1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2001-2021 Intel Corporation 3 */ 4 5 #ifndef _VIRTCHNL_H_ 6 #define _VIRTCHNL_H_ 7 8 /* Description: 9 * This header file describes the Virtual Function (VF) - Physical Function 10 * (PF) communication protocol used by the drivers for all devices starting 11 * from our 40G product line 12 * 13 * Admin queue buffer usage: 14 * desc->opcode is always aqc_opc_send_msg_to_pf 15 * flags, retval, datalen, and data addr are all used normally. 16 * The Firmware copies the cookie fields when sending messages between the 17 * PF and VF, but uses all other fields internally. Due to this limitation, 18 * we must send all messages as "indirect", i.e. using an external buffer. 19 * 20 * All the VSI indexes are relative to the VF. Each VF can have maximum of 21 * three VSIs. All the queue indexes are relative to the VSI. Each VF can 22 * have a maximum of sixteen queues for all of its VSIs. 23 * 24 * The PF is required to return a status code in v_retval for all messages 25 * except RESET_VF, which does not require any response. The returned value 26 * is of virtchnl_status_code type, defined in the shared type.h. 27 * 28 * In general, VF driver initialization should roughly follow the order of 29 * these opcodes. The VF driver must first validate the API version of the 30 * PF driver, then request a reset, then get resources, then configure 31 * queues and interrupts. After these operations are complete, the VF 32 * driver may start its queues, optionally add MAC and VLAN filters, and 33 * process traffic. 34 */ 35 36 /* START GENERIC DEFINES 37 * Need to ensure the following enums and defines hold the same meaning and 38 * value in current and future projects 39 */ 40 41 #include "virtchnl_inline_ipsec.h" 42 43 /* Error Codes */ 44 enum virtchnl_status_code { 45 VIRTCHNL_STATUS_SUCCESS = 0, 46 VIRTCHNL_STATUS_ERR_PARAM = -5, 47 VIRTCHNL_STATUS_ERR_NO_MEMORY = -18, 48 VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38, 49 VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39, 50 VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40, 51 VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53, 52 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64, 53 }; 54 55 /* Backward compatibility */ 56 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM 57 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED 58 59 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0 60 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1 61 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2 62 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3 63 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4 64 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5 65 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6 66 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7 67 68 enum virtchnl_link_speed { 69 VIRTCHNL_LINK_SPEED_UNKNOWN = 0, 70 VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT), 71 VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT), 72 VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT), 73 VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT), 74 VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT), 75 VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT), 76 VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT), 77 VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT), 78 }; 79 80 /* for hsplit_0 field of Rx HMC context */ 81 /* deprecated with IAVF 1.0 */ 82 enum virtchnl_rx_hsplit { 83 VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0, 84 VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1, 85 VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2, 86 VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4, 87 VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8, 88 }; 89 90 enum virtchnl_bw_limit_type { 91 VIRTCHNL_BW_SHAPER = 0, 92 }; 93 94 #define VIRTCHNL_ETH_LENGTH_OF_ADDRESS 6 95 /* END GENERIC DEFINES */ 96 97 /* Opcodes for VF-PF communication. These are placed in the v_opcode field 98 * of the virtchnl_msg structure. 99 */ 100 enum virtchnl_ops { 101 /* The PF sends status change events to VFs using 102 * the VIRTCHNL_OP_EVENT opcode. 103 * VFs send requests to the PF using the other ops. 104 * Use of "advanced opcode" features must be negotiated as part of capabilities 105 * exchange and are not considered part of base mode feature set. 106 */ 107 VIRTCHNL_OP_UNKNOWN = 0, 108 VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */ 109 VIRTCHNL_OP_RESET_VF = 2, 110 VIRTCHNL_OP_GET_VF_RESOURCES = 3, 111 VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, 112 VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, 113 VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, 114 VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, 115 VIRTCHNL_OP_ENABLE_QUEUES = 8, 116 VIRTCHNL_OP_DISABLE_QUEUES = 9, 117 VIRTCHNL_OP_ADD_ETH_ADDR = 10, 118 VIRTCHNL_OP_DEL_ETH_ADDR = 11, 119 VIRTCHNL_OP_ADD_VLAN = 12, 120 VIRTCHNL_OP_DEL_VLAN = 13, 121 VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, 122 VIRTCHNL_OP_GET_STATS = 15, 123 VIRTCHNL_OP_RSVD = 16, 124 VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */ 125 /* opcode 19 is reserved */ 126 /* opcodes 20, 21, and 22 are reserved */ 127 VIRTCHNL_OP_CONFIG_RSS_KEY = 23, 128 VIRTCHNL_OP_CONFIG_RSS_LUT = 24, 129 VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25, 130 VIRTCHNL_OP_SET_RSS_HENA = 26, 131 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27, 132 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28, 133 VIRTCHNL_OP_REQUEST_QUEUES = 29, 134 VIRTCHNL_OP_ENABLE_CHANNELS = 30, 135 VIRTCHNL_OP_DISABLE_CHANNELS = 31, 136 VIRTCHNL_OP_ADD_CLOUD_FILTER = 32, 137 VIRTCHNL_OP_DEL_CLOUD_FILTER = 33, 138 VIRTCHNL_OP_INLINE_IPSEC_CRYPTO = 34, 139 /* opcodes 35 and 36 are reserved */ 140 VIRTCHNL_OP_DCF_CONFIG_BW = 37, 141 VIRTCHNL_OP_DCF_VLAN_OFFLOAD = 38, 142 VIRTCHNL_OP_DCF_CMD_DESC = 39, 143 VIRTCHNL_OP_DCF_CMD_BUFF = 40, 144 VIRTCHNL_OP_DCF_DISABLE = 41, 145 VIRTCHNL_OP_DCF_GET_VSI_MAP = 42, 146 VIRTCHNL_OP_DCF_GET_PKG_INFO = 43, 147 VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44, 148 VIRTCHNL_OP_ADD_RSS_CFG = 45, 149 VIRTCHNL_OP_DEL_RSS_CFG = 46, 150 VIRTCHNL_OP_ADD_FDIR_FILTER = 47, 151 VIRTCHNL_OP_DEL_FDIR_FILTER = 48, 152 VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50, 153 VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51, 154 VIRTCHNL_OP_ADD_VLAN_V2 = 52, 155 VIRTCHNL_OP_DEL_VLAN_V2 = 53, 156 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54, 157 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55, 158 VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56, 159 VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57, 160 VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58, 161 VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59, 162 VIRTCHNL_OP_GET_QOS_CAPS = 66, 163 VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP = 67, 164 VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107, 165 VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108, 166 VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111, 167 VIRTCHNL_OP_MAX, 168 }; 169 170 static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode) 171 { 172 switch (v_opcode) { 173 case VIRTCHNL_OP_UNKNOWN: 174 return "VIRTCHNL_OP_UNKNOWN"; 175 case VIRTCHNL_OP_VERSION: 176 return "VIRTCHNL_OP_VERSION"; 177 case VIRTCHNL_OP_RESET_VF: 178 return "VIRTCHNL_OP_RESET_VF"; 179 case VIRTCHNL_OP_GET_VF_RESOURCES: 180 return "VIRTCHNL_OP_GET_VF_RESOURCES"; 181 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 182 return "VIRTCHNL_OP_CONFIG_TX_QUEUE"; 183 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 184 return "VIRTCHNL_OP_CONFIG_RX_QUEUE"; 185 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 186 return "VIRTCHNL_OP_CONFIG_VSI_QUEUES"; 187 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 188 return "VIRTCHNL_OP_CONFIG_IRQ_MAP"; 189 case VIRTCHNL_OP_ENABLE_QUEUES: 190 return "VIRTCHNL_OP_ENABLE_QUEUES"; 191 case VIRTCHNL_OP_DISABLE_QUEUES: 192 return "VIRTCHNL_OP_DISABLE_QUEUES"; 193 case VIRTCHNL_OP_ADD_ETH_ADDR: 194 return "VIRTCHNL_OP_ADD_ETH_ADDR"; 195 case VIRTCHNL_OP_DEL_ETH_ADDR: 196 return "VIRTCHNL_OP_DEL_ETH_ADDR"; 197 case VIRTCHNL_OP_ADD_VLAN: 198 return "VIRTCHNL_OP_ADD_VLAN"; 199 case VIRTCHNL_OP_DEL_VLAN: 200 return "VIRTCHNL_OP_DEL_VLAN"; 201 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 202 return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE"; 203 case VIRTCHNL_OP_GET_STATS: 204 return "VIRTCHNL_OP_GET_STATS"; 205 case VIRTCHNL_OP_RSVD: 206 return "VIRTCHNL_OP_RSVD"; 207 case VIRTCHNL_OP_EVENT: 208 return "VIRTCHNL_OP_EVENT"; 209 case VIRTCHNL_OP_CONFIG_RSS_KEY: 210 return "VIRTCHNL_OP_CONFIG_RSS_KEY"; 211 case VIRTCHNL_OP_CONFIG_RSS_LUT: 212 return "VIRTCHNL_OP_CONFIG_RSS_LUT"; 213 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 214 return "VIRTCHNL_OP_GET_RSS_HENA_CAPS"; 215 case VIRTCHNL_OP_SET_RSS_HENA: 216 return "VIRTCHNL_OP_SET_RSS_HENA"; 217 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 218 return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING"; 219 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 220 return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING"; 221 case VIRTCHNL_OP_REQUEST_QUEUES: 222 return "VIRTCHNL_OP_REQUEST_QUEUES"; 223 case VIRTCHNL_OP_ENABLE_CHANNELS: 224 return "VIRTCHNL_OP_ENABLE_CHANNELS"; 225 case VIRTCHNL_OP_DISABLE_CHANNELS: 226 return "VIRTCHNL_OP_DISABLE_CHANNELS"; 227 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 228 return "VIRTCHNL_OP_ADD_CLOUD_FILTER"; 229 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 230 return "VIRTCHNL_OP_DEL_CLOUD_FILTER"; 231 case VIRTCHNL_OP_INLINE_IPSEC_CRYPTO: 232 return "VIRTCHNL_OP_INLINE_IPSEC_CRYPTO"; 233 case VIRTCHNL_OP_DCF_CMD_DESC: 234 return "VIRTCHNL_OP_DCF_CMD_DESC"; 235 case VIRTCHNL_OP_DCF_CMD_BUFF: 236 return "VIRTCHNL_OP_DCF_CMD_BUFF"; 237 case VIRTCHNL_OP_DCF_DISABLE: 238 return "VIRTCHNL_OP_DCF_DISABLE"; 239 case VIRTCHNL_OP_DCF_GET_VSI_MAP: 240 return "VIRTCHNL_OP_DCF_GET_VSI_MAP"; 241 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 242 return "VIRTCHNL_OP_GET_SUPPORTED_RXDIDS"; 243 case VIRTCHNL_OP_ADD_RSS_CFG: 244 return "VIRTCHNL_OP_ADD_RSS_CFG"; 245 case VIRTCHNL_OP_DEL_RSS_CFG: 246 return "VIRTCHNL_OP_DEL_RSS_CFG"; 247 case VIRTCHNL_OP_ADD_FDIR_FILTER: 248 return "VIRTCHNL_OP_ADD_FDIR_FILTER"; 249 case VIRTCHNL_OP_DEL_FDIR_FILTER: 250 return "VIRTCHNL_OP_DEL_FDIR_FILTER"; 251 case VIRTCHNL_OP_GET_MAX_RSS_QREGION: 252 return "VIRTCHNL_OP_GET_MAX_RSS_QREGION"; 253 case VIRTCHNL_OP_ENABLE_QUEUES_V2: 254 return "VIRTCHNL_OP_ENABLE_QUEUES_V2"; 255 case VIRTCHNL_OP_DISABLE_QUEUES_V2: 256 return "VIRTCHNL_OP_DISABLE_QUEUES_V2"; 257 case VIRTCHNL_OP_MAP_QUEUE_VECTOR: 258 return "VIRTCHNL_OP_MAP_QUEUE_VECTOR"; 259 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 260 return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS"; 261 case VIRTCHNL_OP_ADD_VLAN_V2: 262 return "VIRTCHNL_OP_ADD_VLAN_V2"; 263 case VIRTCHNL_OP_DEL_VLAN_V2: 264 return "VIRTCHNL_OP_DEL_VLAN_V2"; 265 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 266 return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2"; 267 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 268 return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2"; 269 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 270 return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2"; 271 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 272 return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2"; 273 case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2: 274 return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2"; 275 case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2: 276 return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2"; 277 case VIRTCHNL_OP_MAX: 278 return "VIRTCHNL_OP_MAX"; 279 default: 280 return "Unsupported (update virtchnl.h)"; 281 } 282 } 283 284 /* These macros are used to generate compilation errors if a structure/union 285 * is not exactly the correct length. It gives a divide by zero error if the 286 * structure/union is not of the correct size, otherwise it creates an enum 287 * that is never used. 288 */ 289 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \ 290 { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) } 291 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \ 292 { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) } 293 294 /* Virtual channel message descriptor. This overlays the admin queue 295 * descriptor. All other data is passed in external buffers. 296 */ 297 298 struct virtchnl_msg { 299 u8 pad[8]; /* AQ flags/opcode/len/retval fields */ 300 301 /* avoid confusion with desc->opcode */ 302 enum virtchnl_ops v_opcode; 303 304 /* ditto for desc->retval */ 305 enum virtchnl_status_code v_retval; 306 u32 vfid; /* used by PF when sending to VF */ 307 }; 308 309 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg); 310 311 /* Message descriptions and data structures. */ 312 313 /* VIRTCHNL_OP_VERSION 314 * VF posts its version number to the PF. PF responds with its version number 315 * in the same format, along with a return code. 316 * Reply from PF has its major/minor versions also in param0 and param1. 317 * If there is a major version mismatch, then the VF cannot operate. 318 * If there is a minor version mismatch, then the VF can operate but should 319 * add a warning to the system log. 320 * 321 * This enum element MUST always be specified as == 1, regardless of other 322 * changes in the API. The PF must always respond to this message without 323 * error regardless of version mismatch. 324 */ 325 #define VIRTCHNL_VERSION_MAJOR 1 326 #define VIRTCHNL_VERSION_MINOR 1 327 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0 328 329 struct virtchnl_version_info { 330 u32 major; 331 u32 minor; 332 }; 333 334 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info); 335 336 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0)) 337 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1)) 338 339 /* VIRTCHNL_OP_RESET_VF 340 * VF sends this request to PF with no parameters 341 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register 342 * until reset completion is indicated. The admin queue must be reinitialized 343 * after this operation. 344 * 345 * When reset is complete, PF must ensure that all queues in all VSIs associated 346 * with the VF are stopped, all queue configurations in the HMC are set to 0, 347 * and all MAC and VLAN filters (except the default MAC address) on all VSIs 348 * are cleared. 349 */ 350 351 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV 352 * vsi_type should always be 6 for backward compatibility. Add other fields 353 * as needed. 354 */ 355 enum virtchnl_vsi_type { 356 VIRTCHNL_VSI_TYPE_INVALID = 0, 357 VIRTCHNL_VSI_SRIOV = 6, 358 }; 359 360 /* VIRTCHNL_OP_GET_VF_RESOURCES 361 * Version 1.0 VF sends this request to PF with no parameters 362 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities 363 * PF responds with an indirect message containing 364 * virtchnl_vf_resource and one or more 365 * virtchnl_vsi_resource structures. 366 */ 367 368 struct virtchnl_vsi_resource { 369 u16 vsi_id; 370 u16 num_queue_pairs; 371 372 /* see enum virtchnl_vsi_type */ 373 s32 vsi_type; 374 u16 qset_handle; 375 u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 376 }; 377 378 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource); 379 380 /* VF capability flags 381 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including 382 * TX/RX Checksum offloading and TSO for non-tunnelled packets. 383 */ 384 #define VIRTCHNL_VF_OFFLOAD_L2 BIT(0) 385 #define VIRTCHNL_VF_OFFLOAD_IWARP BIT(1) 386 #define VIRTCHNL_VF_OFFLOAD_RSVD BIT(2) 387 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3) 388 #define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4) 389 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5) 390 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6) 391 /* used to negotiate communicating link speeds in Mbps */ 392 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7) 393 #define VIRTCHNL_VF_OFFLOAD_INLINE_IPSEC_CRYPTO BIT(8) 394 #define VIRTCHNL_VF_LARGE_NUM_QPAIRS BIT(9) 395 #define VIRTCHNL_VF_OFFLOAD_CRC BIT(10) 396 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15) 397 #define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16) 398 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17) 399 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18) 400 #define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19) 401 #define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20) 402 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21) 403 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22) 404 #define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23) 405 #define VIRTCHNL_VF_OFFLOAD_ADQ_V2 BIT(24) 406 #define VIRTCHNL_VF_OFFLOAD_USO BIT(25) 407 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC BIT(26) 408 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27) 409 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28) 410 #define VIRTCHNL_VF_OFFLOAD_QOS BIT(29) 411 #define VIRTCHNL_VF_CAP_DCF BIT(30) 412 /* BIT(31) is reserved */ 413 414 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \ 415 VIRTCHNL_VF_OFFLOAD_VLAN | \ 416 VIRTCHNL_VF_OFFLOAD_RSS_PF) 417 418 struct virtchnl_vf_resource { 419 u16 num_vsis; 420 u16 num_queue_pairs; 421 u16 max_vectors; 422 u16 max_mtu; 423 424 u32 vf_cap_flags; 425 u32 rss_key_size; 426 u32 rss_lut_size; 427 428 struct virtchnl_vsi_resource vsi_res[1]; 429 }; 430 431 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource); 432 433 /* VIRTCHNL_OP_CONFIG_TX_QUEUE 434 * VF sends this message to set up parameters for one TX queue. 435 * External data buffer contains one instance of virtchnl_txq_info. 436 * PF configures requested queue and returns a status code. 437 */ 438 439 /* Tx queue config info */ 440 struct virtchnl_txq_info { 441 u16 vsi_id; 442 u16 queue_id; 443 u16 ring_len; /* number of descriptors, multiple of 8 */ 444 u16 headwb_enabled; /* deprecated with AVF 1.0 */ 445 u64 dma_ring_addr; 446 u64 dma_headwb_addr; /* deprecated with AVF 1.0 */ 447 }; 448 449 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info); 450 451 /* RX descriptor IDs (range from 0 to 63) */ 452 enum virtchnl_rx_desc_ids { 453 VIRTCHNL_RXDID_0_16B_BASE = 0, 454 /* 32B_BASE and FLEX_SPLITQ share desc ids as default descriptors 455 * because they can be differentiated based on queue model; e.g. single 456 * queue model can only use 32B_BASE and split queue model can only use 457 * FLEX_SPLITQ. Having these as 1 allows them to be used as default 458 * descriptors without negotiation. 459 */ 460 VIRTCHNL_RXDID_1_32B_BASE = 1, 461 VIRTCHNL_RXDID_1_FLEX_SPLITQ = 1, 462 VIRTCHNL_RXDID_2_FLEX_SQ_NIC = 2, 463 VIRTCHNL_RXDID_3_FLEX_SQ_SW = 3, 464 VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB = 4, 465 VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL = 5, 466 VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2 = 6, 467 VIRTCHNL_RXDID_7_HW_RSVD = 7, 468 /* 9 through 15 are reserved */ 469 VIRTCHNL_RXDID_16_COMMS_GENERIC = 16, 470 VIRTCHNL_RXDID_17_COMMS_AUX_VLAN = 17, 471 VIRTCHNL_RXDID_18_COMMS_AUX_IPV4 = 18, 472 VIRTCHNL_RXDID_19_COMMS_AUX_IPV6 = 19, 473 VIRTCHNL_RXDID_20_COMMS_AUX_FLOW = 20, 474 VIRTCHNL_RXDID_21_COMMS_AUX_TCP = 21, 475 /* 22 through 63 are reserved */ 476 }; 477 478 /* RX descriptor ID bitmasks */ 479 enum virtchnl_rx_desc_id_bitmasks { 480 VIRTCHNL_RXDID_0_16B_BASE_M = BIT(VIRTCHNL_RXDID_0_16B_BASE), 481 VIRTCHNL_RXDID_1_32B_BASE_M = BIT(VIRTCHNL_RXDID_1_32B_BASE), 482 VIRTCHNL_RXDID_1_FLEX_SPLITQ_M = BIT(VIRTCHNL_RXDID_1_FLEX_SPLITQ), 483 VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M = BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC), 484 VIRTCHNL_RXDID_3_FLEX_SQ_SW_M = BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW), 485 VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M = BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB), 486 VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M = BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL), 487 VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M = BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2), 488 VIRTCHNL_RXDID_7_HW_RSVD_M = BIT(VIRTCHNL_RXDID_7_HW_RSVD), 489 /* 9 through 15 are reserved */ 490 VIRTCHNL_RXDID_16_COMMS_GENERIC_M = BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC), 491 VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M = BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN), 492 VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M = BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4), 493 VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M = BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6), 494 VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M = BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW), 495 VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M = BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP), 496 /* 22 through 63 are reserved */ 497 }; 498 499 /* VIRTCHNL_OP_CONFIG_RX_QUEUE 500 * VF sends this message to set up parameters for one RX queue. 501 * External data buffer contains one instance of virtchnl_rxq_info. 502 * PF configures requested queue and returns a status code. The 503 * crc_disable flag disables CRC stripping on the VF. Setting 504 * the crc_disable flag to 1 will disable CRC stripping for each 505 * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC 506 * offload must have been set prior to sending this info or the PF 507 * will ignore the request. This flag should be set the same for 508 * all of the queues for a VF. 509 */ 510 511 /* Rx queue config info */ 512 struct virtchnl_rxq_info { 513 u16 vsi_id; 514 u16 queue_id; 515 u32 ring_len; /* number of descriptors, multiple of 32 */ 516 u16 hdr_size; 517 u16 splithdr_enabled; /* deprecated with AVF 1.0 */ 518 u32 databuffer_size; 519 u32 max_pkt_size; 520 u8 crc_disable; 521 /* see enum virtchnl_rx_desc_ids; 522 * only used when VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is supported. Note 523 * that when the offload is not supported, the descriptor format aligns 524 * with VIRTCHNL_RXDID_1_32B_BASE. 525 */ 526 u8 rxdid; 527 u8 pad1[2]; 528 u64 dma_ring_addr; 529 530 /* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */ 531 s32 rx_split_pos; 532 u32 pad2; 533 }; 534 535 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info); 536 537 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES 538 * VF sends this message to set parameters for active TX and RX queues 539 * associated with the specified VSI. 540 * PF configures queues and returns status. 541 * If the number of queues specified is greater than the number of queues 542 * associated with the VSI, an error is returned and no queues are configured. 543 * NOTE: The VF is not required to configure all queues in a single request. 544 * It may send multiple messages. PF drivers must correctly handle all VF 545 * requests. 546 */ 547 struct virtchnl_queue_pair_info { 548 /* NOTE: vsi_id and queue_id should be identical for both queues. */ 549 struct virtchnl_txq_info txq; 550 struct virtchnl_rxq_info rxq; 551 }; 552 553 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info); 554 555 struct virtchnl_vsi_queue_config_info { 556 u16 vsi_id; 557 u16 num_queue_pairs; 558 u32 pad; 559 struct virtchnl_queue_pair_info qpair[1]; 560 }; 561 562 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info); 563 564 /* VIRTCHNL_OP_REQUEST_QUEUES 565 * VF sends this message to request the PF to allocate additional queues to 566 * this VF. Each VF gets a guaranteed number of queues on init but asking for 567 * additional queues must be negotiated. This is a best effort request as it 568 * is possible the PF does not have enough queues left to support the request. 569 * If the PF cannot support the number requested it will respond with the 570 * maximum number it is able to support. If the request is successful, PF will 571 * then reset the VF to institute required changes. 572 */ 573 574 /* VF resource request */ 575 struct virtchnl_vf_res_request { 576 u16 num_queue_pairs; 577 }; 578 579 /* VIRTCHNL_OP_CONFIG_IRQ_MAP 580 * VF uses this message to map vectors to queues. 581 * The rxq_map and txq_map fields are bitmaps used to indicate which queues 582 * are to be associated with the specified vector. 583 * The "other" causes are always mapped to vector 0. The VF may not request 584 * that vector 0 be used for traffic. 585 * PF configures interrupt mapping and returns status. 586 * NOTE: due to hardware requirements, all active queues (both TX and RX) 587 * should be mapped to interrupts, even if the driver intends to operate 588 * only in polling mode. In this case the interrupt may be disabled, but 589 * the ITR timer will still run to trigger writebacks. 590 */ 591 struct virtchnl_vector_map { 592 u16 vsi_id; 593 u16 vector_id; 594 u16 rxq_map; 595 u16 txq_map; 596 u16 rxitr_idx; 597 u16 txitr_idx; 598 }; 599 600 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map); 601 602 struct virtchnl_irq_map_info { 603 u16 num_vectors; 604 struct virtchnl_vector_map vecmap[1]; 605 }; 606 607 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info); 608 609 /* VIRTCHNL_OP_ENABLE_QUEUES 610 * VIRTCHNL_OP_DISABLE_QUEUES 611 * VF sends these message to enable or disable TX/RX queue pairs. 612 * The queues fields are bitmaps indicating which queues to act upon. 613 * (Currently, we only support 16 queues per VF, but we make the field 614 * u32 to allow for expansion.) 615 * PF performs requested action and returns status. 616 * NOTE: The VF is not required to enable/disable all queues in a single 617 * request. It may send multiple messages. 618 * PF drivers must correctly handle all VF requests. 619 */ 620 struct virtchnl_queue_select { 621 u16 vsi_id; 622 u16 pad; 623 u32 rx_queues; 624 u32 tx_queues; 625 }; 626 627 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select); 628 629 /* VIRTCHNL_OP_GET_MAX_RSS_QREGION 630 * 631 * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES 632 * then this op must be supported. 633 * 634 * VF sends this message in order to query the max RSS queue region 635 * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled. 636 * This information should be used when configuring the RSS LUT and/or 637 * configuring queue region based filters. 638 * 639 * The maximum RSS queue region is 2^qregion_width. So, a qregion_width 640 * of 6 would inform the VF that the PF supports a maximum RSS queue region 641 * of 64. 642 * 643 * A queue region represents a range of queues that can be used to configure 644 * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue 645 * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able 646 * to configure the RSS LUT with queue indices from 0 to 15. However, other 647 * filters can be used to direct packets to queues >15 via specifying a queue 648 * base/offset and queue region width. 649 */ 650 struct virtchnl_max_rss_qregion { 651 u16 vport_id; 652 u16 qregion_width; 653 u8 pad[4]; 654 }; 655 656 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion); 657 658 /* VIRTCHNL_OP_ADD_ETH_ADDR 659 * VF sends this message in order to add one or more unicast or multicast 660 * address filters for the specified VSI. 661 * PF adds the filters and returns status. 662 */ 663 664 /* VIRTCHNL_OP_DEL_ETH_ADDR 665 * VF sends this message in order to remove one or more unicast or multicast 666 * filters for the specified VSI. 667 * PF removes the filters and returns status. 668 */ 669 670 /* VIRTCHNL_ETHER_ADDR_LEGACY 671 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad 672 * bytes. Moving forward all VF drivers should not set type to 673 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy 674 * behavior. The control plane function (i.e. PF) can use a best effort method 675 * of tracking the primary/device unicast in this case, but there is no 676 * guarantee and functionality depends on the implementation of the PF. 677 */ 678 679 /* VIRTCHNL_ETHER_ADDR_PRIMARY 680 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the 681 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and 682 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane 683 * function (i.e. PF) to accurately track and use this MAC address for 684 * displaying on the host and for VM/function reset. 685 */ 686 687 /* VIRTCHNL_ETHER_ADDR_EXTRA 688 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra 689 * unicast and/or multicast filters that are being added/deleted via 690 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively. 691 */ 692 struct virtchnl_ether_addr { 693 u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 694 u8 type; 695 #define VIRTCHNL_ETHER_ADDR_LEGACY 0 696 #define VIRTCHNL_ETHER_ADDR_PRIMARY 1 697 #define VIRTCHNL_ETHER_ADDR_EXTRA 2 698 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */ 699 u8 pad; 700 }; 701 702 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr); 703 704 struct virtchnl_ether_addr_list { 705 u16 vsi_id; 706 u16 num_elements; 707 struct virtchnl_ether_addr list[1]; 708 }; 709 710 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list); 711 712 /* VIRTCHNL_OP_ADD_VLAN 713 * VF sends this message to add one or more VLAN tag filters for receives. 714 * PF adds the filters and returns status. 715 * If a port VLAN is configured by the PF, this operation will return an 716 * error to the VF. 717 */ 718 719 /* VIRTCHNL_OP_DEL_VLAN 720 * VF sends this message to remove one or more VLAN tag filters for receives. 721 * PF removes the filters and returns status. 722 * If a port VLAN is configured by the PF, this operation will return an 723 * error to the VF. 724 */ 725 726 struct virtchnl_vlan_filter_list { 727 u16 vsi_id; 728 u16 num_elements; 729 u16 vlan_id[1]; 730 }; 731 732 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list); 733 734 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related 735 * structures and opcodes. 736 * 737 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver 738 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED. 739 * 740 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype. 741 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype. 742 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype. 743 * 744 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported 745 * by the PF concurrently. For example, if the PF can support 746 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it 747 * would OR the following bits: 748 * 749 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 750 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 751 * VIRTCHNL_VLAN_ETHERTYPE_AND; 752 * 753 * The VF would interpret this as VLAN filtering can be supported on both 0x8100 754 * and 0x88A8 VLAN ethertypes. 755 * 756 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported 757 * by the PF concurrently. For example if the PF can support 758 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping 759 * offload it would OR the following bits: 760 * 761 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 762 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 763 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 764 * 765 * The VF would interpret this as VLAN stripping can be supported on either 766 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via 767 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override 768 * the previously set value. 769 * 770 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or 771 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors. 772 * 773 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware 774 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor. 775 * 776 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware 777 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor. 778 * 779 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for 780 * VLAN filtering if the underlying PF supports it. 781 * 782 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a 783 * certain VLAN capability can be toggled. For example if the underlying PF/CP 784 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should 785 * set this bit along with the supported ethertypes. 786 */ 787 enum virtchnl_vlan_support { 788 VIRTCHNL_VLAN_UNSUPPORTED = 0, 789 VIRTCHNL_VLAN_ETHERTYPE_8100 = 0x00000001, 790 VIRTCHNL_VLAN_ETHERTYPE_88A8 = 0x00000002, 791 VIRTCHNL_VLAN_ETHERTYPE_9100 = 0x00000004, 792 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = 0x00000100, 793 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = 0x00000200, 794 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = 0x00000400, 795 VIRTCHNL_VLAN_PRIO = 0x01000000, 796 VIRTCHNL_VLAN_FILTER_MASK = 0x10000000, 797 VIRTCHNL_VLAN_ETHERTYPE_AND = 0x20000000, 798 VIRTCHNL_VLAN_ETHERTYPE_XOR = 0x40000000, 799 VIRTCHNL_VLAN_TOGGLE = 0x80000000 800 }; 801 802 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 803 * for filtering, insertion, and stripping capabilities. 804 * 805 * If only outer capabilities are supported (for filtering, insertion, and/or 806 * stripping) then this refers to the outer most or single VLAN from the VF's 807 * perspective. 808 * 809 * If only inner capabilities are supported (for filtering, insertion, and/or 810 * stripping) then this refers to the outer most or single VLAN from the VF's 811 * perspective. Functionally this is the same as if only outer capabilities are 812 * supported. The VF driver is just forced to use the inner fields when 813 * adding/deleting filters and enabling/disabling offloads (if supported). 814 * 815 * If both outer and inner capabilities are supported (for filtering, insertion, 816 * and/or stripping) then outer refers to the outer most or single VLAN and 817 * inner refers to the second VLAN, if it exists, in the packet. 818 * 819 * There is no support for tunneled VLAN offloads, so outer or inner are never 820 * referring to a tunneled packet from the VF's perspective. 821 */ 822 struct virtchnl_vlan_supported_caps { 823 u32 outer; 824 u32 inner; 825 }; 826 827 /* The PF populates these fields based on the supported VLAN filtering. If a 828 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 829 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using 830 * the unsupported fields. 831 * 832 * Also, a VF is only allowed to toggle its VLAN filtering setting if the 833 * VIRTCHNL_VLAN_TOGGLE bit is set. 834 * 835 * The ethertype(s) specified in the ethertype_init field are the ethertypes 836 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer 837 * most VLAN from the VF's perspective. If both inner and outer filtering are 838 * allowed then ethertype_init only refers to the outer most VLAN as only 839 * VLAN ethertype supported for inner VLAN filtering is 840 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled 841 * when both inner and outer filtering are allowed. 842 * 843 * The max_filters field tells the VF how many VLAN filters it's allowed to have 844 * at any one time. If it exceeds this amount and tries to add another filter, 845 * then the request will be rejected by the PF. To prevent failures, the VF 846 * should keep track of how many VLAN filters it has added and not attempt to 847 * add more than max_filters. 848 */ 849 struct virtchnl_vlan_filtering_caps { 850 struct virtchnl_vlan_supported_caps filtering_support; 851 u32 ethertype_init; 852 u16 max_filters; 853 u8 pad[2]; 854 }; 855 856 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps); 857 858 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify 859 * if the PF supports a different ethertype for stripping and insertion. 860 * 861 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified 862 * for stripping affect the ethertype(s) specified for insertion and visa versa 863 * as well. If the VF tries to configure VLAN stripping via 864 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then 865 * that will be the ethertype for both stripping and insertion. 866 * 867 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for 868 * stripping do not affect the ethertype(s) specified for insertion and visa 869 * versa. 870 */ 871 enum virtchnl_vlan_ethertype_match { 872 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0, 873 VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1, 874 }; 875 876 /* The PF populates these fields based on the supported VLAN offloads. If a 877 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 878 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or 879 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields. 880 * 881 * Also, a VF is only allowed to toggle its VLAN offload setting if the 882 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set. 883 * 884 * The VF driver needs to be aware of how the tags are stripped by hardware and 885 * inserted by the VF driver based on the level of offload support. The PF will 886 * populate these fields based on where the VLAN tags are expected to be 887 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to 888 * interpret these fields. See the definition of the 889 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support 890 * enumeration. 891 */ 892 struct virtchnl_vlan_offload_caps { 893 struct virtchnl_vlan_supported_caps stripping_support; 894 struct virtchnl_vlan_supported_caps insertion_support; 895 u32 ethertype_init; 896 u8 ethertype_match; 897 u8 pad[3]; 898 }; 899 900 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps); 901 902 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 903 * VF sends this message to determine its VLAN capabilities. 904 * 905 * PF will mark which capabilities it supports based on hardware support and 906 * current configuration. For example, if a port VLAN is configured the PF will 907 * not allow outer VLAN filtering, stripping, or insertion to be configured so 908 * it will block these features from the VF. 909 * 910 * The VF will need to cross reference its capabilities with the PFs 911 * capabilities in the response message from the PF to determine the VLAN 912 * support. 913 */ 914 struct virtchnl_vlan_caps { 915 struct virtchnl_vlan_filtering_caps filtering; 916 struct virtchnl_vlan_offload_caps offloads; 917 }; 918 919 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps); 920 921 struct virtchnl_vlan { 922 u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */ 923 u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in 924 * filtering caps 925 */ 926 u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in 927 * filtering caps. Note that tpid here does not refer to 928 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the 929 * actual 2-byte VLAN TPID 930 */ 931 u8 pad[2]; 932 }; 933 934 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan); 935 936 struct virtchnl_vlan_filter { 937 struct virtchnl_vlan inner; 938 struct virtchnl_vlan outer; 939 u8 pad[16]; 940 }; 941 942 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter); 943 944 /* VIRTCHNL_OP_ADD_VLAN_V2 945 * VIRTCHNL_OP_DEL_VLAN_V2 946 * 947 * VF sends these messages to add/del one or more VLAN tag filters for Rx 948 * traffic. 949 * 950 * The PF attempts to add the filters and returns status. 951 * 952 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the 953 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS. 954 */ 955 struct virtchnl_vlan_filter_list_v2 { 956 u16 vport_id; 957 u16 num_elements; 958 u8 pad[4]; 959 struct virtchnl_vlan_filter filters[1]; 960 }; 961 962 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2); 963 964 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 965 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 966 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 967 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 968 * 969 * VF sends this message to enable or disable VLAN stripping or insertion. It 970 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are 971 * allowed and whether or not it's allowed to enable/disable the specific 972 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 973 * parse the virtchnl_vlan_caps.offloads fields to determine which offload 974 * messages are allowed. 975 * 976 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 977 * following manner the VF will be allowed to enable and/or disable 0x8100 inner 978 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this 979 * case means the outer most or single VLAN from the VF's perspective. This is 980 * because no outer offloads are supported. See the comments above the 981 * virtchnl_vlan_supported_caps structure for more details. 982 * 983 * virtchnl_vlan_caps.offloads.stripping_support.inner = 984 * VIRTCHNL_VLAN_TOGGLE | 985 * VIRTCHNL_VLAN_ETHERTYPE_8100; 986 * 987 * virtchnl_vlan_caps.offloads.insertion_support.inner = 988 * VIRTCHNL_VLAN_TOGGLE | 989 * VIRTCHNL_VLAN_ETHERTYPE_8100; 990 * 991 * In order to enable inner (again note that in this case inner is the outer 992 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100 993 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the 994 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 995 * 996 * virtchnl_vlan_setting.inner_ethertype_setting = 997 * VIRTCHNL_VLAN_ETHERTYPE_8100; 998 * 999 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 1000 * initialization. 1001 * 1002 * The reason that VLAN TPID(s) are not being used for the 1003 * outer_ethertype_setting and inner_ethertype_setting fields is because it's 1004 * possible a device could support VLAN insertion and/or stripping offload on 1005 * multiple ethertypes concurrently, so this method allows a VF to request 1006 * multiple ethertypes in one message using the virtchnl_vlan_support 1007 * enumeration. 1008 * 1009 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 1010 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer 1011 * VLAN insertion and stripping simultaneously. The 1012 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be 1013 * populated based on what the PF can support. 1014 * 1015 * virtchnl_vlan_caps.offloads.stripping_support.outer = 1016 * VIRTCHNL_VLAN_TOGGLE | 1017 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1018 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1019 * VIRTCHNL_VLAN_ETHERTYPE_AND; 1020 * 1021 * virtchnl_vlan_caps.offloads.insertion_support.outer = 1022 * VIRTCHNL_VLAN_TOGGLE | 1023 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1024 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1025 * VIRTCHNL_VLAN_ETHERTYPE_AND; 1026 * 1027 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF 1028 * would populate the virthcnl_vlan_offload_structure in the following manner 1029 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 1030 * 1031 * virtchnl_vlan_setting.outer_ethertype_setting = 1032 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 1033 * VIRTHCNL_VLAN_ETHERTYPE_88A8; 1034 * 1035 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 1036 * initialization. 1037 * 1038 * There is also the case where a PF and the underlying hardware can support 1039 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if 1040 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the 1041 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN 1042 * offloads. The ethertypes must match for stripping and insertion. 1043 * 1044 * virtchnl_vlan_caps.offloads.stripping_support.outer = 1045 * VIRTCHNL_VLAN_TOGGLE | 1046 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1047 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1048 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 1049 * 1050 * virtchnl_vlan_caps.offloads.insertion_support.outer = 1051 * VIRTCHNL_VLAN_TOGGLE | 1052 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1053 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1054 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 1055 * 1056 * virtchnl_vlan_caps.offloads.ethertype_match = 1057 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 1058 * 1059 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would 1060 * populate the virtchnl_vlan_setting structure in the following manner and send 1061 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the 1062 * ethertype for VLAN insertion if it's enabled. So, for completeness, a 1063 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent. 1064 * 1065 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8; 1066 * 1067 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 1068 * initialization. 1069 * 1070 * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 1071 * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 1072 * 1073 * VF sends this message to enable or disable VLAN filtering. It also needs to 1074 * specify an ethertype. The VF knows which VLAN ethertypes are allowed and 1075 * whether or not it's allowed to enable/disable filtering via the 1076 * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 1077 * parse the virtchnl_vlan_caps.filtering fields to determine which, if any, 1078 * filtering messages are allowed. 1079 * 1080 * For example, if the PF populates the virtchnl_vlan_caps.filtering in the 1081 * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8 1082 * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND 1083 * means that all filtering ethertypes will to be enabled and disabled together 1084 * regardless of the request from the VF. This means that the underlying 1085 * hardware only supports VLAN filtering for all VLAN the specified ethertypes 1086 * or none of them. 1087 * 1088 * virtchnl_vlan_caps.filtering.filtering_support.outer = 1089 * VIRTCHNL_VLAN_TOGGLE | 1090 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1091 * VIRTHCNL_VLAN_ETHERTYPE_88A8 | 1092 * VIRTCHNL_VLAN_ETHERTYPE_9100 | 1093 * VIRTCHNL_VLAN_ETHERTYPE_AND; 1094 * 1095 * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100 1096 * VLANs aren't supported by the VF driver), the VF would populate the 1097 * virtchnl_vlan_setting structure in the following manner and send the 1098 * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used 1099 * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the 1100 * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used. 1101 * 1102 * virtchnl_vlan_setting.outer_ethertype_setting = 1103 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1104 * VIRTCHNL_VLAN_ETHERTYPE_88A8; 1105 * 1106 */ 1107 struct virtchnl_vlan_setting { 1108 u32 outer_ethertype_setting; 1109 u32 inner_ethertype_setting; 1110 u16 vport_id; 1111 u8 pad[6]; 1112 }; 1113 1114 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting); 1115 1116 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE 1117 * VF sends VSI id and flags. 1118 * PF returns status code in retval. 1119 * Note: we assume that broadcast accept mode is always enabled. 1120 */ 1121 struct virtchnl_promisc_info { 1122 u16 vsi_id; 1123 u16 flags; 1124 }; 1125 1126 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info); 1127 1128 #define FLAG_VF_UNICAST_PROMISC 0x00000001 1129 #define FLAG_VF_MULTICAST_PROMISC 0x00000002 1130 1131 /* VIRTCHNL_OP_GET_STATS 1132 * VF sends this message to request stats for the selected VSI. VF uses 1133 * the virtchnl_queue_select struct to specify the VSI. The queue_id 1134 * field is ignored by the PF. 1135 * 1136 * PF replies with struct virtchnl_eth_stats in an external buffer. 1137 */ 1138 1139 struct virtchnl_eth_stats { 1140 u64 rx_bytes; /* received bytes */ 1141 u64 rx_unicast; /* received unicast pkts */ 1142 u64 rx_multicast; /* received multicast pkts */ 1143 u64 rx_broadcast; /* received broadcast pkts */ 1144 u64 rx_discards; 1145 u64 rx_unknown_protocol; 1146 u64 tx_bytes; /* transmitted bytes */ 1147 u64 tx_unicast; /* transmitted unicast pkts */ 1148 u64 tx_multicast; /* transmitted multicast pkts */ 1149 u64 tx_broadcast; /* transmitted broadcast pkts */ 1150 u64 tx_discards; 1151 u64 tx_errors; 1152 }; 1153 1154 /* VIRTCHNL_OP_CONFIG_RSS_KEY 1155 * VIRTCHNL_OP_CONFIG_RSS_LUT 1156 * VF sends these messages to configure RSS. Only supported if both PF 1157 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during 1158 * configuration negotiation. If this is the case, then the RSS fields in 1159 * the VF resource struct are valid. 1160 * Both the key and LUT are initialized to 0 by the PF, meaning that 1161 * RSS is effectively disabled until set up by the VF. 1162 */ 1163 struct virtchnl_rss_key { 1164 u16 vsi_id; 1165 u16 key_len; 1166 u8 key[1]; /* RSS hash key, packed bytes */ 1167 }; 1168 1169 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key); 1170 1171 struct virtchnl_rss_lut { 1172 u16 vsi_id; 1173 u16 lut_entries; 1174 u8 lut[1]; /* RSS lookup table */ 1175 }; 1176 1177 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut); 1178 1179 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS 1180 * VIRTCHNL_OP_SET_RSS_HENA 1181 * VF sends these messages to get and set the hash filter enable bits for RSS. 1182 * By default, the PF sets these to all possible traffic types that the 1183 * hardware supports. The VF can query this value if it wants to change the 1184 * traffic types that are hashed by the hardware. 1185 */ 1186 struct virtchnl_rss_hena { 1187 u64 hena; 1188 }; 1189 1190 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena); 1191 1192 /* Type of RSS algorithm */ 1193 enum virtchnl_rss_algorithm { 1194 VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0, 1195 VIRTCHNL_RSS_ALG_XOR_ASYMMETRIC = 1, 1196 VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2, 1197 VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3, 1198 }; 1199 1200 /* This is used by PF driver to enforce how many channels can be supported. 1201 * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise 1202 * PF driver will allow only max 4 channels 1203 */ 1204 #define VIRTCHNL_MAX_ADQ_CHANNELS 4 1205 #define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16 1206 1207 /* VIRTCHNL_OP_ENABLE_CHANNELS 1208 * VIRTCHNL_OP_DISABLE_CHANNELS 1209 * VF sends these messages to enable or disable channels based on 1210 * the user specified queue count and queue offset for each traffic class. 1211 * This struct encompasses all the information that the PF needs from 1212 * VF to create a channel. 1213 */ 1214 struct virtchnl_channel_info { 1215 u16 count; /* number of queues in a channel */ 1216 u16 offset; /* queues in a channel start from 'offset' */ 1217 u32 pad; 1218 u64 max_tx_rate; 1219 }; 1220 1221 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info); 1222 1223 struct virtchnl_tc_info { 1224 u32 num_tc; 1225 u32 pad; 1226 struct virtchnl_channel_info list[1]; 1227 }; 1228 1229 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info); 1230 1231 /* VIRTCHNL_ADD_CLOUD_FILTER 1232 * VIRTCHNL_DEL_CLOUD_FILTER 1233 * VF sends these messages to add or delete a cloud filter based on the 1234 * user specified match and action filters. These structures encompass 1235 * all the information that the PF needs from the VF to add/delete a 1236 * cloud filter. 1237 */ 1238 1239 struct virtchnl_l4_spec { 1240 u8 src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 1241 u8 dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 1242 /* vlan_prio is part of this 16 bit field even from OS perspective 1243 * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio 1244 * in future, when decided to offload vlan_prio, pass that information 1245 * as part of the "vlan_id" field, Bit14..12 1246 */ 1247 __be16 vlan_id; 1248 __be16 pad; /* reserved for future use */ 1249 __be32 src_ip[4]; 1250 __be32 dst_ip[4]; 1251 __be16 src_port; 1252 __be16 dst_port; 1253 }; 1254 1255 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec); 1256 1257 union virtchnl_flow_spec { 1258 struct virtchnl_l4_spec tcp_spec; 1259 u8 buffer[128]; /* reserved for future use */ 1260 }; 1261 1262 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec); 1263 1264 enum virtchnl_action { 1265 /* action types */ 1266 VIRTCHNL_ACTION_DROP = 0, 1267 VIRTCHNL_ACTION_TC_REDIRECT, 1268 VIRTCHNL_ACTION_PASSTHRU, 1269 VIRTCHNL_ACTION_QUEUE, 1270 VIRTCHNL_ACTION_Q_REGION, 1271 VIRTCHNL_ACTION_MARK, 1272 VIRTCHNL_ACTION_COUNT, 1273 }; 1274 1275 enum virtchnl_flow_type { 1276 /* flow types */ 1277 VIRTCHNL_TCP_V4_FLOW = 0, 1278 VIRTCHNL_TCP_V6_FLOW, 1279 VIRTCHNL_UDP_V4_FLOW, 1280 VIRTCHNL_UDP_V6_FLOW, 1281 }; 1282 1283 struct virtchnl_filter { 1284 union virtchnl_flow_spec data; 1285 union virtchnl_flow_spec mask; 1286 1287 /* see enum virtchnl_flow_type */ 1288 s32 flow_type; 1289 1290 /* see enum virtchnl_action */ 1291 s32 action; 1292 u32 action_meta; 1293 u8 field_flags; 1294 }; 1295 1296 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter); 1297 1298 struct virtchnl_shaper_bw { 1299 /* Unit is Kbps */ 1300 u32 committed; 1301 u32 peak; 1302 }; 1303 1304 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw); 1305 1306 /* VIRTCHNL_OP_DCF_GET_VSI_MAP 1307 * VF sends this message to get VSI mapping table. 1308 * PF responds with an indirect message containing VF's 1309 * HW VSI IDs. 1310 * The index of vf_vsi array is the logical VF ID, the 1311 * value of vf_vsi array is the VF's HW VSI ID with its 1312 * valid configuration. 1313 */ 1314 struct virtchnl_dcf_vsi_map { 1315 u16 pf_vsi; /* PF's HW VSI ID */ 1316 u16 num_vfs; /* The actual number of VFs allocated */ 1317 #define VIRTCHNL_DCF_VF_VSI_ID_S 0 1318 #define VIRTCHNL_DCF_VF_VSI_ID_M (0xFFF << VIRTCHNL_DCF_VF_VSI_ID_S) 1319 #define VIRTCHNL_DCF_VF_VSI_VALID BIT(15) 1320 u16 vf_vsi[1]; 1321 }; 1322 1323 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_dcf_vsi_map); 1324 1325 #define PKG_NAME_SIZE 32 1326 #define DSN_SIZE 8 1327 1328 struct pkg_version { 1329 u8 major; 1330 u8 minor; 1331 u8 update; 1332 u8 draft; 1333 }; 1334 1335 VIRTCHNL_CHECK_STRUCT_LEN(4, pkg_version); 1336 1337 struct virtchnl_pkg_info { 1338 struct pkg_version pkg_ver; 1339 u32 track_id; 1340 char pkg_name[PKG_NAME_SIZE]; 1341 u8 dsn[DSN_SIZE]; 1342 }; 1343 1344 VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_pkg_info); 1345 1346 /* VIRTCHNL_OP_DCF_VLAN_OFFLOAD 1347 * DCF negotiates the VIRTCHNL_VF_OFFLOAD_VLAN_V2 capability firstly to get 1348 * the double VLAN configuration, then DCF sends this message to configure the 1349 * outer or inner VLAN offloads (insertion and strip) for the target VF. 1350 */ 1351 struct virtchnl_dcf_vlan_offload { 1352 u16 vf_id; 1353 u16 tpid; 1354 u16 vlan_flags; 1355 #define VIRTCHNL_DCF_VLAN_TYPE_S 0 1356 #define VIRTCHNL_DCF_VLAN_TYPE_M \ 1357 (0x1 << VIRTCHNL_DCF_VLAN_TYPE_S) 1358 #define VIRTCHNL_DCF_VLAN_TYPE_INNER 0x0 1359 #define VIRTCHNL_DCF_VLAN_TYPE_OUTER 0x1 1360 #define VIRTCHNL_DCF_VLAN_INSERT_MODE_S 1 1361 #define VIRTCHNL_DCF_VLAN_INSERT_MODE_M \ 1362 (0x7 << VIRTCHNL_DCF_VLAN_INSERT_MODE_S) 1363 #define VIRTCHNL_DCF_VLAN_INSERT_DISABLE 0x1 1364 #define VIRTCHNL_DCF_VLAN_INSERT_PORT_BASED 0x2 1365 #define VIRTCHNL_DCF_VLAN_INSERT_VIA_TX_DESC 0x3 1366 #define VIRTCHNL_DCF_VLAN_STRIP_MODE_S 4 1367 #define VIRTCHNL_DCF_VLAN_STRIP_MODE_M \ 1368 (0x7 << VIRTCHNL_DCF_VLAN_STRIP_MODE_S) 1369 #define VIRTCHNL_DCF_VLAN_STRIP_DISABLE 0x1 1370 #define VIRTCHNL_DCF_VLAN_STRIP_ONLY 0x2 1371 #define VIRTCHNL_DCF_VLAN_STRIP_INTO_RX_DESC 0x3 1372 u16 vlan_id; 1373 u16 pad[4]; 1374 }; 1375 1376 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_dcf_vlan_offload); 1377 1378 struct virtchnl_dcf_bw_cfg { 1379 u8 tc_num; 1380 #define VIRTCHNL_DCF_BW_CIR BIT(0) 1381 #define VIRTCHNL_DCF_BW_PIR BIT(1) 1382 u8 bw_type; 1383 u8 pad[2]; 1384 enum virtchnl_bw_limit_type type; 1385 union { 1386 struct virtchnl_shaper_bw shaper; 1387 u8 pad2[32]; 1388 }; 1389 }; 1390 1391 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_dcf_bw_cfg); 1392 1393 /* VIRTCHNL_OP_DCF_CONFIG_BW 1394 * VF send this message to set the bandwidth configuration of each 1395 * TC with a specific vf id. The flag node_type is to indicate that 1396 * this message is to configure VSI node or TC node bandwidth. 1397 */ 1398 struct virtchnl_dcf_bw_cfg_list { 1399 u16 vf_id; 1400 u8 num_elem; 1401 #define VIRTCHNL_DCF_TARGET_TC_BW 0 1402 #define VIRTCHNL_DCF_TARGET_VF_BW 1 1403 u8 node_type; 1404 struct virtchnl_dcf_bw_cfg cfg[1]; 1405 }; 1406 1407 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_dcf_bw_cfg_list); 1408 1409 struct virtchnl_supported_rxdids { 1410 /* see enum virtchnl_rx_desc_id_bitmasks */ 1411 u64 supported_rxdids; 1412 }; 1413 1414 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_supported_rxdids); 1415 1416 /* VIRTCHNL_OP_EVENT 1417 * PF sends this message to inform the VF driver of events that may affect it. 1418 * No direct response is expected from the VF, though it may generate other 1419 * messages in response to this one. 1420 */ 1421 enum virtchnl_event_codes { 1422 VIRTCHNL_EVENT_UNKNOWN = 0, 1423 VIRTCHNL_EVENT_LINK_CHANGE, 1424 VIRTCHNL_EVENT_RESET_IMPENDING, 1425 VIRTCHNL_EVENT_PF_DRIVER_CLOSE, 1426 VIRTCHNL_EVENT_DCF_VSI_MAP_UPDATE, 1427 }; 1428 1429 #define PF_EVENT_SEVERITY_INFO 0 1430 #define PF_EVENT_SEVERITY_ATTENTION 1 1431 #define PF_EVENT_SEVERITY_ACTION_REQUIRED 2 1432 #define PF_EVENT_SEVERITY_CERTAIN_DOOM 255 1433 1434 struct virtchnl_pf_event { 1435 /* see enum virtchnl_event_codes */ 1436 s32 event; 1437 union { 1438 /* If the PF driver does not support the new speed reporting 1439 * capabilities then use link_event else use link_event_adv to 1440 * get the speed and link information. The ability to understand 1441 * new speeds is indicated by setting the capability flag 1442 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter 1443 * in virtchnl_vf_resource struct and can be used to determine 1444 * which link event struct to use below. 1445 */ 1446 struct { 1447 enum virtchnl_link_speed link_speed; 1448 u8 link_status; 1449 } link_event; 1450 struct { 1451 /* link_speed provided in Mbps */ 1452 u32 link_speed; 1453 u8 link_status; 1454 } link_event_adv; 1455 struct { 1456 u16 vf_id; 1457 u16 vsi_id; 1458 } vf_vsi_map; 1459 } event_data; 1460 1461 int severity; 1462 }; 1463 1464 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event); 1465 1466 1467 /* VF reset states - these are written into the RSTAT register: 1468 * VFGEN_RSTAT on the VF 1469 * When the PF initiates a reset, it writes 0 1470 * When the reset is complete, it writes 1 1471 * When the PF detects that the VF has recovered, it writes 2 1472 * VF checks this register periodically to determine if a reset has occurred, 1473 * then polls it to know when the reset is complete. 1474 * If either the PF or VF reads the register while the hardware 1475 * is in a reset state, it will return DEADBEEF, which, when masked 1476 * will result in 3. 1477 */ 1478 enum virtchnl_vfr_states { 1479 VIRTCHNL_VFR_INPROGRESS = 0, 1480 VIRTCHNL_VFR_COMPLETED, 1481 VIRTCHNL_VFR_VFACTIVE, 1482 }; 1483 1484 #define VIRTCHNL_MAX_NUM_PROTO_HDRS 32 1485 #define PROTO_HDR_SHIFT 5 1486 #define PROTO_HDR_FIELD_START(proto_hdr_type) \ 1487 (proto_hdr_type << PROTO_HDR_SHIFT) 1488 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1) 1489 1490 /* VF use these macros to configure each protocol header. 1491 * Specify which protocol headers and protocol header fields base on 1492 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field. 1493 * @param hdr: a struct of virtchnl_proto_hdr 1494 * @param hdr_type: ETH/IPV4/TCP, etc 1495 * @param field: SRC/DST/TEID/SPI, etc 1496 */ 1497 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \ 1498 ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK)) 1499 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \ 1500 ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK)) 1501 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \ 1502 ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK)) 1503 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector) 1504 1505 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1506 (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \ 1507 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1508 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1509 (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \ 1510 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1511 1512 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \ 1513 ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type) 1514 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \ 1515 (((hdr)->type) >> PROTO_HDR_SHIFT) 1516 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \ 1517 ((hdr)->type == ((val) >> PROTO_HDR_SHIFT)) 1518 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \ 1519 (VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \ 1520 VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val)) 1521 1522 /* Protocol header type within a packet segment. A segment consists of one or 1523 * more protocol headers that make up a logical group of protocol headers. Each 1524 * logical group of protocol headers encapsulates or is encapsulated using/by 1525 * tunneling or encapsulation protocols for network virtualization. 1526 */ 1527 enum virtchnl_proto_hdr_type { 1528 VIRTCHNL_PROTO_HDR_NONE, 1529 VIRTCHNL_PROTO_HDR_ETH, 1530 VIRTCHNL_PROTO_HDR_S_VLAN, 1531 VIRTCHNL_PROTO_HDR_C_VLAN, 1532 VIRTCHNL_PROTO_HDR_IPV4, 1533 VIRTCHNL_PROTO_HDR_IPV6, 1534 VIRTCHNL_PROTO_HDR_TCP, 1535 VIRTCHNL_PROTO_HDR_UDP, 1536 VIRTCHNL_PROTO_HDR_SCTP, 1537 VIRTCHNL_PROTO_HDR_GTPU_IP, 1538 VIRTCHNL_PROTO_HDR_GTPU_EH, 1539 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 1540 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 1541 VIRTCHNL_PROTO_HDR_PPPOE, 1542 VIRTCHNL_PROTO_HDR_L2TPV3, 1543 VIRTCHNL_PROTO_HDR_ESP, 1544 VIRTCHNL_PROTO_HDR_AH, 1545 VIRTCHNL_PROTO_HDR_PFCP, 1546 VIRTCHNL_PROTO_HDR_GTPC, 1547 VIRTCHNL_PROTO_HDR_ECPRI, 1548 VIRTCHNL_PROTO_HDR_L2TPV2, 1549 VIRTCHNL_PROTO_HDR_PPP, 1550 /* IPv4 and IPv6 Fragment header types are only associated to 1551 * VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively, 1552 * cannot be used independently. 1553 */ 1554 VIRTCHNL_PROTO_HDR_IPV4_FRAG, 1555 VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG, 1556 VIRTCHNL_PROTO_HDR_GRE, 1557 }; 1558 1559 /* Protocol header field within a protocol header. */ 1560 enum virtchnl_proto_hdr_field { 1561 /* ETHER */ 1562 VIRTCHNL_PROTO_HDR_ETH_SRC = 1563 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH), 1564 VIRTCHNL_PROTO_HDR_ETH_DST, 1565 VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE, 1566 /* S-VLAN */ 1567 VIRTCHNL_PROTO_HDR_S_VLAN_ID = 1568 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN), 1569 /* C-VLAN */ 1570 VIRTCHNL_PROTO_HDR_C_VLAN_ID = 1571 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN), 1572 /* IPV4 */ 1573 VIRTCHNL_PROTO_HDR_IPV4_SRC = 1574 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4), 1575 VIRTCHNL_PROTO_HDR_IPV4_DST, 1576 VIRTCHNL_PROTO_HDR_IPV4_DSCP, 1577 VIRTCHNL_PROTO_HDR_IPV4_TTL, 1578 VIRTCHNL_PROTO_HDR_IPV4_PROT, 1579 VIRTCHNL_PROTO_HDR_IPV4_CHKSUM, 1580 /* IPV6 */ 1581 VIRTCHNL_PROTO_HDR_IPV6_SRC = 1582 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6), 1583 VIRTCHNL_PROTO_HDR_IPV6_DST, 1584 VIRTCHNL_PROTO_HDR_IPV6_TC, 1585 VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT, 1586 VIRTCHNL_PROTO_HDR_IPV6_PROT, 1587 /* IPV6 Prefix */ 1588 VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC, 1589 VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST, 1590 VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC, 1591 VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST, 1592 VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC, 1593 VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST, 1594 VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC, 1595 VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST, 1596 VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC, 1597 VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST, 1598 VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC, 1599 VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST, 1600 /* TCP */ 1601 VIRTCHNL_PROTO_HDR_TCP_SRC_PORT = 1602 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP), 1603 VIRTCHNL_PROTO_HDR_TCP_DST_PORT, 1604 VIRTCHNL_PROTO_HDR_TCP_CHKSUM, 1605 /* UDP */ 1606 VIRTCHNL_PROTO_HDR_UDP_SRC_PORT = 1607 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP), 1608 VIRTCHNL_PROTO_HDR_UDP_DST_PORT, 1609 VIRTCHNL_PROTO_HDR_UDP_CHKSUM, 1610 /* SCTP */ 1611 VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT = 1612 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP), 1613 VIRTCHNL_PROTO_HDR_SCTP_DST_PORT, 1614 VIRTCHNL_PROTO_HDR_SCTP_CHKSUM, 1615 /* GTPU_IP */ 1616 VIRTCHNL_PROTO_HDR_GTPU_IP_TEID = 1617 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP), 1618 /* GTPU_EH */ 1619 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU = 1620 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH), 1621 VIRTCHNL_PROTO_HDR_GTPU_EH_QFI, 1622 /* PPPOE */ 1623 VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID = 1624 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE), 1625 /* L2TPV3 */ 1626 VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID = 1627 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3), 1628 /* ESP */ 1629 VIRTCHNL_PROTO_HDR_ESP_SPI = 1630 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP), 1631 /* AH */ 1632 VIRTCHNL_PROTO_HDR_AH_SPI = 1633 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH), 1634 /* PFCP */ 1635 VIRTCHNL_PROTO_HDR_PFCP_S_FIELD = 1636 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP), 1637 VIRTCHNL_PROTO_HDR_PFCP_SEID, 1638 /* GTPC */ 1639 VIRTCHNL_PROTO_HDR_GTPC_TEID = 1640 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC), 1641 /* ECPRI */ 1642 VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE = 1643 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI), 1644 VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID, 1645 /* IPv4 Dummy Fragment */ 1646 VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID = 1647 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG), 1648 /* IPv6 Extension Fragment */ 1649 VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID = 1650 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG), 1651 /* GTPU_DWN/UP */ 1652 VIRTCHNL_PROTO_HDR_GTPU_DWN_QFI = 1653 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN), 1654 VIRTCHNL_PROTO_HDR_GTPU_UP_QFI = 1655 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP), 1656 /* L2TPv2 */ 1657 VIRTCHNL_PROTO_HDR_L2TPV2_SESS_ID = 1658 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV2), 1659 VIRTCHNL_PROTO_HDR_L2TPV2_LEN_SESS_ID, 1660 }; 1661 1662 struct virtchnl_proto_hdr { 1663 /* see enum virtchnl_proto_hdr_type */ 1664 s32 type; 1665 u32 field_selector; /* a bit mask to select field for header type */ 1666 u8 buffer[64]; 1667 /** 1668 * binary buffer in network order for specific header type. 1669 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 1670 * header is expected to be copied into the buffer. 1671 */ 1672 }; 1673 1674 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr); 1675 1676 struct virtchnl_proto_hdrs { 1677 u8 tunnel_level; 1678 /** 1679 * specify where protocol header start from. 1680 * 0 - from the outer layer 1681 * 1 - from the first inner layer 1682 * 2 - from the second inner layer 1683 * .... 1684 **/ 1685 int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */ 1686 struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS]; 1687 }; 1688 1689 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs); 1690 1691 struct virtchnl_rss_cfg { 1692 struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */ 1693 1694 /* see enum virtchnl_rss_algorithm; rss algorithm type */ 1695 s32 rss_algorithm; 1696 u8 reserved[128]; /* reserve for future */ 1697 }; 1698 1699 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg); 1700 1701 /* action configuration for FDIR */ 1702 struct virtchnl_filter_action { 1703 /* see enum virtchnl_action type */ 1704 s32 type; 1705 union { 1706 /* used for queue and qgroup action */ 1707 struct { 1708 u16 index; 1709 u8 region; 1710 } queue; 1711 /* used for count action */ 1712 struct { 1713 /* share counter ID with other flow rules */ 1714 u8 shared; 1715 u32 id; /* counter ID */ 1716 } count; 1717 /* used for mark action */ 1718 u32 mark_id; 1719 u8 reserve[32]; 1720 } act_conf; 1721 }; 1722 1723 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action); 1724 1725 #define VIRTCHNL_MAX_NUM_ACTIONS 8 1726 1727 struct virtchnl_filter_action_set { 1728 /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */ 1729 int count; 1730 struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS]; 1731 }; 1732 1733 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set); 1734 1735 /* pattern and action for FDIR rule */ 1736 struct virtchnl_fdir_rule { 1737 struct virtchnl_proto_hdrs proto_hdrs; 1738 struct virtchnl_filter_action_set action_set; 1739 }; 1740 1741 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule); 1742 1743 /* Status returned to VF after VF requests FDIR commands 1744 * VIRTCHNL_FDIR_SUCCESS 1745 * VF FDIR related request is successfully done by PF 1746 * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER. 1747 * 1748 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE 1749 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource. 1750 * 1751 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST 1752 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed. 1753 * 1754 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT 1755 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule. 1756 * 1757 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST 1758 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist. 1759 * 1760 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID 1761 * OP_ADD_FDIR_FILTER request is failed due to parameters validation 1762 * or HW doesn't support. 1763 * 1764 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT 1765 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out 1766 * for programming. 1767 * 1768 * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID 1769 * OP_QUERY_FDIR_FILTER request is failed due to parameters validation, 1770 * for example, VF query counter of a rule who has no counter action. 1771 */ 1772 enum virtchnl_fdir_prgm_status { 1773 VIRTCHNL_FDIR_SUCCESS = 0, 1774 VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE, 1775 VIRTCHNL_FDIR_FAILURE_RULE_EXIST, 1776 VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT, 1777 VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST, 1778 VIRTCHNL_FDIR_FAILURE_RULE_INVALID, 1779 VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT, 1780 VIRTCHNL_FDIR_FAILURE_QUERY_INVALID, 1781 }; 1782 1783 /* VIRTCHNL_OP_ADD_FDIR_FILTER 1784 * VF sends this request to PF by filling out vsi_id, 1785 * validate_only and rule_cfg. PF will return flow_id 1786 * if the request is successfully done and return add_status to VF. 1787 */ 1788 struct virtchnl_fdir_add { 1789 u16 vsi_id; /* INPUT */ 1790 /* 1791 * 1 for validating a fdir rule, 0 for creating a fdir rule. 1792 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER. 1793 */ 1794 u16 validate_only; /* INPUT */ 1795 u32 flow_id; /* OUTPUT */ 1796 struct virtchnl_fdir_rule rule_cfg; /* INPUT */ 1797 1798 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1799 s32 status; 1800 }; 1801 1802 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add); 1803 1804 /* VIRTCHNL_OP_DEL_FDIR_FILTER 1805 * VF sends this request to PF by filling out vsi_id 1806 * and flow_id. PF will return del_status to VF. 1807 */ 1808 struct virtchnl_fdir_del { 1809 u16 vsi_id; /* INPUT */ 1810 u16 pad; 1811 u32 flow_id; /* INPUT */ 1812 1813 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1814 s32 status; 1815 }; 1816 1817 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del); 1818 1819 /* VIRTCHNL_OP_GET_QOS_CAPS 1820 * VF sends this message to get its QoS Caps, such as 1821 * TC number, Arbiter and Bandwidth. 1822 */ 1823 struct virtchnl_qos_cap_elem { 1824 u8 tc_num; 1825 u8 tc_prio; 1826 #define VIRTCHNL_ABITER_STRICT 0 1827 #define VIRTCHNL_ABITER_ETS 2 1828 u8 arbiter; 1829 #define VIRTCHNL_STRICT_WEIGHT 1 1830 u8 weight; 1831 enum virtchnl_bw_limit_type type; 1832 union { 1833 struct virtchnl_shaper_bw shaper; 1834 u8 pad2[32]; 1835 }; 1836 }; 1837 1838 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem); 1839 1840 struct virtchnl_qos_cap_list { 1841 u16 vsi_id; 1842 u16 num_elem; 1843 struct virtchnl_qos_cap_elem cap[1]; 1844 }; 1845 1846 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_qos_cap_list); 1847 1848 /* VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP 1849 * VF sends message virtchnl_queue_tc_mapping to set queue to tc 1850 * mapping for all the Tx and Rx queues with a specified VSI, and 1851 * would get response about bitmap of valid user priorities 1852 * associated with queues. 1853 */ 1854 struct virtchnl_queue_tc_mapping { 1855 u16 vsi_id; 1856 u16 num_tc; 1857 u16 num_queue_pairs; 1858 u8 pad[2]; 1859 union { 1860 struct { 1861 u16 start_queue_id; 1862 u16 queue_count; 1863 } req; 1864 struct { 1865 #define VIRTCHNL_USER_PRIO_TYPE_UP 0 1866 #define VIRTCHNL_USER_PRIO_TYPE_DSCP 1 1867 u16 prio_type; 1868 u16 valid_prio_bitmap; 1869 } resp; 1870 } tc[1]; 1871 }; 1872 1873 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_tc_mapping); 1874 1875 1876 /* TX and RX queue types are valid in legacy as well as split queue models. 1877 * With Split Queue model, 2 additional types are introduced - TX_COMPLETION 1878 * and RX_BUFFER. In split queue model, RX corresponds to the queue where HW 1879 * posts completions. 1880 */ 1881 enum virtchnl_queue_type { 1882 VIRTCHNL_QUEUE_TYPE_TX = 0, 1883 VIRTCHNL_QUEUE_TYPE_RX = 1, 1884 VIRTCHNL_QUEUE_TYPE_TX_COMPLETION = 2, 1885 VIRTCHNL_QUEUE_TYPE_RX_BUFFER = 3, 1886 VIRTCHNL_QUEUE_TYPE_CONFIG_TX = 4, 1887 VIRTCHNL_QUEUE_TYPE_CONFIG_RX = 5 1888 }; 1889 1890 1891 /* structure to specify a chunk of contiguous queues */ 1892 struct virtchnl_queue_chunk { 1893 /* see enum virtchnl_queue_type */ 1894 s32 type; 1895 u16 start_queue_id; 1896 u16 num_queues; 1897 }; 1898 1899 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk); 1900 1901 /* structure to specify several chunks of contiguous queues */ 1902 struct virtchnl_queue_chunks { 1903 u16 num_chunks; 1904 u16 rsvd; 1905 struct virtchnl_queue_chunk chunks[1]; 1906 }; 1907 1908 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks); 1909 1910 1911 /* VIRTCHNL_OP_ENABLE_QUEUES_V2 1912 * VIRTCHNL_OP_DISABLE_QUEUES_V2 1913 * VIRTCHNL_OP_DEL_QUEUES 1914 * 1915 * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES 1916 * then all of these ops are available. 1917 * 1918 * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES 1919 * then VIRTCHNL_OP_ENABLE_QUEUES_V2 and VIRTCHNL_OP_DISABLE_QUEUES_V2 are 1920 * available. 1921 * 1922 * PF sends these messages to enable, disable or delete queues specified in 1923 * chunks. PF sends virtchnl_del_ena_dis_queues struct to specify the queues 1924 * to be enabled/disabled/deleted. Also applicable to single queue RX or 1925 * TX. CP performs requested action and returns status. 1926 */ 1927 struct virtchnl_del_ena_dis_queues { 1928 u16 vport_id; 1929 u16 pad; 1930 struct virtchnl_queue_chunks chunks; 1931 }; 1932 1933 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues); 1934 1935 /* Virtchannel interrupt throttling rate index */ 1936 enum virtchnl_itr_idx { 1937 VIRTCHNL_ITR_IDX_0 = 0, 1938 VIRTCHNL_ITR_IDX_1 = 1, 1939 VIRTCHNL_ITR_IDX_NO_ITR = 3, 1940 }; 1941 1942 /* Queue to vector mapping */ 1943 struct virtchnl_queue_vector { 1944 u16 queue_id; 1945 u16 vector_id; 1946 u8 pad[4]; 1947 1948 /* see enum virtchnl_itr_idx */ 1949 s32 itr_idx; 1950 1951 /* see enum virtchnl_queue_type */ 1952 s32 queue_type; 1953 }; 1954 1955 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector); 1956 1957 /* VIRTCHNL_OP_MAP_QUEUE_VECTOR 1958 * VIRTCHNL_OP_UNMAP_QUEUE_VECTOR 1959 * 1960 * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES 1961 * then all of these ops are available. 1962 * 1963 * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES 1964 * then only VIRTCHNL_OP_MAP_QUEUE_VECTOR is available. 1965 * 1966 * PF sends this message to map or unmap queues to vectors and ITR index 1967 * registers. External data buffer contains virtchnl_queue_vector_maps structure 1968 * that contains num_qv_maps of virtchnl_queue_vector structures. 1969 * CP maps the requested queue vector maps after validating the queue and vector 1970 * ids and returns a status code. 1971 */ 1972 struct virtchnl_queue_vector_maps { 1973 u16 vport_id; 1974 u16 num_qv_maps; 1975 u8 pad[4]; 1976 struct virtchnl_queue_vector qv_maps[1]; 1977 }; 1978 1979 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps); 1980 1981 1982 /* Since VF messages are limited by u16 size, precalculate the maximum possible 1983 * values of nested elements in virtchnl structures that virtual channel can 1984 * possibly handle in a single message. 1985 */ 1986 enum virtchnl_vector_limits { 1987 VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX = 1988 ((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) / 1989 sizeof(struct virtchnl_queue_pair_info), 1990 1991 VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX = 1992 ((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) / 1993 sizeof(struct virtchnl_vector_map), 1994 1995 VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX = 1996 ((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) / 1997 sizeof(struct virtchnl_ether_addr), 1998 1999 VIRTCHNL_OP_ADD_DEL_VLAN_MAX = 2000 ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) / 2001 sizeof(u16), 2002 2003 2004 VIRTCHNL_OP_ENABLE_CHANNELS_MAX = 2005 ((u16)(~0) - sizeof(struct virtchnl_tc_info)) / 2006 sizeof(struct virtchnl_channel_info), 2007 2008 VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX = 2009 ((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) / 2010 sizeof(struct virtchnl_queue_chunk), 2011 2012 VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX = 2013 ((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) / 2014 sizeof(struct virtchnl_queue_vector), 2015 2016 VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX = 2017 ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) / 2018 sizeof(struct virtchnl_vlan_filter), 2019 }; 2020 2021 /** 2022 * virtchnl_vc_validate_vf_msg 2023 * @ver: Virtchnl version info 2024 * @v_opcode: Opcode for the message 2025 * @msg: pointer to the msg buffer 2026 * @msglen: msg length 2027 * 2028 * validate msg format against struct for each opcode 2029 */ 2030 static inline int 2031 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode, 2032 u8 *msg, u16 msglen) 2033 { 2034 bool err_msg_format = false; 2035 u32 valid_len = 0; 2036 2037 /* Validate message length. */ 2038 switch (v_opcode) { 2039 case VIRTCHNL_OP_VERSION: 2040 valid_len = sizeof(struct virtchnl_version_info); 2041 break; 2042 case VIRTCHNL_OP_RESET_VF: 2043 break; 2044 case VIRTCHNL_OP_GET_VF_RESOURCES: 2045 if (VF_IS_V11(ver)) 2046 valid_len = sizeof(u32); 2047 break; 2048 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 2049 valid_len = sizeof(struct virtchnl_txq_info); 2050 break; 2051 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 2052 valid_len = sizeof(struct virtchnl_rxq_info); 2053 break; 2054 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 2055 valid_len = sizeof(struct virtchnl_vsi_queue_config_info); 2056 if (msglen >= valid_len) { 2057 struct virtchnl_vsi_queue_config_info *vqc = 2058 (struct virtchnl_vsi_queue_config_info *)msg; 2059 2060 if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs > 2061 VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) { 2062 err_msg_format = true; 2063 break; 2064 } 2065 2066 valid_len += (vqc->num_queue_pairs * 2067 sizeof(struct 2068 virtchnl_queue_pair_info)); 2069 } 2070 break; 2071 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 2072 valid_len = sizeof(struct virtchnl_irq_map_info); 2073 if (msglen >= valid_len) { 2074 struct virtchnl_irq_map_info *vimi = 2075 (struct virtchnl_irq_map_info *)msg; 2076 2077 if (vimi->num_vectors == 0 || vimi->num_vectors > 2078 VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) { 2079 err_msg_format = true; 2080 break; 2081 } 2082 2083 valid_len += (vimi->num_vectors * 2084 sizeof(struct virtchnl_vector_map)); 2085 } 2086 break; 2087 case VIRTCHNL_OP_ENABLE_QUEUES: 2088 case VIRTCHNL_OP_DISABLE_QUEUES: 2089 valid_len = sizeof(struct virtchnl_queue_select); 2090 break; 2091 case VIRTCHNL_OP_GET_MAX_RSS_QREGION: 2092 break; 2093 case VIRTCHNL_OP_ADD_ETH_ADDR: 2094 case VIRTCHNL_OP_DEL_ETH_ADDR: 2095 valid_len = sizeof(struct virtchnl_ether_addr_list); 2096 if (msglen >= valid_len) { 2097 struct virtchnl_ether_addr_list *veal = 2098 (struct virtchnl_ether_addr_list *)msg; 2099 2100 if (veal->num_elements == 0 || veal->num_elements > 2101 VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) { 2102 err_msg_format = true; 2103 break; 2104 } 2105 2106 valid_len += veal->num_elements * 2107 sizeof(struct virtchnl_ether_addr); 2108 } 2109 break; 2110 case VIRTCHNL_OP_ADD_VLAN: 2111 case VIRTCHNL_OP_DEL_VLAN: 2112 valid_len = sizeof(struct virtchnl_vlan_filter_list); 2113 if (msglen >= valid_len) { 2114 struct virtchnl_vlan_filter_list *vfl = 2115 (struct virtchnl_vlan_filter_list *)msg; 2116 2117 if (vfl->num_elements == 0 || vfl->num_elements > 2118 VIRTCHNL_OP_ADD_DEL_VLAN_MAX) { 2119 err_msg_format = true; 2120 break; 2121 } 2122 2123 valid_len += vfl->num_elements * sizeof(u16); 2124 } 2125 break; 2126 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 2127 valid_len = sizeof(struct virtchnl_promisc_info); 2128 break; 2129 case VIRTCHNL_OP_GET_STATS: 2130 valid_len = sizeof(struct virtchnl_queue_select); 2131 break; 2132 case VIRTCHNL_OP_CONFIG_RSS_KEY: 2133 valid_len = sizeof(struct virtchnl_rss_key); 2134 if (msglen >= valid_len) { 2135 struct virtchnl_rss_key *vrk = 2136 (struct virtchnl_rss_key *)msg; 2137 2138 if (vrk->key_len == 0) { 2139 /* zero length is allowed as input */ 2140 break; 2141 } 2142 2143 valid_len += vrk->key_len - 1; 2144 } 2145 break; 2146 case VIRTCHNL_OP_CONFIG_RSS_LUT: 2147 valid_len = sizeof(struct virtchnl_rss_lut); 2148 if (msglen >= valid_len) { 2149 struct virtchnl_rss_lut *vrl = 2150 (struct virtchnl_rss_lut *)msg; 2151 2152 if (vrl->lut_entries == 0) { 2153 /* zero entries is allowed as input */ 2154 break; 2155 } 2156 2157 valid_len += vrl->lut_entries - 1; 2158 } 2159 break; 2160 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 2161 break; 2162 case VIRTCHNL_OP_SET_RSS_HENA: 2163 valid_len = sizeof(struct virtchnl_rss_hena); 2164 break; 2165 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 2166 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 2167 break; 2168 case VIRTCHNL_OP_REQUEST_QUEUES: 2169 valid_len = sizeof(struct virtchnl_vf_res_request); 2170 break; 2171 case VIRTCHNL_OP_ENABLE_CHANNELS: 2172 valid_len = sizeof(struct virtchnl_tc_info); 2173 if (msglen >= valid_len) { 2174 struct virtchnl_tc_info *vti = 2175 (struct virtchnl_tc_info *)msg; 2176 2177 if (vti->num_tc == 0 || vti->num_tc > 2178 VIRTCHNL_OP_ENABLE_CHANNELS_MAX) { 2179 err_msg_format = true; 2180 break; 2181 } 2182 2183 valid_len += (vti->num_tc - 1) * 2184 sizeof(struct virtchnl_channel_info); 2185 } 2186 break; 2187 case VIRTCHNL_OP_DISABLE_CHANNELS: 2188 break; 2189 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 2190 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 2191 valid_len = sizeof(struct virtchnl_filter); 2192 break; 2193 case VIRTCHNL_OP_DCF_VLAN_OFFLOAD: 2194 valid_len = sizeof(struct virtchnl_dcf_vlan_offload); 2195 break; 2196 case VIRTCHNL_OP_DCF_CMD_DESC: 2197 case VIRTCHNL_OP_DCF_CMD_BUFF: 2198 /* These two opcodes are specific to handle the AdminQ command, 2199 * so the validation needs to be done in PF's context. 2200 */ 2201 valid_len = msglen; 2202 break; 2203 case VIRTCHNL_OP_DCF_DISABLE: 2204 case VIRTCHNL_OP_DCF_GET_VSI_MAP: 2205 case VIRTCHNL_OP_DCF_GET_PKG_INFO: 2206 break; 2207 case VIRTCHNL_OP_DCF_CONFIG_BW: 2208 valid_len = sizeof(struct virtchnl_dcf_bw_cfg_list); 2209 if (msglen >= valid_len) { 2210 struct virtchnl_dcf_bw_cfg_list *cfg_list = 2211 (struct virtchnl_dcf_bw_cfg_list *)msg; 2212 if (cfg_list->num_elem == 0) { 2213 err_msg_format = true; 2214 break; 2215 } 2216 valid_len += (cfg_list->num_elem - 1) * 2217 sizeof(struct virtchnl_dcf_bw_cfg); 2218 } 2219 break; 2220 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 2221 break; 2222 case VIRTCHNL_OP_ADD_RSS_CFG: 2223 case VIRTCHNL_OP_DEL_RSS_CFG: 2224 valid_len = sizeof(struct virtchnl_rss_cfg); 2225 break; 2226 case VIRTCHNL_OP_ADD_FDIR_FILTER: 2227 valid_len = sizeof(struct virtchnl_fdir_add); 2228 break; 2229 case VIRTCHNL_OP_DEL_FDIR_FILTER: 2230 valid_len = sizeof(struct virtchnl_fdir_del); 2231 break; 2232 case VIRTCHNL_OP_GET_QOS_CAPS: 2233 break; 2234 case VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP: 2235 valid_len = sizeof(struct virtchnl_queue_tc_mapping); 2236 if (msglen >= valid_len) { 2237 struct virtchnl_queue_tc_mapping *q_tc = 2238 (struct virtchnl_queue_tc_mapping *)msg; 2239 if (q_tc->num_tc == 0) { 2240 err_msg_format = true; 2241 break; 2242 } 2243 valid_len += (q_tc->num_tc - 1) * 2244 sizeof(q_tc->tc[0]); 2245 } 2246 break; 2247 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 2248 break; 2249 case VIRTCHNL_OP_ADD_VLAN_V2: 2250 case VIRTCHNL_OP_DEL_VLAN_V2: 2251 valid_len = sizeof(struct virtchnl_vlan_filter_list_v2); 2252 if (msglen >= valid_len) { 2253 struct virtchnl_vlan_filter_list_v2 *vfl = 2254 (struct virtchnl_vlan_filter_list_v2 *)msg; 2255 2256 if (vfl->num_elements == 0 || vfl->num_elements > 2257 VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) { 2258 err_msg_format = true; 2259 break; 2260 } 2261 2262 valid_len += (vfl->num_elements - 1) * 2263 sizeof(struct virtchnl_vlan_filter); 2264 } 2265 break; 2266 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 2267 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 2268 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 2269 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 2270 case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2: 2271 case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2: 2272 valid_len = sizeof(struct virtchnl_vlan_setting); 2273 break; 2274 case VIRTCHNL_OP_ENABLE_QUEUES_V2: 2275 case VIRTCHNL_OP_DISABLE_QUEUES_V2: 2276 valid_len = sizeof(struct virtchnl_del_ena_dis_queues); 2277 if (msglen >= valid_len) { 2278 struct virtchnl_del_ena_dis_queues *qs = 2279 (struct virtchnl_del_ena_dis_queues *)msg; 2280 if (qs->chunks.num_chunks == 0 || 2281 qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) { 2282 err_msg_format = true; 2283 break; 2284 } 2285 valid_len += (qs->chunks.num_chunks - 1) * 2286 sizeof(struct virtchnl_queue_chunk); 2287 } 2288 break; 2289 case VIRTCHNL_OP_MAP_QUEUE_VECTOR: 2290 valid_len = sizeof(struct virtchnl_queue_vector_maps); 2291 if (msglen >= valid_len) { 2292 struct virtchnl_queue_vector_maps *v_qp = 2293 (struct virtchnl_queue_vector_maps *)msg; 2294 if (v_qp->num_qv_maps == 0 || 2295 v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) { 2296 err_msg_format = true; 2297 break; 2298 } 2299 valid_len += (v_qp->num_qv_maps - 1) * 2300 sizeof(struct virtchnl_queue_vector); 2301 } 2302 break; 2303 2304 case VIRTCHNL_OP_INLINE_IPSEC_CRYPTO: 2305 { 2306 struct inline_ipsec_msg *iim = (struct inline_ipsec_msg *)msg; 2307 valid_len = 2308 virtchnl_inline_ipsec_val_msg_len(iim->ipsec_opcode); 2309 break; 2310 } 2311 /* These are always errors coming from the VF. */ 2312 case VIRTCHNL_OP_EVENT: 2313 case VIRTCHNL_OP_UNKNOWN: 2314 default: 2315 return VIRTCHNL_STATUS_ERR_PARAM; 2316 } 2317 /* few more checks */ 2318 if (err_msg_format || valid_len != msglen) 2319 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH; 2320 2321 return 0; 2322 } 2323 #endif /* _VIRTCHNL_H_ */ 2324