameters. 2638 */ 2639 s->timer_val[0] = core_ticks_to_us(adap, 2640 G_TIMERVALUE0(sge_timer_value_0_and_1)); 2641 s->timer_val[1] = core_ticks_to_us(adap, 2642 G_TIMERVALUE1(sge_timer_value_0_and_1)); 2643 s->timer_val[2] = core_ticks_to_us(adap, 2644 G_TIMERVALUE2(sge_timer_value_2_and_3)); 2645 s->timer_val[3] = core_ticks_to_us(adap, 2646 G_TIMERVALUE3(sge_timer_value_2_and_3)); 2647 s->timer_val[4] = core_ticks_to_us(adap, 2648 G_TIMERVALUE4(sge_timer_value_4_and_5)); 2649 s->timer_val[5] = core_ticks_to_us(adap, 2650 G_TIMERVALUE5(sge_timer_value_4_and_5)); 2651 s->counter_val[0] = G_THRESHOLD_0(sge_ingress_rx_threshold); 2652 s->counter_val[1] = G_THRESHOLD_1(sge_ingress_rx_threshold); 2653 s->counter_val[2] = G_THRESHOLD_2(sge_ingress_rx_threshold); 2654 s->counter_val[3] = G_THRESHOLD_3(sge_ingress_rx_threshold); 2655 return 0; 2656 } 2657