xref: /dpdk/drivers/common/iavf/virtchnl.h (revision 29fd052d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2021 Intel Corporation
3  */
4 
5 #ifndef _VIRTCHNL_H_
6 #define _VIRTCHNL_H_
7 
8 /* Description:
9  * This header file describes the Virtual Function (VF) - Physical Function
10  * (PF) communication protocol used by the drivers for all devices starting
11  * from our 40G product line
12  *
13  * Admin queue buffer usage:
14  * desc->opcode is always aqc_opc_send_msg_to_pf
15  * flags, retval, datalen, and data addr are all used normally.
16  * The Firmware copies the cookie fields when sending messages between the
17  * PF and VF, but uses all other fields internally. Due to this limitation,
18  * we must send all messages as "indirect", i.e. using an external buffer.
19  *
20  * All the VSI indexes are relative to the VF. Each VF can have maximum of
21  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
22  * have a maximum of sixteen queues for all of its VSIs.
23  *
24  * The PF is required to return a status code in v_retval for all messages
25  * except RESET_VF, which does not require any response. The returned value
26  * is of virtchnl_status_code type, defined in the shared type.h.
27  *
28  * In general, VF driver initialization should roughly follow the order of
29  * these opcodes. The VF driver must first validate the API version of the
30  * PF driver, then request a reset, then get resources, then configure
31  * queues and interrupts. After these operations are complete, the VF
32  * driver may start its queues, optionally add MAC and VLAN filters, and
33  * process traffic.
34  */
35 
36 /* START GENERIC DEFINES
37  * Need to ensure the following enums and defines hold the same meaning and
38  * value in current and future projects
39  */
40 
41 #include "virtchnl_inline_ipsec.h"
42 
43 /* Error Codes */
44 enum virtchnl_status_code {
45 	VIRTCHNL_STATUS_SUCCESS				= 0,
46 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
47 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
48 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
49 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
50 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
51 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
52 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
53 };
54 
55 /* Backward compatibility */
56 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
57 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
58 
59 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
60 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
61 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
62 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
63 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
64 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
65 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
66 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
67 
68 enum virtchnl_link_speed {
69 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
70 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
71 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
72 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
73 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
74 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
75 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
76 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
77 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
78 };
79 
80 /* for hsplit_0 field of Rx HMC context */
81 /* deprecated with IAVF 1.0 */
82 enum virtchnl_rx_hsplit {
83 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
84 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
85 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
86 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
87 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
88 };
89 
90 enum virtchnl_bw_limit_type {
91 	VIRTCHNL_BW_SHAPER = 0,
92 };
93 
94 #define VIRTCHNL_ETH_LENGTH_OF_ADDRESS	6
95 /* END GENERIC DEFINES */
96 
97 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
98  * of the virtchnl_msg structure.
99  */
100 enum virtchnl_ops {
101 /* The PF sends status change events to VFs using
102  * the VIRTCHNL_OP_EVENT opcode.
103  * VFs send requests to the PF using the other ops.
104  * Use of "advanced opcode" features must be negotiated as part of capabilities
105  * exchange and are not considered part of base mode feature set.
106  */
107 	VIRTCHNL_OP_UNKNOWN = 0,
108 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
109 	VIRTCHNL_OP_RESET_VF = 2,
110 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
111 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
112 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
113 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
114 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
115 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
116 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
117 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
118 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
119 	VIRTCHNL_OP_ADD_VLAN = 12,
120 	VIRTCHNL_OP_DEL_VLAN = 13,
121 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
122 	VIRTCHNL_OP_GET_STATS = 15,
123 	VIRTCHNL_OP_RSVD = 16,
124 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
125 	/* opcode 19 is reserved */
126 	/* opcodes 20, 21, and 22 are reserved */
127 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
128 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
129 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
130 	VIRTCHNL_OP_SET_RSS_HENA = 26,
131 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
132 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
133 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
134 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
135 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
136 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
137 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
138 	VIRTCHNL_OP_INLINE_IPSEC_CRYPTO = 34,
139 	/* opcodes 35 and 36 are reserved */
140 	VIRTCHNL_OP_DCF_CONFIG_BW = 37,
141 	VIRTCHNL_OP_DCF_VLAN_OFFLOAD = 38,
142 	VIRTCHNL_OP_DCF_CMD_DESC = 39,
143 	VIRTCHNL_OP_DCF_CMD_BUFF = 40,
144 	VIRTCHNL_OP_DCF_DISABLE = 41,
145 	VIRTCHNL_OP_DCF_GET_VSI_MAP = 42,
146 	VIRTCHNL_OP_DCF_GET_PKG_INFO = 43,
147 	VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
148 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
149 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
150 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
151 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
152 	VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50,
153 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
154 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
155 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
156 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
157 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
158 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
159 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
160 	VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58,
161 	VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59,
162 	VIRTCHNL_OP_GET_QOS_CAPS = 66,
163 	VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP = 67,
164 	VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107,
165 	VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108,
166 	VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111,
167 	VIRTCHNL_OP_MAX,
168 };
169 
170 static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode)
171 {
172 	switch (v_opcode) {
173 	case VIRTCHNL_OP_UNKNOWN:
174 		return "VIRTCHNL_OP_UNKNOWN";
175 	case VIRTCHNL_OP_VERSION:
176 		return "VIRTCHNL_OP_VERSION";
177 	case VIRTCHNL_OP_RESET_VF:
178 		return "VIRTCHNL_OP_RESET_VF";
179 	case VIRTCHNL_OP_GET_VF_RESOURCES:
180 		return "VIRTCHNL_OP_GET_VF_RESOURCES";
181 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
182 		return "VIRTCHNL_OP_CONFIG_TX_QUEUE";
183 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
184 		return "VIRTCHNL_OP_CONFIG_RX_QUEUE";
185 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
186 		return "VIRTCHNL_OP_CONFIG_VSI_QUEUES";
187 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
188 		return "VIRTCHNL_OP_CONFIG_IRQ_MAP";
189 	case VIRTCHNL_OP_ENABLE_QUEUES:
190 		return "VIRTCHNL_OP_ENABLE_QUEUES";
191 	case VIRTCHNL_OP_DISABLE_QUEUES:
192 		return "VIRTCHNL_OP_DISABLE_QUEUES";
193 	case VIRTCHNL_OP_ADD_ETH_ADDR:
194 		return "VIRTCHNL_OP_ADD_ETH_ADDR";
195 	case VIRTCHNL_OP_DEL_ETH_ADDR:
196 		return "VIRTCHNL_OP_DEL_ETH_ADDR";
197 	case VIRTCHNL_OP_ADD_VLAN:
198 		return "VIRTCHNL_OP_ADD_VLAN";
199 	case VIRTCHNL_OP_DEL_VLAN:
200 		return "VIRTCHNL_OP_DEL_VLAN";
201 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
202 		return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE";
203 	case VIRTCHNL_OP_GET_STATS:
204 		return "VIRTCHNL_OP_GET_STATS";
205 	case VIRTCHNL_OP_RSVD:
206 		return "VIRTCHNL_OP_RSVD";
207 	case VIRTCHNL_OP_EVENT:
208 		return "VIRTCHNL_OP_EVENT";
209 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
210 		return "VIRTCHNL_OP_CONFIG_RSS_KEY";
211 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
212 		return "VIRTCHNL_OP_CONFIG_RSS_LUT";
213 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
214 		return "VIRTCHNL_OP_GET_RSS_HENA_CAPS";
215 	case VIRTCHNL_OP_SET_RSS_HENA:
216 		return "VIRTCHNL_OP_SET_RSS_HENA";
217 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
218 		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING";
219 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
220 		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING";
221 	case VIRTCHNL_OP_REQUEST_QUEUES:
222 		return "VIRTCHNL_OP_REQUEST_QUEUES";
223 	case VIRTCHNL_OP_ENABLE_CHANNELS:
224 		return "VIRTCHNL_OP_ENABLE_CHANNELS";
225 	case VIRTCHNL_OP_DISABLE_CHANNELS:
226 		return "VIRTCHNL_OP_DISABLE_CHANNELS";
227 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
228 		return "VIRTCHNL_OP_ADD_CLOUD_FILTER";
229 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
230 		return "VIRTCHNL_OP_DEL_CLOUD_FILTER";
231 	case VIRTCHNL_OP_INLINE_IPSEC_CRYPTO:
232 		return "VIRTCHNL_OP_INLINE_IPSEC_CRYPTO";
233 	case VIRTCHNL_OP_DCF_CMD_DESC:
234 		return "VIRTCHNL_OP_DCF_CMD_DESC";
235 	case VIRTCHNL_OP_DCF_CMD_BUFF:
236 		return "VIRTCHNL_OP_DCF_CMD_BUFF";
237 	case VIRTCHNL_OP_DCF_DISABLE:
238 		return "VIRTCHNL_OP_DCF_DISABLE";
239 	case VIRTCHNL_OP_DCF_GET_VSI_MAP:
240 		return "VIRTCHNL_OP_DCF_GET_VSI_MAP";
241 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
242 		return "VIRTCHNL_OP_GET_SUPPORTED_RXDIDS";
243 	case VIRTCHNL_OP_ADD_RSS_CFG:
244 		return "VIRTCHNL_OP_ADD_RSS_CFG";
245 	case VIRTCHNL_OP_DEL_RSS_CFG:
246 		return "VIRTCHNL_OP_DEL_RSS_CFG";
247 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
248 		return "VIRTCHNL_OP_ADD_FDIR_FILTER";
249 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
250 		return "VIRTCHNL_OP_DEL_FDIR_FILTER";
251 	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
252 		return "VIRTCHNL_OP_GET_MAX_RSS_QREGION";
253 	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
254 		return "VIRTCHNL_OP_ENABLE_QUEUES_V2";
255 	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
256 		return "VIRTCHNL_OP_DISABLE_QUEUES_V2";
257 	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
258 		return "VIRTCHNL_OP_MAP_QUEUE_VECTOR";
259 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
260 		return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS";
261 	case VIRTCHNL_OP_ADD_VLAN_V2:
262 		return "VIRTCHNL_OP_ADD_VLAN_V2";
263 	case VIRTCHNL_OP_DEL_VLAN_V2:
264 		return "VIRTCHNL_OP_DEL_VLAN_V2";
265 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
266 		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2";
267 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
268 		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2";
269 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
270 		return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2";
271 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
272 		return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2";
273 	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
274 		return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2";
275 	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
276 		return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2";
277 	case VIRTCHNL_OP_MAX:
278 		return "VIRTCHNL_OP_MAX";
279 	default:
280 		return "Unsupported (update virtchnl.h)";
281 	}
282 }
283 
284 /* These macros are used to generate compilation errors if a structure/union
285  * is not exactly the correct length. It gives a divide by zero error if the
286  * structure/union is not of the correct size, otherwise it creates an enum
287  * that is never used.
288  */
289 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
290 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
291 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
292 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
293 
294 /* Virtual channel message descriptor. This overlays the admin queue
295  * descriptor. All other data is passed in external buffers.
296  */
297 
298 struct virtchnl_msg {
299 	u8 pad[8];			 /* AQ flags/opcode/len/retval fields */
300 
301 	/* avoid confusion with desc->opcode */
302 	enum virtchnl_ops v_opcode;
303 
304 	/* ditto for desc->retval */
305 	enum virtchnl_status_code v_retval;
306 	u32 vfid;			 /* used by PF when sending to VF */
307 };
308 
309 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
310 
311 /* Message descriptions and data structures. */
312 
313 /* VIRTCHNL_OP_VERSION
314  * VF posts its version number to the PF. PF responds with its version number
315  * in the same format, along with a return code.
316  * Reply from PF has its major/minor versions also in param0 and param1.
317  * If there is a major version mismatch, then the VF cannot operate.
318  * If there is a minor version mismatch, then the VF can operate but should
319  * add a warning to the system log.
320  *
321  * This enum element MUST always be specified as == 1, regardless of other
322  * changes in the API. The PF must always respond to this message without
323  * error regardless of version mismatch.
324  */
325 #define VIRTCHNL_VERSION_MAJOR		1
326 #define VIRTCHNL_VERSION_MINOR		1
327 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
328 
329 struct virtchnl_version_info {
330 	u32 major;
331 	u32 minor;
332 };
333 
334 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
335 
336 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
337 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
338 
339 /* VIRTCHNL_OP_RESET_VF
340  * VF sends this request to PF with no parameters
341  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
342  * until reset completion is indicated. The admin queue must be reinitialized
343  * after this operation.
344  *
345  * When reset is complete, PF must ensure that all queues in all VSIs associated
346  * with the VF are stopped, all queue configurations in the HMC are set to 0,
347  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
348  * are cleared.
349  */
350 
351 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
352  * vsi_type should always be 6 for backward compatibility. Add other fields
353  * as needed.
354  */
355 enum virtchnl_vsi_type {
356 	VIRTCHNL_VSI_TYPE_INVALID = 0,
357 	VIRTCHNL_VSI_SRIOV = 6,
358 };
359 
360 /* VIRTCHNL_OP_GET_VF_RESOURCES
361  * Version 1.0 VF sends this request to PF with no parameters
362  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
363  * PF responds with an indirect message containing
364  * virtchnl_vf_resource and one or more
365  * virtchnl_vsi_resource structures.
366  */
367 
368 struct virtchnl_vsi_resource {
369 	u16 vsi_id;
370 	u16 num_queue_pairs;
371 
372 	/* see enum virtchnl_vsi_type */
373 	s32 vsi_type;
374 	u16 qset_handle;
375 	u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
376 };
377 
378 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
379 
380 /* VF capability flags
381  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
382  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
383  */
384 #define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
385 #define VIRTCHNL_VF_OFFLOAD_IWARP		BIT(1)
386 #define VIRTCHNL_VF_OFFLOAD_RSVD		BIT(2)
387 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
388 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
389 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
390 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
391 /* used to negotiate communicating link speeds in Mbps */
392 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
393 #define VIRTCHNL_VF_OFFLOAD_INLINE_IPSEC_CRYPTO	BIT(8)
394 #define VIRTCHNL_VF_LARGE_NUM_QPAIRS		BIT(9)
395 #define VIRTCHNL_VF_OFFLOAD_CRC			BIT(10)
396 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
397 #define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
398 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
399 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
400 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
401 #define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
402 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
403 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
404 #define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
405 #define VIRTCHNL_VF_OFFLOAD_ADQ_V2		BIT(24)
406 #define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
407 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC	BIT(26)
408 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
409 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
410 #define VIRTCHNL_VF_OFFLOAD_QOS		BIT(29)
411 #define VIRTCHNL_VF_CAP_DCF			BIT(30)
412 	/* BIT(31) is reserved */
413 
414 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
415 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
416 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
417 
418 struct virtchnl_vf_resource {
419 	u16 num_vsis;
420 	u16 num_queue_pairs;
421 	u16 max_vectors;
422 	u16 max_mtu;
423 
424 	u32 vf_cap_flags;
425 	u32 rss_key_size;
426 	u32 rss_lut_size;
427 
428 	struct virtchnl_vsi_resource vsi_res[1];
429 };
430 
431 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
432 
433 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
434  * VF sends this message to set up parameters for one TX queue.
435  * External data buffer contains one instance of virtchnl_txq_info.
436  * PF configures requested queue and returns a status code.
437  */
438 
439 /* Tx queue config info */
440 struct virtchnl_txq_info {
441 	u16 vsi_id;
442 	u16 queue_id;
443 	u16 ring_len;		/* number of descriptors, multiple of 8 */
444 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
445 	u64 dma_ring_addr;
446 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
447 };
448 
449 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
450 
451 /* RX descriptor IDs (range from 0 to 63) */
452 enum virtchnl_rx_desc_ids {
453 	VIRTCHNL_RXDID_0_16B_BASE		= 0,
454 	/* 32B_BASE and FLEX_SPLITQ share desc ids as default descriptors
455 	 * because they can be differentiated based on queue model; e.g. single
456 	 * queue model can only use 32B_BASE and split queue model can only use
457 	 * FLEX_SPLITQ.  Having these as 1 allows them to be used as default
458 	 * descriptors without negotiation.
459 	 */
460 	VIRTCHNL_RXDID_1_32B_BASE		= 1,
461 	VIRTCHNL_RXDID_1_FLEX_SPLITQ		= 1,
462 	VIRTCHNL_RXDID_2_FLEX_SQ_NIC		= 2,
463 	VIRTCHNL_RXDID_3_FLEX_SQ_SW		= 3,
464 	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB	= 4,
465 	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL	= 5,
466 	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2		= 6,
467 	VIRTCHNL_RXDID_7_HW_RSVD		= 7,
468 	/* 9 through 15 are reserved */
469 	VIRTCHNL_RXDID_16_COMMS_GENERIC		= 16,
470 	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN	= 17,
471 	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4	= 18,
472 	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6	= 19,
473 	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW	= 20,
474 	VIRTCHNL_RXDID_21_COMMS_AUX_TCP		= 21,
475 	/* 22 through 63 are reserved */
476 };
477 
478 /* RX descriptor ID bitmasks */
479 enum virtchnl_rx_desc_id_bitmasks {
480 	VIRTCHNL_RXDID_0_16B_BASE_M		= BIT(VIRTCHNL_RXDID_0_16B_BASE),
481 	VIRTCHNL_RXDID_1_32B_BASE_M		= BIT(VIRTCHNL_RXDID_1_32B_BASE),
482 	VIRTCHNL_RXDID_1_FLEX_SPLITQ_M		= BIT(VIRTCHNL_RXDID_1_FLEX_SPLITQ),
483 	VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M		= BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC),
484 	VIRTCHNL_RXDID_3_FLEX_SQ_SW_M		= BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW),
485 	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M	= BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB),
486 	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M	= BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL),
487 	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M	= BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2),
488 	VIRTCHNL_RXDID_7_HW_RSVD_M		= BIT(VIRTCHNL_RXDID_7_HW_RSVD),
489 	/* 9 through 15 are reserved */
490 	VIRTCHNL_RXDID_16_COMMS_GENERIC_M	= BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC),
491 	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M	= BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN),
492 	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M	= BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4),
493 	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M	= BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6),
494 	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M	= BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW),
495 	VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M	= BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP),
496 	/* 22 through 63 are reserved */
497 };
498 
499 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
500  * VF sends this message to set up parameters for one RX queue.
501  * External data buffer contains one instance of virtchnl_rxq_info.
502  * PF configures requested queue and returns a status code. The
503  * crc_disable flag disables CRC stripping on the VF. Setting
504  * the crc_disable flag to 1 will disable CRC stripping for each
505  * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
506  * offload must have been set prior to sending this info or the PF
507  * will ignore the request. This flag should be set the same for
508  * all of the queues for a VF.
509  */
510 
511 /* Rx queue config info */
512 struct virtchnl_rxq_info {
513 	u16 vsi_id;
514 	u16 queue_id;
515 	u32 ring_len;		/* number of descriptors, multiple of 32 */
516 	u16 hdr_size;
517 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
518 	u32 databuffer_size;
519 	u32 max_pkt_size;
520 	u8 crc_disable;
521 	/* see enum virtchnl_rx_desc_ids;
522 	 * only used when VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is supported. Note
523 	 * that when the offload is not supported, the descriptor format aligns
524 	 * with VIRTCHNL_RXDID_1_32B_BASE.
525 	 */
526 	u8 rxdid;
527 	u8 pad1[2];
528 	u64 dma_ring_addr;
529 
530 	/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
531 	s32 rx_split_pos;
532 	u32 pad2;
533 };
534 
535 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
536 
537 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
538  * VF sends this message to set parameters for active TX and RX queues
539  * associated with the specified VSI.
540  * PF configures queues and returns status.
541  * If the number of queues specified is greater than the number of queues
542  * associated with the VSI, an error is returned and no queues are configured.
543  * NOTE: The VF is not required to configure all queues in a single request.
544  * It may send multiple messages. PF drivers must correctly handle all VF
545  * requests.
546  */
547 struct virtchnl_queue_pair_info {
548 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
549 	struct virtchnl_txq_info txq;
550 	struct virtchnl_rxq_info rxq;
551 };
552 
553 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
554 
555 struct virtchnl_vsi_queue_config_info {
556 	u16 vsi_id;
557 	u16 num_queue_pairs;
558 	u32 pad;
559 	struct virtchnl_queue_pair_info qpair[1];
560 };
561 
562 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
563 
564 /* VIRTCHNL_OP_REQUEST_QUEUES
565  * VF sends this message to request the PF to allocate additional queues to
566  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
567  * additional queues must be negotiated.  This is a best effort request as it
568  * is possible the PF does not have enough queues left to support the request.
569  * If the PF cannot support the number requested it will respond with the
570  * maximum number it is able to support.  If the request is successful, PF will
571  * then reset the VF to institute required changes.
572  */
573 
574 /* VF resource request */
575 struct virtchnl_vf_res_request {
576 	u16 num_queue_pairs;
577 };
578 
579 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
580  * VF uses this message to map vectors to queues.
581  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
582  * are to be associated with the specified vector.
583  * The "other" causes are always mapped to vector 0. The VF may not request
584  * that vector 0 be used for traffic.
585  * PF configures interrupt mapping and returns status.
586  * NOTE: due to hardware requirements, all active queues (both TX and RX)
587  * should be mapped to interrupts, even if the driver intends to operate
588  * only in polling mode. In this case the interrupt may be disabled, but
589  * the ITR timer will still run to trigger writebacks.
590  */
591 struct virtchnl_vector_map {
592 	u16 vsi_id;
593 	u16 vector_id;
594 	u16 rxq_map;
595 	u16 txq_map;
596 	u16 rxitr_idx;
597 	u16 txitr_idx;
598 };
599 
600 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
601 
602 struct virtchnl_irq_map_info {
603 	u16 num_vectors;
604 	struct virtchnl_vector_map vecmap[1];
605 };
606 
607 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
608 
609 /* VIRTCHNL_OP_ENABLE_QUEUES
610  * VIRTCHNL_OP_DISABLE_QUEUES
611  * VF sends these message to enable or disable TX/RX queue pairs.
612  * The queues fields are bitmaps indicating which queues to act upon.
613  * (Currently, we only support 16 queues per VF, but we make the field
614  * u32 to allow for expansion.)
615  * PF performs requested action and returns status.
616  * NOTE: The VF is not required to enable/disable all queues in a single
617  * request. It may send multiple messages.
618  * PF drivers must correctly handle all VF requests.
619  */
620 struct virtchnl_queue_select {
621 	u16 vsi_id;
622 	u16 pad;
623 	u32 rx_queues;
624 	u32 tx_queues;
625 };
626 
627 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
628 
629 /* VIRTCHNL_OP_GET_MAX_RSS_QREGION
630  *
631  * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
632  * then this op must be supported.
633  *
634  * VF sends this message in order to query the max RSS queue region
635  * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled.
636  * This information should be used when configuring the RSS LUT and/or
637  * configuring queue region based filters.
638  *
639  * The maximum RSS queue region is 2^qregion_width. So, a qregion_width
640  * of 6 would inform the VF that the PF supports a maximum RSS queue region
641  * of 64.
642  *
643  * A queue region represents a range of queues that can be used to configure
644  * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue
645  * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able
646  * to configure the RSS LUT with queue indices from 0 to 15. However, other
647  * filters can be used to direct packets to queues >15 via specifying a queue
648  * base/offset and queue region width.
649  */
650 struct virtchnl_max_rss_qregion {
651 	u16 vport_id;
652 	u16 qregion_width;
653 	u8 pad[4];
654 };
655 
656 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion);
657 
658 /* VIRTCHNL_OP_ADD_ETH_ADDR
659  * VF sends this message in order to add one or more unicast or multicast
660  * address filters for the specified VSI.
661  * PF adds the filters and returns status.
662  */
663 
664 /* VIRTCHNL_OP_DEL_ETH_ADDR
665  * VF sends this message in order to remove one or more unicast or multicast
666  * filters for the specified VSI.
667  * PF removes the filters and returns status.
668  */
669 
670 /* VIRTCHNL_ETHER_ADDR_LEGACY
671  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
672  * bytes. Moving forward all VF drivers should not set type to
673  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
674  * behavior. The control plane function (i.e. PF) can use a best effort method
675  * of tracking the primary/device unicast in this case, but there is no
676  * guarantee and functionality depends on the implementation of the PF.
677  */
678 
679 /* VIRTCHNL_ETHER_ADDR_PRIMARY
680  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
681  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
682  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
683  * function (i.e. PF) to accurately track and use this MAC address for
684  * displaying on the host and for VM/function reset.
685  */
686 
687 /* VIRTCHNL_ETHER_ADDR_EXTRA
688  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
689  * unicast and/or multicast filters that are being added/deleted via
690  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
691  */
692 struct virtchnl_ether_addr {
693 	u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
694 	u8 type;
695 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
696 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
697 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
698 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
699 	u8 pad;
700 };
701 
702 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
703 
704 struct virtchnl_ether_addr_list {
705 	u16 vsi_id;
706 	u16 num_elements;
707 	struct virtchnl_ether_addr list[1];
708 };
709 
710 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
711 
712 /* VIRTCHNL_OP_ADD_VLAN
713  * VF sends this message to add one or more VLAN tag filters for receives.
714  * PF adds the filters and returns status.
715  * If a port VLAN is configured by the PF, this operation will return an
716  * error to the VF.
717  */
718 
719 /* VIRTCHNL_OP_DEL_VLAN
720  * VF sends this message to remove one or more VLAN tag filters for receives.
721  * PF removes the filters and returns status.
722  * If a port VLAN is configured by the PF, this operation will return an
723  * error to the VF.
724  */
725 
726 struct virtchnl_vlan_filter_list {
727 	u16 vsi_id;
728 	u16 num_elements;
729 	u16 vlan_id[1];
730 };
731 
732 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
733 
734 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
735  * structures and opcodes.
736  *
737  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
738  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
739  *
740  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
741  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
742  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
743  *
744  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
745  * by the PF concurrently. For example, if the PF can support
746  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
747  * would OR the following bits:
748  *
749  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
750  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
751  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
752  *
753  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
754  * and 0x88A8 VLAN ethertypes.
755  *
756  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
757  * by the PF concurrently. For example if the PF can support
758  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
759  * offload it would OR the following bits:
760  *
761  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
762  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
763  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
764  *
765  * The VF would interpret this as VLAN stripping can be supported on either
766  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
767  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
768  * the previously set value.
769  *
770  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
771  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
772  *
773  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
774  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
775  *
776  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
777  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
778  *
779  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
780  * VLAN filtering if the underlying PF supports it.
781  *
782  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
783  * certain VLAN capability can be toggled. For example if the underlying PF/CP
784  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
785  * set this bit along with the supported ethertypes.
786  */
787 enum virtchnl_vlan_support {
788 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
789 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		0x00000001,
790 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		0x00000002,
791 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		0x00000004,
792 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	0x00000100,
793 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	0x00000200,
794 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	0x00000400,
795 	VIRTCHNL_VLAN_PRIO =			0x01000000,
796 	VIRTCHNL_VLAN_FILTER_MASK =		0x10000000,
797 	VIRTCHNL_VLAN_ETHERTYPE_AND =		0x20000000,
798 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		0x40000000,
799 	VIRTCHNL_VLAN_TOGGLE =			0x80000000
800 };
801 
802 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
803  * for filtering, insertion, and stripping capabilities.
804  *
805  * If only outer capabilities are supported (for filtering, insertion, and/or
806  * stripping) then this refers to the outer most or single VLAN from the VF's
807  * perspective.
808  *
809  * If only inner capabilities are supported (for filtering, insertion, and/or
810  * stripping) then this refers to the outer most or single VLAN from the VF's
811  * perspective. Functionally this is the same as if only outer capabilities are
812  * supported. The VF driver is just forced to use the inner fields when
813  * adding/deleting filters and enabling/disabling offloads (if supported).
814  *
815  * If both outer and inner capabilities are supported (for filtering, insertion,
816  * and/or stripping) then outer refers to the outer most or single VLAN and
817  * inner refers to the second VLAN, if it exists, in the packet.
818  *
819  * There is no support for tunneled VLAN offloads, so outer or inner are never
820  * referring to a tunneled packet from the VF's perspective.
821  */
822 struct virtchnl_vlan_supported_caps {
823 	u32 outer;
824 	u32 inner;
825 };
826 
827 /* The PF populates these fields based on the supported VLAN filtering. If a
828  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
829  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
830  * the unsupported fields.
831  *
832  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
833  * VIRTCHNL_VLAN_TOGGLE bit is set.
834  *
835  * The ethertype(s) specified in the ethertype_init field are the ethertypes
836  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
837  * most VLAN from the VF's perspective. If both inner and outer filtering are
838  * allowed then ethertype_init only refers to the outer most VLAN as only
839  * VLAN ethertype supported for inner VLAN filtering is
840  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
841  * when both inner and outer filtering are allowed.
842  *
843  * The max_filters field tells the VF how many VLAN filters it's allowed to have
844  * at any one time. If it exceeds this amount and tries to add another filter,
845  * then the request will be rejected by the PF. To prevent failures, the VF
846  * should keep track of how many VLAN filters it has added and not attempt to
847  * add more than max_filters.
848  */
849 struct virtchnl_vlan_filtering_caps {
850 	struct virtchnl_vlan_supported_caps filtering_support;
851 	u32 ethertype_init;
852 	u16 max_filters;
853 	u8 pad[2];
854 };
855 
856 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
857 
858 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
859  * if the PF supports a different ethertype for stripping and insertion.
860  *
861  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
862  * for stripping affect the ethertype(s) specified for insertion and visa versa
863  * as well. If the VF tries to configure VLAN stripping via
864  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
865  * that will be the ethertype for both stripping and insertion.
866  *
867  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
868  * stripping do not affect the ethertype(s) specified for insertion and visa
869  * versa.
870  */
871 enum virtchnl_vlan_ethertype_match {
872 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
873 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
874 };
875 
876 /* The PF populates these fields based on the supported VLAN offloads. If a
877  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
878  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
879  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
880  *
881  * Also, a VF is only allowed to toggle its VLAN offload setting if the
882  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
883  *
884  * The VF driver needs to be aware of how the tags are stripped by hardware and
885  * inserted by the VF driver based on the level of offload support. The PF will
886  * populate these fields based on where the VLAN tags are expected to be
887  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
888  * interpret these fields. See the definition of the
889  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
890  * enumeration.
891  */
892 struct virtchnl_vlan_offload_caps {
893 	struct virtchnl_vlan_supported_caps stripping_support;
894 	struct virtchnl_vlan_supported_caps insertion_support;
895 	u32 ethertype_init;
896 	u8 ethertype_match;
897 	u8 pad[3];
898 };
899 
900 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
901 
902 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
903  * VF sends this message to determine its VLAN capabilities.
904  *
905  * PF will mark which capabilities it supports based on hardware support and
906  * current configuration. For example, if a port VLAN is configured the PF will
907  * not allow outer VLAN filtering, stripping, or insertion to be configured so
908  * it will block these features from the VF.
909  *
910  * The VF will need to cross reference its capabilities with the PFs
911  * capabilities in the response message from the PF to determine the VLAN
912  * support.
913  */
914 struct virtchnl_vlan_caps {
915 	struct virtchnl_vlan_filtering_caps filtering;
916 	struct virtchnl_vlan_offload_caps offloads;
917 };
918 
919 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
920 
921 struct virtchnl_vlan {
922 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
923 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
924 			 * filtering caps
925 			 */
926 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
927 			 * filtering caps. Note that tpid here does not refer to
928 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
929 			 * actual 2-byte VLAN TPID
930 			 */
931 	u8 pad[2];
932 };
933 
934 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
935 
936 struct virtchnl_vlan_filter {
937 	struct virtchnl_vlan inner;
938 	struct virtchnl_vlan outer;
939 	u8 pad[16];
940 };
941 
942 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
943 
944 /* VIRTCHNL_OP_ADD_VLAN_V2
945  * VIRTCHNL_OP_DEL_VLAN_V2
946  *
947  * VF sends these messages to add/del one or more VLAN tag filters for Rx
948  * traffic.
949  *
950  * The PF attempts to add the filters and returns status.
951  *
952  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
953  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
954  */
955 struct virtchnl_vlan_filter_list_v2 {
956 	u16 vport_id;
957 	u16 num_elements;
958 	u8 pad[4];
959 	struct virtchnl_vlan_filter filters[1];
960 };
961 
962 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
963 
964 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
965  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
966  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
967  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
968  *
969  * VF sends this message to enable or disable VLAN stripping or insertion. It
970  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
971  * allowed and whether or not it's allowed to enable/disable the specific
972  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
973  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
974  * messages are allowed.
975  *
976  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
977  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
978  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
979  * case means the outer most or single VLAN from the VF's perspective. This is
980  * because no outer offloads are supported. See the comments above the
981  * virtchnl_vlan_supported_caps structure for more details.
982  *
983  * virtchnl_vlan_caps.offloads.stripping_support.inner =
984  *			VIRTCHNL_VLAN_TOGGLE |
985  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
986  *
987  * virtchnl_vlan_caps.offloads.insertion_support.inner =
988  *			VIRTCHNL_VLAN_TOGGLE |
989  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
990  *
991  * In order to enable inner (again note that in this case inner is the outer
992  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
993  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
994  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
995  *
996  * virtchnl_vlan_setting.inner_ethertype_setting =
997  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
998  *
999  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1000  * initialization.
1001  *
1002  * The reason that VLAN TPID(s) are not being used for the
1003  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
1004  * possible a device could support VLAN insertion and/or stripping offload on
1005  * multiple ethertypes concurrently, so this method allows a VF to request
1006  * multiple ethertypes in one message using the virtchnl_vlan_support
1007  * enumeration.
1008  *
1009  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
1010  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
1011  * VLAN insertion and stripping simultaneously. The
1012  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
1013  * populated based on what the PF can support.
1014  *
1015  * virtchnl_vlan_caps.offloads.stripping_support.outer =
1016  *			VIRTCHNL_VLAN_TOGGLE |
1017  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1018  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1019  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1020  *
1021  * virtchnl_vlan_caps.offloads.insertion_support.outer =
1022  *			VIRTCHNL_VLAN_TOGGLE |
1023  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1024  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1025  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1026  *
1027  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
1028  * would populate the virthcnl_vlan_offload_structure in the following manner
1029  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
1030  *
1031  * virtchnl_vlan_setting.outer_ethertype_setting =
1032  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
1033  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
1034  *
1035  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1036  * initialization.
1037  *
1038  * There is also the case where a PF and the underlying hardware can support
1039  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
1040  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
1041  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
1042  * offloads. The ethertypes must match for stripping and insertion.
1043  *
1044  * virtchnl_vlan_caps.offloads.stripping_support.outer =
1045  *			VIRTCHNL_VLAN_TOGGLE |
1046  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1047  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1048  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
1049  *
1050  * virtchnl_vlan_caps.offloads.insertion_support.outer =
1051  *			VIRTCHNL_VLAN_TOGGLE |
1052  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1053  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1054  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
1055  *
1056  * virtchnl_vlan_caps.offloads.ethertype_match =
1057  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
1058  *
1059  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
1060  * populate the virtchnl_vlan_setting structure in the following manner and send
1061  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
1062  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
1063  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
1064  *
1065  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
1066  *
1067  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1068  * initialization.
1069  *
1070  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2
1071  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2
1072  *
1073  * VF sends this message to enable or disable VLAN filtering. It also needs to
1074  * specify an ethertype. The VF knows which VLAN ethertypes are allowed and
1075  * whether or not it's allowed to enable/disable filtering via the
1076  * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
1077  * parse the virtchnl_vlan_caps.filtering fields to determine which, if any,
1078  * filtering messages are allowed.
1079  *
1080  * For example, if the PF populates the virtchnl_vlan_caps.filtering in the
1081  * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8
1082  * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND
1083  * means that all filtering ethertypes will to be enabled and disabled together
1084  * regardless of the request from the VF. This means that the underlying
1085  * hardware only supports VLAN filtering for all VLAN the specified ethertypes
1086  * or none of them.
1087  *
1088  * virtchnl_vlan_caps.filtering.filtering_support.outer =
1089  *			VIRTCHNL_VLAN_TOGGLE |
1090  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1091  *			VIRTHCNL_VLAN_ETHERTYPE_88A8 |
1092  *			VIRTCHNL_VLAN_ETHERTYPE_9100 |
1093  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1094  *
1095  * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100
1096  * VLANs aren't supported by the VF driver), the VF would populate the
1097  * virtchnl_vlan_setting structure in the following manner and send the
1098  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used
1099  * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the
1100  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used.
1101  *
1102  * virtchnl_vlan_setting.outer_ethertype_setting =
1103  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1104  *			VIRTCHNL_VLAN_ETHERTYPE_88A8;
1105  *
1106  */
1107 struct virtchnl_vlan_setting {
1108 	u32 outer_ethertype_setting;
1109 	u32 inner_ethertype_setting;
1110 	u16 vport_id;
1111 	u8 pad[6];
1112 };
1113 
1114 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
1115 
1116 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
1117  * VF sends VSI id and flags.
1118  * PF returns status code in retval.
1119  * Note: we assume that broadcast accept mode is always enabled.
1120  */
1121 struct virtchnl_promisc_info {
1122 	u16 vsi_id;
1123 	u16 flags;
1124 };
1125 
1126 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
1127 
1128 #define FLAG_VF_UNICAST_PROMISC	0x00000001
1129 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
1130 
1131 /* VIRTCHNL_OP_GET_STATS
1132  * VF sends this message to request stats for the selected VSI. VF uses
1133  * the virtchnl_queue_select struct to specify the VSI. The queue_id
1134  * field is ignored by the PF.
1135  *
1136  * PF replies with struct virtchnl_eth_stats in an external buffer.
1137  */
1138 
1139 struct virtchnl_eth_stats {
1140 	u64 rx_bytes;			/* received bytes */
1141 	u64 rx_unicast;			/* received unicast pkts */
1142 	u64 rx_multicast;		/* received multicast pkts */
1143 	u64 rx_broadcast;		/* received broadcast pkts */
1144 	u64 rx_discards;
1145 	u64 rx_unknown_protocol;
1146 	u64 tx_bytes;			/* transmitted bytes */
1147 	u64 tx_unicast;			/* transmitted unicast pkts */
1148 	u64 tx_multicast;		/* transmitted multicast pkts */
1149 	u64 tx_broadcast;		/* transmitted broadcast pkts */
1150 	u64 tx_discards;
1151 	u64 tx_errors;
1152 };
1153 
1154 /* VIRTCHNL_OP_CONFIG_RSS_KEY
1155  * VIRTCHNL_OP_CONFIG_RSS_LUT
1156  * VF sends these messages to configure RSS. Only supported if both PF
1157  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
1158  * configuration negotiation. If this is the case, then the RSS fields in
1159  * the VF resource struct are valid.
1160  * Both the key and LUT are initialized to 0 by the PF, meaning that
1161  * RSS is effectively disabled until set up by the VF.
1162  */
1163 struct virtchnl_rss_key {
1164 	u16 vsi_id;
1165 	u16 key_len;
1166 	u8 key[1];         /* RSS hash key, packed bytes */
1167 };
1168 
1169 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
1170 
1171 struct virtchnl_rss_lut {
1172 	u16 vsi_id;
1173 	u16 lut_entries;
1174 	u8 lut[1];        /* RSS lookup table */
1175 };
1176 
1177 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
1178 
1179 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
1180  * VIRTCHNL_OP_SET_RSS_HENA
1181  * VF sends these messages to get and set the hash filter enable bits for RSS.
1182  * By default, the PF sets these to all possible traffic types that the
1183  * hardware supports. The VF can query this value if it wants to change the
1184  * traffic types that are hashed by the hardware.
1185  */
1186 struct virtchnl_rss_hena {
1187 	u64 hena;
1188 };
1189 
1190 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
1191 
1192 /* Type of RSS algorithm */
1193 enum virtchnl_rss_algorithm {
1194 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
1195 	VIRTCHNL_RSS_ALG_XOR_ASYMMETRIC		= 1,
1196 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
1197 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
1198 };
1199 
1200 /* This is used by PF driver to enforce how many channels can be supported.
1201  * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise
1202  * PF driver will allow only max 4 channels
1203  */
1204 #define VIRTCHNL_MAX_ADQ_CHANNELS 4
1205 #define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16
1206 
1207 /* VIRTCHNL_OP_ENABLE_CHANNELS
1208  * VIRTCHNL_OP_DISABLE_CHANNELS
1209  * VF sends these messages to enable or disable channels based on
1210  * the user specified queue count and queue offset for each traffic class.
1211  * This struct encompasses all the information that the PF needs from
1212  * VF to create a channel.
1213  */
1214 struct virtchnl_channel_info {
1215 	u16 count; /* number of queues in a channel */
1216 	u16 offset; /* queues in a channel start from 'offset' */
1217 	u32 pad;
1218 	u64 max_tx_rate;
1219 };
1220 
1221 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
1222 
1223 struct virtchnl_tc_info {
1224 	u32	num_tc;
1225 	u32	pad;
1226 	struct	virtchnl_channel_info list[1];
1227 };
1228 
1229 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
1230 
1231 /* VIRTCHNL_ADD_CLOUD_FILTER
1232  * VIRTCHNL_DEL_CLOUD_FILTER
1233  * VF sends these messages to add or delete a cloud filter based on the
1234  * user specified match and action filters. These structures encompass
1235  * all the information that the PF needs from the VF to add/delete a
1236  * cloud filter.
1237  */
1238 
1239 struct virtchnl_l4_spec {
1240 	u8	src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1241 	u8	dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1242 	/* vlan_prio is part of this 16 bit field even from OS perspective
1243 	 * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio
1244 	 * in future, when decided to offload vlan_prio, pass that information
1245 	 * as part of the "vlan_id" field, Bit14..12
1246 	 */
1247 	__be16	vlan_id;
1248 	__be16	pad; /* reserved for future use */
1249 	__be32	src_ip[4];
1250 	__be32	dst_ip[4];
1251 	__be16	src_port;
1252 	__be16	dst_port;
1253 };
1254 
1255 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
1256 
1257 union virtchnl_flow_spec {
1258 	struct	virtchnl_l4_spec tcp_spec;
1259 	u8	buffer[128]; /* reserved for future use */
1260 };
1261 
1262 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
1263 
1264 enum virtchnl_action {
1265 	/* action types */
1266 	VIRTCHNL_ACTION_DROP = 0,
1267 	VIRTCHNL_ACTION_TC_REDIRECT,
1268 	VIRTCHNL_ACTION_PASSTHRU,
1269 	VIRTCHNL_ACTION_QUEUE,
1270 	VIRTCHNL_ACTION_Q_REGION,
1271 	VIRTCHNL_ACTION_MARK,
1272 	VIRTCHNL_ACTION_COUNT,
1273 };
1274 
1275 enum virtchnl_flow_type {
1276 	/* flow types */
1277 	VIRTCHNL_TCP_V4_FLOW = 0,
1278 	VIRTCHNL_TCP_V6_FLOW,
1279 	VIRTCHNL_UDP_V4_FLOW,
1280 	VIRTCHNL_UDP_V6_FLOW,
1281 };
1282 
1283 struct virtchnl_filter {
1284 	union	virtchnl_flow_spec data;
1285 	union	virtchnl_flow_spec mask;
1286 
1287 	/* see enum virtchnl_flow_type */
1288 	s32	flow_type;
1289 
1290 	/* see enum virtchnl_action */
1291 	s32	action;
1292 	u32	action_meta;
1293 	u8	field_flags;
1294 };
1295 
1296 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
1297 
1298 struct virtchnl_shaper_bw {
1299 	/* Unit is Kbps */
1300 	u32 committed;
1301 	u32 peak;
1302 };
1303 
1304 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw);
1305 
1306 /* VIRTCHNL_OP_DCF_GET_VSI_MAP
1307  * VF sends this message to get VSI mapping table.
1308  * PF responds with an indirect message containing VF's
1309  * HW VSI IDs.
1310  * The index of vf_vsi array is the logical VF ID, the
1311  * value of vf_vsi array is the VF's HW VSI ID with its
1312  * valid configuration.
1313  */
1314 struct virtchnl_dcf_vsi_map {
1315 	u16 pf_vsi;	/* PF's HW VSI ID */
1316 	u16 num_vfs;	/* The actual number of VFs allocated */
1317 #define VIRTCHNL_DCF_VF_VSI_ID_S	0
1318 #define VIRTCHNL_DCF_VF_VSI_ID_M	(0xFFF << VIRTCHNL_DCF_VF_VSI_ID_S)
1319 #define VIRTCHNL_DCF_VF_VSI_VALID	BIT(15)
1320 	u16 vf_vsi[1];
1321 };
1322 
1323 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_dcf_vsi_map);
1324 
1325 #define PKG_NAME_SIZE	32
1326 #define DSN_SIZE	8
1327 
1328 struct pkg_version {
1329 	u8 major;
1330 	u8 minor;
1331 	u8 update;
1332 	u8 draft;
1333 };
1334 
1335 VIRTCHNL_CHECK_STRUCT_LEN(4, pkg_version);
1336 
1337 struct virtchnl_pkg_info {
1338 	struct pkg_version pkg_ver;
1339 	u32 track_id;
1340 	char pkg_name[PKG_NAME_SIZE];
1341 	u8 dsn[DSN_SIZE];
1342 };
1343 
1344 VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_pkg_info);
1345 
1346 /* VIRTCHNL_OP_DCF_VLAN_OFFLOAD
1347  * DCF negotiates the VIRTCHNL_VF_OFFLOAD_VLAN_V2 capability firstly to get
1348  * the double VLAN configuration, then DCF sends this message to configure the
1349  * outer or inner VLAN offloads (insertion and strip) for the target VF.
1350  */
1351 struct virtchnl_dcf_vlan_offload {
1352 	u16 vf_id;
1353 	u16 tpid;
1354 	u16 vlan_flags;
1355 #define VIRTCHNL_DCF_VLAN_TYPE_S		0
1356 #define VIRTCHNL_DCF_VLAN_TYPE_M		\
1357 			(0x1 << VIRTCHNL_DCF_VLAN_TYPE_S)
1358 #define VIRTCHNL_DCF_VLAN_TYPE_INNER		0x0
1359 #define VIRTCHNL_DCF_VLAN_TYPE_OUTER		0x1
1360 #define VIRTCHNL_DCF_VLAN_INSERT_MODE_S		1
1361 #define VIRTCHNL_DCF_VLAN_INSERT_MODE_M	\
1362 			(0x7 << VIRTCHNL_DCF_VLAN_INSERT_MODE_S)
1363 #define VIRTCHNL_DCF_VLAN_INSERT_DISABLE	0x1
1364 #define VIRTCHNL_DCF_VLAN_INSERT_PORT_BASED	0x2
1365 #define VIRTCHNL_DCF_VLAN_INSERT_VIA_TX_DESC	0x3
1366 #define VIRTCHNL_DCF_VLAN_STRIP_MODE_S		4
1367 #define VIRTCHNL_DCF_VLAN_STRIP_MODE_M		\
1368 			(0x7 << VIRTCHNL_DCF_VLAN_STRIP_MODE_S)
1369 #define VIRTCHNL_DCF_VLAN_STRIP_DISABLE		0x1
1370 #define VIRTCHNL_DCF_VLAN_STRIP_ONLY		0x2
1371 #define VIRTCHNL_DCF_VLAN_STRIP_INTO_RX_DESC	0x3
1372 	u16 vlan_id;
1373 	u16 pad[4];
1374 };
1375 
1376 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_dcf_vlan_offload);
1377 
1378 struct virtchnl_dcf_bw_cfg {
1379 	u8 tc_num;
1380 #define VIRTCHNL_DCF_BW_CIR		BIT(0)
1381 #define VIRTCHNL_DCF_BW_PIR		BIT(1)
1382 	u8 bw_type;
1383 	u8 pad[2];
1384 	enum virtchnl_bw_limit_type type;
1385 	union {
1386 		struct virtchnl_shaper_bw shaper;
1387 		u8 pad2[32];
1388 	};
1389 };
1390 
1391 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_dcf_bw_cfg);
1392 
1393 /* VIRTCHNL_OP_DCF_CONFIG_BW
1394  * VF send this message to set the bandwidth configuration of each
1395  * TC with a specific vf id. The flag node_type is to indicate that
1396  * this message is to configure VSI node or TC node bandwidth.
1397  */
1398 struct virtchnl_dcf_bw_cfg_list {
1399 	u16 vf_id;
1400 	u8 num_elem;
1401 #define VIRTCHNL_DCF_TARGET_TC_BW	0
1402 #define VIRTCHNL_DCF_TARGET_VF_BW	1
1403 	u8 node_type;
1404 	struct virtchnl_dcf_bw_cfg cfg[1];
1405 };
1406 
1407 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_dcf_bw_cfg_list);
1408 
1409 struct virtchnl_supported_rxdids {
1410 	/* see enum virtchnl_rx_desc_id_bitmasks */
1411 	u64 supported_rxdids;
1412 };
1413 
1414 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_supported_rxdids);
1415 
1416 /* VIRTCHNL_OP_EVENT
1417  * PF sends this message to inform the VF driver of events that may affect it.
1418  * No direct response is expected from the VF, though it may generate other
1419  * messages in response to this one.
1420  */
1421 enum virtchnl_event_codes {
1422 	VIRTCHNL_EVENT_UNKNOWN = 0,
1423 	VIRTCHNL_EVENT_LINK_CHANGE,
1424 	VIRTCHNL_EVENT_RESET_IMPENDING,
1425 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1426 	VIRTCHNL_EVENT_DCF_VSI_MAP_UPDATE,
1427 };
1428 
1429 #define PF_EVENT_SEVERITY_INFO		0
1430 #define PF_EVENT_SEVERITY_ATTENTION	1
1431 #define PF_EVENT_SEVERITY_ACTION_REQUIRED	2
1432 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
1433 
1434 struct virtchnl_pf_event {
1435 	/* see enum virtchnl_event_codes */
1436 	s32 event;
1437 	union {
1438 		/* If the PF driver does not support the new speed reporting
1439 		 * capabilities then use link_event else use link_event_adv to
1440 		 * get the speed and link information. The ability to understand
1441 		 * new speeds is indicated by setting the capability flag
1442 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1443 		 * in virtchnl_vf_resource struct and can be used to determine
1444 		 * which link event struct to use below.
1445 		 */
1446 		struct {
1447 			enum virtchnl_link_speed link_speed;
1448 			u8 link_status;
1449 		} link_event;
1450 		struct {
1451 			/* link_speed provided in Mbps */
1452 			u32 link_speed;
1453 			u8 link_status;
1454 		} link_event_adv;
1455 		struct {
1456 			u16 vf_id;
1457 			u16 vsi_id;
1458 		} vf_vsi_map;
1459 	} event_data;
1460 
1461 	int severity;
1462 };
1463 
1464 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1465 
1466 
1467 /* VF reset states - these are written into the RSTAT register:
1468  * VFGEN_RSTAT on the VF
1469  * When the PF initiates a reset, it writes 0
1470  * When the reset is complete, it writes 1
1471  * When the PF detects that the VF has recovered, it writes 2
1472  * VF checks this register periodically to determine if a reset has occurred,
1473  * then polls it to know when the reset is complete.
1474  * If either the PF or VF reads the register while the hardware
1475  * is in a reset state, it will return DEADBEEF, which, when masked
1476  * will result in 3.
1477  */
1478 enum virtchnl_vfr_states {
1479 	VIRTCHNL_VFR_INPROGRESS = 0,
1480 	VIRTCHNL_VFR_COMPLETED,
1481 	VIRTCHNL_VFR_VFACTIVE,
1482 };
1483 
1484 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1485 #define PROTO_HDR_SHIFT			5
1486 #define PROTO_HDR_FIELD_START(proto_hdr_type) \
1487 					(proto_hdr_type << PROTO_HDR_SHIFT)
1488 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1489 
1490 /* VF use these macros to configure each protocol header.
1491  * Specify which protocol headers and protocol header fields base on
1492  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1493  * @param hdr: a struct of virtchnl_proto_hdr
1494  * @param hdr_type: ETH/IPV4/TCP, etc
1495  * @param field: SRC/DST/TEID/SPI, etc
1496  */
1497 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1498 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1499 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1500 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1501 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1502 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1503 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1504 
1505 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1506 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1507 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1508 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1509 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1510 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1511 
1512 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1513 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1514 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1515 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1516 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1517 	((hdr)->type == ((val) >> PROTO_HDR_SHIFT))
1518 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1519 	(VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \
1520 	 VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val))
1521 
1522 /* Protocol header type within a packet segment. A segment consists of one or
1523  * more protocol headers that make up a logical group of protocol headers. Each
1524  * logical group of protocol headers encapsulates or is encapsulated using/by
1525  * tunneling or encapsulation protocols for network virtualization.
1526  */
1527 enum virtchnl_proto_hdr_type {
1528 	VIRTCHNL_PROTO_HDR_NONE,
1529 	VIRTCHNL_PROTO_HDR_ETH,
1530 	VIRTCHNL_PROTO_HDR_S_VLAN,
1531 	VIRTCHNL_PROTO_HDR_C_VLAN,
1532 	VIRTCHNL_PROTO_HDR_IPV4,
1533 	VIRTCHNL_PROTO_HDR_IPV6,
1534 	VIRTCHNL_PROTO_HDR_TCP,
1535 	VIRTCHNL_PROTO_HDR_UDP,
1536 	VIRTCHNL_PROTO_HDR_SCTP,
1537 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1538 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1539 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1540 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1541 	VIRTCHNL_PROTO_HDR_PPPOE,
1542 	VIRTCHNL_PROTO_HDR_L2TPV3,
1543 	VIRTCHNL_PROTO_HDR_ESP,
1544 	VIRTCHNL_PROTO_HDR_AH,
1545 	VIRTCHNL_PROTO_HDR_PFCP,
1546 	VIRTCHNL_PROTO_HDR_GTPC,
1547 	VIRTCHNL_PROTO_HDR_ECPRI,
1548 	VIRTCHNL_PROTO_HDR_L2TPV2,
1549 	VIRTCHNL_PROTO_HDR_PPP,
1550 	/* IPv4 and IPv6 Fragment header types are only associated to
1551 	 * VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively,
1552 	 * cannot be used independently.
1553 	 */
1554 	VIRTCHNL_PROTO_HDR_IPV4_FRAG,
1555 	VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG,
1556 	VIRTCHNL_PROTO_HDR_GRE,
1557 };
1558 
1559 /* Protocol header field within a protocol header. */
1560 enum virtchnl_proto_hdr_field {
1561 	/* ETHER */
1562 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1563 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1564 	VIRTCHNL_PROTO_HDR_ETH_DST,
1565 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1566 	/* S-VLAN */
1567 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1568 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1569 	/* C-VLAN */
1570 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1571 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1572 	/* IPV4 */
1573 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1574 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1575 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1576 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1577 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1578 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1579 	VIRTCHNL_PROTO_HDR_IPV4_CHKSUM,
1580 	/* IPV6 */
1581 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1582 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1583 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1584 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1585 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1586 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1587 	/* IPV6 Prefix */
1588 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC,
1589 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST,
1590 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC,
1591 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST,
1592 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC,
1593 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST,
1594 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC,
1595 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST,
1596 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC,
1597 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST,
1598 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC,
1599 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST,
1600 	/* TCP */
1601 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1602 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1603 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1604 	VIRTCHNL_PROTO_HDR_TCP_CHKSUM,
1605 	/* UDP */
1606 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1607 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1608 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1609 	VIRTCHNL_PROTO_HDR_UDP_CHKSUM,
1610 	/* SCTP */
1611 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1612 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1613 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1614 	VIRTCHNL_PROTO_HDR_SCTP_CHKSUM,
1615 	/* GTPU_IP */
1616 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1617 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1618 	/* GTPU_EH */
1619 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1620 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1621 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1622 	/* PPPOE */
1623 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1624 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1625 	/* L2TPV3 */
1626 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1627 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1628 	/* ESP */
1629 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1630 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1631 	/* AH */
1632 	VIRTCHNL_PROTO_HDR_AH_SPI =
1633 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1634 	/* PFCP */
1635 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1636 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1637 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1638 	/* GTPC */
1639 	VIRTCHNL_PROTO_HDR_GTPC_TEID =
1640 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC),
1641 	/* ECPRI */
1642 	VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE =
1643 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI),
1644 	VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID,
1645 	/* IPv4 Dummy Fragment */
1646 	VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID =
1647 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG),
1648 	/* IPv6 Extension Fragment */
1649 	VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID =
1650 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG),
1651 	/* GTPU_DWN/UP */
1652 	VIRTCHNL_PROTO_HDR_GTPU_DWN_QFI =
1653 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN),
1654 	VIRTCHNL_PROTO_HDR_GTPU_UP_QFI =
1655 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP),
1656 	/* L2TPv2 */
1657 	VIRTCHNL_PROTO_HDR_L2TPV2_SESS_ID =
1658 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV2),
1659 	VIRTCHNL_PROTO_HDR_L2TPV2_LEN_SESS_ID,
1660 };
1661 
1662 struct virtchnl_proto_hdr {
1663 	/* see enum virtchnl_proto_hdr_type */
1664 	s32 type;
1665 	u32 field_selector; /* a bit mask to select field for header type */
1666 	u8 buffer[64];
1667 	/**
1668 	 * binary buffer in network order for specific header type.
1669 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1670 	 * header is expected to be copied into the buffer.
1671 	 */
1672 };
1673 
1674 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1675 
1676 struct virtchnl_proto_hdrs {
1677 	u8 tunnel_level;
1678 	/**
1679 	 * specify where protocol header start from.
1680 	 * 0 - from the outer layer
1681 	 * 1 - from the first inner layer
1682 	 * 2 - from the second inner layer
1683 	 * ....
1684 	 **/
1685 	int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1686 	struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1687 };
1688 
1689 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1690 
1691 struct virtchnl_rss_cfg {
1692 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1693 
1694 	/* see enum virtchnl_rss_algorithm; rss algorithm type */
1695 	s32 rss_algorithm;
1696 	u8 reserved[128];                          /* reserve for future */
1697 };
1698 
1699 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1700 
1701 /* action configuration for FDIR */
1702 struct virtchnl_filter_action {
1703 	/* see enum virtchnl_action type */
1704 	s32 type;
1705 	union {
1706 		/* used for queue and qgroup action */
1707 		struct {
1708 			u16 index;
1709 			u8 region;
1710 		} queue;
1711 		/* used for count action */
1712 		struct {
1713 			/* share counter ID with other flow rules */
1714 			u8 shared;
1715 			u32 id; /* counter ID */
1716 		} count;
1717 		/* used for mark action */
1718 		u32 mark_id;
1719 		u8 reserve[32];
1720 	} act_conf;
1721 };
1722 
1723 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1724 
1725 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1726 
1727 struct virtchnl_filter_action_set {
1728 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1729 	int count;
1730 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1731 };
1732 
1733 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1734 
1735 /* pattern and action for FDIR rule */
1736 struct virtchnl_fdir_rule {
1737 	struct virtchnl_proto_hdrs proto_hdrs;
1738 	struct virtchnl_filter_action_set action_set;
1739 };
1740 
1741 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1742 
1743 /* Status returned to VF after VF requests FDIR commands
1744  * VIRTCHNL_FDIR_SUCCESS
1745  * VF FDIR related request is successfully done by PF
1746  * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1747  *
1748  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1749  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1750  *
1751  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1752  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1753  *
1754  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1755  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1756  *
1757  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1758  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1759  *
1760  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1761  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1762  * or HW doesn't support.
1763  *
1764  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1765  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1766  * for programming.
1767  *
1768  * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1769  * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1770  * for example, VF query counter of a rule who has no counter action.
1771  */
1772 enum virtchnl_fdir_prgm_status {
1773 	VIRTCHNL_FDIR_SUCCESS = 0,
1774 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1775 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1776 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1777 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1778 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1779 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1780 	VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1781 };
1782 
1783 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1784  * VF sends this request to PF by filling out vsi_id,
1785  * validate_only and rule_cfg. PF will return flow_id
1786  * if the request is successfully done and return add_status to VF.
1787  */
1788 struct virtchnl_fdir_add {
1789 	u16 vsi_id;  /* INPUT */
1790 	/*
1791 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1792 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1793 	 */
1794 	u16 validate_only; /* INPUT */
1795 	u32 flow_id;       /* OUTPUT */
1796 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1797 
1798 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1799 	s32 status;
1800 };
1801 
1802 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1803 
1804 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1805  * VF sends this request to PF by filling out vsi_id
1806  * and flow_id. PF will return del_status to VF.
1807  */
1808 struct virtchnl_fdir_del {
1809 	u16 vsi_id;  /* INPUT */
1810 	u16 pad;
1811 	u32 flow_id; /* INPUT */
1812 
1813 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1814 	s32 status;
1815 };
1816 
1817 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1818 
1819 /* VIRTCHNL_OP_GET_QOS_CAPS
1820  * VF sends this message to get its QoS Caps, such as
1821  * TC number, Arbiter and Bandwidth.
1822  */
1823 struct virtchnl_qos_cap_elem {
1824 	u8 tc_num;
1825 	u8 tc_prio;
1826 #define VIRTCHNL_ABITER_STRICT      0
1827 #define VIRTCHNL_ABITER_ETS         2
1828 	u8 arbiter;
1829 #define VIRTCHNL_STRICT_WEIGHT      1
1830 	u8 weight;
1831 	enum virtchnl_bw_limit_type type;
1832 	union {
1833 		struct virtchnl_shaper_bw shaper;
1834 		u8 pad2[32];
1835 	};
1836 };
1837 
1838 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem);
1839 
1840 struct virtchnl_qos_cap_list {
1841 	u16 vsi_id;
1842 	u16 num_elem;
1843 	struct virtchnl_qos_cap_elem cap[1];
1844 };
1845 
1846 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_qos_cap_list);
1847 
1848 /* VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP
1849  * VF sends message virtchnl_queue_tc_mapping to set queue to tc
1850  * mapping for all the Tx and Rx queues with a specified VSI, and
1851  * would get response about bitmap of valid user priorities
1852  * associated with queues.
1853  */
1854 struct virtchnl_queue_tc_mapping {
1855 	u16 vsi_id;
1856 	u16 num_tc;
1857 	u16 num_queue_pairs;
1858 	u8 pad[2];
1859 	union {
1860 		struct {
1861 			u16 start_queue_id;
1862 			u16 queue_count;
1863 		} req;
1864 		struct {
1865 #define VIRTCHNL_USER_PRIO_TYPE_UP	0
1866 #define VIRTCHNL_USER_PRIO_TYPE_DSCP	1
1867 			u16 prio_type;
1868 			u16 valid_prio_bitmap;
1869 		} resp;
1870 	} tc[1];
1871 };
1872 
1873 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_tc_mapping);
1874 
1875 
1876 /* TX and RX queue types are valid in legacy as well as split queue models.
1877  * With Split Queue model, 2 additional types are introduced - TX_COMPLETION
1878  * and RX_BUFFER. In split queue model, RX corresponds to the queue where HW
1879  * posts completions.
1880  */
1881 enum virtchnl_queue_type {
1882 	VIRTCHNL_QUEUE_TYPE_TX			= 0,
1883 	VIRTCHNL_QUEUE_TYPE_RX			= 1,
1884 	VIRTCHNL_QUEUE_TYPE_TX_COMPLETION	= 2,
1885 	VIRTCHNL_QUEUE_TYPE_RX_BUFFER		= 3,
1886 	VIRTCHNL_QUEUE_TYPE_CONFIG_TX		= 4,
1887 	VIRTCHNL_QUEUE_TYPE_CONFIG_RX		= 5
1888 };
1889 
1890 
1891 /* structure to specify a chunk of contiguous queues */
1892 struct virtchnl_queue_chunk {
1893 	/* see enum virtchnl_queue_type */
1894 	s32 type;
1895 	u16 start_queue_id;
1896 	u16 num_queues;
1897 };
1898 
1899 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk);
1900 
1901 /* structure to specify several chunks of contiguous queues */
1902 struct virtchnl_queue_chunks {
1903 	u16 num_chunks;
1904 	u16 rsvd;
1905 	struct virtchnl_queue_chunk chunks[1];
1906 };
1907 
1908 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks);
1909 
1910 
1911 /* VIRTCHNL_OP_ENABLE_QUEUES_V2
1912  * VIRTCHNL_OP_DISABLE_QUEUES_V2
1913  * VIRTCHNL_OP_DEL_QUEUES
1914  *
1915  * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1916  * then all of these ops are available.
1917  *
1918  * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1919  * then VIRTCHNL_OP_ENABLE_QUEUES_V2 and VIRTCHNL_OP_DISABLE_QUEUES_V2 are
1920  * available.
1921  *
1922  * PF sends these messages to enable, disable or delete queues specified in
1923  * chunks. PF sends virtchnl_del_ena_dis_queues struct to specify the queues
1924  * to be enabled/disabled/deleted. Also applicable to single queue RX or
1925  * TX. CP performs requested action and returns status.
1926  */
1927 struct virtchnl_del_ena_dis_queues {
1928 	u16 vport_id;
1929 	u16 pad;
1930 	struct virtchnl_queue_chunks chunks;
1931 };
1932 
1933 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues);
1934 
1935 /* Virtchannel interrupt throttling rate index */
1936 enum virtchnl_itr_idx {
1937 	VIRTCHNL_ITR_IDX_0	= 0,
1938 	VIRTCHNL_ITR_IDX_1	= 1,
1939 	VIRTCHNL_ITR_IDX_NO_ITR	= 3,
1940 };
1941 
1942 /* Queue to vector mapping */
1943 struct virtchnl_queue_vector {
1944 	u16 queue_id;
1945 	u16 vector_id;
1946 	u8 pad[4];
1947 
1948 	/* see enum virtchnl_itr_idx */
1949 	s32 itr_idx;
1950 
1951 	/* see enum virtchnl_queue_type */
1952 	s32 queue_type;
1953 };
1954 
1955 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector);
1956 
1957 /* VIRTCHNL_OP_MAP_QUEUE_VECTOR
1958  * VIRTCHNL_OP_UNMAP_QUEUE_VECTOR
1959  *
1960  * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1961  * then all of these ops are available.
1962  *
1963  * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1964  * then only VIRTCHNL_OP_MAP_QUEUE_VECTOR is available.
1965  *
1966  * PF sends this message to map or unmap queues to vectors and ITR index
1967  * registers. External data buffer contains virtchnl_queue_vector_maps structure
1968  * that contains num_qv_maps of virtchnl_queue_vector structures.
1969  * CP maps the requested queue vector maps after validating the queue and vector
1970  * ids and returns a status code.
1971  */
1972 struct virtchnl_queue_vector_maps {
1973 	u16 vport_id;
1974 	u16 num_qv_maps;
1975 	u8 pad[4];
1976 	struct virtchnl_queue_vector qv_maps[1];
1977 };
1978 
1979 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps);
1980 
1981 
1982 /* Since VF messages are limited by u16 size, precalculate the maximum possible
1983  * values of nested elements in virtchnl structures that virtual channel can
1984  * possibly handle in a single message.
1985  */
1986 enum virtchnl_vector_limits {
1987 	VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX	=
1988 		((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) /
1989 		sizeof(struct virtchnl_queue_pair_info),
1990 
1991 	VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX		=
1992 		((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) /
1993 		sizeof(struct virtchnl_vector_map),
1994 
1995 	VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX	=
1996 		((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) /
1997 		sizeof(struct virtchnl_ether_addr),
1998 
1999 	VIRTCHNL_OP_ADD_DEL_VLAN_MAX		=
2000 		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) /
2001 		sizeof(u16),
2002 
2003 
2004 	VIRTCHNL_OP_ENABLE_CHANNELS_MAX		=
2005 		((u16)(~0) - sizeof(struct virtchnl_tc_info)) /
2006 		sizeof(struct virtchnl_channel_info),
2007 
2008 	VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX	=
2009 		((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) /
2010 		sizeof(struct virtchnl_queue_chunk),
2011 
2012 	VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX	=
2013 		((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) /
2014 		sizeof(struct virtchnl_queue_vector),
2015 
2016 	VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX		=
2017 		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) /
2018 		sizeof(struct virtchnl_vlan_filter),
2019 };
2020 
2021 /**
2022  * virtchnl_vc_validate_vf_msg
2023  * @ver: Virtchnl version info
2024  * @v_opcode: Opcode for the message
2025  * @msg: pointer to the msg buffer
2026  * @msglen: msg length
2027  *
2028  * validate msg format against struct for each opcode
2029  */
2030 static inline int
2031 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
2032 			    u8 *msg, u16 msglen)
2033 {
2034 	bool err_msg_format = false;
2035 	u32 valid_len = 0;
2036 
2037 	/* Validate message length. */
2038 	switch (v_opcode) {
2039 	case VIRTCHNL_OP_VERSION:
2040 		valid_len = sizeof(struct virtchnl_version_info);
2041 		break;
2042 	case VIRTCHNL_OP_RESET_VF:
2043 		break;
2044 	case VIRTCHNL_OP_GET_VF_RESOURCES:
2045 		if (VF_IS_V11(ver))
2046 			valid_len = sizeof(u32);
2047 		break;
2048 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
2049 		valid_len = sizeof(struct virtchnl_txq_info);
2050 		break;
2051 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
2052 		valid_len = sizeof(struct virtchnl_rxq_info);
2053 		break;
2054 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
2055 		valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
2056 		if (msglen >= valid_len) {
2057 			struct virtchnl_vsi_queue_config_info *vqc =
2058 			    (struct virtchnl_vsi_queue_config_info *)msg;
2059 
2060 			if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs >
2061 			    VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) {
2062 				err_msg_format = true;
2063 				break;
2064 			}
2065 
2066 			valid_len += (vqc->num_queue_pairs *
2067 				      sizeof(struct
2068 					     virtchnl_queue_pair_info));
2069 		}
2070 		break;
2071 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
2072 		valid_len = sizeof(struct virtchnl_irq_map_info);
2073 		if (msglen >= valid_len) {
2074 			struct virtchnl_irq_map_info *vimi =
2075 			    (struct virtchnl_irq_map_info *)msg;
2076 
2077 			if (vimi->num_vectors == 0 || vimi->num_vectors >
2078 			    VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) {
2079 				err_msg_format = true;
2080 				break;
2081 			}
2082 
2083 			valid_len += (vimi->num_vectors *
2084 				      sizeof(struct virtchnl_vector_map));
2085 		}
2086 		break;
2087 	case VIRTCHNL_OP_ENABLE_QUEUES:
2088 	case VIRTCHNL_OP_DISABLE_QUEUES:
2089 		valid_len = sizeof(struct virtchnl_queue_select);
2090 		break;
2091 	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
2092 		break;
2093 	case VIRTCHNL_OP_ADD_ETH_ADDR:
2094 	case VIRTCHNL_OP_DEL_ETH_ADDR:
2095 		valid_len = sizeof(struct virtchnl_ether_addr_list);
2096 		if (msglen >= valid_len) {
2097 			struct virtchnl_ether_addr_list *veal =
2098 			    (struct virtchnl_ether_addr_list *)msg;
2099 
2100 			if (veal->num_elements == 0 || veal->num_elements >
2101 			    VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) {
2102 				err_msg_format = true;
2103 				break;
2104 			}
2105 
2106 			valid_len += veal->num_elements *
2107 			    sizeof(struct virtchnl_ether_addr);
2108 		}
2109 		break;
2110 	case VIRTCHNL_OP_ADD_VLAN:
2111 	case VIRTCHNL_OP_DEL_VLAN:
2112 		valid_len = sizeof(struct virtchnl_vlan_filter_list);
2113 		if (msglen >= valid_len) {
2114 			struct virtchnl_vlan_filter_list *vfl =
2115 			    (struct virtchnl_vlan_filter_list *)msg;
2116 
2117 			if (vfl->num_elements == 0 || vfl->num_elements >
2118 			    VIRTCHNL_OP_ADD_DEL_VLAN_MAX) {
2119 				err_msg_format = true;
2120 				break;
2121 			}
2122 
2123 			valid_len += vfl->num_elements * sizeof(u16);
2124 		}
2125 		break;
2126 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
2127 		valid_len = sizeof(struct virtchnl_promisc_info);
2128 		break;
2129 	case VIRTCHNL_OP_GET_STATS:
2130 		valid_len = sizeof(struct virtchnl_queue_select);
2131 		break;
2132 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
2133 		valid_len = sizeof(struct virtchnl_rss_key);
2134 		if (msglen >= valid_len) {
2135 			struct virtchnl_rss_key *vrk =
2136 				(struct virtchnl_rss_key *)msg;
2137 
2138 			if (vrk->key_len == 0) {
2139 				/* zero length is allowed as input */
2140 				break;
2141 			}
2142 
2143 			valid_len += vrk->key_len - 1;
2144 		}
2145 		break;
2146 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
2147 		valid_len = sizeof(struct virtchnl_rss_lut);
2148 		if (msglen >= valid_len) {
2149 			struct virtchnl_rss_lut *vrl =
2150 				(struct virtchnl_rss_lut *)msg;
2151 
2152 			if (vrl->lut_entries == 0) {
2153 				/* zero entries is allowed as input */
2154 				break;
2155 			}
2156 
2157 			valid_len += vrl->lut_entries - 1;
2158 		}
2159 		break;
2160 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
2161 		break;
2162 	case VIRTCHNL_OP_SET_RSS_HENA:
2163 		valid_len = sizeof(struct virtchnl_rss_hena);
2164 		break;
2165 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
2166 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
2167 		break;
2168 	case VIRTCHNL_OP_REQUEST_QUEUES:
2169 		valid_len = sizeof(struct virtchnl_vf_res_request);
2170 		break;
2171 	case VIRTCHNL_OP_ENABLE_CHANNELS:
2172 		valid_len = sizeof(struct virtchnl_tc_info);
2173 		if (msglen >= valid_len) {
2174 			struct virtchnl_tc_info *vti =
2175 				(struct virtchnl_tc_info *)msg;
2176 
2177 			if (vti->num_tc == 0 || vti->num_tc >
2178 			    VIRTCHNL_OP_ENABLE_CHANNELS_MAX) {
2179 				err_msg_format = true;
2180 				break;
2181 			}
2182 
2183 			valid_len += (vti->num_tc - 1) *
2184 				     sizeof(struct virtchnl_channel_info);
2185 		}
2186 		break;
2187 	case VIRTCHNL_OP_DISABLE_CHANNELS:
2188 		break;
2189 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
2190 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
2191 		valid_len = sizeof(struct virtchnl_filter);
2192 		break;
2193 	case VIRTCHNL_OP_DCF_VLAN_OFFLOAD:
2194 		valid_len = sizeof(struct virtchnl_dcf_vlan_offload);
2195 		break;
2196 	case VIRTCHNL_OP_DCF_CMD_DESC:
2197 	case VIRTCHNL_OP_DCF_CMD_BUFF:
2198 		/* These two opcodes are specific to handle the AdminQ command,
2199 		 * so the validation needs to be done in PF's context.
2200 		 */
2201 		valid_len = msglen;
2202 		break;
2203 	case VIRTCHNL_OP_DCF_DISABLE:
2204 	case VIRTCHNL_OP_DCF_GET_VSI_MAP:
2205 	case VIRTCHNL_OP_DCF_GET_PKG_INFO:
2206 		break;
2207 	case VIRTCHNL_OP_DCF_CONFIG_BW:
2208 		valid_len = sizeof(struct virtchnl_dcf_bw_cfg_list);
2209 		if (msglen >= valid_len) {
2210 			struct virtchnl_dcf_bw_cfg_list *cfg_list =
2211 				(struct virtchnl_dcf_bw_cfg_list *)msg;
2212 			if (cfg_list->num_elem == 0) {
2213 				err_msg_format = true;
2214 				break;
2215 			}
2216 			valid_len += (cfg_list->num_elem - 1) *
2217 					 sizeof(struct virtchnl_dcf_bw_cfg);
2218 		}
2219 		break;
2220 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
2221 		break;
2222 	case VIRTCHNL_OP_ADD_RSS_CFG:
2223 	case VIRTCHNL_OP_DEL_RSS_CFG:
2224 		valid_len = sizeof(struct virtchnl_rss_cfg);
2225 		break;
2226 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
2227 		valid_len = sizeof(struct virtchnl_fdir_add);
2228 		break;
2229 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
2230 		valid_len = sizeof(struct virtchnl_fdir_del);
2231 		break;
2232 	case VIRTCHNL_OP_GET_QOS_CAPS:
2233 		break;
2234 	case VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP:
2235 		valid_len = sizeof(struct virtchnl_queue_tc_mapping);
2236 		if (msglen >= valid_len) {
2237 			struct virtchnl_queue_tc_mapping *q_tc =
2238 				(struct virtchnl_queue_tc_mapping *)msg;
2239 			if (q_tc->num_tc == 0) {
2240 				err_msg_format = true;
2241 				break;
2242 			}
2243 			valid_len += (q_tc->num_tc - 1) *
2244 					 sizeof(q_tc->tc[0]);
2245 		}
2246 		break;
2247 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
2248 		break;
2249 	case VIRTCHNL_OP_ADD_VLAN_V2:
2250 	case VIRTCHNL_OP_DEL_VLAN_V2:
2251 		valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
2252 		if (msglen >= valid_len) {
2253 			struct virtchnl_vlan_filter_list_v2 *vfl =
2254 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
2255 
2256 			if (vfl->num_elements == 0 || vfl->num_elements >
2257 			    VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) {
2258 				err_msg_format = true;
2259 				break;
2260 			}
2261 
2262 			valid_len += (vfl->num_elements - 1) *
2263 				sizeof(struct virtchnl_vlan_filter);
2264 		}
2265 		break;
2266 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
2267 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
2268 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
2269 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
2270 	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
2271 	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
2272 		valid_len = sizeof(struct virtchnl_vlan_setting);
2273 		break;
2274 	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
2275 	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
2276 		valid_len = sizeof(struct virtchnl_del_ena_dis_queues);
2277 		if (msglen >= valid_len) {
2278 			struct virtchnl_del_ena_dis_queues *qs =
2279 				(struct virtchnl_del_ena_dis_queues *)msg;
2280 			if (qs->chunks.num_chunks == 0 ||
2281 			    qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) {
2282 				err_msg_format = true;
2283 				break;
2284 			}
2285 			valid_len += (qs->chunks.num_chunks - 1) *
2286 				      sizeof(struct virtchnl_queue_chunk);
2287 		}
2288 		break;
2289 	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
2290 		valid_len = sizeof(struct virtchnl_queue_vector_maps);
2291 		if (msglen >= valid_len) {
2292 			struct virtchnl_queue_vector_maps *v_qp =
2293 				(struct virtchnl_queue_vector_maps *)msg;
2294 			if (v_qp->num_qv_maps == 0 ||
2295 			    v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) {
2296 				err_msg_format = true;
2297 				break;
2298 			}
2299 			valid_len += (v_qp->num_qv_maps - 1) *
2300 				      sizeof(struct virtchnl_queue_vector);
2301 		}
2302 		break;
2303 
2304 	case VIRTCHNL_OP_INLINE_IPSEC_CRYPTO:
2305 	{
2306 		struct inline_ipsec_msg *iim = (struct inline_ipsec_msg *)msg;
2307 		valid_len =
2308 			virtchnl_inline_ipsec_val_msg_len(iim->ipsec_opcode);
2309 		break;
2310 	}
2311 	/* These are always errors coming from the VF. */
2312 	case VIRTCHNL_OP_EVENT:
2313 	case VIRTCHNL_OP_UNKNOWN:
2314 	default:
2315 		return VIRTCHNL_STATUS_ERR_PARAM;
2316 	}
2317 	/* few more checks */
2318 	if (err_msg_format || valid_len != msglen)
2319 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
2320 
2321 	return 0;
2322 }
2323 #endif /* _VIRTCHNL_H_ */
2324