1..  BSD LICENSE
2    Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
3    All rights reserved.
4
5    Redistribution and use in source and binary forms, with or without
6    modification, are permitted provided that the following conditions
7    are met:
8
9    * Redistributions of source code must retain the above copyright
10    notice, this list of conditions and the following disclaimer.
11    * Redistributions in binary form must reproduce the above copyright
12    notice, this list of conditions and the following disclaimer in
13    the documentation and/or other materials provided with the
14    distribution.
15    * Neither the name of Intel Corporation nor the names of its
16    contributors may be used to endorse or promote products derived
17    from this software without specific prior written permission.
18
19    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31Kernel NIC Interface Sample Application
32=======================================
33
34The Kernel NIC Interface (KNI) is a DPDK control plane solution that
35allows userspace applications to exchange packets with the kernel networking stack.
36To accomplish this, DPDK userspace applications use an IOCTL call
37to request the creation of a KNI virtual device in the Linux* kernel.
38The IOCTL call provides interface information and the DPDK's physical address space,
39which is re-mapped into the kernel address space by the KNI kernel loadable module
40that saves the information to a virtual device context.
41The DPDK creates FIFO queues for packet ingress and egress
42to the kernel module for each device allocated.
43
44The KNI kernel loadable module is a standard net driver,
45which upon receiving the IOCTL call access the DPDK's FIFO queue to
46receive/transmit packets from/to the DPDK userspace application.
47The FIFO queues contain pointers to data packets in the DPDK. This:
48
49*   Provides a faster mechanism to interface with the kernel net stack and eliminates system calls
50
51*   Facilitates the DPDK using standard Linux* userspace net tools (tcpdump, ftp, and so on)
52
53*   Eliminate the copy_to_user and copy_from_user operations on packets.
54
55The Kernel NIC Interface sample application is a simple example that demonstrates the use
56of the DPDK to create a path for packets to go through the Linux* kernel.
57This is done by creating one or more kernel net devices for each of the DPDK ports.
58The application allows the use of standard Linux tools (ethtool, ifconfig, tcpdump) with the DPDK ports and
59also the exchange of packets between the DPDK application and the Linux* kernel.
60
61Overview
62--------
63
64The Kernel NIC Interface sample application uses two threads in user space for each physical NIC port being used,
65and allocates one or more KNI device for each physical NIC port with kernel module's support.
66For a physical NIC port, one thread reads from the port and writes to KNI devices,
67and another thread reads from KNI devices and writes the data unmodified to the physical NIC port.
68It is recommended to configure one KNI device for each physical NIC port.
69If configured with more than one KNI devices for a physical NIC port,
70it is just for performance testing, or it can work together with VMDq support in future.
71
72The packet flow through the Kernel NIC Interface application is as shown in the following figure.
73
74.. _figure_2:
75
76**Figure 2. Kernel NIC Application Packet Flow**
77
78.. image3_png has been renamed to kernel_nic.png
79
80|kernel_nic|
81
82Compiling the Application
83-------------------------
84
85Compile the application as follows:
86
87#.  Go to the example directory:
88
89    .. code-block:: console
90
91        export RTE_SDK=/path/to/rte_sdk cd
92        ${RTE_SDK}/examples/kni
93
94#.  Set the target (a default target is used if not specified)
95
96    .. note::
97
98        This application is intended as a linuxapp only.
99
100    .. code-block:: console
101
102        export RTE_TARGET=x86_64-native-linuxapp-gcc
103
104#.  Build the application:
105
106    .. code-block:: console
107
108        make
109
110Loading the Kernel Module
111-------------------------
112
113Loading the KNI kernel module without any parameter is the typical way a DPDK application
114gets packets into and out of the kernel net stack.
115This way, only one kernel thread is created for all KNI devices for packet receiving in kernel side:
116
117.. code-block:: console
118
119    #insmod rte_kni.ko
120
121Pinning the kernel thread to a specific core can be done using a taskset command such as following:
122
123.. code-block:: console
124
125    #taskset -p 100000 `pgrep --fl kni_thread | awk '{print $1}'`
126
127This command line tries to pin the specific kni_thread on the 20th lcore (lcore numbering starts at 0),
128which means it needs to check if that lcore is available on the board.
129This command must be sent after the application has been launched, as insmod does not start the kni thread.
130
131For optimum performance,
132the lcore in the mask must be selected to be on the same socket as the lcores used in the KNI application.
133
134To provide flexibility of performance, the kernel module of the KNI,
135located in the kmod sub-directory of the DPDK target directory,
136can be loaded with parameter of kthread_mode as follows:
137
138*   #insmod rte_kni.ko kthread_mode=single
139
140    This mode will create only one kernel thread for all KNI devices for packet receiving in kernel side.
141    By default, it is in this single kernel thread mode.
142    It can set core affinity for this kernel thread by using Linux command taskset.
143
144*   #insmod rte_kni.ko kthread_mode =multiple
145
146    This mode will create a kernel thread for each KNI device for packet receiving in kernel side.
147    The core affinity of each kernel thread is set when creating the KNI device.
148    The lcore ID for each kernel thread is provided in the command line of launching the application.
149    Multiple kernel thread mode can provide scalable higher performance.
150
151To measure the throughput in a loopback mode, the kernel module of the KNI,
152located in the kmod sub-directory of the DPDK target directory,
153can be loaded with parameters as follows:
154
155*   #insmod rte_kni.ko lo_mode=lo_mode_fifo
156
157    This loopback mode will involve ring enqueue/dequeue operations in kernel space.
158
159*   #insmod rte_kni.ko lo_mode=lo_mode_fifo_skb
160
161    This loopback mode will involve ring enqueue/dequeue operations and sk buffer copies in kernel space.
162
163Running the Application
164-----------------------
165
166The application requires a number of command line options:
167
168.. code-block:: console
169
170    kni [EAL options] -- -P -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,port,lcore_rx,lcore_tx[,lcore_kthread,...]]"
171
172Where:
173
174*   -P: Set all ports to promiscuous mode so that packets are accepted regardless of the packet's Ethernet MAC destination address.
175    Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.
176
177*   -p PORTMASK: Hexadecimal bitmask of ports to configure.
178
179*   --config="(port,lcore_rx, lcore_tx[,lcore_kthread, ...]) [, port,lcore_rx, lcore_tx[,lcore_kthread, ...]]":
180    Determines which lcores of RX, TX, kernel thread are mapped to which ports.
181
182Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.
183
184The -c coremask parameter of the EAL options should include the lcores indicated by the lcore_rx and lcore_tx,
185but does not need to include lcores indicated by lcore_kthread as they are used to pin the kernel thread on.
186The -p PORTMASK parameter should include the ports indicated by the port in --config, neither more nor less.
187
188The lcore_kthread in --config can be configured none, one or more lcore IDs.
189In multiple kernel thread mode, if configured none, a KNI device will be allocated for each port,
190while no specific lcore affinity will be set for its kernel thread.
191If configured one or more lcore IDs, one or more KNI devices will be allocated for each port,
192while specific lcore affinity will be set for its kernel thread.
193In single kernel thread mode, if configured none, a KNI device will be allocated for each port.
194If configured one or more lcore IDs,
195one or more KNI devices will be allocated for each port while
196no lcore affinity will be set as there is only one kernel thread for all KNI devices.
197
198For example, to run the application with two ports served by six lcores, one lcore of RX, one lcore of TX,
199and one lcore of kernel thread for each port:
200
201.. code-block:: console
202
203    ./build/kni -c 0xf0 -n 4 -- -P -p 0x3 -config="(0,4,6,8),(1,5,7,9)"
204
205KNI Operations
206--------------
207
208Once the KNI application is started, one can use different Linux* commands to manage the net interfaces.
209If more than one KNI devices configured for a physical port,
210only the first KNI device will be paired to the physical device.
211Operations on other KNI devices will not affect the physical port handled in user space application.
212
213Assigning an IP address:
214
215.. code-block:: console
216
217    #ifconfig vEth0_0 192.168.0.1
218
219Displaying the NIC registers:
220
221.. code-block:: console
222
223    #ethtool -d vEth0_0
224
225Dumping the network traffic:
226
227.. code-block:: console
228
229    #tcpdump -i vEth0_0
230
231When the DPDK userspace application is closed, all the KNI devices are deleted from Linux*.
232
233Explanation
234-----------
235
236The following sections provide some explanation of code.
237
238Initialization
239~~~~~~~~~~~~~~
240
241Setup of mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding sample application
242(see Chapter 9 "L2 Forwarding Sample Application (in Real and Virtualized Environments" for details).
243In addition, one or more kernel NIC interfaces are allocated for each
244of the configured ports according to the command line parameters.
245
246The code for creating the kernel NIC interface for a specific port is as follows:
247
248.. code-block:: c
249
250    kni = rte_kni_create(port, MAX_PACKET_SZ, pktmbuf_pool, &kni_ops);
251    if (kni == NULL)
252        rte_exit(EXIT_FAILURE, "Fail to create kni dev "
253           "for port: %d\n", port);
254
255The code for allocating the kernel NIC interfaces for a specific port is as follows:
256
257.. code-block:: c
258
259    static int
260    kni_alloc(uint8_t port_id)
261    {
262        uint8_t i;
263        struct rte_kni *kni;
264        struct rte_kni_conf conf;
265        struct kni_port_params **params = kni_port_params_array;
266
267        if (port_id >= RTE_MAX_ETHPORTS || !params[port_id])
268            return -1;
269
270        params[port_id]->nb_kni = params[port_id]->nb_lcore_k ? params[port_id]->nb_lcore_k : 1;
271
272        for (i = 0; i < params[port_id]->nb_kni; i++) {
273
274            /* Clear conf at first */
275
276            memset(&conf, 0, sizeof(conf));
277            if (params[port_id]->nb_lcore_k) {
278                rte_snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u_%u", port_id, i);
279                conf.core_id = params[port_id]->lcore_k[i];
280                conf.force_bind = 1;
281            } else
282                rte_snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u", port_id);
283                conf.group_id = (uint16_t)port_id;
284                conf.mbuf_size = MAX_PACKET_SZ;
285
286                /*
287                 *   The first KNI device associated to a port
288                 *   is the master, for multiple kernel thread
289                 *   environment.
290                 */
291
292                if (i == 0) {
293                    struct rte_kni_ops ops;
294                    struct rte_eth_dev_info dev_info;
295
296                    memset(&dev_info, 0, sizeof(dev_info)); rte_eth_dev_info_get(port_id, &dev_info);
297
298                    conf.addr = dev_info.pci_dev->addr;
299                    conf.id = dev_info.pci_dev->id;
300
301                    memset(&ops, 0, sizeof(ops));
302
303                    ops.port_id = port_id;
304                    ops.change_mtu = kni_change_mtu;
305                    ops.config_network_if = kni_config_network_interface;
306
307                    kni = rte_kni_alloc(pktmbuf_pool, &conf, &ops);
308                } else
309                    kni = rte_kni_alloc(pktmbuf_pool, &conf, NULL);
310
311                if (!kni)
312                    rte_exit(EXIT_FAILURE, "Fail to create kni for "
313                            "port: %d\n", port_id);
314
315                params[port_id]->kni[i] = kni;
316            }
317        return 0;
318   }
319
320The other step in the initialization process that is unique to this sample application
321is the association of each port with lcores for RX, TX and kernel threads.
322
323*   One lcore to read from the port and write to the associated one or more KNI devices
324
325*   Another lcore to read from one or more KNI devices and write to the port
326
327*   Other lcores for pinning the kernel threads on one by one
328
329This is done by using the`kni_port_params_array[]` array, which is indexed by the port ID.
330The code is as follows:
331
332.. code-block:: console
333
334    static int
335    parse_config(const char *arg)
336    {
337        const char *p, *p0 = arg;
338        char s[256], *end;
339        unsigned size;
340        enum fieldnames {
341            FLD_PORT = 0,
342            FLD_LCORE_RX,
343            FLD_LCORE_TX,
344            _NUM_FLD = KNI_MAX_KTHREAD + 3,
345        };
346        int i, j, nb_token;
347        char *str_fld[_NUM_FLD];
348        unsigned long int_fld[_NUM_FLD];
349        uint8_t port_id, nb_kni_port_params = 0;
350
351        memset(&kni_port_params_array, 0, sizeof(kni_port_params_array));
352
353        while (((p = strchr(p0, '(')) != NULL) && nb_kni_port_params < RTE_MAX_ETHPORTS) {
354            p++;
355            if ((p0 = strchr(p, ')')) == NULL)
356                goto fail;
357
358            size = p0 - p;
359
360            if (size >= sizeof(s)) {
361                printf("Invalid config parameters\n");
362                goto fail;
363            }
364
365            rte_snprintf(s, sizeof(s), "%.*s", size, p);
366            nb_token = rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',');
367
368            if (nb_token <= FLD_LCORE_TX) {
369                printf("Invalid config parameters\n");
370                goto fail;
371            }
372
373            for (i = 0; i < nb_token; i++) {
374                errno = 0;
375                int_fld[i] = strtoul(str_fld[i], &end, 0);
376                if (errno != 0 || end == str_fld[i]) {
377                    printf("Invalid config parameters\n");
378                    goto fail;
379                }
380            }
381
382            i = 0;
383            port_id = (uint8_t)int_fld[i++];
384
385            if (port_id >= RTE_MAX_ETHPORTS) {
386                printf("Port ID %u could not exceed the maximum %u\n", port_id, RTE_MAX_ETHPORTS);
387                goto fail;
388            }
389
390            if (kni_port_params_array[port_id]) {
391                printf("Port %u has been configured\n", port_id);
392                goto fail;
393            }
394
395            kni_port_params_array[port_id] = (struct kni_port_params*)rte_zmalloc("KNI_port_params", sizeof(struct kni_port_params), RTE_CACHE_LINE_SIZE);
396            kni_port_params_array[port_id]->port_id = port_id;
397            kni_port_params_array[port_id]->lcore_rx = (uint8_t)int_fld[i++];
398            kni_port_params_array[port_id]->lcore_tx = (uint8_t)int_fld[i++];
399
400            if (kni_port_params_array[port_id]->lcore_rx >= RTE_MAX_LCORE || kni_port_params_array[port_id]->lcore_tx >= RTE_MAX_LCORE) {
401                printf("lcore_rx %u or lcore_tx %u ID could not "
402                        "exceed the maximum %u\n",
403                        kni_port_params_array[port_id]->lcore_rx, kni_port_params_array[port_id]->lcore_tx, RTE_MAX_LCORE);
404                goto fail;
405           }
406
407        for (j = 0; i < nb_token && j < KNI_MAX_KTHREAD; i++, j++)
408            kni_port_params_array[port_id]->lcore_k[j] = (uint8_t)int_fld[i];
409            kni_port_params_array[port_id]->nb_lcore_k = j;
410        }
411
412        print_config();
413
414        return 0;
415
416    fail:
417
418        for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
419            if (kni_port_params_array[i]) {
420                rte_free(kni_port_params_array[i]);
421                kni_port_params_array[i] = NULL;
422            }
423        }
424
425        return -1;
426
427    }
428
429Packet Forwarding
430~~~~~~~~~~~~~~~~~
431
432After the initialization steps are completed, the main_loop() function is run on each lcore.
433This function first checks the lcore_id against the user provided lcore_rx and lcore_tx
434to see if this lcore is reading from or writing to kernel NIC interfaces.
435
436For the case that reads from a NIC port and writes to the kernel NIC interfaces,
437the packet reception is the same as in L2 Forwarding sample application
438(see Section 9.4.6 "Receive, Process  and Transmit Packets").
439The packet transmission is done by sending mbufs into the kernel NIC interfaces by rte_kni_tx_burst().
440The KNI library automatically frees the mbufs after the kernel successfully copied the mbufs.
441
442.. code-block:: c
443
444    /**
445     *   Interface to burst rx and enqueue mbufs into rx_q
446     */
447
448    static void
449    kni_ingress(struct kni_port_params *p)
450    {
451        uint8_t i, nb_kni, port_id;
452        unsigned nb_rx, num;
453        struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
454
455        if (p == NULL)
456            return;
457
458        nb_kni = p->nb_kni;
459        port_id = p->port_id;
460
461        for (i = 0; i < nb_kni; i++) {
462            /* Burst rx from eth */
463            nb_rx = rte_eth_rx_burst(port_id, 0, pkts_burst, PKT_BURST_SZ);
464            if (unlikely(nb_rx > PKT_BURST_SZ)) {
465                RTE_LOG(ERR, APP, "Error receiving from eth\n");
466                return;
467            }
468
469            /* Burst tx to kni */
470            num = rte_kni_tx_burst(p->kni[i], pkts_burst, nb_rx);
471            kni_stats[port_id].rx_packets += num;
472            rte_kni_handle_request(p->kni[i]);
473
474            if (unlikely(num < nb_rx)) {
475                /* Free mbufs not tx to kni interface */
476                kni_burst_free_mbufs(&pkts_burst[num], nb_rx - num);
477                kni_stats[port_id].rx_dropped += nb_rx - num;
478            }
479        }
480    }
481
482For the other case that reads from kernel NIC interfaces and writes to a physical NIC port, packets are retrieved by reading
483mbufs from kernel NIC interfaces by `rte_kni_rx_burst()`.
484The packet transmission is the same as in the L2 Forwarding sample application
485(see Section 9.4.6 "Receive, Process and Transmit Packet's").
486
487.. code-block:: c
488
489    /**
490     *   Interface to dequeue mbufs from tx_q and burst tx
491     */
492
493    static void
494
495    kni_egress(struct kni_port_params *p)
496    {
497        uint8_t i, nb_kni, port_id;
498        unsigned nb_tx, num;
499        struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
500
501        if (p == NULL)
502            return;
503
504        nb_kni = p->nb_kni;
505        port_id = p->port_id;
506
507        for (i = 0; i < nb_kni; i++) {
508            /* Burst rx from kni */
509            num = rte_kni_rx_burst(p->kni[i], pkts_burst, PKT_BURST_SZ);
510            if (unlikely(num > PKT_BURST_SZ)) {
511                RTE_LOG(ERR, APP, "Error receiving from KNI\n");
512                return;
513            }
514
515            /* Burst tx to eth */
516
517            nb_tx = rte_eth_tx_burst(port_id, 0, pkts_burst, (uint16_t)num);
518
519            kni_stats[port_id].tx_packets += nb_tx;
520
521            if (unlikely(nb_tx < num)) {
522                /* Free mbufs not tx to NIC */
523                kni_burst_free_mbufs(&pkts_burst[nb_tx], num - nb_tx);
524                kni_stats[port_id].tx_dropped += num - nb_tx;
525            }
526        }
527    }
528
529Callbacks for Kernel Requests
530~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
531
532To execute specific PMD operations in user space requested by some Linux* commands,
533callbacks must be implemented and filled in the struct rte_kni_ops structure.
534Currently, setting a new MTU and configuring the network interface (up/ down) are supported.
535
536.. code-block:: c
537
538    static struct rte_kni_ops kni_ops = {
539        .change_mtu = kni_change_mtu,
540        .config_network_if = kni_config_network_interface,
541    };
542
543    /* Callback for request of changing MTU */
544
545    static int
546    kni_change_mtu(uint8_t port_id, unsigned new_mtu)
547    {
548        int ret;
549        struct rte_eth_conf conf;
550
551        if (port_id >= rte_eth_dev_count()) {
552            RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);
553            return -EINVAL;
554        }
555
556        RTE_LOG(INFO, APP, "Change MTU of port %d to %u\n", port_id, new_mtu);
557
558        /* Stop specific port */
559
560        rte_eth_dev_stop(port_id);
561
562        memcpy(&conf, &port_conf, sizeof(conf));
563
564        /* Set new MTU */
565
566        if (new_mtu > ETHER_MAX_LEN)
567            conf.rxmode.jumbo_frame = 1;
568        else
569            conf.rxmode.jumbo_frame = 0;
570
571        /* mtu + length of header + length of FCS = max pkt length */
572
573        conf.rxmode.max_rx_pkt_len = new_mtu + KNI_ENET_HEADER_SIZE + KNI_ENET_FCS_SIZE;
574
575        ret = rte_eth_dev_configure(port_id, 1, 1, &conf);
576        if (ret < 0) {
577            RTE_LOG(ERR, APP, "Fail to reconfigure port %d\n", port_id);
578            return ret;
579        }
580
581        /* Restart specific port */
582
583        ret = rte_eth_dev_start(port_id);
584        if (ret < 0) {
585             RTE_LOG(ERR, APP, "Fail to restart port %d\n", port_id);
586            return ret;
587        }
588
589        return 0;
590    }
591
592    /* Callback for request of configuring network interface up/down */
593
594    static int
595    kni_config_network_interface(uint8_t port_id, uint8_t if_up)
596    {
597        int ret = 0;
598
599        if (port_id >= rte_eth_dev_count() || port_id >= RTE_MAX_ETHPORTS) {
600            RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);
601            return -EINVAL;
602        }
603
604        RTE_LOG(INFO, APP, "Configure network interface of %d %s\n",
605
606        port_id, if_up ? "up" : "down");
607
608        if (if_up != 0) {
609            /* Configure network interface up */
610            rte_eth_dev_stop(port_id);
611            ret = rte_eth_dev_start(port_id);
612        } else /* Configure network interface down */
613            rte_eth_dev_stop(port_id);
614
615        if (ret < 0)
616            RTE_LOG(ERR, APP, "Failed to start port %d\n", port_id);
617        return ret;
618    }
619
620.. |kernel_nic| image:: img/kernel_nic.png
621