1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 Martin Matuska <[email protected]>. All rights reserved.
26 * Copyright (c) 2013 Steven Hartland. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2017 Joyent, Inc.
29 * Copyright 2017 RackTop Systems.
30 */
31
32 /*
33 * The objective of this program is to provide a DMU/ZAP/SPA stress test
34 * that runs entirely in userland, is easy to use, and easy to extend.
35 *
36 * The overall design of the ztest program is as follows:
37 *
38 * (1) For each major functional area (e.g. adding vdevs to a pool,
39 * creating and destroying datasets, reading and writing objects, etc)
40 * we have a simple routine to test that functionality. These
41 * individual routines do not have to do anything "stressful".
42 *
43 * (2) We turn these simple functionality tests into a stress test by
44 * running them all in parallel, with as many threads as desired,
45 * and spread across as many datasets, objects, and vdevs as desired.
46 *
47 * (3) While all this is happening, we inject faults into the pool to
48 * verify that self-healing data really works.
49 *
50 * (4) Every time we open a dataset, we change its checksum and compression
51 * functions. Thus even individual objects vary from block to block
52 * in which checksum they use and whether they're compressed.
53 *
54 * (5) To verify that we never lose on-disk consistency after a crash,
55 * we run the entire test in a child of the main process.
56 * At random times, the child self-immolates with a SIGKILL.
57 * This is the software equivalent of pulling the power cord.
58 * The parent then runs the test again, using the existing
59 * storage pool, as many times as desired. If backwards compatibility
60 * testing is enabled ztest will sometimes run the "older" version
61 * of ztest after a SIGKILL.
62 *
63 * (6) To verify that we don't have future leaks or temporal incursions,
64 * many of the functional tests record the transaction group number
65 * as part of their data. When reading old data, they verify that
66 * the transaction group number is less than the current, open txg.
67 * If you add a new test, please do this if applicable.
68 *
69 * When run with no arguments, ztest runs for about five minutes and
70 * produces no output if successful. To get a little bit of information,
71 * specify -V. To get more information, specify -VV, and so on.
72 *
73 * To turn this into an overnight stress test, use -T to specify run time.
74 *
75 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
76 * to increase the pool capacity, fanout, and overall stress level.
77 *
78 * Use the -k option to set the desired frequency of kills.
79 *
80 * When ztest invokes itself it passes all relevant information through a
81 * temporary file which is mmap-ed in the child process. This allows shared
82 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
83 * stored at offset 0 of this file and contains information on the size and
84 * number of shared structures in the file. The information stored in this file
85 * must remain backwards compatible with older versions of ztest so that
86 * ztest can invoke them during backwards compatibility testing (-B).
87 */
88
89 #include <sys/zfs_context.h>
90 #include <sys/spa.h>
91 #include <sys/dmu.h>
92 #include <sys/txg.h>
93 #include <sys/dbuf.h>
94 #include <sys/zap.h>
95 #include <sys/dmu_objset.h>
96 #include <sys/poll.h>
97 #include <sys/stat.h>
98 #include <sys/time.h>
99 #include <sys/wait.h>
100 #include <sys/mman.h>
101 #include <sys/resource.h>
102 #include <sys/zio.h>
103 #include <sys/zil.h>
104 #include <sys/zil_impl.h>
105 #include <sys/vdev_impl.h>
106 #include <sys/vdev_file.h>
107 #include <sys/vdev_initialize.h>
108 #include <sys/spa_impl.h>
109 #include <sys/metaslab_impl.h>
110 #include <sys/dsl_prop.h>
111 #include <sys/dsl_dataset.h>
112 #include <sys/dsl_destroy.h>
113 #include <sys/dsl_scan.h>
114 #include <sys/zio_checksum.h>
115 #include <sys/refcount.h>
116 #include <sys/zfeature.h>
117 #include <sys/dsl_userhold.h>
118 #include <sys/abd.h>
119 #include <stdio.h>
120 #include <stdio_ext.h>
121 #include <stdlib.h>
122 #include <unistd.h>
123 #include <signal.h>
124 #include <umem.h>
125 #include <dlfcn.h>
126 #include <ctype.h>
127 #include <math.h>
128 #include <errno.h>
129 #include <sys/fs/zfs.h>
130 #include <libnvpair.h>
131 #include <libcmdutils.h>
132
133 static int ztest_fd_data = -1;
134 static int ztest_fd_rand = -1;
135
136 typedef struct ztest_shared_hdr {
137 uint64_t zh_hdr_size;
138 uint64_t zh_opts_size;
139 uint64_t zh_size;
140 uint64_t zh_stats_size;
141 uint64_t zh_stats_count;
142 uint64_t zh_ds_size;
143 uint64_t zh_ds_count;
144 } ztest_shared_hdr_t;
145
146 static ztest_shared_hdr_t *ztest_shared_hdr;
147
148 typedef struct ztest_shared_opts {
149 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
150 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
151 char zo_alt_ztest[MAXNAMELEN];
152 char zo_alt_libpath[MAXNAMELEN];
153 uint64_t zo_vdevs;
154 uint64_t zo_vdevtime;
155 size_t zo_vdev_size;
156 int zo_ashift;
157 int zo_mirrors;
158 int zo_raidz;
159 int zo_raidz_parity;
160 int zo_datasets;
161 int zo_threads;
162 uint64_t zo_passtime;
163 uint64_t zo_killrate;
164 int zo_verbose;
165 int zo_init;
166 uint64_t zo_time;
167 uint64_t zo_maxloops;
168 uint64_t zo_metaslab_force_ganging;
169 } ztest_shared_opts_t;
170
171 static const ztest_shared_opts_t ztest_opts_defaults = {
172 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
173 .zo_dir = { '/', 't', 'm', 'p', '\0' },
174 .zo_alt_ztest = { '\0' },
175 .zo_alt_libpath = { '\0' },
176 .zo_vdevs = 5,
177 .zo_ashift = SPA_MINBLOCKSHIFT,
178 .zo_mirrors = 2,
179 .zo_raidz = 4,
180 .zo_raidz_parity = 1,
181 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */
182 .zo_datasets = 7,
183 .zo_threads = 23,
184 .zo_passtime = 60, /* 60 seconds */
185 .zo_killrate = 70, /* 70% kill rate */
186 .zo_verbose = 0,
187 .zo_init = 1,
188 .zo_time = 300, /* 5 minutes */
189 .zo_maxloops = 50, /* max loops during spa_freeze() */
190 .zo_metaslab_force_ganging = 32 << 10
191 };
192
193 extern uint64_t metaslab_force_ganging;
194 extern uint64_t metaslab_df_alloc_threshold;
195 extern uint64_t zfs_deadman_synctime_ms;
196 extern int metaslab_preload_limit;
197 extern boolean_t zfs_compressed_arc_enabled;
198 extern boolean_t zfs_abd_scatter_enabled;
199 extern boolean_t zfs_force_some_double_word_sm_entries;
200
201 static ztest_shared_opts_t *ztest_shared_opts;
202 static ztest_shared_opts_t ztest_opts;
203
204 typedef struct ztest_shared_ds {
205 uint64_t zd_seq;
206 } ztest_shared_ds_t;
207
208 static ztest_shared_ds_t *ztest_shared_ds;
209 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
210
211 #define BT_MAGIC 0x123456789abcdefULL
212 #define MAXFAULTS() \
213 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
214
215 enum ztest_io_type {
216 ZTEST_IO_WRITE_TAG,
217 ZTEST_IO_WRITE_PATTERN,
218 ZTEST_IO_WRITE_ZEROES,
219 ZTEST_IO_TRUNCATE,
220 ZTEST_IO_SETATTR,
221 ZTEST_IO_REWRITE,
222 ZTEST_IO_TYPES
223 };
224
225 typedef struct ztest_block_tag {
226 uint64_t bt_magic;
227 uint64_t bt_objset;
228 uint64_t bt_object;
229 uint64_t bt_dnodesize;
230 uint64_t bt_offset;
231 uint64_t bt_gen;
232 uint64_t bt_txg;
233 uint64_t bt_crtxg;
234 } ztest_block_tag_t;
235
236 typedef struct bufwad {
237 uint64_t bw_index;
238 uint64_t bw_txg;
239 uint64_t bw_data;
240 } bufwad_t;
241
242 /*
243 * XXX -- fix zfs range locks to be generic so we can use them here.
244 */
245 typedef enum {
246 RL_READER,
247 RL_WRITER,
248 RL_APPEND
249 } rl_type_t;
250
251 typedef struct rll {
252 void *rll_writer;
253 int rll_readers;
254 kmutex_t rll_lock;
255 kcondvar_t rll_cv;
256 } rll_t;
257
258 typedef struct rl {
259 uint64_t rl_object;
260 uint64_t rl_offset;
261 uint64_t rl_size;
262 rll_t *rl_lock;
263 } rl_t;
264
265 #define ZTEST_RANGE_LOCKS 64
266 #define ZTEST_OBJECT_LOCKS 64
267
268 /*
269 * Object descriptor. Used as a template for object lookup/create/remove.
270 */
271 typedef struct ztest_od {
272 uint64_t od_dir;
273 uint64_t od_object;
274 dmu_object_type_t od_type;
275 dmu_object_type_t od_crtype;
276 uint64_t od_blocksize;
277 uint64_t od_crblocksize;
278 uint64_t od_crdnodesize;
279 uint64_t od_gen;
280 uint64_t od_crgen;
281 char od_name[ZFS_MAX_DATASET_NAME_LEN];
282 } ztest_od_t;
283
284 /*
285 * Per-dataset state.
286 */
287 typedef struct ztest_ds {
288 ztest_shared_ds_t *zd_shared;
289 objset_t *zd_os;
290 krwlock_t zd_zilog_lock;
291 zilog_t *zd_zilog;
292 ztest_od_t *zd_od; /* debugging aid */
293 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
294 kmutex_t zd_dirobj_lock;
295 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
296 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
297 } ztest_ds_t;
298
299 /*
300 * Per-iteration state.
301 */
302 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
303
304 typedef struct ztest_info {
305 ztest_func_t *zi_func; /* test function */
306 uint64_t zi_iters; /* iterations per execution */
307 uint64_t *zi_interval; /* execute every <interval> seconds */
308 } ztest_info_t;
309
310 typedef struct ztest_shared_callstate {
311 uint64_t zc_count; /* per-pass count */
312 uint64_t zc_time; /* per-pass time */
313 uint64_t zc_next; /* next time to call this function */
314 } ztest_shared_callstate_t;
315
316 static ztest_shared_callstate_t *ztest_shared_callstate;
317 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
318
319 /*
320 * Note: these aren't static because we want dladdr() to work.
321 */
322 ztest_func_t ztest_dmu_read_write;
323 ztest_func_t ztest_dmu_write_parallel;
324 ztest_func_t ztest_dmu_object_alloc_free;
325 ztest_func_t ztest_dmu_commit_callbacks;
326 ztest_func_t ztest_zap;
327 ztest_func_t ztest_zap_parallel;
328 ztest_func_t ztest_zil_commit;
329 ztest_func_t ztest_zil_remount;
330 ztest_func_t ztest_dmu_read_write_zcopy;
331 ztest_func_t ztest_dmu_objset_create_destroy;
332 ztest_func_t ztest_dmu_prealloc;
333 ztest_func_t ztest_fzap;
334 ztest_func_t ztest_dmu_snapshot_create_destroy;
335 ztest_func_t ztest_dsl_prop_get_set;
336 ztest_func_t ztest_spa_prop_get_set;
337 ztest_func_t ztest_spa_create_destroy;
338 ztest_func_t ztest_fault_inject;
339 ztest_func_t ztest_ddt_repair;
340 ztest_func_t ztest_dmu_snapshot_hold;
341 ztest_func_t ztest_scrub;
342 ztest_func_t ztest_dsl_dataset_promote_busy;
343 ztest_func_t ztest_vdev_attach_detach;
344 ztest_func_t ztest_vdev_LUN_growth;
345 ztest_func_t ztest_vdev_add_remove;
346 ztest_func_t ztest_vdev_aux_add_remove;
347 ztest_func_t ztest_split_pool;
348 ztest_func_t ztest_reguid;
349 ztest_func_t ztest_spa_upgrade;
350 ztest_func_t ztest_device_removal;
351 ztest_func_t ztest_remap_blocks;
352 ztest_func_t ztest_spa_checkpoint_create_discard;
353 ztest_func_t ztest_initialize;
354 ztest_func_t ztest_verify_dnode_bt;
355
356 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
357 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
358 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
359 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
360 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
361
362 ztest_info_t ztest_info[] = {
363 { ztest_dmu_read_write, 1, &zopt_always },
364 { ztest_dmu_write_parallel, 10, &zopt_always },
365 { ztest_dmu_object_alloc_free, 1, &zopt_always },
366 { ztest_dmu_commit_callbacks, 1, &zopt_always },
367 { ztest_zap, 30, &zopt_always },
368 { ztest_zap_parallel, 100, &zopt_always },
369 { ztest_split_pool, 1, &zopt_always },
370 { ztest_zil_commit, 1, &zopt_incessant },
371 { ztest_zil_remount, 1, &zopt_sometimes },
372 { ztest_dmu_read_write_zcopy, 1, &zopt_often },
373 { ztest_dmu_objset_create_destroy, 1, &zopt_often },
374 { ztest_dsl_prop_get_set, 1, &zopt_often },
375 { ztest_spa_prop_get_set, 1, &zopt_sometimes },
376 #if 0
377 { ztest_dmu_prealloc, 1, &zopt_sometimes },
378 #endif
379 { ztest_fzap, 1, &zopt_sometimes },
380 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
381 { ztest_spa_create_destroy, 1, &zopt_sometimes },
382 { ztest_fault_inject, 1, &zopt_incessant },
383 { ztest_ddt_repair, 1, &zopt_sometimes },
384 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes },
385 { ztest_reguid, 1, &zopt_rarely },
386 { ztest_scrub, 1, &zopt_often },
387 { ztest_spa_upgrade, 1, &zopt_rarely },
388 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely },
389 { ztest_vdev_attach_detach, 1, &zopt_incessant },
390 { ztest_vdev_LUN_growth, 1, &zopt_rarely },
391 { ztest_vdev_add_remove, 1,
392 &ztest_opts.zo_vdevtime },
393 { ztest_vdev_aux_add_remove, 1,
394 &ztest_opts.zo_vdevtime },
395 { ztest_device_removal, 1, &zopt_sometimes },
396 { ztest_remap_blocks, 1, &zopt_sometimes },
397 { ztest_spa_checkpoint_create_discard, 1, &zopt_rarely },
398 { ztest_initialize, 1, &zopt_sometimes },
399 { ztest_verify_dnode_bt, 1, &zopt_sometimes }
400 };
401
402 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
403
404 /*
405 * The following struct is used to hold a list of uncalled commit callbacks.
406 * The callbacks are ordered by txg number.
407 */
408 typedef struct ztest_cb_list {
409 kmutex_t zcl_callbacks_lock;
410 list_t zcl_callbacks;
411 } ztest_cb_list_t;
412
413 /*
414 * Stuff we need to share writably between parent and child.
415 */
416 typedef struct ztest_shared {
417 boolean_t zs_do_init;
418 hrtime_t zs_proc_start;
419 hrtime_t zs_proc_stop;
420 hrtime_t zs_thread_start;
421 hrtime_t zs_thread_stop;
422 hrtime_t zs_thread_kill;
423 uint64_t zs_enospc_count;
424 uint64_t zs_vdev_next_leaf;
425 uint64_t zs_vdev_aux;
426 uint64_t zs_alloc;
427 uint64_t zs_space;
428 uint64_t zs_splits;
429 uint64_t zs_mirrors;
430 uint64_t zs_metaslab_sz;
431 uint64_t zs_metaslab_df_alloc_threshold;
432 uint64_t zs_guid;
433 } ztest_shared_t;
434
435 #define ID_PARALLEL -1ULL
436
437 static char ztest_dev_template[] = "%s/%s.%llua";
438 static char ztest_aux_template[] = "%s/%s.%s.%llu";
439 ztest_shared_t *ztest_shared;
440
441 static spa_t *ztest_spa = NULL;
442 static ztest_ds_t *ztest_ds;
443
444 static kmutex_t ztest_vdev_lock;
445 static boolean_t ztest_device_removal_active = B_FALSE;
446 static kmutex_t ztest_checkpoint_lock;
447
448 /*
449 * The ztest_name_lock protects the pool and dataset namespace used by
450 * the individual tests. To modify the namespace, consumers must grab
451 * this lock as writer. Grabbing the lock as reader will ensure that the
452 * namespace does not change while the lock is held.
453 */
454 static krwlock_t ztest_name_lock;
455
456 static boolean_t ztest_dump_core = B_TRUE;
457 static boolean_t ztest_exiting;
458
459 /* Global commit callback list */
460 static ztest_cb_list_t zcl;
461
462 enum ztest_object {
463 ZTEST_META_DNODE = 0,
464 ZTEST_DIROBJ,
465 ZTEST_OBJECTS
466 };
467
468 static void usage(boolean_t) __NORETURN;
469
470 /*
471 * These libumem hooks provide a reasonable set of defaults for the allocator's
472 * debugging facilities.
473 */
474 const char *
_umem_debug_init()475 _umem_debug_init()
476 {
477 return ("default,verbose"); /* $UMEM_DEBUG setting */
478 }
479
480 const char *
_umem_logging_init(void)481 _umem_logging_init(void)
482 {
483 return ("fail,contents"); /* $UMEM_LOGGING setting */
484 }
485
486 #define FATAL_MSG_SZ 1024
487
488 char *fatal_msg;
489
490 static void
fatal(int do_perror,char * message,...)491 fatal(int do_perror, char *message, ...)
492 {
493 va_list args;
494 int save_errno = errno;
495 char buf[FATAL_MSG_SZ];
496
497 (void) fflush(stdout);
498
499 va_start(args, message);
500 (void) sprintf(buf, "ztest: ");
501 /* LINTED */
502 (void) vsprintf(buf + strlen(buf), message, args);
503 va_end(args);
504 if (do_perror) {
505 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
506 ": %s", strerror(save_errno));
507 }
508 (void) fprintf(stderr, "%s\n", buf);
509 fatal_msg = buf; /* to ease debugging */
510 if (ztest_dump_core)
511 abort();
512 exit(3);
513 }
514
515 static int
str2shift(const char * buf)516 str2shift(const char *buf)
517 {
518 const char *ends = "BKMGTPEZ";
519 int i;
520
521 if (buf[0] == '\0')
522 return (0);
523 for (i = 0; i < strlen(ends); i++) {
524 if (toupper(buf[0]) == ends[i])
525 break;
526 }
527 if (i == strlen(ends)) {
528 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
529 buf);
530 usage(B_FALSE);
531 }
532 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
533 return (10*i);
534 }
535 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
536 usage(B_FALSE);
537 /* NOTREACHED */
538 }
539
540 static uint64_t
nicenumtoull(const char * buf)541 nicenumtoull(const char *buf)
542 {
543 char *end;
544 uint64_t val;
545
546 val = strtoull(buf, &end, 0);
547 if (end == buf) {
548 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
549 usage(B_FALSE);
550 } else if (end[0] == '.') {
551 double fval = strtod(buf, &end);
552 fval *= pow(2, str2shift(end));
553 if (fval > UINT64_MAX) {
554 (void) fprintf(stderr, "ztest: value too large: %s\n",
555 buf);
556 usage(B_FALSE);
557 }
558 val = (uint64_t)fval;
559 } else {
560 int shift = str2shift(end);
561 if (shift >= 64 || (val << shift) >> shift != val) {
562 (void) fprintf(stderr, "ztest: value too large: %s\n",
563 buf);
564 usage(B_FALSE);
565 }
566 val <<= shift;
567 }
568 return (val);
569 }
570
571 static void
usage(boolean_t requested)572 usage(boolean_t requested)
573 {
574 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
575
576 char nice_vdev_size[NN_NUMBUF_SZ];
577 char nice_force_ganging[NN_NUMBUF_SZ];
578 FILE *fp = requested ? stdout : stderr;
579
580 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
581 nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging,
582 sizeof (nice_force_ganging));
583
584 (void) fprintf(fp, "Usage: %s\n"
585 "\t[-v vdevs (default: %llu)]\n"
586 "\t[-s size_of_each_vdev (default: %s)]\n"
587 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
588 "\t[-m mirror_copies (default: %d)]\n"
589 "\t[-r raidz_disks (default: %d)]\n"
590 "\t[-R raidz_parity (default: %d)]\n"
591 "\t[-d datasets (default: %d)]\n"
592 "\t[-t threads (default: %d)]\n"
593 "\t[-g gang_block_threshold (default: %s)]\n"
594 "\t[-i init_count (default: %d)] initialize pool i times\n"
595 "\t[-k kill_percentage (default: %llu%%)]\n"
596 "\t[-p pool_name (default: %s)]\n"
597 "\t[-f dir (default: %s)] file directory for vdev files\n"
598 "\t[-V] verbose (use multiple times for ever more blather)\n"
599 "\t[-E] use existing pool instead of creating new one\n"
600 "\t[-T time (default: %llu sec)] total run time\n"
601 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
602 "\t[-P passtime (default: %llu sec)] time per pass\n"
603 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
604 "\t[-o variable=value] ... set global variable to an unsigned\n"
605 "\t 32-bit integer value\n"
606 "\t[-h] (print help)\n"
607 "",
608 zo->zo_pool,
609 (u_longlong_t)zo->zo_vdevs, /* -v */
610 nice_vdev_size, /* -s */
611 zo->zo_ashift, /* -a */
612 zo->zo_mirrors, /* -m */
613 zo->zo_raidz, /* -r */
614 zo->zo_raidz_parity, /* -R */
615 zo->zo_datasets, /* -d */
616 zo->zo_threads, /* -t */
617 nice_force_ganging, /* -g */
618 zo->zo_init, /* -i */
619 (u_longlong_t)zo->zo_killrate, /* -k */
620 zo->zo_pool, /* -p */
621 zo->zo_dir, /* -f */
622 (u_longlong_t)zo->zo_time, /* -T */
623 (u_longlong_t)zo->zo_maxloops, /* -F */
624 (u_longlong_t)zo->zo_passtime);
625 exit(requested ? 0 : 1);
626 }
627
628 static void
process_options(int argc,char ** argv)629 process_options(int argc, char **argv)
630 {
631 char *path;
632 ztest_shared_opts_t *zo = &ztest_opts;
633
634 int opt;
635 uint64_t value;
636 char altdir[MAXNAMELEN] = { 0 };
637
638 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
639
640 while ((opt = getopt(argc, argv,
641 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) {
642 value = 0;
643 switch (opt) {
644 case 'v':
645 case 's':
646 case 'a':
647 case 'm':
648 case 'r':
649 case 'R':
650 case 'd':
651 case 't':
652 case 'g':
653 case 'i':
654 case 'k':
655 case 'T':
656 case 'P':
657 case 'F':
658 value = nicenumtoull(optarg);
659 }
660 switch (opt) {
661 case 'v':
662 zo->zo_vdevs = value;
663 break;
664 case 's':
665 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
666 break;
667 case 'a':
668 zo->zo_ashift = value;
669 break;
670 case 'm':
671 zo->zo_mirrors = value;
672 break;
673 case 'r':
674 zo->zo_raidz = MAX(1, value);
675 break;
676 case 'R':
677 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
678 break;
679 case 'd':
680 zo->zo_datasets = MAX(1, value);
681 break;
682 case 't':
683 zo->zo_threads = MAX(1, value);
684 break;
685 case 'g':
686 zo->zo_metaslab_force_ganging =
687 MAX(SPA_MINBLOCKSIZE << 1, value);
688 break;
689 case 'i':
690 zo->zo_init = value;
691 break;
692 case 'k':
693 zo->zo_killrate = value;
694 break;
695 case 'p':
696 (void) strlcpy(zo->zo_pool, optarg,
697 sizeof (zo->zo_pool));
698 break;
699 case 'f':
700 path = realpath(optarg, NULL);
701 if (path == NULL) {
702 (void) fprintf(stderr, "error: %s: %s\n",
703 optarg, strerror(errno));
704 usage(B_FALSE);
705 } else {
706 (void) strlcpy(zo->zo_dir, path,
707 sizeof (zo->zo_dir));
708 }
709 break;
710 case 'V':
711 zo->zo_verbose++;
712 break;
713 case 'E':
714 zo->zo_init = 0;
715 break;
716 case 'T':
717 zo->zo_time = value;
718 break;
719 case 'P':
720 zo->zo_passtime = MAX(1, value);
721 break;
722 case 'F':
723 zo->zo_maxloops = MAX(1, value);
724 break;
725 case 'B':
726 (void) strlcpy(altdir, optarg, sizeof (altdir));
727 break;
728 case 'o':
729 if (set_global_var(optarg) != 0)
730 usage(B_FALSE);
731 break;
732 case 'h':
733 usage(B_TRUE);
734 break;
735 case '?':
736 default:
737 usage(B_FALSE);
738 break;
739 }
740 }
741
742 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
743
744 zo->zo_vdevtime =
745 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
746 UINT64_MAX >> 2);
747
748 if (strlen(altdir) > 0) {
749 char *cmd;
750 char *realaltdir;
751 char *bin;
752 char *ztest;
753 char *isa;
754 int isalen;
755
756 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
757 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
758
759 VERIFY(NULL != realpath(getexecname(), cmd));
760 if (0 != access(altdir, F_OK)) {
761 ztest_dump_core = B_FALSE;
762 fatal(B_TRUE, "invalid alternate ztest path: %s",
763 altdir);
764 }
765 VERIFY(NULL != realpath(altdir, realaltdir));
766
767 /*
768 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
769 * We want to extract <isa> to determine if we should use
770 * 32 or 64 bit binaries.
771 */
772 bin = strstr(cmd, "/usr/bin/");
773 ztest = strstr(bin, "/ztest");
774 isa = bin + 9;
775 isalen = ztest - isa;
776 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
777 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
778 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
779 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
780
781 if (0 != access(zo->zo_alt_ztest, X_OK)) {
782 ztest_dump_core = B_FALSE;
783 fatal(B_TRUE, "invalid alternate ztest: %s",
784 zo->zo_alt_ztest);
785 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
786 ztest_dump_core = B_FALSE;
787 fatal(B_TRUE, "invalid alternate lib directory %s",
788 zo->zo_alt_libpath);
789 }
790
791 umem_free(cmd, MAXPATHLEN);
792 umem_free(realaltdir, MAXPATHLEN);
793 }
794 }
795
796 static void
ztest_kill(ztest_shared_t * zs)797 ztest_kill(ztest_shared_t *zs)
798 {
799 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
800 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
801
802 /*
803 * Before we kill off ztest, make sure that the config is updated.
804 * See comment above spa_write_cachefile().
805 */
806 mutex_enter(&spa_namespace_lock);
807 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
808 mutex_exit(&spa_namespace_lock);
809
810 zfs_dbgmsg_print(FTAG);
811 (void) kill(getpid(), SIGKILL);
812 }
813
814 static uint64_t
ztest_random(uint64_t range)815 ztest_random(uint64_t range)
816 {
817 uint64_t r;
818
819 ASSERT3S(ztest_fd_rand, >=, 0);
820
821 if (range == 0)
822 return (0);
823
824 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
825 fatal(1, "short read from /dev/urandom");
826
827 return (r % range);
828 }
829
830 /* ARGSUSED */
831 static void
ztest_record_enospc(const char * s)832 ztest_record_enospc(const char *s)
833 {
834 ztest_shared->zs_enospc_count++;
835 }
836
837 static uint64_t
ztest_get_ashift(void)838 ztest_get_ashift(void)
839 {
840 if (ztest_opts.zo_ashift == 0)
841 return (SPA_MINBLOCKSHIFT + ztest_random(5));
842 return (ztest_opts.zo_ashift);
843 }
844
845 static nvlist_t *
make_vdev_file(char * path,char * aux,char * pool,size_t size,uint64_t ashift)846 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
847 {
848 char pathbuf[MAXPATHLEN];
849 uint64_t vdev;
850 nvlist_t *file;
851
852 if (ashift == 0)
853 ashift = ztest_get_ashift();
854
855 if (path == NULL) {
856 path = pathbuf;
857
858 if (aux != NULL) {
859 vdev = ztest_shared->zs_vdev_aux;
860 (void) snprintf(path, sizeof (pathbuf),
861 ztest_aux_template, ztest_opts.zo_dir,
862 pool == NULL ? ztest_opts.zo_pool : pool,
863 aux, vdev);
864 } else {
865 vdev = ztest_shared->zs_vdev_next_leaf++;
866 (void) snprintf(path, sizeof (pathbuf),
867 ztest_dev_template, ztest_opts.zo_dir,
868 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
869 }
870 }
871
872 if (size != 0) {
873 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
874 if (fd == -1)
875 fatal(1, "can't open %s", path);
876 if (ftruncate(fd, size) != 0)
877 fatal(1, "can't ftruncate %s", path);
878 (void) close(fd);
879 }
880
881 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
882 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
883 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
884 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
885
886 return (file);
887 }
888
889 static nvlist_t *
make_vdev_raidz(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r)890 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
891 uint64_t ashift, int r)
892 {
893 nvlist_t *raidz, **child;
894 int c;
895
896 if (r < 2)
897 return (make_vdev_file(path, aux, pool, size, ashift));
898 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
899
900 for (c = 0; c < r; c++)
901 child[c] = make_vdev_file(path, aux, pool, size, ashift);
902
903 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
904 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
905 VDEV_TYPE_RAIDZ) == 0);
906 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
907 ztest_opts.zo_raidz_parity) == 0);
908 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
909 child, r) == 0);
910
911 for (c = 0; c < r; c++)
912 nvlist_free(child[c]);
913
914 umem_free(child, r * sizeof (nvlist_t *));
915
916 return (raidz);
917 }
918
919 static nvlist_t *
make_vdev_mirror(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r,int m)920 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
921 uint64_t ashift, int r, int m)
922 {
923 nvlist_t *mirror, **child;
924 int c;
925
926 if (m < 1)
927 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
928
929 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
930
931 for (c = 0; c < m; c++)
932 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
933
934 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
935 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
936 VDEV_TYPE_MIRROR) == 0);
937 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
938 child, m) == 0);
939
940 for (c = 0; c < m; c++)
941 nvlist_free(child[c]);
942
943 umem_free(child, m * sizeof (nvlist_t *));
944
945 return (mirror);
946 }
947
948 static nvlist_t *
make_vdev_root(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int log,int r,int m,int t)949 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
950 int log, int r, int m, int t)
951 {
952 nvlist_t *root, **child;
953 int c;
954
955 ASSERT(t > 0);
956
957 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
958
959 for (c = 0; c < t; c++) {
960 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
961 r, m);
962 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
963 log) == 0);
964 }
965
966 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
967 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
968 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
969 child, t) == 0);
970
971 for (c = 0; c < t; c++)
972 nvlist_free(child[c]);
973
974 umem_free(child, t * sizeof (nvlist_t *));
975
976 return (root);
977 }
978
979 /*
980 * Find a random spa version. Returns back a random spa version in the
981 * range [initial_version, SPA_VERSION_FEATURES].
982 */
983 static uint64_t
ztest_random_spa_version(uint64_t initial_version)984 ztest_random_spa_version(uint64_t initial_version)
985 {
986 uint64_t version = initial_version;
987
988 if (version <= SPA_VERSION_BEFORE_FEATURES) {
989 version = version +
990 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
991 }
992
993 if (version > SPA_VERSION_BEFORE_FEATURES)
994 version = SPA_VERSION_FEATURES;
995
996 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
997 return (version);
998 }
999
1000 static int
ztest_random_blocksize(void)1001 ztest_random_blocksize(void)
1002 {
1003 uint64_t block_shift;
1004 /*
1005 * Choose a block size >= the ashift.
1006 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1007 */
1008 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1009 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1010 maxbs = 20;
1011 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1012 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1013 }
1014
1015 static int
ztest_random_dnodesize(void)1016 ztest_random_dnodesize(void)
1017 {
1018 int slots;
1019 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1020
1021 if (max_slots == DNODE_MIN_SLOTS)
1022 return (DNODE_MIN_SIZE);
1023
1024 /*
1025 * Weight the random distribution more heavily toward smaller
1026 * dnode sizes since that is more likely to reflect real-world
1027 * usage.
1028 */
1029 ASSERT3U(max_slots, >, 4);
1030 switch (ztest_random(10)) {
1031 case 0:
1032 slots = 5 + ztest_random(max_slots - 4);
1033 break;
1034 case 1 ... 4:
1035 slots = 2 + ztest_random(3);
1036 break;
1037 default:
1038 slots = 1;
1039 break;
1040 }
1041
1042 return (slots << DNODE_SHIFT);
1043 }
1044
1045 static int
ztest_random_ibshift(void)1046 ztest_random_ibshift(void)
1047 {
1048 return (DN_MIN_INDBLKSHIFT +
1049 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1050 }
1051
1052 static uint64_t
ztest_random_vdev_top(spa_t * spa,boolean_t log_ok)1053 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1054 {
1055 uint64_t top;
1056 vdev_t *rvd = spa->spa_root_vdev;
1057 vdev_t *tvd;
1058
1059 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1060
1061 do {
1062 top = ztest_random(rvd->vdev_children);
1063 tvd = rvd->vdev_child[top];
1064 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1065 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1066
1067 return (top);
1068 }
1069
1070 static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)1071 ztest_random_dsl_prop(zfs_prop_t prop)
1072 {
1073 uint64_t value;
1074
1075 do {
1076 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1077 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1078
1079 return (value);
1080 }
1081
1082 static int
ztest_dsl_prop_set_uint64(char * osname,zfs_prop_t prop,uint64_t value,boolean_t inherit)1083 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1084 boolean_t inherit)
1085 {
1086 const char *propname = zfs_prop_to_name(prop);
1087 const char *valname;
1088 char setpoint[MAXPATHLEN];
1089 uint64_t curval;
1090 int error;
1091
1092 error = dsl_prop_set_int(osname, propname,
1093 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1094
1095 if (error == ENOSPC) {
1096 ztest_record_enospc(FTAG);
1097 return (error);
1098 }
1099 ASSERT0(error);
1100
1101 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1102
1103 if (ztest_opts.zo_verbose >= 6) {
1104 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1105 (void) printf("%s %s = %s at '%s'\n",
1106 osname, propname, valname, setpoint);
1107 }
1108
1109 return (error);
1110 }
1111
1112 static int
ztest_spa_prop_set_uint64(zpool_prop_t prop,uint64_t value)1113 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1114 {
1115 spa_t *spa = ztest_spa;
1116 nvlist_t *props = NULL;
1117 int error;
1118
1119 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1120 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1121
1122 error = spa_prop_set(spa, props);
1123
1124 nvlist_free(props);
1125
1126 if (error == ENOSPC) {
1127 ztest_record_enospc(FTAG);
1128 return (error);
1129 }
1130 ASSERT0(error);
1131
1132 return (error);
1133 }
1134
1135 static void
ztest_rll_init(rll_t * rll)1136 ztest_rll_init(rll_t *rll)
1137 {
1138 rll->rll_writer = NULL;
1139 rll->rll_readers = 0;
1140 mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL);
1141 cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL);
1142 }
1143
1144 static void
ztest_rll_destroy(rll_t * rll)1145 ztest_rll_destroy(rll_t *rll)
1146 {
1147 ASSERT(rll->rll_writer == NULL);
1148 ASSERT(rll->rll_readers == 0);
1149 mutex_destroy(&rll->rll_lock);
1150 cv_destroy(&rll->rll_cv);
1151 }
1152
1153 static void
ztest_rll_lock(rll_t * rll,rl_type_t type)1154 ztest_rll_lock(rll_t *rll, rl_type_t type)
1155 {
1156 mutex_enter(&rll->rll_lock);
1157
1158 if (type == RL_READER) {
1159 while (rll->rll_writer != NULL)
1160 cv_wait(&rll->rll_cv, &rll->rll_lock);
1161 rll->rll_readers++;
1162 } else {
1163 while (rll->rll_writer != NULL || rll->rll_readers)
1164 cv_wait(&rll->rll_cv, &rll->rll_lock);
1165 rll->rll_writer = curthread;
1166 }
1167
1168 mutex_exit(&rll->rll_lock);
1169 }
1170
1171 static void
ztest_rll_unlock(rll_t * rll)1172 ztest_rll_unlock(rll_t *rll)
1173 {
1174 mutex_enter(&rll->rll_lock);
1175
1176 if (rll->rll_writer) {
1177 ASSERT(rll->rll_readers == 0);
1178 rll->rll_writer = NULL;
1179 } else {
1180 ASSERT(rll->rll_readers != 0);
1181 ASSERT(rll->rll_writer == NULL);
1182 rll->rll_readers--;
1183 }
1184
1185 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1186 cv_broadcast(&rll->rll_cv);
1187
1188 mutex_exit(&rll->rll_lock);
1189 }
1190
1191 static void
ztest_object_lock(ztest_ds_t * zd,uint64_t object,rl_type_t type)1192 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1193 {
1194 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1195
1196 ztest_rll_lock(rll, type);
1197 }
1198
1199 static void
ztest_object_unlock(ztest_ds_t * zd,uint64_t object)1200 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1201 {
1202 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1203
1204 ztest_rll_unlock(rll);
1205 }
1206
1207 static rl_t *
ztest_range_lock(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,rl_type_t type)1208 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1209 uint64_t size, rl_type_t type)
1210 {
1211 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1212 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1213 rl_t *rl;
1214
1215 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1216 rl->rl_object = object;
1217 rl->rl_offset = offset;
1218 rl->rl_size = size;
1219 rl->rl_lock = rll;
1220
1221 ztest_rll_lock(rll, type);
1222
1223 return (rl);
1224 }
1225
1226 static void
ztest_range_unlock(rl_t * rl)1227 ztest_range_unlock(rl_t *rl)
1228 {
1229 rll_t *rll = rl->rl_lock;
1230
1231 ztest_rll_unlock(rll);
1232
1233 umem_free(rl, sizeof (*rl));
1234 }
1235
1236 static void
ztest_zd_init(ztest_ds_t * zd,ztest_shared_ds_t * szd,objset_t * os)1237 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1238 {
1239 zd->zd_os = os;
1240 zd->zd_zilog = dmu_objset_zil(os);
1241 zd->zd_shared = szd;
1242 dmu_objset_name(os, zd->zd_name);
1243
1244 if (zd->zd_shared != NULL)
1245 zd->zd_shared->zd_seq = 0;
1246
1247 rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL);
1248 mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL);
1249
1250 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1251 ztest_rll_init(&zd->zd_object_lock[l]);
1252
1253 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1254 ztest_rll_init(&zd->zd_range_lock[l]);
1255 }
1256
1257 static void
ztest_zd_fini(ztest_ds_t * zd)1258 ztest_zd_fini(ztest_ds_t *zd)
1259 {
1260 mutex_destroy(&zd->zd_dirobj_lock);
1261
1262 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1263 ztest_rll_destroy(&zd->zd_object_lock[l]);
1264
1265 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1266 ztest_rll_destroy(&zd->zd_range_lock[l]);
1267 }
1268
1269 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1270
1271 static uint64_t
ztest_tx_assign(dmu_tx_t * tx,uint64_t txg_how,const char * tag)1272 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1273 {
1274 uint64_t txg;
1275 int error;
1276
1277 /*
1278 * Attempt to assign tx to some transaction group.
1279 */
1280 error = dmu_tx_assign(tx, txg_how);
1281 if (error) {
1282 if (error == ERESTART) {
1283 ASSERT(txg_how == TXG_NOWAIT);
1284 dmu_tx_wait(tx);
1285 } else {
1286 ASSERT3U(error, ==, ENOSPC);
1287 ztest_record_enospc(tag);
1288 }
1289 dmu_tx_abort(tx);
1290 return (0);
1291 }
1292 txg = dmu_tx_get_txg(tx);
1293 ASSERT(txg != 0);
1294 return (txg);
1295 }
1296
1297 static void
ztest_pattern_set(void * buf,uint64_t size,uint64_t value)1298 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1299 {
1300 uint64_t *ip = buf;
1301 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1302
1303 while (ip < ip_end)
1304 *ip++ = value;
1305 }
1306
1307 static boolean_t
ztest_pattern_match(void * buf,uint64_t size,uint64_t value)1308 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1309 {
1310 uint64_t *ip = buf;
1311 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1312 uint64_t diff = 0;
1313
1314 while (ip < ip_end)
1315 diff |= (value - *ip++);
1316
1317 return (diff == 0);
1318 }
1319
1320 static void
ztest_bt_generate(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1321 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1322 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1323 uint64_t crtxg)
1324 {
1325 bt->bt_magic = BT_MAGIC;
1326 bt->bt_objset = dmu_objset_id(os);
1327 bt->bt_object = object;
1328 bt->bt_dnodesize = dnodesize;
1329 bt->bt_offset = offset;
1330 bt->bt_gen = gen;
1331 bt->bt_txg = txg;
1332 bt->bt_crtxg = crtxg;
1333 }
1334
1335 static void
ztest_bt_verify(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1336 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1337 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1338 uint64_t crtxg)
1339 {
1340 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1341 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1342 ASSERT3U(bt->bt_object, ==, object);
1343 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1344 ASSERT3U(bt->bt_offset, ==, offset);
1345 ASSERT3U(bt->bt_gen, <=, gen);
1346 ASSERT3U(bt->bt_txg, <=, txg);
1347 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1348 }
1349
1350 static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t * db)1351 ztest_bt_bonus(dmu_buf_t *db)
1352 {
1353 dmu_object_info_t doi;
1354 ztest_block_tag_t *bt;
1355
1356 dmu_object_info_from_db(db, &doi);
1357 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1358 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1359 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1360
1361 return (bt);
1362 }
1363
1364 /*
1365 * Generate a token to fill up unused bonus buffer space. Try to make
1366 * it unique to the object, generation, and offset to verify that data
1367 * is not getting overwritten by data from other dnodes.
1368 */
1369 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1370 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1371
1372 /*
1373 * Fill up the unused bonus buffer region before the block tag with a
1374 * verifiable pattern. Filling the whole bonus area with non-zero data
1375 * helps ensure that all dnode traversal code properly skips the
1376 * interior regions of large dnodes.
1377 */
1378 void
ztest_fill_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1379 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1380 objset_t *os, uint64_t gen)
1381 {
1382 uint64_t *bonusp;
1383
1384 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1385
1386 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1387 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1388 gen, bonusp - (uint64_t *)db->db_data);
1389 *bonusp = token;
1390 }
1391 }
1392
1393 /*
1394 * Verify that the unused area of a bonus buffer is filled with the
1395 * expected tokens.
1396 */
1397 void
ztest_verify_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1398 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1399 objset_t *os, uint64_t gen)
1400 {
1401 uint64_t *bonusp;
1402
1403 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1404 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1405 gen, bonusp - (uint64_t *)db->db_data);
1406 VERIFY3U(*bonusp, ==, token);
1407 }
1408 }
1409
1410 /*
1411 * ZIL logging ops
1412 */
1413
1414 #define lrz_type lr_mode
1415 #define lrz_blocksize lr_uid
1416 #define lrz_ibshift lr_gid
1417 #define lrz_bonustype lr_rdev
1418 #define lrz_dnodesize lr_crtime[1]
1419
1420 static void
ztest_log_create(ztest_ds_t * zd,dmu_tx_t * tx,lr_create_t * lr)1421 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1422 {
1423 char *name = (void *)(lr + 1); /* name follows lr */
1424 size_t namesize = strlen(name) + 1;
1425 itx_t *itx;
1426
1427 if (zil_replaying(zd->zd_zilog, tx))
1428 return;
1429
1430 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1431 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1432 sizeof (*lr) + namesize - sizeof (lr_t));
1433
1434 zil_itx_assign(zd->zd_zilog, itx, tx);
1435 }
1436
1437 static void
ztest_log_remove(ztest_ds_t * zd,dmu_tx_t * tx,lr_remove_t * lr,uint64_t object)1438 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1439 {
1440 char *name = (void *)(lr + 1); /* name follows lr */
1441 size_t namesize = strlen(name) + 1;
1442 itx_t *itx;
1443
1444 if (zil_replaying(zd->zd_zilog, tx))
1445 return;
1446
1447 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1448 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1449 sizeof (*lr) + namesize - sizeof (lr_t));
1450
1451 itx->itx_oid = object;
1452 zil_itx_assign(zd->zd_zilog, itx, tx);
1453 }
1454
1455 static void
ztest_log_write(ztest_ds_t * zd,dmu_tx_t * tx,lr_write_t * lr)1456 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1457 {
1458 itx_t *itx;
1459 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1460
1461 if (zil_replaying(zd->zd_zilog, tx))
1462 return;
1463
1464 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1465 write_state = WR_INDIRECT;
1466
1467 itx = zil_itx_create(TX_WRITE,
1468 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1469
1470 if (write_state == WR_COPIED &&
1471 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1472 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1473 zil_itx_destroy(itx);
1474 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1475 write_state = WR_NEED_COPY;
1476 }
1477 itx->itx_private = zd;
1478 itx->itx_wr_state = write_state;
1479 itx->itx_sync = (ztest_random(8) == 0);
1480
1481 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1482 sizeof (*lr) - sizeof (lr_t));
1483
1484 zil_itx_assign(zd->zd_zilog, itx, tx);
1485 }
1486
1487 static void
ztest_log_truncate(ztest_ds_t * zd,dmu_tx_t * tx,lr_truncate_t * lr)1488 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1489 {
1490 itx_t *itx;
1491
1492 if (zil_replaying(zd->zd_zilog, tx))
1493 return;
1494
1495 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1496 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1497 sizeof (*lr) - sizeof (lr_t));
1498
1499 itx->itx_sync = B_FALSE;
1500 zil_itx_assign(zd->zd_zilog, itx, tx);
1501 }
1502
1503 static void
ztest_log_setattr(ztest_ds_t * zd,dmu_tx_t * tx,lr_setattr_t * lr)1504 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1505 {
1506 itx_t *itx;
1507
1508 if (zil_replaying(zd->zd_zilog, tx))
1509 return;
1510
1511 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1512 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1513 sizeof (*lr) - sizeof (lr_t));
1514
1515 itx->itx_sync = B_FALSE;
1516 zil_itx_assign(zd->zd_zilog, itx, tx);
1517 }
1518
1519 /*
1520 * ZIL replay ops
1521 */
1522 static int
ztest_replay_create(void * arg1,void * arg2,boolean_t byteswap)1523 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1524 {
1525 ztest_ds_t *zd = arg1;
1526 lr_create_t *lr = arg2;
1527 char *name = (void *)(lr + 1); /* name follows lr */
1528 objset_t *os = zd->zd_os;
1529 ztest_block_tag_t *bbt;
1530 dmu_buf_t *db;
1531 dmu_tx_t *tx;
1532 uint64_t txg;
1533 int error = 0;
1534 int bonuslen;
1535
1536 if (byteswap)
1537 byteswap_uint64_array(lr, sizeof (*lr));
1538
1539 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1540 ASSERT(name[0] != '\0');
1541
1542 tx = dmu_tx_create(os);
1543
1544 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1545
1546 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1547 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1548 } else {
1549 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1550 }
1551
1552 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1553 if (txg == 0)
1554 return (ENOSPC);
1555
1556 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1557 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1558
1559 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1560 if (lr->lr_foid == 0) {
1561 lr->lr_foid = zap_create_dnsize(os,
1562 lr->lrz_type, lr->lrz_bonustype,
1563 bonuslen, lr->lrz_dnodesize, tx);
1564 } else {
1565 error = zap_create_claim_dnsize(os, lr->lr_foid,
1566 lr->lrz_type, lr->lrz_bonustype,
1567 bonuslen, lr->lrz_dnodesize, tx);
1568 }
1569 } else {
1570 if (lr->lr_foid == 0) {
1571 lr->lr_foid = dmu_object_alloc_dnsize(os,
1572 lr->lrz_type, 0, lr->lrz_bonustype,
1573 bonuslen, lr->lrz_dnodesize, tx);
1574 } else {
1575 error = dmu_object_claim_dnsize(os, lr->lr_foid,
1576 lr->lrz_type, 0, lr->lrz_bonustype,
1577 bonuslen, lr->lrz_dnodesize, tx);
1578 }
1579 }
1580
1581 if (error) {
1582 ASSERT3U(error, ==, EEXIST);
1583 ASSERT(zd->zd_zilog->zl_replay);
1584 dmu_tx_commit(tx);
1585 return (error);
1586 }
1587
1588 ASSERT(lr->lr_foid != 0);
1589
1590 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1591 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1592 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1593
1594 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1595 bbt = ztest_bt_bonus(db);
1596 dmu_buf_will_dirty(db, tx);
1597 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
1598 lr->lr_gen, txg, txg);
1599 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
1600 dmu_buf_rele(db, FTAG);
1601
1602 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1603 &lr->lr_foid, tx));
1604
1605 (void) ztest_log_create(zd, tx, lr);
1606
1607 dmu_tx_commit(tx);
1608
1609 return (0);
1610 }
1611
1612 static int
ztest_replay_remove(void * arg1,void * arg2,boolean_t byteswap)1613 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1614 {
1615 ztest_ds_t *zd = arg1;
1616 lr_remove_t *lr = arg2;
1617 char *name = (void *)(lr + 1); /* name follows lr */
1618 objset_t *os = zd->zd_os;
1619 dmu_object_info_t doi;
1620 dmu_tx_t *tx;
1621 uint64_t object, txg;
1622
1623 if (byteswap)
1624 byteswap_uint64_array(lr, sizeof (*lr));
1625
1626 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1627 ASSERT(name[0] != '\0');
1628
1629 VERIFY3U(0, ==,
1630 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1631 ASSERT(object != 0);
1632
1633 ztest_object_lock(zd, object, RL_WRITER);
1634
1635 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1636
1637 tx = dmu_tx_create(os);
1638
1639 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1640 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1641
1642 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1643 if (txg == 0) {
1644 ztest_object_unlock(zd, object);
1645 return (ENOSPC);
1646 }
1647
1648 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1649 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1650 } else {
1651 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1652 }
1653
1654 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1655
1656 (void) ztest_log_remove(zd, tx, lr, object);
1657
1658 dmu_tx_commit(tx);
1659
1660 ztest_object_unlock(zd, object);
1661
1662 return (0);
1663 }
1664
1665 static int
ztest_replay_write(void * arg1,void * arg2,boolean_t byteswap)1666 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1667 {
1668 ztest_ds_t *zd = arg1;
1669 lr_write_t *lr = arg2;
1670 objset_t *os = zd->zd_os;
1671 void *data = lr + 1; /* data follows lr */
1672 uint64_t offset, length;
1673 ztest_block_tag_t *bt = data;
1674 ztest_block_tag_t *bbt;
1675 uint64_t gen, txg, lrtxg, crtxg;
1676 dmu_object_info_t doi;
1677 dmu_tx_t *tx;
1678 dmu_buf_t *db;
1679 arc_buf_t *abuf = NULL;
1680 rl_t *rl;
1681
1682 if (byteswap)
1683 byteswap_uint64_array(lr, sizeof (*lr));
1684
1685 offset = lr->lr_offset;
1686 length = lr->lr_length;
1687
1688 /* If it's a dmu_sync() block, write the whole block */
1689 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1690 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1691 if (length < blocksize) {
1692 offset -= offset % blocksize;
1693 length = blocksize;
1694 }
1695 }
1696
1697 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1698 byteswap_uint64_array(bt, sizeof (*bt));
1699
1700 if (bt->bt_magic != BT_MAGIC)
1701 bt = NULL;
1702
1703 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1704 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1705
1706 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1707
1708 dmu_object_info_from_db(db, &doi);
1709
1710 bbt = ztest_bt_bonus(db);
1711 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1712 gen = bbt->bt_gen;
1713 crtxg = bbt->bt_crtxg;
1714 lrtxg = lr->lr_common.lrc_txg;
1715
1716 tx = dmu_tx_create(os);
1717
1718 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1719
1720 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1721 P2PHASE(offset, length) == 0)
1722 abuf = dmu_request_arcbuf(db, length);
1723
1724 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1725 if (txg == 0) {
1726 if (abuf != NULL)
1727 dmu_return_arcbuf(abuf);
1728 dmu_buf_rele(db, FTAG);
1729 ztest_range_unlock(rl);
1730 ztest_object_unlock(zd, lr->lr_foid);
1731 return (ENOSPC);
1732 }
1733
1734 if (bt != NULL) {
1735 /*
1736 * Usually, verify the old data before writing new data --
1737 * but not always, because we also want to verify correct
1738 * behavior when the data was not recently read into cache.
1739 */
1740 ASSERT(offset % doi.doi_data_block_size == 0);
1741 if (ztest_random(4) != 0) {
1742 int prefetch = ztest_random(2) ?
1743 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1744 ztest_block_tag_t rbt;
1745
1746 VERIFY(dmu_read(os, lr->lr_foid, offset,
1747 sizeof (rbt), &rbt, prefetch) == 0);
1748 if (rbt.bt_magic == BT_MAGIC) {
1749 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
1750 offset, gen, txg, crtxg);
1751 }
1752 }
1753
1754 /*
1755 * Writes can appear to be newer than the bonus buffer because
1756 * the ztest_get_data() callback does a dmu_read() of the
1757 * open-context data, which may be different than the data
1758 * as it was when the write was generated.
1759 */
1760 if (zd->zd_zilog->zl_replay) {
1761 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
1762 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1763 bt->bt_crtxg);
1764 }
1765
1766 /*
1767 * Set the bt's gen/txg to the bonus buffer's gen/txg
1768 * so that all of the usual ASSERTs will work.
1769 */
1770 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
1771 crtxg);
1772 }
1773
1774 if (abuf == NULL) {
1775 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1776 } else {
1777 bcopy(data, abuf->b_data, length);
1778 dmu_assign_arcbuf(db, offset, abuf, tx);
1779 }
1780
1781 (void) ztest_log_write(zd, tx, lr);
1782
1783 dmu_buf_rele(db, FTAG);
1784
1785 dmu_tx_commit(tx);
1786
1787 ztest_range_unlock(rl);
1788 ztest_object_unlock(zd, lr->lr_foid);
1789
1790 return (0);
1791 }
1792
1793 static int
ztest_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)1794 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
1795 {
1796 ztest_ds_t *zd = arg1;
1797 lr_truncate_t *lr = arg2;
1798 objset_t *os = zd->zd_os;
1799 dmu_tx_t *tx;
1800 uint64_t txg;
1801 rl_t *rl;
1802
1803 if (byteswap)
1804 byteswap_uint64_array(lr, sizeof (*lr));
1805
1806 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1807 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1808 RL_WRITER);
1809
1810 tx = dmu_tx_create(os);
1811
1812 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1813
1814 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1815 if (txg == 0) {
1816 ztest_range_unlock(rl);
1817 ztest_object_unlock(zd, lr->lr_foid);
1818 return (ENOSPC);
1819 }
1820
1821 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1822 lr->lr_length, tx) == 0);
1823
1824 (void) ztest_log_truncate(zd, tx, lr);
1825
1826 dmu_tx_commit(tx);
1827
1828 ztest_range_unlock(rl);
1829 ztest_object_unlock(zd, lr->lr_foid);
1830
1831 return (0);
1832 }
1833
1834 static int
ztest_replay_setattr(void * arg1,void * arg2,boolean_t byteswap)1835 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
1836 {
1837 ztest_ds_t *zd = arg1;
1838 lr_setattr_t *lr = arg2;
1839 objset_t *os = zd->zd_os;
1840 dmu_tx_t *tx;
1841 dmu_buf_t *db;
1842 ztest_block_tag_t *bbt;
1843 uint64_t txg, lrtxg, crtxg, dnodesize;
1844
1845 if (byteswap)
1846 byteswap_uint64_array(lr, sizeof (*lr));
1847
1848 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1849
1850 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1851
1852 tx = dmu_tx_create(os);
1853 dmu_tx_hold_bonus(tx, lr->lr_foid);
1854
1855 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1856 if (txg == 0) {
1857 dmu_buf_rele(db, FTAG);
1858 ztest_object_unlock(zd, lr->lr_foid);
1859 return (ENOSPC);
1860 }
1861
1862 bbt = ztest_bt_bonus(db);
1863 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1864 crtxg = bbt->bt_crtxg;
1865 lrtxg = lr->lr_common.lrc_txg;
1866 dnodesize = bbt->bt_dnodesize;
1867
1868 if (zd->zd_zilog->zl_replay) {
1869 ASSERT(lr->lr_size != 0);
1870 ASSERT(lr->lr_mode != 0);
1871 ASSERT(lrtxg != 0);
1872 } else {
1873 /*
1874 * Randomly change the size and increment the generation.
1875 */
1876 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1877 sizeof (*bbt);
1878 lr->lr_mode = bbt->bt_gen + 1;
1879 ASSERT(lrtxg == 0);
1880 }
1881
1882 /*
1883 * Verify that the current bonus buffer is not newer than our txg.
1884 */
1885 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
1886 MAX(txg, lrtxg), crtxg);
1887
1888 dmu_buf_will_dirty(db, tx);
1889
1890 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1891 ASSERT3U(lr->lr_size, <=, db->db_size);
1892 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1893 bbt = ztest_bt_bonus(db);
1894
1895 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
1896 txg, crtxg);
1897 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
1898 dmu_buf_rele(db, FTAG);
1899
1900 (void) ztest_log_setattr(zd, tx, lr);
1901
1902 dmu_tx_commit(tx);
1903
1904 ztest_object_unlock(zd, lr->lr_foid);
1905
1906 return (0);
1907 }
1908
1909 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1910 NULL, /* 0 no such transaction type */
1911 ztest_replay_create, /* TX_CREATE */
1912 NULL, /* TX_MKDIR */
1913 NULL, /* TX_MKXATTR */
1914 NULL, /* TX_SYMLINK */
1915 ztest_replay_remove, /* TX_REMOVE */
1916 NULL, /* TX_RMDIR */
1917 NULL, /* TX_LINK */
1918 NULL, /* TX_RENAME */
1919 ztest_replay_write, /* TX_WRITE */
1920 ztest_replay_truncate, /* TX_TRUNCATE */
1921 ztest_replay_setattr, /* TX_SETATTR */
1922 NULL, /* TX_ACL */
1923 NULL, /* TX_CREATE_ACL */
1924 NULL, /* TX_CREATE_ATTR */
1925 NULL, /* TX_CREATE_ACL_ATTR */
1926 NULL, /* TX_MKDIR_ACL */
1927 NULL, /* TX_MKDIR_ATTR */
1928 NULL, /* TX_MKDIR_ACL_ATTR */
1929 NULL, /* TX_WRITE2 */
1930 };
1931
1932 /*
1933 * ZIL get_data callbacks
1934 */
1935
1936 /* ARGSUSED */
1937 static void
ztest_get_done(zgd_t * zgd,int error)1938 ztest_get_done(zgd_t *zgd, int error)
1939 {
1940 ztest_ds_t *zd = zgd->zgd_private;
1941 uint64_t object = zgd->zgd_rl->rl_object;
1942
1943 if (zgd->zgd_db)
1944 dmu_buf_rele(zgd->zgd_db, zgd);
1945
1946 ztest_range_unlock(zgd->zgd_rl);
1947 ztest_object_unlock(zd, object);
1948
1949 umem_free(zgd, sizeof (*zgd));
1950 }
1951
1952 static int
ztest_get_data(void * arg,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)1953 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
1954 zio_t *zio)
1955 {
1956 ztest_ds_t *zd = arg;
1957 objset_t *os = zd->zd_os;
1958 uint64_t object = lr->lr_foid;
1959 uint64_t offset = lr->lr_offset;
1960 uint64_t size = lr->lr_length;
1961 uint64_t txg = lr->lr_common.lrc_txg;
1962 uint64_t crtxg;
1963 dmu_object_info_t doi;
1964 dmu_buf_t *db;
1965 zgd_t *zgd;
1966 int error;
1967
1968 ASSERT3P(lwb, !=, NULL);
1969 ASSERT3P(zio, !=, NULL);
1970 ASSERT3U(size, !=, 0);
1971
1972 ztest_object_lock(zd, object, RL_READER);
1973 error = dmu_bonus_hold(os, object, FTAG, &db);
1974 if (error) {
1975 ztest_object_unlock(zd, object);
1976 return (error);
1977 }
1978
1979 crtxg = ztest_bt_bonus(db)->bt_crtxg;
1980
1981 if (crtxg == 0 || crtxg > txg) {
1982 dmu_buf_rele(db, FTAG);
1983 ztest_object_unlock(zd, object);
1984 return (ENOENT);
1985 }
1986
1987 dmu_object_info_from_db(db, &doi);
1988 dmu_buf_rele(db, FTAG);
1989 db = NULL;
1990
1991 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1992 zgd->zgd_lwb = lwb;
1993 zgd->zgd_private = zd;
1994
1995 if (buf != NULL) { /* immediate write */
1996 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1997 RL_READER);
1998
1999 error = dmu_read(os, object, offset, size, buf,
2000 DMU_READ_NO_PREFETCH);
2001 ASSERT(error == 0);
2002 } else {
2003 size = doi.doi_data_block_size;
2004 if (ISP2(size)) {
2005 offset = P2ALIGN(offset, size);
2006 } else {
2007 ASSERT(offset < size);
2008 offset = 0;
2009 }
2010
2011 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
2012 RL_READER);
2013
2014 error = dmu_buf_hold(os, object, offset, zgd, &db,
2015 DMU_READ_NO_PREFETCH);
2016
2017 if (error == 0) {
2018 blkptr_t *bp = &lr->lr_blkptr;
2019
2020 zgd->zgd_db = db;
2021 zgd->zgd_bp = bp;
2022
2023 ASSERT(db->db_offset == offset);
2024 ASSERT(db->db_size == size);
2025
2026 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2027 ztest_get_done, zgd);
2028
2029 if (error == 0)
2030 return (0);
2031 }
2032 }
2033
2034 ztest_get_done(zgd, error);
2035
2036 return (error);
2037 }
2038
2039 static void *
ztest_lr_alloc(size_t lrsize,char * name)2040 ztest_lr_alloc(size_t lrsize, char *name)
2041 {
2042 char *lr;
2043 size_t namesize = name ? strlen(name) + 1 : 0;
2044
2045 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2046
2047 if (name)
2048 bcopy(name, lr + lrsize, namesize);
2049
2050 return (lr);
2051 }
2052
2053 void
ztest_lr_free(void * lr,size_t lrsize,char * name)2054 ztest_lr_free(void *lr, size_t lrsize, char *name)
2055 {
2056 size_t namesize = name ? strlen(name) + 1 : 0;
2057
2058 umem_free(lr, lrsize + namesize);
2059 }
2060
2061 /*
2062 * Lookup a bunch of objects. Returns the number of objects not found.
2063 */
2064 static int
ztest_lookup(ztest_ds_t * zd,ztest_od_t * od,int count)2065 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2066 {
2067 int missing = 0;
2068 int error;
2069
2070 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2071
2072 for (int i = 0; i < count; i++, od++) {
2073 od->od_object = 0;
2074 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2075 sizeof (uint64_t), 1, &od->od_object);
2076 if (error) {
2077 ASSERT(error == ENOENT);
2078 ASSERT(od->od_object == 0);
2079 missing++;
2080 } else {
2081 dmu_buf_t *db;
2082 ztest_block_tag_t *bbt;
2083 dmu_object_info_t doi;
2084
2085 ASSERT(od->od_object != 0);
2086 ASSERT(missing == 0); /* there should be no gaps */
2087
2088 ztest_object_lock(zd, od->od_object, RL_READER);
2089 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
2090 od->od_object, FTAG, &db));
2091 dmu_object_info_from_db(db, &doi);
2092 bbt = ztest_bt_bonus(db);
2093 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2094 od->od_type = doi.doi_type;
2095 od->od_blocksize = doi.doi_data_block_size;
2096 od->od_gen = bbt->bt_gen;
2097 dmu_buf_rele(db, FTAG);
2098 ztest_object_unlock(zd, od->od_object);
2099 }
2100 }
2101
2102 return (missing);
2103 }
2104
2105 static int
ztest_create(ztest_ds_t * zd,ztest_od_t * od,int count)2106 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2107 {
2108 int missing = 0;
2109
2110 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2111
2112 for (int i = 0; i < count; i++, od++) {
2113 if (missing) {
2114 od->od_object = 0;
2115 missing++;
2116 continue;
2117 }
2118
2119 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2120
2121 lr->lr_doid = od->od_dir;
2122 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2123 lr->lrz_type = od->od_crtype;
2124 lr->lrz_blocksize = od->od_crblocksize;
2125 lr->lrz_ibshift = ztest_random_ibshift();
2126 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2127 lr->lrz_dnodesize = od->od_crdnodesize;
2128 lr->lr_gen = od->od_crgen;
2129 lr->lr_crtime[0] = time(NULL);
2130
2131 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2132 ASSERT(missing == 0);
2133 od->od_object = 0;
2134 missing++;
2135 } else {
2136 od->od_object = lr->lr_foid;
2137 od->od_type = od->od_crtype;
2138 od->od_blocksize = od->od_crblocksize;
2139 od->od_gen = od->od_crgen;
2140 ASSERT(od->od_object != 0);
2141 }
2142
2143 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2144 }
2145
2146 return (missing);
2147 }
2148
2149 static int
ztest_remove(ztest_ds_t * zd,ztest_od_t * od,int count)2150 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2151 {
2152 int missing = 0;
2153 int error;
2154
2155 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2156
2157 od += count - 1;
2158
2159 for (int i = count - 1; i >= 0; i--, od--) {
2160 if (missing) {
2161 missing++;
2162 continue;
2163 }
2164
2165 /*
2166 * No object was found.
2167 */
2168 if (od->od_object == 0)
2169 continue;
2170
2171 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2172
2173 lr->lr_doid = od->od_dir;
2174
2175 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2176 ASSERT3U(error, ==, ENOSPC);
2177 missing++;
2178 } else {
2179 od->od_object = 0;
2180 }
2181 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2182 }
2183
2184 return (missing);
2185 }
2186
2187 static int
ztest_write(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,void * data)2188 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2189 void *data)
2190 {
2191 lr_write_t *lr;
2192 int error;
2193
2194 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2195
2196 lr->lr_foid = object;
2197 lr->lr_offset = offset;
2198 lr->lr_length = size;
2199 lr->lr_blkoff = 0;
2200 BP_ZERO(&lr->lr_blkptr);
2201
2202 bcopy(data, lr + 1, size);
2203
2204 error = ztest_replay_write(zd, lr, B_FALSE);
2205
2206 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2207
2208 return (error);
2209 }
2210
2211 static int
ztest_truncate(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2212 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2213 {
2214 lr_truncate_t *lr;
2215 int error;
2216
2217 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2218
2219 lr->lr_foid = object;
2220 lr->lr_offset = offset;
2221 lr->lr_length = size;
2222
2223 error = ztest_replay_truncate(zd, lr, B_FALSE);
2224
2225 ztest_lr_free(lr, sizeof (*lr), NULL);
2226
2227 return (error);
2228 }
2229
2230 static int
ztest_setattr(ztest_ds_t * zd,uint64_t object)2231 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2232 {
2233 lr_setattr_t *lr;
2234 int error;
2235
2236 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2237
2238 lr->lr_foid = object;
2239 lr->lr_size = 0;
2240 lr->lr_mode = 0;
2241
2242 error = ztest_replay_setattr(zd, lr, B_FALSE);
2243
2244 ztest_lr_free(lr, sizeof (*lr), NULL);
2245
2246 return (error);
2247 }
2248
2249 static void
ztest_prealloc(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2250 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2251 {
2252 objset_t *os = zd->zd_os;
2253 dmu_tx_t *tx;
2254 uint64_t txg;
2255 rl_t *rl;
2256
2257 txg_wait_synced(dmu_objset_pool(os), 0);
2258
2259 ztest_object_lock(zd, object, RL_READER);
2260 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2261
2262 tx = dmu_tx_create(os);
2263
2264 dmu_tx_hold_write(tx, object, offset, size);
2265
2266 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2267
2268 if (txg != 0) {
2269 dmu_prealloc(os, object, offset, size, tx);
2270 dmu_tx_commit(tx);
2271 txg_wait_synced(dmu_objset_pool(os), txg);
2272 } else {
2273 (void) dmu_free_long_range(os, object, offset, size);
2274 }
2275
2276 ztest_range_unlock(rl);
2277 ztest_object_unlock(zd, object);
2278 }
2279
2280 static void
ztest_io(ztest_ds_t * zd,uint64_t object,uint64_t offset)2281 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2282 {
2283 int err;
2284 ztest_block_tag_t wbt;
2285 dmu_object_info_t doi;
2286 enum ztest_io_type io_type;
2287 uint64_t blocksize;
2288 void *data;
2289
2290 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2291 blocksize = doi.doi_data_block_size;
2292 data = umem_alloc(blocksize, UMEM_NOFAIL);
2293
2294 /*
2295 * Pick an i/o type at random, biased toward writing block tags.
2296 */
2297 io_type = ztest_random(ZTEST_IO_TYPES);
2298 if (ztest_random(2) == 0)
2299 io_type = ZTEST_IO_WRITE_TAG;
2300
2301 rw_enter(&zd->zd_zilog_lock, RW_READER);
2302
2303 switch (io_type) {
2304
2305 case ZTEST_IO_WRITE_TAG:
2306 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2307 offset, 0, 0, 0);
2308 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2309 break;
2310
2311 case ZTEST_IO_WRITE_PATTERN:
2312 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2313 if (ztest_random(2) == 0) {
2314 /*
2315 * Induce fletcher2 collisions to ensure that
2316 * zio_ddt_collision() detects and resolves them
2317 * when using fletcher2-verify for deduplication.
2318 */
2319 ((uint64_t *)data)[0] ^= 1ULL << 63;
2320 ((uint64_t *)data)[4] ^= 1ULL << 63;
2321 }
2322 (void) ztest_write(zd, object, offset, blocksize, data);
2323 break;
2324
2325 case ZTEST_IO_WRITE_ZEROES:
2326 bzero(data, blocksize);
2327 (void) ztest_write(zd, object, offset, blocksize, data);
2328 break;
2329
2330 case ZTEST_IO_TRUNCATE:
2331 (void) ztest_truncate(zd, object, offset, blocksize);
2332 break;
2333
2334 case ZTEST_IO_SETATTR:
2335 (void) ztest_setattr(zd, object);
2336 break;
2337
2338 case ZTEST_IO_REWRITE:
2339 rw_enter(&ztest_name_lock, RW_READER);
2340 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2341 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2342 B_FALSE);
2343 VERIFY(err == 0 || err == ENOSPC);
2344 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2345 ZFS_PROP_COMPRESSION,
2346 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2347 B_FALSE);
2348 VERIFY(err == 0 || err == ENOSPC);
2349 rw_exit(&ztest_name_lock);
2350
2351 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2352 DMU_READ_NO_PREFETCH));
2353
2354 (void) ztest_write(zd, object, offset, blocksize, data);
2355 break;
2356 }
2357
2358 rw_exit(&zd->zd_zilog_lock);
2359
2360 umem_free(data, blocksize);
2361 }
2362
2363 /*
2364 * Initialize an object description template.
2365 */
2366 static void
ztest_od_init(ztest_od_t * od,uint64_t id,char * tag,uint64_t index,dmu_object_type_t type,uint64_t blocksize,uint64_t dnodesize,uint64_t gen)2367 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2368 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2369 uint64_t gen)
2370 {
2371 od->od_dir = ZTEST_DIROBJ;
2372 od->od_object = 0;
2373
2374 od->od_crtype = type;
2375 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2376 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2377 od->od_crgen = gen;
2378
2379 od->od_type = DMU_OT_NONE;
2380 od->od_blocksize = 0;
2381 od->od_gen = 0;
2382
2383 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2384 tag, (int64_t)id, index);
2385 }
2386
2387 /*
2388 * Lookup or create the objects for a test using the od template.
2389 * If the objects do not all exist, or if 'remove' is specified,
2390 * remove any existing objects and create new ones. Otherwise,
2391 * use the existing objects.
2392 */
2393 static int
ztest_object_init(ztest_ds_t * zd,ztest_od_t * od,size_t size,boolean_t remove)2394 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2395 {
2396 int count = size / sizeof (*od);
2397 int rv = 0;
2398
2399 mutex_enter(&zd->zd_dirobj_lock);
2400 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2401 (ztest_remove(zd, od, count) != 0 ||
2402 ztest_create(zd, od, count) != 0))
2403 rv = -1;
2404 zd->zd_od = od;
2405 mutex_exit(&zd->zd_dirobj_lock);
2406
2407 return (rv);
2408 }
2409
2410 /* ARGSUSED */
2411 void
ztest_zil_commit(ztest_ds_t * zd,uint64_t id)2412 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2413 {
2414 zilog_t *zilog = zd->zd_zilog;
2415
2416 rw_enter(&zd->zd_zilog_lock, RW_READER);
2417
2418 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2419
2420 /*
2421 * Remember the committed values in zd, which is in parent/child
2422 * shared memory. If we die, the next iteration of ztest_run()
2423 * will verify that the log really does contain this record.
2424 */
2425 mutex_enter(&zilog->zl_lock);
2426 ASSERT(zd->zd_shared != NULL);
2427 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2428 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2429 mutex_exit(&zilog->zl_lock);
2430
2431 rw_exit(&zd->zd_zilog_lock);
2432 }
2433
2434 /*
2435 * This function is designed to simulate the operations that occur during a
2436 * mount/unmount operation. We hold the dataset across these operations in an
2437 * attempt to expose any implicit assumptions about ZIL management.
2438 */
2439 /* ARGSUSED */
2440 void
ztest_zil_remount(ztest_ds_t * zd,uint64_t id)2441 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2442 {
2443 objset_t *os = zd->zd_os;
2444
2445 /*
2446 * We grab the zd_dirobj_lock to ensure that no other thread is
2447 * updating the zil (i.e. adding in-memory log records) and the
2448 * zd_zilog_lock to block any I/O.
2449 */
2450 mutex_enter(&zd->zd_dirobj_lock);
2451 rw_enter(&zd->zd_zilog_lock, RW_WRITER);
2452
2453 /* zfsvfs_teardown() */
2454 zil_close(zd->zd_zilog);
2455
2456 /* zfsvfs_setup() */
2457 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2458 zil_replay(os, zd, ztest_replay_vector);
2459
2460 rw_exit(&zd->zd_zilog_lock);
2461 mutex_exit(&zd->zd_dirobj_lock);
2462 }
2463
2464 /*
2465 * Verify that we can't destroy an active pool, create an existing pool,
2466 * or create a pool with a bad vdev spec.
2467 */
2468 /* ARGSUSED */
2469 void
ztest_spa_create_destroy(ztest_ds_t * zd,uint64_t id)2470 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2471 {
2472 ztest_shared_opts_t *zo = &ztest_opts;
2473 spa_t *spa;
2474 nvlist_t *nvroot;
2475
2476 /*
2477 * Attempt to create using a bad file.
2478 */
2479 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2480 VERIFY3U(ENOENT, ==,
2481 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2482 nvlist_free(nvroot);
2483
2484 /*
2485 * Attempt to create using a bad mirror.
2486 */
2487 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2488 VERIFY3U(ENOENT, ==,
2489 spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2490 nvlist_free(nvroot);
2491
2492 /*
2493 * Attempt to create an existing pool. It shouldn't matter
2494 * what's in the nvroot; we should fail with EEXIST.
2495 */
2496 rw_enter(&ztest_name_lock, RW_READER);
2497 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2498 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2499 nvlist_free(nvroot);
2500 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2501 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2502 spa_close(spa, FTAG);
2503
2504 rw_exit(&ztest_name_lock);
2505 }
2506
2507 /* ARGSUSED */
2508 void
ztest_spa_upgrade(ztest_ds_t * zd,uint64_t id)2509 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2510 {
2511 spa_t *spa;
2512 uint64_t initial_version = SPA_VERSION_INITIAL;
2513 uint64_t version, newversion;
2514 nvlist_t *nvroot, *props;
2515 char *name;
2516
2517 mutex_enter(&ztest_vdev_lock);
2518 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2519
2520 /*
2521 * Clean up from previous runs.
2522 */
2523 (void) spa_destroy(name);
2524
2525 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2526 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2527
2528 /*
2529 * If we're configuring a RAIDZ device then make sure that the
2530 * the initial version is capable of supporting that feature.
2531 */
2532 switch (ztest_opts.zo_raidz_parity) {
2533 case 0:
2534 case 1:
2535 initial_version = SPA_VERSION_INITIAL;
2536 break;
2537 case 2:
2538 initial_version = SPA_VERSION_RAIDZ2;
2539 break;
2540 case 3:
2541 initial_version = SPA_VERSION_RAIDZ3;
2542 break;
2543 }
2544
2545 /*
2546 * Create a pool with a spa version that can be upgraded. Pick
2547 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2548 */
2549 do {
2550 version = ztest_random_spa_version(initial_version);
2551 } while (version > SPA_VERSION_BEFORE_FEATURES);
2552
2553 props = fnvlist_alloc();
2554 fnvlist_add_uint64(props,
2555 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2556 VERIFY0(spa_create(name, nvroot, props, NULL));
2557 fnvlist_free(nvroot);
2558 fnvlist_free(props);
2559
2560 VERIFY0(spa_open(name, &spa, FTAG));
2561 VERIFY3U(spa_version(spa), ==, version);
2562 newversion = ztest_random_spa_version(version + 1);
2563
2564 if (ztest_opts.zo_verbose >= 4) {
2565 (void) printf("upgrading spa version from %llu to %llu\n",
2566 (u_longlong_t)version, (u_longlong_t)newversion);
2567 }
2568
2569 spa_upgrade(spa, newversion);
2570 VERIFY3U(spa_version(spa), >, version);
2571 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2572 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2573 spa_close(spa, FTAG);
2574
2575 strfree(name);
2576 mutex_exit(&ztest_vdev_lock);
2577 }
2578
2579 static void
ztest_spa_checkpoint(spa_t * spa)2580 ztest_spa_checkpoint(spa_t *spa)
2581 {
2582 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2583
2584 int error = spa_checkpoint(spa->spa_name);
2585
2586 switch (error) {
2587 case 0:
2588 case ZFS_ERR_DEVRM_IN_PROGRESS:
2589 case ZFS_ERR_DISCARDING_CHECKPOINT:
2590 case ZFS_ERR_CHECKPOINT_EXISTS:
2591 break;
2592 case ENOSPC:
2593 ztest_record_enospc(FTAG);
2594 break;
2595 default:
2596 fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
2597 }
2598 }
2599
2600 static void
ztest_spa_discard_checkpoint(spa_t * spa)2601 ztest_spa_discard_checkpoint(spa_t *spa)
2602 {
2603 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2604
2605 int error = spa_checkpoint_discard(spa->spa_name);
2606
2607 switch (error) {
2608 case 0:
2609 case ZFS_ERR_DISCARDING_CHECKPOINT:
2610 case ZFS_ERR_NO_CHECKPOINT:
2611 break;
2612 default:
2613 fatal(0, "spa_discard_checkpoint(%s) = %d",
2614 spa->spa_name, error);
2615 }
2616
2617 }
2618
2619 /* ARGSUSED */
2620 void
ztest_spa_checkpoint_create_discard(ztest_ds_t * zd,uint64_t id)2621 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
2622 {
2623 spa_t *spa = ztest_spa;
2624
2625 mutex_enter(&ztest_checkpoint_lock);
2626 if (ztest_random(2) == 0) {
2627 ztest_spa_checkpoint(spa);
2628 } else {
2629 ztest_spa_discard_checkpoint(spa);
2630 }
2631 mutex_exit(&ztest_checkpoint_lock);
2632 }
2633
2634
2635 static vdev_t *
vdev_lookup_by_path(vdev_t * vd,const char * path)2636 vdev_lookup_by_path(vdev_t *vd, const char *path)
2637 {
2638 vdev_t *mvd;
2639
2640 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2641 return (vd);
2642
2643 for (int c = 0; c < vd->vdev_children; c++)
2644 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2645 NULL)
2646 return (mvd);
2647
2648 return (NULL);
2649 }
2650
2651 /*
2652 * Find the first available hole which can be used as a top-level.
2653 */
2654 int
find_vdev_hole(spa_t * spa)2655 find_vdev_hole(spa_t *spa)
2656 {
2657 vdev_t *rvd = spa->spa_root_vdev;
2658 int c;
2659
2660 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2661
2662 for (c = 0; c < rvd->vdev_children; c++) {
2663 vdev_t *cvd = rvd->vdev_child[c];
2664
2665 if (cvd->vdev_ishole)
2666 break;
2667 }
2668 return (c);
2669 }
2670
2671 /*
2672 * Verify that vdev_add() works as expected.
2673 */
2674 /* ARGSUSED */
2675 void
ztest_vdev_add_remove(ztest_ds_t * zd,uint64_t id)2676 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2677 {
2678 ztest_shared_t *zs = ztest_shared;
2679 spa_t *spa = ztest_spa;
2680 uint64_t leaves;
2681 uint64_t guid;
2682 nvlist_t *nvroot;
2683 int error;
2684
2685 mutex_enter(&ztest_vdev_lock);
2686 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2687
2688 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2689
2690 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2691
2692 /*
2693 * If we have slogs then remove them 1/4 of the time.
2694 */
2695 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2696 /*
2697 * Grab the guid from the head of the log class rotor.
2698 */
2699 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2700
2701 spa_config_exit(spa, SCL_VDEV, FTAG);
2702
2703 /*
2704 * We have to grab the zs_name_lock as writer to
2705 * prevent a race between removing a slog (dmu_objset_find)
2706 * and destroying a dataset. Removing the slog will
2707 * grab a reference on the dataset which may cause
2708 * dmu_objset_destroy() to fail with EBUSY thus
2709 * leaving the dataset in an inconsistent state.
2710 */
2711 rw_enter(&ztest_name_lock, RW_WRITER);
2712 error = spa_vdev_remove(spa, guid, B_FALSE);
2713 rw_exit(&ztest_name_lock);
2714
2715 switch (error) {
2716 case 0:
2717 case EEXIST:
2718 case ZFS_ERR_CHECKPOINT_EXISTS:
2719 case ZFS_ERR_DISCARDING_CHECKPOINT:
2720 break;
2721 default:
2722 fatal(0, "spa_vdev_remove() = %d", error);
2723 }
2724 } else {
2725 spa_config_exit(spa, SCL_VDEV, FTAG);
2726
2727 /*
2728 * Make 1/4 of the devices be log devices.
2729 */
2730 nvroot = make_vdev_root(NULL, NULL, NULL,
2731 ztest_opts.zo_vdev_size, 0,
2732 ztest_random(4) == 0, ztest_opts.zo_raidz,
2733 zs->zs_mirrors, 1);
2734
2735 error = spa_vdev_add(spa, nvroot);
2736 nvlist_free(nvroot);
2737
2738 switch (error) {
2739 case 0:
2740 break;
2741 case ENOSPC:
2742 ztest_record_enospc("spa_vdev_add");
2743 break;
2744 default:
2745 fatal(0, "spa_vdev_add() = %d", error);
2746 }
2747 }
2748
2749 mutex_exit(&ztest_vdev_lock);
2750 }
2751
2752 /*
2753 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2754 */
2755 /* ARGSUSED */
2756 void
ztest_vdev_aux_add_remove(ztest_ds_t * zd,uint64_t id)2757 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2758 {
2759 ztest_shared_t *zs = ztest_shared;
2760 spa_t *spa = ztest_spa;
2761 vdev_t *rvd = spa->spa_root_vdev;
2762 spa_aux_vdev_t *sav;
2763 char *aux;
2764 uint64_t guid = 0;
2765 int error;
2766
2767 if (ztest_random(2) == 0) {
2768 sav = &spa->spa_spares;
2769 aux = ZPOOL_CONFIG_SPARES;
2770 } else {
2771 sav = &spa->spa_l2cache;
2772 aux = ZPOOL_CONFIG_L2CACHE;
2773 }
2774
2775 mutex_enter(&ztest_vdev_lock);
2776
2777 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2778
2779 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2780 /*
2781 * Pick a random device to remove.
2782 */
2783 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2784 } else {
2785 /*
2786 * Find an unused device we can add.
2787 */
2788 zs->zs_vdev_aux = 0;
2789 for (;;) {
2790 char path[MAXPATHLEN];
2791 int c;
2792 (void) snprintf(path, sizeof (path), ztest_aux_template,
2793 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2794 zs->zs_vdev_aux);
2795 for (c = 0; c < sav->sav_count; c++)
2796 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2797 path) == 0)
2798 break;
2799 if (c == sav->sav_count &&
2800 vdev_lookup_by_path(rvd, path) == NULL)
2801 break;
2802 zs->zs_vdev_aux++;
2803 }
2804 }
2805
2806 spa_config_exit(spa, SCL_VDEV, FTAG);
2807
2808 if (guid == 0) {
2809 /*
2810 * Add a new device.
2811 */
2812 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2813 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2814 error = spa_vdev_add(spa, nvroot);
2815
2816 switch (error) {
2817 case 0:
2818 break;
2819 default:
2820 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2821 }
2822 nvlist_free(nvroot);
2823 } else {
2824 /*
2825 * Remove an existing device. Sometimes, dirty its
2826 * vdev state first to make sure we handle removal
2827 * of devices that have pending state changes.
2828 */
2829 if (ztest_random(2) == 0)
2830 (void) vdev_online(spa, guid, 0, NULL);
2831
2832 error = spa_vdev_remove(spa, guid, B_FALSE);
2833
2834 switch (error) {
2835 case 0:
2836 case EBUSY:
2837 case ZFS_ERR_CHECKPOINT_EXISTS:
2838 case ZFS_ERR_DISCARDING_CHECKPOINT:
2839 break;
2840 default:
2841 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2842 }
2843 }
2844
2845 mutex_exit(&ztest_vdev_lock);
2846 }
2847
2848 /*
2849 * split a pool if it has mirror tlvdevs
2850 */
2851 /* ARGSUSED */
2852 void
ztest_split_pool(ztest_ds_t * zd,uint64_t id)2853 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2854 {
2855 ztest_shared_t *zs = ztest_shared;
2856 spa_t *spa = ztest_spa;
2857 vdev_t *rvd = spa->spa_root_vdev;
2858 nvlist_t *tree, **child, *config, *split, **schild;
2859 uint_t c, children, schildren = 0, lastlogid = 0;
2860 int error = 0;
2861
2862 mutex_enter(&ztest_vdev_lock);
2863
2864 /* ensure we have a useable config; mirrors of raidz aren't supported */
2865 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2866 mutex_exit(&ztest_vdev_lock);
2867 return;
2868 }
2869
2870 /* clean up the old pool, if any */
2871 (void) spa_destroy("splitp");
2872
2873 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2874
2875 /* generate a config from the existing config */
2876 mutex_enter(&spa->spa_props_lock);
2877 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2878 &tree) == 0);
2879 mutex_exit(&spa->spa_props_lock);
2880
2881 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2882 &children) == 0);
2883
2884 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2885 for (c = 0; c < children; c++) {
2886 vdev_t *tvd = rvd->vdev_child[c];
2887 nvlist_t **mchild;
2888 uint_t mchildren;
2889
2890 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2891 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2892 0) == 0);
2893 VERIFY(nvlist_add_string(schild[schildren],
2894 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2895 VERIFY(nvlist_add_uint64(schild[schildren],
2896 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2897 if (lastlogid == 0)
2898 lastlogid = schildren;
2899 ++schildren;
2900 continue;
2901 }
2902 lastlogid = 0;
2903 VERIFY(nvlist_lookup_nvlist_array(child[c],
2904 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2905 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2906 }
2907
2908 /* OK, create a config that can be used to split */
2909 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2910 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2911 VDEV_TYPE_ROOT) == 0);
2912 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2913 lastlogid != 0 ? lastlogid : schildren) == 0);
2914
2915 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2916 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2917
2918 for (c = 0; c < schildren; c++)
2919 nvlist_free(schild[c]);
2920 free(schild);
2921 nvlist_free(split);
2922
2923 spa_config_exit(spa, SCL_VDEV, FTAG);
2924
2925 rw_enter(&ztest_name_lock, RW_WRITER);
2926 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2927 rw_exit(&ztest_name_lock);
2928
2929 nvlist_free(config);
2930
2931 if (error == 0) {
2932 (void) printf("successful split - results:\n");
2933 mutex_enter(&spa_namespace_lock);
2934 show_pool_stats(spa);
2935 show_pool_stats(spa_lookup("splitp"));
2936 mutex_exit(&spa_namespace_lock);
2937 ++zs->zs_splits;
2938 --zs->zs_mirrors;
2939 }
2940 mutex_exit(&ztest_vdev_lock);
2941 }
2942
2943 /*
2944 * Verify that we can attach and detach devices.
2945 */
2946 /* ARGSUSED */
2947 void
ztest_vdev_attach_detach(ztest_ds_t * zd,uint64_t id)2948 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2949 {
2950 ztest_shared_t *zs = ztest_shared;
2951 spa_t *spa = ztest_spa;
2952 spa_aux_vdev_t *sav = &spa->spa_spares;
2953 vdev_t *rvd = spa->spa_root_vdev;
2954 vdev_t *oldvd, *newvd, *pvd;
2955 nvlist_t *root;
2956 uint64_t leaves;
2957 uint64_t leaf, top;
2958 uint64_t ashift = ztest_get_ashift();
2959 uint64_t oldguid, pguid;
2960 uint64_t oldsize, newsize;
2961 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2962 int replacing;
2963 int oldvd_has_siblings = B_FALSE;
2964 int newvd_is_spare = B_FALSE;
2965 int oldvd_is_log;
2966 int error, expected_error;
2967
2968 mutex_enter(&ztest_vdev_lock);
2969 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2970
2971 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2972
2973 /*
2974 * If a vdev is in the process of being removed, its removal may
2975 * finish while we are in progress, leading to an unexpected error
2976 * value. Don't bother trying to attach while we are in the middle
2977 * of removal.
2978 */
2979 if (ztest_device_removal_active) {
2980 spa_config_exit(spa, SCL_ALL, FTAG);
2981 mutex_exit(&ztest_vdev_lock);
2982 return;
2983 }
2984
2985 /*
2986 * Decide whether to do an attach or a replace.
2987 */
2988 replacing = ztest_random(2);
2989
2990 /*
2991 * Pick a random top-level vdev.
2992 */
2993 top = ztest_random_vdev_top(spa, B_TRUE);
2994
2995 /*
2996 * Pick a random leaf within it.
2997 */
2998 leaf = ztest_random(leaves);
2999
3000 /*
3001 * Locate this vdev.
3002 */
3003 oldvd = rvd->vdev_child[top];
3004 if (zs->zs_mirrors >= 1) {
3005 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
3006 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
3007 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
3008 }
3009 if (ztest_opts.zo_raidz > 1) {
3010 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
3011 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
3012 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
3013 }
3014
3015 /*
3016 * If we're already doing an attach or replace, oldvd may be a
3017 * mirror vdev -- in which case, pick a random child.
3018 */
3019 while (oldvd->vdev_children != 0) {
3020 oldvd_has_siblings = B_TRUE;
3021 ASSERT(oldvd->vdev_children >= 2);
3022 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3023 }
3024
3025 oldguid = oldvd->vdev_guid;
3026 oldsize = vdev_get_min_asize(oldvd);
3027 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3028 (void) strcpy(oldpath, oldvd->vdev_path);
3029 pvd = oldvd->vdev_parent;
3030 pguid = pvd->vdev_guid;
3031
3032 /*
3033 * If oldvd has siblings, then half of the time, detach it.
3034 */
3035 if (oldvd_has_siblings && ztest_random(2) == 0) {
3036 spa_config_exit(spa, SCL_ALL, FTAG);
3037 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3038 if (error != 0 && error != ENODEV && error != EBUSY &&
3039 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3040 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3041 fatal(0, "detach (%s) returned %d", oldpath, error);
3042 mutex_exit(&ztest_vdev_lock);
3043 return;
3044 }
3045
3046 /*
3047 * For the new vdev, choose with equal probability between the two
3048 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3049 */
3050 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3051 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3052 newvd_is_spare = B_TRUE;
3053 (void) strcpy(newpath, newvd->vdev_path);
3054 } else {
3055 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
3056 ztest_opts.zo_dir, ztest_opts.zo_pool,
3057 top * leaves + leaf);
3058 if (ztest_random(2) == 0)
3059 newpath[strlen(newpath) - 1] = 'b';
3060 newvd = vdev_lookup_by_path(rvd, newpath);
3061 }
3062
3063 if (newvd) {
3064 /*
3065 * Reopen to ensure the vdev's asize field isn't stale.
3066 */
3067 vdev_reopen(newvd);
3068 newsize = vdev_get_min_asize(newvd);
3069 } else {
3070 /*
3071 * Make newsize a little bigger or smaller than oldsize.
3072 * If it's smaller, the attach should fail.
3073 * If it's larger, and we're doing a replace,
3074 * we should get dynamic LUN growth when we're done.
3075 */
3076 newsize = 10 * oldsize / (9 + ztest_random(3));
3077 }
3078
3079 /*
3080 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3081 * unless it's a replace; in that case any non-replacing parent is OK.
3082 *
3083 * If newvd is already part of the pool, it should fail with EBUSY.
3084 *
3085 * If newvd is too small, it should fail with EOVERFLOW.
3086 */
3087 if (pvd->vdev_ops != &vdev_mirror_ops &&
3088 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3089 pvd->vdev_ops == &vdev_replacing_ops ||
3090 pvd->vdev_ops == &vdev_spare_ops))
3091 expected_error = ENOTSUP;
3092 else if (newvd_is_spare && (!replacing || oldvd_is_log))
3093 expected_error = ENOTSUP;
3094 else if (newvd == oldvd)
3095 expected_error = replacing ? 0 : EBUSY;
3096 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3097 expected_error = EBUSY;
3098 else if (newsize < oldsize)
3099 expected_error = EOVERFLOW;
3100 else if (ashift > oldvd->vdev_top->vdev_ashift)
3101 expected_error = EDOM;
3102 else
3103 expected_error = 0;
3104
3105 spa_config_exit(spa, SCL_ALL, FTAG);
3106
3107 /*
3108 * Build the nvlist describing newpath.
3109 */
3110 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3111 ashift, 0, 0, 0, 1);
3112
3113 error = spa_vdev_attach(spa, oldguid, root, replacing);
3114
3115 nvlist_free(root);
3116
3117 /*
3118 * If our parent was the replacing vdev, but the replace completed,
3119 * then instead of failing with ENOTSUP we may either succeed,
3120 * fail with ENODEV, or fail with EOVERFLOW.
3121 */
3122 if (expected_error == ENOTSUP &&
3123 (error == 0 || error == ENODEV || error == EOVERFLOW))
3124 expected_error = error;
3125
3126 /*
3127 * If someone grew the LUN, the replacement may be too small.
3128 */
3129 if (error == EOVERFLOW || error == EBUSY)
3130 expected_error = error;
3131
3132 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3133 error == ZFS_ERR_DISCARDING_CHECKPOINT)
3134 expected_error = error;
3135
3136 /* XXX workaround 6690467 */
3137 if (error != expected_error && expected_error != EBUSY) {
3138 fatal(0, "attach (%s %llu, %s %llu, %d) "
3139 "returned %d, expected %d",
3140 oldpath, oldsize, newpath,
3141 newsize, replacing, error, expected_error);
3142 }
3143
3144 mutex_exit(&ztest_vdev_lock);
3145 }
3146
3147 /* ARGSUSED */
3148 void
ztest_device_removal(ztest_ds_t * zd,uint64_t id)3149 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3150 {
3151 spa_t *spa = ztest_spa;
3152 vdev_t *vd;
3153 uint64_t guid;
3154 int error;
3155
3156 mutex_enter(&ztest_vdev_lock);
3157
3158 if (ztest_device_removal_active) {
3159 mutex_exit(&ztest_vdev_lock);
3160 return;
3161 }
3162
3163 /*
3164 * Remove a random top-level vdev and wait for removal to finish.
3165 */
3166 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3167 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3168 guid = vd->vdev_guid;
3169 spa_config_exit(spa, SCL_VDEV, FTAG);
3170
3171 error = spa_vdev_remove(spa, guid, B_FALSE);
3172 if (error == 0) {
3173 ztest_device_removal_active = B_TRUE;
3174 mutex_exit(&ztest_vdev_lock);
3175
3176 while (spa->spa_vdev_removal != NULL)
3177 txg_wait_synced(spa_get_dsl(spa), 0);
3178 } else {
3179 mutex_exit(&ztest_vdev_lock);
3180 return;
3181 }
3182
3183 /*
3184 * The pool needs to be scrubbed after completing device removal.
3185 * Failure to do so may result in checksum errors due to the
3186 * strategy employed by ztest_fault_inject() when selecting which
3187 * offset are redundant and can be damaged.
3188 */
3189 error = spa_scan(spa, POOL_SCAN_SCRUB);
3190 if (error == 0) {
3191 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3192 txg_wait_synced(spa_get_dsl(spa), 0);
3193 }
3194
3195 mutex_enter(&ztest_vdev_lock);
3196 ztest_device_removal_active = B_FALSE;
3197 mutex_exit(&ztest_vdev_lock);
3198 }
3199
3200 /*
3201 * Callback function which expands the physical size of the vdev.
3202 */
3203 vdev_t *
grow_vdev(vdev_t * vd,void * arg)3204 grow_vdev(vdev_t *vd, void *arg)
3205 {
3206 spa_t *spa = vd->vdev_spa;
3207 size_t *newsize = arg;
3208 size_t fsize;
3209 int fd;
3210
3211 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3212 ASSERT(vd->vdev_ops->vdev_op_leaf);
3213
3214 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3215 return (vd);
3216
3217 fsize = lseek(fd, 0, SEEK_END);
3218 (void) ftruncate(fd, *newsize);
3219
3220 if (ztest_opts.zo_verbose >= 6) {
3221 (void) printf("%s grew from %lu to %lu bytes\n",
3222 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3223 }
3224 (void) close(fd);
3225 return (NULL);
3226 }
3227
3228 /*
3229 * Callback function which expands a given vdev by calling vdev_online().
3230 */
3231 /* ARGSUSED */
3232 vdev_t *
online_vdev(vdev_t * vd,void * arg)3233 online_vdev(vdev_t *vd, void *arg)
3234 {
3235 spa_t *spa = vd->vdev_spa;
3236 vdev_t *tvd = vd->vdev_top;
3237 uint64_t guid = vd->vdev_guid;
3238 uint64_t generation = spa->spa_config_generation + 1;
3239 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3240 int error;
3241
3242 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3243 ASSERT(vd->vdev_ops->vdev_op_leaf);
3244
3245 /* Calling vdev_online will initialize the new metaslabs */
3246 spa_config_exit(spa, SCL_STATE, spa);
3247 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3248 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3249
3250 /*
3251 * If vdev_online returned an error or the underlying vdev_open
3252 * failed then we abort the expand. The only way to know that
3253 * vdev_open fails is by checking the returned newstate.
3254 */
3255 if (error || newstate != VDEV_STATE_HEALTHY) {
3256 if (ztest_opts.zo_verbose >= 5) {
3257 (void) printf("Unable to expand vdev, state %llu, "
3258 "error %d\n", (u_longlong_t)newstate, error);
3259 }
3260 return (vd);
3261 }
3262 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3263
3264 /*
3265 * Since we dropped the lock we need to ensure that we're
3266 * still talking to the original vdev. It's possible this
3267 * vdev may have been detached/replaced while we were
3268 * trying to online it.
3269 */
3270 if (generation != spa->spa_config_generation) {
3271 if (ztest_opts.zo_verbose >= 5) {
3272 (void) printf("vdev configuration has changed, "
3273 "guid %llu, state %llu, expected gen %llu, "
3274 "got gen %llu\n",
3275 (u_longlong_t)guid,
3276 (u_longlong_t)tvd->vdev_state,
3277 (u_longlong_t)generation,
3278 (u_longlong_t)spa->spa_config_generation);
3279 }
3280 return (vd);
3281 }
3282 return (NULL);
3283 }
3284
3285 /*
3286 * Traverse the vdev tree calling the supplied function.
3287 * We continue to walk the tree until we either have walked all
3288 * children or we receive a non-NULL return from the callback.
3289 * If a NULL callback is passed, then we just return back the first
3290 * leaf vdev we encounter.
3291 */
3292 vdev_t *
vdev_walk_tree(vdev_t * vd,vdev_t * (* func)(vdev_t *,void *),void * arg)3293 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3294 {
3295 if (vd->vdev_ops->vdev_op_leaf) {
3296 if (func == NULL)
3297 return (vd);
3298 else
3299 return (func(vd, arg));
3300 }
3301
3302 for (uint_t c = 0; c < vd->vdev_children; c++) {
3303 vdev_t *cvd = vd->vdev_child[c];
3304 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3305 return (cvd);
3306 }
3307 return (NULL);
3308 }
3309
3310 /*
3311 * Verify that dynamic LUN growth works as expected.
3312 */
3313 /* ARGSUSED */
3314 void
ztest_vdev_LUN_growth(ztest_ds_t * zd,uint64_t id)3315 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3316 {
3317 spa_t *spa = ztest_spa;
3318 vdev_t *vd, *tvd;
3319 metaslab_class_t *mc;
3320 metaslab_group_t *mg;
3321 size_t psize, newsize;
3322 uint64_t top;
3323 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3324
3325 mutex_enter(&ztest_checkpoint_lock);
3326 mutex_enter(&ztest_vdev_lock);
3327 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3328
3329 /*
3330 * If there is a vdev removal in progress, it could complete while
3331 * we are running, in which case we would not be able to verify
3332 * that the metaslab_class space increased (because it decreases
3333 * when the device removal completes).
3334 */
3335 if (ztest_device_removal_active) {
3336 spa_config_exit(spa, SCL_STATE, spa);
3337 mutex_exit(&ztest_vdev_lock);
3338 mutex_exit(&ztest_checkpoint_lock);
3339 return;
3340 }
3341
3342 top = ztest_random_vdev_top(spa, B_TRUE);
3343
3344 tvd = spa->spa_root_vdev->vdev_child[top];
3345 mg = tvd->vdev_mg;
3346 mc = mg->mg_class;
3347 old_ms_count = tvd->vdev_ms_count;
3348 old_class_space = metaslab_class_get_space(mc);
3349
3350 /*
3351 * Determine the size of the first leaf vdev associated with
3352 * our top-level device.
3353 */
3354 vd = vdev_walk_tree(tvd, NULL, NULL);
3355 ASSERT3P(vd, !=, NULL);
3356 ASSERT(vd->vdev_ops->vdev_op_leaf);
3357
3358 psize = vd->vdev_psize;
3359
3360 /*
3361 * We only try to expand the vdev if it's healthy, less than 4x its
3362 * original size, and it has a valid psize.
3363 */
3364 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3365 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3366 spa_config_exit(spa, SCL_STATE, spa);
3367 mutex_exit(&ztest_vdev_lock);
3368 mutex_exit(&ztest_checkpoint_lock);
3369 return;
3370 }
3371 ASSERT(psize > 0);
3372 newsize = psize + psize / 8;
3373 ASSERT3U(newsize, >, psize);
3374
3375 if (ztest_opts.zo_verbose >= 6) {
3376 (void) printf("Expanding LUN %s from %lu to %lu\n",
3377 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3378 }
3379
3380 /*
3381 * Growing the vdev is a two step process:
3382 * 1). expand the physical size (i.e. relabel)
3383 * 2). online the vdev to create the new metaslabs
3384 */
3385 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3386 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3387 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3388 if (ztest_opts.zo_verbose >= 5) {
3389 (void) printf("Could not expand LUN because "
3390 "the vdev configuration changed.\n");
3391 }
3392 spa_config_exit(spa, SCL_STATE, spa);
3393 mutex_exit(&ztest_vdev_lock);
3394 mutex_exit(&ztest_checkpoint_lock);
3395 return;
3396 }
3397
3398 spa_config_exit(spa, SCL_STATE, spa);
3399
3400 /*
3401 * Expanding the LUN will update the config asynchronously,
3402 * thus we must wait for the async thread to complete any
3403 * pending tasks before proceeding.
3404 */
3405 for (;;) {
3406 boolean_t done;
3407 mutex_enter(&spa->spa_async_lock);
3408 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3409 mutex_exit(&spa->spa_async_lock);
3410 if (done)
3411 break;
3412 txg_wait_synced(spa_get_dsl(spa), 0);
3413 (void) poll(NULL, 0, 100);
3414 }
3415
3416 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3417
3418 tvd = spa->spa_root_vdev->vdev_child[top];
3419 new_ms_count = tvd->vdev_ms_count;
3420 new_class_space = metaslab_class_get_space(mc);
3421
3422 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3423 if (ztest_opts.zo_verbose >= 5) {
3424 (void) printf("Could not verify LUN expansion due to "
3425 "intervening vdev offline or remove.\n");
3426 }
3427 spa_config_exit(spa, SCL_STATE, spa);
3428 mutex_exit(&ztest_vdev_lock);
3429 mutex_exit(&ztest_checkpoint_lock);
3430 return;
3431 }
3432
3433 /*
3434 * Make sure we were able to grow the vdev.
3435 */
3436 if (new_ms_count <= old_ms_count) {
3437 fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
3438 old_ms_count, new_ms_count);
3439 }
3440
3441 /*
3442 * Make sure we were able to grow the pool.
3443 */
3444 if (new_class_space <= old_class_space) {
3445 fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
3446 old_class_space, new_class_space);
3447 }
3448
3449 if (ztest_opts.zo_verbose >= 5) {
3450 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3451
3452 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3453 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3454 (void) printf("%s grew from %s to %s\n",
3455 spa->spa_name, oldnumbuf, newnumbuf);
3456 }
3457
3458 spa_config_exit(spa, SCL_STATE, spa);
3459 mutex_exit(&ztest_vdev_lock);
3460 mutex_exit(&ztest_checkpoint_lock);
3461 }
3462
3463 /*
3464 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3465 */
3466 /* ARGSUSED */
3467 static void
ztest_objset_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)3468 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3469 {
3470 /*
3471 * Create the objects common to all ztest datasets.
3472 */
3473 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3474 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3475 }
3476
3477 static int
ztest_dataset_create(char * dsname)3478 ztest_dataset_create(char *dsname)
3479 {
3480 uint64_t zilset = ztest_random(100);
3481 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3482 ztest_objset_create_cb, NULL);
3483
3484 if (err || zilset < 80)
3485 return (err);
3486
3487 if (ztest_opts.zo_verbose >= 6)
3488 (void) printf("Setting dataset %s to sync always\n", dsname);
3489 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3490 ZFS_SYNC_ALWAYS, B_FALSE));
3491 }
3492
3493 /* ARGSUSED */
3494 static int
ztest_objset_destroy_cb(const char * name,void * arg)3495 ztest_objset_destroy_cb(const char *name, void *arg)
3496 {
3497 objset_t *os;
3498 dmu_object_info_t doi;
3499 int error;
3500
3501 /*
3502 * Verify that the dataset contains a directory object.
3503 */
3504 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3505 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3506 if (error != ENOENT) {
3507 /* We could have crashed in the middle of destroying it */
3508 ASSERT0(error);
3509 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3510 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3511 }
3512 dmu_objset_disown(os, FTAG);
3513
3514 /*
3515 * Destroy the dataset.
3516 */
3517 if (strchr(name, '@') != NULL) {
3518 VERIFY0(dsl_destroy_snapshot(name, B_FALSE));
3519 } else {
3520 VERIFY0(dsl_destroy_head(name));
3521 }
3522 return (0);
3523 }
3524
3525 static boolean_t
ztest_snapshot_create(char * osname,uint64_t id)3526 ztest_snapshot_create(char *osname, uint64_t id)
3527 {
3528 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3529 int error;
3530
3531 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3532
3533 error = dmu_objset_snapshot_one(osname, snapname);
3534 if (error == ENOSPC) {
3535 ztest_record_enospc(FTAG);
3536 return (B_FALSE);
3537 }
3538 if (error != 0 && error != EEXIST) {
3539 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3540 snapname, error);
3541 }
3542 return (B_TRUE);
3543 }
3544
3545 static boolean_t
ztest_snapshot_destroy(char * osname,uint64_t id)3546 ztest_snapshot_destroy(char *osname, uint64_t id)
3547 {
3548 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3549 int error;
3550
3551 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3552 (u_longlong_t)id);
3553
3554 error = dsl_destroy_snapshot(snapname, B_FALSE);
3555 if (error != 0 && error != ENOENT)
3556 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3557 return (B_TRUE);
3558 }
3559
3560 /* ARGSUSED */
3561 void
ztest_dmu_objset_create_destroy(ztest_ds_t * zd,uint64_t id)3562 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3563 {
3564 ztest_ds_t zdtmp;
3565 int iters;
3566 int error;
3567 objset_t *os, *os2;
3568 char name[ZFS_MAX_DATASET_NAME_LEN];
3569 zilog_t *zilog;
3570
3571 rw_enter(&ztest_name_lock, RW_READER);
3572
3573 (void) snprintf(name, sizeof (name), "%s/temp_%llu",
3574 ztest_opts.zo_pool, (u_longlong_t)id);
3575
3576 /*
3577 * If this dataset exists from a previous run, process its replay log
3578 * half of the time. If we don't replay it, then dmu_objset_destroy()
3579 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3580 */
3581 if (ztest_random(2) == 0 &&
3582 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3583 ztest_zd_init(&zdtmp, NULL, os);
3584 zil_replay(os, &zdtmp, ztest_replay_vector);
3585 ztest_zd_fini(&zdtmp);
3586 dmu_objset_disown(os, FTAG);
3587 }
3588
3589 /*
3590 * There may be an old instance of the dataset we're about to
3591 * create lying around from a previous run. If so, destroy it
3592 * and all of its snapshots.
3593 */
3594 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3595 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3596
3597 /*
3598 * Verify that the destroyed dataset is no longer in the namespace.
3599 */
3600 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3601 FTAG, &os));
3602
3603 /*
3604 * Verify that we can create a new dataset.
3605 */
3606 error = ztest_dataset_create(name);
3607 if (error) {
3608 if (error == ENOSPC) {
3609 ztest_record_enospc(FTAG);
3610 rw_exit(&ztest_name_lock);
3611 return;
3612 }
3613 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3614 }
3615
3616 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3617
3618 ztest_zd_init(&zdtmp, NULL, os);
3619
3620 /*
3621 * Open the intent log for it.
3622 */
3623 zilog = zil_open(os, ztest_get_data);
3624
3625 /*
3626 * Put some objects in there, do a little I/O to them,
3627 * and randomly take a couple of snapshots along the way.
3628 */
3629 iters = ztest_random(5);
3630 for (int i = 0; i < iters; i++) {
3631 ztest_dmu_object_alloc_free(&zdtmp, id);
3632 if (ztest_random(iters) == 0)
3633 (void) ztest_snapshot_create(name, i);
3634 }
3635
3636 /*
3637 * Verify that we cannot create an existing dataset.
3638 */
3639 VERIFY3U(EEXIST, ==,
3640 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3641
3642 /*
3643 * Verify that we can hold an objset that is also owned.
3644 */
3645 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3646 dmu_objset_rele(os2, FTAG);
3647
3648 /*
3649 * Verify that we cannot own an objset that is already owned.
3650 */
3651 VERIFY3U(EBUSY, ==,
3652 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3653
3654 zil_close(zilog);
3655 dmu_objset_disown(os, FTAG);
3656 ztest_zd_fini(&zdtmp);
3657
3658 rw_exit(&ztest_name_lock);
3659 }
3660
3661 /*
3662 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3663 */
3664 void
ztest_dmu_snapshot_create_destroy(ztest_ds_t * zd,uint64_t id)3665 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3666 {
3667 rw_enter(&ztest_name_lock, RW_READER);
3668 (void) ztest_snapshot_destroy(zd->zd_name, id);
3669 (void) ztest_snapshot_create(zd->zd_name, id);
3670 rw_exit(&ztest_name_lock);
3671 }
3672
3673 /*
3674 * Cleanup non-standard snapshots and clones.
3675 */
3676 void
ztest_dsl_dataset_cleanup(char * osname,uint64_t id)3677 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3678 {
3679 char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3680 char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3681 char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3682 char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3683 char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3684 int error;
3685
3686 (void) snprintf(snap1name, sizeof (snap1name),
3687 "%s@s1_%llu", osname, id);
3688 (void) snprintf(clone1name, sizeof (clone1name),
3689 "%s/c1_%llu", osname, id);
3690 (void) snprintf(snap2name, sizeof (snap2name),
3691 "%s@s2_%llu", clone1name, id);
3692 (void) snprintf(clone2name, sizeof (clone2name),
3693 "%s/c2_%llu", osname, id);
3694 (void) snprintf(snap3name, sizeof (snap3name),
3695 "%s@s3_%llu", clone1name, id);
3696
3697 error = dsl_destroy_head(clone2name);
3698 if (error && error != ENOENT)
3699 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3700 error = dsl_destroy_snapshot(snap3name, B_FALSE);
3701 if (error && error != ENOENT)
3702 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3703 error = dsl_destroy_snapshot(snap2name, B_FALSE);
3704 if (error && error != ENOENT)
3705 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3706 error = dsl_destroy_head(clone1name);
3707 if (error && error != ENOENT)
3708 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3709 error = dsl_destroy_snapshot(snap1name, B_FALSE);
3710 if (error && error != ENOENT)
3711 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3712 }
3713
3714 /*
3715 * Verify dsl_dataset_promote handles EBUSY
3716 */
3717 void
ztest_dsl_dataset_promote_busy(ztest_ds_t * zd,uint64_t id)3718 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3719 {
3720 objset_t *os;
3721 char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3722 char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3723 char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3724 char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3725 char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3726 char *osname = zd->zd_name;
3727 int error;
3728
3729 rw_enter(&ztest_name_lock, RW_READER);
3730
3731 ztest_dsl_dataset_cleanup(osname, id);
3732
3733 (void) snprintf(snap1name, sizeof (snap1name),
3734 "%s@s1_%llu", osname, id);
3735 (void) snprintf(clone1name, sizeof (clone1name),
3736 "%s/c1_%llu", osname, id);
3737 (void) snprintf(snap2name, sizeof (snap2name),
3738 "%s@s2_%llu", clone1name, id);
3739 (void) snprintf(clone2name, sizeof (clone2name),
3740 "%s/c2_%llu", osname, id);
3741 (void) snprintf(snap3name, sizeof (snap3name),
3742 "%s@s3_%llu", clone1name, id);
3743
3744 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3745 if (error && error != EEXIST) {
3746 if (error == ENOSPC) {
3747 ztest_record_enospc(FTAG);
3748 goto out;
3749 }
3750 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3751 }
3752
3753 error = dmu_objset_clone(clone1name, snap1name);
3754 if (error) {
3755 if (error == ENOSPC) {
3756 ztest_record_enospc(FTAG);
3757 goto out;
3758 }
3759 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3760 }
3761
3762 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3763 if (error && error != EEXIST) {
3764 if (error == ENOSPC) {
3765 ztest_record_enospc(FTAG);
3766 goto out;
3767 }
3768 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3769 }
3770
3771 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3772 if (error && error != EEXIST) {
3773 if (error == ENOSPC) {
3774 ztest_record_enospc(FTAG);
3775 goto out;
3776 }
3777 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3778 }
3779
3780 error = dmu_objset_clone(clone2name, snap3name);
3781 if (error) {
3782 if (error == ENOSPC) {
3783 ztest_record_enospc(FTAG);
3784 goto out;
3785 }
3786 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3787 }
3788
3789 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3790 if (error)
3791 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3792 error = dsl_dataset_promote(clone2name, NULL);
3793 if (error == ENOSPC) {
3794 dmu_objset_disown(os, FTAG);
3795 ztest_record_enospc(FTAG);
3796 goto out;
3797 }
3798 if (error != EBUSY)
3799 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3800 error);
3801 dmu_objset_disown(os, FTAG);
3802
3803 out:
3804 ztest_dsl_dataset_cleanup(osname, id);
3805
3806 rw_exit(&ztest_name_lock);
3807 }
3808
3809 /*
3810 * Verify that dmu_object_{alloc,free} work as expected.
3811 */
3812 void
ztest_dmu_object_alloc_free(ztest_ds_t * zd,uint64_t id)3813 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3814 {
3815 ztest_od_t od[4];
3816 int batchsize = sizeof (od) / sizeof (od[0]);
3817
3818 for (int b = 0; b < batchsize; b++)
3819 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0, 0);
3820
3821 /*
3822 * Destroy the previous batch of objects, create a new batch,
3823 * and do some I/O on the new objects.
3824 */
3825 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3826 return;
3827
3828 while (ztest_random(4 * batchsize) != 0)
3829 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3830 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3831 }
3832
3833 /*
3834 * Verify that dmu_{read,write} work as expected.
3835 */
3836 void
ztest_dmu_read_write(ztest_ds_t * zd,uint64_t id)3837 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3838 {
3839 objset_t *os = zd->zd_os;
3840 ztest_od_t od[2];
3841 dmu_tx_t *tx;
3842 int i, freeit, error;
3843 uint64_t n, s, txg;
3844 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3845 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3846 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3847 uint64_t regions = 997;
3848 uint64_t stride = 123456789ULL;
3849 uint64_t width = 40;
3850 int free_percent = 5;
3851
3852 /*
3853 * This test uses two objects, packobj and bigobj, that are always
3854 * updated together (i.e. in the same tx) so that their contents are
3855 * in sync and can be compared. Their contents relate to each other
3856 * in a simple way: packobj is a dense array of 'bufwad' structures,
3857 * while bigobj is a sparse array of the same bufwads. Specifically,
3858 * for any index n, there are three bufwads that should be identical:
3859 *
3860 * packobj, at offset n * sizeof (bufwad_t)
3861 * bigobj, at the head of the nth chunk
3862 * bigobj, at the tail of the nth chunk
3863 *
3864 * The chunk size is arbitrary. It doesn't have to be a power of two,
3865 * and it doesn't have any relation to the object blocksize.
3866 * The only requirement is that it can hold at least two bufwads.
3867 *
3868 * Normally, we write the bufwad to each of these locations.
3869 * However, free_percent of the time we instead write zeroes to
3870 * packobj and perform a dmu_free_range() on bigobj. By comparing
3871 * bigobj to packobj, we can verify that the DMU is correctly
3872 * tracking which parts of an object are allocated and free,
3873 * and that the contents of the allocated blocks are correct.
3874 */
3875
3876 /*
3877 * Read the directory info. If it's the first time, set things up.
3878 */
3879 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
3880 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
3881
3882 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3883 return;
3884
3885 bigobj = od[0].od_object;
3886 packobj = od[1].od_object;
3887 chunksize = od[0].od_gen;
3888 ASSERT(chunksize == od[1].od_gen);
3889
3890 /*
3891 * Prefetch a random chunk of the big object.
3892 * Our aim here is to get some async reads in flight
3893 * for blocks that we may free below; the DMU should
3894 * handle this race correctly.
3895 */
3896 n = ztest_random(regions) * stride + ztest_random(width);
3897 s = 1 + ztest_random(2 * width - 1);
3898 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3899 ZIO_PRIORITY_SYNC_READ);
3900
3901 /*
3902 * Pick a random index and compute the offsets into packobj and bigobj.
3903 */
3904 n = ztest_random(regions) * stride + ztest_random(width);
3905 s = 1 + ztest_random(width - 1);
3906
3907 packoff = n * sizeof (bufwad_t);
3908 packsize = s * sizeof (bufwad_t);
3909
3910 bigoff = n * chunksize;
3911 bigsize = s * chunksize;
3912
3913 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3914 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3915
3916 /*
3917 * free_percent of the time, free a range of bigobj rather than
3918 * overwriting it.
3919 */
3920 freeit = (ztest_random(100) < free_percent);
3921
3922 /*
3923 * Read the current contents of our objects.
3924 */
3925 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3926 DMU_READ_PREFETCH);
3927 ASSERT0(error);
3928 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3929 DMU_READ_PREFETCH);
3930 ASSERT0(error);
3931
3932 /*
3933 * Get a tx for the mods to both packobj and bigobj.
3934 */
3935 tx = dmu_tx_create(os);
3936
3937 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3938
3939 if (freeit)
3940 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3941 else
3942 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3943
3944 /* This accounts for setting the checksum/compression. */
3945 dmu_tx_hold_bonus(tx, bigobj);
3946
3947 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3948 if (txg == 0) {
3949 umem_free(packbuf, packsize);
3950 umem_free(bigbuf, bigsize);
3951 return;
3952 }
3953
3954 enum zio_checksum cksum;
3955 do {
3956 cksum = (enum zio_checksum)
3957 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3958 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3959 dmu_object_set_checksum(os, bigobj, cksum, tx);
3960
3961 enum zio_compress comp;
3962 do {
3963 comp = (enum zio_compress)
3964 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3965 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3966 dmu_object_set_compress(os, bigobj, comp, tx);
3967
3968 /*
3969 * For each index from n to n + s, verify that the existing bufwad
3970 * in packobj matches the bufwads at the head and tail of the
3971 * corresponding chunk in bigobj. Then update all three bufwads
3972 * with the new values we want to write out.
3973 */
3974 for (i = 0; i < s; i++) {
3975 /* LINTED */
3976 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3977 /* LINTED */
3978 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3979 /* LINTED */
3980 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3981
3982 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3983 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3984
3985 if (pack->bw_txg > txg)
3986 fatal(0, "future leak: got %llx, open txg is %llx",
3987 pack->bw_txg, txg);
3988
3989 if (pack->bw_data != 0 && pack->bw_index != n + i)
3990 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3991 pack->bw_index, n, i);
3992
3993 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3994 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3995
3996 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3997 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3998
3999 if (freeit) {
4000 bzero(pack, sizeof (bufwad_t));
4001 } else {
4002 pack->bw_index = n + i;
4003 pack->bw_txg = txg;
4004 pack->bw_data = 1 + ztest_random(-2ULL);
4005 }
4006 *bigH = *pack;
4007 *bigT = *pack;
4008 }
4009
4010 /*
4011 * We've verified all the old bufwads, and made new ones.
4012 * Now write them out.
4013 */
4014 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4015
4016 if (freeit) {
4017 if (ztest_opts.zo_verbose >= 7) {
4018 (void) printf("freeing offset %llx size %llx"
4019 " txg %llx\n",
4020 (u_longlong_t)bigoff,
4021 (u_longlong_t)bigsize,
4022 (u_longlong_t)txg);
4023 }
4024 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4025 } else {
4026 if (ztest_opts.zo_verbose >= 7) {
4027 (void) printf("writing offset %llx size %llx"
4028 " txg %llx\n",
4029 (u_longlong_t)bigoff,
4030 (u_longlong_t)bigsize,
4031 (u_longlong_t)txg);
4032 }
4033 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4034 }
4035
4036 dmu_tx_commit(tx);
4037
4038 /*
4039 * Sanity check the stuff we just wrote.
4040 */
4041 {
4042 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4043 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4044
4045 VERIFY(0 == dmu_read(os, packobj, packoff,
4046 packsize, packcheck, DMU_READ_PREFETCH));
4047 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4048 bigsize, bigcheck, DMU_READ_PREFETCH));
4049
4050 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4051 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4052
4053 umem_free(packcheck, packsize);
4054 umem_free(bigcheck, bigsize);
4055 }
4056
4057 umem_free(packbuf, packsize);
4058 umem_free(bigbuf, bigsize);
4059 }
4060
4061 void
compare_and_update_pbbufs(uint64_t s,bufwad_t * packbuf,bufwad_t * bigbuf,uint64_t bigsize,uint64_t n,uint64_t chunksize,uint64_t txg)4062 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4063 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4064 {
4065 uint64_t i;
4066 bufwad_t *pack;
4067 bufwad_t *bigH;
4068 bufwad_t *bigT;
4069
4070 /*
4071 * For each index from n to n + s, verify that the existing bufwad
4072 * in packobj matches the bufwads at the head and tail of the
4073 * corresponding chunk in bigobj. Then update all three bufwads
4074 * with the new values we want to write out.
4075 */
4076 for (i = 0; i < s; i++) {
4077 /* LINTED */
4078 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4079 /* LINTED */
4080 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4081 /* LINTED */
4082 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4083
4084 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4085 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4086
4087 if (pack->bw_txg > txg)
4088 fatal(0, "future leak: got %llx, open txg is %llx",
4089 pack->bw_txg, txg);
4090
4091 if (pack->bw_data != 0 && pack->bw_index != n + i)
4092 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4093 pack->bw_index, n, i);
4094
4095 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4096 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4097
4098 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4099 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4100
4101 pack->bw_index = n + i;
4102 pack->bw_txg = txg;
4103 pack->bw_data = 1 + ztest_random(-2ULL);
4104
4105 *bigH = *pack;
4106 *bigT = *pack;
4107 }
4108 }
4109
4110 void
ztest_dmu_read_write_zcopy(ztest_ds_t * zd,uint64_t id)4111 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4112 {
4113 objset_t *os = zd->zd_os;
4114 ztest_od_t od[2];
4115 dmu_tx_t *tx;
4116 uint64_t i;
4117 int error;
4118 uint64_t n, s, txg;
4119 bufwad_t *packbuf, *bigbuf;
4120 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4121 uint64_t blocksize = ztest_random_blocksize();
4122 uint64_t chunksize = blocksize;
4123 uint64_t regions = 997;
4124 uint64_t stride = 123456789ULL;
4125 uint64_t width = 9;
4126 dmu_buf_t *bonus_db;
4127 arc_buf_t **bigbuf_arcbufs;
4128 dmu_object_info_t doi;
4129
4130 /*
4131 * This test uses two objects, packobj and bigobj, that are always
4132 * updated together (i.e. in the same tx) so that their contents are
4133 * in sync and can be compared. Their contents relate to each other
4134 * in a simple way: packobj is a dense array of 'bufwad' structures,
4135 * while bigobj is a sparse array of the same bufwads. Specifically,
4136 * for any index n, there are three bufwads that should be identical:
4137 *
4138 * packobj, at offset n * sizeof (bufwad_t)
4139 * bigobj, at the head of the nth chunk
4140 * bigobj, at the tail of the nth chunk
4141 *
4142 * The chunk size is set equal to bigobj block size so that
4143 * dmu_assign_arcbuf() can be tested for object updates.
4144 */
4145
4146 /*
4147 * Read the directory info. If it's the first time, set things up.
4148 */
4149 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4150 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4151
4152 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4153 return;
4154
4155 bigobj = od[0].od_object;
4156 packobj = od[1].od_object;
4157 blocksize = od[0].od_blocksize;
4158 chunksize = blocksize;
4159 ASSERT(chunksize == od[1].od_gen);
4160
4161 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4162 VERIFY(ISP2(doi.doi_data_block_size));
4163 VERIFY(chunksize == doi.doi_data_block_size);
4164 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4165
4166 /*
4167 * Pick a random index and compute the offsets into packobj and bigobj.
4168 */
4169 n = ztest_random(regions) * stride + ztest_random(width);
4170 s = 1 + ztest_random(width - 1);
4171
4172 packoff = n * sizeof (bufwad_t);
4173 packsize = s * sizeof (bufwad_t);
4174
4175 bigoff = n * chunksize;
4176 bigsize = s * chunksize;
4177
4178 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4179 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4180
4181 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4182
4183 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4184
4185 /*
4186 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4187 * Iteration 1 test zcopy to already referenced dbufs.
4188 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4189 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4190 * Iteration 4 test zcopy when dbuf is no longer dirty.
4191 * Iteration 5 test zcopy when it can't be done.
4192 * Iteration 6 one more zcopy write.
4193 */
4194 for (i = 0; i < 7; i++) {
4195 uint64_t j;
4196 uint64_t off;
4197
4198 /*
4199 * In iteration 5 (i == 5) use arcbufs
4200 * that don't match bigobj blksz to test
4201 * dmu_assign_arcbuf() when it can't directly
4202 * assign an arcbuf to a dbuf.
4203 */
4204 for (j = 0; j < s; j++) {
4205 if (i != 5) {
4206 bigbuf_arcbufs[j] =
4207 dmu_request_arcbuf(bonus_db, chunksize);
4208 } else {
4209 bigbuf_arcbufs[2 * j] =
4210 dmu_request_arcbuf(bonus_db, chunksize / 2);
4211 bigbuf_arcbufs[2 * j + 1] =
4212 dmu_request_arcbuf(bonus_db, chunksize / 2);
4213 }
4214 }
4215
4216 /*
4217 * Get a tx for the mods to both packobj and bigobj.
4218 */
4219 tx = dmu_tx_create(os);
4220
4221 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4222 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4223
4224 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4225 if (txg == 0) {
4226 umem_free(packbuf, packsize);
4227 umem_free(bigbuf, bigsize);
4228 for (j = 0; j < s; j++) {
4229 if (i != 5) {
4230 dmu_return_arcbuf(bigbuf_arcbufs[j]);
4231 } else {
4232 dmu_return_arcbuf(
4233 bigbuf_arcbufs[2 * j]);
4234 dmu_return_arcbuf(
4235 bigbuf_arcbufs[2 * j + 1]);
4236 }
4237 }
4238 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4239 dmu_buf_rele(bonus_db, FTAG);
4240 return;
4241 }
4242
4243 /*
4244 * 50% of the time don't read objects in the 1st iteration to
4245 * test dmu_assign_arcbuf() for the case when there're no
4246 * existing dbufs for the specified offsets.
4247 */
4248 if (i != 0 || ztest_random(2) != 0) {
4249 error = dmu_read(os, packobj, packoff,
4250 packsize, packbuf, DMU_READ_PREFETCH);
4251 ASSERT0(error);
4252 error = dmu_read(os, bigobj, bigoff, bigsize,
4253 bigbuf, DMU_READ_PREFETCH);
4254 ASSERT0(error);
4255 }
4256 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4257 n, chunksize, txg);
4258
4259 /*
4260 * We've verified all the old bufwads, and made new ones.
4261 * Now write them out.
4262 */
4263 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4264 if (ztest_opts.zo_verbose >= 7) {
4265 (void) printf("writing offset %llx size %llx"
4266 " txg %llx\n",
4267 (u_longlong_t)bigoff,
4268 (u_longlong_t)bigsize,
4269 (u_longlong_t)txg);
4270 }
4271 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4272 dmu_buf_t *dbt;
4273 if (i != 5) {
4274 bcopy((caddr_t)bigbuf + (off - bigoff),
4275 bigbuf_arcbufs[j]->b_data, chunksize);
4276 } else {
4277 bcopy((caddr_t)bigbuf + (off - bigoff),
4278 bigbuf_arcbufs[2 * j]->b_data,
4279 chunksize / 2);
4280 bcopy((caddr_t)bigbuf + (off - bigoff) +
4281 chunksize / 2,
4282 bigbuf_arcbufs[2 * j + 1]->b_data,
4283 chunksize / 2);
4284 }
4285
4286 if (i == 1) {
4287 VERIFY(dmu_buf_hold(os, bigobj, off,
4288 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4289 }
4290 if (i != 5) {
4291 dmu_assign_arcbuf(bonus_db, off,
4292 bigbuf_arcbufs[j], tx);
4293 } else {
4294 dmu_assign_arcbuf(bonus_db, off,
4295 bigbuf_arcbufs[2 * j], tx);
4296 dmu_assign_arcbuf(bonus_db,
4297 off + chunksize / 2,
4298 bigbuf_arcbufs[2 * j + 1], tx);
4299 }
4300 if (i == 1) {
4301 dmu_buf_rele(dbt, FTAG);
4302 }
4303 }
4304 dmu_tx_commit(tx);
4305
4306 /*
4307 * Sanity check the stuff we just wrote.
4308 */
4309 {
4310 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4311 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4312
4313 VERIFY(0 == dmu_read(os, packobj, packoff,
4314 packsize, packcheck, DMU_READ_PREFETCH));
4315 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4316 bigsize, bigcheck, DMU_READ_PREFETCH));
4317
4318 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4319 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4320
4321 umem_free(packcheck, packsize);
4322 umem_free(bigcheck, bigsize);
4323 }
4324 if (i == 2) {
4325 txg_wait_open(dmu_objset_pool(os), 0);
4326 } else if (i == 3) {
4327 txg_wait_synced(dmu_objset_pool(os), 0);
4328 }
4329 }
4330
4331 dmu_buf_rele(bonus_db, FTAG);
4332 umem_free(packbuf, packsize);
4333 umem_free(bigbuf, bigsize);
4334 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4335 }
4336
4337 /* ARGSUSED */
4338 void
ztest_dmu_write_parallel(ztest_ds_t * zd,uint64_t id)4339 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4340 {
4341 ztest_od_t od[1];
4342 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4343 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4344
4345 /*
4346 * Have multiple threads write to large offsets in an object
4347 * to verify that parallel writes to an object -- even to the
4348 * same blocks within the object -- doesn't cause any trouble.
4349 */
4350 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
4351
4352 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4353 return;
4354
4355 while (ztest_random(10) != 0)
4356 ztest_io(zd, od[0].od_object, offset);
4357 }
4358
4359 void
ztest_dmu_prealloc(ztest_ds_t * zd,uint64_t id)4360 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4361 {
4362 ztest_od_t od[1];
4363 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4364 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4365 uint64_t count = ztest_random(20) + 1;
4366 uint64_t blocksize = ztest_random_blocksize();
4367 void *data;
4368
4369 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4370
4371 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4372 return;
4373
4374 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4375 return;
4376
4377 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4378
4379 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4380
4381 while (ztest_random(count) != 0) {
4382 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4383 if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4384 data) != 0)
4385 break;
4386 while (ztest_random(4) != 0)
4387 ztest_io(zd, od[0].od_object, randoff);
4388 }
4389
4390 umem_free(data, blocksize);
4391 }
4392
4393 /*
4394 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4395 */
4396 #define ZTEST_ZAP_MIN_INTS 1
4397 #define ZTEST_ZAP_MAX_INTS 4
4398 #define ZTEST_ZAP_MAX_PROPS 1000
4399
4400 void
ztest_zap(ztest_ds_t * zd,uint64_t id)4401 ztest_zap(ztest_ds_t *zd, uint64_t id)
4402 {
4403 objset_t *os = zd->zd_os;
4404 ztest_od_t od[1];
4405 uint64_t object;
4406 uint64_t txg, last_txg;
4407 uint64_t value[ZTEST_ZAP_MAX_INTS];
4408 uint64_t zl_ints, zl_intsize, prop;
4409 int i, ints;
4410 dmu_tx_t *tx;
4411 char propname[100], txgname[100];
4412 int error;
4413 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4414
4415 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4416
4417 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4418 return;
4419
4420 object = od[0].od_object;
4421
4422 /*
4423 * Generate a known hash collision, and verify that
4424 * we can lookup and remove both entries.
4425 */
4426 tx = dmu_tx_create(os);
4427 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4428 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4429 if (txg == 0)
4430 return;
4431 for (i = 0; i < 2; i++) {
4432 value[i] = i;
4433 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4434 1, &value[i], tx));
4435 }
4436 for (i = 0; i < 2; i++) {
4437 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4438 sizeof (uint64_t), 1, &value[i], tx));
4439 VERIFY3U(0, ==,
4440 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4441 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4442 ASSERT3U(zl_ints, ==, 1);
4443 }
4444 for (i = 0; i < 2; i++) {
4445 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4446 }
4447 dmu_tx_commit(tx);
4448
4449 /*
4450 * Generate a buch of random entries.
4451 */
4452 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4453
4454 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4455 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4456 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4457 bzero(value, sizeof (value));
4458 last_txg = 0;
4459
4460 /*
4461 * If these zap entries already exist, validate their contents.
4462 */
4463 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4464 if (error == 0) {
4465 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4466 ASSERT3U(zl_ints, ==, 1);
4467
4468 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4469 zl_ints, &last_txg) == 0);
4470
4471 VERIFY(zap_length(os, object, propname, &zl_intsize,
4472 &zl_ints) == 0);
4473
4474 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4475 ASSERT3U(zl_ints, ==, ints);
4476
4477 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4478 zl_ints, value) == 0);
4479
4480 for (i = 0; i < ints; i++) {
4481 ASSERT3U(value[i], ==, last_txg + object + i);
4482 }
4483 } else {
4484 ASSERT3U(error, ==, ENOENT);
4485 }
4486
4487 /*
4488 * Atomically update two entries in our zap object.
4489 * The first is named txg_%llu, and contains the txg
4490 * in which the property was last updated. The second
4491 * is named prop_%llu, and the nth element of its value
4492 * should be txg + object + n.
4493 */
4494 tx = dmu_tx_create(os);
4495 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4496 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4497 if (txg == 0)
4498 return;
4499
4500 if (last_txg > txg)
4501 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4502
4503 for (i = 0; i < ints; i++)
4504 value[i] = txg + object + i;
4505
4506 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4507 1, &txg, tx));
4508 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4509 ints, value, tx));
4510
4511 dmu_tx_commit(tx);
4512
4513 /*
4514 * Remove a random pair of entries.
4515 */
4516 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4517 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4518 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4519
4520 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4521
4522 if (error == ENOENT)
4523 return;
4524
4525 ASSERT0(error);
4526
4527 tx = dmu_tx_create(os);
4528 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4529 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4530 if (txg == 0)
4531 return;
4532 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4533 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4534 dmu_tx_commit(tx);
4535 }
4536
4537 /*
4538 * Testcase to test the upgrading of a microzap to fatzap.
4539 */
4540 void
ztest_fzap(ztest_ds_t * zd,uint64_t id)4541 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4542 {
4543 objset_t *os = zd->zd_os;
4544 ztest_od_t od[1];
4545 uint64_t object, txg;
4546
4547 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4548
4549 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4550 return;
4551
4552 object = od[0].od_object;
4553
4554 /*
4555 * Add entries to this ZAP and make sure it spills over
4556 * and gets upgraded to a fatzap. Also, since we are adding
4557 * 2050 entries we should see ptrtbl growth and leaf-block split.
4558 */
4559 for (int i = 0; i < 2050; i++) {
4560 char name[ZFS_MAX_DATASET_NAME_LEN];
4561 uint64_t value = i;
4562 dmu_tx_t *tx;
4563 int error;
4564
4565 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4566 id, value);
4567
4568 tx = dmu_tx_create(os);
4569 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4570 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4571 if (txg == 0)
4572 return;
4573 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4574 &value, tx);
4575 ASSERT(error == 0 || error == EEXIST);
4576 dmu_tx_commit(tx);
4577 }
4578 }
4579
4580 /* ARGSUSED */
4581 void
ztest_zap_parallel(ztest_ds_t * zd,uint64_t id)4582 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4583 {
4584 objset_t *os = zd->zd_os;
4585 ztest_od_t od[1];
4586 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4587 dmu_tx_t *tx;
4588 int i, namelen, error;
4589 int micro = ztest_random(2);
4590 char name[20], string_value[20];
4591 void *data;
4592
4593 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
4594
4595 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4596 return;
4597
4598 object = od[0].od_object;
4599
4600 /*
4601 * Generate a random name of the form 'xxx.....' where each
4602 * x is a random printable character and the dots are dots.
4603 * There are 94 such characters, and the name length goes from
4604 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4605 */
4606 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4607
4608 for (i = 0; i < 3; i++)
4609 name[i] = '!' + ztest_random('~' - '!' + 1);
4610 for (; i < namelen - 1; i++)
4611 name[i] = '.';
4612 name[i] = '\0';
4613
4614 if ((namelen & 1) || micro) {
4615 wsize = sizeof (txg);
4616 wc = 1;
4617 data = &txg;
4618 } else {
4619 wsize = 1;
4620 wc = namelen;
4621 data = string_value;
4622 }
4623
4624 count = -1ULL;
4625 VERIFY0(zap_count(os, object, &count));
4626 ASSERT(count != -1ULL);
4627
4628 /*
4629 * Select an operation: length, lookup, add, update, remove.
4630 */
4631 i = ztest_random(5);
4632
4633 if (i >= 2) {
4634 tx = dmu_tx_create(os);
4635 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4636 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4637 if (txg == 0)
4638 return;
4639 bcopy(name, string_value, namelen);
4640 } else {
4641 tx = NULL;
4642 txg = 0;
4643 bzero(string_value, namelen);
4644 }
4645
4646 switch (i) {
4647
4648 case 0:
4649 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4650 if (error == 0) {
4651 ASSERT3U(wsize, ==, zl_wsize);
4652 ASSERT3U(wc, ==, zl_wc);
4653 } else {
4654 ASSERT3U(error, ==, ENOENT);
4655 }
4656 break;
4657
4658 case 1:
4659 error = zap_lookup(os, object, name, wsize, wc, data);
4660 if (error == 0) {
4661 if (data == string_value &&
4662 bcmp(name, data, namelen) != 0)
4663 fatal(0, "name '%s' != val '%s' len %d",
4664 name, data, namelen);
4665 } else {
4666 ASSERT3U(error, ==, ENOENT);
4667 }
4668 break;
4669
4670 case 2:
4671 error = zap_add(os, object, name, wsize, wc, data, tx);
4672 ASSERT(error == 0 || error == EEXIST);
4673 break;
4674
4675 case 3:
4676 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4677 break;
4678
4679 case 4:
4680 error = zap_remove(os, object, name, tx);
4681 ASSERT(error == 0 || error == ENOENT);
4682 break;
4683 }
4684
4685 if (tx != NULL)
4686 dmu_tx_commit(tx);
4687 }
4688
4689 /*
4690 * Commit callback data.
4691 */
4692 typedef struct ztest_cb_data {
4693 list_node_t zcd_node;
4694 uint64_t zcd_txg;
4695 int zcd_expected_err;
4696 boolean_t zcd_added;
4697 boolean_t zcd_called;
4698 spa_t *zcd_spa;
4699 } ztest_cb_data_t;
4700
4701 /* This is the actual commit callback function */
4702 static void
ztest_commit_callback(void * arg,int error)4703 ztest_commit_callback(void *arg, int error)
4704 {
4705 ztest_cb_data_t *data = arg;
4706 uint64_t synced_txg;
4707
4708 VERIFY(data != NULL);
4709 VERIFY3S(data->zcd_expected_err, ==, error);
4710 VERIFY(!data->zcd_called);
4711
4712 synced_txg = spa_last_synced_txg(data->zcd_spa);
4713 if (data->zcd_txg > synced_txg)
4714 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4715 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4716 synced_txg);
4717
4718 data->zcd_called = B_TRUE;
4719
4720 if (error == ECANCELED) {
4721 ASSERT0(data->zcd_txg);
4722 ASSERT(!data->zcd_added);
4723
4724 /*
4725 * The private callback data should be destroyed here, but
4726 * since we are going to check the zcd_called field after
4727 * dmu_tx_abort(), we will destroy it there.
4728 */
4729 return;
4730 }
4731
4732 /* Was this callback added to the global callback list? */
4733 if (!data->zcd_added)
4734 goto out;
4735
4736 ASSERT3U(data->zcd_txg, !=, 0);
4737
4738 /* Remove our callback from the list */
4739 mutex_enter(&zcl.zcl_callbacks_lock);
4740 list_remove(&zcl.zcl_callbacks, data);
4741 mutex_exit(&zcl.zcl_callbacks_lock);
4742
4743 out:
4744 umem_free(data, sizeof (ztest_cb_data_t));
4745 }
4746
4747 /* Allocate and initialize callback data structure */
4748 static ztest_cb_data_t *
ztest_create_cb_data(objset_t * os,uint64_t txg)4749 ztest_create_cb_data(objset_t *os, uint64_t txg)
4750 {
4751 ztest_cb_data_t *cb_data;
4752
4753 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4754
4755 cb_data->zcd_txg = txg;
4756 cb_data->zcd_spa = dmu_objset_spa(os);
4757
4758 return (cb_data);
4759 }
4760
4761 /*
4762 * If a number of txgs equal to this threshold have been created after a commit
4763 * callback has been registered but not called, then we assume there is an
4764 * implementation bug.
4765 */
4766 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2)
4767
4768 /*
4769 * Commit callback test.
4770 */
4771 void
ztest_dmu_commit_callbacks(ztest_ds_t * zd,uint64_t id)4772 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4773 {
4774 objset_t *os = zd->zd_os;
4775 ztest_od_t od[1];
4776 dmu_tx_t *tx;
4777 ztest_cb_data_t *cb_data[3], *tmp_cb;
4778 uint64_t old_txg, txg;
4779 int i, error;
4780
4781 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
4782
4783 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4784 return;
4785
4786 tx = dmu_tx_create(os);
4787
4788 cb_data[0] = ztest_create_cb_data(os, 0);
4789 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4790
4791 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4792
4793 /* Every once in a while, abort the transaction on purpose */
4794 if (ztest_random(100) == 0)
4795 error = -1;
4796
4797 if (!error)
4798 error = dmu_tx_assign(tx, TXG_NOWAIT);
4799
4800 txg = error ? 0 : dmu_tx_get_txg(tx);
4801
4802 cb_data[0]->zcd_txg = txg;
4803 cb_data[1] = ztest_create_cb_data(os, txg);
4804 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4805
4806 if (error) {
4807 /*
4808 * It's not a strict requirement to call the registered
4809 * callbacks from inside dmu_tx_abort(), but that's what
4810 * it's supposed to happen in the current implementation
4811 * so we will check for that.
4812 */
4813 for (i = 0; i < 2; i++) {
4814 cb_data[i]->zcd_expected_err = ECANCELED;
4815 VERIFY(!cb_data[i]->zcd_called);
4816 }
4817
4818 dmu_tx_abort(tx);
4819
4820 for (i = 0; i < 2; i++) {
4821 VERIFY(cb_data[i]->zcd_called);
4822 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4823 }
4824
4825 return;
4826 }
4827
4828 cb_data[2] = ztest_create_cb_data(os, txg);
4829 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4830
4831 /*
4832 * Read existing data to make sure there isn't a future leak.
4833 */
4834 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4835 &old_txg, DMU_READ_PREFETCH));
4836
4837 if (old_txg > txg)
4838 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4839 old_txg, txg);
4840
4841 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4842
4843 mutex_enter(&zcl.zcl_callbacks_lock);
4844
4845 /*
4846 * Since commit callbacks don't have any ordering requirement and since
4847 * it is theoretically possible for a commit callback to be called
4848 * after an arbitrary amount of time has elapsed since its txg has been
4849 * synced, it is difficult to reliably determine whether a commit
4850 * callback hasn't been called due to high load or due to a flawed
4851 * implementation.
4852 *
4853 * In practice, we will assume that if after a certain number of txgs a
4854 * commit callback hasn't been called, then most likely there's an
4855 * implementation bug..
4856 */
4857 tmp_cb = list_head(&zcl.zcl_callbacks);
4858 if (tmp_cb != NULL &&
4859 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4860 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4861 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4862 }
4863
4864 /*
4865 * Let's find the place to insert our callbacks.
4866 *
4867 * Even though the list is ordered by txg, it is possible for the
4868 * insertion point to not be the end because our txg may already be
4869 * quiescing at this point and other callbacks in the open txg
4870 * (from other objsets) may have sneaked in.
4871 */
4872 tmp_cb = list_tail(&zcl.zcl_callbacks);
4873 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4874 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4875
4876 /* Add the 3 callbacks to the list */
4877 for (i = 0; i < 3; i++) {
4878 if (tmp_cb == NULL)
4879 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4880 else
4881 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4882 cb_data[i]);
4883
4884 cb_data[i]->zcd_added = B_TRUE;
4885 VERIFY(!cb_data[i]->zcd_called);
4886
4887 tmp_cb = cb_data[i];
4888 }
4889
4890 mutex_exit(&zcl.zcl_callbacks_lock);
4891
4892 dmu_tx_commit(tx);
4893 }
4894
4895 /*
4896 * Visit each object in the dataset. Verify that its properties
4897 * are consistent what was stored in the block tag when it was created,
4898 * and that its unused bonus buffer space has not been overwritten.
4899 */
4900 void
ztest_verify_dnode_bt(ztest_ds_t * zd,uint64_t id)4901 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
4902 {
4903 objset_t *os = zd->zd_os;
4904 uint64_t obj;
4905 int err = 0;
4906
4907 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
4908 ztest_block_tag_t *bt = NULL;
4909 dmu_object_info_t doi;
4910 dmu_buf_t *db;
4911
4912 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0)
4913 continue;
4914
4915 dmu_object_info_from_db(db, &doi);
4916 if (doi.doi_bonus_size >= sizeof (*bt))
4917 bt = ztest_bt_bonus(db);
4918
4919 if (bt && bt->bt_magic == BT_MAGIC) {
4920 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
4921 bt->bt_offset, bt->bt_gen, bt->bt_txg,
4922 bt->bt_crtxg);
4923 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
4924 }
4925
4926 dmu_buf_rele(db, FTAG);
4927 }
4928 }
4929
4930 /* ARGSUSED */
4931 void
ztest_dsl_prop_get_set(ztest_ds_t * zd,uint64_t id)4932 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4933 {
4934 zfs_prop_t proplist[] = {
4935 ZFS_PROP_CHECKSUM,
4936 ZFS_PROP_COMPRESSION,
4937 ZFS_PROP_COPIES,
4938 ZFS_PROP_DEDUP
4939 };
4940
4941 rw_enter(&ztest_name_lock, RW_READER);
4942
4943 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4944 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4945 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4946
4947 rw_exit(&ztest_name_lock);
4948 }
4949
4950 /* ARGSUSED */
4951 void
ztest_remap_blocks(ztest_ds_t * zd,uint64_t id)4952 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id)
4953 {
4954 rw_enter(&ztest_name_lock, RW_READER);
4955
4956 int error = dmu_objset_remap_indirects(zd->zd_name);
4957 if (error == ENOSPC)
4958 error = 0;
4959 ASSERT0(error);
4960
4961 rw_exit(&ztest_name_lock);
4962 }
4963
4964 /* ARGSUSED */
4965 void
ztest_spa_prop_get_set(ztest_ds_t * zd,uint64_t id)4966 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4967 {
4968 nvlist_t *props = NULL;
4969
4970 rw_enter(&ztest_name_lock, RW_READER);
4971
4972 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4973 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4974
4975 VERIFY0(spa_prop_get(ztest_spa, &props));
4976
4977 if (ztest_opts.zo_verbose >= 6)
4978 dump_nvlist(props, 4);
4979
4980 nvlist_free(props);
4981
4982 rw_exit(&ztest_name_lock);
4983 }
4984
4985 static int
user_release_one(const char * snapname,const char * holdname)4986 user_release_one(const char *snapname, const char *holdname)
4987 {
4988 nvlist_t *snaps, *holds;
4989 int error;
4990
4991 snaps = fnvlist_alloc();
4992 holds = fnvlist_alloc();
4993 fnvlist_add_boolean(holds, holdname);
4994 fnvlist_add_nvlist(snaps, snapname, holds);
4995 fnvlist_free(holds);
4996 error = dsl_dataset_user_release(snaps, NULL);
4997 fnvlist_free(snaps);
4998 return (error);
4999 }
5000
5001 /*
5002 * Test snapshot hold/release and deferred destroy.
5003 */
5004 void
ztest_dmu_snapshot_hold(ztest_ds_t * zd,uint64_t id)5005 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5006 {
5007 int error;
5008 objset_t *os = zd->zd_os;
5009 objset_t *origin;
5010 char snapname[100];
5011 char fullname[100];
5012 char clonename[100];
5013 char tag[100];
5014 char osname[ZFS_MAX_DATASET_NAME_LEN];
5015 nvlist_t *holds;
5016
5017 rw_enter(&ztest_name_lock, RW_READER);
5018
5019 dmu_objset_name(os, osname);
5020
5021 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
5022 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5023 (void) snprintf(clonename, sizeof (clonename),
5024 "%s/ch1_%llu", osname, id);
5025 (void) snprintf(tag, sizeof (tag), "tag_%llu", id);
5026
5027 /*
5028 * Clean up from any previous run.
5029 */
5030 error = dsl_destroy_head(clonename);
5031 if (error != ENOENT)
5032 ASSERT0(error);
5033 error = user_release_one(fullname, tag);
5034 if (error != ESRCH && error != ENOENT)
5035 ASSERT0(error);
5036 error = dsl_destroy_snapshot(fullname, B_FALSE);
5037 if (error != ENOENT)
5038 ASSERT0(error);
5039
5040 /*
5041 * Create snapshot, clone it, mark snap for deferred destroy,
5042 * destroy clone, verify snap was also destroyed.
5043 */
5044 error = dmu_objset_snapshot_one(osname, snapname);
5045 if (error) {
5046 if (error == ENOSPC) {
5047 ztest_record_enospc("dmu_objset_snapshot");
5048 goto out;
5049 }
5050 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5051 }
5052
5053 error = dmu_objset_clone(clonename, fullname);
5054 if (error) {
5055 if (error == ENOSPC) {
5056 ztest_record_enospc("dmu_objset_clone");
5057 goto out;
5058 }
5059 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5060 }
5061
5062 error = dsl_destroy_snapshot(fullname, B_TRUE);
5063 if (error) {
5064 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5065 fullname, error);
5066 }
5067
5068 error = dsl_destroy_head(clonename);
5069 if (error)
5070 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5071
5072 error = dmu_objset_hold(fullname, FTAG, &origin);
5073 if (error != ENOENT)
5074 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5075
5076 /*
5077 * Create snapshot, add temporary hold, verify that we can't
5078 * destroy a held snapshot, mark for deferred destroy,
5079 * release hold, verify snapshot was destroyed.
5080 */
5081 error = dmu_objset_snapshot_one(osname, snapname);
5082 if (error) {
5083 if (error == ENOSPC) {
5084 ztest_record_enospc("dmu_objset_snapshot");
5085 goto out;
5086 }
5087 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5088 }
5089
5090 holds = fnvlist_alloc();
5091 fnvlist_add_string(holds, fullname, tag);
5092 error = dsl_dataset_user_hold(holds, 0, NULL);
5093 fnvlist_free(holds);
5094
5095 if (error == ENOSPC) {
5096 ztest_record_enospc("dsl_dataset_user_hold");
5097 goto out;
5098 } else if (error) {
5099 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5100 fullname, tag, error);
5101 }
5102
5103 error = dsl_destroy_snapshot(fullname, B_FALSE);
5104 if (error != EBUSY) {
5105 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5106 fullname, error);
5107 }
5108
5109 error = dsl_destroy_snapshot(fullname, B_TRUE);
5110 if (error) {
5111 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5112 fullname, error);
5113 }
5114
5115 error = user_release_one(fullname, tag);
5116 if (error)
5117 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5118
5119 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5120
5121 out:
5122 rw_exit(&ztest_name_lock);
5123 }
5124
5125 /*
5126 * Inject random faults into the on-disk data.
5127 */
5128 /* ARGSUSED */
5129 void
ztest_fault_inject(ztest_ds_t * zd,uint64_t id)5130 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5131 {
5132 ztest_shared_t *zs = ztest_shared;
5133 spa_t *spa = ztest_spa;
5134 int fd;
5135 uint64_t offset;
5136 uint64_t leaves;
5137 uint64_t bad = 0x1990c0ffeedecadeULL;
5138 uint64_t top, leaf;
5139 char path0[MAXPATHLEN];
5140 char pathrand[MAXPATHLEN];
5141 size_t fsize;
5142 int bshift = SPA_MAXBLOCKSHIFT + 2;
5143 int iters = 1000;
5144 int maxfaults;
5145 int mirror_save;
5146 vdev_t *vd0 = NULL;
5147 uint64_t guid0 = 0;
5148 boolean_t islog = B_FALSE;
5149
5150 mutex_enter(&ztest_vdev_lock);
5151
5152 /*
5153 * Device removal is in progress, fault injection must be disabled
5154 * until it completes and the pool is scrubbed. The fault injection
5155 * strategy for damaging blocks does not take in to account evacuated
5156 * blocks which may have already been damaged.
5157 */
5158 if (ztest_device_removal_active) {
5159 mutex_exit(&ztest_vdev_lock);
5160 return;
5161 }
5162
5163 maxfaults = MAXFAULTS();
5164 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
5165 mirror_save = zs->zs_mirrors;
5166 mutex_exit(&ztest_vdev_lock);
5167
5168 ASSERT(leaves >= 1);
5169
5170 /*
5171 * Grab the name lock as reader. There are some operations
5172 * which don't like to have their vdevs changed while
5173 * they are in progress (i.e. spa_change_guid). Those
5174 * operations will have grabbed the name lock as writer.
5175 */
5176 rw_enter(&ztest_name_lock, RW_READER);
5177
5178 /*
5179 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5180 */
5181 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5182
5183 if (ztest_random(2) == 0) {
5184 /*
5185 * Inject errors on a normal data device or slog device.
5186 */
5187 top = ztest_random_vdev_top(spa, B_TRUE);
5188 leaf = ztest_random(leaves) + zs->zs_splits;
5189
5190 /*
5191 * Generate paths to the first leaf in this top-level vdev,
5192 * and to the random leaf we selected. We'll induce transient
5193 * write failures and random online/offline activity on leaf 0,
5194 * and we'll write random garbage to the randomly chosen leaf.
5195 */
5196 (void) snprintf(path0, sizeof (path0), ztest_dev_template,
5197 ztest_opts.zo_dir, ztest_opts.zo_pool,
5198 top * leaves + zs->zs_splits);
5199 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
5200 ztest_opts.zo_dir, ztest_opts.zo_pool,
5201 top * leaves + leaf);
5202
5203 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5204 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5205 islog = B_TRUE;
5206
5207 /*
5208 * If the top-level vdev needs to be resilvered
5209 * then we only allow faults on the device that is
5210 * resilvering.
5211 */
5212 if (vd0 != NULL && maxfaults != 1 &&
5213 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5214 vd0->vdev_resilver_txg != 0)) {
5215 /*
5216 * Make vd0 explicitly claim to be unreadable,
5217 * or unwriteable, or reach behind its back
5218 * and close the underlying fd. We can do this if
5219 * maxfaults == 0 because we'll fail and reexecute,
5220 * and we can do it if maxfaults >= 2 because we'll
5221 * have enough redundancy. If maxfaults == 1, the
5222 * combination of this with injection of random data
5223 * corruption below exceeds the pool's fault tolerance.
5224 */
5225 vdev_file_t *vf = vd0->vdev_tsd;
5226
5227 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
5228 (long long)vd0->vdev_id, (int)maxfaults);
5229
5230 if (vf != NULL && ztest_random(3) == 0) {
5231 (void) close(vf->vf_vnode->v_fd);
5232 vf->vf_vnode->v_fd = -1;
5233 } else if (ztest_random(2) == 0) {
5234 vd0->vdev_cant_read = B_TRUE;
5235 } else {
5236 vd0->vdev_cant_write = B_TRUE;
5237 }
5238 guid0 = vd0->vdev_guid;
5239 }
5240 } else {
5241 /*
5242 * Inject errors on an l2cache device.
5243 */
5244 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5245
5246 if (sav->sav_count == 0) {
5247 spa_config_exit(spa, SCL_STATE, FTAG);
5248 rw_exit(&ztest_name_lock);
5249 return;
5250 }
5251 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5252 guid0 = vd0->vdev_guid;
5253 (void) strcpy(path0, vd0->vdev_path);
5254 (void) strcpy(pathrand, vd0->vdev_path);
5255
5256 leaf = 0;
5257 leaves = 1;
5258 maxfaults = INT_MAX; /* no limit on cache devices */
5259 }
5260
5261 spa_config_exit(spa, SCL_STATE, FTAG);
5262 rw_exit(&ztest_name_lock);
5263
5264 /*
5265 * If we can tolerate two or more faults, or we're dealing
5266 * with a slog, randomly online/offline vd0.
5267 */
5268 if ((maxfaults >= 2 || islog) && guid0 != 0) {
5269 if (ztest_random(10) < 6) {
5270 int flags = (ztest_random(2) == 0 ?
5271 ZFS_OFFLINE_TEMPORARY : 0);
5272
5273 /*
5274 * We have to grab the zs_name_lock as writer to
5275 * prevent a race between offlining a slog and
5276 * destroying a dataset. Offlining the slog will
5277 * grab a reference on the dataset which may cause
5278 * dmu_objset_destroy() to fail with EBUSY thus
5279 * leaving the dataset in an inconsistent state.
5280 */
5281 if (islog)
5282 rw_enter(&ztest_name_lock, RW_WRITER);
5283
5284 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5285
5286 if (islog)
5287 rw_exit(&ztest_name_lock);
5288 } else {
5289 /*
5290 * Ideally we would like to be able to randomly
5291 * call vdev_[on|off]line without holding locks
5292 * to force unpredictable failures but the side
5293 * effects of vdev_[on|off]line prevent us from
5294 * doing so. We grab the ztest_vdev_lock here to
5295 * prevent a race between injection testing and
5296 * aux_vdev removal.
5297 */
5298 mutex_enter(&ztest_vdev_lock);
5299 (void) vdev_online(spa, guid0, 0, NULL);
5300 mutex_exit(&ztest_vdev_lock);
5301 }
5302 }
5303
5304 if (maxfaults == 0)
5305 return;
5306
5307 /*
5308 * We have at least single-fault tolerance, so inject data corruption.
5309 */
5310 fd = open(pathrand, O_RDWR);
5311
5312 if (fd == -1) /* we hit a gap in the device namespace */
5313 return;
5314
5315 fsize = lseek(fd, 0, SEEK_END);
5316
5317 while (--iters != 0) {
5318 /*
5319 * The offset must be chosen carefully to ensure that
5320 * we do not inject a given logical block with errors
5321 * on two different leaf devices, because ZFS can not
5322 * tolerate that (if maxfaults==1).
5323 *
5324 * We divide each leaf into chunks of size
5325 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk
5326 * there is a series of ranges to which we can inject errors.
5327 * Each range can accept errors on only a single leaf vdev.
5328 * The error injection ranges are separated by ranges
5329 * which we will not inject errors on any device (DMZs).
5330 * Each DMZ must be large enough such that a single block
5331 * can not straddle it, so that a single block can not be
5332 * a target in two different injection ranges (on different
5333 * leaf vdevs).
5334 *
5335 * For example, with 3 leaves, each chunk looks like:
5336 * 0 to 32M: injection range for leaf 0
5337 * 32M to 64M: DMZ - no injection allowed
5338 * 64M to 96M: injection range for leaf 1
5339 * 96M to 128M: DMZ - no injection allowed
5340 * 128M to 160M: injection range for leaf 2
5341 * 160M to 192M: DMZ - no injection allowed
5342 */
5343 offset = ztest_random(fsize / (leaves << bshift)) *
5344 (leaves << bshift) + (leaf << bshift) +
5345 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5346
5347 /*
5348 * Only allow damage to the labels at one end of the vdev.
5349 *
5350 * If all labels are damaged, the device will be totally
5351 * inaccessible, which will result in loss of data,
5352 * because we also damage (parts of) the other side of
5353 * the mirror/raidz.
5354 *
5355 * Additionally, we will always have both an even and an
5356 * odd label, so that we can handle crashes in the
5357 * middle of vdev_config_sync().
5358 */
5359 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5360 continue;
5361
5362 /*
5363 * The two end labels are stored at the "end" of the disk, but
5364 * the end of the disk (vdev_psize) is aligned to
5365 * sizeof (vdev_label_t).
5366 */
5367 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5368 if ((leaf & 1) == 1 &&
5369 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5370 continue;
5371
5372 mutex_enter(&ztest_vdev_lock);
5373 if (mirror_save != zs->zs_mirrors) {
5374 mutex_exit(&ztest_vdev_lock);
5375 (void) close(fd);
5376 return;
5377 }
5378
5379 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5380 fatal(1, "can't inject bad word at 0x%llx in %s",
5381 offset, pathrand);
5382
5383 mutex_exit(&ztest_vdev_lock);
5384
5385 if (ztest_opts.zo_verbose >= 7)
5386 (void) printf("injected bad word into %s,"
5387 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5388 }
5389
5390 (void) close(fd);
5391 }
5392
5393 /*
5394 * Verify that DDT repair works as expected.
5395 */
5396 void
ztest_ddt_repair(ztest_ds_t * zd,uint64_t id)5397 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5398 {
5399 ztest_shared_t *zs = ztest_shared;
5400 spa_t *spa = ztest_spa;
5401 objset_t *os = zd->zd_os;
5402 ztest_od_t od[1];
5403 uint64_t object, blocksize, txg, pattern, psize;
5404 enum zio_checksum checksum = spa_dedup_checksum(spa);
5405 dmu_buf_t *db;
5406 dmu_tx_t *tx;
5407 abd_t *abd;
5408 blkptr_t blk;
5409 int copies = 2 * ZIO_DEDUPDITTO_MIN;
5410
5411 blocksize = ztest_random_blocksize();
5412 blocksize = MIN(blocksize, 2048); /* because we write so many */
5413
5414 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5415
5416 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5417 return;
5418
5419 /*
5420 * Take the name lock as writer to prevent anyone else from changing
5421 * the pool and dataset properies we need to maintain during this test.
5422 */
5423 rw_enter(&ztest_name_lock, RW_WRITER);
5424
5425 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5426 B_FALSE) != 0 ||
5427 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5428 B_FALSE) != 0) {
5429 rw_exit(&ztest_name_lock);
5430 return;
5431 }
5432
5433 dmu_objset_stats_t dds;
5434 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5435 dmu_objset_fast_stat(os, &dds);
5436 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5437
5438 object = od[0].od_object;
5439 blocksize = od[0].od_blocksize;
5440 pattern = zs->zs_guid ^ dds.dds_guid;
5441
5442 ASSERT(object != 0);
5443
5444 tx = dmu_tx_create(os);
5445 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5446 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5447 if (txg == 0) {
5448 rw_exit(&ztest_name_lock);
5449 return;
5450 }
5451
5452 /*
5453 * Write all the copies of our block.
5454 */
5455 for (int i = 0; i < copies; i++) {
5456 uint64_t offset = i * blocksize;
5457 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5458 DMU_READ_NO_PREFETCH);
5459 if (error != 0) {
5460 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5461 os, (long long)object, (long long) offset, error);
5462 }
5463 ASSERT(db->db_offset == offset);
5464 ASSERT(db->db_size == blocksize);
5465 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5466 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5467 dmu_buf_will_fill(db, tx);
5468 ztest_pattern_set(db->db_data, db->db_size, pattern);
5469 dmu_buf_rele(db, FTAG);
5470 }
5471
5472 dmu_tx_commit(tx);
5473 txg_wait_synced(spa_get_dsl(spa), txg);
5474
5475 /*
5476 * Find out what block we got.
5477 */
5478 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5479 DMU_READ_NO_PREFETCH));
5480 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5481 dmu_buf_rele(db, FTAG);
5482
5483 /*
5484 * Damage the block. Dedup-ditto will save us when we read it later.
5485 */
5486 psize = BP_GET_PSIZE(&blk);
5487 abd = abd_alloc_linear(psize, B_TRUE);
5488 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5489
5490 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5491 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5492 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5493
5494 abd_free(abd);
5495
5496 rw_exit(&ztest_name_lock);
5497 }
5498
5499 /*
5500 * Scrub the pool.
5501 */
5502 /* ARGSUSED */
5503 void
ztest_scrub(ztest_ds_t * zd,uint64_t id)5504 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5505 {
5506 spa_t *spa = ztest_spa;
5507
5508 /*
5509 * Scrub in progress by device removal.
5510 */
5511 if (ztest_device_removal_active)
5512 return;
5513
5514 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5515 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5516 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5517 }
5518
5519 /*
5520 * Change the guid for the pool.
5521 */
5522 /* ARGSUSED */
5523 void
ztest_reguid(ztest_ds_t * zd,uint64_t id)5524 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5525 {
5526 spa_t *spa = ztest_spa;
5527 uint64_t orig, load;
5528 int error;
5529
5530 orig = spa_guid(spa);
5531 load = spa_load_guid(spa);
5532
5533 rw_enter(&ztest_name_lock, RW_WRITER);
5534 error = spa_change_guid(spa);
5535 rw_exit(&ztest_name_lock);
5536
5537 if (error != 0)
5538 return;
5539
5540 if (ztest_opts.zo_verbose >= 4) {
5541 (void) printf("Changed guid old %llu -> %llu\n",
5542 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5543 }
5544
5545 VERIFY3U(orig, !=, spa_guid(spa));
5546 VERIFY3U(load, ==, spa_load_guid(spa));
5547 }
5548
5549 static vdev_t *
ztest_random_concrete_vdev_leaf(vdev_t * vd)5550 ztest_random_concrete_vdev_leaf(vdev_t *vd)
5551 {
5552 if (vd == NULL)
5553 return (NULL);
5554
5555 if (vd->vdev_children == 0)
5556 return (vd);
5557
5558 vdev_t *eligible[vd->vdev_children];
5559 int eligible_idx = 0, i;
5560 for (i = 0; i < vd->vdev_children; i++) {
5561 vdev_t *cvd = vd->vdev_child[i];
5562 if (cvd->vdev_top->vdev_removing)
5563 continue;
5564 if (cvd->vdev_children > 0 ||
5565 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
5566 eligible[eligible_idx++] = cvd;
5567 }
5568 }
5569 VERIFY(eligible_idx > 0);
5570
5571 uint64_t child_no = ztest_random(eligible_idx);
5572 return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
5573 }
5574
5575 /* ARGSUSED */
5576 void
ztest_initialize(ztest_ds_t * zd,uint64_t id)5577 ztest_initialize(ztest_ds_t *zd, uint64_t id)
5578 {
5579 spa_t *spa = ztest_spa;
5580 int error = 0;
5581
5582 mutex_enter(&ztest_vdev_lock);
5583
5584 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5585
5586 /* Random leaf vdev */
5587 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
5588 if (rand_vd == NULL) {
5589 spa_config_exit(spa, SCL_VDEV, FTAG);
5590 mutex_exit(&ztest_vdev_lock);
5591 return;
5592 }
5593
5594 /*
5595 * The random vdev we've selected may change as soon as we
5596 * drop the spa_config_lock. We create local copies of things
5597 * we're interested in.
5598 */
5599 uint64_t guid = rand_vd->vdev_guid;
5600 char *path = strdup(rand_vd->vdev_path);
5601 boolean_t active = rand_vd->vdev_initialize_thread != NULL;
5602
5603 zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid);
5604 spa_config_exit(spa, SCL_VDEV, FTAG);
5605
5606 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
5607 error = spa_vdev_initialize(spa, guid, cmd);
5608 switch (cmd) {
5609 case POOL_INITIALIZE_CANCEL:
5610 if (ztest_opts.zo_verbose >= 4) {
5611 (void) printf("Cancel initialize %s", path);
5612 if (!active)
5613 (void) printf(" failed (no initialize active)");
5614 (void) printf("\n");
5615 }
5616 break;
5617 case POOL_INITIALIZE_DO:
5618 if (ztest_opts.zo_verbose >= 4) {
5619 (void) printf("Start initialize %s", path);
5620 if (active && error == 0)
5621 (void) printf(" failed (already active)");
5622 else if (error != 0)
5623 (void) printf(" failed (error %d)", error);
5624 (void) printf("\n");
5625 }
5626 break;
5627 case POOL_INITIALIZE_SUSPEND:
5628 if (ztest_opts.zo_verbose >= 4) {
5629 (void) printf("Suspend initialize %s", path);
5630 if (!active)
5631 (void) printf(" failed (no initialize active)");
5632 (void) printf("\n");
5633 }
5634 break;
5635 }
5636 free(path);
5637 mutex_exit(&ztest_vdev_lock);
5638 }
5639
5640 /*
5641 * Verify pool integrity by running zdb.
5642 */
5643 static void
ztest_run_zdb(char * pool)5644 ztest_run_zdb(char *pool)
5645 {
5646 int status;
5647 char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5648 char zbuf[1024];
5649 char *bin;
5650 char *ztest;
5651 char *isa;
5652 int isalen;
5653 FILE *fp;
5654
5655 strlcpy(zdb, "/usr/bin/ztest", sizeof(zdb));
5656
5657 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5658 bin = strstr(zdb, "/usr/bin/");
5659 ztest = strstr(bin, "/ztest");
5660 isa = bin + 8;
5661 isalen = ztest - isa;
5662 isa = strdup(isa);
5663 /* LINTED */
5664 (void) sprintf(bin,
5665 "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s",
5666 isalen,
5667 isa,
5668 ztest_opts.zo_verbose >= 3 ? "s" : "",
5669 ztest_opts.zo_verbose >= 4 ? "v" : "",
5670 spa_config_path,
5671 pool);
5672 free(isa);
5673
5674 if (ztest_opts.zo_verbose >= 5)
5675 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
5676
5677 fp = popen(zdb, "r");
5678 assert(fp != NULL);
5679
5680 while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5681 if (ztest_opts.zo_verbose >= 3)
5682 (void) printf("%s", zbuf);
5683
5684 status = pclose(fp);
5685
5686 if (status == 0)
5687 return;
5688
5689 ztest_dump_core = 0;
5690 if (WIFEXITED(status))
5691 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5692 else
5693 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5694 }
5695
5696 static void
ztest_walk_pool_directory(char * header)5697 ztest_walk_pool_directory(char *header)
5698 {
5699 spa_t *spa = NULL;
5700
5701 if (ztest_opts.zo_verbose >= 6)
5702 (void) printf("%s\n", header);
5703
5704 mutex_enter(&spa_namespace_lock);
5705 while ((spa = spa_next(spa)) != NULL)
5706 if (ztest_opts.zo_verbose >= 6)
5707 (void) printf("\t%s\n", spa_name(spa));
5708 mutex_exit(&spa_namespace_lock);
5709 }
5710
5711 static void
ztest_spa_import_export(char * oldname,char * newname)5712 ztest_spa_import_export(char *oldname, char *newname)
5713 {
5714 nvlist_t *config, *newconfig;
5715 uint64_t pool_guid;
5716 spa_t *spa;
5717 int error;
5718
5719 if (ztest_opts.zo_verbose >= 4) {
5720 (void) printf("import/export: old = %s, new = %s\n",
5721 oldname, newname);
5722 }
5723
5724 /*
5725 * Clean up from previous runs.
5726 */
5727 (void) spa_destroy(newname);
5728
5729 /*
5730 * Get the pool's configuration and guid.
5731 */
5732 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5733
5734 /*
5735 * Kick off a scrub to tickle scrub/export races.
5736 */
5737 if (ztest_random(2) == 0)
5738 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5739
5740 pool_guid = spa_guid(spa);
5741 spa_close(spa, FTAG);
5742
5743 ztest_walk_pool_directory("pools before export");
5744
5745 /*
5746 * Export it.
5747 */
5748 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5749
5750 ztest_walk_pool_directory("pools after export");
5751
5752 /*
5753 * Try to import it.
5754 */
5755 newconfig = spa_tryimport(config);
5756 ASSERT(newconfig != NULL);
5757 nvlist_free(newconfig);
5758
5759 /*
5760 * Import it under the new name.
5761 */
5762 error = spa_import(newname, config, NULL, 0);
5763 if (error != 0) {
5764 dump_nvlist(config, 0);
5765 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5766 oldname, newname, error);
5767 }
5768
5769 ztest_walk_pool_directory("pools after import");
5770
5771 /*
5772 * Try to import it again -- should fail with EEXIST.
5773 */
5774 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5775
5776 /*
5777 * Try to import it under a different name -- should fail with EEXIST.
5778 */
5779 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5780
5781 /*
5782 * Verify that the pool is no longer visible under the old name.
5783 */
5784 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5785
5786 /*
5787 * Verify that we can open and close the pool using the new name.
5788 */
5789 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5790 ASSERT(pool_guid == spa_guid(spa));
5791 spa_close(spa, FTAG);
5792
5793 nvlist_free(config);
5794 }
5795
5796 static void
ztest_resume(spa_t * spa)5797 ztest_resume(spa_t *spa)
5798 {
5799 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5800 (void) printf("resuming from suspended state\n");
5801 spa_vdev_state_enter(spa, SCL_NONE);
5802 vdev_clear(spa, NULL);
5803 (void) spa_vdev_state_exit(spa, NULL, 0);
5804 (void) zio_resume(spa);
5805 }
5806
5807 static void *
ztest_resume_thread(void * arg)5808 ztest_resume_thread(void *arg)
5809 {
5810 spa_t *spa = arg;
5811
5812 while (!ztest_exiting) {
5813 if (spa_suspended(spa))
5814 ztest_resume(spa);
5815 (void) poll(NULL, 0, 100);
5816
5817 /*
5818 * Periodically change the zfs_compressed_arc_enabled setting.
5819 */
5820 if (ztest_random(10) == 0)
5821 zfs_compressed_arc_enabled = ztest_random(2);
5822
5823 /*
5824 * Periodically change the zfs_abd_scatter_enabled setting.
5825 */
5826 if (ztest_random(10) == 0)
5827 zfs_abd_scatter_enabled = ztest_random(2);
5828 }
5829 return (NULL);
5830 }
5831
5832 static void *
ztest_deadman_thread(void * arg)5833 ztest_deadman_thread(void *arg)
5834 {
5835 ztest_shared_t *zs = arg;
5836 spa_t *spa = ztest_spa;
5837 hrtime_t delta, total = 0;
5838
5839 for (;;) {
5840 delta = zs->zs_thread_stop - zs->zs_thread_start +
5841 MSEC2NSEC(zfs_deadman_synctime_ms);
5842
5843 (void) poll(NULL, 0, (int)NSEC2MSEC(delta));
5844
5845 /*
5846 * If the pool is suspended then fail immediately. Otherwise,
5847 * check to see if the pool is making any progress. If
5848 * vdev_deadman() discovers that there hasn't been any recent
5849 * I/Os then it will end up aborting the tests.
5850 */
5851 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
5852 fatal(0, "aborting test after %llu seconds because "
5853 "pool has transitioned to a suspended state.",
5854 zfs_deadman_synctime_ms / 1000);
5855 return (NULL);
5856 }
5857 vdev_deadman(spa->spa_root_vdev);
5858
5859 total += zfs_deadman_synctime_ms/1000;
5860 (void) printf("ztest has been running for %lld seconds\n",
5861 total);
5862 }
5863 }
5864
5865 static void
ztest_execute(int test,ztest_info_t * zi,uint64_t id)5866 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5867 {
5868 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5869 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5870 hrtime_t functime = gethrtime();
5871
5872 for (int i = 0; i < zi->zi_iters; i++)
5873 zi->zi_func(zd, id);
5874
5875 functime = gethrtime() - functime;
5876
5877 atomic_add_64(&zc->zc_count, 1);
5878 atomic_add_64(&zc->zc_time, functime);
5879
5880 if (ztest_opts.zo_verbose >= 4) {
5881 Dl_info dli;
5882 (void) dladdr((void *)zi->zi_func, &dli);
5883 (void) printf("%6.2f sec in %s\n",
5884 (double)functime / NANOSEC, dli.dli_sname);
5885 }
5886 }
5887
5888 static void *
ztest_thread(void * arg)5889 ztest_thread(void *arg)
5890 {
5891 int rand;
5892 uint64_t id = (uintptr_t)arg;
5893 ztest_shared_t *zs = ztest_shared;
5894 uint64_t call_next;
5895 hrtime_t now;
5896 ztest_info_t *zi;
5897 ztest_shared_callstate_t *zc;
5898
5899 while ((now = gethrtime()) < zs->zs_thread_stop) {
5900 /*
5901 * See if it's time to force a crash.
5902 */
5903 if (now > zs->zs_thread_kill)
5904 ztest_kill(zs);
5905
5906 /*
5907 * If we're getting ENOSPC with some regularity, stop.
5908 */
5909 if (zs->zs_enospc_count > 10)
5910 break;
5911
5912 /*
5913 * Pick a random function to execute.
5914 */
5915 rand = ztest_random(ZTEST_FUNCS);
5916 zi = &ztest_info[rand];
5917 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5918 call_next = zc->zc_next;
5919
5920 if (now >= call_next &&
5921 atomic_cas_64(&zc->zc_next, call_next, call_next +
5922 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5923 ztest_execute(rand, zi, id);
5924 }
5925 }
5926
5927 return (NULL);
5928 }
5929
5930 static void
ztest_dataset_name(char * dsname,char * pool,int d)5931 ztest_dataset_name(char *dsname, char *pool, int d)
5932 {
5933 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
5934 }
5935
5936 static void
ztest_dataset_destroy(int d)5937 ztest_dataset_destroy(int d)
5938 {
5939 char name[ZFS_MAX_DATASET_NAME_LEN];
5940
5941 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5942
5943 if (ztest_opts.zo_verbose >= 3)
5944 (void) printf("Destroying %s to free up space\n", name);
5945
5946 /*
5947 * Cleanup any non-standard clones and snapshots. In general,
5948 * ztest thread t operates on dataset (t % zopt_datasets),
5949 * so there may be more than one thing to clean up.
5950 */
5951 for (int t = d; t < ztest_opts.zo_threads;
5952 t += ztest_opts.zo_datasets) {
5953 ztest_dsl_dataset_cleanup(name, t);
5954 }
5955
5956 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5957 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5958 }
5959
5960 static void
ztest_dataset_dirobj_verify(ztest_ds_t * zd)5961 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5962 {
5963 uint64_t usedobjs, dirobjs, scratch;
5964
5965 /*
5966 * ZTEST_DIROBJ is the object directory for the entire dataset.
5967 * Therefore, the number of objects in use should equal the
5968 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5969 * If not, we have an object leak.
5970 *
5971 * Note that we can only check this in ztest_dataset_open(),
5972 * when the open-context and syncing-context values agree.
5973 * That's because zap_count() returns the open-context value,
5974 * while dmu_objset_space() returns the rootbp fill count.
5975 */
5976 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5977 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5978 ASSERT3U(dirobjs + 1, ==, usedobjs);
5979 }
5980
5981 static int
ztest_dataset_open(int d)5982 ztest_dataset_open(int d)
5983 {
5984 ztest_ds_t *zd = &ztest_ds[d];
5985 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5986 objset_t *os;
5987 zilog_t *zilog;
5988 char name[ZFS_MAX_DATASET_NAME_LEN];
5989 int error;
5990
5991 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5992
5993 rw_enter(&ztest_name_lock, RW_READER);
5994
5995 error = ztest_dataset_create(name);
5996 if (error == ENOSPC) {
5997 rw_exit(&ztest_name_lock);
5998 ztest_record_enospc(FTAG);
5999 return (error);
6000 }
6001 ASSERT(error == 0 || error == EEXIST);
6002
6003 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
6004 rw_exit(&ztest_name_lock);
6005
6006 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
6007
6008 zilog = zd->zd_zilog;
6009
6010 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
6011 zilog->zl_header->zh_claim_lr_seq < committed_seq)
6012 fatal(0, "missing log records: claimed %llu < committed %llu",
6013 zilog->zl_header->zh_claim_lr_seq, committed_seq);
6014
6015 ztest_dataset_dirobj_verify(zd);
6016
6017 zil_replay(os, zd, ztest_replay_vector);
6018
6019 ztest_dataset_dirobj_verify(zd);
6020
6021 if (ztest_opts.zo_verbose >= 6)
6022 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
6023 zd->zd_name,
6024 (u_longlong_t)zilog->zl_parse_blk_count,
6025 (u_longlong_t)zilog->zl_parse_lr_count,
6026 (u_longlong_t)zilog->zl_replaying_seq);
6027
6028 zilog = zil_open(os, ztest_get_data);
6029
6030 if (zilog->zl_replaying_seq != 0 &&
6031 zilog->zl_replaying_seq < committed_seq)
6032 fatal(0, "missing log records: replayed %llu < committed %llu",
6033 zilog->zl_replaying_seq, committed_seq);
6034
6035 return (0);
6036 }
6037
6038 static void
ztest_dataset_close(int d)6039 ztest_dataset_close(int d)
6040 {
6041 ztest_ds_t *zd = &ztest_ds[d];
6042
6043 zil_close(zd->zd_zilog);
6044 dmu_objset_disown(zd->zd_os, zd);
6045
6046 ztest_zd_fini(zd);
6047 }
6048
6049 /*
6050 * Kick off threads to run tests on all datasets in parallel.
6051 */
6052 static void
ztest_run(ztest_shared_t * zs)6053 ztest_run(ztest_shared_t *zs)
6054 {
6055 thread_t *tid;
6056 spa_t *spa;
6057 objset_t *os;
6058 thread_t resume_tid;
6059 int error;
6060
6061 ztest_exiting = B_FALSE;
6062
6063 /*
6064 * Initialize parent/child shared state.
6065 */
6066 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL);
6067 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
6068 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
6069
6070 zs->zs_thread_start = gethrtime();
6071 zs->zs_thread_stop =
6072 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
6073 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
6074 zs->zs_thread_kill = zs->zs_thread_stop;
6075 if (ztest_random(100) < ztest_opts.zo_killrate) {
6076 zs->zs_thread_kill -=
6077 ztest_random(ztest_opts.zo_passtime * NANOSEC);
6078 }
6079
6080 mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL);
6081
6082 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
6083 offsetof(ztest_cb_data_t, zcd_node));
6084
6085 /*
6086 * Open our pool.
6087 */
6088 kernel_init(FREAD | FWRITE);
6089 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
6090 metaslab_preload_limit = ztest_random(20) + 1;
6091 ztest_spa = spa;
6092
6093 dmu_objset_stats_t dds;
6094 VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
6095 DMU_OST_ANY, B_TRUE, FTAG, &os));
6096 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
6097 dmu_objset_fast_stat(os, &dds);
6098 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
6099 zs->zs_guid = dds.dds_guid;
6100 dmu_objset_disown(os, FTAG);
6101
6102 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
6103
6104 /*
6105 * We don't expect the pool to suspend unless maxfaults == 0,
6106 * in which case ztest_fault_inject() temporarily takes away
6107 * the only valid replica.
6108 */
6109 if (MAXFAULTS() == 0)
6110 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
6111 else
6112 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
6113
6114 /*
6115 * Create a thread to periodically resume suspended I/O.
6116 */
6117 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
6118 &resume_tid) == 0);
6119
6120 /*
6121 * Create a deadman thread to abort() if we hang.
6122 */
6123 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
6124 NULL) == 0);
6125
6126 /*
6127 * Verify that we can safely inquire about any object,
6128 * whether it's allocated or not. To make it interesting,
6129 * we probe a 5-wide window around each power of two.
6130 * This hits all edge cases, including zero and the max.
6131 */
6132 for (int t = 0; t < 64; t++) {
6133 for (int d = -5; d <= 5; d++) {
6134 error = dmu_object_info(spa->spa_meta_objset,
6135 (1ULL << t) + d, NULL);
6136 ASSERT(error == 0 || error == ENOENT ||
6137 error == EINVAL);
6138 }
6139 }
6140
6141 /*
6142 * If we got any ENOSPC errors on the previous run, destroy something.
6143 */
6144 if (zs->zs_enospc_count != 0) {
6145 int d = ztest_random(ztest_opts.zo_datasets);
6146 ztest_dataset_destroy(d);
6147 }
6148 zs->zs_enospc_count = 0;
6149
6150 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
6151 UMEM_NOFAIL);
6152
6153 if (ztest_opts.zo_verbose >= 4)
6154 (void) printf("starting main threads...\n");
6155
6156 /*
6157 * Kick off all the tests that run in parallel.
6158 */
6159 for (int t = 0; t < ztest_opts.zo_threads; t++) {
6160 if (t < ztest_opts.zo_datasets &&
6161 ztest_dataset_open(t) != 0)
6162 return;
6163 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
6164 THR_BOUND, &tid[t]) == 0);
6165 }
6166
6167 /*
6168 * Wait for all of the tests to complete. We go in reverse order
6169 * so we don't close datasets while threads are still using them.
6170 */
6171 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
6172 VERIFY(thr_join(tid[t], NULL, NULL) == 0);
6173 if (t < ztest_opts.zo_datasets)
6174 ztest_dataset_close(t);
6175 }
6176
6177 txg_wait_synced(spa_get_dsl(spa), 0);
6178
6179 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6180 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
6181 zfs_dbgmsg_print(FTAG);
6182
6183 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
6184
6185 /* Kill the resume thread */
6186 ztest_exiting = B_TRUE;
6187 VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
6188 ztest_resume(spa);
6189
6190 /*
6191 * Right before closing the pool, kick off a bunch of async I/O;
6192 * spa_close() should wait for it to complete.
6193 */
6194 for (uint64_t object = 1; object < 50; object++) {
6195 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
6196 ZIO_PRIORITY_SYNC_READ);
6197 }
6198
6199 spa_close(spa, FTAG);
6200
6201 /*
6202 * Verify that we can loop over all pools.
6203 */
6204 mutex_enter(&spa_namespace_lock);
6205 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
6206 if (ztest_opts.zo_verbose > 3)
6207 (void) printf("spa_next: found %s\n", spa_name(spa));
6208 mutex_exit(&spa_namespace_lock);
6209
6210 /*
6211 * Verify that we can export the pool and reimport it under a
6212 * different name.
6213 */
6214 if (ztest_random(2) == 0) {
6215 char name[ZFS_MAX_DATASET_NAME_LEN];
6216 (void) snprintf(name, sizeof (name), "%s_import",
6217 ztest_opts.zo_pool);
6218 ztest_spa_import_export(ztest_opts.zo_pool, name);
6219 ztest_spa_import_export(name, ztest_opts.zo_pool);
6220 }
6221
6222 kernel_fini();
6223
6224 list_destroy(&zcl.zcl_callbacks);
6225
6226 mutex_destroy(&zcl.zcl_callbacks_lock);
6227
6228 rw_destroy(&ztest_name_lock);
6229 mutex_destroy(&ztest_vdev_lock);
6230 mutex_destroy(&ztest_checkpoint_lock);
6231 }
6232
6233 static void
ztest_freeze(void)6234 ztest_freeze(void)
6235 {
6236 ztest_ds_t *zd = &ztest_ds[0];
6237 spa_t *spa;
6238 int numloops = 0;
6239
6240 if (ztest_opts.zo_verbose >= 3)
6241 (void) printf("testing spa_freeze()...\n");
6242
6243 kernel_init(FREAD | FWRITE);
6244 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6245 VERIFY3U(0, ==, ztest_dataset_open(0));
6246 ztest_spa = spa;
6247
6248 /*
6249 * Force the first log block to be transactionally allocated.
6250 * We have to do this before we freeze the pool -- otherwise
6251 * the log chain won't be anchored.
6252 */
6253 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
6254 ztest_dmu_object_alloc_free(zd, 0);
6255 zil_commit(zd->zd_zilog, 0);
6256 }
6257
6258 txg_wait_synced(spa_get_dsl(spa), 0);
6259
6260 /*
6261 * Freeze the pool. This stops spa_sync() from doing anything,
6262 * so that the only way to record changes from now on is the ZIL.
6263 */
6264 spa_freeze(spa);
6265
6266 /*
6267 * Because it is hard to predict how much space a write will actually
6268 * require beforehand, we leave ourselves some fudge space to write over
6269 * capacity.
6270 */
6271 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
6272
6273 /*
6274 * Run tests that generate log records but don't alter the pool config
6275 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
6276 * We do a txg_wait_synced() after each iteration to force the txg
6277 * to increase well beyond the last synced value in the uberblock.
6278 * The ZIL should be OK with that.
6279 *
6280 * Run a random number of times less than zo_maxloops and ensure we do
6281 * not run out of space on the pool.
6282 */
6283 while (ztest_random(10) != 0 &&
6284 numloops++ < ztest_opts.zo_maxloops &&
6285 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
6286 ztest_od_t od;
6287 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6288 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
6289 ztest_io(zd, od.od_object,
6290 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
6291 txg_wait_synced(spa_get_dsl(spa), 0);
6292 }
6293
6294 /*
6295 * Commit all of the changes we just generated.
6296 */
6297 zil_commit(zd->zd_zilog, 0);
6298 txg_wait_synced(spa_get_dsl(spa), 0);
6299
6300 /*
6301 * Close our dataset and close the pool.
6302 */
6303 ztest_dataset_close(0);
6304 spa_close(spa, FTAG);
6305 kernel_fini();
6306
6307 /*
6308 * Open and close the pool and dataset to induce log replay.
6309 */
6310 kernel_init(FREAD | FWRITE);
6311 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6312 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
6313 VERIFY3U(0, ==, ztest_dataset_open(0));
6314 ztest_dataset_close(0);
6315
6316 ztest_spa = spa;
6317 txg_wait_synced(spa_get_dsl(spa), 0);
6318 ztest_reguid(NULL, 0);
6319
6320 spa_close(spa, FTAG);
6321 kernel_fini();
6322 }
6323
6324 void
print_time(hrtime_t t,char * timebuf)6325 print_time(hrtime_t t, char *timebuf)
6326 {
6327 hrtime_t s = t / NANOSEC;
6328 hrtime_t m = s / 60;
6329 hrtime_t h = m / 60;
6330 hrtime_t d = h / 24;
6331
6332 s -= m * 60;
6333 m -= h * 60;
6334 h -= d * 24;
6335
6336 timebuf[0] = '\0';
6337
6338 if (d)
6339 (void) sprintf(timebuf,
6340 "%llud%02lluh%02llum%02llus", d, h, m, s);
6341 else if (h)
6342 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6343 else if (m)
6344 (void) sprintf(timebuf, "%llum%02llus", m, s);
6345 else
6346 (void) sprintf(timebuf, "%llus", s);
6347 }
6348
6349 static nvlist_t *
make_random_props()6350 make_random_props()
6351 {
6352 nvlist_t *props;
6353
6354 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6355 if (ztest_random(2) == 0)
6356 return (props);
6357 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6358
6359 return (props);
6360 }
6361
6362 /*
6363 * Create a storage pool with the given name and initial vdev size.
6364 * Then test spa_freeze() functionality.
6365 */
6366 static void
ztest_init(ztest_shared_t * zs)6367 ztest_init(ztest_shared_t *zs)
6368 {
6369 spa_t *spa;
6370 nvlist_t *nvroot, *props;
6371
6372 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
6373 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL);
6374 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
6375
6376 kernel_init(FREAD | FWRITE);
6377
6378 /*
6379 * Create the storage pool.
6380 */
6381 (void) spa_destroy(ztest_opts.zo_pool);
6382 ztest_shared->zs_vdev_next_leaf = 0;
6383 zs->zs_splits = 0;
6384 zs->zs_mirrors = ztest_opts.zo_mirrors;
6385 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6386 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6387 props = make_random_props();
6388 for (int i = 0; i < SPA_FEATURES; i++) {
6389 char buf[1024];
6390 (void) snprintf(buf, sizeof (buf), "feature@%s",
6391 spa_feature_table[i].fi_uname);
6392 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6393 }
6394 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
6395 nvlist_free(nvroot);
6396 nvlist_free(props);
6397
6398 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6399 zs->zs_metaslab_sz =
6400 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6401
6402 spa_close(spa, FTAG);
6403
6404 kernel_fini();
6405
6406 ztest_run_zdb(ztest_opts.zo_pool);
6407
6408 ztest_freeze();
6409
6410 ztest_run_zdb(ztest_opts.zo_pool);
6411
6412 rw_destroy(&ztest_name_lock);
6413 mutex_destroy(&ztest_vdev_lock);
6414 mutex_destroy(&ztest_checkpoint_lock);
6415 }
6416
6417 static void
setup_data_fd(void)6418 setup_data_fd(void)
6419 {
6420 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6421
6422 ztest_fd_data = mkstemp(ztest_name_data);
6423 ASSERT3S(ztest_fd_data, >=, 0);
6424 (void) unlink(ztest_name_data);
6425 }
6426
6427
6428 static int
shared_data_size(ztest_shared_hdr_t * hdr)6429 shared_data_size(ztest_shared_hdr_t *hdr)
6430 {
6431 int size;
6432
6433 size = hdr->zh_hdr_size;
6434 size += hdr->zh_opts_size;
6435 size += hdr->zh_size;
6436 size += hdr->zh_stats_size * hdr->zh_stats_count;
6437 size += hdr->zh_ds_size * hdr->zh_ds_count;
6438
6439 return (size);
6440 }
6441
6442 static void
setup_hdr(void)6443 setup_hdr(void)
6444 {
6445 int size;
6446 ztest_shared_hdr_t *hdr;
6447
6448 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6449 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6450 ASSERT(hdr != MAP_FAILED);
6451
6452 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6453
6454 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6455 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6456 hdr->zh_size = sizeof (ztest_shared_t);
6457 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6458 hdr->zh_stats_count = ZTEST_FUNCS;
6459 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6460 hdr->zh_ds_count = ztest_opts.zo_datasets;
6461
6462 size = shared_data_size(hdr);
6463 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6464
6465 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6466 }
6467
6468 static void
setup_data(void)6469 setup_data(void)
6470 {
6471 int size, offset;
6472 ztest_shared_hdr_t *hdr;
6473 uint8_t *buf;
6474
6475 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6476 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6477 ASSERT(hdr != MAP_FAILED);
6478
6479 size = shared_data_size(hdr);
6480
6481 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6482 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6483 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6484 ASSERT(hdr != MAP_FAILED);
6485 buf = (uint8_t *)hdr;
6486
6487 offset = hdr->zh_hdr_size;
6488 ztest_shared_opts = (void *)&buf[offset];
6489 offset += hdr->zh_opts_size;
6490 ztest_shared = (void *)&buf[offset];
6491 offset += hdr->zh_size;
6492 ztest_shared_callstate = (void *)&buf[offset];
6493 offset += hdr->zh_stats_size * hdr->zh_stats_count;
6494 ztest_shared_ds = (void *)&buf[offset];
6495 }
6496
6497 static boolean_t
exec_child(char * cmd,char * libpath,boolean_t ignorekill,int * statusp)6498 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6499 {
6500 pid_t pid;
6501 int status;
6502 char *cmdbuf = NULL;
6503
6504 pid = fork();
6505
6506 if (cmd == NULL) {
6507 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6508 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6509 cmd = cmdbuf;
6510 }
6511
6512 if (pid == -1)
6513 fatal(1, "fork failed");
6514
6515 if (pid == 0) { /* child */
6516 char *emptyargv[2] = { cmd, NULL };
6517 char fd_data_str[12];
6518
6519 struct rlimit rl = { 1024, 1024 };
6520 (void) setrlimit(RLIMIT_NOFILE, &rl);
6521
6522 (void) close(ztest_fd_rand);
6523 VERIFY3U(11, >=,
6524 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6525 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6526
6527 (void) enable_extended_FILE_stdio(-1, -1);
6528 if (libpath != NULL)
6529 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6530 #ifdef illumos
6531 (void) execv(cmd, emptyargv);
6532 #else
6533 (void) execvp(cmd, emptyargv);
6534 #endif
6535 ztest_dump_core = B_FALSE;
6536 fatal(B_TRUE, "exec failed: %s", cmd);
6537 }
6538
6539 if (cmdbuf != NULL) {
6540 umem_free(cmdbuf, MAXPATHLEN);
6541 cmd = NULL;
6542 }
6543
6544 while (waitpid(pid, &status, 0) != pid)
6545 continue;
6546 if (statusp != NULL)
6547 *statusp = status;
6548
6549 if (WIFEXITED(status)) {
6550 if (WEXITSTATUS(status) != 0) {
6551 (void) fprintf(stderr, "child exited with code %d\n",
6552 WEXITSTATUS(status));
6553 exit(2);
6554 }
6555 return (B_FALSE);
6556 } else if (WIFSIGNALED(status)) {
6557 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6558 (void) fprintf(stderr, "child died with signal %d\n",
6559 WTERMSIG(status));
6560 exit(3);
6561 }
6562 return (B_TRUE);
6563 } else {
6564 (void) fprintf(stderr, "something strange happened to child\n");
6565 exit(4);
6566 /* NOTREACHED */
6567 }
6568 }
6569
6570 static void
ztest_run_init(void)6571 ztest_run_init(void)
6572 {
6573 ztest_shared_t *zs = ztest_shared;
6574
6575 ASSERT(ztest_opts.zo_init != 0);
6576
6577 /*
6578 * Blow away any existing copy of zpool.cache
6579 */
6580 (void) remove(spa_config_path);
6581
6582 /*
6583 * Create and initialize our storage pool.
6584 */
6585 for (int i = 1; i <= ztest_opts.zo_init; i++) {
6586 bzero(zs, sizeof (ztest_shared_t));
6587 if (ztest_opts.zo_verbose >= 3 &&
6588 ztest_opts.zo_init != 1) {
6589 (void) printf("ztest_init(), pass %d\n", i);
6590 }
6591 ztest_init(zs);
6592 }
6593 }
6594
6595 int
main(int argc,char ** argv)6596 main(int argc, char **argv)
6597 {
6598 int kills = 0;
6599 int iters = 0;
6600 int older = 0;
6601 int newer = 0;
6602 ztest_shared_t *zs;
6603 ztest_info_t *zi;
6604 ztest_shared_callstate_t *zc;
6605 char timebuf[100];
6606 char numbuf[NN_NUMBUF_SZ];
6607 char *cmd;
6608 boolean_t hasalt;
6609 char *fd_data_str = getenv("ZTEST_FD_DATA");
6610
6611 (void) setvbuf(stdout, NULL, _IOLBF, 0);
6612
6613 dprintf_setup(&argc, argv);
6614 zfs_deadman_synctime_ms = 300000;
6615 /*
6616 * As two-word space map entries may not come up often (especially
6617 * if pool and vdev sizes are small) we want to force at least some
6618 * of them so the feature get tested.
6619 */
6620 zfs_force_some_double_word_sm_entries = B_TRUE;
6621
6622 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6623 ASSERT3S(ztest_fd_rand, >=, 0);
6624
6625 if (!fd_data_str) {
6626 process_options(argc, argv);
6627
6628 setup_data_fd();
6629 setup_hdr();
6630 setup_data();
6631 bcopy(&ztest_opts, ztest_shared_opts,
6632 sizeof (*ztest_shared_opts));
6633 } else {
6634 ztest_fd_data = atoi(fd_data_str);
6635 setup_data();
6636 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6637 }
6638 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6639
6640 /* Override location of zpool.cache */
6641 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6642 ztest_opts.zo_dir), !=, -1);
6643
6644 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6645 UMEM_NOFAIL);
6646 zs = ztest_shared;
6647
6648 if (fd_data_str) {
6649 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
6650 metaslab_df_alloc_threshold =
6651 zs->zs_metaslab_df_alloc_threshold;
6652
6653 if (zs->zs_do_init)
6654 ztest_run_init();
6655 else
6656 ztest_run(zs);
6657 exit(0);
6658 }
6659
6660 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6661
6662 if (ztest_opts.zo_verbose >= 1) {
6663 (void) printf("%llu vdevs, %d datasets, %d threads,"
6664 " %llu seconds...\n",
6665 (u_longlong_t)ztest_opts.zo_vdevs,
6666 ztest_opts.zo_datasets,
6667 ztest_opts.zo_threads,
6668 (u_longlong_t)ztest_opts.zo_time);
6669 }
6670
6671 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6672 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6673
6674 zs->zs_do_init = B_TRUE;
6675 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6676 if (ztest_opts.zo_verbose >= 1) {
6677 (void) printf("Executing older ztest for "
6678 "initialization: %s\n", ztest_opts.zo_alt_ztest);
6679 }
6680 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6681 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6682 } else {
6683 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6684 }
6685 zs->zs_do_init = B_FALSE;
6686
6687 zs->zs_proc_start = gethrtime();
6688 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6689
6690 for (int f = 0; f < ZTEST_FUNCS; f++) {
6691 zi = &ztest_info[f];
6692 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6693 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6694 zc->zc_next = UINT64_MAX;
6695 else
6696 zc->zc_next = zs->zs_proc_start +
6697 ztest_random(2 * zi->zi_interval[0] + 1);
6698 }
6699
6700 /*
6701 * Run the tests in a loop. These tests include fault injection
6702 * to verify that self-healing data works, and forced crashes
6703 * to verify that we never lose on-disk consistency.
6704 */
6705 while (gethrtime() < zs->zs_proc_stop) {
6706 int status;
6707 boolean_t killed;
6708
6709 /*
6710 * Initialize the workload counters for each function.
6711 */
6712 for (int f = 0; f < ZTEST_FUNCS; f++) {
6713 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6714 zc->zc_count = 0;
6715 zc->zc_time = 0;
6716 }
6717
6718 /* Set the allocation switch size */
6719 zs->zs_metaslab_df_alloc_threshold =
6720 ztest_random(zs->zs_metaslab_sz / 4) + 1;
6721
6722 if (!hasalt || ztest_random(2) == 0) {
6723 if (hasalt && ztest_opts.zo_verbose >= 1) {
6724 (void) printf("Executing newer ztest: %s\n",
6725 cmd);
6726 }
6727 newer++;
6728 killed = exec_child(cmd, NULL, B_TRUE, &status);
6729 } else {
6730 if (hasalt && ztest_opts.zo_verbose >= 1) {
6731 (void) printf("Executing older ztest: %s\n",
6732 ztest_opts.zo_alt_ztest);
6733 }
6734 older++;
6735 killed = exec_child(ztest_opts.zo_alt_ztest,
6736 ztest_opts.zo_alt_libpath, B_TRUE, &status);
6737 }
6738
6739 if (killed)
6740 kills++;
6741 iters++;
6742
6743 if (ztest_opts.zo_verbose >= 1) {
6744 hrtime_t now = gethrtime();
6745
6746 now = MIN(now, zs->zs_proc_stop);
6747 print_time(zs->zs_proc_stop - now, timebuf);
6748 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
6749
6750 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6751 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6752 iters,
6753 WIFEXITED(status) ? "Complete" : "SIGKILL",
6754 (u_longlong_t)zs->zs_enospc_count,
6755 100.0 * zs->zs_alloc / zs->zs_space,
6756 numbuf,
6757 100.0 * (now - zs->zs_proc_start) /
6758 (ztest_opts.zo_time * NANOSEC), timebuf);
6759 }
6760
6761 if (ztest_opts.zo_verbose >= 2) {
6762 (void) printf("\nWorkload summary:\n\n");
6763 (void) printf("%7s %9s %s\n",
6764 "Calls", "Time", "Function");
6765 (void) printf("%7s %9s %s\n",
6766 "-----", "----", "--------");
6767 for (int f = 0; f < ZTEST_FUNCS; f++) {
6768 Dl_info dli;
6769
6770 zi = &ztest_info[f];
6771 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6772 print_time(zc->zc_time, timebuf);
6773 (void) dladdr((void *)zi->zi_func, &dli);
6774 (void) printf("%7llu %9s %s\n",
6775 (u_longlong_t)zc->zc_count, timebuf,
6776 dli.dli_sname);
6777 }
6778 (void) printf("\n");
6779 }
6780
6781 ztest_run_zdb(ztest_opts.zo_pool);
6782 }
6783
6784 if (ztest_opts.zo_verbose >= 1) {
6785 if (hasalt) {
6786 (void) printf("%d runs of older ztest: %s\n", older,
6787 ztest_opts.zo_alt_ztest);
6788 (void) printf("%d runs of newer ztest: %s\n", newer,
6789 cmd);
6790 }
6791 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6792 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6793 }
6794
6795 umem_free(cmd, MAXNAMELEN);
6796
6797 return (0);
6798 }
6799