xref: /freebsd-14.2/sys/dev/jme/if_jme.c (revision 6b25a8f0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <[email protected]>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/mbuf.h>
38 #include <sys/rman.h>
39 #include <sys/module.h>
40 #include <sys/proc.h>
41 #include <sys/queue.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/jme/if_jmereg.h>
72 #include <dev/jme/if_jmevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 /* Define the following to disable printing Rx errors. */
78 #undef	JME_SHOW_ERRORS
79 
80 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
81 
82 MODULE_DEPEND(jme, pci, 1, 1, 1);
83 MODULE_DEPEND(jme, ether, 1, 1, 1);
84 MODULE_DEPEND(jme, miibus, 1, 1, 1);
85 
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
91 
92 /*
93  * Devices supported by this driver.
94  */
95 static struct jme_dev {
96 	uint16_t	jme_vendorid;
97 	uint16_t	jme_deviceid;
98 	const char	*jme_name;
99 } jme_devs[] = {
100 	{ VENDORID_JMICRON, DEVICEID_JMC250,
101 	    "JMicron Inc, JMC25x Gigabit Ethernet" },
102 	{ VENDORID_JMICRON, DEVICEID_JMC260,
103 	    "JMicron Inc, JMC26x Fast Ethernet" },
104 };
105 
106 static int jme_miibus_readreg(device_t, int, int);
107 static int jme_miibus_writereg(device_t, int, int, int);
108 static void jme_miibus_statchg(device_t);
109 static void jme_mediastatus(if_t, struct ifmediareq *);
110 static int jme_mediachange(if_t);
111 static int jme_probe(device_t);
112 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
113 static int jme_eeprom_macaddr(struct jme_softc *);
114 static int jme_efuse_macaddr(struct jme_softc *);
115 static void jme_reg_macaddr(struct jme_softc *);
116 static void jme_set_macaddr(struct jme_softc *, uint8_t *);
117 static void jme_map_intr_vector(struct jme_softc *);
118 static int jme_attach(device_t);
119 static int jme_detach(device_t);
120 static void jme_sysctl_node(struct jme_softc *);
121 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
122 static int jme_dma_alloc(struct jme_softc *);
123 static void jme_dma_free(struct jme_softc *);
124 static int jme_shutdown(device_t);
125 static void jme_setlinkspeed(struct jme_softc *);
126 static void jme_setwol(struct jme_softc *);
127 static int jme_suspend(device_t);
128 static int jme_resume(device_t);
129 static int jme_encap(struct jme_softc *, struct mbuf **);
130 static void jme_start(if_t);
131 static void jme_start_locked(if_t);
132 static void jme_watchdog(struct jme_softc *);
133 static int jme_ioctl(if_t, u_long, caddr_t);
134 static void jme_mac_config(struct jme_softc *);
135 static void jme_link_task(void *, int);
136 static int jme_intr(void *);
137 static void jme_int_task(void *, int);
138 static void jme_txeof(struct jme_softc *);
139 static __inline void jme_discard_rxbuf(struct jme_softc *, int);
140 static void jme_rxeof(struct jme_softc *);
141 static int jme_rxintr(struct jme_softc *, int);
142 static void jme_tick(void *);
143 static void jme_reset(struct jme_softc *);
144 static void jme_init(void *);
145 static void jme_init_locked(struct jme_softc *);
146 static void jme_stop(struct jme_softc *);
147 static void jme_stop_tx(struct jme_softc *);
148 static void jme_stop_rx(struct jme_softc *);
149 static int jme_init_rx_ring(struct jme_softc *);
150 static void jme_init_tx_ring(struct jme_softc *);
151 static void jme_init_ssb(struct jme_softc *);
152 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
153 static void jme_set_vlan(struct jme_softc *);
154 static void jme_set_filter(struct jme_softc *);
155 static void jme_stats_clear(struct jme_softc *);
156 static void jme_stats_save(struct jme_softc *);
157 static void jme_stats_update(struct jme_softc *);
158 static void jme_phy_down(struct jme_softc *);
159 static void jme_phy_up(struct jme_softc *);
160 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
161 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
162 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
163 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
164 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
165 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
166 
167 
168 static device_method_t jme_methods[] = {
169 	/* Device interface. */
170 	DEVMETHOD(device_probe,		jme_probe),
171 	DEVMETHOD(device_attach,	jme_attach),
172 	DEVMETHOD(device_detach,	jme_detach),
173 	DEVMETHOD(device_shutdown,	jme_shutdown),
174 	DEVMETHOD(device_suspend,	jme_suspend),
175 	DEVMETHOD(device_resume,	jme_resume),
176 
177 	/* MII interface. */
178 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
179 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
180 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
181 
182 	{ NULL, NULL }
183 };
184 
185 static driver_t jme_driver = {
186 	"jme",
187 	jme_methods,
188 	sizeof(struct jme_softc)
189 };
190 
191 DRIVER_MODULE(jme, pci, jme_driver, 0, 0);
192 DRIVER_MODULE(miibus, jme, miibus_driver, 0, 0);
193 
194 static struct resource_spec jme_res_spec_mem[] = {
195 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
196 	{ -1,			0,		0 }
197 };
198 
199 static struct resource_spec jme_irq_spec_legacy[] = {
200 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
201 	{ -1,			0,		0 }
202 };
203 
204 static struct resource_spec jme_irq_spec_msi[] = {
205 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
206 	{ -1,			0,		0 }
207 };
208 
209 /*
210  *	Read a PHY register on the MII of the JMC250.
211  */
212 static int
jme_miibus_readreg(device_t dev,int phy,int reg)213 jme_miibus_readreg(device_t dev, int phy, int reg)
214 {
215 	struct jme_softc *sc;
216 	uint32_t val;
217 	int i;
218 
219 	sc = device_get_softc(dev);
220 
221 	/* For FPGA version, PHY address 0 should be ignored. */
222 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
223 		return (0);
224 
225 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
226 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
227 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
228 		DELAY(1);
229 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
230 			break;
231 	}
232 
233 	if (i == 0) {
234 		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
235 		return (0);
236 	}
237 
238 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
239 }
240 
241 /*
242  *	Write a PHY register on the MII of the JMC250.
243  */
244 static int
jme_miibus_writereg(device_t dev,int phy,int reg,int val)245 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
246 {
247 	struct jme_softc *sc;
248 	int i;
249 
250 	sc = device_get_softc(dev);
251 
252 	/* For FPGA version, PHY address 0 should be ignored. */
253 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
254 		return (0);
255 
256 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
257 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
258 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
259 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
260 		DELAY(1);
261 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
262 			break;
263 	}
264 
265 	if (i == 0)
266 		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
267 
268 	return (0);
269 }
270 
271 /*
272  *	Callback from MII layer when media changes.
273  */
274 static void
jme_miibus_statchg(device_t dev)275 jme_miibus_statchg(device_t dev)
276 {
277 	struct jme_softc *sc;
278 
279 	sc = device_get_softc(dev);
280 	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
281 }
282 
283 /*
284  *	Get the current interface media status.
285  */
286 static void
jme_mediastatus(if_t ifp,struct ifmediareq * ifmr)287 jme_mediastatus(if_t ifp, struct ifmediareq *ifmr)
288 {
289 	struct jme_softc *sc;
290 	struct mii_data *mii;
291 
292 	sc = if_getsoftc(ifp);
293 	JME_LOCK(sc);
294 	if ((if_getflags(ifp) & IFF_UP) == 0) {
295 		JME_UNLOCK(sc);
296 		return;
297 	}
298 	mii = device_get_softc(sc->jme_miibus);
299 
300 	mii_pollstat(mii);
301 	ifmr->ifm_status = mii->mii_media_status;
302 	ifmr->ifm_active = mii->mii_media_active;
303 	JME_UNLOCK(sc);
304 }
305 
306 /*
307  *	Set hardware to newly-selected media.
308  */
309 static int
jme_mediachange(if_t ifp)310 jme_mediachange(if_t ifp)
311 {
312 	struct jme_softc *sc;
313 	struct mii_data *mii;
314 	struct mii_softc *miisc;
315 	int error;
316 
317 	sc = if_getsoftc(ifp);
318 	JME_LOCK(sc);
319 	mii = device_get_softc(sc->jme_miibus);
320 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
321 		PHY_RESET(miisc);
322 	error = mii_mediachg(mii);
323 	JME_UNLOCK(sc);
324 
325 	return (error);
326 }
327 
328 static int
jme_probe(device_t dev)329 jme_probe(device_t dev)
330 {
331 	struct jme_dev *sp;
332 	int i;
333 	uint16_t vendor, devid;
334 
335 	vendor = pci_get_vendor(dev);
336 	devid = pci_get_device(dev);
337 	sp = jme_devs;
338 	for (i = 0; i < nitems(jme_devs); i++, sp++) {
339 		if (vendor == sp->jme_vendorid &&
340 		    devid == sp->jme_deviceid) {
341 			device_set_desc(dev, sp->jme_name);
342 			return (BUS_PROBE_DEFAULT);
343 		}
344 	}
345 
346 	return (ENXIO);
347 }
348 
349 static int
jme_eeprom_read_byte(struct jme_softc * sc,uint8_t addr,uint8_t * val)350 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
351 {
352 	uint32_t reg;
353 	int i;
354 
355 	*val = 0;
356 	for (i = JME_TIMEOUT; i > 0; i--) {
357 		reg = CSR_READ_4(sc, JME_SMBCSR);
358 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
359 			break;
360 		DELAY(1);
361 	}
362 
363 	if (i == 0) {
364 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
365 		return (ETIMEDOUT);
366 	}
367 
368 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
369 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
370 	for (i = JME_TIMEOUT; i > 0; i--) {
371 		DELAY(1);
372 		reg = CSR_READ_4(sc, JME_SMBINTF);
373 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
374 			break;
375 	}
376 
377 	if (i == 0) {
378 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
379 		return (ETIMEDOUT);
380 	}
381 
382 	reg = CSR_READ_4(sc, JME_SMBINTF);
383 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
384 
385 	return (0);
386 }
387 
388 static int
jme_eeprom_macaddr(struct jme_softc * sc)389 jme_eeprom_macaddr(struct jme_softc *sc)
390 {
391 	uint8_t eaddr[ETHER_ADDR_LEN];
392 	uint8_t fup, reg, val;
393 	uint32_t offset;
394 	int match;
395 
396 	offset = 0;
397 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
398 	    fup != JME_EEPROM_SIG0)
399 		return (ENOENT);
400 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
401 	    fup != JME_EEPROM_SIG1)
402 		return (ENOENT);
403 	match = 0;
404 	do {
405 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
406 			break;
407 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
408 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
409 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
410 				break;
411 			if (reg >= JME_PAR0 &&
412 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
413 				if (jme_eeprom_read_byte(sc, offset + 2,
414 				    &val) != 0)
415 					break;
416 				eaddr[reg - JME_PAR0] = val;
417 				match++;
418 			}
419 		}
420 		/* Check for the end of EEPROM descriptor. */
421 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
422 			break;
423 		/* Try next eeprom descriptor. */
424 		offset += JME_EEPROM_DESC_BYTES;
425 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
426 
427 	if (match == ETHER_ADDR_LEN) {
428 		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
429 		return (0);
430 	}
431 
432 	return (ENOENT);
433 }
434 
435 static int
jme_efuse_macaddr(struct jme_softc * sc)436 jme_efuse_macaddr(struct jme_softc *sc)
437 {
438 	uint32_t reg;
439 	int i;
440 
441 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
442 	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
443 	    EFUSE_CTL1_AUTOLAOD_DONE)
444 		return (ENOENT);
445 	/* Reset eFuse controller. */
446 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
447 	reg |= EFUSE_CTL2_RESET;
448 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
449 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
450 	reg &= ~EFUSE_CTL2_RESET;
451 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
452 
453 	/* Have eFuse reload station address to MAC controller. */
454 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
455 	reg &= ~EFUSE_CTL1_CMD_MASK;
456 	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
457 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
458 
459 	/*
460 	 * Verify completion of eFuse autload command.  It should be
461 	 * completed within 108us.
462 	 */
463 	DELAY(110);
464 	for (i = 10; i > 0; i--) {
465 		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
466 		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
467 		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
468 			DELAY(20);
469 			continue;
470 		}
471 		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
472 			break;
473 		/* Station address loading is still in progress. */
474 		DELAY(20);
475 	}
476 	if (i == 0) {
477 		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
478 		return (ETIMEDOUT);
479 	}
480 
481 	return (0);
482 }
483 
484 static void
jme_reg_macaddr(struct jme_softc * sc)485 jme_reg_macaddr(struct jme_softc *sc)
486 {
487 	uint32_t par0, par1;
488 
489 	/* Read station address. */
490 	par0 = CSR_READ_4(sc, JME_PAR0);
491 	par1 = CSR_READ_4(sc, JME_PAR1);
492 	par1 &= 0xFFFF;
493 	if ((par0 == 0 && par1 == 0) ||
494 	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
495 		device_printf(sc->jme_dev,
496 		    "Failed to retrieve Ethernet address.\n");
497 	} else {
498 		/*
499 		 * For controllers that use eFuse, the station address
500 		 * could also be extracted from JME_PCI_PAR0 and
501 		 * JME_PCI_PAR1 registers in PCI configuration space.
502 		 * Each register holds exactly half of station address(24bits)
503 		 * so use JME_PAR0, JME_PAR1 registers instead.
504 		 */
505 		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
506 		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
507 		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
508 		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
509 		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
510 		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
511 	}
512 }
513 
514 static void
jme_set_macaddr(struct jme_softc * sc,uint8_t * eaddr)515 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
516 {
517 	uint32_t val;
518 	int i;
519 
520 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
521 		/*
522 		 * Avoid reprogramming station address if the address
523 		 * is the same as previous one.  Note, reprogrammed
524 		 * station address is permanent as if it was written
525 		 * to EEPROM. So if station address was changed by
526 		 * admistrator it's possible to lose factory configured
527 		 * address when driver fails to restore its address.
528 		 * (e.g. reboot or system crash)
529 		 */
530 		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
531 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
532 				val = JME_EFUSE_EEPROM_FUNC0 <<
533 				    JME_EFUSE_EEPROM_FUNC_SHIFT;
534 				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
535 				    JME_EFUSE_EEPROM_PAGE_SHIFT;
536 				val |= (JME_PAR0 + i) <<
537 				    JME_EFUSE_EEPROM_ADDR_SHIFT;
538 				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
539 				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
540 				    val | JME_EFUSE_EEPROM_WRITE, 4);
541 			}
542 		}
543 	} else {
544 		CSR_WRITE_4(sc, JME_PAR0,
545 		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
546 		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
547 	}
548 }
549 
550 static void
jme_map_intr_vector(struct jme_softc * sc)551 jme_map_intr_vector(struct jme_softc *sc)
552 {
553 	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
554 
555 	bzero(map, sizeof(map));
556 
557 	/* Map Tx interrupts source to MSI/MSIX vector 2. */
558 	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
559 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
560 	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
561 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
562 	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
563 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
564 	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
565 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
566 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
567 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
568 	map[MSINUM_REG_INDEX(N_INTR_TXQ5_COMP)] |=
569 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
570 	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
571 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
572 	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
573 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
574 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
575 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
576 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
577 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
578 
579 	/* Map Rx interrupts source to MSI/MSIX vector 1. */
580 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
581 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
582 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
583 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
584 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
585 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
586 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
587 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
588 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
589 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
590 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
591 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
592 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
593 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
594 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
595 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
596 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
597 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
598 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
599 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
600 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
601 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
602 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
603 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
604 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
605 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
606 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
607 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
608 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
609 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
610 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
611 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
612 
613 	/* Map all other interrupts source to MSI/MSIX vector 0. */
614 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
615 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
616 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
617 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
618 }
619 
620 static int
jme_attach(device_t dev)621 jme_attach(device_t dev)
622 {
623 	struct jme_softc *sc;
624 	if_t ifp;
625 	struct mii_softc *miisc;
626 	struct mii_data *mii;
627 	uint32_t reg;
628 	uint16_t burst;
629 	int error, i, mii_flags, msic, msixc, pmc;
630 
631 	error = 0;
632 	sc = device_get_softc(dev);
633 	sc->jme_dev = dev;
634 
635 	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
636 	    MTX_DEF);
637 	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
638 	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
639 	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
640 
641 	/*
642 	 * Map the device. JMC250 supports both memory mapped and I/O
643 	 * register space access. Because I/O register access should
644 	 * use different BARs to access registers it's waste of time
645 	 * to use I/O register spce access. JMC250 uses 16K to map
646 	 * entire memory space.
647 	 */
648 	pci_enable_busmaster(dev);
649 	sc->jme_res_spec = jme_res_spec_mem;
650 	sc->jme_irq_spec = jme_irq_spec_legacy;
651 	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
652 	if (error != 0) {
653 		device_printf(dev, "cannot allocate memory resources.\n");
654 		goto fail;
655 	}
656 
657 	/* Allocate IRQ resources. */
658 	msixc = pci_msix_count(dev);
659 	msic = pci_msi_count(dev);
660 	if (bootverbose) {
661 		device_printf(dev, "MSIX count : %d\n", msixc);
662 		device_printf(dev, "MSI count : %d\n", msic);
663 	}
664 
665 	/* Use 1 MSI/MSI-X. */
666 	if (msixc > 1)
667 		msixc = 1;
668 	if (msic > 1)
669 		msic = 1;
670 	/* Prefer MSIX over MSI. */
671 	if (msix_disable == 0 || msi_disable == 0) {
672 		if (msix_disable == 0 && msixc > 0 &&
673 		    pci_alloc_msix(dev, &msixc) == 0) {
674 			if (msixc == 1) {
675 				device_printf(dev, "Using %d MSIX messages.\n",
676 				    msixc);
677 				sc->jme_flags |= JME_FLAG_MSIX;
678 				sc->jme_irq_spec = jme_irq_spec_msi;
679 			} else
680 				pci_release_msi(dev);
681 		}
682 		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
683 		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
684 			if (msic == 1) {
685 				device_printf(dev, "Using %d MSI messages.\n",
686 				    msic);
687 				sc->jme_flags |= JME_FLAG_MSI;
688 				sc->jme_irq_spec = jme_irq_spec_msi;
689 			} else
690 				pci_release_msi(dev);
691 		}
692 		/* Map interrupt vector 0, 1 and 2. */
693 		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
694 		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
695 			jme_map_intr_vector(sc);
696 	}
697 
698 	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
699 	if (error != 0) {
700 		device_printf(dev, "cannot allocate IRQ resources.\n");
701 		goto fail;
702 	}
703 
704 	sc->jme_rev = pci_get_device(dev);
705 	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
706 		sc->jme_flags |= JME_FLAG_FASTETH;
707 		sc->jme_flags |= JME_FLAG_NOJUMBO;
708 	}
709 	reg = CSR_READ_4(sc, JME_CHIPMODE);
710 	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
711 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
712 	    CHIPMODE_NOT_FPGA)
713 		sc->jme_flags |= JME_FLAG_FPGA;
714 	if (bootverbose) {
715 		device_printf(dev, "PCI device revision : 0x%04x\n",
716 		    sc->jme_rev);
717 		device_printf(dev, "Chip revision : 0x%02x\n",
718 		    sc->jme_chip_rev);
719 		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
720 			device_printf(dev, "FPGA revision : 0x%04x\n",
721 			    (reg & CHIPMODE_FPGA_REV_MASK) >>
722 			    CHIPMODE_FPGA_REV_SHIFT);
723 	}
724 	if (sc->jme_chip_rev == 0xFF) {
725 		device_printf(dev, "Unknown chip revision : 0x%02x\n",
726 		    sc->jme_rev);
727 		error = ENXIO;
728 		goto fail;
729 	}
730 
731 	/* Identify controller features and bugs. */
732 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
733 		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
734 		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
735 			sc->jme_flags |= JME_FLAG_DMA32BIT;
736 		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
737 			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
738 		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
739 		sc->jme_flags |= JME_FLAG_HWMIB;
740 	}
741 
742 	/* Reset the ethernet controller. */
743 	jme_reset(sc);
744 
745 	/* Get station address. */
746 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
747 		error = jme_efuse_macaddr(sc);
748 		if (error == 0)
749 			jme_reg_macaddr(sc);
750 	} else {
751 		error = ENOENT;
752 		reg = CSR_READ_4(sc, JME_SMBCSR);
753 		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
754 			error = jme_eeprom_macaddr(sc);
755 		if (error != 0 && bootverbose)
756 			device_printf(sc->jme_dev,
757 			    "ethernet hardware address not found in EEPROM.\n");
758 		if (error != 0)
759 			jme_reg_macaddr(sc);
760 	}
761 
762 	/*
763 	 * Save PHY address.
764 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
765 	 * requires PHY probing to get correct PHY address.
766 	 */
767 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
768 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
769 		    GPREG0_PHY_ADDR_MASK;
770 		if (bootverbose)
771 			device_printf(dev, "PHY is at address %d.\n",
772 			    sc->jme_phyaddr);
773 	} else
774 		sc->jme_phyaddr = 0;
775 
776 	/* Set max allowable DMA size. */
777 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
778 		sc->jme_flags |= JME_FLAG_PCIE;
779 		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
780 		if (bootverbose) {
781 			device_printf(dev, "Read request size : %d bytes.\n",
782 			    128 << ((burst >> 12) & 0x07));
783 			device_printf(dev, "TLP payload size : %d bytes.\n",
784 			    128 << ((burst >> 5) & 0x07));
785 		}
786 		switch ((burst >> 12) & 0x07) {
787 		case 0:
788 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
789 			break;
790 		case 1:
791 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
792 			break;
793 		default:
794 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
795 			break;
796 		}
797 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
798 	} else {
799 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
800 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
801 	}
802 	/* Create coalescing sysctl node. */
803 	jme_sysctl_node(sc);
804 	if ((error = jme_dma_alloc(sc)) != 0)
805 		goto fail;
806 
807 	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
808 	if_setsoftc(ifp, sc);
809 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
810 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
811 	if_setioctlfn(ifp, jme_ioctl);
812 	if_setstartfn(ifp, jme_start);
813 	if_setinitfn(ifp, jme_init);
814 	if_setsendqlen(ifp, JME_TX_RING_CNT - 1);
815 	if_setsendqready(ifp);
816 	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
817 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
818 	if_sethwassist(ifp, JME_CSUM_FEATURES | CSUM_TSO);
819 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
820 		sc->jme_flags |= JME_FLAG_PMCAP;
821 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
822 	}
823 	if_setcapenable(ifp, if_getcapabilities(ifp));
824 
825 	/* Wakeup PHY. */
826 	jme_phy_up(sc);
827 	mii_flags = MIIF_DOPAUSE;
828 	/* Ask PHY calibration to PHY driver. */
829 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
830 		mii_flags |= MIIF_MACPRIV0;
831 	/* Set up MII bus. */
832 	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
833 	    jme_mediastatus, BMSR_DEFCAPMASK,
834 	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
835 	    MII_OFFSET_ANY, mii_flags);
836 	if (error != 0) {
837 		device_printf(dev, "attaching PHYs failed\n");
838 		goto fail;
839 	}
840 
841 	/*
842 	 * Force PHY to FPGA mode.
843 	 */
844 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
845 		mii = device_get_softc(sc->jme_miibus);
846 		if (mii->mii_instance != 0) {
847 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
848 				if (miisc->mii_phy != 0) {
849 					sc->jme_phyaddr = miisc->mii_phy;
850 					break;
851 				}
852 			}
853 			if (sc->jme_phyaddr != 0) {
854 				device_printf(sc->jme_dev,
855 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
856 				/* vendor magic. */
857 				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
858 				    0x0004);
859 			}
860 		}
861 	}
862 
863 	ether_ifattach(ifp, sc->jme_eaddr);
864 
865 	/* VLAN capability setup */
866 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
867 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
868 	if_setcapenable(ifp, if_getcapabilities(ifp));
869 
870 	/* Tell the upper layer(s) we support long frames. */
871 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
872 
873 	/* Create local taskq. */
874 	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
875 	    taskqueue_thread_enqueue, &sc->jme_tq);
876 	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
877 	    device_get_nameunit(sc->jme_dev));
878 
879 	for (i = 0; i < 1; i++) {
880 		error = bus_setup_intr(dev, sc->jme_irq[i],
881 		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
882 		    &sc->jme_intrhand[i]);
883 		if (error != 0)
884 			break;
885 	}
886 
887 	if (error != 0) {
888 		device_printf(dev, "could not set up interrupt handler.\n");
889 		taskqueue_free(sc->jme_tq);
890 		sc->jme_tq = NULL;
891 		ether_ifdetach(ifp);
892 		goto fail;
893 	}
894 
895 fail:
896 	if (error != 0)
897 		jme_detach(dev);
898 
899 	return (error);
900 }
901 
902 static int
jme_detach(device_t dev)903 jme_detach(device_t dev)
904 {
905 	struct jme_softc *sc;
906 	if_t ifp;
907 	int i;
908 
909 	sc = device_get_softc(dev);
910 
911 	ifp = sc->jme_ifp;
912 	if (device_is_attached(dev)) {
913 		JME_LOCK(sc);
914 		sc->jme_flags |= JME_FLAG_DETACH;
915 		jme_stop(sc);
916 		JME_UNLOCK(sc);
917 		callout_drain(&sc->jme_tick_ch);
918 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
919 		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
920 		/* Restore possibly modified station address. */
921 		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
922 			jme_set_macaddr(sc, sc->jme_eaddr);
923 		ether_ifdetach(ifp);
924 	}
925 
926 	if (sc->jme_tq != NULL) {
927 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
928 		taskqueue_free(sc->jme_tq);
929 		sc->jme_tq = NULL;
930 	}
931 
932 	if (sc->jme_miibus != NULL) {
933 		device_delete_child(dev, sc->jme_miibus);
934 		sc->jme_miibus = NULL;
935 	}
936 	bus_generic_detach(dev);
937 	jme_dma_free(sc);
938 
939 	if (ifp != NULL) {
940 		if_free(ifp);
941 		sc->jme_ifp = NULL;
942 	}
943 
944 	for (i = 0; i < 1; i++) {
945 		if (sc->jme_intrhand[i] != NULL) {
946 			bus_teardown_intr(dev, sc->jme_irq[i],
947 			    sc->jme_intrhand[i]);
948 			sc->jme_intrhand[i] = NULL;
949 		}
950 	}
951 
952 	if (sc->jme_irq[0] != NULL)
953 		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
954 	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
955 		pci_release_msi(dev);
956 	if (sc->jme_res[0] != NULL)
957 		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
958 	mtx_destroy(&sc->jme_mtx);
959 
960 	return (0);
961 }
962 
963 #define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
964 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
965 
966 static void
jme_sysctl_node(struct jme_softc * sc)967 jme_sysctl_node(struct jme_softc *sc)
968 {
969 	struct sysctl_ctx_list *ctx;
970 	struct sysctl_oid_list *child, *parent;
971 	struct sysctl_oid *tree;
972 	struct jme_hw_stats *stats;
973 	int error;
974 
975 	stats = &sc->jme_stats;
976 	ctx = device_get_sysctl_ctx(sc->jme_dev);
977 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
978 
979 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
980 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_to,
981 	    0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
982 
983 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
984 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_pkt,
985 	    0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
986 
987 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
988 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_to,
989 	    0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
990 
991 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
992 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_pkt,
993 	    0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
994 
995 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
996 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
997 	    &sc->jme_process_limit, 0, sysctl_hw_jme_proc_limit, "I",
998 	    "max number of Rx events to process");
999 
1000 	/* Pull in device tunables. */
1001 	sc->jme_process_limit = JME_PROC_DEFAULT;
1002 	error = resource_int_value(device_get_name(sc->jme_dev),
1003 	    device_get_unit(sc->jme_dev), "process_limit",
1004 	    &sc->jme_process_limit);
1005 	if (error == 0) {
1006 		if (sc->jme_process_limit < JME_PROC_MIN ||
1007 		    sc->jme_process_limit > JME_PROC_MAX) {
1008 			device_printf(sc->jme_dev,
1009 			    "process_limit value out of range; "
1010 			    "using default: %d\n", JME_PROC_DEFAULT);
1011 			sc->jme_process_limit = JME_PROC_DEFAULT;
1012 		}
1013 	}
1014 
1015 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1016 	error = resource_int_value(device_get_name(sc->jme_dev),
1017 	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1018 	if (error == 0) {
1019 		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1020 		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1021 			device_printf(sc->jme_dev,
1022 			    "tx_coal_to value out of range; "
1023 			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1024 			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1025 		}
1026 	}
1027 
1028 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1029 	error = resource_int_value(device_get_name(sc->jme_dev),
1030 	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1031 	if (error == 0) {
1032 		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1033 		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1034 			device_printf(sc->jme_dev,
1035 			    "tx_coal_pkt value out of range; "
1036 			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1037 			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1038 		}
1039 	}
1040 
1041 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1042 	error = resource_int_value(device_get_name(sc->jme_dev),
1043 	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1044 	if (error == 0) {
1045 		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1046 		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1047 			device_printf(sc->jme_dev,
1048 			    "rx_coal_to value out of range; "
1049 			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1050 			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1051 		}
1052 	}
1053 
1054 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1055 	error = resource_int_value(device_get_name(sc->jme_dev),
1056 	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1057 	if (error == 0) {
1058 		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1059 		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1060 			device_printf(sc->jme_dev,
1061 			    "tx_coal_pkt value out of range; "
1062 			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1063 			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1064 		}
1065 	}
1066 
1067 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1068 		return;
1069 
1070 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
1071 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "JME statistics");
1072 	parent = SYSCTL_CHILDREN(tree);
1073 
1074 	/* Rx statistics. */
1075 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
1076 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
1077 	child = SYSCTL_CHILDREN(tree);
1078 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1079 	    &stats->rx_good_frames, "Good frames");
1080 	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1081 	    &stats->rx_crc_errs, "CRC errors");
1082 	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1083 	    &stats->rx_mii_errs, "MII errors");
1084 	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1085 	    &stats->rx_fifo_oflows, "FIFO overflows");
1086 	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1087 	    &stats->rx_desc_empty, "Descriptor empty");
1088 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1089 	    &stats->rx_bad_frames, "Bad frames");
1090 
1091 	/* Tx statistics. */
1092 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
1093 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
1094 	child = SYSCTL_CHILDREN(tree);
1095 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1096 	    &stats->tx_good_frames, "Good frames");
1097 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1098 	    &stats->tx_bad_frames, "Bad frames");
1099 }
1100 
1101 #undef	JME_SYSCTL_STAT_ADD32
1102 
1103 struct jme_dmamap_arg {
1104 	bus_addr_t	jme_busaddr;
1105 };
1106 
1107 static void
jme_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1108 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1109 {
1110 	struct jme_dmamap_arg *ctx;
1111 
1112 	if (error != 0)
1113 		return;
1114 
1115 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1116 
1117 	ctx = (struct jme_dmamap_arg *)arg;
1118 	ctx->jme_busaddr = segs[0].ds_addr;
1119 }
1120 
1121 static int
jme_dma_alloc(struct jme_softc * sc)1122 jme_dma_alloc(struct jme_softc *sc)
1123 {
1124 	struct jme_dmamap_arg ctx;
1125 	struct jme_txdesc *txd;
1126 	struct jme_rxdesc *rxd;
1127 	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1128 	int error, i;
1129 
1130 	lowaddr = BUS_SPACE_MAXADDR;
1131 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1132 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1133 
1134 again:
1135 	/* Create parent ring tag. */
1136 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1137 	    1, 0,			/* algnmnt, boundary */
1138 	    lowaddr,			/* lowaddr */
1139 	    BUS_SPACE_MAXADDR,		/* highaddr */
1140 	    NULL, NULL,			/* filter, filterarg */
1141 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1142 	    0,				/* nsegments */
1143 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1144 	    0,				/* flags */
1145 	    NULL, NULL,			/* lockfunc, lockarg */
1146 	    &sc->jme_cdata.jme_ring_tag);
1147 	if (error != 0) {
1148 		device_printf(sc->jme_dev,
1149 		    "could not create parent ring DMA tag.\n");
1150 		goto fail;
1151 	}
1152 	/* Create tag for Tx ring. */
1153 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1154 	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1155 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1156 	    BUS_SPACE_MAXADDR,		/* highaddr */
1157 	    NULL, NULL,			/* filter, filterarg */
1158 	    JME_TX_RING_SIZE,		/* maxsize */
1159 	    1,				/* nsegments */
1160 	    JME_TX_RING_SIZE,		/* maxsegsize */
1161 	    0,				/* flags */
1162 	    NULL, NULL,			/* lockfunc, lockarg */
1163 	    &sc->jme_cdata.jme_tx_ring_tag);
1164 	if (error != 0) {
1165 		device_printf(sc->jme_dev,
1166 		    "could not allocate Tx ring DMA tag.\n");
1167 		goto fail;
1168 	}
1169 
1170 	/* Create tag for Rx ring. */
1171 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1172 	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1173 	    lowaddr,			/* lowaddr */
1174 	    BUS_SPACE_MAXADDR,		/* highaddr */
1175 	    NULL, NULL,			/* filter, filterarg */
1176 	    JME_RX_RING_SIZE,		/* maxsize */
1177 	    1,				/* nsegments */
1178 	    JME_RX_RING_SIZE,		/* maxsegsize */
1179 	    0,				/* flags */
1180 	    NULL, NULL,			/* lockfunc, lockarg */
1181 	    &sc->jme_cdata.jme_rx_ring_tag);
1182 	if (error != 0) {
1183 		device_printf(sc->jme_dev,
1184 		    "could not allocate Rx ring DMA tag.\n");
1185 		goto fail;
1186 	}
1187 
1188 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1189 	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1190 	    (void **)&sc->jme_rdata.jme_tx_ring,
1191 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1192 	    &sc->jme_cdata.jme_tx_ring_map);
1193 	if (error != 0) {
1194 		device_printf(sc->jme_dev,
1195 		    "could not allocate DMA'able memory for Tx ring.\n");
1196 		goto fail;
1197 	}
1198 
1199 	ctx.jme_busaddr = 0;
1200 	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1201 	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1202 	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1203 	if (error != 0 || ctx.jme_busaddr == 0) {
1204 		device_printf(sc->jme_dev,
1205 		    "could not load DMA'able memory for Tx ring.\n");
1206 		goto fail;
1207 	}
1208 	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1209 
1210 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1211 	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1212 	    (void **)&sc->jme_rdata.jme_rx_ring,
1213 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1214 	    &sc->jme_cdata.jme_rx_ring_map);
1215 	if (error != 0) {
1216 		device_printf(sc->jme_dev,
1217 		    "could not allocate DMA'able memory for Rx ring.\n");
1218 		goto fail;
1219 	}
1220 
1221 	ctx.jme_busaddr = 0;
1222 	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1223 	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1224 	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1225 	if (error != 0 || ctx.jme_busaddr == 0) {
1226 		device_printf(sc->jme_dev,
1227 		    "could not load DMA'able memory for Rx ring.\n");
1228 		goto fail;
1229 	}
1230 	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1231 
1232 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1233 		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1234 		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1235 		    JME_TX_RING_SIZE;
1236 		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1237 		    JME_RX_RING_SIZE;
1238 		if ((JME_ADDR_HI(tx_ring_end) !=
1239 		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1240 		    (JME_ADDR_HI(rx_ring_end) !=
1241 		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1242 			device_printf(sc->jme_dev, "4GB boundary crossed, "
1243 			    "switching to 32bit DMA address mode.\n");
1244 			jme_dma_free(sc);
1245 			/* Limit DMA address space to 32bit and try again. */
1246 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1247 			goto again;
1248 		}
1249 	}
1250 
1251 	lowaddr = BUS_SPACE_MAXADDR;
1252 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1253 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1254 	/* Create parent buffer tag. */
1255 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1256 	    1, 0,			/* algnmnt, boundary */
1257 	    lowaddr,			/* lowaddr */
1258 	    BUS_SPACE_MAXADDR,		/* highaddr */
1259 	    NULL, NULL,			/* filter, filterarg */
1260 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1261 	    0,				/* nsegments */
1262 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1263 	    0,				/* flags */
1264 	    NULL, NULL,			/* lockfunc, lockarg */
1265 	    &sc->jme_cdata.jme_buffer_tag);
1266 	if (error != 0) {
1267 		device_printf(sc->jme_dev,
1268 		    "could not create parent buffer DMA tag.\n");
1269 		goto fail;
1270 	}
1271 
1272 	/* Create shadow status block tag. */
1273 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1274 	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1275 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1276 	    BUS_SPACE_MAXADDR,		/* highaddr */
1277 	    NULL, NULL,			/* filter, filterarg */
1278 	    JME_SSB_SIZE,		/* maxsize */
1279 	    1,				/* nsegments */
1280 	    JME_SSB_SIZE,		/* maxsegsize */
1281 	    0,				/* flags */
1282 	    NULL, NULL,			/* lockfunc, lockarg */
1283 	    &sc->jme_cdata.jme_ssb_tag);
1284 	if (error != 0) {
1285 		device_printf(sc->jme_dev,
1286 		    "could not create shared status block DMA tag.\n");
1287 		goto fail;
1288 	}
1289 
1290 	/* Create tag for Tx buffers. */
1291 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1292 	    1, 0,			/* algnmnt, boundary */
1293 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1294 	    BUS_SPACE_MAXADDR,		/* highaddr */
1295 	    NULL, NULL,			/* filter, filterarg */
1296 	    JME_TSO_MAXSIZE,		/* maxsize */
1297 	    JME_MAXTXSEGS,		/* nsegments */
1298 	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1299 	    0,				/* flags */
1300 	    NULL, NULL,			/* lockfunc, lockarg */
1301 	    &sc->jme_cdata.jme_tx_tag);
1302 	if (error != 0) {
1303 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1304 		goto fail;
1305 	}
1306 
1307 	/* Create tag for Rx buffers. */
1308 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1309 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1310 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1311 	    BUS_SPACE_MAXADDR,		/* highaddr */
1312 	    NULL, NULL,			/* filter, filterarg */
1313 	    MCLBYTES,			/* maxsize */
1314 	    1,				/* nsegments */
1315 	    MCLBYTES,			/* maxsegsize */
1316 	    0,				/* flags */
1317 	    NULL, NULL,			/* lockfunc, lockarg */
1318 	    &sc->jme_cdata.jme_rx_tag);
1319 	if (error != 0) {
1320 		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1321 		goto fail;
1322 	}
1323 
1324 	/*
1325 	 * Allocate DMA'able memory and load the DMA map for shared
1326 	 * status block.
1327 	 */
1328 	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1329 	    (void **)&sc->jme_rdata.jme_ssb_block,
1330 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1331 	    &sc->jme_cdata.jme_ssb_map);
1332 	if (error != 0) {
1333 		device_printf(sc->jme_dev, "could not allocate DMA'able "
1334 		    "memory for shared status block.\n");
1335 		goto fail;
1336 	}
1337 
1338 	ctx.jme_busaddr = 0;
1339 	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1340 	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1341 	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1342 	if (error != 0 || ctx.jme_busaddr == 0) {
1343 		device_printf(sc->jme_dev, "could not load DMA'able memory "
1344 		    "for shared status block.\n");
1345 		goto fail;
1346 	}
1347 	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1348 
1349 	/* Create DMA maps for Tx buffers. */
1350 	for (i = 0; i < JME_TX_RING_CNT; i++) {
1351 		txd = &sc->jme_cdata.jme_txdesc[i];
1352 		txd->tx_m = NULL;
1353 		txd->tx_dmamap = NULL;
1354 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1355 		    &txd->tx_dmamap);
1356 		if (error != 0) {
1357 			device_printf(sc->jme_dev,
1358 			    "could not create Tx dmamap.\n");
1359 			goto fail;
1360 		}
1361 	}
1362 	/* Create DMA maps for Rx buffers. */
1363 	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1364 	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1365 		device_printf(sc->jme_dev,
1366 		    "could not create spare Rx dmamap.\n");
1367 		goto fail;
1368 	}
1369 	for (i = 0; i < JME_RX_RING_CNT; i++) {
1370 		rxd = &sc->jme_cdata.jme_rxdesc[i];
1371 		rxd->rx_m = NULL;
1372 		rxd->rx_dmamap = NULL;
1373 		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1374 		    &rxd->rx_dmamap);
1375 		if (error != 0) {
1376 			device_printf(sc->jme_dev,
1377 			    "could not create Rx dmamap.\n");
1378 			goto fail;
1379 		}
1380 	}
1381 
1382 fail:
1383 	return (error);
1384 }
1385 
1386 static void
jme_dma_free(struct jme_softc * sc)1387 jme_dma_free(struct jme_softc *sc)
1388 {
1389 	struct jme_txdesc *txd;
1390 	struct jme_rxdesc *rxd;
1391 	int i;
1392 
1393 	/* Tx ring */
1394 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1395 		if (sc->jme_rdata.jme_tx_ring_paddr)
1396 			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1397 			    sc->jme_cdata.jme_tx_ring_map);
1398 		if (sc->jme_rdata.jme_tx_ring)
1399 			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1400 			    sc->jme_rdata.jme_tx_ring,
1401 			    sc->jme_cdata.jme_tx_ring_map);
1402 		sc->jme_rdata.jme_tx_ring = NULL;
1403 		sc->jme_rdata.jme_tx_ring_paddr = 0;
1404 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1405 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1406 	}
1407 	/* Rx ring */
1408 	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1409 		if (sc->jme_rdata.jme_rx_ring_paddr)
1410 			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1411 			    sc->jme_cdata.jme_rx_ring_map);
1412 		if (sc->jme_rdata.jme_rx_ring)
1413 			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1414 			    sc->jme_rdata.jme_rx_ring,
1415 			    sc->jme_cdata.jme_rx_ring_map);
1416 		sc->jme_rdata.jme_rx_ring = NULL;
1417 		sc->jme_rdata.jme_rx_ring_paddr = 0;
1418 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1419 		sc->jme_cdata.jme_rx_ring_tag = NULL;
1420 	}
1421 	/* Tx buffers */
1422 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1423 		for (i = 0; i < JME_TX_RING_CNT; i++) {
1424 			txd = &sc->jme_cdata.jme_txdesc[i];
1425 			if (txd->tx_dmamap != NULL) {
1426 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1427 				    txd->tx_dmamap);
1428 				txd->tx_dmamap = NULL;
1429 			}
1430 		}
1431 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1432 		sc->jme_cdata.jme_tx_tag = NULL;
1433 	}
1434 	/* Rx buffers */
1435 	if (sc->jme_cdata.jme_rx_tag != NULL) {
1436 		for (i = 0; i < JME_RX_RING_CNT; i++) {
1437 			rxd = &sc->jme_cdata.jme_rxdesc[i];
1438 			if (rxd->rx_dmamap != NULL) {
1439 				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1440 				    rxd->rx_dmamap);
1441 				rxd->rx_dmamap = NULL;
1442 			}
1443 		}
1444 		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1445 			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1446 			    sc->jme_cdata.jme_rx_sparemap);
1447 			sc->jme_cdata.jme_rx_sparemap = NULL;
1448 		}
1449 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1450 		sc->jme_cdata.jme_rx_tag = NULL;
1451 	}
1452 
1453 	/* Shared status block. */
1454 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1455 		if (sc->jme_rdata.jme_ssb_block_paddr)
1456 			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1457 			    sc->jme_cdata.jme_ssb_map);
1458 		if (sc->jme_rdata.jme_ssb_block)
1459 			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1460 			    sc->jme_rdata.jme_ssb_block,
1461 			    sc->jme_cdata.jme_ssb_map);
1462 		sc->jme_rdata.jme_ssb_block = NULL;
1463 		sc->jme_rdata.jme_ssb_block_paddr = 0;
1464 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1465 		sc->jme_cdata.jme_ssb_tag = NULL;
1466 	}
1467 
1468 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1469 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1470 		sc->jme_cdata.jme_buffer_tag = NULL;
1471 	}
1472 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1473 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1474 		sc->jme_cdata.jme_ring_tag = NULL;
1475 	}
1476 }
1477 
1478 /*
1479  *	Make sure the interface is stopped at reboot time.
1480  */
1481 static int
jme_shutdown(device_t dev)1482 jme_shutdown(device_t dev)
1483 {
1484 
1485 	return (jme_suspend(dev));
1486 }
1487 
1488 /*
1489  * Unlike other ethernet controllers, JMC250 requires
1490  * explicit resetting link speed to 10/100Mbps as gigabit
1491  * link will cunsume more power than 375mA.
1492  * Note, we reset the link speed to 10/100Mbps with
1493  * auto-negotiation but we don't know whether that operation
1494  * would succeed or not as we have no control after powering
1495  * off. If the renegotiation fail WOL may not work. Running
1496  * at 1Gbps draws more power than 375mA at 3.3V which is
1497  * specified in PCI specification and that would result in
1498  * complete shutdowning power to ethernet controller.
1499  *
1500  * TODO
1501  *  Save current negotiated media speed/duplex/flow-control
1502  *  to softc and restore the same link again after resuming.
1503  *  PHY handling such as power down/resetting to 100Mbps
1504  *  may be better handled in suspend method in phy driver.
1505  */
1506 static void
jme_setlinkspeed(struct jme_softc * sc)1507 jme_setlinkspeed(struct jme_softc *sc)
1508 {
1509 	struct mii_data *mii;
1510 	int aneg, i;
1511 
1512 	JME_LOCK_ASSERT(sc);
1513 
1514 	mii = device_get_softc(sc->jme_miibus);
1515 	mii_pollstat(mii);
1516 	aneg = 0;
1517 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1518 		switch IFM_SUBTYPE(mii->mii_media_active) {
1519 		case IFM_10_T:
1520 		case IFM_100_TX:
1521 			return;
1522 		case IFM_1000_T:
1523 			aneg++;
1524 		default:
1525 			break;
1526 		}
1527 	}
1528 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1529 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1530 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1531 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1532 	    BMCR_AUTOEN | BMCR_STARTNEG);
1533 	DELAY(1000);
1534 	if (aneg != 0) {
1535 		/* Poll link state until jme(4) get a 10/100 link. */
1536 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1537 			mii_pollstat(mii);
1538 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1539 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1540 				case IFM_10_T:
1541 				case IFM_100_TX:
1542 					jme_mac_config(sc);
1543 					return;
1544 				default:
1545 					break;
1546 				}
1547 			}
1548 			JME_UNLOCK(sc);
1549 			pause("jmelnk", hz);
1550 			JME_LOCK(sc);
1551 		}
1552 		if (i == MII_ANEGTICKS_GIGE)
1553 			device_printf(sc->jme_dev, "establishing link failed, "
1554 			    "WOL may not work!");
1555 	}
1556 	/*
1557 	 * No link, force MAC to have 100Mbps, full-duplex link.
1558 	 * This is the last resort and may/may not work.
1559 	 */
1560 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1561 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1562 	jme_mac_config(sc);
1563 }
1564 
1565 static void
jme_setwol(struct jme_softc * sc)1566 jme_setwol(struct jme_softc *sc)
1567 {
1568 	if_t ifp;
1569 	uint32_t gpr, pmcs;
1570 	uint16_t pmstat;
1571 	int pmc;
1572 
1573 	JME_LOCK_ASSERT(sc);
1574 
1575 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1576 		/* Remove Tx MAC/offload clock to save more power. */
1577 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1578 			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1579 			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1580 			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1581 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1582 			CSR_WRITE_4(sc, JME_GPREG1,
1583 			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1584 		/* No PME capability, PHY power down. */
1585 		jme_phy_down(sc);
1586 		return;
1587 	}
1588 
1589 	ifp = sc->jme_ifp;
1590 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1591 	pmcs = CSR_READ_4(sc, JME_PMCS);
1592 	pmcs &= ~PMCS_WOL_ENB_MASK;
1593 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1594 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1595 		/* Enable PME message. */
1596 		gpr |= GPREG0_PME_ENB;
1597 		/* For gigabit controllers, reset link speed to 10/100. */
1598 		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1599 			jme_setlinkspeed(sc);
1600 	}
1601 
1602 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1603 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1604 	/* Remove Tx MAC/offload clock to save more power. */
1605 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1606 		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1607 		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1608 		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1609 	/* Request PME. */
1610 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1611 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1612 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1613 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1614 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1615 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1616 		/* No WOL, PHY power down. */
1617 		jme_phy_down(sc);
1618 	}
1619 }
1620 
1621 static int
jme_suspend(device_t dev)1622 jme_suspend(device_t dev)
1623 {
1624 	struct jme_softc *sc;
1625 
1626 	sc = device_get_softc(dev);
1627 
1628 	JME_LOCK(sc);
1629 	jme_stop(sc);
1630 	jme_setwol(sc);
1631 	JME_UNLOCK(sc);
1632 
1633 	return (0);
1634 }
1635 
1636 static int
jme_resume(device_t dev)1637 jme_resume(device_t dev)
1638 {
1639 	struct jme_softc *sc;
1640 	if_t ifp;
1641 	uint16_t pmstat;
1642 	int pmc;
1643 
1644 	sc = device_get_softc(dev);
1645 
1646 	JME_LOCK(sc);
1647 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1648 		pmstat = pci_read_config(sc->jme_dev,
1649 		    pmc + PCIR_POWER_STATUS, 2);
1650 		/* Disable PME clear PME status. */
1651 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1652 		pci_write_config(sc->jme_dev,
1653 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1654 	}
1655 	/* Wakeup PHY. */
1656 	jme_phy_up(sc);
1657 	ifp = sc->jme_ifp;
1658 	if ((if_getflags(ifp) & IFF_UP) != 0) {
1659 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1660 		jme_init_locked(sc);
1661 	}
1662 
1663 	JME_UNLOCK(sc);
1664 
1665 	return (0);
1666 }
1667 
1668 static int
jme_encap(struct jme_softc * sc,struct mbuf ** m_head)1669 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1670 {
1671 	struct jme_txdesc *txd;
1672 	struct jme_desc *desc;
1673 	struct mbuf *m;
1674 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1675 	int error, i, nsegs, prod;
1676 	uint32_t cflags, tsosegsz;
1677 
1678 	JME_LOCK_ASSERT(sc);
1679 
1680 	M_ASSERTPKTHDR((*m_head));
1681 
1682 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1683 		/*
1684 		 * Due to the adherence to NDIS specification JMC250
1685 		 * assumes upper stack computed TCP pseudo checksum
1686 		 * without including payload length. This breaks
1687 		 * checksum offload for TSO case so recompute TCP
1688 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1689 		 * be much burden on modern CPUs.
1690 		 */
1691 		struct ether_header *eh;
1692 		struct ip *ip;
1693 		struct tcphdr *tcp;
1694 		uint32_t ip_off, poff;
1695 
1696 		if (M_WRITABLE(*m_head) == 0) {
1697 			/* Get a writable copy. */
1698 			m = m_dup(*m_head, M_NOWAIT);
1699 			m_freem(*m_head);
1700 			if (m == NULL) {
1701 				*m_head = NULL;
1702 				return (ENOBUFS);
1703 			}
1704 			*m_head = m;
1705 		}
1706 		ip_off = sizeof(struct ether_header);
1707 		m = m_pullup(*m_head, ip_off);
1708 		if (m == NULL) {
1709 			*m_head = NULL;
1710 			return (ENOBUFS);
1711 		}
1712 		eh = mtod(m, struct ether_header *);
1713 		/* Check the existence of VLAN tag. */
1714 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1715 			ip_off = sizeof(struct ether_vlan_header);
1716 			m = m_pullup(m, ip_off);
1717 			if (m == NULL) {
1718 				*m_head = NULL;
1719 				return (ENOBUFS);
1720 			}
1721 		}
1722 		m = m_pullup(m, ip_off + sizeof(struct ip));
1723 		if (m == NULL) {
1724 			*m_head = NULL;
1725 			return (ENOBUFS);
1726 		}
1727 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1728 		poff = ip_off + (ip->ip_hl << 2);
1729 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1730 		if (m == NULL) {
1731 			*m_head = NULL;
1732 			return (ENOBUFS);
1733 		}
1734 		/*
1735 		 * Reset IP checksum and recompute TCP pseudo
1736 		 * checksum that NDIS specification requires.
1737 		 */
1738 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1739 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1740 		ip->ip_sum = 0;
1741 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1742 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1743 			    ip->ip_dst.s_addr,
1744 			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1745 			/* No need to TSO, force IP checksum offload. */
1746 			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1747 			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1748 		} else
1749 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1750 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1751 		*m_head = m;
1752 	}
1753 
1754 	prod = sc->jme_cdata.jme_tx_prod;
1755 	txd = &sc->jme_cdata.jme_txdesc[prod];
1756 
1757 	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1758 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1759 	if (error == EFBIG) {
1760 		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1761 		if (m == NULL) {
1762 			m_freem(*m_head);
1763 			*m_head = NULL;
1764 			return (ENOMEM);
1765 		}
1766 		*m_head = m;
1767 		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1768 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1769 		if (error != 0) {
1770 			m_freem(*m_head);
1771 			*m_head = NULL;
1772 			return (error);
1773 		}
1774 	} else if (error != 0)
1775 		return (error);
1776 	if (nsegs == 0) {
1777 		m_freem(*m_head);
1778 		*m_head = NULL;
1779 		return (EIO);
1780 	}
1781 
1782 	/*
1783 	 * Check descriptor overrun. Leave one free descriptor.
1784 	 * Since we always use 64bit address mode for transmitting,
1785 	 * each Tx request requires one more dummy descriptor.
1786 	 */
1787 	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1788 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1789 		return (ENOBUFS);
1790 	}
1791 
1792 	m = *m_head;
1793 	cflags = 0;
1794 	tsosegsz = 0;
1795 	/* Configure checksum offload and TSO. */
1796 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1797 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1798 		    JME_TD_MSS_SHIFT;
1799 		cflags |= JME_TD_TSO;
1800 	} else {
1801 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1802 			cflags |= JME_TD_IPCSUM;
1803 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1804 			cflags |= JME_TD_TCPCSUM;
1805 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1806 			cflags |= JME_TD_UDPCSUM;
1807 	}
1808 	/* Configure VLAN. */
1809 	if ((m->m_flags & M_VLANTAG) != 0) {
1810 		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1811 		cflags |= JME_TD_VLAN_TAG;
1812 	}
1813 
1814 	desc = &sc->jme_rdata.jme_tx_ring[prod];
1815 	desc->flags = htole32(cflags);
1816 	desc->buflen = htole32(tsosegsz);
1817 	desc->addr_hi = htole32(m->m_pkthdr.len);
1818 	desc->addr_lo = 0;
1819 	sc->jme_cdata.jme_tx_cnt++;
1820 	JME_DESC_INC(prod, JME_TX_RING_CNT);
1821 	for (i = 0; i < nsegs; i++) {
1822 		desc = &sc->jme_rdata.jme_tx_ring[prod];
1823 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1824 		desc->buflen = htole32(txsegs[i].ds_len);
1825 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1826 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1827 		sc->jme_cdata.jme_tx_cnt++;
1828 		JME_DESC_INC(prod, JME_TX_RING_CNT);
1829 	}
1830 
1831 	/* Update producer index. */
1832 	sc->jme_cdata.jme_tx_prod = prod;
1833 	/*
1834 	 * Finally request interrupt and give the first descriptor
1835 	 * owenership to hardware.
1836 	 */
1837 	desc = txd->tx_desc;
1838 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1839 
1840 	txd->tx_m = m;
1841 	txd->tx_ndesc = nsegs + 1;
1842 
1843 	/* Sync descriptors. */
1844 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1845 	    BUS_DMASYNC_PREWRITE);
1846 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1847 	    sc->jme_cdata.jme_tx_ring_map,
1848 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1849 
1850 	return (0);
1851 }
1852 
1853 static void
jme_start(if_t ifp)1854 jme_start(if_t ifp)
1855 {
1856         struct jme_softc *sc;
1857 
1858 	sc = if_getsoftc(ifp);
1859 	JME_LOCK(sc);
1860 	jme_start_locked(ifp);
1861 	JME_UNLOCK(sc);
1862 }
1863 
1864 static void
jme_start_locked(if_t ifp)1865 jme_start_locked(if_t ifp)
1866 {
1867         struct jme_softc *sc;
1868         struct mbuf *m_head;
1869 	int enq;
1870 
1871 	sc = if_getsoftc(ifp);
1872 
1873 	JME_LOCK_ASSERT(sc);
1874 
1875 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1876 		jme_txeof(sc);
1877 
1878 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1879 	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1880 		return;
1881 
1882 	for (enq = 0; !if_sendq_empty(ifp); ) {
1883 		m_head = if_dequeue(ifp);
1884 		if (m_head == NULL)
1885 			break;
1886 		/*
1887 		 * Pack the data into the transmit ring. If we
1888 		 * don't have room, set the OACTIVE flag and wait
1889 		 * for the NIC to drain the ring.
1890 		 */
1891 		if (jme_encap(sc, &m_head)) {
1892 			if (m_head == NULL)
1893 				break;
1894 			if_sendq_prepend(ifp, m_head);
1895 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1896 			break;
1897 		}
1898 
1899 		enq++;
1900 		/*
1901 		 * If there's a BPF listener, bounce a copy of this frame
1902 		 * to him.
1903 		 */
1904 		ETHER_BPF_MTAP(ifp, m_head);
1905 	}
1906 
1907 	if (enq > 0) {
1908 		/*
1909 		 * Reading TXCSR takes very long time under heavy load
1910 		 * so cache TXCSR value and writes the ORed value with
1911 		 * the kick command to the TXCSR. This saves one register
1912 		 * access cycle.
1913 		 */
1914 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1915 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1916 		/* Set a timeout in case the chip goes out to lunch. */
1917 		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1918 	}
1919 }
1920 
1921 static void
jme_watchdog(struct jme_softc * sc)1922 jme_watchdog(struct jme_softc *sc)
1923 {
1924 	if_t ifp;
1925 
1926 	JME_LOCK_ASSERT(sc);
1927 
1928 	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1929 		return;
1930 
1931 	ifp = sc->jme_ifp;
1932 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1933 		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1934 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1935 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1936 		jme_init_locked(sc);
1937 		return;
1938 	}
1939 	jme_txeof(sc);
1940 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1941 		if_printf(sc->jme_ifp,
1942 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1943 		if (!if_sendq_empty(ifp))
1944 			jme_start_locked(ifp);
1945 		return;
1946 	}
1947 
1948 	if_printf(sc->jme_ifp, "watchdog timeout\n");
1949 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1950 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1951 	jme_init_locked(sc);
1952 	if (!if_sendq_empty(ifp))
1953 		jme_start_locked(ifp);
1954 }
1955 
1956 static int
jme_ioctl(if_t ifp,u_long cmd,caddr_t data)1957 jme_ioctl(if_t ifp, u_long cmd, caddr_t data)
1958 {
1959 	struct jme_softc *sc;
1960 	struct ifreq *ifr;
1961 	struct mii_data *mii;
1962 	uint32_t reg;
1963 	int error, mask;
1964 
1965 	sc = if_getsoftc(ifp);
1966 	ifr = (struct ifreq *)data;
1967 	error = 0;
1968 	switch (cmd) {
1969 	case SIOCSIFMTU:
1970 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1971 		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1972 		    ifr->ifr_mtu > JME_MAX_MTU)) {
1973 			error = EINVAL;
1974 			break;
1975 		}
1976 
1977 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
1978 			/*
1979 			 * No special configuration is required when interface
1980 			 * MTU is changed but availability of TSO/Tx checksum
1981 			 * offload should be chcked against new MTU size as
1982 			 * FIFO size is just 2K.
1983 			 */
1984 			JME_LOCK(sc);
1985 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1986 				if_setcapenablebit(ifp, 0,
1987 				    IFCAP_TXCSUM | IFCAP_TSO4);
1988 				if_sethwassistbits(ifp, 0,
1989 				    JME_CSUM_FEATURES | CSUM_TSO);
1990 				VLAN_CAPABILITIES(ifp);
1991 			}
1992 			if_setmtu(ifp, ifr->ifr_mtu);
1993 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1994 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1995 				jme_init_locked(sc);
1996 			}
1997 			JME_UNLOCK(sc);
1998 		}
1999 		break;
2000 	case SIOCSIFFLAGS:
2001 		JME_LOCK(sc);
2002 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2003 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2004 				if (((if_getflags(ifp) ^ sc->jme_if_flags)
2005 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2006 					jme_set_filter(sc);
2007 			} else {
2008 				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2009 					jme_init_locked(sc);
2010 			}
2011 		} else {
2012 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2013 				jme_stop(sc);
2014 		}
2015 		sc->jme_if_flags = if_getflags(ifp);
2016 		JME_UNLOCK(sc);
2017 		break;
2018 	case SIOCADDMULTI:
2019 	case SIOCDELMULTI:
2020 		JME_LOCK(sc);
2021 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2022 			jme_set_filter(sc);
2023 		JME_UNLOCK(sc);
2024 		break;
2025 	case SIOCSIFMEDIA:
2026 	case SIOCGIFMEDIA:
2027 		mii = device_get_softc(sc->jme_miibus);
2028 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2029 		break;
2030 	case SIOCSIFCAP:
2031 		JME_LOCK(sc);
2032 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2033 		if ((mask & IFCAP_TXCSUM) != 0 &&
2034 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2035 			if ((IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2036 				if_togglecapenable(ifp, IFCAP_TXCSUM);
2037 				if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2038 					if_sethwassistbits(ifp, JME_CSUM_FEATURES, 0);
2039 				else
2040 					if_sethwassistbits(ifp, 0, JME_CSUM_FEATURES);
2041 			}
2042 		}
2043 		if ((mask & IFCAP_RXCSUM) != 0 &&
2044 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0) {
2045 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2046 			reg = CSR_READ_4(sc, JME_RXMAC);
2047 			reg &= ~RXMAC_CSUM_ENB;
2048 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2049 				reg |= RXMAC_CSUM_ENB;
2050 			CSR_WRITE_4(sc, JME_RXMAC, reg);
2051 		}
2052 		if ((mask & IFCAP_TSO4) != 0 &&
2053 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2054 			if ((IFCAP_TSO4 & if_getcapabilities(ifp)) != 0) {
2055 				if_togglecapenable(ifp, IFCAP_TSO4);
2056 				if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
2057 					if_sethwassistbits(ifp, CSUM_TSO, 0);
2058 				else
2059 					if_sethwassistbits(ifp, 0, CSUM_TSO);
2060 			}
2061 		}
2062 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2063 		    (IFCAP_WOL_MAGIC & if_getcapabilities(ifp)) != 0)
2064 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2065 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2066 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2067 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2068 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2069 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2070 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2071 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2072 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
2073 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2074 			jme_set_vlan(sc);
2075 		}
2076 		JME_UNLOCK(sc);
2077 		VLAN_CAPABILITIES(ifp);
2078 		break;
2079 	default:
2080 		error = ether_ioctl(ifp, cmd, data);
2081 		break;
2082 	}
2083 
2084 	return (error);
2085 }
2086 
2087 static void
jme_mac_config(struct jme_softc * sc)2088 jme_mac_config(struct jme_softc *sc)
2089 {
2090 	struct mii_data *mii;
2091 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2092 	uint32_t txclk;
2093 
2094 	JME_LOCK_ASSERT(sc);
2095 
2096 	mii = device_get_softc(sc->jme_miibus);
2097 
2098 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2099 	DELAY(10);
2100 	CSR_WRITE_4(sc, JME_GHC, 0);
2101 	ghc = 0;
2102 	txclk = 0;
2103 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2104 	rxmac &= ~RXMAC_FC_ENB;
2105 	txmac = CSR_READ_4(sc, JME_TXMAC);
2106 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2107 	txpause = CSR_READ_4(sc, JME_TXPFC);
2108 	txpause &= ~TXPFC_PAUSE_ENB;
2109 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2110 		ghc |= GHC_FULL_DUPLEX;
2111 		rxmac &= ~RXMAC_COLL_DET_ENB;
2112 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2113 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2114 		    TXMAC_FRAME_BURST);
2115 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2116 			txpause |= TXPFC_PAUSE_ENB;
2117 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2118 			rxmac |= RXMAC_FC_ENB;
2119 		/* Disable retry transmit timer/retry limit. */
2120 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2121 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2122 	} else {
2123 		rxmac |= RXMAC_COLL_DET_ENB;
2124 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2125 		/* Enable retry transmit timer/retry limit. */
2126 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2127 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2128 	}
2129 		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2130 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2131 	case IFM_10_T:
2132 		ghc |= GHC_SPEED_10;
2133 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2134 		break;
2135 	case IFM_100_TX:
2136 		ghc |= GHC_SPEED_100;
2137 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2138 		break;
2139 	case IFM_1000_T:
2140 		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2141 			break;
2142 		ghc |= GHC_SPEED_1000;
2143 		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2144 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2145 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2146 		break;
2147 	default:
2148 		break;
2149 	}
2150 	if (sc->jme_rev == DEVICEID_JMC250 &&
2151 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2152 		/*
2153 		 * Workaround occasional packet loss issue of JMC250 A2
2154 		 * when it runs on half-duplex media.
2155 		 */
2156 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2157 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2158 			gpreg &= ~GPREG1_HDPX_FIX;
2159 		else
2160 			gpreg |= GPREG1_HDPX_FIX;
2161 		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2162 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2163 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2164 			/* Extend interface FIFO depth. */
2165 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2166 			    0x1B, 0x0000);
2167 		} else {
2168 			/* Select default interface FIFO depth. */
2169 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2170 			    0x1B, 0x0004);
2171 		}
2172 	}
2173 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2174 		ghc |= txclk;
2175 	CSR_WRITE_4(sc, JME_GHC, ghc);
2176 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2177 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2178 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2179 }
2180 
2181 static void
jme_link_task(void * arg,int pending)2182 jme_link_task(void *arg, int pending)
2183 {
2184 	struct jme_softc *sc;
2185 	struct mii_data *mii;
2186 	if_t ifp;
2187 	struct jme_txdesc *txd;
2188 	bus_addr_t paddr;
2189 	int i;
2190 
2191 	sc = (struct jme_softc *)arg;
2192 
2193 	JME_LOCK(sc);
2194 	mii = device_get_softc(sc->jme_miibus);
2195 	ifp = sc->jme_ifp;
2196 	if (mii == NULL || ifp == NULL ||
2197 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2198 		JME_UNLOCK(sc);
2199 		return;
2200 	}
2201 
2202 	sc->jme_flags &= ~JME_FLAG_LINK;
2203 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2204 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2205 		case IFM_10_T:
2206 		case IFM_100_TX:
2207 			sc->jme_flags |= JME_FLAG_LINK;
2208 			break;
2209 		case IFM_1000_T:
2210 			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2211 				break;
2212 			sc->jme_flags |= JME_FLAG_LINK;
2213 			break;
2214 		default:
2215 			break;
2216 		}
2217 	}
2218 
2219 	/*
2220 	 * Disabling Rx/Tx MACs have a side-effect of resetting
2221 	 * JME_TXNDA/JME_RXNDA register to the first address of
2222 	 * Tx/Rx descriptor address. So driver should reset its
2223 	 * internal procucer/consumer pointer and reclaim any
2224 	 * allocated resources. Note, just saving the value of
2225 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2226 	 * and restoring JME_TXNDA/JME_RXNDA register is not
2227 	 * sufficient to make sure correct MAC state because
2228 	 * stopping MAC operation can take a while and hardware
2229 	 * might have updated JME_TXNDA/JME_RXNDA registers
2230 	 * during the stop operation.
2231 	 */
2232 	/* Block execution of task. */
2233 	taskqueue_block(sc->jme_tq);
2234 	/* Disable interrupts and stop driver. */
2235 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2236 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2237 	callout_stop(&sc->jme_tick_ch);
2238 	sc->jme_watchdog_timer = 0;
2239 
2240 	/* Stop receiver/transmitter. */
2241 	jme_stop_rx(sc);
2242 	jme_stop_tx(sc);
2243 
2244 	/* XXX Drain all queued tasks. */
2245 	JME_UNLOCK(sc);
2246 	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2247 	JME_LOCK(sc);
2248 
2249 	if (sc->jme_cdata.jme_rxhead != NULL)
2250 		m_freem(sc->jme_cdata.jme_rxhead);
2251 	JME_RXCHAIN_RESET(sc);
2252 	jme_txeof(sc);
2253 	if (sc->jme_cdata.jme_tx_cnt != 0) {
2254 		/* Remove queued packets for transmit. */
2255 		for (i = 0; i < JME_TX_RING_CNT; i++) {
2256 			txd = &sc->jme_cdata.jme_txdesc[i];
2257 			if (txd->tx_m != NULL) {
2258 				bus_dmamap_sync(
2259 				    sc->jme_cdata.jme_tx_tag,
2260 				    txd->tx_dmamap,
2261 				    BUS_DMASYNC_POSTWRITE);
2262 				bus_dmamap_unload(
2263 				    sc->jme_cdata.jme_tx_tag,
2264 				    txd->tx_dmamap);
2265 				m_freem(txd->tx_m);
2266 				txd->tx_m = NULL;
2267 				txd->tx_ndesc = 0;
2268 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2269 			}
2270 		}
2271 	}
2272 
2273 	/*
2274 	 * Reuse configured Rx descriptors and reset
2275 	 * producer/consumer index.
2276 	 */
2277 	sc->jme_cdata.jme_rx_cons = 0;
2278 	sc->jme_morework = 0;
2279 	jme_init_tx_ring(sc);
2280 	/* Initialize shadow status block. */
2281 	jme_init_ssb(sc);
2282 
2283 	/* Program MAC with resolved speed/duplex/flow-control. */
2284 	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2285 		jme_mac_config(sc);
2286 		jme_stats_clear(sc);
2287 
2288 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2289 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2290 
2291 		/* Set Tx ring address to the hardware. */
2292 		paddr = JME_TX_RING_ADDR(sc, 0);
2293 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2294 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2295 
2296 		/* Set Rx ring address to the hardware. */
2297 		paddr = JME_RX_RING_ADDR(sc, 0);
2298 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2299 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2300 
2301 		/* Restart receiver/transmitter. */
2302 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2303 		    RXCSR_RXQ_START);
2304 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2305 		/* Lastly enable TX/RX clock. */
2306 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2307 			CSR_WRITE_4(sc, JME_GHC,
2308 			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2309 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2310 			CSR_WRITE_4(sc, JME_GPREG1,
2311 			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2312 	}
2313 
2314 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2315 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2316 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2317 	/* Unblock execution of task. */
2318 	taskqueue_unblock(sc->jme_tq);
2319 	/* Reenable interrupts. */
2320 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2321 
2322 	JME_UNLOCK(sc);
2323 }
2324 
2325 static int
jme_intr(void * arg)2326 jme_intr(void *arg)
2327 {
2328 	struct jme_softc *sc;
2329 	uint32_t status;
2330 
2331 	sc = (struct jme_softc *)arg;
2332 
2333 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2334 	if (status == 0 || status == 0xFFFFFFFF)
2335 		return (FILTER_STRAY);
2336 	/* Disable interrupts. */
2337 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2338 	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2339 
2340 	return (FILTER_HANDLED);
2341 }
2342 
2343 static void
jme_int_task(void * arg,int pending)2344 jme_int_task(void *arg, int pending)
2345 {
2346 	struct jme_softc *sc;
2347 	if_t ifp;
2348 	uint32_t status;
2349 	int more;
2350 
2351 	sc = (struct jme_softc *)arg;
2352 	ifp = sc->jme_ifp;
2353 
2354 	JME_LOCK(sc);
2355 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2356 	if (sc->jme_morework != 0) {
2357 		sc->jme_morework = 0;
2358 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2359 	}
2360 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2361 		goto done;
2362 	/* Reset PCC counter/timer and Ack interrupts. */
2363 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2364 	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2365 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2366 	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2367 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2368 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2369 	more = 0;
2370 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2371 		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2372 			more = jme_rxintr(sc, sc->jme_process_limit);
2373 			if (more != 0)
2374 				sc->jme_morework = 1;
2375 		}
2376 		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2377 			/*
2378 			 * Notify hardware availability of new Rx
2379 			 * buffers.
2380 			 * Reading RXCSR takes very long time under
2381 			 * heavy load so cache RXCSR value and writes
2382 			 * the ORed value with the kick command to
2383 			 * the RXCSR. This saves one register access
2384 			 * cycle.
2385 			 */
2386 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2387 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2388 		}
2389 		if (!if_sendq_empty(ifp))
2390 			jme_start_locked(ifp);
2391 	}
2392 
2393 	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2394 		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2395 		JME_UNLOCK(sc);
2396 		return;
2397 	}
2398 done:
2399 	JME_UNLOCK(sc);
2400 
2401 	/* Reenable interrupts. */
2402 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2403 }
2404 
2405 static void
jme_txeof(struct jme_softc * sc)2406 jme_txeof(struct jme_softc *sc)
2407 {
2408 	if_t ifp;
2409 	struct jme_txdesc *txd;
2410 	uint32_t status;
2411 	int cons, nsegs;
2412 
2413 	JME_LOCK_ASSERT(sc);
2414 
2415 	ifp = sc->jme_ifp;
2416 
2417 	cons = sc->jme_cdata.jme_tx_cons;
2418 	if (cons == sc->jme_cdata.jme_tx_prod)
2419 		return;
2420 
2421 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2422 	    sc->jme_cdata.jme_tx_ring_map,
2423 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2424 
2425 	/*
2426 	 * Go through our Tx list and free mbufs for those
2427 	 * frames which have been transmitted.
2428 	 */
2429 	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2430 		txd = &sc->jme_cdata.jme_txdesc[cons];
2431 		status = le32toh(txd->tx_desc->flags);
2432 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2433 			break;
2434 
2435 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2436 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2437 		else {
2438 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2439 			if ((status & JME_TD_COLLISION) != 0)
2440 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2441 				    le32toh(txd->tx_desc->buflen) &
2442 				    JME_TD_BUF_LEN_MASK);
2443 		}
2444 		/*
2445 		 * Only the first descriptor of multi-descriptor
2446 		 * transmission is updated so driver have to skip entire
2447 		 * chained buffers for the transmiited frame. In other
2448 		 * words, JME_TD_OWN bit is valid only at the first
2449 		 * descriptor of a multi-descriptor transmission.
2450 		 */
2451 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2452 			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2453 			JME_DESC_INC(cons, JME_TX_RING_CNT);
2454 		}
2455 
2456 		/* Reclaim transferred mbufs. */
2457 		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2458 		    BUS_DMASYNC_POSTWRITE);
2459 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2460 
2461 		KASSERT(txd->tx_m != NULL,
2462 		    ("%s: freeing NULL mbuf!\n", __func__));
2463 		m_freem(txd->tx_m);
2464 		txd->tx_m = NULL;
2465 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2466 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2467 		    ("%s: Active Tx desc counter was garbled\n", __func__));
2468 		txd->tx_ndesc = 0;
2469 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2470 	}
2471 	sc->jme_cdata.jme_tx_cons = cons;
2472 	/* Unarm watchdog timer when there is no pending descriptors in queue. */
2473 	if (sc->jme_cdata.jme_tx_cnt == 0)
2474 		sc->jme_watchdog_timer = 0;
2475 
2476 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2477 	    sc->jme_cdata.jme_tx_ring_map,
2478 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2479 }
2480 
2481 static __inline void
jme_discard_rxbuf(struct jme_softc * sc,int cons)2482 jme_discard_rxbuf(struct jme_softc *sc, int cons)
2483 {
2484 	struct jme_desc *desc;
2485 
2486 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2487 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2488 	desc->buflen = htole32(MCLBYTES);
2489 }
2490 
2491 /* Receive a frame. */
2492 static void
jme_rxeof(struct jme_softc * sc)2493 jme_rxeof(struct jme_softc *sc)
2494 {
2495 	if_t ifp;
2496 	struct jme_desc *desc;
2497 	struct jme_rxdesc *rxd;
2498 	struct mbuf *mp, *m;
2499 	uint32_t flags, status;
2500 	int cons, count, nsegs;
2501 
2502 	JME_LOCK_ASSERT(sc);
2503 
2504 	ifp = sc->jme_ifp;
2505 
2506 	cons = sc->jme_cdata.jme_rx_cons;
2507 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2508 	flags = le32toh(desc->flags);
2509 	status = le32toh(desc->buflen);
2510 	nsegs = JME_RX_NSEGS(status);
2511 	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2512 	if ((status & JME_RX_ERR_STAT) != 0) {
2513 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2514 		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2515 #ifdef JME_SHOW_ERRORS
2516 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2517 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2518 #endif
2519 		sc->jme_cdata.jme_rx_cons += nsegs;
2520 		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2521 		return;
2522 	}
2523 
2524 	for (count = 0; count < nsegs; count++,
2525 	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2526 		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2527 		mp = rxd->rx_m;
2528 		/* Add a new receive buffer to the ring. */
2529 		if (jme_newbuf(sc, rxd) != 0) {
2530 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2531 			/* Reuse buffer. */
2532 			for (; count < nsegs; count++) {
2533 				jme_discard_rxbuf(sc, cons);
2534 				JME_DESC_INC(cons, JME_RX_RING_CNT);
2535 			}
2536 			if (sc->jme_cdata.jme_rxhead != NULL) {
2537 				m_freem(sc->jme_cdata.jme_rxhead);
2538 				JME_RXCHAIN_RESET(sc);
2539 			}
2540 			break;
2541 		}
2542 
2543 		/*
2544 		 * Assume we've received a full sized frame.
2545 		 * Actual size is fixed when we encounter the end of
2546 		 * multi-segmented frame.
2547 		 */
2548 		mp->m_len = MCLBYTES;
2549 
2550 		/* Chain received mbufs. */
2551 		if (sc->jme_cdata.jme_rxhead == NULL) {
2552 			sc->jme_cdata.jme_rxhead = mp;
2553 			sc->jme_cdata.jme_rxtail = mp;
2554 		} else {
2555 			/*
2556 			 * Receive processor can receive a maximum frame
2557 			 * size of 65535 bytes.
2558 			 */
2559 			mp->m_flags &= ~M_PKTHDR;
2560 			sc->jme_cdata.jme_rxtail->m_next = mp;
2561 			sc->jme_cdata.jme_rxtail = mp;
2562 		}
2563 
2564 		if (count == nsegs - 1) {
2565 			/* Last desc. for this frame. */
2566 			m = sc->jme_cdata.jme_rxhead;
2567 			m->m_flags |= M_PKTHDR;
2568 			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2569 			if (nsegs > 1) {
2570 				/* Set first mbuf size. */
2571 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2572 				/* Set last mbuf size. */
2573 				mp->m_len = sc->jme_cdata.jme_rxlen -
2574 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2575 				    (MCLBYTES * (nsegs - 2)));
2576 			} else
2577 				m->m_len = sc->jme_cdata.jme_rxlen;
2578 			m->m_pkthdr.rcvif = ifp;
2579 
2580 			/*
2581 			 * Account for 10bytes auto padding which is used
2582 			 * to align IP header on 32bit boundary. Also note,
2583 			 * CRC bytes is automatically removed by the
2584 			 * hardware.
2585 			 */
2586 			m->m_data += JME_RX_PAD_BYTES;
2587 
2588 			/* Set checksum information. */
2589 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2590 			    (flags & JME_RD_IPV4) != 0) {
2591 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2592 				if ((flags & JME_RD_IPCSUM) != 0)
2593 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2594 				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2595 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2596 				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2597 				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2598 				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2599 					m->m_pkthdr.csum_flags |=
2600 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2601 					m->m_pkthdr.csum_data = 0xffff;
2602 				}
2603 			}
2604 
2605 			/* Check for VLAN tagged packets. */
2606 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2607 			    (flags & JME_RD_VLAN_TAG) != 0) {
2608 				m->m_pkthdr.ether_vtag =
2609 				    flags & JME_RD_VLAN_MASK;
2610 				m->m_flags |= M_VLANTAG;
2611 			}
2612 
2613 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2614 			/* Pass it on. */
2615 			JME_UNLOCK(sc);
2616 			if_input(ifp, m);
2617 			JME_LOCK(sc);
2618 
2619 			/* Reset mbuf chains. */
2620 			JME_RXCHAIN_RESET(sc);
2621 		}
2622 	}
2623 
2624 	sc->jme_cdata.jme_rx_cons += nsegs;
2625 	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2626 }
2627 
2628 static int
jme_rxintr(struct jme_softc * sc,int count)2629 jme_rxintr(struct jme_softc *sc, int count)
2630 {
2631 	struct jme_desc *desc;
2632 	int nsegs, prog, pktlen;
2633 
2634 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2635 	    sc->jme_cdata.jme_rx_ring_map,
2636 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2637 
2638 	for (prog = 0; count > 0; prog++) {
2639 		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2640 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2641 			break;
2642 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2643 			break;
2644 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2645 		/*
2646 		 * Check number of segments against received bytes.
2647 		 * Non-matching value would indicate that hardware
2648 		 * is still trying to update Rx descriptors. I'm not
2649 		 * sure whether this check is needed.
2650 		 */
2651 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2652 		if (nsegs != howmany(pktlen, MCLBYTES))
2653 			break;
2654 		prog++;
2655 		/* Received a frame. */
2656 		jme_rxeof(sc);
2657 		count -= nsegs;
2658 	}
2659 
2660 	if (prog > 0)
2661 		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2662 		    sc->jme_cdata.jme_rx_ring_map,
2663 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2664 
2665 	return (count > 0 ? 0 : EAGAIN);
2666 }
2667 
2668 static void
jme_tick(void * arg)2669 jme_tick(void *arg)
2670 {
2671 	struct jme_softc *sc;
2672 	struct mii_data *mii;
2673 
2674 	sc = (struct jme_softc *)arg;
2675 
2676 	JME_LOCK_ASSERT(sc);
2677 
2678 	mii = device_get_softc(sc->jme_miibus);
2679 	mii_tick(mii);
2680 	/*
2681 	 * Reclaim Tx buffers that have been completed. It's not
2682 	 * needed here but it would release allocated mbuf chains
2683 	 * faster and limit the maximum delay to a hz.
2684 	 */
2685 	jme_txeof(sc);
2686 	jme_stats_update(sc);
2687 	jme_watchdog(sc);
2688 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2689 }
2690 
2691 static void
jme_reset(struct jme_softc * sc)2692 jme_reset(struct jme_softc *sc)
2693 {
2694 	uint32_t ghc, gpreg;
2695 
2696 	/* Stop receiver, transmitter. */
2697 	jme_stop_rx(sc);
2698 	jme_stop_tx(sc);
2699 
2700 	/* Reset controller. */
2701 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2702 	CSR_READ_4(sc, JME_GHC);
2703 	DELAY(10);
2704 	/*
2705 	 * Workaround Rx FIFO overruns seen under certain conditions.
2706 	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2707 	 * enabled only after enabling TX/RX MACs.
2708 	 */
2709 	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2710 		/* Disable TX clock. */
2711 		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2712 		/* Disable RX clock. */
2713 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2714 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2715 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2716 		/* De-assert RESET but still disable TX clock. */
2717 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2718 		ghc = CSR_READ_4(sc, JME_GHC);
2719 
2720 		/* Enable TX clock. */
2721 		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2722 		/* Enable RX clock. */
2723 		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2724 		CSR_READ_4(sc, JME_GPREG1);
2725 
2726 		/* Disable TX/RX clock again. */
2727 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2728 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2729 	} else
2730 		CSR_WRITE_4(sc, JME_GHC, 0);
2731 	CSR_READ_4(sc, JME_GHC);
2732 	DELAY(10);
2733 }
2734 
2735 static void
jme_init(void * xsc)2736 jme_init(void *xsc)
2737 {
2738 	struct jme_softc *sc;
2739 
2740 	sc = (struct jme_softc *)xsc;
2741 	JME_LOCK(sc);
2742 	jme_init_locked(sc);
2743 	JME_UNLOCK(sc);
2744 }
2745 
2746 static void
jme_init_locked(struct jme_softc * sc)2747 jme_init_locked(struct jme_softc *sc)
2748 {
2749 	if_t ifp;
2750 	struct mii_data *mii;
2751 	bus_addr_t paddr;
2752 	uint32_t reg;
2753 	int error;
2754 
2755 	JME_LOCK_ASSERT(sc);
2756 
2757 	ifp = sc->jme_ifp;
2758 	mii = device_get_softc(sc->jme_miibus);
2759 
2760 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2761 		return;
2762 	/*
2763 	 * Cancel any pending I/O.
2764 	 */
2765 	jme_stop(sc);
2766 
2767 	/*
2768 	 * Reset the chip to a known state.
2769 	 */
2770 	jme_reset(sc);
2771 
2772 	/* Init descriptors. */
2773 	error = jme_init_rx_ring(sc);
2774         if (error != 0) {
2775                 device_printf(sc->jme_dev,
2776                     "%s: initialization failed: no memory for Rx buffers.\n",
2777 		    __func__);
2778                 jme_stop(sc);
2779 		return;
2780         }
2781 	jme_init_tx_ring(sc);
2782 	/* Initialize shadow status block. */
2783 	jme_init_ssb(sc);
2784 
2785 	/* Reprogram the station address. */
2786 	jme_set_macaddr(sc, if_getlladdr(sc->jme_ifp));
2787 
2788 	/*
2789 	 * Configure Tx queue.
2790 	 *  Tx priority queue weight value : 0
2791 	 *  Tx FIFO threshold for processing next packet : 16QW
2792 	 *  Maximum Tx DMA length : 512
2793 	 *  Allow Tx DMA burst.
2794 	 */
2795 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2796 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2797 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2798 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2799 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2800 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2801 
2802 	/* Set Tx descriptor counter. */
2803 	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2804 
2805 	/* Set Tx ring address to the hardware. */
2806 	paddr = JME_TX_RING_ADDR(sc, 0);
2807 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2808 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2809 
2810 	/* Configure TxMAC parameters. */
2811 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2812 	reg |= TXMAC_THRESH_1_PKT;
2813 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2814 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2815 
2816 	/*
2817 	 * Configure Rx queue.
2818 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2819 	 *  FIFO threshold for processing next packet : 128QW
2820 	 *  Rx queue 0 select
2821 	 *  Max Rx DMA length : 128
2822 	 *  Rx descriptor retry : 32
2823 	 *  Rx descriptor retry time gap : 256ns
2824 	 *  Don't receive runt/bad frame.
2825 	 */
2826 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2827 	/*
2828 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2829 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2830 	 * decrease FIFO threshold to reduce the FIFO overruns for
2831 	 * frames larger than 4000 bytes.
2832 	 * For best performance of standard MTU sized frames use
2833 	 * maximum allowable FIFO threshold, 128QW. Note these do
2834 	 * not hold on chip full mask version >=2. For these
2835 	 * controllers 64QW and 128QW are not valid value.
2836 	 */
2837 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2838 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2839 	else {
2840 		if ((if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2841 		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2842 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2843 		else
2844 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2845 	}
2846 	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2847 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2848 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2849 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2850 
2851 	/* Set Rx descriptor counter. */
2852 	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2853 
2854 	/* Set Rx ring address to the hardware. */
2855 	paddr = JME_RX_RING_ADDR(sc, 0);
2856 	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2857 	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2858 
2859 	/* Clear receive filter. */
2860 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2861 	/* Set up the receive filter. */
2862 	jme_set_filter(sc);
2863 	jme_set_vlan(sc);
2864 
2865 	/*
2866 	 * Disable all WOL bits as WOL can interfere normal Rx
2867 	 * operation. Also clear WOL detection status bits.
2868 	 */
2869 	reg = CSR_READ_4(sc, JME_PMCS);
2870 	reg &= ~PMCS_WOL_ENB_MASK;
2871 	CSR_WRITE_4(sc, JME_PMCS, reg);
2872 
2873 	reg = CSR_READ_4(sc, JME_RXMAC);
2874 	/*
2875 	 * Pad 10bytes right before received frame. This will greatly
2876 	 * help Rx performance on strict-alignment architectures as
2877 	 * it does not need to copy the frame to align the payload.
2878 	 */
2879 	reg |= RXMAC_PAD_10BYTES;
2880 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2881 		reg |= RXMAC_CSUM_ENB;
2882 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2883 
2884 	/* Configure general purpose reg0 */
2885 	reg = CSR_READ_4(sc, JME_GPREG0);
2886 	reg &= ~GPREG0_PCC_UNIT_MASK;
2887 	/* Set PCC timer resolution to micro-seconds unit. */
2888 	reg |= GPREG0_PCC_UNIT_US;
2889 	/*
2890 	 * Disable all shadow register posting as we have to read
2891 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2892 	 * that it's hard to synchronize interrupt status between
2893 	 * hardware and software with shadow posting due to
2894 	 * requirements of bus_dmamap_sync(9).
2895 	 */
2896 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2897 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2898 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2899 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2900 	/* Disable posting of DW0. */
2901 	reg &= ~GPREG0_POST_DW0_ENB;
2902 	/* Clear PME message. */
2903 	reg &= ~GPREG0_PME_ENB;
2904 	/* Set PHY address. */
2905 	reg &= ~GPREG0_PHY_ADDR_MASK;
2906 	reg |= sc->jme_phyaddr;
2907 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2908 
2909 	/* Configure Tx queue 0 packet completion coalescing. */
2910 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2911 	    PCCTX_COAL_TO_MASK;
2912 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2913 	    PCCTX_COAL_PKT_MASK;
2914 	reg |= PCCTX_COAL_TXQ0;
2915 	CSR_WRITE_4(sc, JME_PCCTX, reg);
2916 
2917 	/* Configure Rx queue 0 packet completion coalescing. */
2918 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2919 	    PCCRX_COAL_TO_MASK;
2920 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2921 	    PCCRX_COAL_PKT_MASK;
2922 	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2923 
2924 	/*
2925 	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2926 	 * generates an interrupt when the time interval between two
2927 	 * back-to-back incoming/outgoing packet is long enough for
2928 	 * it to reach its timer value 0. The arrival of new packets
2929 	 * after timer has started causes the PCD timer to restart.
2930 	 * Unfortunately, it's not clear how PCD is useful at this
2931 	 * moment, so just use the same of PCC parameters.
2932 	 */
2933 	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2934 		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2935 		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2936 			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2937 		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2938 		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2939 			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2940 		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2941 		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2942 		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2943 		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2944 		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2945 		CSR_WRITE_4(sc, JME_PCDTX, reg);
2946 	}
2947 
2948 	/* Configure shadow status block but don't enable posting. */
2949 	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2950 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2951 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2952 
2953 	/* Disable Timer 1 and Timer 2. */
2954 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2955 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2956 
2957 	/* Configure retry transmit period, retry limit value. */
2958 	CSR_WRITE_4(sc, JME_TXTRHD,
2959 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2960 	    TXTRHD_RT_PERIOD_MASK) |
2961 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2962 	    TXTRHD_RT_LIMIT_SHIFT));
2963 
2964 	/* Disable RSS. */
2965 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2966 
2967 	/* Initialize the interrupt mask. */
2968 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2969 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2970 
2971 	/*
2972 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2973 	 * done after detection of valid link in jme_link_task.
2974 	 */
2975 
2976 	sc->jme_flags &= ~JME_FLAG_LINK;
2977 	/* Set the current media. */
2978 	mii_mediachg(mii);
2979 
2980 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2981 
2982 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2983 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2984 }
2985 
2986 static void
jme_stop(struct jme_softc * sc)2987 jme_stop(struct jme_softc *sc)
2988 {
2989 	if_t ifp;
2990 	struct jme_txdesc *txd;
2991 	struct jme_rxdesc *rxd;
2992 	int i;
2993 
2994 	JME_LOCK_ASSERT(sc);
2995 	/*
2996 	 * Mark the interface down and cancel the watchdog timer.
2997 	 */
2998 	ifp = sc->jme_ifp;
2999 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3000 	sc->jme_flags &= ~JME_FLAG_LINK;
3001 	callout_stop(&sc->jme_tick_ch);
3002 	sc->jme_watchdog_timer = 0;
3003 
3004 	/*
3005 	 * Disable interrupts.
3006 	 */
3007 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3008 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3009 
3010 	/* Disable updating shadow status block. */
3011 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3012 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3013 
3014 	/* Stop receiver, transmitter. */
3015 	jme_stop_rx(sc);
3016 	jme_stop_tx(sc);
3017 
3018 	 /* Reclaim Rx/Tx buffers that have been completed. */
3019 	jme_rxintr(sc, JME_RX_RING_CNT);
3020 	if (sc->jme_cdata.jme_rxhead != NULL)
3021 		m_freem(sc->jme_cdata.jme_rxhead);
3022 	JME_RXCHAIN_RESET(sc);
3023 	jme_txeof(sc);
3024 	/*
3025 	 * Free RX and TX mbufs still in the queues.
3026 	 */
3027 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3028 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3029 		if (rxd->rx_m != NULL) {
3030 			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3031 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3032 			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3033 			    rxd->rx_dmamap);
3034 			m_freem(rxd->rx_m);
3035 			rxd->rx_m = NULL;
3036 		}
3037         }
3038 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3039 		txd = &sc->jme_cdata.jme_txdesc[i];
3040 		if (txd->tx_m != NULL) {
3041 			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3042 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3043 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3044 			    txd->tx_dmamap);
3045 			m_freem(txd->tx_m);
3046 			txd->tx_m = NULL;
3047 			txd->tx_ndesc = 0;
3048 		}
3049         }
3050 	jme_stats_update(sc);
3051 	jme_stats_save(sc);
3052 }
3053 
3054 static void
jme_stop_tx(struct jme_softc * sc)3055 jme_stop_tx(struct jme_softc *sc)
3056 {
3057 	uint32_t reg;
3058 	int i;
3059 
3060 	reg = CSR_READ_4(sc, JME_TXCSR);
3061 	if ((reg & TXCSR_TX_ENB) == 0)
3062 		return;
3063 	reg &= ~TXCSR_TX_ENB;
3064 	CSR_WRITE_4(sc, JME_TXCSR, reg);
3065 	for (i = JME_TIMEOUT; i > 0; i--) {
3066 		DELAY(1);
3067 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3068 			break;
3069 	}
3070 	if (i == 0)
3071 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3072 }
3073 
3074 static void
jme_stop_rx(struct jme_softc * sc)3075 jme_stop_rx(struct jme_softc *sc)
3076 {
3077 	uint32_t reg;
3078 	int i;
3079 
3080 	reg = CSR_READ_4(sc, JME_RXCSR);
3081 	if ((reg & RXCSR_RX_ENB) == 0)
3082 		return;
3083 	reg &= ~RXCSR_RX_ENB;
3084 	CSR_WRITE_4(sc, JME_RXCSR, reg);
3085 	for (i = JME_TIMEOUT; i > 0; i--) {
3086 		DELAY(1);
3087 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3088 			break;
3089 	}
3090 	if (i == 0)
3091 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3092 }
3093 
3094 static void
jme_init_tx_ring(struct jme_softc * sc)3095 jme_init_tx_ring(struct jme_softc *sc)
3096 {
3097 	struct jme_ring_data *rd;
3098 	struct jme_txdesc *txd;
3099 	int i;
3100 
3101 	sc->jme_cdata.jme_tx_prod = 0;
3102 	sc->jme_cdata.jme_tx_cons = 0;
3103 	sc->jme_cdata.jme_tx_cnt = 0;
3104 
3105 	rd = &sc->jme_rdata;
3106 	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3107 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3108 		txd = &sc->jme_cdata.jme_txdesc[i];
3109 		txd->tx_m = NULL;
3110 		txd->tx_desc = &rd->jme_tx_ring[i];
3111 		txd->tx_ndesc = 0;
3112 	}
3113 
3114 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3115 	    sc->jme_cdata.jme_tx_ring_map,
3116 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3117 }
3118 
3119 static void
jme_init_ssb(struct jme_softc * sc)3120 jme_init_ssb(struct jme_softc *sc)
3121 {
3122 	struct jme_ring_data *rd;
3123 
3124 	rd = &sc->jme_rdata;
3125 	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3126 	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3127 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3128 }
3129 
3130 static int
jme_init_rx_ring(struct jme_softc * sc)3131 jme_init_rx_ring(struct jme_softc *sc)
3132 {
3133 	struct jme_ring_data *rd;
3134 	struct jme_rxdesc *rxd;
3135 	int i;
3136 
3137 	sc->jme_cdata.jme_rx_cons = 0;
3138 	JME_RXCHAIN_RESET(sc);
3139 	sc->jme_morework = 0;
3140 
3141 	rd = &sc->jme_rdata;
3142 	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3143 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3144 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3145 		rxd->rx_m = NULL;
3146 		rxd->rx_desc = &rd->jme_rx_ring[i];
3147 		if (jme_newbuf(sc, rxd) != 0)
3148 			return (ENOBUFS);
3149 	}
3150 
3151 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3152 	    sc->jme_cdata.jme_rx_ring_map,
3153 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3154 
3155 	return (0);
3156 }
3157 
3158 static int
jme_newbuf(struct jme_softc * sc,struct jme_rxdesc * rxd)3159 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3160 {
3161 	struct jme_desc *desc;
3162 	struct mbuf *m;
3163 	bus_dma_segment_t segs[1];
3164 	bus_dmamap_t map;
3165 	int nsegs;
3166 
3167 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3168 	if (m == NULL)
3169 		return (ENOBUFS);
3170 	/*
3171 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3172 	 * takes advantage of 10 bytes padding feature of hardware
3173 	 * in order not to copy entire frame to align IP header on
3174 	 * 32bit boundary.
3175 	 */
3176 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3177 
3178 	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3179 	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3180 		m_freem(m);
3181 		return (ENOBUFS);
3182 	}
3183 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3184 
3185 	if (rxd->rx_m != NULL) {
3186 		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3187 		    BUS_DMASYNC_POSTREAD);
3188 		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3189 	}
3190 	map = rxd->rx_dmamap;
3191 	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3192 	sc->jme_cdata.jme_rx_sparemap = map;
3193 	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3194 	    BUS_DMASYNC_PREREAD);
3195 	rxd->rx_m = m;
3196 
3197 	desc = rxd->rx_desc;
3198 	desc->buflen = htole32(segs[0].ds_len);
3199 	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3200 	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3201 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3202 
3203 	return (0);
3204 }
3205 
3206 static void
jme_set_vlan(struct jme_softc * sc)3207 jme_set_vlan(struct jme_softc *sc)
3208 {
3209 	if_t ifp;
3210 	uint32_t reg;
3211 
3212 	JME_LOCK_ASSERT(sc);
3213 
3214 	ifp = sc->jme_ifp;
3215 	reg = CSR_READ_4(sc, JME_RXMAC);
3216 	reg &= ~RXMAC_VLAN_ENB;
3217 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3218 		reg |= RXMAC_VLAN_ENB;
3219 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3220 }
3221 
3222 static u_int
jme_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)3223 jme_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3224 {
3225 	uint32_t crc, *mchash = arg;
3226 
3227 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3228 
3229 	/* Just want the 6 least significant bits. */
3230 	crc &= 0x3f;
3231 
3232 	/* Set the corresponding bit in the hash table. */
3233 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
3234 
3235 	return (1);
3236 }
3237 
3238 static void
jme_set_filter(struct jme_softc * sc)3239 jme_set_filter(struct jme_softc *sc)
3240 {
3241 	if_t ifp;
3242 	uint32_t mchash[2];
3243 	uint32_t rxcfg;
3244 
3245 	JME_LOCK_ASSERT(sc);
3246 
3247 	ifp = sc->jme_ifp;
3248 
3249 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3250 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3251 	    RXMAC_ALLMULTI);
3252 	/* Always accept frames destined to our station address. */
3253 	rxcfg |= RXMAC_UNICAST;
3254 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3255 		rxcfg |= RXMAC_BROADCAST;
3256 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3257 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3258 			rxcfg |= RXMAC_PROMISC;
3259 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3260 			rxcfg |= RXMAC_ALLMULTI;
3261 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3262 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3263 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3264 		return;
3265 	}
3266 
3267 	/*
3268 	 * Set up the multicast address filter by passing all multicast
3269 	 * addresses through a CRC generator, and then using the low-order
3270 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3271 	 * high order bits select the register, while the rest of the bits
3272 	 * select the bit within the register.
3273 	 */
3274 	rxcfg |= RXMAC_MULTICAST;
3275 	bzero(mchash, sizeof(mchash));
3276 	if_foreach_llmaddr(ifp, jme_hash_maddr, &mchash);
3277 
3278 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3279 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3280 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3281 }
3282 
3283 static void
jme_stats_clear(struct jme_softc * sc)3284 jme_stats_clear(struct jme_softc *sc)
3285 {
3286 
3287 	JME_LOCK_ASSERT(sc);
3288 
3289 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3290 		return;
3291 
3292 	/* Disable and clear counters. */
3293 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3294 	/* Activate hw counters. */
3295 	CSR_WRITE_4(sc, JME_STATCSR, 0);
3296 	CSR_READ_4(sc, JME_STATCSR);
3297 	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3298 }
3299 
3300 static void
jme_stats_save(struct jme_softc * sc)3301 jme_stats_save(struct jme_softc *sc)
3302 {
3303 
3304 	JME_LOCK_ASSERT(sc);
3305 
3306 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3307 		return;
3308 	/* Save current counters. */
3309 	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3310 	/* Disable and clear counters. */
3311 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3312 }
3313 
3314 static void
jme_stats_update(struct jme_softc * sc)3315 jme_stats_update(struct jme_softc *sc)
3316 {
3317 	struct jme_hw_stats *stat, *ostat;
3318 	uint32_t reg;
3319 
3320 	JME_LOCK_ASSERT(sc);
3321 
3322 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3323 		return;
3324 	stat = &sc->jme_stats;
3325 	ostat = &sc->jme_ostats;
3326 	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3327 	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3328 	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3329 	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3330 	    STAT_RX_CRC_ERR_SHIFT;
3331 	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3332 	    STAT_RX_MII_ERR_SHIFT;
3333 	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3334 	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3335 	    STAT_RXERR_OFLOW_SHIFT;
3336 	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3337 	    STAT_RXERR_MPTY_SHIFT;
3338 	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3339 	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3340 	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3341 
3342 	/* Account for previous counters. */
3343 	stat->rx_good_frames += ostat->rx_good_frames;
3344 	stat->rx_crc_errs += ostat->rx_crc_errs;
3345 	stat->rx_mii_errs += ostat->rx_mii_errs;
3346 	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3347 	stat->rx_desc_empty += ostat->rx_desc_empty;
3348 	stat->rx_bad_frames += ostat->rx_bad_frames;
3349 	stat->tx_good_frames += ostat->tx_good_frames;
3350 	stat->tx_bad_frames += ostat->tx_bad_frames;
3351 }
3352 
3353 static void
jme_phy_down(struct jme_softc * sc)3354 jme_phy_down(struct jme_softc *sc)
3355 {
3356 	uint32_t reg;
3357 
3358 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3359 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3360 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3361 		reg |= 0x0000000F;
3362 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3363 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3364 		reg &= ~PE1_GIGA_PDOWN_MASK;
3365 		reg |= PE1_GIGA_PDOWN_D3;
3366 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3367 	}
3368 }
3369 
3370 static void
jme_phy_up(struct jme_softc * sc)3371 jme_phy_up(struct jme_softc *sc)
3372 {
3373 	uint32_t reg;
3374 	uint16_t bmcr;
3375 
3376 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3377 	bmcr &= ~BMCR_PDOWN;
3378 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3379 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3380 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3381 		reg &= ~0x0000000F;
3382 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3383 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3384 		reg &= ~PE1_GIGA_PDOWN_MASK;
3385 		reg |= PE1_GIGA_PDOWN_DIS;
3386 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3387 	}
3388 }
3389 
3390 static int
sysctl_int_range(SYSCTL_HANDLER_ARGS,int low,int high)3391 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3392 {
3393 	int error, value;
3394 
3395 	if (arg1 == NULL)
3396 		return (EINVAL);
3397 	value = *(int *)arg1;
3398 	error = sysctl_handle_int(oidp, &value, 0, req);
3399 	if (error || req->newptr == NULL)
3400 		return (error);
3401 	if (value < low || value > high)
3402 		return (EINVAL);
3403         *(int *)arg1 = value;
3404 
3405         return (0);
3406 }
3407 
3408 static int
sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)3409 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3410 {
3411 	return (sysctl_int_range(oidp, arg1, arg2, req,
3412 	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3413 }
3414 
3415 static int
sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)3416 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3417 {
3418 	return (sysctl_int_range(oidp, arg1, arg2, req,
3419 	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3420 }
3421 
3422 static int
sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)3423 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3424 {
3425 	return (sysctl_int_range(oidp, arg1, arg2, req,
3426 	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3427 }
3428 
3429 static int
sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)3430 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3431 {
3432 	return (sysctl_int_range(oidp, arg1, arg2, req,
3433 	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3434 }
3435 
3436 static int
sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)3437 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3438 {
3439 	return (sysctl_int_range(oidp, arg1, arg2, req,
3440 	    JME_PROC_MIN, JME_PROC_MAX));
3441 }
3442