1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/brt.h>
45 #include <sys/ddt.h>
46 #include <sys/blkptr.h>
47 #include <sys/zfeature.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/time.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/abd.h>
53 #include <sys/dsl_crypt.h>
54 #include <cityhash.h>
55 
56 /*
57  * ==========================================================================
58  * I/O type descriptions
59  * ==========================================================================
60  */
61 const char *const zio_type_name[ZIO_TYPES] = {
62 	/*
63 	 * Note: Linux kernel thread name length is limited
64 	 * so these names will differ from upstream open zfs.
65 	 */
66 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
67 };
68 
69 int zio_dva_throttle_enabled = B_TRUE;
70 static int zio_deadman_log_all = B_FALSE;
71 
72 /*
73  * ==========================================================================
74  * I/O kmem caches
75  * ==========================================================================
76  */
77 static kmem_cache_t *zio_cache;
78 static kmem_cache_t *zio_link_cache;
79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 #endif
85 
86 /* Mark IOs as "slow" if they take longer than 30 seconds */
87 static uint_t zio_slow_io_ms = (30 * MILLISEC);
88 
89 #define	BP_SPANB(indblkshift, level) \
90 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
91 #define	COMPARE_META_LEVEL	0x80000000ul
92 /*
93  * The following actions directly effect the spa's sync-to-convergence logic.
94  * The values below define the sync pass when we start performing the action.
95  * Care should be taken when changing these values as they directly impact
96  * spa_sync() performance. Tuning these values may introduce subtle performance
97  * pathologies and should only be done in the context of performance analysis.
98  * These tunables will eventually be removed and replaced with #defines once
99  * enough analysis has been done to determine optimal values.
100  *
101  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
102  * regular blocks are not deferred.
103  *
104  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
105  * compression (including of metadata).  In practice, we don't have this
106  * many sync passes, so this has no effect.
107  *
108  * The original intent was that disabling compression would help the sync
109  * passes to converge. However, in practice disabling compression increases
110  * the average number of sync passes, because when we turn compression off, a
111  * lot of block's size will change and thus we have to re-allocate (not
112  * overwrite) them. It also increases the number of 128KB allocations (e.g.
113  * for indirect blocks and spacemaps) because these will not be compressed.
114  * The 128K allocations are especially detrimental to performance on highly
115  * fragmented systems, which may have very few free segments of this size,
116  * and may need to load new metaslabs to satisfy 128K allocations.
117  */
118 
119 /* defer frees starting in this pass */
120 uint_t zfs_sync_pass_deferred_free = 2;
121 
122 /* don't compress starting in this pass */
123 static uint_t zfs_sync_pass_dont_compress = 8;
124 
125 /* rewrite new bps starting in this pass */
126 static uint_t zfs_sync_pass_rewrite = 2;
127 
128 /*
129  * An allocating zio is one that either currently has the DVA allocate
130  * stage set or will have it later in its lifetime.
131  */
132 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133 
134 /*
135  * Enable smaller cores by excluding metadata
136  * allocations as well.
137  */
138 int zio_exclude_metadata = 0;
139 static int zio_requeue_io_start_cut_in_line = 1;
140 
141 #ifdef ZFS_DEBUG
142 static const int zio_buf_debug_limit = 16384;
143 #else
144 static const int zio_buf_debug_limit = 0;
145 #endif
146 
147 static inline void __zio_execute(zio_t *zio);
148 
149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150 
151 void
zio_init(void)152 zio_init(void)
153 {
154 	size_t c;
155 
156 	zio_cache = kmem_cache_create("zio_cache",
157 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
158 	zio_link_cache = kmem_cache_create("zio_link_cache",
159 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
160 
161 	/*
162 	 * For small buffers, we want a cache for each multiple of
163 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
164 	 * for each quarter-power of 2.
165 	 */
166 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
167 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
168 		size_t p2 = size;
169 		size_t align = 0;
170 		size_t data_cflags, cflags;
171 
172 		data_cflags = KMC_NODEBUG;
173 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
174 		    KMC_NODEBUG : 0;
175 
176 		while (!ISP2(p2))
177 			p2 &= p2 - 1;
178 
179 #ifndef _KERNEL
180 		/*
181 		 * If we are using watchpoints, put each buffer on its own page,
182 		 * to eliminate the performance overhead of trapping to the
183 		 * kernel when modifying a non-watched buffer that shares the
184 		 * page with a watched buffer.
185 		 */
186 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
187 			continue;
188 		/*
189 		 * Here's the problem - on 4K native devices in userland on
190 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
191 		 * will fail with EINVAL, causing zdb (and others) to coredump.
192 		 * Since userland probably doesn't need optimized buffer caches,
193 		 * we just force 4K alignment on everything.
194 		 */
195 		align = 8 * SPA_MINBLOCKSIZE;
196 #else
197 		if (size < PAGESIZE) {
198 			align = SPA_MINBLOCKSIZE;
199 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
200 			align = PAGESIZE;
201 		}
202 #endif
203 
204 		if (align != 0) {
205 			char name[36];
206 			if (cflags == data_cflags) {
207 				/*
208 				 * Resulting kmem caches would be identical.
209 				 * Save memory by creating only one.
210 				 */
211 				(void) snprintf(name, sizeof (name),
212 				    "zio_buf_comb_%lu", (ulong_t)size);
213 				zio_buf_cache[c] = kmem_cache_create(name,
214 				    size, align, NULL, NULL, NULL, NULL, NULL,
215 				    cflags);
216 				zio_data_buf_cache[c] = zio_buf_cache[c];
217 				continue;
218 			}
219 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
220 			    (ulong_t)size);
221 			zio_buf_cache[c] = kmem_cache_create(name, size,
222 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
223 
224 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
225 			    (ulong_t)size);
226 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
227 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
228 		}
229 	}
230 
231 	while (--c != 0) {
232 		ASSERT(zio_buf_cache[c] != NULL);
233 		if (zio_buf_cache[c - 1] == NULL)
234 			zio_buf_cache[c - 1] = zio_buf_cache[c];
235 
236 		ASSERT(zio_data_buf_cache[c] != NULL);
237 		if (zio_data_buf_cache[c - 1] == NULL)
238 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
239 	}
240 
241 	zio_inject_init();
242 
243 	lz4_init();
244 }
245 
246 void
zio_fini(void)247 zio_fini(void)
248 {
249 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
250 
251 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
252 	for (size_t i = 0; i < n; i++) {
253 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
254 			(void) printf("zio_fini: [%d] %llu != %llu\n",
255 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
256 			    (long long unsigned)zio_buf_cache_allocs[i],
257 			    (long long unsigned)zio_buf_cache_frees[i]);
258 	}
259 #endif
260 
261 	/*
262 	 * The same kmem cache can show up multiple times in both zio_buf_cache
263 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
264 	 * sort it out.
265 	 */
266 	for (size_t i = 0; i < n; i++) {
267 		kmem_cache_t *cache = zio_buf_cache[i];
268 		if (cache == NULL)
269 			continue;
270 		for (size_t j = i; j < n; j++) {
271 			if (cache == zio_buf_cache[j])
272 				zio_buf_cache[j] = NULL;
273 			if (cache == zio_data_buf_cache[j])
274 				zio_data_buf_cache[j] = NULL;
275 		}
276 		kmem_cache_destroy(cache);
277 	}
278 
279 	for (size_t i = 0; i < n; i++) {
280 		kmem_cache_t *cache = zio_data_buf_cache[i];
281 		if (cache == NULL)
282 			continue;
283 		for (size_t j = i; j < n; j++) {
284 			if (cache == zio_data_buf_cache[j])
285 				zio_data_buf_cache[j] = NULL;
286 		}
287 		kmem_cache_destroy(cache);
288 	}
289 
290 	for (size_t i = 0; i < n; i++) {
291 		VERIFY3P(zio_buf_cache[i], ==, NULL);
292 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
293 	}
294 
295 	kmem_cache_destroy(zio_link_cache);
296 	kmem_cache_destroy(zio_cache);
297 
298 	zio_inject_fini();
299 
300 	lz4_fini();
301 }
302 
303 /*
304  * ==========================================================================
305  * Allocate and free I/O buffers
306  * ==========================================================================
307  */
308 
309 #ifdef ZFS_DEBUG
310 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b;
311 #endif
312 
313 /*
314  * Use empty space after the buffer to detect overflows.
315  *
316  * Since zio_init() creates kmem caches only for certain set of buffer sizes,
317  * allocations of different sizes may have some unused space after the data.
318  * Filling part of that space with a known pattern on allocation and checking
319  * it on free should allow us to detect some buffer overflows.
320  */
321 static void
zio_buf_put_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)322 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
323 {
324 #ifdef ZFS_DEBUG
325 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
326 	ulong_t *canary = p + off / sizeof (ulong_t);
327 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
328 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
329 	    cache[c] == cache[c + 1])
330 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
331 	for (; off < asize; canary++, off += sizeof (ulong_t))
332 		*canary = zio_buf_canary;
333 #endif
334 }
335 
336 static void
zio_buf_check_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)337 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
338 {
339 #ifdef ZFS_DEBUG
340 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
341 	ulong_t *canary = p + off / sizeof (ulong_t);
342 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
343 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
344 	    cache[c] == cache[c + 1])
345 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
346 	for (; off < asize; canary++, off += sizeof (ulong_t)) {
347 		if (unlikely(*canary != zio_buf_canary)) {
348 			PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
349 			    p, size, (canary - p) * sizeof (ulong_t),
350 			    *canary, zio_buf_canary);
351 		}
352 	}
353 #endif
354 }
355 
356 /*
357  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
358  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
359  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
360  * excess / transient data in-core during a crashdump.
361  */
362 void *
zio_buf_alloc(size_t size)363 zio_buf_alloc(size_t size)
364 {
365 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
366 
367 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
368 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
369 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
370 #endif
371 
372 	void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE);
373 	zio_buf_put_canary(p, size, zio_buf_cache, c);
374 	return (p);
375 }
376 
377 /*
378  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
379  * crashdump if the kernel panics.  This exists so that we will limit the amount
380  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
381  * of kernel heap dumped to disk when the kernel panics)
382  */
383 void *
zio_data_buf_alloc(size_t size)384 zio_data_buf_alloc(size_t size)
385 {
386 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
387 
388 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
389 
390 	void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE);
391 	zio_buf_put_canary(p, size, zio_data_buf_cache, c);
392 	return (p);
393 }
394 
395 void
zio_buf_free(void * buf,size_t size)396 zio_buf_free(void *buf, size_t size)
397 {
398 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
399 
400 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
401 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
402 	atomic_add_64(&zio_buf_cache_frees[c], 1);
403 #endif
404 
405 	zio_buf_check_canary(buf, size, zio_buf_cache, c);
406 	kmem_cache_free(zio_buf_cache[c], buf);
407 }
408 
409 void
zio_data_buf_free(void * buf,size_t size)410 zio_data_buf_free(void *buf, size_t size)
411 {
412 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
413 
414 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
415 
416 	zio_buf_check_canary(buf, size, zio_data_buf_cache, c);
417 	kmem_cache_free(zio_data_buf_cache[c], buf);
418 }
419 
420 static void
zio_abd_free(void * abd,size_t size)421 zio_abd_free(void *abd, size_t size)
422 {
423 	(void) size;
424 	abd_free((abd_t *)abd);
425 }
426 
427 /*
428  * ==========================================================================
429  * Push and pop I/O transform buffers
430  * ==========================================================================
431  */
432 void
zio_push_transform(zio_t * zio,abd_t * data,uint64_t size,uint64_t bufsize,zio_transform_func_t * transform)433 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
434     zio_transform_func_t *transform)
435 {
436 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
437 
438 	zt->zt_orig_abd = zio->io_abd;
439 	zt->zt_orig_size = zio->io_size;
440 	zt->zt_bufsize = bufsize;
441 	zt->zt_transform = transform;
442 
443 	zt->zt_next = zio->io_transform_stack;
444 	zio->io_transform_stack = zt;
445 
446 	zio->io_abd = data;
447 	zio->io_size = size;
448 }
449 
450 void
zio_pop_transforms(zio_t * zio)451 zio_pop_transforms(zio_t *zio)
452 {
453 	zio_transform_t *zt;
454 
455 	while ((zt = zio->io_transform_stack) != NULL) {
456 		if (zt->zt_transform != NULL)
457 			zt->zt_transform(zio,
458 			    zt->zt_orig_abd, zt->zt_orig_size);
459 
460 		if (zt->zt_bufsize != 0)
461 			abd_free(zio->io_abd);
462 
463 		zio->io_abd = zt->zt_orig_abd;
464 		zio->io_size = zt->zt_orig_size;
465 		zio->io_transform_stack = zt->zt_next;
466 
467 		kmem_free(zt, sizeof (zio_transform_t));
468 	}
469 }
470 
471 /*
472  * ==========================================================================
473  * I/O transform callbacks for subblocks, decompression, and decryption
474  * ==========================================================================
475  */
476 static void
zio_subblock(zio_t * zio,abd_t * data,uint64_t size)477 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
478 {
479 	ASSERT(zio->io_size > size);
480 
481 	if (zio->io_type == ZIO_TYPE_READ)
482 		abd_copy(data, zio->io_abd, size);
483 }
484 
485 static void
zio_decompress(zio_t * zio,abd_t * data,uint64_t size)486 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
487 {
488 	if (zio->io_error == 0) {
489 		void *tmp = abd_borrow_buf(data, size);
490 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
491 		    zio->io_abd, tmp, zio->io_size, size,
492 		    &zio->io_prop.zp_complevel);
493 		abd_return_buf_copy(data, tmp, size);
494 
495 		if (zio_injection_enabled && ret == 0)
496 			ret = zio_handle_fault_injection(zio, EINVAL);
497 
498 		if (ret != 0)
499 			zio->io_error = SET_ERROR(EIO);
500 	}
501 }
502 
503 static void
zio_decrypt(zio_t * zio,abd_t * data,uint64_t size)504 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
505 {
506 	int ret;
507 	void *tmp;
508 	blkptr_t *bp = zio->io_bp;
509 	spa_t *spa = zio->io_spa;
510 	uint64_t dsobj = zio->io_bookmark.zb_objset;
511 	uint64_t lsize = BP_GET_LSIZE(bp);
512 	dmu_object_type_t ot = BP_GET_TYPE(bp);
513 	uint8_t salt[ZIO_DATA_SALT_LEN];
514 	uint8_t iv[ZIO_DATA_IV_LEN];
515 	uint8_t mac[ZIO_DATA_MAC_LEN];
516 	boolean_t no_crypt = B_FALSE;
517 
518 	ASSERT(BP_USES_CRYPT(bp));
519 	ASSERT3U(size, !=, 0);
520 
521 	if (zio->io_error != 0)
522 		return;
523 
524 	/*
525 	 * Verify the cksum of MACs stored in an indirect bp. It will always
526 	 * be possible to verify this since it does not require an encryption
527 	 * key.
528 	 */
529 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
530 		zio_crypt_decode_mac_bp(bp, mac);
531 
532 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
533 			/*
534 			 * We haven't decompressed the data yet, but
535 			 * zio_crypt_do_indirect_mac_checksum() requires
536 			 * decompressed data to be able to parse out the MACs
537 			 * from the indirect block. We decompress it now and
538 			 * throw away the result after we are finished.
539 			 */
540 			tmp = zio_buf_alloc(lsize);
541 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
542 			    zio->io_abd, tmp, zio->io_size, lsize,
543 			    &zio->io_prop.zp_complevel);
544 			if (ret != 0) {
545 				ret = SET_ERROR(EIO);
546 				goto error;
547 			}
548 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
549 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
550 			zio_buf_free(tmp, lsize);
551 		} else {
552 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
553 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
554 		}
555 		abd_copy(data, zio->io_abd, size);
556 
557 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
558 			ret = zio_handle_decrypt_injection(spa,
559 			    &zio->io_bookmark, ot, ECKSUM);
560 		}
561 		if (ret != 0)
562 			goto error;
563 
564 		return;
565 	}
566 
567 	/*
568 	 * If this is an authenticated block, just check the MAC. It would be
569 	 * nice to separate this out into its own flag, but when this was done,
570 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
571 	 * could make this a flag bit.
572 	 */
573 	if (BP_IS_AUTHENTICATED(bp)) {
574 		if (ot == DMU_OT_OBJSET) {
575 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
576 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
577 		} else {
578 			zio_crypt_decode_mac_bp(bp, mac);
579 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
580 			    zio->io_abd, size, mac);
581 			if (zio_injection_enabled && ret == 0) {
582 				ret = zio_handle_decrypt_injection(spa,
583 				    &zio->io_bookmark, ot, ECKSUM);
584 			}
585 		}
586 		abd_copy(data, zio->io_abd, size);
587 
588 		if (ret != 0)
589 			goto error;
590 
591 		return;
592 	}
593 
594 	zio_crypt_decode_params_bp(bp, salt, iv);
595 
596 	if (ot == DMU_OT_INTENT_LOG) {
597 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
598 		zio_crypt_decode_mac_zil(tmp, mac);
599 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
600 	} else {
601 		zio_crypt_decode_mac_bp(bp, mac);
602 	}
603 
604 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
605 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
606 	    zio->io_abd, &no_crypt);
607 	if (no_crypt)
608 		abd_copy(data, zio->io_abd, size);
609 
610 	if (ret != 0)
611 		goto error;
612 
613 	return;
614 
615 error:
616 	/* assert that the key was found unless this was speculative */
617 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
618 
619 	/*
620 	 * If there was a decryption / authentication error return EIO as
621 	 * the io_error. If this was not a speculative zio, create an ereport.
622 	 */
623 	if (ret == ECKSUM) {
624 		zio->io_error = SET_ERROR(EIO);
625 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
626 			spa_log_error(spa, &zio->io_bookmark,
627 			    &zio->io_bp->blk_birth);
628 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
629 			    spa, NULL, &zio->io_bookmark, zio, 0);
630 		}
631 	} else {
632 		zio->io_error = ret;
633 	}
634 }
635 
636 /*
637  * ==========================================================================
638  * I/O parent/child relationships and pipeline interlocks
639  * ==========================================================================
640  */
641 zio_t *
zio_walk_parents(zio_t * cio,zio_link_t ** zl)642 zio_walk_parents(zio_t *cio, zio_link_t **zl)
643 {
644 	list_t *pl = &cio->io_parent_list;
645 
646 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
647 	if (*zl == NULL)
648 		return (NULL);
649 
650 	ASSERT((*zl)->zl_child == cio);
651 	return ((*zl)->zl_parent);
652 }
653 
654 zio_t *
zio_walk_children(zio_t * pio,zio_link_t ** zl)655 zio_walk_children(zio_t *pio, zio_link_t **zl)
656 {
657 	list_t *cl = &pio->io_child_list;
658 
659 	ASSERT(MUTEX_HELD(&pio->io_lock));
660 
661 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
662 	if (*zl == NULL)
663 		return (NULL);
664 
665 	ASSERT((*zl)->zl_parent == pio);
666 	return ((*zl)->zl_child);
667 }
668 
669 zio_t *
zio_unique_parent(zio_t * cio)670 zio_unique_parent(zio_t *cio)
671 {
672 	zio_link_t *zl = NULL;
673 	zio_t *pio = zio_walk_parents(cio, &zl);
674 
675 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
676 	return (pio);
677 }
678 
679 void
zio_add_child(zio_t * pio,zio_t * cio)680 zio_add_child(zio_t *pio, zio_t *cio)
681 {
682 	/*
683 	 * Logical I/Os can have logical, gang, or vdev children.
684 	 * Gang I/Os can have gang or vdev children.
685 	 * Vdev I/Os can only have vdev children.
686 	 * The following ASSERT captures all of these constraints.
687 	 */
688 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
689 
690 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
691 	zl->zl_parent = pio;
692 	zl->zl_child = cio;
693 
694 	mutex_enter(&pio->io_lock);
695 	mutex_enter(&cio->io_lock);
696 
697 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
698 
699 	uint64_t *countp = pio->io_children[cio->io_child_type];
700 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
701 		countp[w] += !cio->io_state[w];
702 
703 	list_insert_head(&pio->io_child_list, zl);
704 	list_insert_head(&cio->io_parent_list, zl);
705 
706 	mutex_exit(&cio->io_lock);
707 	mutex_exit(&pio->io_lock);
708 }
709 
710 void
zio_add_child_first(zio_t * pio,zio_t * cio)711 zio_add_child_first(zio_t *pio, zio_t *cio)
712 {
713 	/*
714 	 * Logical I/Os can have logical, gang, or vdev children.
715 	 * Gang I/Os can have gang or vdev children.
716 	 * Vdev I/Os can only have vdev children.
717 	 * The following ASSERT captures all of these constraints.
718 	 */
719 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
720 
721 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
722 	zl->zl_parent = pio;
723 	zl->zl_child = cio;
724 
725 	ASSERT(list_is_empty(&cio->io_parent_list));
726 	list_insert_head(&cio->io_parent_list, zl);
727 
728 	mutex_enter(&pio->io_lock);
729 
730 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
731 
732 	uint64_t *countp = pio->io_children[cio->io_child_type];
733 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
734 		countp[w] += !cio->io_state[w];
735 
736 	list_insert_head(&pio->io_child_list, zl);
737 
738 	mutex_exit(&pio->io_lock);
739 }
740 
741 static void
zio_remove_child(zio_t * pio,zio_t * cio,zio_link_t * zl)742 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
743 {
744 	ASSERT(zl->zl_parent == pio);
745 	ASSERT(zl->zl_child == cio);
746 
747 	mutex_enter(&pio->io_lock);
748 	mutex_enter(&cio->io_lock);
749 
750 	list_remove(&pio->io_child_list, zl);
751 	list_remove(&cio->io_parent_list, zl);
752 
753 	mutex_exit(&cio->io_lock);
754 	mutex_exit(&pio->io_lock);
755 	kmem_cache_free(zio_link_cache, zl);
756 }
757 
758 static boolean_t
zio_wait_for_children(zio_t * zio,uint8_t childbits,enum zio_wait_type wait)759 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
760 {
761 	boolean_t waiting = B_FALSE;
762 
763 	mutex_enter(&zio->io_lock);
764 	ASSERT(zio->io_stall == NULL);
765 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
766 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
767 			continue;
768 
769 		uint64_t *countp = &zio->io_children[c][wait];
770 		if (*countp != 0) {
771 			zio->io_stage >>= 1;
772 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
773 			zio->io_stall = countp;
774 			waiting = B_TRUE;
775 			break;
776 		}
777 	}
778 	mutex_exit(&zio->io_lock);
779 	return (waiting);
780 }
781 
782 __attribute__((always_inline))
783 static inline void
zio_notify_parent(zio_t * pio,zio_t * zio,enum zio_wait_type wait,zio_t ** next_to_executep)784 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
785     zio_t **next_to_executep)
786 {
787 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
788 	int *errorp = &pio->io_child_error[zio->io_child_type];
789 
790 	mutex_enter(&pio->io_lock);
791 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
792 		*errorp = zio_worst_error(*errorp, zio->io_error);
793 	pio->io_reexecute |= zio->io_reexecute;
794 	ASSERT3U(*countp, >, 0);
795 
796 	(*countp)--;
797 
798 	if (*countp == 0 && pio->io_stall == countp) {
799 		zio_taskq_type_t type =
800 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
801 		    ZIO_TASKQ_INTERRUPT;
802 		pio->io_stall = NULL;
803 		mutex_exit(&pio->io_lock);
804 
805 		/*
806 		 * If we can tell the caller to execute this parent next, do
807 		 * so. We only do this if the parent's zio type matches the
808 		 * child's type. Otherwise dispatch the parent zio in its
809 		 * own taskq.
810 		 *
811 		 * Having the caller execute the parent when possible reduces
812 		 * locking on the zio taskq's, reduces context switch
813 		 * overhead, and has no recursion penalty.  Note that one
814 		 * read from disk typically causes at least 3 zio's: a
815 		 * zio_null(), the logical zio_read(), and then a physical
816 		 * zio.  When the physical ZIO completes, we are able to call
817 		 * zio_done() on all 3 of these zio's from one invocation of
818 		 * zio_execute() by returning the parent back to
819 		 * zio_execute().  Since the parent isn't executed until this
820 		 * thread returns back to zio_execute(), the caller should do
821 		 * so promptly.
822 		 *
823 		 * In other cases, dispatching the parent prevents
824 		 * overflowing the stack when we have deeply nested
825 		 * parent-child relationships, as we do with the "mega zio"
826 		 * of writes for spa_sync(), and the chain of ZIL blocks.
827 		 */
828 		if (next_to_executep != NULL && *next_to_executep == NULL &&
829 		    pio->io_type == zio->io_type) {
830 			*next_to_executep = pio;
831 		} else {
832 			zio_taskq_dispatch(pio, type, B_FALSE);
833 		}
834 	} else {
835 		mutex_exit(&pio->io_lock);
836 	}
837 }
838 
839 static void
zio_inherit_child_errors(zio_t * zio,enum zio_child c)840 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
841 {
842 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
843 		zio->io_error = zio->io_child_error[c];
844 }
845 
846 int
zio_bookmark_compare(const void * x1,const void * x2)847 zio_bookmark_compare(const void *x1, const void *x2)
848 {
849 	const zio_t *z1 = x1;
850 	const zio_t *z2 = x2;
851 
852 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
853 		return (-1);
854 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
855 		return (1);
856 
857 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
858 		return (-1);
859 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
860 		return (1);
861 
862 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
863 		return (-1);
864 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
865 		return (1);
866 
867 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
868 		return (-1);
869 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
870 		return (1);
871 
872 	if (z1 < z2)
873 		return (-1);
874 	if (z1 > z2)
875 		return (1);
876 
877 	return (0);
878 }
879 
880 /*
881  * ==========================================================================
882  * Create the various types of I/O (read, write, free, etc)
883  * ==========================================================================
884  */
885 static zio_t *
zio_create(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,zio_done_func_t * done,void * private,zio_type_t type,zio_priority_t priority,zio_flag_t flags,vdev_t * vd,uint64_t offset,const zbookmark_phys_t * zb,enum zio_stage stage,enum zio_stage pipeline)886 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
887     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
888     void *private, zio_type_t type, zio_priority_t priority,
889     zio_flag_t flags, vdev_t *vd, uint64_t offset,
890     const zbookmark_phys_t *zb, enum zio_stage stage,
891     enum zio_stage pipeline)
892 {
893 	zio_t *zio;
894 
895 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
896 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
897 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
898 
899 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
900 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
901 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
902 
903 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
904 
905 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
906 	memset(zio, 0, sizeof (zio_t));
907 
908 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
909 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
910 
911 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
912 	    offsetof(zio_link_t, zl_parent_node));
913 	list_create(&zio->io_child_list, sizeof (zio_link_t),
914 	    offsetof(zio_link_t, zl_child_node));
915 	metaslab_trace_init(&zio->io_alloc_list);
916 
917 	if (vd != NULL)
918 		zio->io_child_type = ZIO_CHILD_VDEV;
919 	else if (flags & ZIO_FLAG_GANG_CHILD)
920 		zio->io_child_type = ZIO_CHILD_GANG;
921 	else if (flags & ZIO_FLAG_DDT_CHILD)
922 		zio->io_child_type = ZIO_CHILD_DDT;
923 	else
924 		zio->io_child_type = ZIO_CHILD_LOGICAL;
925 
926 	if (bp != NULL) {
927 		if (type != ZIO_TYPE_WRITE ||
928 		    zio->io_child_type == ZIO_CHILD_DDT) {
929 			zio->io_bp_copy = *bp;
930 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
931 		} else {
932 			zio->io_bp = (blkptr_t *)bp;
933 		}
934 		zio->io_bp_orig = *bp;
935 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
936 			zio->io_logical = zio;
937 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
938 			pipeline |= ZIO_GANG_STAGES;
939 	}
940 
941 	zio->io_spa = spa;
942 	zio->io_txg = txg;
943 	zio->io_done = done;
944 	zio->io_private = private;
945 	zio->io_type = type;
946 	zio->io_priority = priority;
947 	zio->io_vd = vd;
948 	zio->io_offset = offset;
949 	zio->io_orig_abd = zio->io_abd = data;
950 	zio->io_orig_size = zio->io_size = psize;
951 	zio->io_lsize = lsize;
952 	zio->io_orig_flags = zio->io_flags = flags;
953 	zio->io_orig_stage = zio->io_stage = stage;
954 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
955 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
956 
957 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
958 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
959 
960 	if (zb != NULL)
961 		zio->io_bookmark = *zb;
962 
963 	if (pio != NULL) {
964 		zio->io_metaslab_class = pio->io_metaslab_class;
965 		if (zio->io_logical == NULL)
966 			zio->io_logical = pio->io_logical;
967 		if (zio->io_child_type == ZIO_CHILD_GANG)
968 			zio->io_gang_leader = pio->io_gang_leader;
969 		zio_add_child_first(pio, zio);
970 	}
971 
972 	taskq_init_ent(&zio->io_tqent);
973 
974 	return (zio);
975 }
976 
977 void
zio_destroy(zio_t * zio)978 zio_destroy(zio_t *zio)
979 {
980 	metaslab_trace_fini(&zio->io_alloc_list);
981 	list_destroy(&zio->io_parent_list);
982 	list_destroy(&zio->io_child_list);
983 	mutex_destroy(&zio->io_lock);
984 	cv_destroy(&zio->io_cv);
985 	kmem_cache_free(zio_cache, zio);
986 }
987 
988 zio_t *
zio_null(zio_t * pio,spa_t * spa,vdev_t * vd,zio_done_func_t * done,void * private,zio_flag_t flags)989 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
990     void *private, zio_flag_t flags)
991 {
992 	zio_t *zio;
993 
994 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
995 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
996 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
997 
998 	return (zio);
999 }
1000 
1001 zio_t *
zio_root(spa_t * spa,zio_done_func_t * done,void * private,zio_flag_t flags)1002 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
1003 {
1004 	return (zio_null(NULL, spa, NULL, done, private, flags));
1005 }
1006 
1007 static int
zfs_blkptr_verify_log(spa_t * spa,const blkptr_t * bp,enum blk_verify_flag blk_verify,const char * fmt,...)1008 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
1009     enum blk_verify_flag blk_verify, const char *fmt, ...)
1010 {
1011 	va_list adx;
1012 	char buf[256];
1013 
1014 	va_start(adx, fmt);
1015 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
1016 	va_end(adx);
1017 
1018 	zfs_dbgmsg("bad blkptr at %px: "
1019 	    "DVA[0]=%#llx/%#llx "
1020 	    "DVA[1]=%#llx/%#llx "
1021 	    "DVA[2]=%#llx/%#llx "
1022 	    "prop=%#llx "
1023 	    "pad=%#llx,%#llx "
1024 	    "phys_birth=%#llx "
1025 	    "birth=%#llx "
1026 	    "fill=%#llx "
1027 	    "cksum=%#llx/%#llx/%#llx/%#llx",
1028 	    bp,
1029 	    (long long)bp->blk_dva[0].dva_word[0],
1030 	    (long long)bp->blk_dva[0].dva_word[1],
1031 	    (long long)bp->blk_dva[1].dva_word[0],
1032 	    (long long)bp->blk_dva[1].dva_word[1],
1033 	    (long long)bp->blk_dva[2].dva_word[0],
1034 	    (long long)bp->blk_dva[2].dva_word[1],
1035 	    (long long)bp->blk_prop,
1036 	    (long long)bp->blk_pad[0],
1037 	    (long long)bp->blk_pad[1],
1038 	    (long long)bp->blk_phys_birth,
1039 	    (long long)bp->blk_birth,
1040 	    (long long)bp->blk_fill,
1041 	    (long long)bp->blk_cksum.zc_word[0],
1042 	    (long long)bp->blk_cksum.zc_word[1],
1043 	    (long long)bp->blk_cksum.zc_word[2],
1044 	    (long long)bp->blk_cksum.zc_word[3]);
1045 	switch (blk_verify) {
1046 	case BLK_VERIFY_HALT:
1047 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
1048 		break;
1049 	case BLK_VERIFY_LOG:
1050 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
1051 		break;
1052 	case BLK_VERIFY_ONLY:
1053 		break;
1054 	}
1055 
1056 	return (1);
1057 }
1058 
1059 /*
1060  * Verify the block pointer fields contain reasonable values.  This means
1061  * it only contains known object types, checksum/compression identifiers,
1062  * block sizes within the maximum allowed limits, valid DVAs, etc.
1063  *
1064  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
1065  * argument controls the behavior when an invalid field is detected.
1066  *
1067  * Values for blk_verify_flag:
1068  *   BLK_VERIFY_ONLY: evaluate the block
1069  *   BLK_VERIFY_LOG: evaluate the block and log problems
1070  *   BLK_VERIFY_HALT: call zfs_panic_recover on error
1071  *
1072  * Values for blk_config_flag:
1073  *   BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1074  *   BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1075  *   obtained for reader
1076  *   BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1077  *   performance
1078  */
1079 boolean_t
zfs_blkptr_verify(spa_t * spa,const blkptr_t * bp,enum blk_config_flag blk_config,enum blk_verify_flag blk_verify)1080 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1081     enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1082 {
1083 	int errors = 0;
1084 
1085 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
1086 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1087 		    "blkptr at %px has invalid TYPE %llu",
1088 		    bp, (longlong_t)BP_GET_TYPE(bp));
1089 	}
1090 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
1091 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1092 		    "blkptr at %px has invalid CHECKSUM %llu",
1093 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
1094 	}
1095 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
1096 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1097 		    "blkptr at %px has invalid COMPRESS %llu",
1098 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
1099 	}
1100 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
1101 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1102 		    "blkptr at %px has invalid LSIZE %llu",
1103 		    bp, (longlong_t)BP_GET_LSIZE(bp));
1104 	}
1105 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
1106 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1107 		    "blkptr at %px has invalid PSIZE %llu",
1108 		    bp, (longlong_t)BP_GET_PSIZE(bp));
1109 	}
1110 
1111 	if (BP_IS_EMBEDDED(bp)) {
1112 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1113 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1114 			    "blkptr at %px has invalid ETYPE %llu",
1115 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1116 		}
1117 	}
1118 
1119 	/*
1120 	 * Do not verify individual DVAs if the config is not trusted. This
1121 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1122 	 */
1123 	if (!spa->spa_trust_config)
1124 		return (errors == 0);
1125 
1126 	switch (blk_config) {
1127 	case BLK_CONFIG_HELD:
1128 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1129 		break;
1130 	case BLK_CONFIG_NEEDED:
1131 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1132 		break;
1133 	case BLK_CONFIG_SKIP:
1134 		return (errors == 0);
1135 	default:
1136 		panic("invalid blk_config %u", blk_config);
1137 	}
1138 
1139 	/*
1140 	 * Pool-specific checks.
1141 	 *
1142 	 * Note: it would be nice to verify that the blk_birth and
1143 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1144 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1145 	 * that are in the log) to be arbitrarily large.
1146 	 */
1147 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1148 		const dva_t *dva = &bp->blk_dva[i];
1149 		uint64_t vdevid = DVA_GET_VDEV(dva);
1150 
1151 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1152 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1153 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1154 			    bp, i, (longlong_t)vdevid);
1155 			continue;
1156 		}
1157 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1158 		if (vd == NULL) {
1159 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1160 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1161 			    bp, i, (longlong_t)vdevid);
1162 			continue;
1163 		}
1164 		if (vd->vdev_ops == &vdev_hole_ops) {
1165 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1166 			    "blkptr at %px DVA %u has hole VDEV %llu",
1167 			    bp, i, (longlong_t)vdevid);
1168 			continue;
1169 		}
1170 		if (vd->vdev_ops == &vdev_missing_ops) {
1171 			/*
1172 			 * "missing" vdevs are valid during import, but we
1173 			 * don't have their detailed info (e.g. asize), so
1174 			 * we can't perform any more checks on them.
1175 			 */
1176 			continue;
1177 		}
1178 		uint64_t offset = DVA_GET_OFFSET(dva);
1179 		uint64_t asize = DVA_GET_ASIZE(dva);
1180 		if (DVA_GET_GANG(dva))
1181 			asize = vdev_gang_header_asize(vd);
1182 		if (offset + asize > vd->vdev_asize) {
1183 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1184 			    "blkptr at %px DVA %u has invalid OFFSET %llu",
1185 			    bp, i, (longlong_t)offset);
1186 		}
1187 	}
1188 	if (blk_config == BLK_CONFIG_NEEDED)
1189 		spa_config_exit(spa, SCL_VDEV, bp);
1190 
1191 	return (errors == 0);
1192 }
1193 
1194 boolean_t
zfs_dva_valid(spa_t * spa,const dva_t * dva,const blkptr_t * bp)1195 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1196 {
1197 	(void) bp;
1198 	uint64_t vdevid = DVA_GET_VDEV(dva);
1199 
1200 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1201 		return (B_FALSE);
1202 
1203 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1204 	if (vd == NULL)
1205 		return (B_FALSE);
1206 
1207 	if (vd->vdev_ops == &vdev_hole_ops)
1208 		return (B_FALSE);
1209 
1210 	if (vd->vdev_ops == &vdev_missing_ops) {
1211 		return (B_FALSE);
1212 	}
1213 
1214 	uint64_t offset = DVA_GET_OFFSET(dva);
1215 	uint64_t asize = DVA_GET_ASIZE(dva);
1216 
1217 	if (DVA_GET_GANG(dva))
1218 		asize = vdev_gang_header_asize(vd);
1219 	if (offset + asize > vd->vdev_asize)
1220 		return (B_FALSE);
1221 
1222 	return (B_TRUE);
1223 }
1224 
1225 zio_t *
zio_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1226 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1227     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1228     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1229 {
1230 	zio_t *zio;
1231 
1232 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1233 	    data, size, size, done, private,
1234 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1235 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1236 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1237 
1238 	return (zio);
1239 }
1240 
1241 zio_t *
zio_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,const zio_prop_t * zp,zio_done_func_t * ready,zio_done_func_t * children_ready,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1242 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1243     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1244     zio_done_func_t *ready, zio_done_func_t *children_ready,
1245     zio_done_func_t *done, void *private, zio_priority_t priority,
1246     zio_flag_t flags, const zbookmark_phys_t *zb)
1247 {
1248 	zio_t *zio;
1249 
1250 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1251 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1252 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1253 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1254 	    DMU_OT_IS_VALID(zp->zp_type) &&
1255 	    zp->zp_level < 32 &&
1256 	    zp->zp_copies > 0 &&
1257 	    zp->zp_copies <= spa_max_replication(spa));
1258 
1259 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1260 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1261 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1262 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1263 
1264 	zio->io_ready = ready;
1265 	zio->io_children_ready = children_ready;
1266 	zio->io_prop = *zp;
1267 
1268 	/*
1269 	 * Data can be NULL if we are going to call zio_write_override() to
1270 	 * provide the already-allocated BP.  But we may need the data to
1271 	 * verify a dedup hit (if requested).  In this case, don't try to
1272 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1273 	 * dedup blocks need data as well so we also disable dedup in this
1274 	 * case.
1275 	 */
1276 	if (data == NULL &&
1277 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1278 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1279 	}
1280 
1281 	return (zio);
1282 }
1283 
1284 zio_t *
zio_rewrite(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,zbookmark_phys_t * zb)1285 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1286     uint64_t size, zio_done_func_t *done, void *private,
1287     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1288 {
1289 	zio_t *zio;
1290 
1291 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1292 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1293 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1294 
1295 	return (zio);
1296 }
1297 
1298 void
zio_write_override(zio_t * zio,blkptr_t * bp,int copies,boolean_t nopwrite,boolean_t brtwrite)1299 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1300     boolean_t brtwrite)
1301 {
1302 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1303 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1304 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1305 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1306 	ASSERT(!brtwrite || !nopwrite);
1307 
1308 	/*
1309 	 * We must reset the io_prop to match the values that existed
1310 	 * when the bp was first written by dmu_sync() keeping in mind
1311 	 * that nopwrite and dedup are mutually exclusive.
1312 	 */
1313 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1314 	zio->io_prop.zp_nopwrite = nopwrite;
1315 	zio->io_prop.zp_brtwrite = brtwrite;
1316 	zio->io_prop.zp_copies = copies;
1317 	zio->io_bp_override = bp;
1318 }
1319 
1320 void
zio_free(spa_t * spa,uint64_t txg,const blkptr_t * bp)1321 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1322 {
1323 
1324 	(void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1325 
1326 	/*
1327 	 * The check for EMBEDDED is a performance optimization.  We
1328 	 * process the free here (by ignoring it) rather than
1329 	 * putting it on the list and then processing it in zio_free_sync().
1330 	 */
1331 	if (BP_IS_EMBEDDED(bp))
1332 		return;
1333 
1334 	/*
1335 	 * Frees that are for the currently-syncing txg, are not going to be
1336 	 * deferred, and which will not need to do a read (i.e. not GANG or
1337 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1338 	 * in-memory list for later processing.
1339 	 *
1340 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1341 	 * when the log space map feature is disabled. [see relevant comment
1342 	 * in spa_sync_iterate_to_convergence()]
1343 	 */
1344 	if (BP_IS_GANG(bp) ||
1345 	    BP_GET_DEDUP(bp) ||
1346 	    txg != spa->spa_syncing_txg ||
1347 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1348 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1349 	    brt_maybe_exists(spa, bp)) {
1350 		metaslab_check_free(spa, bp);
1351 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1352 	} else {
1353 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1354 	}
1355 }
1356 
1357 /*
1358  * To improve performance, this function may return NULL if we were able
1359  * to do the free immediately.  This avoids the cost of creating a zio
1360  * (and linking it to the parent, etc).
1361  */
1362 zio_t *
zio_free_sync(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_flag_t flags)1363 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1364     zio_flag_t flags)
1365 {
1366 	ASSERT(!BP_IS_HOLE(bp));
1367 	ASSERT(spa_syncing_txg(spa) == txg);
1368 
1369 	if (BP_IS_EMBEDDED(bp))
1370 		return (NULL);
1371 
1372 	metaslab_check_free(spa, bp);
1373 	arc_freed(spa, bp);
1374 	dsl_scan_freed(spa, bp);
1375 
1376 	if (BP_IS_GANG(bp) ||
1377 	    BP_GET_DEDUP(bp) ||
1378 	    brt_maybe_exists(spa, bp)) {
1379 		/*
1380 		 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1381 		 * block header, the DDT or the BRT), so issue them
1382 		 * asynchronously so that this thread is not tied up.
1383 		 */
1384 		enum zio_stage stage =
1385 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1386 
1387 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1388 		    BP_GET_PSIZE(bp), NULL, NULL,
1389 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1390 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1391 	} else {
1392 		metaslab_free(spa, bp, txg, B_FALSE);
1393 		return (NULL);
1394 	}
1395 }
1396 
1397 zio_t *
zio_claim(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_done_func_t * done,void * private,zio_flag_t flags)1398 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1399     zio_done_func_t *done, void *private, zio_flag_t flags)
1400 {
1401 	zio_t *zio;
1402 
1403 	(void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1404 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1405 
1406 	if (BP_IS_EMBEDDED(bp))
1407 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1408 
1409 	/*
1410 	 * A claim is an allocation of a specific block.  Claims are needed
1411 	 * to support immediate writes in the intent log.  The issue is that
1412 	 * immediate writes contain committed data, but in a txg that was
1413 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1414 	 * the intent log claims all blocks that contain immediate write data
1415 	 * so that the SPA knows they're in use.
1416 	 *
1417 	 * All claims *must* be resolved in the first txg -- before the SPA
1418 	 * starts allocating blocks -- so that nothing is allocated twice.
1419 	 * If txg == 0 we just verify that the block is claimable.
1420 	 */
1421 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1422 	    spa_min_claim_txg(spa));
1423 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1424 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1425 
1426 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1427 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1428 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1429 	ASSERT0(zio->io_queued_timestamp);
1430 
1431 	return (zio);
1432 }
1433 
1434 zio_t *
zio_ioctl(zio_t * pio,spa_t * spa,vdev_t * vd,int cmd,zio_done_func_t * done,void * private,zio_flag_t flags)1435 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1436     zio_done_func_t *done, void *private, zio_flag_t flags)
1437 {
1438 	zio_t *zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1439 	    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1440 	    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1441 	zio->io_cmd = cmd;
1442 	return (zio);
1443 }
1444 
1445 zio_t *
zio_trim(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,enum trim_flag trim_flags)1446 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1447     zio_done_func_t *done, void *private, zio_priority_t priority,
1448     zio_flag_t flags, enum trim_flag trim_flags)
1449 {
1450 	zio_t *zio;
1451 
1452 	ASSERT0(vd->vdev_children);
1453 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1454 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1455 	ASSERT3U(size, !=, 0);
1456 
1457 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1458 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1459 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1460 	zio->io_trim_flags = trim_flags;
1461 
1462 	return (zio);
1463 }
1464 
1465 zio_t *
zio_read_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1466 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1467     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1468     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1469 {
1470 	zio_t *zio;
1471 
1472 	ASSERT(vd->vdev_children == 0);
1473 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1474 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1475 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1476 
1477 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1478 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1479 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1480 
1481 	zio->io_prop.zp_checksum = checksum;
1482 
1483 	return (zio);
1484 }
1485 
1486 zio_t *
zio_write_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1487 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1488     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1489     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1490 {
1491 	zio_t *zio;
1492 
1493 	ASSERT(vd->vdev_children == 0);
1494 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1495 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1496 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1497 
1498 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1499 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1500 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1501 
1502 	zio->io_prop.zp_checksum = checksum;
1503 
1504 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1505 		/*
1506 		 * zec checksums are necessarily destructive -- they modify
1507 		 * the end of the write buffer to hold the verifier/checksum.
1508 		 * Therefore, we must make a local copy in case the data is
1509 		 * being written to multiple places in parallel.
1510 		 */
1511 		abd_t *wbuf = abd_alloc_sametype(data, size);
1512 		abd_copy(wbuf, data, size);
1513 
1514 		zio_push_transform(zio, wbuf, size, size, NULL);
1515 	}
1516 
1517 	return (zio);
1518 }
1519 
1520 /*
1521  * Create a child I/O to do some work for us.
1522  */
1523 zio_t *
zio_vdev_child_io(zio_t * pio,blkptr_t * bp,vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,int type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1524 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1525     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1526     zio_flag_t flags, zio_done_func_t *done, void *private)
1527 {
1528 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1529 	zio_t *zio;
1530 
1531 	/*
1532 	 * vdev child I/Os do not propagate their error to the parent.
1533 	 * Therefore, for correct operation the caller *must* check for
1534 	 * and handle the error in the child i/o's done callback.
1535 	 * The only exceptions are i/os that we don't care about
1536 	 * (OPTIONAL or REPAIR).
1537 	 */
1538 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1539 	    done != NULL);
1540 
1541 	if (type == ZIO_TYPE_READ && bp != NULL) {
1542 		/*
1543 		 * If we have the bp, then the child should perform the
1544 		 * checksum and the parent need not.  This pushes error
1545 		 * detection as close to the leaves as possible and
1546 		 * eliminates redundant checksums in the interior nodes.
1547 		 */
1548 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1549 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1550 	}
1551 
1552 	if (vd->vdev_ops->vdev_op_leaf) {
1553 		ASSERT0(vd->vdev_children);
1554 		offset += VDEV_LABEL_START_SIZE;
1555 	}
1556 
1557 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1558 
1559 	/*
1560 	 * If we've decided to do a repair, the write is not speculative --
1561 	 * even if the original read was.
1562 	 */
1563 	if (flags & ZIO_FLAG_IO_REPAIR)
1564 		flags &= ~ZIO_FLAG_SPECULATIVE;
1565 
1566 	/*
1567 	 * If we're creating a child I/O that is not associated with a
1568 	 * top-level vdev, then the child zio is not an allocating I/O.
1569 	 * If this is a retried I/O then we ignore it since we will
1570 	 * have already processed the original allocating I/O.
1571 	 */
1572 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1573 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1574 		ASSERT(pio->io_metaslab_class != NULL);
1575 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1576 		ASSERT(type == ZIO_TYPE_WRITE);
1577 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1578 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1579 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1580 		    pio->io_child_type == ZIO_CHILD_GANG);
1581 
1582 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1583 	}
1584 
1585 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1586 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1587 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1588 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1589 
1590 	return (zio);
1591 }
1592 
1593 zio_t *
zio_vdev_delegated_io(vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,zio_type_t type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1594 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1595     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1596     zio_done_func_t *done, void *private)
1597 {
1598 	zio_t *zio;
1599 
1600 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1601 
1602 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1603 	    data, size, size, done, private, type, priority,
1604 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1605 	    vd, offset, NULL,
1606 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1607 
1608 	return (zio);
1609 }
1610 
1611 void
zio_flush(zio_t * pio,vdev_t * vd)1612 zio_flush(zio_t *pio, vdev_t *vd)
1613 {
1614 	if (vd->vdev_nowritecache)
1615 		return;
1616 	if (vd->vdev_children == 0) {
1617 		zio_nowait(zio_ioctl(pio, vd->vdev_spa, vd,
1618 		    DKIOCFLUSHWRITECACHE, NULL, NULL, ZIO_FLAG_CANFAIL |
1619 		    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1620 	} else {
1621 		for (uint64_t c = 0; c < vd->vdev_children; c++)
1622 			zio_flush(pio, vd->vdev_child[c]);
1623 	}
1624 }
1625 
1626 void
zio_shrink(zio_t * zio,uint64_t size)1627 zio_shrink(zio_t *zio, uint64_t size)
1628 {
1629 	ASSERT3P(zio->io_executor, ==, NULL);
1630 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1631 	ASSERT3U(size, <=, zio->io_size);
1632 
1633 	/*
1634 	 * We don't shrink for raidz because of problems with the
1635 	 * reconstruction when reading back less than the block size.
1636 	 * Note, BP_IS_RAIDZ() assumes no compression.
1637 	 */
1638 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1639 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1640 		/* we are not doing a raw write */
1641 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1642 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1643 	}
1644 }
1645 
1646 /*
1647  * Round provided allocation size up to a value that can be allocated
1648  * by at least some vdev(s) in the pool with minimum or no additional
1649  * padding and without extra space usage on others
1650  */
1651 static uint64_t
zio_roundup_alloc_size(spa_t * spa,uint64_t size)1652 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1653 {
1654 	if (size > spa->spa_min_alloc)
1655 		return (roundup(size, spa->spa_gcd_alloc));
1656 	return (spa->spa_min_alloc);
1657 }
1658 
1659 /*
1660  * ==========================================================================
1661  * Prepare to read and write logical blocks
1662  * ==========================================================================
1663  */
1664 
1665 static zio_t *
zio_read_bp_init(zio_t * zio)1666 zio_read_bp_init(zio_t *zio)
1667 {
1668 	blkptr_t *bp = zio->io_bp;
1669 	uint64_t psize =
1670 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1671 
1672 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1673 
1674 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1675 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1676 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1677 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1678 		    psize, psize, zio_decompress);
1679 	}
1680 
1681 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1682 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1683 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1684 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1685 		    psize, psize, zio_decrypt);
1686 	}
1687 
1688 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1689 		int psize = BPE_GET_PSIZE(bp);
1690 		void *data = abd_borrow_buf(zio->io_abd, psize);
1691 
1692 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1693 		decode_embedded_bp_compressed(bp, data);
1694 		abd_return_buf_copy(zio->io_abd, data, psize);
1695 	} else {
1696 		ASSERT(!BP_IS_EMBEDDED(bp));
1697 	}
1698 
1699 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1700 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1701 
1702 	return (zio);
1703 }
1704 
1705 static zio_t *
zio_write_bp_init(zio_t * zio)1706 zio_write_bp_init(zio_t *zio)
1707 {
1708 	if (!IO_IS_ALLOCATING(zio))
1709 		return (zio);
1710 
1711 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1712 
1713 	if (zio->io_bp_override) {
1714 		blkptr_t *bp = zio->io_bp;
1715 		zio_prop_t *zp = &zio->io_prop;
1716 
1717 		ASSERT(bp->blk_birth != zio->io_txg);
1718 
1719 		*bp = *zio->io_bp_override;
1720 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1721 
1722 		if (zp->zp_brtwrite)
1723 			return (zio);
1724 
1725 		ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1726 
1727 		if (BP_IS_EMBEDDED(bp))
1728 			return (zio);
1729 
1730 		/*
1731 		 * If we've been overridden and nopwrite is set then
1732 		 * set the flag accordingly to indicate that a nopwrite
1733 		 * has already occurred.
1734 		 */
1735 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1736 			ASSERT(!zp->zp_dedup);
1737 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1738 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1739 			return (zio);
1740 		}
1741 
1742 		ASSERT(!zp->zp_nopwrite);
1743 
1744 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1745 			return (zio);
1746 
1747 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1748 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1749 
1750 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1751 		    !zp->zp_encrypt) {
1752 			BP_SET_DEDUP(bp, 1);
1753 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1754 			return (zio);
1755 		}
1756 
1757 		/*
1758 		 * We were unable to handle this as an override bp, treat
1759 		 * it as a regular write I/O.
1760 		 */
1761 		zio->io_bp_override = NULL;
1762 		*bp = zio->io_bp_orig;
1763 		zio->io_pipeline = zio->io_orig_pipeline;
1764 	}
1765 
1766 	return (zio);
1767 }
1768 
1769 static zio_t *
zio_write_compress(zio_t * zio)1770 zio_write_compress(zio_t *zio)
1771 {
1772 	spa_t *spa = zio->io_spa;
1773 	zio_prop_t *zp = &zio->io_prop;
1774 	enum zio_compress compress = zp->zp_compress;
1775 	blkptr_t *bp = zio->io_bp;
1776 	uint64_t lsize = zio->io_lsize;
1777 	uint64_t psize = zio->io_size;
1778 	uint32_t pass = 1;
1779 
1780 	/*
1781 	 * If our children haven't all reached the ready stage,
1782 	 * wait for them and then repeat this pipeline stage.
1783 	 */
1784 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1785 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1786 		return (NULL);
1787 	}
1788 
1789 	if (!IO_IS_ALLOCATING(zio))
1790 		return (zio);
1791 
1792 	if (zio->io_children_ready != NULL) {
1793 		/*
1794 		 * Now that all our children are ready, run the callback
1795 		 * associated with this zio in case it wants to modify the
1796 		 * data to be written.
1797 		 */
1798 		ASSERT3U(zp->zp_level, >, 0);
1799 		zio->io_children_ready(zio);
1800 	}
1801 
1802 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1803 	ASSERT(zio->io_bp_override == NULL);
1804 
1805 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1806 		/*
1807 		 * We're rewriting an existing block, which means we're
1808 		 * working on behalf of spa_sync().  For spa_sync() to
1809 		 * converge, it must eventually be the case that we don't
1810 		 * have to allocate new blocks.  But compression changes
1811 		 * the blocksize, which forces a reallocate, and makes
1812 		 * convergence take longer.  Therefore, after the first
1813 		 * few passes, stop compressing to ensure convergence.
1814 		 */
1815 		pass = spa_sync_pass(spa);
1816 
1817 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1818 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1819 		ASSERT(!BP_GET_DEDUP(bp));
1820 
1821 		if (pass >= zfs_sync_pass_dont_compress)
1822 			compress = ZIO_COMPRESS_OFF;
1823 
1824 		/* Make sure someone doesn't change their mind on overwrites */
1825 		ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) ||
1826 		    MIN(zp->zp_copies, spa_max_replication(spa))
1827 		    == BP_GET_NDVAS(bp));
1828 	}
1829 
1830 	/* If it's a compressed write that is not raw, compress the buffer. */
1831 	if (compress != ZIO_COMPRESS_OFF &&
1832 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1833 		void *cbuf = NULL;
1834 		psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize,
1835 		    zp->zp_complevel);
1836 		if (psize == 0) {
1837 			compress = ZIO_COMPRESS_OFF;
1838 		} else if (psize >= lsize) {
1839 			compress = ZIO_COMPRESS_OFF;
1840 			if (cbuf != NULL)
1841 				zio_buf_free(cbuf, lsize);
1842 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1843 		    psize <= BPE_PAYLOAD_SIZE &&
1844 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1845 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1846 			encode_embedded_bp_compressed(bp,
1847 			    cbuf, compress, lsize, psize);
1848 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1849 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1850 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1851 			zio_buf_free(cbuf, lsize);
1852 			bp->blk_birth = zio->io_txg;
1853 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1854 			ASSERT(spa_feature_is_active(spa,
1855 			    SPA_FEATURE_EMBEDDED_DATA));
1856 			return (zio);
1857 		} else {
1858 			/*
1859 			 * Round compressed size up to the minimum allocation
1860 			 * size of the smallest-ashift device, and zero the
1861 			 * tail. This ensures that the compressed size of the
1862 			 * BP (and thus compressratio property) are correct,
1863 			 * in that we charge for the padding used to fill out
1864 			 * the last sector.
1865 			 */
1866 			size_t rounded = (size_t)zio_roundup_alloc_size(spa,
1867 			    psize);
1868 			if (rounded >= lsize) {
1869 				compress = ZIO_COMPRESS_OFF;
1870 				zio_buf_free(cbuf, lsize);
1871 				psize = lsize;
1872 			} else {
1873 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1874 				abd_take_ownership_of_buf(cdata, B_TRUE);
1875 				abd_zero_off(cdata, psize, rounded - psize);
1876 				psize = rounded;
1877 				zio_push_transform(zio, cdata,
1878 				    psize, lsize, NULL);
1879 			}
1880 		}
1881 
1882 		/*
1883 		 * We were unable to handle this as an override bp, treat
1884 		 * it as a regular write I/O.
1885 		 */
1886 		zio->io_bp_override = NULL;
1887 		*bp = zio->io_bp_orig;
1888 		zio->io_pipeline = zio->io_orig_pipeline;
1889 
1890 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1891 	    zp->zp_type == DMU_OT_DNODE) {
1892 		/*
1893 		 * The DMU actually relies on the zio layer's compression
1894 		 * to free metadnode blocks that have had all contained
1895 		 * dnodes freed. As a result, even when doing a raw
1896 		 * receive, we must check whether the block can be compressed
1897 		 * to a hole.
1898 		 */
1899 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1900 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1901 		if (psize == 0 || psize >= lsize)
1902 			compress = ZIO_COMPRESS_OFF;
1903 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1904 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1905 		/*
1906 		 * If we are raw receiving an encrypted dataset we should not
1907 		 * take this codepath because it will change the on-disk block
1908 		 * and decryption will fail.
1909 		 */
1910 		size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
1911 		    lsize);
1912 
1913 		if (rounded != psize) {
1914 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1915 			abd_zero_off(cdata, psize, rounded - psize);
1916 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1917 			psize = rounded;
1918 			zio_push_transform(zio, cdata,
1919 			    psize, rounded, NULL);
1920 		}
1921 	} else {
1922 		ASSERT3U(psize, !=, 0);
1923 	}
1924 
1925 	/*
1926 	 * The final pass of spa_sync() must be all rewrites, but the first
1927 	 * few passes offer a trade-off: allocating blocks defers convergence,
1928 	 * but newly allocated blocks are sequential, so they can be written
1929 	 * to disk faster.  Therefore, we allow the first few passes of
1930 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1931 	 * There should only be a handful of blocks after pass 1 in any case.
1932 	 */
1933 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1934 	    BP_GET_PSIZE(bp) == psize &&
1935 	    pass >= zfs_sync_pass_rewrite) {
1936 		VERIFY3U(psize, !=, 0);
1937 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1938 
1939 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1940 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1941 	} else {
1942 		BP_ZERO(bp);
1943 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1944 	}
1945 
1946 	if (psize == 0) {
1947 		if (zio->io_bp_orig.blk_birth != 0 &&
1948 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1949 			BP_SET_LSIZE(bp, lsize);
1950 			BP_SET_TYPE(bp, zp->zp_type);
1951 			BP_SET_LEVEL(bp, zp->zp_level);
1952 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1953 		}
1954 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1955 	} else {
1956 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1957 		BP_SET_LSIZE(bp, lsize);
1958 		BP_SET_TYPE(bp, zp->zp_type);
1959 		BP_SET_LEVEL(bp, zp->zp_level);
1960 		BP_SET_PSIZE(bp, psize);
1961 		BP_SET_COMPRESS(bp, compress);
1962 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1963 		BP_SET_DEDUP(bp, zp->zp_dedup);
1964 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1965 		if (zp->zp_dedup) {
1966 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1967 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1968 			ASSERT(!zp->zp_encrypt ||
1969 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1970 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1971 		}
1972 		if (zp->zp_nopwrite) {
1973 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1974 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1975 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1976 		}
1977 	}
1978 	return (zio);
1979 }
1980 
1981 static zio_t *
zio_free_bp_init(zio_t * zio)1982 zio_free_bp_init(zio_t *zio)
1983 {
1984 	blkptr_t *bp = zio->io_bp;
1985 
1986 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1987 		if (BP_GET_DEDUP(bp))
1988 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1989 	}
1990 
1991 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1992 
1993 	return (zio);
1994 }
1995 
1996 /*
1997  * ==========================================================================
1998  * Execute the I/O pipeline
1999  * ==========================================================================
2000  */
2001 
2002 static void
zio_taskq_dispatch(zio_t * zio,zio_taskq_type_t q,boolean_t cutinline)2003 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
2004 {
2005 	spa_t *spa = zio->io_spa;
2006 	zio_type_t t = zio->io_type;
2007 	int flags = (cutinline ? TQ_FRONT : 0);
2008 
2009 	/*
2010 	 * If we're a config writer or a probe, the normal issue and
2011 	 * interrupt threads may all be blocked waiting for the config lock.
2012 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2013 	 */
2014 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
2015 		t = ZIO_TYPE_NULL;
2016 
2017 	/*
2018 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2019 	 */
2020 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
2021 		t = ZIO_TYPE_NULL;
2022 
2023 	/*
2024 	 * If this is a high priority I/O, then use the high priority taskq if
2025 	 * available.
2026 	 */
2027 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
2028 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
2029 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
2030 		q++;
2031 
2032 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
2033 
2034 	/*
2035 	 * NB: We are assuming that the zio can only be dispatched
2036 	 * to a single taskq at a time.  It would be a grievous error
2037 	 * to dispatch the zio to another taskq at the same time.
2038 	 */
2039 	ASSERT(taskq_empty_ent(&zio->io_tqent));
2040 	spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
2041 	    &zio->io_tqent);
2042 }
2043 
2044 static boolean_t
zio_taskq_member(zio_t * zio,zio_taskq_type_t q)2045 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
2046 {
2047 	spa_t *spa = zio->io_spa;
2048 
2049 	taskq_t *tq = taskq_of_curthread();
2050 
2051 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2052 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2053 		uint_t i;
2054 		for (i = 0; i < tqs->stqs_count; i++) {
2055 			if (tqs->stqs_taskq[i] == tq)
2056 				return (B_TRUE);
2057 		}
2058 	}
2059 
2060 	return (B_FALSE);
2061 }
2062 
2063 static zio_t *
zio_issue_async(zio_t * zio)2064 zio_issue_async(zio_t *zio)
2065 {
2066 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2067 
2068 	return (NULL);
2069 }
2070 
2071 void
zio_interrupt(void * zio)2072 zio_interrupt(void *zio)
2073 {
2074 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2075 }
2076 
2077 void
zio_delay_interrupt(zio_t * zio)2078 zio_delay_interrupt(zio_t *zio)
2079 {
2080 	/*
2081 	 * The timeout_generic() function isn't defined in userspace, so
2082 	 * rather than trying to implement the function, the zio delay
2083 	 * functionality has been disabled for userspace builds.
2084 	 */
2085 
2086 #ifdef _KERNEL
2087 	/*
2088 	 * If io_target_timestamp is zero, then no delay has been registered
2089 	 * for this IO, thus jump to the end of this function and "skip" the
2090 	 * delay; issuing it directly to the zio layer.
2091 	 */
2092 	if (zio->io_target_timestamp != 0) {
2093 		hrtime_t now = gethrtime();
2094 
2095 		if (now >= zio->io_target_timestamp) {
2096 			/*
2097 			 * This IO has already taken longer than the target
2098 			 * delay to complete, so we don't want to delay it
2099 			 * any longer; we "miss" the delay and issue it
2100 			 * directly to the zio layer. This is likely due to
2101 			 * the target latency being set to a value less than
2102 			 * the underlying hardware can satisfy (e.g. delay
2103 			 * set to 1ms, but the disks take 10ms to complete an
2104 			 * IO request).
2105 			 */
2106 
2107 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2108 			    hrtime_t, now);
2109 
2110 			zio_interrupt(zio);
2111 		} else {
2112 			taskqid_t tid;
2113 			hrtime_t diff = zio->io_target_timestamp - now;
2114 			clock_t expire_at_tick = ddi_get_lbolt() +
2115 			    NSEC_TO_TICK(diff);
2116 
2117 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2118 			    hrtime_t, now, hrtime_t, diff);
2119 
2120 			if (NSEC_TO_TICK(diff) == 0) {
2121 				/* Our delay is less than a jiffy - just spin */
2122 				zfs_sleep_until(zio->io_target_timestamp);
2123 				zio_interrupt(zio);
2124 			} else {
2125 				/*
2126 				 * Use taskq_dispatch_delay() in the place of
2127 				 * OpenZFS's timeout_generic().
2128 				 */
2129 				tid = taskq_dispatch_delay(system_taskq,
2130 				    zio_interrupt, zio, TQ_NOSLEEP,
2131 				    expire_at_tick);
2132 				if (tid == TASKQID_INVALID) {
2133 					/*
2134 					 * Couldn't allocate a task.  Just
2135 					 * finish the zio without a delay.
2136 					 */
2137 					zio_interrupt(zio);
2138 				}
2139 			}
2140 		}
2141 		return;
2142 	}
2143 #endif
2144 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2145 	zio_interrupt(zio);
2146 }
2147 
2148 static void
zio_deadman_impl(zio_t * pio,int ziodepth)2149 zio_deadman_impl(zio_t *pio, int ziodepth)
2150 {
2151 	zio_t *cio, *cio_next;
2152 	zio_link_t *zl = NULL;
2153 	vdev_t *vd = pio->io_vd;
2154 
2155 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2156 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2157 		zbookmark_phys_t *zb = &pio->io_bookmark;
2158 		uint64_t delta = gethrtime() - pio->io_timestamp;
2159 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2160 
2161 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2162 		    "delta=%llu queued=%llu io=%llu "
2163 		    "path=%s "
2164 		    "last=%llu type=%d "
2165 		    "priority=%d flags=0x%llx stage=0x%x "
2166 		    "pipeline=0x%x pipeline-trace=0x%x "
2167 		    "objset=%llu object=%llu "
2168 		    "level=%llu blkid=%llu "
2169 		    "offset=%llu size=%llu "
2170 		    "error=%d",
2171 		    ziodepth, pio, pio->io_timestamp,
2172 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2173 		    vd ? vd->vdev_path : "NULL",
2174 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2175 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2176 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2177 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2178 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2179 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2180 		    pio->io_error);
2181 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2182 		    pio->io_spa, vd, zb, pio, 0);
2183 
2184 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2185 		    taskq_empty_ent(&pio->io_tqent)) {
2186 			zio_interrupt(pio);
2187 		}
2188 	}
2189 
2190 	mutex_enter(&pio->io_lock);
2191 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2192 		cio_next = zio_walk_children(pio, &zl);
2193 		zio_deadman_impl(cio, ziodepth + 1);
2194 	}
2195 	mutex_exit(&pio->io_lock);
2196 }
2197 
2198 /*
2199  * Log the critical information describing this zio and all of its children
2200  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2201  */
2202 void
zio_deadman(zio_t * pio,const char * tag)2203 zio_deadman(zio_t *pio, const char *tag)
2204 {
2205 	spa_t *spa = pio->io_spa;
2206 	char *name = spa_name(spa);
2207 
2208 	if (!zfs_deadman_enabled || spa_suspended(spa))
2209 		return;
2210 
2211 	zio_deadman_impl(pio, 0);
2212 
2213 	switch (spa_get_deadman_failmode(spa)) {
2214 	case ZIO_FAILURE_MODE_WAIT:
2215 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2216 		break;
2217 
2218 	case ZIO_FAILURE_MODE_CONTINUE:
2219 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2220 		break;
2221 
2222 	case ZIO_FAILURE_MODE_PANIC:
2223 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2224 		break;
2225 	}
2226 }
2227 
2228 /*
2229  * Execute the I/O pipeline until one of the following occurs:
2230  * (1) the I/O completes; (2) the pipeline stalls waiting for
2231  * dependent child I/Os; (3) the I/O issues, so we're waiting
2232  * for an I/O completion interrupt; (4) the I/O is delegated by
2233  * vdev-level caching or aggregation; (5) the I/O is deferred
2234  * due to vdev-level queueing; (6) the I/O is handed off to
2235  * another thread.  In all cases, the pipeline stops whenever
2236  * there's no CPU work; it never burns a thread in cv_wait_io().
2237  *
2238  * There's no locking on io_stage because there's no legitimate way
2239  * for multiple threads to be attempting to process the same I/O.
2240  */
2241 static zio_pipe_stage_t *zio_pipeline[];
2242 
2243 /*
2244  * zio_execute() is a wrapper around the static function
2245  * __zio_execute() so that we can force  __zio_execute() to be
2246  * inlined.  This reduces stack overhead which is important
2247  * because __zio_execute() is called recursively in several zio
2248  * code paths.  zio_execute() itself cannot be inlined because
2249  * it is externally visible.
2250  */
2251 void
zio_execute(void * zio)2252 zio_execute(void *zio)
2253 {
2254 	fstrans_cookie_t cookie;
2255 
2256 	cookie = spl_fstrans_mark();
2257 	__zio_execute(zio);
2258 	spl_fstrans_unmark(cookie);
2259 }
2260 
2261 /*
2262  * Used to determine if in the current context the stack is sized large
2263  * enough to allow zio_execute() to be called recursively.  A minimum
2264  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2265  */
2266 static boolean_t
zio_execute_stack_check(zio_t * zio)2267 zio_execute_stack_check(zio_t *zio)
2268 {
2269 #if !defined(HAVE_LARGE_STACKS)
2270 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2271 
2272 	/* Executing in txg_sync_thread() context. */
2273 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2274 		return (B_TRUE);
2275 
2276 	/* Pool initialization outside of zio_taskq context. */
2277 	if (dp && spa_is_initializing(dp->dp_spa) &&
2278 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2279 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2280 		return (B_TRUE);
2281 #else
2282 	(void) zio;
2283 #endif /* HAVE_LARGE_STACKS */
2284 
2285 	return (B_FALSE);
2286 }
2287 
2288 __attribute__((always_inline))
2289 static inline void
__zio_execute(zio_t * zio)2290 __zio_execute(zio_t *zio)
2291 {
2292 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2293 
2294 	while (zio->io_stage < ZIO_STAGE_DONE) {
2295 		enum zio_stage pipeline = zio->io_pipeline;
2296 		enum zio_stage stage = zio->io_stage;
2297 
2298 		zio->io_executor = curthread;
2299 
2300 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2301 		ASSERT(ISP2(stage));
2302 		ASSERT(zio->io_stall == NULL);
2303 
2304 		do {
2305 			stage <<= 1;
2306 		} while ((stage & pipeline) == 0);
2307 
2308 		ASSERT(stage <= ZIO_STAGE_DONE);
2309 
2310 		/*
2311 		 * If we are in interrupt context and this pipeline stage
2312 		 * will grab a config lock that is held across I/O,
2313 		 * or may wait for an I/O that needs an interrupt thread
2314 		 * to complete, issue async to avoid deadlock.
2315 		 *
2316 		 * For VDEV_IO_START, we cut in line so that the io will
2317 		 * be sent to disk promptly.
2318 		 */
2319 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2320 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2321 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2322 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2323 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2324 			return;
2325 		}
2326 
2327 		/*
2328 		 * If the current context doesn't have large enough stacks
2329 		 * the zio must be issued asynchronously to prevent overflow.
2330 		 */
2331 		if (zio_execute_stack_check(zio)) {
2332 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2333 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2334 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2335 			return;
2336 		}
2337 
2338 		zio->io_stage = stage;
2339 		zio->io_pipeline_trace |= zio->io_stage;
2340 
2341 		/*
2342 		 * The zio pipeline stage returns the next zio to execute
2343 		 * (typically the same as this one), or NULL if we should
2344 		 * stop.
2345 		 */
2346 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2347 
2348 		if (zio == NULL)
2349 			return;
2350 	}
2351 }
2352 
2353 
2354 /*
2355  * ==========================================================================
2356  * Initiate I/O, either sync or async
2357  * ==========================================================================
2358  */
2359 int
zio_wait(zio_t * zio)2360 zio_wait(zio_t *zio)
2361 {
2362 	/*
2363 	 * Some routines, like zio_free_sync(), may return a NULL zio
2364 	 * to avoid the performance overhead of creating and then destroying
2365 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2366 	 * zio and ignore it.
2367 	 */
2368 	if (zio == NULL)
2369 		return (0);
2370 
2371 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2372 	int error;
2373 
2374 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2375 	ASSERT3P(zio->io_executor, ==, NULL);
2376 
2377 	zio->io_waiter = curthread;
2378 	ASSERT0(zio->io_queued_timestamp);
2379 	zio->io_queued_timestamp = gethrtime();
2380 
2381 	__zio_execute(zio);
2382 
2383 	mutex_enter(&zio->io_lock);
2384 	while (zio->io_executor != NULL) {
2385 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2386 		    ddi_get_lbolt() + timeout);
2387 
2388 		if (zfs_deadman_enabled && error == -1 &&
2389 		    gethrtime() - zio->io_queued_timestamp >
2390 		    spa_deadman_ziotime(zio->io_spa)) {
2391 			mutex_exit(&zio->io_lock);
2392 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2393 			zio_deadman(zio, FTAG);
2394 			mutex_enter(&zio->io_lock);
2395 		}
2396 	}
2397 	mutex_exit(&zio->io_lock);
2398 
2399 	error = zio->io_error;
2400 	zio_destroy(zio);
2401 
2402 	return (error);
2403 }
2404 
2405 void
zio_nowait(zio_t * zio)2406 zio_nowait(zio_t *zio)
2407 {
2408 	/*
2409 	 * See comment in zio_wait().
2410 	 */
2411 	if (zio == NULL)
2412 		return;
2413 
2414 	ASSERT3P(zio->io_executor, ==, NULL);
2415 
2416 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2417 	    list_is_empty(&zio->io_parent_list)) {
2418 		zio_t *pio;
2419 
2420 		/*
2421 		 * This is a logical async I/O with no parent to wait for it.
2422 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2423 		 * will ensure they complete prior to unloading the pool.
2424 		 */
2425 		spa_t *spa = zio->io_spa;
2426 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2427 
2428 		zio_add_child(pio, zio);
2429 	}
2430 
2431 	ASSERT0(zio->io_queued_timestamp);
2432 	zio->io_queued_timestamp = gethrtime();
2433 	__zio_execute(zio);
2434 }
2435 
2436 /*
2437  * ==========================================================================
2438  * Reexecute, cancel, or suspend/resume failed I/O
2439  * ==========================================================================
2440  */
2441 
2442 static void
zio_reexecute(void * arg)2443 zio_reexecute(void *arg)
2444 {
2445 	zio_t *pio = arg;
2446 	zio_t *cio, *cio_next;
2447 
2448 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2449 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2450 	ASSERT(pio->io_gang_leader == NULL);
2451 	ASSERT(pio->io_gang_tree == NULL);
2452 
2453 	pio->io_flags = pio->io_orig_flags;
2454 	pio->io_stage = pio->io_orig_stage;
2455 	pio->io_pipeline = pio->io_orig_pipeline;
2456 	pio->io_reexecute = 0;
2457 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2458 	pio->io_pipeline_trace = 0;
2459 	pio->io_error = 0;
2460 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2461 		pio->io_state[w] = 0;
2462 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2463 		pio->io_child_error[c] = 0;
2464 
2465 	if (IO_IS_ALLOCATING(pio))
2466 		BP_ZERO(pio->io_bp);
2467 
2468 	/*
2469 	 * As we reexecute pio's children, new children could be created.
2470 	 * New children go to the head of pio's io_child_list, however,
2471 	 * so we will (correctly) not reexecute them.  The key is that
2472 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2473 	 * cannot be affected by any side effects of reexecuting 'cio'.
2474 	 */
2475 	zio_link_t *zl = NULL;
2476 	mutex_enter(&pio->io_lock);
2477 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2478 		cio_next = zio_walk_children(pio, &zl);
2479 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2480 			pio->io_children[cio->io_child_type][w]++;
2481 		mutex_exit(&pio->io_lock);
2482 		zio_reexecute(cio);
2483 		mutex_enter(&pio->io_lock);
2484 	}
2485 	mutex_exit(&pio->io_lock);
2486 
2487 	/*
2488 	 * Now that all children have been reexecuted, execute the parent.
2489 	 * We don't reexecute "The Godfather" I/O here as it's the
2490 	 * responsibility of the caller to wait on it.
2491 	 */
2492 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2493 		pio->io_queued_timestamp = gethrtime();
2494 		__zio_execute(pio);
2495 	}
2496 }
2497 
2498 void
zio_suspend(spa_t * spa,zio_t * zio,zio_suspend_reason_t reason)2499 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2500 {
2501 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2502 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2503 		    "failure and the failure mode property for this pool "
2504 		    "is set to panic.", spa_name(spa));
2505 
2506 	if (reason != ZIO_SUSPEND_MMP) {
2507 		cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable "
2508 		    "I/O failure and has been suspended.\n", spa_name(spa));
2509 	}
2510 
2511 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2512 	    NULL, NULL, 0);
2513 
2514 	mutex_enter(&spa->spa_suspend_lock);
2515 
2516 	if (spa->spa_suspend_zio_root == NULL)
2517 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2518 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2519 		    ZIO_FLAG_GODFATHER);
2520 
2521 	spa->spa_suspended = reason;
2522 
2523 	if (zio != NULL) {
2524 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2525 		ASSERT(zio != spa->spa_suspend_zio_root);
2526 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2527 		ASSERT(zio_unique_parent(zio) == NULL);
2528 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2529 		zio_add_child(spa->spa_suspend_zio_root, zio);
2530 	}
2531 
2532 	mutex_exit(&spa->spa_suspend_lock);
2533 }
2534 
2535 int
zio_resume(spa_t * spa)2536 zio_resume(spa_t *spa)
2537 {
2538 	zio_t *pio;
2539 
2540 	/*
2541 	 * Reexecute all previously suspended i/o.
2542 	 */
2543 	mutex_enter(&spa->spa_suspend_lock);
2544 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2545 	cv_broadcast(&spa->spa_suspend_cv);
2546 	pio = spa->spa_suspend_zio_root;
2547 	spa->spa_suspend_zio_root = NULL;
2548 	mutex_exit(&spa->spa_suspend_lock);
2549 
2550 	if (pio == NULL)
2551 		return (0);
2552 
2553 	zio_reexecute(pio);
2554 	return (zio_wait(pio));
2555 }
2556 
2557 void
zio_resume_wait(spa_t * spa)2558 zio_resume_wait(spa_t *spa)
2559 {
2560 	mutex_enter(&spa->spa_suspend_lock);
2561 	while (spa_suspended(spa))
2562 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2563 	mutex_exit(&spa->spa_suspend_lock);
2564 }
2565 
2566 /*
2567  * ==========================================================================
2568  * Gang blocks.
2569  *
2570  * A gang block is a collection of small blocks that looks to the DMU
2571  * like one large block.  When zio_dva_allocate() cannot find a block
2572  * of the requested size, due to either severe fragmentation or the pool
2573  * being nearly full, it calls zio_write_gang_block() to construct the
2574  * block from smaller fragments.
2575  *
2576  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2577  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2578  * an indirect block: it's an array of block pointers.  It consumes
2579  * only one sector and hence is allocatable regardless of fragmentation.
2580  * The gang header's bps point to its gang members, which hold the data.
2581  *
2582  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2583  * as the verifier to ensure uniqueness of the SHA256 checksum.
2584  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2585  * not the gang header.  This ensures that data block signatures (needed for
2586  * deduplication) are independent of how the block is physically stored.
2587  *
2588  * Gang blocks can be nested: a gang member may itself be a gang block.
2589  * Thus every gang block is a tree in which root and all interior nodes are
2590  * gang headers, and the leaves are normal blocks that contain user data.
2591  * The root of the gang tree is called the gang leader.
2592  *
2593  * To perform any operation (read, rewrite, free, claim) on a gang block,
2594  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2595  * in the io_gang_tree field of the original logical i/o by recursively
2596  * reading the gang leader and all gang headers below it.  This yields
2597  * an in-core tree containing the contents of every gang header and the
2598  * bps for every constituent of the gang block.
2599  *
2600  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2601  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2602  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2603  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2604  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2605  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2606  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2607  * of the gang header plus zio_checksum_compute() of the data to update the
2608  * gang header's blk_cksum as described above.
2609  *
2610  * The two-phase assemble/issue model solves the problem of partial failure --
2611  * what if you'd freed part of a gang block but then couldn't read the
2612  * gang header for another part?  Assembling the entire gang tree first
2613  * ensures that all the necessary gang header I/O has succeeded before
2614  * starting the actual work of free, claim, or write.  Once the gang tree
2615  * is assembled, free and claim are in-memory operations that cannot fail.
2616  *
2617  * In the event that a gang write fails, zio_dva_unallocate() walks the
2618  * gang tree to immediately free (i.e. insert back into the space map)
2619  * everything we've allocated.  This ensures that we don't get ENOSPC
2620  * errors during repeated suspend/resume cycles due to a flaky device.
2621  *
2622  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2623  * the gang tree, we won't modify the block, so we can safely defer the free
2624  * (knowing that the block is still intact).  If we *can* assemble the gang
2625  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2626  * each constituent bp and we can allocate a new block on the next sync pass.
2627  *
2628  * In all cases, the gang tree allows complete recovery from partial failure.
2629  * ==========================================================================
2630  */
2631 
2632 static void
zio_gang_issue_func_done(zio_t * zio)2633 zio_gang_issue_func_done(zio_t *zio)
2634 {
2635 	abd_free(zio->io_abd);
2636 }
2637 
2638 static zio_t *
zio_read_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2639 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2640     uint64_t offset)
2641 {
2642 	if (gn != NULL)
2643 		return (pio);
2644 
2645 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2646 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2647 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2648 	    &pio->io_bookmark));
2649 }
2650 
2651 static zio_t *
zio_rewrite_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2652 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2653     uint64_t offset)
2654 {
2655 	zio_t *zio;
2656 
2657 	if (gn != NULL) {
2658 		abd_t *gbh_abd =
2659 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2660 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2661 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2662 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2663 		    &pio->io_bookmark);
2664 		/*
2665 		 * As we rewrite each gang header, the pipeline will compute
2666 		 * a new gang block header checksum for it; but no one will
2667 		 * compute a new data checksum, so we do that here.  The one
2668 		 * exception is the gang leader: the pipeline already computed
2669 		 * its data checksum because that stage precedes gang assembly.
2670 		 * (Presently, nothing actually uses interior data checksums;
2671 		 * this is just good hygiene.)
2672 		 */
2673 		if (gn != pio->io_gang_leader->io_gang_tree) {
2674 			abd_t *buf = abd_get_offset(data, offset);
2675 
2676 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2677 			    buf, BP_GET_PSIZE(bp));
2678 
2679 			abd_free(buf);
2680 		}
2681 		/*
2682 		 * If we are here to damage data for testing purposes,
2683 		 * leave the GBH alone so that we can detect the damage.
2684 		 */
2685 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2686 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2687 	} else {
2688 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2689 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2690 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2691 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2692 	}
2693 
2694 	return (zio);
2695 }
2696 
2697 static zio_t *
zio_free_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2698 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2699     uint64_t offset)
2700 {
2701 	(void) gn, (void) data, (void) offset;
2702 
2703 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2704 	    ZIO_GANG_CHILD_FLAGS(pio));
2705 	if (zio == NULL) {
2706 		zio = zio_null(pio, pio->io_spa,
2707 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2708 	}
2709 	return (zio);
2710 }
2711 
2712 static zio_t *
zio_claim_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2713 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2714     uint64_t offset)
2715 {
2716 	(void) gn, (void) data, (void) offset;
2717 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2718 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2719 }
2720 
2721 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2722 	NULL,
2723 	zio_read_gang,
2724 	zio_rewrite_gang,
2725 	zio_free_gang,
2726 	zio_claim_gang,
2727 	NULL
2728 };
2729 
2730 static void zio_gang_tree_assemble_done(zio_t *zio);
2731 
2732 static zio_gang_node_t *
zio_gang_node_alloc(zio_gang_node_t ** gnpp)2733 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2734 {
2735 	zio_gang_node_t *gn;
2736 
2737 	ASSERT(*gnpp == NULL);
2738 
2739 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2740 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2741 	*gnpp = gn;
2742 
2743 	return (gn);
2744 }
2745 
2746 static void
zio_gang_node_free(zio_gang_node_t ** gnpp)2747 zio_gang_node_free(zio_gang_node_t **gnpp)
2748 {
2749 	zio_gang_node_t *gn = *gnpp;
2750 
2751 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2752 		ASSERT(gn->gn_child[g] == NULL);
2753 
2754 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2755 	kmem_free(gn, sizeof (*gn));
2756 	*gnpp = NULL;
2757 }
2758 
2759 static void
zio_gang_tree_free(zio_gang_node_t ** gnpp)2760 zio_gang_tree_free(zio_gang_node_t **gnpp)
2761 {
2762 	zio_gang_node_t *gn = *gnpp;
2763 
2764 	if (gn == NULL)
2765 		return;
2766 
2767 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2768 		zio_gang_tree_free(&gn->gn_child[g]);
2769 
2770 	zio_gang_node_free(gnpp);
2771 }
2772 
2773 static void
zio_gang_tree_assemble(zio_t * gio,blkptr_t * bp,zio_gang_node_t ** gnpp)2774 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2775 {
2776 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2777 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2778 
2779 	ASSERT(gio->io_gang_leader == gio);
2780 	ASSERT(BP_IS_GANG(bp));
2781 
2782 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2783 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2784 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2785 }
2786 
2787 static void
zio_gang_tree_assemble_done(zio_t * zio)2788 zio_gang_tree_assemble_done(zio_t *zio)
2789 {
2790 	zio_t *gio = zio->io_gang_leader;
2791 	zio_gang_node_t *gn = zio->io_private;
2792 	blkptr_t *bp = zio->io_bp;
2793 
2794 	ASSERT(gio == zio_unique_parent(zio));
2795 	ASSERT(list_is_empty(&zio->io_child_list));
2796 
2797 	if (zio->io_error)
2798 		return;
2799 
2800 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2801 	if (BP_SHOULD_BYTESWAP(bp))
2802 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2803 
2804 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2805 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2806 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2807 
2808 	abd_free(zio->io_abd);
2809 
2810 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2811 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2812 		if (!BP_IS_GANG(gbp))
2813 			continue;
2814 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2815 	}
2816 }
2817 
2818 static void
zio_gang_tree_issue(zio_t * pio,zio_gang_node_t * gn,blkptr_t * bp,abd_t * data,uint64_t offset)2819 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2820     uint64_t offset)
2821 {
2822 	zio_t *gio = pio->io_gang_leader;
2823 	zio_t *zio;
2824 
2825 	ASSERT(BP_IS_GANG(bp) == !!gn);
2826 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2827 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2828 
2829 	/*
2830 	 * If you're a gang header, your data is in gn->gn_gbh.
2831 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2832 	 */
2833 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2834 
2835 	if (gn != NULL) {
2836 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2837 
2838 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2839 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2840 			if (BP_IS_HOLE(gbp))
2841 				continue;
2842 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2843 			    offset);
2844 			offset += BP_GET_PSIZE(gbp);
2845 		}
2846 	}
2847 
2848 	if (gn == gio->io_gang_tree)
2849 		ASSERT3U(gio->io_size, ==, offset);
2850 
2851 	if (zio != pio)
2852 		zio_nowait(zio);
2853 }
2854 
2855 static zio_t *
zio_gang_assemble(zio_t * zio)2856 zio_gang_assemble(zio_t *zio)
2857 {
2858 	blkptr_t *bp = zio->io_bp;
2859 
2860 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2861 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2862 
2863 	zio->io_gang_leader = zio;
2864 
2865 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2866 
2867 	return (zio);
2868 }
2869 
2870 static zio_t *
zio_gang_issue(zio_t * zio)2871 zio_gang_issue(zio_t *zio)
2872 {
2873 	blkptr_t *bp = zio->io_bp;
2874 
2875 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2876 		return (NULL);
2877 	}
2878 
2879 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2880 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2881 
2882 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2883 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2884 		    0);
2885 	else
2886 		zio_gang_tree_free(&zio->io_gang_tree);
2887 
2888 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2889 
2890 	return (zio);
2891 }
2892 
2893 static void
zio_write_gang_member_ready(zio_t * zio)2894 zio_write_gang_member_ready(zio_t *zio)
2895 {
2896 	zio_t *pio = zio_unique_parent(zio);
2897 	dva_t *cdva = zio->io_bp->blk_dva;
2898 	dva_t *pdva = pio->io_bp->blk_dva;
2899 	uint64_t asize;
2900 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2901 
2902 	if (BP_IS_HOLE(zio->io_bp))
2903 		return;
2904 
2905 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2906 
2907 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2908 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2909 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2910 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2911 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2912 
2913 	mutex_enter(&pio->io_lock);
2914 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2915 		ASSERT(DVA_GET_GANG(&pdva[d]));
2916 		asize = DVA_GET_ASIZE(&pdva[d]);
2917 		asize += DVA_GET_ASIZE(&cdva[d]);
2918 		DVA_SET_ASIZE(&pdva[d], asize);
2919 	}
2920 	mutex_exit(&pio->io_lock);
2921 }
2922 
2923 static void
zio_write_gang_done(zio_t * zio)2924 zio_write_gang_done(zio_t *zio)
2925 {
2926 	/*
2927 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2928 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2929 	 * check for it here as it is cleared in zio_ready.
2930 	 */
2931 	if (zio->io_abd != NULL)
2932 		abd_free(zio->io_abd);
2933 }
2934 
2935 static zio_t *
zio_write_gang_block(zio_t * pio,metaslab_class_t * mc)2936 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2937 {
2938 	spa_t *spa = pio->io_spa;
2939 	blkptr_t *bp = pio->io_bp;
2940 	zio_t *gio = pio->io_gang_leader;
2941 	zio_t *zio;
2942 	zio_gang_node_t *gn, **gnpp;
2943 	zio_gbh_phys_t *gbh;
2944 	abd_t *gbh_abd;
2945 	uint64_t txg = pio->io_txg;
2946 	uint64_t resid = pio->io_size;
2947 	uint64_t lsize;
2948 	int copies = gio->io_prop.zp_copies;
2949 	zio_prop_t zp;
2950 	int error;
2951 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2952 
2953 	/*
2954 	 * If one copy was requested, store 2 copies of the GBH, so that we
2955 	 * can still traverse all the data (e.g. to free or scrub) even if a
2956 	 * block is damaged.  Note that we can't store 3 copies of the GBH in
2957 	 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
2958 	 */
2959 	int gbh_copies = copies;
2960 	if (gbh_copies == 1) {
2961 		gbh_copies = MIN(2, spa_max_replication(spa));
2962 	}
2963 
2964 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2965 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2966 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2967 		ASSERT(has_data);
2968 
2969 		flags |= METASLAB_ASYNC_ALLOC;
2970 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2971 		    mca_alloc_slots, pio));
2972 
2973 		/*
2974 		 * The logical zio has already placed a reservation for
2975 		 * 'copies' allocation slots but gang blocks may require
2976 		 * additional copies. These additional copies
2977 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2978 		 * since metaslab_class_throttle_reserve() always allows
2979 		 * additional reservations for gang blocks.
2980 		 */
2981 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2982 		    pio->io_allocator, pio, flags));
2983 	}
2984 
2985 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2986 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2987 	    &pio->io_alloc_list, pio, pio->io_allocator);
2988 	if (error) {
2989 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2990 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2991 			ASSERT(has_data);
2992 
2993 			/*
2994 			 * If we failed to allocate the gang block header then
2995 			 * we remove any additional allocation reservations that
2996 			 * we placed here. The original reservation will
2997 			 * be removed when the logical I/O goes to the ready
2998 			 * stage.
2999 			 */
3000 			metaslab_class_throttle_unreserve(mc,
3001 			    gbh_copies - copies, pio->io_allocator, pio);
3002 		}
3003 
3004 		pio->io_error = error;
3005 		return (pio);
3006 	}
3007 
3008 	if (pio == gio) {
3009 		gnpp = &gio->io_gang_tree;
3010 	} else {
3011 		gnpp = pio->io_private;
3012 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
3013 	}
3014 
3015 	gn = zio_gang_node_alloc(gnpp);
3016 	gbh = gn->gn_gbh;
3017 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
3018 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
3019 
3020 	/*
3021 	 * Create the gang header.
3022 	 */
3023 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
3024 	    zio_write_gang_done, NULL, pio->io_priority,
3025 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3026 
3027 	/*
3028 	 * Create and nowait the gang children.
3029 	 */
3030 	for (int g = 0; resid != 0; resid -= lsize, g++) {
3031 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
3032 		    SPA_MINBLOCKSIZE);
3033 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
3034 
3035 		zp.zp_checksum = gio->io_prop.zp_checksum;
3036 		zp.zp_compress = ZIO_COMPRESS_OFF;
3037 		zp.zp_complevel = gio->io_prop.zp_complevel;
3038 		zp.zp_type = DMU_OT_NONE;
3039 		zp.zp_level = 0;
3040 		zp.zp_copies = gio->io_prop.zp_copies;
3041 		zp.zp_dedup = B_FALSE;
3042 		zp.zp_dedup_verify = B_FALSE;
3043 		zp.zp_nopwrite = B_FALSE;
3044 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
3045 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
3046 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
3047 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
3048 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3049 
3050 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
3051 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
3052 		    resid) : NULL, lsize, lsize, &zp,
3053 		    zio_write_gang_member_ready, NULL,
3054 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3055 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3056 
3057 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3058 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3059 			ASSERT(has_data);
3060 
3061 			/*
3062 			 * Gang children won't throttle but we should
3063 			 * account for their work, so reserve an allocation
3064 			 * slot for them here.
3065 			 */
3066 			VERIFY(metaslab_class_throttle_reserve(mc,
3067 			    zp.zp_copies, cio->io_allocator, cio, flags));
3068 		}
3069 		zio_nowait(cio);
3070 	}
3071 
3072 	/*
3073 	 * Set pio's pipeline to just wait for zio to finish.
3074 	 */
3075 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3076 
3077 	zio_nowait(zio);
3078 
3079 	return (pio);
3080 }
3081 
3082 /*
3083  * The zio_nop_write stage in the pipeline determines if allocating a
3084  * new bp is necessary.  The nopwrite feature can handle writes in
3085  * either syncing or open context (i.e. zil writes) and as a result is
3086  * mutually exclusive with dedup.
3087  *
3088  * By leveraging a cryptographically secure checksum, such as SHA256, we
3089  * can compare the checksums of the new data and the old to determine if
3090  * allocating a new block is required.  Note that our requirements for
3091  * cryptographic strength are fairly weak: there can't be any accidental
3092  * hash collisions, but we don't need to be secure against intentional
3093  * (malicious) collisions.  To trigger a nopwrite, you have to be able
3094  * to write the file to begin with, and triggering an incorrect (hash
3095  * collision) nopwrite is no worse than simply writing to the file.
3096  * That said, there are no known attacks against the checksum algorithms
3097  * used for nopwrite, assuming that the salt and the checksums
3098  * themselves remain secret.
3099  */
3100 static zio_t *
zio_nop_write(zio_t * zio)3101 zio_nop_write(zio_t *zio)
3102 {
3103 	blkptr_t *bp = zio->io_bp;
3104 	blkptr_t *bp_orig = &zio->io_bp_orig;
3105 	zio_prop_t *zp = &zio->io_prop;
3106 
3107 	ASSERT(BP_IS_HOLE(bp));
3108 	ASSERT(BP_GET_LEVEL(bp) == 0);
3109 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3110 	ASSERT(zp->zp_nopwrite);
3111 	ASSERT(!zp->zp_dedup);
3112 	ASSERT(zio->io_bp_override == NULL);
3113 	ASSERT(IO_IS_ALLOCATING(zio));
3114 
3115 	/*
3116 	 * Check to see if the original bp and the new bp have matching
3117 	 * characteristics (i.e. same checksum, compression algorithms, etc).
3118 	 * If they don't then just continue with the pipeline which will
3119 	 * allocate a new bp.
3120 	 */
3121 	if (BP_IS_HOLE(bp_orig) ||
3122 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3123 	    ZCHECKSUM_FLAG_NOPWRITE) ||
3124 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3125 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3126 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3127 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3128 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3129 		return (zio);
3130 
3131 	/*
3132 	 * If the checksums match then reset the pipeline so that we
3133 	 * avoid allocating a new bp and issuing any I/O.
3134 	 */
3135 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3136 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3137 		    ZCHECKSUM_FLAG_NOPWRITE);
3138 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3139 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3140 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3141 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3142 
3143 		/*
3144 		 * If we're overwriting a block that is currently on an
3145 		 * indirect vdev, then ignore the nopwrite request and
3146 		 * allow a new block to be allocated on a concrete vdev.
3147 		 */
3148 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3149 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3150 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3151 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3152 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3153 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3154 				return (zio);
3155 			}
3156 		}
3157 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3158 
3159 		*bp = *bp_orig;
3160 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3161 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3162 	}
3163 
3164 	return (zio);
3165 }
3166 
3167 /*
3168  * ==========================================================================
3169  * Block Reference Table
3170  * ==========================================================================
3171  */
3172 static zio_t *
zio_brt_free(zio_t * zio)3173 zio_brt_free(zio_t *zio)
3174 {
3175 	blkptr_t *bp;
3176 
3177 	bp = zio->io_bp;
3178 
3179 	if (BP_GET_LEVEL(bp) > 0 ||
3180 	    BP_IS_METADATA(bp) ||
3181 	    !brt_maybe_exists(zio->io_spa, bp)) {
3182 		return (zio);
3183 	}
3184 
3185 	if (!brt_entry_decref(zio->io_spa, bp)) {
3186 		/*
3187 		 * This isn't the last reference, so we cannot free
3188 		 * the data yet.
3189 		 */
3190 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3191 	}
3192 
3193 	return (zio);
3194 }
3195 
3196 /*
3197  * ==========================================================================
3198  * Dedup
3199  * ==========================================================================
3200  */
3201 static void
zio_ddt_child_read_done(zio_t * zio)3202 zio_ddt_child_read_done(zio_t *zio)
3203 {
3204 	blkptr_t *bp = zio->io_bp;
3205 	ddt_entry_t *dde = zio->io_private;
3206 	ddt_phys_t *ddp;
3207 	zio_t *pio = zio_unique_parent(zio);
3208 
3209 	mutex_enter(&pio->io_lock);
3210 	ddp = ddt_phys_select(dde, bp);
3211 	if (zio->io_error == 0)
3212 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3213 
3214 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3215 		dde->dde_repair_abd = zio->io_abd;
3216 	else
3217 		abd_free(zio->io_abd);
3218 	mutex_exit(&pio->io_lock);
3219 }
3220 
3221 static zio_t *
zio_ddt_read_start(zio_t * zio)3222 zio_ddt_read_start(zio_t *zio)
3223 {
3224 	blkptr_t *bp = zio->io_bp;
3225 
3226 	ASSERT(BP_GET_DEDUP(bp));
3227 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3228 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3229 
3230 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3231 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3232 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3233 		ddt_phys_t *ddp = dde->dde_phys;
3234 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3235 		blkptr_t blk;
3236 
3237 		ASSERT(zio->io_vsd == NULL);
3238 		zio->io_vsd = dde;
3239 
3240 		if (ddp_self == NULL)
3241 			return (zio);
3242 
3243 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3244 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3245 				continue;
3246 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3247 			    &blk);
3248 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3249 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3250 			    zio->io_size, zio_ddt_child_read_done, dde,
3251 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3252 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3253 		}
3254 		return (zio);
3255 	}
3256 
3257 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3258 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3259 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3260 
3261 	return (zio);
3262 }
3263 
3264 static zio_t *
zio_ddt_read_done(zio_t * zio)3265 zio_ddt_read_done(zio_t *zio)
3266 {
3267 	blkptr_t *bp = zio->io_bp;
3268 
3269 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3270 		return (NULL);
3271 	}
3272 
3273 	ASSERT(BP_GET_DEDUP(bp));
3274 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3275 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3276 
3277 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3278 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3279 		ddt_entry_t *dde = zio->io_vsd;
3280 		if (ddt == NULL) {
3281 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3282 			return (zio);
3283 		}
3284 		if (dde == NULL) {
3285 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3286 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3287 			return (NULL);
3288 		}
3289 		if (dde->dde_repair_abd != NULL) {
3290 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3291 			    zio->io_size);
3292 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3293 		}
3294 		ddt_repair_done(ddt, dde);
3295 		zio->io_vsd = NULL;
3296 	}
3297 
3298 	ASSERT(zio->io_vsd == NULL);
3299 
3300 	return (zio);
3301 }
3302 
3303 static boolean_t
zio_ddt_collision(zio_t * zio,ddt_t * ddt,ddt_entry_t * dde)3304 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3305 {
3306 	spa_t *spa = zio->io_spa;
3307 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3308 
3309 	ASSERT(!(zio->io_bp_override && do_raw));
3310 
3311 	/*
3312 	 * Note: we compare the original data, not the transformed data,
3313 	 * because when zio->io_bp is an override bp, we will not have
3314 	 * pushed the I/O transforms.  That's an important optimization
3315 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3316 	 * However, we should never get a raw, override zio so in these
3317 	 * cases we can compare the io_abd directly. This is useful because
3318 	 * it allows us to do dedup verification even if we don't have access
3319 	 * to the original data (for instance, if the encryption keys aren't
3320 	 * loaded).
3321 	 */
3322 
3323 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3324 		zio_t *lio = dde->dde_lead_zio[p];
3325 
3326 		if (lio != NULL && do_raw) {
3327 			return (lio->io_size != zio->io_size ||
3328 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3329 		} else if (lio != NULL) {
3330 			return (lio->io_orig_size != zio->io_orig_size ||
3331 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3332 		}
3333 	}
3334 
3335 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3336 		ddt_phys_t *ddp = &dde->dde_phys[p];
3337 
3338 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3339 			blkptr_t blk = *zio->io_bp;
3340 			uint64_t psize;
3341 			abd_t *tmpabd;
3342 			int error;
3343 
3344 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3345 			psize = BP_GET_PSIZE(&blk);
3346 
3347 			if (psize != zio->io_size)
3348 				return (B_TRUE);
3349 
3350 			ddt_exit(ddt);
3351 
3352 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3353 
3354 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3355 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3356 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3357 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3358 
3359 			if (error == 0) {
3360 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3361 					error = SET_ERROR(ENOENT);
3362 			}
3363 
3364 			abd_free(tmpabd);
3365 			ddt_enter(ddt);
3366 			return (error != 0);
3367 		} else if (ddp->ddp_phys_birth != 0) {
3368 			arc_buf_t *abuf = NULL;
3369 			arc_flags_t aflags = ARC_FLAG_WAIT;
3370 			blkptr_t blk = *zio->io_bp;
3371 			int error;
3372 
3373 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3374 
3375 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3376 				return (B_TRUE);
3377 
3378 			ddt_exit(ddt);
3379 
3380 			error = arc_read(NULL, spa, &blk,
3381 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3382 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3383 			    &aflags, &zio->io_bookmark);
3384 
3385 			if (error == 0) {
3386 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3387 				    zio->io_orig_size) != 0)
3388 					error = SET_ERROR(ENOENT);
3389 				arc_buf_destroy(abuf, &abuf);
3390 			}
3391 
3392 			ddt_enter(ddt);
3393 			return (error != 0);
3394 		}
3395 	}
3396 
3397 	return (B_FALSE);
3398 }
3399 
3400 static void
zio_ddt_child_write_ready(zio_t * zio)3401 zio_ddt_child_write_ready(zio_t *zio)
3402 {
3403 	int p = zio->io_prop.zp_copies;
3404 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3405 	ddt_entry_t *dde = zio->io_private;
3406 	ddt_phys_t *ddp = &dde->dde_phys[p];
3407 	zio_t *pio;
3408 
3409 	if (zio->io_error)
3410 		return;
3411 
3412 	ddt_enter(ddt);
3413 
3414 	ASSERT(dde->dde_lead_zio[p] == zio);
3415 
3416 	ddt_phys_fill(ddp, zio->io_bp);
3417 
3418 	zio_link_t *zl = NULL;
3419 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3420 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3421 
3422 	ddt_exit(ddt);
3423 }
3424 
3425 static void
zio_ddt_child_write_done(zio_t * zio)3426 zio_ddt_child_write_done(zio_t *zio)
3427 {
3428 	int p = zio->io_prop.zp_copies;
3429 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3430 	ddt_entry_t *dde = zio->io_private;
3431 	ddt_phys_t *ddp = &dde->dde_phys[p];
3432 
3433 	ddt_enter(ddt);
3434 
3435 	ASSERT(ddp->ddp_refcnt == 0);
3436 	ASSERT(dde->dde_lead_zio[p] == zio);
3437 	dde->dde_lead_zio[p] = NULL;
3438 
3439 	if (zio->io_error == 0) {
3440 		zio_link_t *zl = NULL;
3441 		while (zio_walk_parents(zio, &zl) != NULL)
3442 			ddt_phys_addref(ddp);
3443 	} else {
3444 		ddt_phys_clear(ddp);
3445 	}
3446 
3447 	ddt_exit(ddt);
3448 }
3449 
3450 static zio_t *
zio_ddt_write(zio_t * zio)3451 zio_ddt_write(zio_t *zio)
3452 {
3453 	spa_t *spa = zio->io_spa;
3454 	blkptr_t *bp = zio->io_bp;
3455 	uint64_t txg = zio->io_txg;
3456 	zio_prop_t *zp = &zio->io_prop;
3457 	int p = zp->zp_copies;
3458 	zio_t *cio = NULL;
3459 	ddt_t *ddt = ddt_select(spa, bp);
3460 	ddt_entry_t *dde;
3461 	ddt_phys_t *ddp;
3462 
3463 	ASSERT(BP_GET_DEDUP(bp));
3464 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3465 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3466 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3467 
3468 	ddt_enter(ddt);
3469 	dde = ddt_lookup(ddt, bp, B_TRUE);
3470 	ddp = &dde->dde_phys[p];
3471 
3472 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3473 		/*
3474 		 * If we're using a weak checksum, upgrade to a strong checksum
3475 		 * and try again.  If we're already using a strong checksum,
3476 		 * we can't resolve it, so just convert to an ordinary write.
3477 		 * (And automatically e-mail a paper to Nature?)
3478 		 */
3479 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3480 		    ZCHECKSUM_FLAG_DEDUP)) {
3481 			zp->zp_checksum = spa_dedup_checksum(spa);
3482 			zio_pop_transforms(zio);
3483 			zio->io_stage = ZIO_STAGE_OPEN;
3484 			BP_ZERO(bp);
3485 		} else {
3486 			zp->zp_dedup = B_FALSE;
3487 			BP_SET_DEDUP(bp, B_FALSE);
3488 		}
3489 		ASSERT(!BP_GET_DEDUP(bp));
3490 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3491 		ddt_exit(ddt);
3492 		return (zio);
3493 	}
3494 
3495 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3496 		if (ddp->ddp_phys_birth != 0)
3497 			ddt_bp_fill(ddp, bp, txg);
3498 		if (dde->dde_lead_zio[p] != NULL)
3499 			zio_add_child(zio, dde->dde_lead_zio[p]);
3500 		else
3501 			ddt_phys_addref(ddp);
3502 	} else if (zio->io_bp_override) {
3503 		ASSERT(bp->blk_birth == txg);
3504 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3505 		ddt_phys_fill(ddp, bp);
3506 		ddt_phys_addref(ddp);
3507 	} else {
3508 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3509 		    zio->io_orig_size, zio->io_orig_size, zp,
3510 		    zio_ddt_child_write_ready, NULL,
3511 		    zio_ddt_child_write_done, dde, zio->io_priority,
3512 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3513 
3514 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3515 		dde->dde_lead_zio[p] = cio;
3516 	}
3517 
3518 	ddt_exit(ddt);
3519 
3520 	zio_nowait(cio);
3521 
3522 	return (zio);
3523 }
3524 
3525 static ddt_entry_t *freedde; /* for debugging */
3526 
3527 static zio_t *
zio_ddt_free(zio_t * zio)3528 zio_ddt_free(zio_t *zio)
3529 {
3530 	spa_t *spa = zio->io_spa;
3531 	blkptr_t *bp = zio->io_bp;
3532 	ddt_t *ddt = ddt_select(spa, bp);
3533 	ddt_entry_t *dde;
3534 	ddt_phys_t *ddp;
3535 
3536 	ASSERT(BP_GET_DEDUP(bp));
3537 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3538 
3539 	ddt_enter(ddt);
3540 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3541 	if (dde) {
3542 		ddp = ddt_phys_select(dde, bp);
3543 		if (ddp)
3544 			ddt_phys_decref(ddp);
3545 	}
3546 	ddt_exit(ddt);
3547 
3548 	return (zio);
3549 }
3550 
3551 /*
3552  * ==========================================================================
3553  * Allocate and free blocks
3554  * ==========================================================================
3555  */
3556 
3557 static zio_t *
zio_io_to_allocate(spa_t * spa,int allocator)3558 zio_io_to_allocate(spa_t *spa, int allocator)
3559 {
3560 	zio_t *zio;
3561 
3562 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3563 
3564 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3565 	if (zio == NULL)
3566 		return (NULL);
3567 
3568 	ASSERT(IO_IS_ALLOCATING(zio));
3569 
3570 	/*
3571 	 * Try to place a reservation for this zio. If we're unable to
3572 	 * reserve then we throttle.
3573 	 */
3574 	ASSERT3U(zio->io_allocator, ==, allocator);
3575 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3576 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3577 		return (NULL);
3578 	}
3579 
3580 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3581 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3582 
3583 	return (zio);
3584 }
3585 
3586 static zio_t *
zio_dva_throttle(zio_t * zio)3587 zio_dva_throttle(zio_t *zio)
3588 {
3589 	spa_t *spa = zio->io_spa;
3590 	zio_t *nio;
3591 	metaslab_class_t *mc;
3592 
3593 	/* locate an appropriate allocation class */
3594 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3595 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3596 
3597 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3598 	    !mc->mc_alloc_throttle_enabled ||
3599 	    zio->io_child_type == ZIO_CHILD_GANG ||
3600 	    zio->io_flags & ZIO_FLAG_NODATA) {
3601 		return (zio);
3602 	}
3603 
3604 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3605 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3606 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3607 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3608 
3609 	zbookmark_phys_t *bm = &zio->io_bookmark;
3610 	/*
3611 	 * We want to try to use as many allocators as possible to help improve
3612 	 * performance, but we also want logically adjacent IOs to be physically
3613 	 * adjacent to improve sequential read performance. We chunk each object
3614 	 * into 2^20 block regions, and then hash based on the objset, object,
3615 	 * level, and region to accomplish both of these goals.
3616 	 */
3617 	int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3618 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3619 	zio->io_allocator = allocator;
3620 	zio->io_metaslab_class = mc;
3621 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3622 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3623 	nio = zio_io_to_allocate(spa, allocator);
3624 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3625 	return (nio);
3626 }
3627 
3628 static void
zio_allocate_dispatch(spa_t * spa,int allocator)3629 zio_allocate_dispatch(spa_t *spa, int allocator)
3630 {
3631 	zio_t *zio;
3632 
3633 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3634 	zio = zio_io_to_allocate(spa, allocator);
3635 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3636 	if (zio == NULL)
3637 		return;
3638 
3639 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3640 	ASSERT0(zio->io_error);
3641 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3642 }
3643 
3644 static zio_t *
zio_dva_allocate(zio_t * zio)3645 zio_dva_allocate(zio_t *zio)
3646 {
3647 	spa_t *spa = zio->io_spa;
3648 	metaslab_class_t *mc;
3649 	blkptr_t *bp = zio->io_bp;
3650 	int error;
3651 	int flags = 0;
3652 
3653 	if (zio->io_gang_leader == NULL) {
3654 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3655 		zio->io_gang_leader = zio;
3656 	}
3657 
3658 	ASSERT(BP_IS_HOLE(bp));
3659 	ASSERT0(BP_GET_NDVAS(bp));
3660 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3661 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3662 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3663 
3664 	if (zio->io_flags & ZIO_FLAG_NODATA)
3665 		flags |= METASLAB_DONT_THROTTLE;
3666 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3667 		flags |= METASLAB_GANG_CHILD;
3668 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3669 		flags |= METASLAB_ASYNC_ALLOC;
3670 
3671 	/*
3672 	 * if not already chosen, locate an appropriate allocation class
3673 	 */
3674 	mc = zio->io_metaslab_class;
3675 	if (mc == NULL) {
3676 		mc = spa_preferred_class(spa, zio->io_size,
3677 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3678 		    zio->io_prop.zp_zpl_smallblk);
3679 		zio->io_metaslab_class = mc;
3680 	}
3681 
3682 	/*
3683 	 * Try allocating the block in the usual metaslab class.
3684 	 * If that's full, allocate it in the normal class.
3685 	 * If that's full, allocate as a gang block,
3686 	 * and if all are full, the allocation fails (which shouldn't happen).
3687 	 *
3688 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3689 	 * preserve unfragmented slog space, which is critical for decent
3690 	 * sync write performance.  If a log allocation fails, we will fall
3691 	 * back to spa_sync() which is abysmal for performance.
3692 	 */
3693 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3694 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3695 	    &zio->io_alloc_list, zio, zio->io_allocator);
3696 
3697 	/*
3698 	 * Fallback to normal class when an alloc class is full
3699 	 */
3700 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3701 		/*
3702 		 * If throttling, transfer reservation over to normal class.
3703 		 * The io_allocator slot can remain the same even though we
3704 		 * are switching classes.
3705 		 */
3706 		if (mc->mc_alloc_throttle_enabled &&
3707 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3708 			metaslab_class_throttle_unreserve(mc,
3709 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3710 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3711 
3712 			VERIFY(metaslab_class_throttle_reserve(
3713 			    spa_normal_class(spa),
3714 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3715 			    flags | METASLAB_MUST_RESERVE));
3716 		}
3717 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3718 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3719 			zfs_dbgmsg("%s: metaslab allocation failure, "
3720 			    "trying normal class: zio %px, size %llu, error %d",
3721 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3722 			    error);
3723 		}
3724 
3725 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3726 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3727 		    &zio->io_alloc_list, zio, zio->io_allocator);
3728 	}
3729 
3730 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3731 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3732 			zfs_dbgmsg("%s: metaslab allocation failure, "
3733 			    "trying ganging: zio %px, size %llu, error %d",
3734 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3735 			    error);
3736 		}
3737 		return (zio_write_gang_block(zio, mc));
3738 	}
3739 	if (error != 0) {
3740 		if (error != ENOSPC ||
3741 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3742 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3743 			    "size %llu, error %d",
3744 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3745 			    error);
3746 		}
3747 		zio->io_error = error;
3748 	}
3749 
3750 	return (zio);
3751 }
3752 
3753 static zio_t *
zio_dva_free(zio_t * zio)3754 zio_dva_free(zio_t *zio)
3755 {
3756 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3757 
3758 	return (zio);
3759 }
3760 
3761 static zio_t *
zio_dva_claim(zio_t * zio)3762 zio_dva_claim(zio_t *zio)
3763 {
3764 	int error;
3765 
3766 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3767 	if (error)
3768 		zio->io_error = error;
3769 
3770 	return (zio);
3771 }
3772 
3773 /*
3774  * Undo an allocation.  This is used by zio_done() when an I/O fails
3775  * and we want to give back the block we just allocated.
3776  * This handles both normal blocks and gang blocks.
3777  */
3778 static void
zio_dva_unallocate(zio_t * zio,zio_gang_node_t * gn,blkptr_t * bp)3779 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3780 {
3781 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3782 	ASSERT(zio->io_bp_override == NULL);
3783 
3784 	if (!BP_IS_HOLE(bp))
3785 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3786 
3787 	if (gn != NULL) {
3788 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3789 			zio_dva_unallocate(zio, gn->gn_child[g],
3790 			    &gn->gn_gbh->zg_blkptr[g]);
3791 		}
3792 	}
3793 }
3794 
3795 /*
3796  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3797  */
3798 int
zio_alloc_zil(spa_t * spa,objset_t * os,uint64_t txg,blkptr_t * new_bp,uint64_t size,boolean_t * slog)3799 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3800     uint64_t size, boolean_t *slog)
3801 {
3802 	int error = 1;
3803 	zio_alloc_list_t io_alloc_list;
3804 
3805 	ASSERT(txg > spa_syncing_txg(spa));
3806 
3807 	metaslab_trace_init(&io_alloc_list);
3808 
3809 	/*
3810 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3811 	 * Fill in the obvious ones before calling into metaslab_alloc().
3812 	 */
3813 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3814 	BP_SET_PSIZE(new_bp, size);
3815 	BP_SET_LEVEL(new_bp, 0);
3816 
3817 	/*
3818 	 * When allocating a zil block, we don't have information about
3819 	 * the final destination of the block except the objset it's part
3820 	 * of, so we just hash the objset ID to pick the allocator to get
3821 	 * some parallelism.
3822 	 */
3823 	int flags = METASLAB_ZIL;
3824 	int allocator = (uint_t)cityhash4(0, 0, 0,
3825 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3826 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3827 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3828 	*slog = (error == 0);
3829 	if (error != 0) {
3830 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3831 		    new_bp, 1, txg, NULL, flags,
3832 		    &io_alloc_list, NULL, allocator);
3833 	}
3834 	if (error != 0) {
3835 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3836 		    new_bp, 1, txg, NULL, flags,
3837 		    &io_alloc_list, NULL, allocator);
3838 	}
3839 	metaslab_trace_fini(&io_alloc_list);
3840 
3841 	if (error == 0) {
3842 		BP_SET_LSIZE(new_bp, size);
3843 		BP_SET_PSIZE(new_bp, size);
3844 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3845 		BP_SET_CHECKSUM(new_bp,
3846 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3847 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3848 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3849 		BP_SET_LEVEL(new_bp, 0);
3850 		BP_SET_DEDUP(new_bp, 0);
3851 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3852 
3853 		/*
3854 		 * encrypted blocks will require an IV and salt. We generate
3855 		 * these now since we will not be rewriting the bp at
3856 		 * rewrite time.
3857 		 */
3858 		if (os->os_encrypted) {
3859 			uint8_t iv[ZIO_DATA_IV_LEN];
3860 			uint8_t salt[ZIO_DATA_SALT_LEN];
3861 
3862 			BP_SET_CRYPT(new_bp, B_TRUE);
3863 			VERIFY0(spa_crypt_get_salt(spa,
3864 			    dmu_objset_id(os), salt));
3865 			VERIFY0(zio_crypt_generate_iv(iv));
3866 
3867 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3868 		}
3869 	} else {
3870 		zfs_dbgmsg("%s: zil block allocation failure: "
3871 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3872 		    error);
3873 	}
3874 
3875 	return (error);
3876 }
3877 
3878 /*
3879  * ==========================================================================
3880  * Read and write to physical devices
3881  * ==========================================================================
3882  */
3883 
3884 /*
3885  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3886  * stops after this stage and will resume upon I/O completion.
3887  * However, there are instances where the vdev layer may need to
3888  * continue the pipeline when an I/O was not issued. Since the I/O
3889  * that was sent to the vdev layer might be different than the one
3890  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3891  * force the underlying vdev layers to call either zio_execute() or
3892  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3893  */
3894 static zio_t *
zio_vdev_io_start(zio_t * zio)3895 zio_vdev_io_start(zio_t *zio)
3896 {
3897 	vdev_t *vd = zio->io_vd;
3898 	uint64_t align;
3899 	spa_t *spa = zio->io_spa;
3900 
3901 	zio->io_delay = 0;
3902 
3903 	ASSERT(zio->io_error == 0);
3904 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3905 
3906 	if (vd == NULL) {
3907 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3908 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3909 
3910 		/*
3911 		 * The mirror_ops handle multiple DVAs in a single BP.
3912 		 */
3913 		vdev_mirror_ops.vdev_op_io_start(zio);
3914 		return (NULL);
3915 	}
3916 
3917 	ASSERT3P(zio->io_logical, !=, zio);
3918 	if (zio->io_type == ZIO_TYPE_WRITE) {
3919 		ASSERT(spa->spa_trust_config);
3920 
3921 		/*
3922 		 * Note: the code can handle other kinds of writes,
3923 		 * but we don't expect them.
3924 		 */
3925 		if (zio->io_vd->vdev_noalloc) {
3926 			ASSERT(zio->io_flags &
3927 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3928 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3929 		}
3930 	}
3931 
3932 	align = 1ULL << vd->vdev_top->vdev_ashift;
3933 
3934 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3935 	    P2PHASE(zio->io_size, align) != 0) {
3936 		/* Transform logical writes to be a full physical block size. */
3937 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3938 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3939 		ASSERT(vd == vd->vdev_top);
3940 		if (zio->io_type == ZIO_TYPE_WRITE) {
3941 			abd_copy(abuf, zio->io_abd, zio->io_size);
3942 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3943 		}
3944 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3945 	}
3946 
3947 	/*
3948 	 * If this is not a physical io, make sure that it is properly aligned
3949 	 * before proceeding.
3950 	 */
3951 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3952 		ASSERT0(P2PHASE(zio->io_offset, align));
3953 		ASSERT0(P2PHASE(zio->io_size, align));
3954 	} else {
3955 		/*
3956 		 * For physical writes, we allow 512b aligned writes and assume
3957 		 * the device will perform a read-modify-write as necessary.
3958 		 */
3959 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3960 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3961 	}
3962 
3963 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3964 
3965 	/*
3966 	 * If this is a repair I/O, and there's no self-healing involved --
3967 	 * that is, we're just resilvering what we expect to resilver --
3968 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3969 	 * This prevents spurious resilvering.
3970 	 *
3971 	 * There are a few ways that we can end up creating these spurious
3972 	 * resilver i/os:
3973 	 *
3974 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3975 	 * dirty DTL.  The mirror code will issue resilver writes to
3976 	 * each DVA, including the one(s) that are not on vdevs with dirty
3977 	 * DTLs.
3978 	 *
3979 	 * 2. With nested replication, which happens when we have a
3980 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3981 	 * For example, given mirror(replacing(A+B), C), it's likely that
3982 	 * only A is out of date (it's the new device). In this case, we'll
3983 	 * read from C, then use the data to resilver A+B -- but we don't
3984 	 * actually want to resilver B, just A. The top-level mirror has no
3985 	 * way to know this, so instead we just discard unnecessary repairs
3986 	 * as we work our way down the vdev tree.
3987 	 *
3988 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3989 	 * The same logic applies to any form of nested replication: ditto
3990 	 * + mirror, RAID-Z + replacing, etc.
3991 	 *
3992 	 * However, indirect vdevs point off to other vdevs which may have
3993 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3994 	 * will be properly bypassed instead.
3995 	 *
3996 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3997 	 * a dRAID spare vdev. For example, when a dRAID spare is first
3998 	 * used, its spare blocks need to be written to but the leaf vdev's
3999 	 * of such blocks can have empty DTL_PARTIAL.
4000 	 *
4001 	 * There seemed no clean way to allow such writes while bypassing
4002 	 * spurious ones. At this point, just avoid all bypassing for dRAID
4003 	 * for correctness.
4004 	 */
4005 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
4006 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
4007 	    zio->io_txg != 0 &&	/* not a delegated i/o */
4008 	    vd->vdev_ops != &vdev_indirect_ops &&
4009 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
4010 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
4011 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4012 		zio_vdev_io_bypass(zio);
4013 		return (zio);
4014 	}
4015 
4016 	/*
4017 	 * Select the next best leaf I/O to process.  Distributed spares are
4018 	 * excluded since they dispatch the I/O directly to a leaf vdev after
4019 	 * applying the dRAID mapping.
4020 	 */
4021 	if (vd->vdev_ops->vdev_op_leaf &&
4022 	    vd->vdev_ops != &vdev_draid_spare_ops &&
4023 	    (zio->io_type == ZIO_TYPE_READ ||
4024 	    zio->io_type == ZIO_TYPE_WRITE ||
4025 	    zio->io_type == ZIO_TYPE_TRIM)) {
4026 
4027 		if ((zio = vdev_queue_io(zio)) == NULL)
4028 			return (NULL);
4029 
4030 		if (!vdev_accessible(vd, zio)) {
4031 			zio->io_error = SET_ERROR(ENXIO);
4032 			zio_interrupt(zio);
4033 			return (NULL);
4034 		}
4035 		zio->io_delay = gethrtime();
4036 	}
4037 
4038 	vd->vdev_ops->vdev_op_io_start(zio);
4039 	return (NULL);
4040 }
4041 
4042 static zio_t *
zio_vdev_io_done(zio_t * zio)4043 zio_vdev_io_done(zio_t *zio)
4044 {
4045 	vdev_t *vd = zio->io_vd;
4046 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
4047 	boolean_t unexpected_error = B_FALSE;
4048 
4049 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4050 		return (NULL);
4051 	}
4052 
4053 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
4054 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
4055 
4056 	if (zio->io_delay)
4057 		zio->io_delay = gethrtime() - zio->io_delay;
4058 
4059 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4060 	    vd->vdev_ops != &vdev_draid_spare_ops) {
4061 		vdev_queue_io_done(zio);
4062 
4063 		if (zio_injection_enabled && zio->io_error == 0)
4064 			zio->io_error = zio_handle_device_injections(vd, zio,
4065 			    EIO, EILSEQ);
4066 
4067 		if (zio_injection_enabled && zio->io_error == 0)
4068 			zio->io_error = zio_handle_label_injection(zio, EIO);
4069 
4070 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
4071 			if (!vdev_accessible(vd, zio)) {
4072 				zio->io_error = SET_ERROR(ENXIO);
4073 			} else {
4074 				unexpected_error = B_TRUE;
4075 			}
4076 		}
4077 	}
4078 
4079 	ops->vdev_op_io_done(zio);
4080 
4081 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4082 		VERIFY(vdev_probe(vd, zio) == NULL);
4083 
4084 	return (zio);
4085 }
4086 
4087 /*
4088  * This function is used to change the priority of an existing zio that is
4089  * currently in-flight. This is used by the arc to upgrade priority in the
4090  * event that a demand read is made for a block that is currently queued
4091  * as a scrub or async read IO. Otherwise, the high priority read request
4092  * would end up having to wait for the lower priority IO.
4093  */
4094 void
zio_change_priority(zio_t * pio,zio_priority_t priority)4095 zio_change_priority(zio_t *pio, zio_priority_t priority)
4096 {
4097 	zio_t *cio, *cio_next;
4098 	zio_link_t *zl = NULL;
4099 
4100 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4101 
4102 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4103 		vdev_queue_change_io_priority(pio, priority);
4104 	} else {
4105 		pio->io_priority = priority;
4106 	}
4107 
4108 	mutex_enter(&pio->io_lock);
4109 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4110 		cio_next = zio_walk_children(pio, &zl);
4111 		zio_change_priority(cio, priority);
4112 	}
4113 	mutex_exit(&pio->io_lock);
4114 }
4115 
4116 /*
4117  * For non-raidz ZIOs, we can just copy aside the bad data read from the
4118  * disk, and use that to finish the checksum ereport later.
4119  */
4120 static void
zio_vsd_default_cksum_finish(zio_cksum_report_t * zcr,const abd_t * good_buf)4121 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4122     const abd_t *good_buf)
4123 {
4124 	/* no processing needed */
4125 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4126 }
4127 
4128 void
zio_vsd_default_cksum_report(zio_t * zio,zio_cksum_report_t * zcr)4129 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4130 {
4131 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4132 
4133 	abd_copy(abd, zio->io_abd, zio->io_size);
4134 
4135 	zcr->zcr_cbinfo = zio->io_size;
4136 	zcr->zcr_cbdata = abd;
4137 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
4138 	zcr->zcr_free = zio_abd_free;
4139 }
4140 
4141 static zio_t *
zio_vdev_io_assess(zio_t * zio)4142 zio_vdev_io_assess(zio_t *zio)
4143 {
4144 	vdev_t *vd = zio->io_vd;
4145 
4146 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4147 		return (NULL);
4148 	}
4149 
4150 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4151 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4152 
4153 	if (zio->io_vsd != NULL) {
4154 		zio->io_vsd_ops->vsd_free(zio);
4155 		zio->io_vsd = NULL;
4156 	}
4157 
4158 	if (zio_injection_enabled && zio->io_error == 0)
4159 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4160 
4161 	/*
4162 	 * If the I/O failed, determine whether we should attempt to retry it.
4163 	 *
4164 	 * On retry, we cut in line in the issue queue, since we don't want
4165 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4166 	 */
4167 	if (zio->io_error && vd == NULL &&
4168 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4169 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4170 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4171 		zio->io_error = 0;
4172 		zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4173 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4174 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4175 		    zio_requeue_io_start_cut_in_line);
4176 		return (NULL);
4177 	}
4178 
4179 	/*
4180 	 * If we got an error on a leaf device, convert it to ENXIO
4181 	 * if the device is not accessible at all.
4182 	 */
4183 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4184 	    !vdev_accessible(vd, zio))
4185 		zio->io_error = SET_ERROR(ENXIO);
4186 
4187 	/*
4188 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4189 	 * set vdev_cant_write so that we stop trying to allocate from it.
4190 	 */
4191 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4192 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4193 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4194 		    "cant_write=TRUE due to write failure with ENXIO",
4195 		    zio);
4196 		vd->vdev_cant_write = B_TRUE;
4197 	}
4198 
4199 	/*
4200 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4201 	 * attempts will ever succeed. In this case we set a persistent
4202 	 * boolean flag so that we don't bother with it in the future.
4203 	 */
4204 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4205 	    zio->io_type == ZIO_TYPE_IOCTL &&
4206 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4207 		vd->vdev_nowritecache = B_TRUE;
4208 
4209 	if (zio->io_error)
4210 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4211 
4212 	return (zio);
4213 }
4214 
4215 void
zio_vdev_io_reissue(zio_t * zio)4216 zio_vdev_io_reissue(zio_t *zio)
4217 {
4218 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4219 	ASSERT(zio->io_error == 0);
4220 
4221 	zio->io_stage >>= 1;
4222 }
4223 
4224 void
zio_vdev_io_redone(zio_t * zio)4225 zio_vdev_io_redone(zio_t *zio)
4226 {
4227 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4228 
4229 	zio->io_stage >>= 1;
4230 }
4231 
4232 void
zio_vdev_io_bypass(zio_t * zio)4233 zio_vdev_io_bypass(zio_t *zio)
4234 {
4235 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4236 	ASSERT(zio->io_error == 0);
4237 
4238 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4239 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4240 }
4241 
4242 /*
4243  * ==========================================================================
4244  * Encrypt and store encryption parameters
4245  * ==========================================================================
4246  */
4247 
4248 
4249 /*
4250  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4251  * managing the storage of encryption parameters and passing them to the
4252  * lower-level encryption functions.
4253  */
4254 static zio_t *
zio_encrypt(zio_t * zio)4255 zio_encrypt(zio_t *zio)
4256 {
4257 	zio_prop_t *zp = &zio->io_prop;
4258 	spa_t *spa = zio->io_spa;
4259 	blkptr_t *bp = zio->io_bp;
4260 	uint64_t psize = BP_GET_PSIZE(bp);
4261 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4262 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4263 	void *enc_buf = NULL;
4264 	abd_t *eabd = NULL;
4265 	uint8_t salt[ZIO_DATA_SALT_LEN];
4266 	uint8_t iv[ZIO_DATA_IV_LEN];
4267 	uint8_t mac[ZIO_DATA_MAC_LEN];
4268 	boolean_t no_crypt = B_FALSE;
4269 
4270 	/* the root zio already encrypted the data */
4271 	if (zio->io_child_type == ZIO_CHILD_GANG)
4272 		return (zio);
4273 
4274 	/* only ZIL blocks are re-encrypted on rewrite */
4275 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4276 		return (zio);
4277 
4278 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4279 		BP_SET_CRYPT(bp, B_FALSE);
4280 		return (zio);
4281 	}
4282 
4283 	/* if we are doing raw encryption set the provided encryption params */
4284 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4285 		ASSERT0(BP_GET_LEVEL(bp));
4286 		BP_SET_CRYPT(bp, B_TRUE);
4287 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4288 		if (ot != DMU_OT_OBJSET)
4289 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4290 
4291 		/* dnode blocks must be written out in the provided byteorder */
4292 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4293 		    ot == DMU_OT_DNODE) {
4294 			void *bswap_buf = zio_buf_alloc(psize);
4295 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4296 
4297 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4298 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4299 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4300 			    psize);
4301 
4302 			abd_take_ownership_of_buf(babd, B_TRUE);
4303 			zio_push_transform(zio, babd, psize, psize, NULL);
4304 		}
4305 
4306 		if (DMU_OT_IS_ENCRYPTED(ot))
4307 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4308 		return (zio);
4309 	}
4310 
4311 	/* indirect blocks only maintain a cksum of the lower level MACs */
4312 	if (BP_GET_LEVEL(bp) > 0) {
4313 		BP_SET_CRYPT(bp, B_TRUE);
4314 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4315 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4316 		    mac));
4317 		zio_crypt_encode_mac_bp(bp, mac);
4318 		return (zio);
4319 	}
4320 
4321 	/*
4322 	 * Objset blocks are a special case since they have 2 256-bit MACs
4323 	 * embedded within them.
4324 	 */
4325 	if (ot == DMU_OT_OBJSET) {
4326 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4327 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4328 		BP_SET_CRYPT(bp, B_TRUE);
4329 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4330 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4331 		return (zio);
4332 	}
4333 
4334 	/* unencrypted object types are only authenticated with a MAC */
4335 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4336 		BP_SET_CRYPT(bp, B_TRUE);
4337 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4338 		    zio->io_abd, psize, mac));
4339 		zio_crypt_encode_mac_bp(bp, mac);
4340 		return (zio);
4341 	}
4342 
4343 	/*
4344 	 * Later passes of sync-to-convergence may decide to rewrite data
4345 	 * in place to avoid more disk reallocations. This presents a problem
4346 	 * for encryption because this constitutes rewriting the new data with
4347 	 * the same encryption key and IV. However, this only applies to blocks
4348 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4349 	 * MOS. We assert that the zio is allocating or an intent log write
4350 	 * to enforce this.
4351 	 */
4352 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4353 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4354 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4355 	ASSERT3U(psize, !=, 0);
4356 
4357 	enc_buf = zio_buf_alloc(psize);
4358 	eabd = abd_get_from_buf(enc_buf, psize);
4359 	abd_take_ownership_of_buf(eabd, B_TRUE);
4360 
4361 	/*
4362 	 * For an explanation of what encryption parameters are stored
4363 	 * where, see the block comment in zio_crypt.c.
4364 	 */
4365 	if (ot == DMU_OT_INTENT_LOG) {
4366 		zio_crypt_decode_params_bp(bp, salt, iv);
4367 	} else {
4368 		BP_SET_CRYPT(bp, B_TRUE);
4369 	}
4370 
4371 	/* Perform the encryption. This should not fail */
4372 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4373 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4374 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4375 
4376 	/* encode encryption metadata into the bp */
4377 	if (ot == DMU_OT_INTENT_LOG) {
4378 		/*
4379 		 * ZIL blocks store the MAC in the embedded checksum, so the
4380 		 * transform must always be applied.
4381 		 */
4382 		zio_crypt_encode_mac_zil(enc_buf, mac);
4383 		zio_push_transform(zio, eabd, psize, psize, NULL);
4384 	} else {
4385 		BP_SET_CRYPT(bp, B_TRUE);
4386 		zio_crypt_encode_params_bp(bp, salt, iv);
4387 		zio_crypt_encode_mac_bp(bp, mac);
4388 
4389 		if (no_crypt) {
4390 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4391 			abd_free(eabd);
4392 		} else {
4393 			zio_push_transform(zio, eabd, psize, psize, NULL);
4394 		}
4395 	}
4396 
4397 	return (zio);
4398 }
4399 
4400 /*
4401  * ==========================================================================
4402  * Generate and verify checksums
4403  * ==========================================================================
4404  */
4405 static zio_t *
zio_checksum_generate(zio_t * zio)4406 zio_checksum_generate(zio_t *zio)
4407 {
4408 	blkptr_t *bp = zio->io_bp;
4409 	enum zio_checksum checksum;
4410 
4411 	if (bp == NULL) {
4412 		/*
4413 		 * This is zio_write_phys().
4414 		 * We're either generating a label checksum, or none at all.
4415 		 */
4416 		checksum = zio->io_prop.zp_checksum;
4417 
4418 		if (checksum == ZIO_CHECKSUM_OFF)
4419 			return (zio);
4420 
4421 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4422 	} else {
4423 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4424 			ASSERT(!IO_IS_ALLOCATING(zio));
4425 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4426 		} else {
4427 			checksum = BP_GET_CHECKSUM(bp);
4428 		}
4429 	}
4430 
4431 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4432 
4433 	return (zio);
4434 }
4435 
4436 static zio_t *
zio_checksum_verify(zio_t * zio)4437 zio_checksum_verify(zio_t *zio)
4438 {
4439 	zio_bad_cksum_t info;
4440 	blkptr_t *bp = zio->io_bp;
4441 	int error;
4442 
4443 	ASSERT(zio->io_vd != NULL);
4444 
4445 	if (bp == NULL) {
4446 		/*
4447 		 * This is zio_read_phys().
4448 		 * We're either verifying a label checksum, or nothing at all.
4449 		 */
4450 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4451 			return (zio);
4452 
4453 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4454 	}
4455 
4456 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4457 		zio->io_error = error;
4458 		if (error == ECKSUM &&
4459 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4460 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4461 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4462 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4463 			(void) zfs_ereport_start_checksum(zio->io_spa,
4464 			    zio->io_vd, &zio->io_bookmark, zio,
4465 			    zio->io_offset, zio->io_size, &info);
4466 		}
4467 	}
4468 
4469 	return (zio);
4470 }
4471 
4472 /*
4473  * Called by RAID-Z to ensure we don't compute the checksum twice.
4474  */
4475 void
zio_checksum_verified(zio_t * zio)4476 zio_checksum_verified(zio_t *zio)
4477 {
4478 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4479 }
4480 
4481 /*
4482  * ==========================================================================
4483  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4484  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4485  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4486  * indicate errors that are specific to one I/O, and most likely permanent.
4487  * Any other error is presumed to be worse because we weren't expecting it.
4488  * ==========================================================================
4489  */
4490 int
zio_worst_error(int e1,int e2)4491 zio_worst_error(int e1, int e2)
4492 {
4493 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4494 	int r1, r2;
4495 
4496 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4497 		if (e1 == zio_error_rank[r1])
4498 			break;
4499 
4500 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4501 		if (e2 == zio_error_rank[r2])
4502 			break;
4503 
4504 	return (r1 > r2 ? e1 : e2);
4505 }
4506 
4507 /*
4508  * ==========================================================================
4509  * I/O completion
4510  * ==========================================================================
4511  */
4512 static zio_t *
zio_ready(zio_t * zio)4513 zio_ready(zio_t *zio)
4514 {
4515 	blkptr_t *bp = zio->io_bp;
4516 	zio_t *pio, *pio_next;
4517 	zio_link_t *zl = NULL;
4518 
4519 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
4520 	    ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) {
4521 		return (NULL);
4522 	}
4523 
4524 	if (zio->io_ready) {
4525 		ASSERT(IO_IS_ALLOCATING(zio));
4526 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4527 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4528 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4529 
4530 		zio->io_ready(zio);
4531 	}
4532 
4533 #ifdef ZFS_DEBUG
4534 	if (bp != NULL && bp != &zio->io_bp_copy)
4535 		zio->io_bp_copy = *bp;
4536 #endif
4537 
4538 	if (zio->io_error != 0) {
4539 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4540 
4541 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4542 			ASSERT(IO_IS_ALLOCATING(zio));
4543 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4544 			ASSERT(zio->io_metaslab_class != NULL);
4545 
4546 			/*
4547 			 * We were unable to allocate anything, unreserve and
4548 			 * issue the next I/O to allocate.
4549 			 */
4550 			metaslab_class_throttle_unreserve(
4551 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4552 			    zio->io_allocator, zio);
4553 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4554 		}
4555 	}
4556 
4557 	mutex_enter(&zio->io_lock);
4558 	zio->io_state[ZIO_WAIT_READY] = 1;
4559 	pio = zio_walk_parents(zio, &zl);
4560 	mutex_exit(&zio->io_lock);
4561 
4562 	/*
4563 	 * As we notify zio's parents, new parents could be added.
4564 	 * New parents go to the head of zio's io_parent_list, however,
4565 	 * so we will (correctly) not notify them.  The remainder of zio's
4566 	 * io_parent_list, from 'pio_next' onward, cannot change because
4567 	 * all parents must wait for us to be done before they can be done.
4568 	 */
4569 	for (; pio != NULL; pio = pio_next) {
4570 		pio_next = zio_walk_parents(zio, &zl);
4571 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4572 	}
4573 
4574 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4575 		if (bp != NULL && BP_IS_GANG(bp)) {
4576 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4577 		} else {
4578 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4579 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4580 		}
4581 	}
4582 
4583 	if (zio_injection_enabled &&
4584 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4585 		zio_handle_ignored_writes(zio);
4586 
4587 	return (zio);
4588 }
4589 
4590 /*
4591  * Update the allocation throttle accounting.
4592  */
4593 static void
zio_dva_throttle_done(zio_t * zio)4594 zio_dva_throttle_done(zio_t *zio)
4595 {
4596 	zio_t *lio __maybe_unused = zio->io_logical;
4597 	zio_t *pio = zio_unique_parent(zio);
4598 	vdev_t *vd = zio->io_vd;
4599 	int flags = METASLAB_ASYNC_ALLOC;
4600 
4601 	ASSERT3P(zio->io_bp, !=, NULL);
4602 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4603 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4604 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4605 	ASSERT(vd != NULL);
4606 	ASSERT3P(vd, ==, vd->vdev_top);
4607 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4608 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4609 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4610 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4611 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4612 
4613 	/*
4614 	 * Parents of gang children can have two flavors -- ones that
4615 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4616 	 * and ones that allocated the constituent blocks. The allocation
4617 	 * throttle needs to know the allocating parent zio so we must find
4618 	 * it here.
4619 	 */
4620 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4621 		/*
4622 		 * If our parent is a rewrite gang child then our grandparent
4623 		 * would have been the one that performed the allocation.
4624 		 */
4625 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4626 			pio = zio_unique_parent(pio);
4627 		flags |= METASLAB_GANG_CHILD;
4628 	}
4629 
4630 	ASSERT(IO_IS_ALLOCATING(pio));
4631 	ASSERT3P(zio, !=, zio->io_logical);
4632 	ASSERT(zio->io_logical != NULL);
4633 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4634 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4635 	ASSERT(zio->io_metaslab_class != NULL);
4636 
4637 	mutex_enter(&pio->io_lock);
4638 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4639 	    pio->io_allocator, B_TRUE);
4640 	mutex_exit(&pio->io_lock);
4641 
4642 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4643 	    pio->io_allocator, pio);
4644 
4645 	/*
4646 	 * Call into the pipeline to see if there is more work that
4647 	 * needs to be done. If there is work to be done it will be
4648 	 * dispatched to another taskq thread.
4649 	 */
4650 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4651 }
4652 
4653 static zio_t *
zio_done(zio_t * zio)4654 zio_done(zio_t *zio)
4655 {
4656 	/*
4657 	 * Always attempt to keep stack usage minimal here since
4658 	 * we can be called recursively up to 19 levels deep.
4659 	 */
4660 	const uint64_t psize = zio->io_size;
4661 	zio_t *pio, *pio_next;
4662 	zio_link_t *zl = NULL;
4663 
4664 	/*
4665 	 * If our children haven't all completed,
4666 	 * wait for them and then repeat this pipeline stage.
4667 	 */
4668 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4669 		return (NULL);
4670 	}
4671 
4672 	/*
4673 	 * If the allocation throttle is enabled, then update the accounting.
4674 	 * We only track child I/Os that are part of an allocating async
4675 	 * write. We must do this since the allocation is performed
4676 	 * by the logical I/O but the actual write is done by child I/Os.
4677 	 */
4678 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4679 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4680 		ASSERT(zio->io_metaslab_class != NULL);
4681 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4682 		zio_dva_throttle_done(zio);
4683 	}
4684 
4685 	/*
4686 	 * If the allocation throttle is enabled, verify that
4687 	 * we have decremented the refcounts for every I/O that was throttled.
4688 	 */
4689 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4690 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4691 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4692 		ASSERT(zio->io_bp != NULL);
4693 
4694 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4695 		    zio->io_allocator);
4696 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4697 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4698 	}
4699 
4700 
4701 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4702 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4703 			ASSERT(zio->io_children[c][w] == 0);
4704 
4705 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4706 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4707 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4708 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4709 		    sizeof (blkptr_t)) == 0 ||
4710 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4711 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4712 		    zio->io_bp_override == NULL &&
4713 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4714 			ASSERT3U(zio->io_prop.zp_copies, <=,
4715 			    BP_GET_NDVAS(zio->io_bp));
4716 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4717 			    (BP_COUNT_GANG(zio->io_bp) ==
4718 			    BP_GET_NDVAS(zio->io_bp)));
4719 		}
4720 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4721 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4722 	}
4723 
4724 	/*
4725 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4726 	 */
4727 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4728 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4729 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4730 
4731 	/*
4732 	 * If the I/O on the transformed data was successful, generate any
4733 	 * checksum reports now while we still have the transformed data.
4734 	 */
4735 	if (zio->io_error == 0) {
4736 		while (zio->io_cksum_report != NULL) {
4737 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4738 			uint64_t align = zcr->zcr_align;
4739 			uint64_t asize = P2ROUNDUP(psize, align);
4740 			abd_t *adata = zio->io_abd;
4741 
4742 			if (adata != NULL && asize != psize) {
4743 				adata = abd_alloc(asize, B_TRUE);
4744 				abd_copy(adata, zio->io_abd, psize);
4745 				abd_zero_off(adata, psize, asize - psize);
4746 			}
4747 
4748 			zio->io_cksum_report = zcr->zcr_next;
4749 			zcr->zcr_next = NULL;
4750 			zcr->zcr_finish(zcr, adata);
4751 			zfs_ereport_free_checksum(zcr);
4752 
4753 			if (adata != NULL && asize != psize)
4754 				abd_free(adata);
4755 		}
4756 	}
4757 
4758 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4759 
4760 	vdev_stat_update(zio, psize);
4761 
4762 	/*
4763 	 * If this I/O is attached to a particular vdev is slow, exceeding
4764 	 * 30 seconds to complete, post an error described the I/O delay.
4765 	 * We ignore these errors if the device is currently unavailable.
4766 	 */
4767 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4768 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4769 			/*
4770 			 * We want to only increment our slow IO counters if
4771 			 * the IO is valid (i.e. not if the drive is removed).
4772 			 *
4773 			 * zfs_ereport_post() will also do these checks, but
4774 			 * it can also ratelimit and have other failures, so we
4775 			 * need to increment the slow_io counters independent
4776 			 * of it.
4777 			 */
4778 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4779 			    zio->io_spa, zio->io_vd, zio)) {
4780 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4781 				zio->io_vd->vdev_stat.vs_slow_ios++;
4782 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4783 
4784 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4785 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4786 				    zio, 0);
4787 			}
4788 		}
4789 	}
4790 
4791 	if (zio->io_error) {
4792 		/*
4793 		 * If this I/O is attached to a particular vdev,
4794 		 * generate an error message describing the I/O failure
4795 		 * at the block level.  We ignore these errors if the
4796 		 * device is currently unavailable.
4797 		 */
4798 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4799 		    !vdev_is_dead(zio->io_vd)) {
4800 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4801 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4802 			if (ret != EALREADY) {
4803 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4804 				if (zio->io_type == ZIO_TYPE_READ)
4805 					zio->io_vd->vdev_stat.vs_read_errors++;
4806 				else if (zio->io_type == ZIO_TYPE_WRITE)
4807 					zio->io_vd->vdev_stat.vs_write_errors++;
4808 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4809 			}
4810 		}
4811 
4812 		if ((zio->io_error == EIO || !(zio->io_flags &
4813 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4814 		    zio == zio->io_logical) {
4815 			/*
4816 			 * For logical I/O requests, tell the SPA to log the
4817 			 * error and generate a logical data ereport.
4818 			 */
4819 			spa_log_error(zio->io_spa, &zio->io_bookmark,
4820 			    &zio->io_bp->blk_birth);
4821 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4822 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4823 		}
4824 	}
4825 
4826 	if (zio->io_error && zio == zio->io_logical) {
4827 		/*
4828 		 * Determine whether zio should be reexecuted.  This will
4829 		 * propagate all the way to the root via zio_notify_parent().
4830 		 */
4831 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4832 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4833 
4834 		if (IO_IS_ALLOCATING(zio) &&
4835 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4836 			if (zio->io_error != ENOSPC)
4837 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4838 			else
4839 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4840 		}
4841 
4842 		if ((zio->io_type == ZIO_TYPE_READ ||
4843 		    zio->io_type == ZIO_TYPE_FREE) &&
4844 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4845 		    zio->io_error == ENXIO &&
4846 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4847 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4848 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4849 
4850 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4851 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4852 
4853 		/*
4854 		 * Here is a possibly good place to attempt to do
4855 		 * either combinatorial reconstruction or error correction
4856 		 * based on checksums.  It also might be a good place
4857 		 * to send out preliminary ereports before we suspend
4858 		 * processing.
4859 		 */
4860 	}
4861 
4862 	/*
4863 	 * If there were logical child errors, they apply to us now.
4864 	 * We defer this until now to avoid conflating logical child
4865 	 * errors with errors that happened to the zio itself when
4866 	 * updating vdev stats and reporting FMA events above.
4867 	 */
4868 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4869 
4870 	if ((zio->io_error || zio->io_reexecute) &&
4871 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4872 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4873 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4874 
4875 	zio_gang_tree_free(&zio->io_gang_tree);
4876 
4877 	/*
4878 	 * Godfather I/Os should never suspend.
4879 	 */
4880 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4881 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4882 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4883 
4884 	if (zio->io_reexecute) {
4885 		/*
4886 		 * This is a logical I/O that wants to reexecute.
4887 		 *
4888 		 * Reexecute is top-down.  When an i/o fails, if it's not
4889 		 * the root, it simply notifies its parent and sticks around.
4890 		 * The parent, seeing that it still has children in zio_done(),
4891 		 * does the same.  This percolates all the way up to the root.
4892 		 * The root i/o will reexecute or suspend the entire tree.
4893 		 *
4894 		 * This approach ensures that zio_reexecute() honors
4895 		 * all the original i/o dependency relationships, e.g.
4896 		 * parents not executing until children are ready.
4897 		 */
4898 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4899 
4900 		zio->io_gang_leader = NULL;
4901 
4902 		mutex_enter(&zio->io_lock);
4903 		zio->io_state[ZIO_WAIT_DONE] = 1;
4904 		mutex_exit(&zio->io_lock);
4905 
4906 		/*
4907 		 * "The Godfather" I/O monitors its children but is
4908 		 * not a true parent to them. It will track them through
4909 		 * the pipeline but severs its ties whenever they get into
4910 		 * trouble (e.g. suspended). This allows "The Godfather"
4911 		 * I/O to return status without blocking.
4912 		 */
4913 		zl = NULL;
4914 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4915 		    pio = pio_next) {
4916 			zio_link_t *remove_zl = zl;
4917 			pio_next = zio_walk_parents(zio, &zl);
4918 
4919 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4920 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4921 				zio_remove_child(pio, zio, remove_zl);
4922 				/*
4923 				 * This is a rare code path, so we don't
4924 				 * bother with "next_to_execute".
4925 				 */
4926 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4927 				    NULL);
4928 			}
4929 		}
4930 
4931 		if ((pio = zio_unique_parent(zio)) != NULL) {
4932 			/*
4933 			 * We're not a root i/o, so there's nothing to do
4934 			 * but notify our parent.  Don't propagate errors
4935 			 * upward since we haven't permanently failed yet.
4936 			 */
4937 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4938 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4939 			/*
4940 			 * This is a rare code path, so we don't bother with
4941 			 * "next_to_execute".
4942 			 */
4943 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4944 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4945 			/*
4946 			 * We'd fail again if we reexecuted now, so suspend
4947 			 * until conditions improve (e.g. device comes online).
4948 			 */
4949 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4950 		} else {
4951 			/*
4952 			 * Reexecution is potentially a huge amount of work.
4953 			 * Hand it off to the otherwise-unused claim taskq.
4954 			 */
4955 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4956 			spa_taskq_dispatch_ent(zio->io_spa,
4957 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4958 			    zio_reexecute, zio, 0, &zio->io_tqent);
4959 		}
4960 		return (NULL);
4961 	}
4962 
4963 	ASSERT(list_is_empty(&zio->io_child_list));
4964 	ASSERT(zio->io_reexecute == 0);
4965 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4966 
4967 	/*
4968 	 * Report any checksum errors, since the I/O is complete.
4969 	 */
4970 	while (zio->io_cksum_report != NULL) {
4971 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4972 		zio->io_cksum_report = zcr->zcr_next;
4973 		zcr->zcr_next = NULL;
4974 		zcr->zcr_finish(zcr, NULL);
4975 		zfs_ereport_free_checksum(zcr);
4976 	}
4977 
4978 	/*
4979 	 * It is the responsibility of the done callback to ensure that this
4980 	 * particular zio is no longer discoverable for adoption, and as
4981 	 * such, cannot acquire any new parents.
4982 	 */
4983 	if (zio->io_done)
4984 		zio->io_done(zio);
4985 
4986 	mutex_enter(&zio->io_lock);
4987 	zio->io_state[ZIO_WAIT_DONE] = 1;
4988 	mutex_exit(&zio->io_lock);
4989 
4990 	/*
4991 	 * We are done executing this zio.  We may want to execute a parent
4992 	 * next.  See the comment in zio_notify_parent().
4993 	 */
4994 	zio_t *next_to_execute = NULL;
4995 	zl = NULL;
4996 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4997 		zio_link_t *remove_zl = zl;
4998 		pio_next = zio_walk_parents(zio, &zl);
4999 		zio_remove_child(pio, zio, remove_zl);
5000 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
5001 	}
5002 
5003 	if (zio->io_waiter != NULL) {
5004 		mutex_enter(&zio->io_lock);
5005 		zio->io_executor = NULL;
5006 		cv_broadcast(&zio->io_cv);
5007 		mutex_exit(&zio->io_lock);
5008 	} else {
5009 		zio_destroy(zio);
5010 	}
5011 
5012 	return (next_to_execute);
5013 }
5014 
5015 /*
5016  * ==========================================================================
5017  * I/O pipeline definition
5018  * ==========================================================================
5019  */
5020 static zio_pipe_stage_t *zio_pipeline[] = {
5021 	NULL,
5022 	zio_read_bp_init,
5023 	zio_write_bp_init,
5024 	zio_free_bp_init,
5025 	zio_issue_async,
5026 	zio_write_compress,
5027 	zio_encrypt,
5028 	zio_checksum_generate,
5029 	zio_nop_write,
5030 	zio_brt_free,
5031 	zio_ddt_read_start,
5032 	zio_ddt_read_done,
5033 	zio_ddt_write,
5034 	zio_ddt_free,
5035 	zio_gang_assemble,
5036 	zio_gang_issue,
5037 	zio_dva_throttle,
5038 	zio_dva_allocate,
5039 	zio_dva_free,
5040 	zio_dva_claim,
5041 	zio_ready,
5042 	zio_vdev_io_start,
5043 	zio_vdev_io_done,
5044 	zio_vdev_io_assess,
5045 	zio_checksum_verify,
5046 	zio_done
5047 };
5048 
5049 
5050 
5051 
5052 /*
5053  * Compare two zbookmark_phys_t's to see which we would reach first in a
5054  * pre-order traversal of the object tree.
5055  *
5056  * This is simple in every case aside from the meta-dnode object. For all other
5057  * objects, we traverse them in order (object 1 before object 2, and so on).
5058  * However, all of these objects are traversed while traversing object 0, since
5059  * the data it points to is the list of objects.  Thus, we need to convert to a
5060  * canonical representation so we can compare meta-dnode bookmarks to
5061  * non-meta-dnode bookmarks.
5062  *
5063  * We do this by calculating "equivalents" for each field of the zbookmark.
5064  * zbookmarks outside of the meta-dnode use their own object and level, and
5065  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5066  * blocks this bookmark refers to) by multiplying their blkid by their span
5067  * (the number of L0 blocks contained within one block at their level).
5068  * zbookmarks inside the meta-dnode calculate their object equivalent
5069  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5070  * level + 1<<31 (any value larger than a level could ever be) for their level.
5071  * This causes them to always compare before a bookmark in their object
5072  * equivalent, compare appropriately to bookmarks in other objects, and to
5073  * compare appropriately to other bookmarks in the meta-dnode.
5074  */
5075 int
zbookmark_compare(uint16_t dbss1,uint8_t ibs1,uint16_t dbss2,uint8_t ibs2,const zbookmark_phys_t * zb1,const zbookmark_phys_t * zb2)5076 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5077     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5078 {
5079 	/*
5080 	 * These variables represent the "equivalent" values for the zbookmark,
5081 	 * after converting zbookmarks inside the meta dnode to their
5082 	 * normal-object equivalents.
5083 	 */
5084 	uint64_t zb1obj, zb2obj;
5085 	uint64_t zb1L0, zb2L0;
5086 	uint64_t zb1level, zb2level;
5087 
5088 	if (zb1->zb_object == zb2->zb_object &&
5089 	    zb1->zb_level == zb2->zb_level &&
5090 	    zb1->zb_blkid == zb2->zb_blkid)
5091 		return (0);
5092 
5093 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5094 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5095 
5096 	/*
5097 	 * BP_SPANB calculates the span in blocks.
5098 	 */
5099 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5100 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5101 
5102 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5103 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5104 		zb1L0 = 0;
5105 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5106 	} else {
5107 		zb1obj = zb1->zb_object;
5108 		zb1level = zb1->zb_level;
5109 	}
5110 
5111 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5112 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5113 		zb2L0 = 0;
5114 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5115 	} else {
5116 		zb2obj = zb2->zb_object;
5117 		zb2level = zb2->zb_level;
5118 	}
5119 
5120 	/* Now that we have a canonical representation, do the comparison. */
5121 	if (zb1obj != zb2obj)
5122 		return (zb1obj < zb2obj ? -1 : 1);
5123 	else if (zb1L0 != zb2L0)
5124 		return (zb1L0 < zb2L0 ? -1 : 1);
5125 	else if (zb1level != zb2level)
5126 		return (zb1level > zb2level ? -1 : 1);
5127 	/*
5128 	 * This can (theoretically) happen if the bookmarks have the same object
5129 	 * and level, but different blkids, if the block sizes are not the same.
5130 	 * There is presently no way to change the indirect block sizes
5131 	 */
5132 	return (0);
5133 }
5134 
5135 /*
5136  *  This function checks the following: given that last_block is the place that
5137  *  our traversal stopped last time, does that guarantee that we've visited
5138  *  every node under subtree_root?  Therefore, we can't just use the raw output
5139  *  of zbookmark_compare.  We have to pass in a modified version of
5140  *  subtree_root; by incrementing the block id, and then checking whether
5141  *  last_block is before or equal to that, we can tell whether or not having
5142  *  visited last_block implies that all of subtree_root's children have been
5143  *  visited.
5144  */
5145 boolean_t
zbookmark_subtree_completed(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5146 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5147     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5148 {
5149 	zbookmark_phys_t mod_zb = *subtree_root;
5150 	mod_zb.zb_blkid++;
5151 	ASSERT0(last_block->zb_level);
5152 
5153 	/* The objset_phys_t isn't before anything. */
5154 	if (dnp == NULL)
5155 		return (B_FALSE);
5156 
5157 	/*
5158 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5159 	 * data block size in sectors, because that variable is only used if
5160 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5161 	 * know without examining it what object it refers to, and there's no
5162 	 * harm in passing in this value in other cases, we always pass it in.
5163 	 *
5164 	 * We pass in 0 for the indirect block size shift because zb2 must be
5165 	 * level 0.  The indirect block size is only used to calculate the span
5166 	 * of the bookmark, but since the bookmark must be level 0, the span is
5167 	 * always 1, so the math works out.
5168 	 *
5169 	 * If you make changes to how the zbookmark_compare code works, be sure
5170 	 * to make sure that this code still works afterwards.
5171 	 */
5172 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5173 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5174 	    last_block) <= 0);
5175 }
5176 
5177 /*
5178  * This function is similar to zbookmark_subtree_completed(), but returns true
5179  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5180  */
5181 boolean_t
zbookmark_subtree_tbd(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5182 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5183     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5184 {
5185 	ASSERT0(last_block->zb_level);
5186 	if (dnp == NULL)
5187 		return (B_FALSE);
5188 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5189 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5190 	    last_block) >= 0);
5191 }
5192 
5193 EXPORT_SYMBOL(zio_type_name);
5194 EXPORT_SYMBOL(zio_buf_alloc);
5195 EXPORT_SYMBOL(zio_data_buf_alloc);
5196 EXPORT_SYMBOL(zio_buf_free);
5197 EXPORT_SYMBOL(zio_data_buf_free);
5198 
5199 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5200 	"Max I/O completion time (milliseconds) before marking it as slow");
5201 
5202 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5203 	"Prioritize requeued I/O");
5204 
5205 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5206 	"Defer frees starting in this pass");
5207 
5208 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5209 	"Don't compress starting in this pass");
5210 
5211 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5212 	"Rewrite new bps starting in this pass");
5213 
5214 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5215 	"Throttle block allocations in the ZIO pipeline");
5216 
5217 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5218 	"Log all slow ZIOs, not just those with vdevs");
5219