1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/mntent.h>
36 #include <sys/cmn_err.h>
37 #include <sys/zfs_znode.h>
38 #include <sys/zfs_vnops.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/sa.h>
49 #include <sys/sa_impl.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_ctldir.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/zfs_quota.h>
56 #include <sys/sunddi.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/spa_boot.h>
60 #include <sys/objlist.h>
61 #include <sys/zpl.h>
62 #include <linux/vfs_compat.h>
63 #include "zfs_comutil.h"
64 
65 enum {
66 	TOKEN_RO,
67 	TOKEN_RW,
68 	TOKEN_SETUID,
69 	TOKEN_NOSETUID,
70 	TOKEN_EXEC,
71 	TOKEN_NOEXEC,
72 	TOKEN_DEVICES,
73 	TOKEN_NODEVICES,
74 	TOKEN_DIRXATTR,
75 	TOKEN_SAXATTR,
76 	TOKEN_XATTR,
77 	TOKEN_NOXATTR,
78 	TOKEN_ATIME,
79 	TOKEN_NOATIME,
80 	TOKEN_RELATIME,
81 	TOKEN_NORELATIME,
82 	TOKEN_NBMAND,
83 	TOKEN_NONBMAND,
84 	TOKEN_MNTPOINT,
85 	TOKEN_LAST,
86 };
87 
88 static const match_table_t zpl_tokens = {
89 	{ TOKEN_RO,		MNTOPT_RO },
90 	{ TOKEN_RW,		MNTOPT_RW },
91 	{ TOKEN_SETUID,		MNTOPT_SETUID },
92 	{ TOKEN_NOSETUID,	MNTOPT_NOSETUID },
93 	{ TOKEN_EXEC,		MNTOPT_EXEC },
94 	{ TOKEN_NOEXEC,		MNTOPT_NOEXEC },
95 	{ TOKEN_DEVICES,	MNTOPT_DEVICES },
96 	{ TOKEN_NODEVICES,	MNTOPT_NODEVICES },
97 	{ TOKEN_DIRXATTR,	MNTOPT_DIRXATTR },
98 	{ TOKEN_SAXATTR,	MNTOPT_SAXATTR },
99 	{ TOKEN_XATTR,		MNTOPT_XATTR },
100 	{ TOKEN_NOXATTR,	MNTOPT_NOXATTR },
101 	{ TOKEN_ATIME,		MNTOPT_ATIME },
102 	{ TOKEN_NOATIME,	MNTOPT_NOATIME },
103 	{ TOKEN_RELATIME,	MNTOPT_RELATIME },
104 	{ TOKEN_NORELATIME,	MNTOPT_NORELATIME },
105 	{ TOKEN_NBMAND,		MNTOPT_NBMAND },
106 	{ TOKEN_NONBMAND,	MNTOPT_NONBMAND },
107 	{ TOKEN_MNTPOINT,	MNTOPT_MNTPOINT "=%s" },
108 	{ TOKEN_LAST,		NULL },
109 };
110 
111 static void
zfsvfs_vfs_free(vfs_t * vfsp)112 zfsvfs_vfs_free(vfs_t *vfsp)
113 {
114 	if (vfsp != NULL) {
115 		if (vfsp->vfs_mntpoint != NULL)
116 			kmem_strfree(vfsp->vfs_mntpoint);
117 
118 		kmem_free(vfsp, sizeof (vfs_t));
119 	}
120 }
121 
122 static int
zfsvfs_parse_option(char * option,int token,substring_t * args,vfs_t * vfsp)123 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
124 {
125 	switch (token) {
126 	case TOKEN_RO:
127 		vfsp->vfs_readonly = B_TRUE;
128 		vfsp->vfs_do_readonly = B_TRUE;
129 		break;
130 	case TOKEN_RW:
131 		vfsp->vfs_readonly = B_FALSE;
132 		vfsp->vfs_do_readonly = B_TRUE;
133 		break;
134 	case TOKEN_SETUID:
135 		vfsp->vfs_setuid = B_TRUE;
136 		vfsp->vfs_do_setuid = B_TRUE;
137 		break;
138 	case TOKEN_NOSETUID:
139 		vfsp->vfs_setuid = B_FALSE;
140 		vfsp->vfs_do_setuid = B_TRUE;
141 		break;
142 	case TOKEN_EXEC:
143 		vfsp->vfs_exec = B_TRUE;
144 		vfsp->vfs_do_exec = B_TRUE;
145 		break;
146 	case TOKEN_NOEXEC:
147 		vfsp->vfs_exec = B_FALSE;
148 		vfsp->vfs_do_exec = B_TRUE;
149 		break;
150 	case TOKEN_DEVICES:
151 		vfsp->vfs_devices = B_TRUE;
152 		vfsp->vfs_do_devices = B_TRUE;
153 		break;
154 	case TOKEN_NODEVICES:
155 		vfsp->vfs_devices = B_FALSE;
156 		vfsp->vfs_do_devices = B_TRUE;
157 		break;
158 	case TOKEN_DIRXATTR:
159 		vfsp->vfs_xattr = ZFS_XATTR_DIR;
160 		vfsp->vfs_do_xattr = B_TRUE;
161 		break;
162 	case TOKEN_SAXATTR:
163 		vfsp->vfs_xattr = ZFS_XATTR_SA;
164 		vfsp->vfs_do_xattr = B_TRUE;
165 		break;
166 	case TOKEN_XATTR:
167 		vfsp->vfs_xattr = ZFS_XATTR_DIR;
168 		vfsp->vfs_do_xattr = B_TRUE;
169 		break;
170 	case TOKEN_NOXATTR:
171 		vfsp->vfs_xattr = ZFS_XATTR_OFF;
172 		vfsp->vfs_do_xattr = B_TRUE;
173 		break;
174 	case TOKEN_ATIME:
175 		vfsp->vfs_atime = B_TRUE;
176 		vfsp->vfs_do_atime = B_TRUE;
177 		break;
178 	case TOKEN_NOATIME:
179 		vfsp->vfs_atime = B_FALSE;
180 		vfsp->vfs_do_atime = B_TRUE;
181 		break;
182 	case TOKEN_RELATIME:
183 		vfsp->vfs_relatime = B_TRUE;
184 		vfsp->vfs_do_relatime = B_TRUE;
185 		break;
186 	case TOKEN_NORELATIME:
187 		vfsp->vfs_relatime = B_FALSE;
188 		vfsp->vfs_do_relatime = B_TRUE;
189 		break;
190 	case TOKEN_NBMAND:
191 		vfsp->vfs_nbmand = B_TRUE;
192 		vfsp->vfs_do_nbmand = B_TRUE;
193 		break;
194 	case TOKEN_NONBMAND:
195 		vfsp->vfs_nbmand = B_FALSE;
196 		vfsp->vfs_do_nbmand = B_TRUE;
197 		break;
198 	case TOKEN_MNTPOINT:
199 		vfsp->vfs_mntpoint = match_strdup(&args[0]);
200 		if (vfsp->vfs_mntpoint == NULL)
201 			return (SET_ERROR(ENOMEM));
202 
203 		break;
204 	default:
205 		break;
206 	}
207 
208 	return (0);
209 }
210 
211 /*
212  * Parse the raw mntopts and return a vfs_t describing the options.
213  */
214 static int
zfsvfs_parse_options(char * mntopts,vfs_t ** vfsp)215 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
216 {
217 	vfs_t *tmp_vfsp;
218 	int error;
219 
220 	tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
221 
222 	if (mntopts != NULL) {
223 		substring_t args[MAX_OPT_ARGS];
224 		char *tmp_mntopts, *p, *t;
225 		int token;
226 
227 		tmp_mntopts = t = kmem_strdup(mntopts);
228 		if (tmp_mntopts == NULL)
229 			return (SET_ERROR(ENOMEM));
230 
231 		while ((p = strsep(&t, ",")) != NULL) {
232 			if (!*p)
233 				continue;
234 
235 			args[0].to = args[0].from = NULL;
236 			token = match_token(p, zpl_tokens, args);
237 			error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
238 			if (error) {
239 				kmem_strfree(tmp_mntopts);
240 				zfsvfs_vfs_free(tmp_vfsp);
241 				return (error);
242 			}
243 		}
244 
245 		kmem_strfree(tmp_mntopts);
246 	}
247 
248 	*vfsp = tmp_vfsp;
249 
250 	return (0);
251 }
252 
253 boolean_t
zfs_is_readonly(zfsvfs_t * zfsvfs)254 zfs_is_readonly(zfsvfs_t *zfsvfs)
255 {
256 	return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
257 }
258 
259 /*ARGSUSED*/
260 int
zfs_sync(struct super_block * sb,int wait,cred_t * cr)261 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
262 {
263 	zfsvfs_t *zfsvfs = sb->s_fs_info;
264 
265 	/*
266 	 * Semantically, the only requirement is that the sync be initiated.
267 	 * The DMU syncs out txgs frequently, so there's nothing to do.
268 	 */
269 	if (!wait)
270 		return (0);
271 
272 	if (zfsvfs != NULL) {
273 		/*
274 		 * Sync a specific filesystem.
275 		 */
276 		dsl_pool_t *dp;
277 
278 		ZFS_ENTER(zfsvfs);
279 		dp = dmu_objset_pool(zfsvfs->z_os);
280 
281 		/*
282 		 * If the system is shutting down, then skip any
283 		 * filesystems which may exist on a suspended pool.
284 		 */
285 		if (spa_suspended(dp->dp_spa)) {
286 			ZFS_EXIT(zfsvfs);
287 			return (0);
288 		}
289 
290 		if (zfsvfs->z_log != NULL)
291 			zil_commit(zfsvfs->z_log, 0);
292 
293 		ZFS_EXIT(zfsvfs);
294 	} else {
295 		/*
296 		 * Sync all ZFS filesystems.  This is what happens when you
297 		 * run sync(1).  Unlike other filesystems, ZFS honors the
298 		 * request by waiting for all pools to commit all dirty data.
299 		 */
300 		spa_sync_allpools();
301 	}
302 
303 	return (0);
304 }
305 
306 static void
atime_changed_cb(void * arg,uint64_t newval)307 atime_changed_cb(void *arg, uint64_t newval)
308 {
309 	zfsvfs_t *zfsvfs = arg;
310 	struct super_block *sb = zfsvfs->z_sb;
311 
312 	if (sb == NULL)
313 		return;
314 	/*
315 	 * Update SB_NOATIME bit in VFS super block.  Since atime update is
316 	 * determined by atime_needs_update(), atime_needs_update() needs to
317 	 * return false if atime is turned off, and not unconditionally return
318 	 * false if atime is turned on.
319 	 */
320 	if (newval)
321 		sb->s_flags &= ~SB_NOATIME;
322 	else
323 		sb->s_flags |= SB_NOATIME;
324 }
325 
326 static void
relatime_changed_cb(void * arg,uint64_t newval)327 relatime_changed_cb(void *arg, uint64_t newval)
328 {
329 	((zfsvfs_t *)arg)->z_relatime = newval;
330 }
331 
332 static void
xattr_changed_cb(void * arg,uint64_t newval)333 xattr_changed_cb(void *arg, uint64_t newval)
334 {
335 	zfsvfs_t *zfsvfs = arg;
336 
337 	if (newval == ZFS_XATTR_OFF) {
338 		zfsvfs->z_flags &= ~ZSB_XATTR;
339 	} else {
340 		zfsvfs->z_flags |= ZSB_XATTR;
341 
342 		if (newval == ZFS_XATTR_SA)
343 			zfsvfs->z_xattr_sa = B_TRUE;
344 		else
345 			zfsvfs->z_xattr_sa = B_FALSE;
346 	}
347 }
348 
349 static void
acltype_changed_cb(void * arg,uint64_t newval)350 acltype_changed_cb(void *arg, uint64_t newval)
351 {
352 	zfsvfs_t *zfsvfs = arg;
353 
354 	switch (newval) {
355 	case ZFS_ACLTYPE_NFSV4:
356 	case ZFS_ACLTYPE_OFF:
357 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
358 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
359 		break;
360 	case ZFS_ACLTYPE_POSIX:
361 #ifdef CONFIG_FS_POSIX_ACL
362 		zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
363 		zfsvfs->z_sb->s_flags |= SB_POSIXACL;
364 #else
365 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
366 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
367 #endif /* CONFIG_FS_POSIX_ACL */
368 		break;
369 	default:
370 		break;
371 	}
372 }
373 
374 static void
blksz_changed_cb(void * arg,uint64_t newval)375 blksz_changed_cb(void *arg, uint64_t newval)
376 {
377 	zfsvfs_t *zfsvfs = arg;
378 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
379 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
380 	ASSERT(ISP2(newval));
381 
382 	zfsvfs->z_max_blksz = newval;
383 }
384 
385 static void
readonly_changed_cb(void * arg,uint64_t newval)386 readonly_changed_cb(void *arg, uint64_t newval)
387 {
388 	zfsvfs_t *zfsvfs = arg;
389 	struct super_block *sb = zfsvfs->z_sb;
390 
391 	if (sb == NULL)
392 		return;
393 
394 	if (newval)
395 		sb->s_flags |= SB_RDONLY;
396 	else
397 		sb->s_flags &= ~SB_RDONLY;
398 }
399 
400 static void
devices_changed_cb(void * arg,uint64_t newval)401 devices_changed_cb(void *arg, uint64_t newval)
402 {
403 }
404 
405 static void
setuid_changed_cb(void * arg,uint64_t newval)406 setuid_changed_cb(void *arg, uint64_t newval)
407 {
408 }
409 
410 static void
exec_changed_cb(void * arg,uint64_t newval)411 exec_changed_cb(void *arg, uint64_t newval)
412 {
413 }
414 
415 static void
nbmand_changed_cb(void * arg,uint64_t newval)416 nbmand_changed_cb(void *arg, uint64_t newval)
417 {
418 	zfsvfs_t *zfsvfs = arg;
419 	struct super_block *sb = zfsvfs->z_sb;
420 
421 	if (sb == NULL)
422 		return;
423 
424 	if (newval == TRUE)
425 		sb->s_flags |= SB_MANDLOCK;
426 	else
427 		sb->s_flags &= ~SB_MANDLOCK;
428 }
429 
430 static void
snapdir_changed_cb(void * arg,uint64_t newval)431 snapdir_changed_cb(void *arg, uint64_t newval)
432 {
433 	((zfsvfs_t *)arg)->z_show_ctldir = newval;
434 }
435 
436 static void
vscan_changed_cb(void * arg,uint64_t newval)437 vscan_changed_cb(void *arg, uint64_t newval)
438 {
439 	((zfsvfs_t *)arg)->z_vscan = newval;
440 }
441 
442 static void
acl_mode_changed_cb(void * arg,uint64_t newval)443 acl_mode_changed_cb(void *arg, uint64_t newval)
444 {
445 	zfsvfs_t *zfsvfs = arg;
446 
447 	zfsvfs->z_acl_mode = newval;
448 }
449 
450 static void
acl_inherit_changed_cb(void * arg,uint64_t newval)451 acl_inherit_changed_cb(void *arg, uint64_t newval)
452 {
453 	((zfsvfs_t *)arg)->z_acl_inherit = newval;
454 }
455 
456 static int
zfs_register_callbacks(vfs_t * vfsp)457 zfs_register_callbacks(vfs_t *vfsp)
458 {
459 	struct dsl_dataset *ds = NULL;
460 	objset_t *os = NULL;
461 	zfsvfs_t *zfsvfs = NULL;
462 	int error = 0;
463 
464 	ASSERT(vfsp);
465 	zfsvfs = vfsp->vfs_data;
466 	ASSERT(zfsvfs);
467 	os = zfsvfs->z_os;
468 
469 	/*
470 	 * The act of registering our callbacks will destroy any mount
471 	 * options we may have.  In order to enable temporary overrides
472 	 * of mount options, we stash away the current values and
473 	 * restore them after we register the callbacks.
474 	 */
475 	if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
476 		vfsp->vfs_do_readonly = B_TRUE;
477 		vfsp->vfs_readonly = B_TRUE;
478 	}
479 
480 	/*
481 	 * Register property callbacks.
482 	 *
483 	 * It would probably be fine to just check for i/o error from
484 	 * the first prop_register(), but I guess I like to go
485 	 * overboard...
486 	 */
487 	ds = dmu_objset_ds(os);
488 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
489 	error = dsl_prop_register(ds,
490 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
491 	error = error ? error : dsl_prop_register(ds,
492 	    zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
493 	error = error ? error : dsl_prop_register(ds,
494 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
495 	error = error ? error : dsl_prop_register(ds,
496 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
497 	error = error ? error : dsl_prop_register(ds,
498 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
499 	error = error ? error : dsl_prop_register(ds,
500 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
501 	error = error ? error : dsl_prop_register(ds,
502 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
503 	error = error ? error : dsl_prop_register(ds,
504 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
505 	error = error ? error : dsl_prop_register(ds,
506 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
507 	error = error ? error : dsl_prop_register(ds,
508 	    zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
509 	error = error ? error : dsl_prop_register(ds,
510 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
511 	error = error ? error : dsl_prop_register(ds,
512 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
513 	    zfsvfs);
514 	error = error ? error : dsl_prop_register(ds,
515 	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
516 	error = error ? error : dsl_prop_register(ds,
517 	    zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
518 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
519 	if (error)
520 		goto unregister;
521 
522 	/*
523 	 * Invoke our callbacks to restore temporary mount options.
524 	 */
525 	if (vfsp->vfs_do_readonly)
526 		readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
527 	if (vfsp->vfs_do_setuid)
528 		setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
529 	if (vfsp->vfs_do_exec)
530 		exec_changed_cb(zfsvfs, vfsp->vfs_exec);
531 	if (vfsp->vfs_do_devices)
532 		devices_changed_cb(zfsvfs, vfsp->vfs_devices);
533 	if (vfsp->vfs_do_xattr)
534 		xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
535 	if (vfsp->vfs_do_atime)
536 		atime_changed_cb(zfsvfs, vfsp->vfs_atime);
537 	if (vfsp->vfs_do_relatime)
538 		relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
539 	if (vfsp->vfs_do_nbmand)
540 		nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
541 
542 	return (0);
543 
544 unregister:
545 	dsl_prop_unregister_all(ds, zfsvfs);
546 	return (error);
547 }
548 
549 /*
550  * Takes a dataset, a property, a value and that value's setpoint as
551  * found in the ZAP. Checks if the property has been changed in the vfs.
552  * If so, val and setpoint will be overwritten with updated content.
553  * Otherwise, they are left unchanged.
554  */
555 int
zfs_get_temporary_prop(dsl_dataset_t * ds,zfs_prop_t zfs_prop,uint64_t * val,char * setpoint)556 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
557     char *setpoint)
558 {
559 	int error;
560 	zfsvfs_t *zfvp;
561 	vfs_t *vfsp;
562 	objset_t *os;
563 	uint64_t tmp = *val;
564 
565 	error = dmu_objset_from_ds(ds, &os);
566 	if (error != 0)
567 		return (error);
568 
569 	if (dmu_objset_type(os) != DMU_OST_ZFS)
570 		return (EINVAL);
571 
572 	mutex_enter(&os->os_user_ptr_lock);
573 	zfvp = dmu_objset_get_user(os);
574 	mutex_exit(&os->os_user_ptr_lock);
575 	if (zfvp == NULL)
576 		return (ESRCH);
577 
578 	vfsp = zfvp->z_vfs;
579 
580 	switch (zfs_prop) {
581 	case ZFS_PROP_ATIME:
582 		if (vfsp->vfs_do_atime)
583 			tmp = vfsp->vfs_atime;
584 		break;
585 	case ZFS_PROP_RELATIME:
586 		if (vfsp->vfs_do_relatime)
587 			tmp = vfsp->vfs_relatime;
588 		break;
589 	case ZFS_PROP_DEVICES:
590 		if (vfsp->vfs_do_devices)
591 			tmp = vfsp->vfs_devices;
592 		break;
593 	case ZFS_PROP_EXEC:
594 		if (vfsp->vfs_do_exec)
595 			tmp = vfsp->vfs_exec;
596 		break;
597 	case ZFS_PROP_SETUID:
598 		if (vfsp->vfs_do_setuid)
599 			tmp = vfsp->vfs_setuid;
600 		break;
601 	case ZFS_PROP_READONLY:
602 		if (vfsp->vfs_do_readonly)
603 			tmp = vfsp->vfs_readonly;
604 		break;
605 	case ZFS_PROP_XATTR:
606 		if (vfsp->vfs_do_xattr)
607 			tmp = vfsp->vfs_xattr;
608 		break;
609 	case ZFS_PROP_NBMAND:
610 		if (vfsp->vfs_do_nbmand)
611 			tmp = vfsp->vfs_nbmand;
612 		break;
613 	default:
614 		return (ENOENT);
615 	}
616 
617 	if (tmp != *val) {
618 		(void) strcpy(setpoint, "temporary");
619 		*val = tmp;
620 	}
621 	return (0);
622 }
623 
624 /*
625  * Associate this zfsvfs with the given objset, which must be owned.
626  * This will cache a bunch of on-disk state from the objset in the
627  * zfsvfs.
628  */
629 static int
zfsvfs_init(zfsvfs_t * zfsvfs,objset_t * os)630 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
631 {
632 	int error;
633 	uint64_t val;
634 
635 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
636 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
637 	zfsvfs->z_os = os;
638 
639 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
640 	if (error != 0)
641 		return (error);
642 	if (zfsvfs->z_version >
643 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
644 		(void) printk("Can't mount a version %lld file system "
645 		    "on a version %lld pool\n. Pool must be upgraded to mount "
646 		    "this file system.\n", (u_longlong_t)zfsvfs->z_version,
647 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
648 		return (SET_ERROR(ENOTSUP));
649 	}
650 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
651 	if (error != 0)
652 		return (error);
653 	zfsvfs->z_norm = (int)val;
654 
655 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
656 	if (error != 0)
657 		return (error);
658 	zfsvfs->z_utf8 = (val != 0);
659 
660 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
661 	if (error != 0)
662 		return (error);
663 	zfsvfs->z_case = (uint_t)val;
664 
665 	if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
666 		return (error);
667 	zfsvfs->z_acl_type = (uint_t)val;
668 
669 	/*
670 	 * Fold case on file systems that are always or sometimes case
671 	 * insensitive.
672 	 */
673 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
674 	    zfsvfs->z_case == ZFS_CASE_MIXED)
675 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
676 
677 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
678 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
679 
680 	uint64_t sa_obj = 0;
681 	if (zfsvfs->z_use_sa) {
682 		/* should either have both of these objects or none */
683 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
684 		    &sa_obj);
685 		if (error != 0)
686 			return (error);
687 
688 		error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
689 		if ((error == 0) && (val == ZFS_XATTR_SA))
690 			zfsvfs->z_xattr_sa = B_TRUE;
691 	}
692 
693 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
694 	    &zfsvfs->z_root);
695 	if (error != 0)
696 		return (error);
697 	ASSERT(zfsvfs->z_root != 0);
698 
699 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
700 	    &zfsvfs->z_unlinkedobj);
701 	if (error != 0)
702 		return (error);
703 
704 	error = zap_lookup(os, MASTER_NODE_OBJ,
705 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
706 	    8, 1, &zfsvfs->z_userquota_obj);
707 	if (error == ENOENT)
708 		zfsvfs->z_userquota_obj = 0;
709 	else if (error != 0)
710 		return (error);
711 
712 	error = zap_lookup(os, MASTER_NODE_OBJ,
713 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
714 	    8, 1, &zfsvfs->z_groupquota_obj);
715 	if (error == ENOENT)
716 		zfsvfs->z_groupquota_obj = 0;
717 	else if (error != 0)
718 		return (error);
719 
720 	error = zap_lookup(os, MASTER_NODE_OBJ,
721 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
722 	    8, 1, &zfsvfs->z_projectquota_obj);
723 	if (error == ENOENT)
724 		zfsvfs->z_projectquota_obj = 0;
725 	else if (error != 0)
726 		return (error);
727 
728 	error = zap_lookup(os, MASTER_NODE_OBJ,
729 	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
730 	    8, 1, &zfsvfs->z_userobjquota_obj);
731 	if (error == ENOENT)
732 		zfsvfs->z_userobjquota_obj = 0;
733 	else if (error != 0)
734 		return (error);
735 
736 	error = zap_lookup(os, MASTER_NODE_OBJ,
737 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
738 	    8, 1, &zfsvfs->z_groupobjquota_obj);
739 	if (error == ENOENT)
740 		zfsvfs->z_groupobjquota_obj = 0;
741 	else if (error != 0)
742 		return (error);
743 
744 	error = zap_lookup(os, MASTER_NODE_OBJ,
745 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
746 	    8, 1, &zfsvfs->z_projectobjquota_obj);
747 	if (error == ENOENT)
748 		zfsvfs->z_projectobjquota_obj = 0;
749 	else if (error != 0)
750 		return (error);
751 
752 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
753 	    &zfsvfs->z_fuid_obj);
754 	if (error == ENOENT)
755 		zfsvfs->z_fuid_obj = 0;
756 	else if (error != 0)
757 		return (error);
758 
759 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
760 	    &zfsvfs->z_shares_dir);
761 	if (error == ENOENT)
762 		zfsvfs->z_shares_dir = 0;
763 	else if (error != 0)
764 		return (error);
765 
766 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
767 	    &zfsvfs->z_attr_table);
768 	if (error != 0)
769 		return (error);
770 
771 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
772 		sa_register_update_callback(os, zfs_sa_upgrade);
773 
774 	return (0);
775 }
776 
777 int
zfsvfs_create(const char * osname,boolean_t readonly,zfsvfs_t ** zfvp)778 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
779 {
780 	objset_t *os;
781 	zfsvfs_t *zfsvfs;
782 	int error;
783 	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
784 
785 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
786 
787 	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
788 	if (error != 0) {
789 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
790 		return (error);
791 	}
792 
793 	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
794 	if (error != 0) {
795 		dmu_objset_disown(os, B_TRUE, zfsvfs);
796 	}
797 	return (error);
798 }
799 
800 
801 /*
802  * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
803  * on a failure.  Do not pass in a statically allocated zfsvfs.
804  */
805 int
zfsvfs_create_impl(zfsvfs_t ** zfvp,zfsvfs_t * zfsvfs,objset_t * os)806 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
807 {
808 	int error;
809 
810 	zfsvfs->z_vfs = NULL;
811 	zfsvfs->z_sb = NULL;
812 	zfsvfs->z_parent = zfsvfs;
813 
814 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
815 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
816 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
817 	    offsetof(znode_t, z_link_node));
818 	ZFS_TEARDOWN_INIT(zfsvfs);
819 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
820 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
821 
822 	int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
823 	    ZFS_OBJ_MTX_MAX);
824 	zfsvfs->z_hold_size = size;
825 	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
826 	    KM_SLEEP);
827 	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
828 	for (int i = 0; i != size; i++) {
829 		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
830 		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
831 		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
832 	}
833 
834 	error = zfsvfs_init(zfsvfs, os);
835 	if (error != 0) {
836 		*zfvp = NULL;
837 		zfsvfs_free(zfsvfs);
838 		return (error);
839 	}
840 
841 	zfsvfs->z_drain_task = TASKQID_INVALID;
842 	zfsvfs->z_draining = B_FALSE;
843 	zfsvfs->z_drain_cancel = B_TRUE;
844 
845 	*zfvp = zfsvfs;
846 	return (0);
847 }
848 
849 static int
zfsvfs_setup(zfsvfs_t * zfsvfs,boolean_t mounting)850 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
851 {
852 	int error;
853 	boolean_t readonly = zfs_is_readonly(zfsvfs);
854 
855 	error = zfs_register_callbacks(zfsvfs->z_vfs);
856 	if (error)
857 		return (error);
858 
859 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
860 
861 	/*
862 	 * If we are not mounting (ie: online recv), then we don't
863 	 * have to worry about replaying the log as we blocked all
864 	 * operations out since we closed the ZIL.
865 	 */
866 	if (mounting) {
867 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
868 		dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
869 
870 		/*
871 		 * During replay we remove the read only flag to
872 		 * allow replays to succeed.
873 		 */
874 		if (readonly != 0) {
875 			readonly_changed_cb(zfsvfs, B_FALSE);
876 		} else {
877 			zap_stats_t zs;
878 			if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
879 			    &zs) == 0) {
880 				dataset_kstats_update_nunlinks_kstat(
881 				    &zfsvfs->z_kstat, zs.zs_num_entries);
882 				dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
883 				    "num_entries in unlinked set: %llu",
884 				    zs.zs_num_entries);
885 			}
886 			zfs_unlinked_drain(zfsvfs);
887 			dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
888 			dd->dd_activity_cancelled = B_FALSE;
889 		}
890 
891 		/*
892 		 * Parse and replay the intent log.
893 		 *
894 		 * Because of ziltest, this must be done after
895 		 * zfs_unlinked_drain().  (Further note: ziltest
896 		 * doesn't use readonly mounts, where
897 		 * zfs_unlinked_drain() isn't called.)  This is because
898 		 * ziltest causes spa_sync() to think it's committed,
899 		 * but actually it is not, so the intent log contains
900 		 * many txg's worth of changes.
901 		 *
902 		 * In particular, if object N is in the unlinked set in
903 		 * the last txg to actually sync, then it could be
904 		 * actually freed in a later txg and then reallocated
905 		 * in a yet later txg.  This would write a "create
906 		 * object N" record to the intent log.  Normally, this
907 		 * would be fine because the spa_sync() would have
908 		 * written out the fact that object N is free, before
909 		 * we could write the "create object N" intent log
910 		 * record.
911 		 *
912 		 * But when we are in ziltest mode, we advance the "open
913 		 * txg" without actually spa_sync()-ing the changes to
914 		 * disk.  So we would see that object N is still
915 		 * allocated and in the unlinked set, and there is an
916 		 * intent log record saying to allocate it.
917 		 */
918 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
919 			if (zil_replay_disable) {
920 				zil_destroy(zfsvfs->z_log, B_FALSE);
921 			} else {
922 				zfsvfs->z_replay = B_TRUE;
923 				zil_replay(zfsvfs->z_os, zfsvfs,
924 				    zfs_replay_vector);
925 				zfsvfs->z_replay = B_FALSE;
926 			}
927 		}
928 
929 		/* restore readonly bit */
930 		if (readonly != 0)
931 			readonly_changed_cb(zfsvfs, B_TRUE);
932 	}
933 
934 	/*
935 	 * Set the objset user_ptr to track its zfsvfs.
936 	 */
937 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
938 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
939 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
940 
941 	return (0);
942 }
943 
944 void
zfsvfs_free(zfsvfs_t * zfsvfs)945 zfsvfs_free(zfsvfs_t *zfsvfs)
946 {
947 	int i, size = zfsvfs->z_hold_size;
948 
949 	zfs_fuid_destroy(zfsvfs);
950 
951 	mutex_destroy(&zfsvfs->z_znodes_lock);
952 	mutex_destroy(&zfsvfs->z_lock);
953 	list_destroy(&zfsvfs->z_all_znodes);
954 	ZFS_TEARDOWN_DESTROY(zfsvfs);
955 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
956 	rw_destroy(&zfsvfs->z_fuid_lock);
957 	for (i = 0; i != size; i++) {
958 		avl_destroy(&zfsvfs->z_hold_trees[i]);
959 		mutex_destroy(&zfsvfs->z_hold_locks[i]);
960 	}
961 	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
962 	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
963 	zfsvfs_vfs_free(zfsvfs->z_vfs);
964 	dataset_kstats_destroy(&zfsvfs->z_kstat);
965 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
966 }
967 
968 static void
zfs_set_fuid_feature(zfsvfs_t * zfsvfs)969 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
970 {
971 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
972 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
973 }
974 
975 static void
zfs_unregister_callbacks(zfsvfs_t * zfsvfs)976 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
977 {
978 	objset_t *os = zfsvfs->z_os;
979 
980 	if (!dmu_objset_is_snapshot(os))
981 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
982 }
983 
984 #ifdef HAVE_MLSLABEL
985 /*
986  * Check that the hex label string is appropriate for the dataset being
987  * mounted into the global_zone proper.
988  *
989  * Return an error if the hex label string is not default or
990  * admin_low/admin_high.  For admin_low labels, the corresponding
991  * dataset must be readonly.
992  */
993 int
zfs_check_global_label(const char * dsname,const char * hexsl)994 zfs_check_global_label(const char *dsname, const char *hexsl)
995 {
996 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
997 		return (0);
998 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
999 		return (0);
1000 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1001 		/* must be readonly */
1002 		uint64_t rdonly;
1003 
1004 		if (dsl_prop_get_integer(dsname,
1005 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1006 			return (SET_ERROR(EACCES));
1007 		return (rdonly ? 0 : SET_ERROR(EACCES));
1008 	}
1009 	return (SET_ERROR(EACCES));
1010 }
1011 #endif /* HAVE_MLSLABEL */
1012 
1013 static int
zfs_statfs_project(zfsvfs_t * zfsvfs,znode_t * zp,struct kstatfs * statp,uint32_t bshift)1014 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1015     uint32_t bshift)
1016 {
1017 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1018 	uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1019 	uint64_t quota;
1020 	uint64_t used;
1021 	int err;
1022 
1023 	strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1024 	err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1025 	    sizeof (buf) - offset, B_FALSE);
1026 	if (err)
1027 		return (err);
1028 
1029 	if (zfsvfs->z_projectquota_obj == 0)
1030 		goto objs;
1031 
1032 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1033 	    buf + offset, 8, 1, &quota);
1034 	if (err == ENOENT)
1035 		goto objs;
1036 	else if (err)
1037 		return (err);
1038 
1039 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1040 	    buf + offset, 8, 1, &used);
1041 	if (unlikely(err == ENOENT)) {
1042 		uint32_t blksize;
1043 		u_longlong_t nblocks;
1044 
1045 		/*
1046 		 * Quota accounting is async, so it is possible race case.
1047 		 * There is at least one object with the given project ID.
1048 		 */
1049 		sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1050 		if (unlikely(zp->z_blksz == 0))
1051 			blksize = zfsvfs->z_max_blksz;
1052 
1053 		used = blksize * nblocks;
1054 	} else if (err) {
1055 		return (err);
1056 	}
1057 
1058 	statp->f_blocks = quota >> bshift;
1059 	statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1060 	statp->f_bavail = statp->f_bfree;
1061 
1062 objs:
1063 	if (zfsvfs->z_projectobjquota_obj == 0)
1064 		return (0);
1065 
1066 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1067 	    buf + offset, 8, 1, &quota);
1068 	if (err == ENOENT)
1069 		return (0);
1070 	else if (err)
1071 		return (err);
1072 
1073 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1074 	    buf, 8, 1, &used);
1075 	if (unlikely(err == ENOENT)) {
1076 		/*
1077 		 * Quota accounting is async, so it is possible race case.
1078 		 * There is at least one object with the given project ID.
1079 		 */
1080 		used = 1;
1081 	} else if (err) {
1082 		return (err);
1083 	}
1084 
1085 	statp->f_files = quota;
1086 	statp->f_ffree = (quota > used) ? (quota - used) : 0;
1087 
1088 	return (0);
1089 }
1090 
1091 int
zfs_statvfs(struct inode * ip,struct kstatfs * statp)1092 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1093 {
1094 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1095 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1096 	int err = 0;
1097 
1098 	ZFS_ENTER(zfsvfs);
1099 
1100 	dmu_objset_space(zfsvfs->z_os,
1101 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1102 
1103 	uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1104 	/*
1105 	 * The underlying storage pool actually uses multiple block
1106 	 * size.  Under Solaris frsize (fragment size) is reported as
1107 	 * the smallest block size we support, and bsize (block size)
1108 	 * as the filesystem's maximum block size.  Unfortunately,
1109 	 * under Linux the fragment size and block size are often used
1110 	 * interchangeably.  Thus we are forced to report both of them
1111 	 * as the filesystem's maximum block size.
1112 	 */
1113 	statp->f_frsize = zfsvfs->z_max_blksz;
1114 	statp->f_bsize = zfsvfs->z_max_blksz;
1115 	uint32_t bshift = fls(statp->f_bsize) - 1;
1116 
1117 	/*
1118 	 * The following report "total" blocks of various kinds in
1119 	 * the file system, but reported in terms of f_bsize - the
1120 	 * "preferred" size.
1121 	 */
1122 
1123 	/* Round up so we never have a filesystem using 0 blocks. */
1124 	refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1125 	statp->f_blocks = (refdbytes + availbytes) >> bshift;
1126 	statp->f_bfree = availbytes >> bshift;
1127 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1128 
1129 	/*
1130 	 * statvfs() should really be called statufs(), because it assumes
1131 	 * static metadata.  ZFS doesn't preallocate files, so the best
1132 	 * we can do is report the max that could possibly fit in f_files,
1133 	 * and that minus the number actually used in f_ffree.
1134 	 * For f_ffree, report the smaller of the number of objects available
1135 	 * and the number of blocks (each object will take at least a block).
1136 	 */
1137 	statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1138 	statp->f_files = statp->f_ffree + usedobjs;
1139 	statp->f_fsid.val[0] = (uint32_t)fsid;
1140 	statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1141 	statp->f_type = ZFS_SUPER_MAGIC;
1142 	statp->f_namelen = MAXNAMELEN - 1;
1143 
1144 	/*
1145 	 * We have all of 40 characters to stuff a string here.
1146 	 * Is there anything useful we could/should provide?
1147 	 */
1148 	bzero(statp->f_spare, sizeof (statp->f_spare));
1149 
1150 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1151 	    dmu_objset_projectquota_present(zfsvfs->z_os)) {
1152 		znode_t *zp = ITOZ(ip);
1153 
1154 		if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1155 		    zpl_is_valid_projid(zp->z_projid))
1156 			err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1157 	}
1158 
1159 	ZFS_EXIT(zfsvfs);
1160 	return (err);
1161 }
1162 
1163 static int
zfs_root(zfsvfs_t * zfsvfs,struct inode ** ipp)1164 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1165 {
1166 	znode_t *rootzp;
1167 	int error;
1168 
1169 	ZFS_ENTER(zfsvfs);
1170 
1171 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1172 	if (error == 0)
1173 		*ipp = ZTOI(rootzp);
1174 
1175 	ZFS_EXIT(zfsvfs);
1176 	return (error);
1177 }
1178 
1179 /*
1180  * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1181  * To accommodate this we must improvise and manually walk the list of znodes
1182  * attempting to prune dentries in order to be able to drop the inodes.
1183  *
1184  * To avoid scanning the same znodes multiple times they are always rotated
1185  * to the end of the z_all_znodes list.  New znodes are inserted at the
1186  * end of the list so we're always scanning the oldest znodes first.
1187  */
1188 static int
zfs_prune_aliases(zfsvfs_t * zfsvfs,unsigned long nr_to_scan)1189 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
1190 {
1191 	znode_t **zp_array, *zp;
1192 	int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1193 	int objects = 0;
1194 	int i = 0, j = 0;
1195 
1196 	zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1197 
1198 	mutex_enter(&zfsvfs->z_znodes_lock);
1199 	while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
1200 
1201 		if ((i++ > nr_to_scan) || (j >= max_array))
1202 			break;
1203 
1204 		ASSERT(list_link_active(&zp->z_link_node));
1205 		list_remove(&zfsvfs->z_all_znodes, zp);
1206 		list_insert_tail(&zfsvfs->z_all_znodes, zp);
1207 
1208 		/* Skip active znodes and .zfs entries */
1209 		if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1210 			continue;
1211 
1212 		if (igrab(ZTOI(zp)) == NULL)
1213 			continue;
1214 
1215 		zp_array[j] = zp;
1216 		j++;
1217 	}
1218 	mutex_exit(&zfsvfs->z_znodes_lock);
1219 
1220 	for (i = 0; i < j; i++) {
1221 		zp = zp_array[i];
1222 
1223 		ASSERT3P(zp, !=, NULL);
1224 		d_prune_aliases(ZTOI(zp));
1225 
1226 		if (atomic_read(&ZTOI(zp)->i_count) == 1)
1227 			objects++;
1228 
1229 		zrele(zp);
1230 	}
1231 
1232 	kmem_free(zp_array, max_array * sizeof (znode_t *));
1233 
1234 	return (objects);
1235 }
1236 
1237 /*
1238  * The ARC has requested that the filesystem drop entries from the dentry
1239  * and inode caches.  This can occur when the ARC needs to free meta data
1240  * blocks but can't because they are all pinned by entries in these caches.
1241  */
1242 int
zfs_prune(struct super_block * sb,unsigned long nr_to_scan,int * objects)1243 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1244 {
1245 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1246 	int error = 0;
1247 	struct shrinker *shrinker = &sb->s_shrink;
1248 	struct shrink_control sc = {
1249 		.nr_to_scan = nr_to_scan,
1250 		.gfp_mask = GFP_KERNEL,
1251 	};
1252 
1253 	ZFS_ENTER(zfsvfs);
1254 
1255 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1256 	defined(SHRINK_CONTROL_HAS_NID) && \
1257 	defined(SHRINKER_NUMA_AWARE)
1258 	if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
1259 		*objects = 0;
1260 		for_each_online_node(sc.nid) {
1261 			*objects += (*shrinker->scan_objects)(shrinker, &sc);
1262 			/*
1263 			 * reset sc.nr_to_scan, modified by
1264 			 * scan_objects == super_cache_scan
1265 			 */
1266 			sc.nr_to_scan = nr_to_scan;
1267 		}
1268 	} else {
1269 			*objects = (*shrinker->scan_objects)(shrinker, &sc);
1270 	}
1271 
1272 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1273 	*objects = (*shrinker->scan_objects)(shrinker, &sc);
1274 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK)
1275 	*objects = (*shrinker->shrink)(shrinker, &sc);
1276 #elif defined(HAVE_D_PRUNE_ALIASES)
1277 #define	D_PRUNE_ALIASES_IS_DEFAULT
1278 	*objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1279 #else
1280 #error "No available dentry and inode cache pruning mechanism."
1281 #endif
1282 
1283 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1284 #undef	D_PRUNE_ALIASES_IS_DEFAULT
1285 	/*
1286 	 * Fall back to zfs_prune_aliases if the kernel's per-superblock
1287 	 * shrinker couldn't free anything, possibly due to the inodes being
1288 	 * allocated in a different memcg.
1289 	 */
1290 	if (*objects == 0)
1291 		*objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1292 #endif
1293 
1294 	ZFS_EXIT(zfsvfs);
1295 
1296 	dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1297 	    "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1298 	    nr_to_scan, *objects, error);
1299 
1300 	return (error);
1301 }
1302 
1303 /*
1304  * Teardown the zfsvfs_t.
1305  *
1306  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1307  * and 'z_teardown_inactive_lock' held.
1308  */
1309 static int
zfsvfs_teardown(zfsvfs_t * zfsvfs,boolean_t unmounting)1310 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1311 {
1312 	znode_t	*zp;
1313 
1314 	zfs_unlinked_drain_stop_wait(zfsvfs);
1315 
1316 	/*
1317 	 * If someone has not already unmounted this file system,
1318 	 * drain the zrele_taskq to ensure all active references to the
1319 	 * zfsvfs_t have been handled only then can it be safely destroyed.
1320 	 */
1321 	if (zfsvfs->z_os) {
1322 		/*
1323 		 * If we're unmounting we have to wait for the list to
1324 		 * drain completely.
1325 		 *
1326 		 * If we're not unmounting there's no guarantee the list
1327 		 * will drain completely, but iputs run from the taskq
1328 		 * may add the parents of dir-based xattrs to the taskq
1329 		 * so we want to wait for these.
1330 		 *
1331 		 * We can safely read z_nr_znodes without locking because the
1332 		 * VFS has already blocked operations which add to the
1333 		 * z_all_znodes list and thus increment z_nr_znodes.
1334 		 */
1335 		int round = 0;
1336 		while (zfsvfs->z_nr_znodes > 0) {
1337 			taskq_wait_outstanding(dsl_pool_zrele_taskq(
1338 			    dmu_objset_pool(zfsvfs->z_os)), 0);
1339 			if (++round > 1 && !unmounting)
1340 				break;
1341 		}
1342 	}
1343 
1344 	ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1345 
1346 	if (!unmounting) {
1347 		/*
1348 		 * We purge the parent filesystem's super block as the
1349 		 * parent filesystem and all of its snapshots have their
1350 		 * inode's super block set to the parent's filesystem's
1351 		 * super block.  Note,  'z_parent' is self referential
1352 		 * for non-snapshots.
1353 		 */
1354 		shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1355 	}
1356 
1357 	/*
1358 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1359 	 * threads are blocked as zil_close can call zfs_inactive.
1360 	 */
1361 	if (zfsvfs->z_log) {
1362 		zil_close(zfsvfs->z_log);
1363 		zfsvfs->z_log = NULL;
1364 	}
1365 
1366 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1367 
1368 	/*
1369 	 * If we are not unmounting (ie: online recv) and someone already
1370 	 * unmounted this file system while we were doing the switcheroo,
1371 	 * or a reopen of z_os failed then just bail out now.
1372 	 */
1373 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1374 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1375 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1376 		return (SET_ERROR(EIO));
1377 	}
1378 
1379 	/*
1380 	 * At this point there are no VFS ops active, and any new VFS ops
1381 	 * will fail with EIO since we have z_teardown_lock for writer (only
1382 	 * relevant for forced unmount).
1383 	 *
1384 	 * Release all holds on dbufs. We also grab an extra reference to all
1385 	 * the remaining inodes so that the kernel does not attempt to free
1386 	 * any inodes of a suspended fs. This can cause deadlocks since the
1387 	 * zfs_resume_fs() process may involve starting threads, which might
1388 	 * attempt to free unreferenced inodes to free up memory for the new
1389 	 * thread.
1390 	 */
1391 	if (!unmounting) {
1392 		mutex_enter(&zfsvfs->z_znodes_lock);
1393 		for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1394 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1395 			if (zp->z_sa_hdl)
1396 				zfs_znode_dmu_fini(zp);
1397 			if (igrab(ZTOI(zp)) != NULL)
1398 				zp->z_suspended = B_TRUE;
1399 
1400 		}
1401 		mutex_exit(&zfsvfs->z_znodes_lock);
1402 	}
1403 
1404 	/*
1405 	 * If we are unmounting, set the unmounted flag and let new VFS ops
1406 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1407 	 * other VFS ops will fail with EIO.
1408 	 */
1409 	if (unmounting) {
1410 		zfsvfs->z_unmounted = B_TRUE;
1411 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1412 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1413 	}
1414 
1415 	/*
1416 	 * z_os will be NULL if there was an error in attempting to reopen
1417 	 * zfsvfs, so just return as the properties had already been
1418 	 *
1419 	 * unregistered and cached data had been evicted before.
1420 	 */
1421 	if (zfsvfs->z_os == NULL)
1422 		return (0);
1423 
1424 	/*
1425 	 * Unregister properties.
1426 	 */
1427 	zfs_unregister_callbacks(zfsvfs);
1428 
1429 	/*
1430 	 * Evict cached data. We must write out any dirty data before
1431 	 * disowning the dataset.
1432 	 */
1433 	objset_t *os = zfsvfs->z_os;
1434 	boolean_t os_dirty = B_FALSE;
1435 	for (int t = 0; t < TXG_SIZE; t++) {
1436 		if (dmu_objset_is_dirty(os, t)) {
1437 			os_dirty = B_TRUE;
1438 			break;
1439 		}
1440 	}
1441 	if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1442 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1443 	}
1444 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1445 	dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1446 	dsl_dir_cancel_waiters(dd);
1447 
1448 	return (0);
1449 }
1450 
1451 #if defined(HAVE_SUPER_SETUP_BDI_NAME)
1452 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1453 #endif
1454 
1455 int
zfs_domount(struct super_block * sb,zfs_mnt_t * zm,int silent)1456 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1457 {
1458 	const char *osname = zm->mnt_osname;
1459 	struct inode *root_inode = NULL;
1460 	uint64_t recordsize;
1461 	int error = 0;
1462 	zfsvfs_t *zfsvfs = NULL;
1463 	vfs_t *vfs = NULL;
1464 
1465 	ASSERT(zm);
1466 	ASSERT(osname);
1467 
1468 	error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1469 	if (error)
1470 		return (error);
1471 
1472 	error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1473 	if (error) {
1474 		zfsvfs_vfs_free(vfs);
1475 		goto out;
1476 	}
1477 
1478 	if ((error = dsl_prop_get_integer(osname, "recordsize",
1479 	    &recordsize, NULL))) {
1480 		zfsvfs_vfs_free(vfs);
1481 		goto out;
1482 	}
1483 
1484 	vfs->vfs_data = zfsvfs;
1485 	zfsvfs->z_vfs = vfs;
1486 	zfsvfs->z_sb = sb;
1487 	sb->s_fs_info = zfsvfs;
1488 	sb->s_magic = ZFS_SUPER_MAGIC;
1489 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1490 	sb->s_time_gran = 1;
1491 	sb->s_blocksize = recordsize;
1492 	sb->s_blocksize_bits = ilog2(recordsize);
1493 
1494 	error = -zpl_bdi_setup(sb, "zfs");
1495 	if (error)
1496 		goto out;
1497 
1498 	sb->s_bdi->ra_pages = 0;
1499 
1500 	/* Set callback operations for the file system. */
1501 	sb->s_op = &zpl_super_operations;
1502 	sb->s_xattr = zpl_xattr_handlers;
1503 	sb->s_export_op = &zpl_export_operations;
1504 	sb->s_d_op = &zpl_dentry_operations;
1505 
1506 	/* Set features for file system. */
1507 	zfs_set_fuid_feature(zfsvfs);
1508 
1509 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1510 		uint64_t pval;
1511 
1512 		atime_changed_cb(zfsvfs, B_FALSE);
1513 		readonly_changed_cb(zfsvfs, B_TRUE);
1514 		if ((error = dsl_prop_get_integer(osname,
1515 		    "xattr", &pval, NULL)))
1516 			goto out;
1517 		xattr_changed_cb(zfsvfs, pval);
1518 		if ((error = dsl_prop_get_integer(osname,
1519 		    "acltype", &pval, NULL)))
1520 			goto out;
1521 		acltype_changed_cb(zfsvfs, pval);
1522 		zfsvfs->z_issnap = B_TRUE;
1523 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1524 		zfsvfs->z_snap_defer_time = jiffies;
1525 
1526 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1527 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1528 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1529 	} else {
1530 		if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1531 			goto out;
1532 	}
1533 
1534 	/* Allocate a root inode for the filesystem. */
1535 	error = zfs_root(zfsvfs, &root_inode);
1536 	if (error) {
1537 		(void) zfs_umount(sb);
1538 		goto out;
1539 	}
1540 
1541 	/* Allocate a root dentry for the filesystem */
1542 	sb->s_root = d_make_root(root_inode);
1543 	if (sb->s_root == NULL) {
1544 		(void) zfs_umount(sb);
1545 		error = SET_ERROR(ENOMEM);
1546 		goto out;
1547 	}
1548 
1549 	if (!zfsvfs->z_issnap)
1550 		zfsctl_create(zfsvfs);
1551 
1552 	zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1553 out:
1554 	if (error) {
1555 		if (zfsvfs != NULL) {
1556 			dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1557 			zfsvfs_free(zfsvfs);
1558 		}
1559 		/*
1560 		 * make sure we don't have dangling sb->s_fs_info which
1561 		 * zfs_preumount will use.
1562 		 */
1563 		sb->s_fs_info = NULL;
1564 	}
1565 
1566 	return (error);
1567 }
1568 
1569 /*
1570  * Called when an unmount is requested and certain sanity checks have
1571  * already passed.  At this point no dentries or inodes have been reclaimed
1572  * from their respective caches.  We drop the extra reference on the .zfs
1573  * control directory to allow everything to be reclaimed.  All snapshots
1574  * must already have been unmounted to reach this point.
1575  */
1576 void
zfs_preumount(struct super_block * sb)1577 zfs_preumount(struct super_block *sb)
1578 {
1579 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1580 
1581 	/* zfsvfs is NULL when zfs_domount fails during mount */
1582 	if (zfsvfs) {
1583 		zfs_unlinked_drain_stop_wait(zfsvfs);
1584 		zfsctl_destroy(sb->s_fs_info);
1585 		/*
1586 		 * Wait for zrele_async before entering evict_inodes in
1587 		 * generic_shutdown_super. The reason we must finish before
1588 		 * evict_inodes is when lazytime is on, or when zfs_purgedir
1589 		 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1590 		 * would race with the i_count check in evict_inodes. This means
1591 		 * it could destroy the inode while we are still using it.
1592 		 *
1593 		 * We wait for two passes. xattr directories in the first pass
1594 		 * may add xattr entries in zfs_purgedir, so in the second pass
1595 		 * we wait for them. We don't use taskq_wait here because it is
1596 		 * a pool wide taskq. Other mounted filesystems can constantly
1597 		 * do zrele_async and there's no guarantee when taskq will be
1598 		 * empty.
1599 		 */
1600 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1601 		    dmu_objset_pool(zfsvfs->z_os)), 0);
1602 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1603 		    dmu_objset_pool(zfsvfs->z_os)), 0);
1604 	}
1605 }
1606 
1607 /*
1608  * Called once all other unmount released tear down has occurred.
1609  * It is our responsibility to release any remaining infrastructure.
1610  */
1611 /*ARGSUSED*/
1612 int
zfs_umount(struct super_block * sb)1613 zfs_umount(struct super_block *sb)
1614 {
1615 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1616 	objset_t *os;
1617 
1618 	if (zfsvfs->z_arc_prune != NULL)
1619 		arc_remove_prune_callback(zfsvfs->z_arc_prune);
1620 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1621 	os = zfsvfs->z_os;
1622 	zpl_bdi_destroy(sb);
1623 
1624 	/*
1625 	 * z_os will be NULL if there was an error in
1626 	 * attempting to reopen zfsvfs.
1627 	 */
1628 	if (os != NULL) {
1629 		/*
1630 		 * Unset the objset user_ptr.
1631 		 */
1632 		mutex_enter(&os->os_user_ptr_lock);
1633 		dmu_objset_set_user(os, NULL);
1634 		mutex_exit(&os->os_user_ptr_lock);
1635 
1636 		/*
1637 		 * Finally release the objset
1638 		 */
1639 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1640 	}
1641 
1642 	zfsvfs_free(zfsvfs);
1643 	return (0);
1644 }
1645 
1646 int
zfs_remount(struct super_block * sb,int * flags,zfs_mnt_t * zm)1647 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1648 {
1649 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1650 	vfs_t *vfsp;
1651 	boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1652 	int error;
1653 
1654 	if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1655 	    !(*flags & SB_RDONLY)) {
1656 		*flags |= SB_RDONLY;
1657 		return (EROFS);
1658 	}
1659 
1660 	error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1661 	if (error)
1662 		return (error);
1663 
1664 	if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1665 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1666 
1667 	zfs_unregister_callbacks(zfsvfs);
1668 	zfsvfs_vfs_free(zfsvfs->z_vfs);
1669 
1670 	vfsp->vfs_data = zfsvfs;
1671 	zfsvfs->z_vfs = vfsp;
1672 	if (!issnap)
1673 		(void) zfs_register_callbacks(vfsp);
1674 
1675 	return (error);
1676 }
1677 
1678 int
zfs_vget(struct super_block * sb,struct inode ** ipp,fid_t * fidp)1679 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1680 {
1681 	zfsvfs_t	*zfsvfs = sb->s_fs_info;
1682 	znode_t		*zp;
1683 	uint64_t	object = 0;
1684 	uint64_t	fid_gen = 0;
1685 	uint64_t	gen_mask;
1686 	uint64_t	zp_gen;
1687 	int		i, err;
1688 
1689 	*ipp = NULL;
1690 
1691 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1692 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1693 
1694 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1695 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1696 
1697 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1698 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1699 	} else {
1700 		return (SET_ERROR(EINVAL));
1701 	}
1702 
1703 	/* LONG_FID_LEN means snapdirs */
1704 	if (fidp->fid_len == LONG_FID_LEN) {
1705 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1706 		uint64_t	objsetid = 0;
1707 		uint64_t	setgen = 0;
1708 
1709 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1710 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1711 
1712 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1713 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1714 
1715 		if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1716 			dprintf("snapdir fid: objsetid (%llu) != "
1717 			    "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1718 			    objsetid, ZFSCTL_INO_SNAPDIRS, object);
1719 
1720 			return (SET_ERROR(EINVAL));
1721 		}
1722 
1723 		if (fid_gen > 1 || setgen != 0) {
1724 			dprintf("snapdir fid: fid_gen (%llu) and setgen "
1725 			    "(%llu)\n", fid_gen, setgen);
1726 			return (SET_ERROR(EINVAL));
1727 		}
1728 
1729 		return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1730 	}
1731 
1732 	ZFS_ENTER(zfsvfs);
1733 	/* A zero fid_gen means we are in the .zfs control directories */
1734 	if (fid_gen == 0 &&
1735 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1736 		*ipp = zfsvfs->z_ctldir;
1737 		ASSERT(*ipp != NULL);
1738 		if (object == ZFSCTL_INO_SNAPDIR) {
1739 			VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1740 			    0, kcred, NULL, NULL) == 0);
1741 		} else {
1742 			/*
1743 			 * Must have an existing ref, so igrab()
1744 			 * cannot return NULL
1745 			 */
1746 			VERIFY3P(igrab(*ipp), !=, NULL);
1747 		}
1748 		ZFS_EXIT(zfsvfs);
1749 		return (0);
1750 	}
1751 
1752 	gen_mask = -1ULL >> (64 - 8 * i);
1753 
1754 	dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1755 	if ((err = zfs_zget(zfsvfs, object, &zp))) {
1756 		ZFS_EXIT(zfsvfs);
1757 		return (err);
1758 	}
1759 
1760 	/* Don't export xattr stuff */
1761 	if (zp->z_pflags & ZFS_XATTR) {
1762 		zrele(zp);
1763 		ZFS_EXIT(zfsvfs);
1764 		return (SET_ERROR(ENOENT));
1765 	}
1766 
1767 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1768 	    sizeof (uint64_t));
1769 	zp_gen = zp_gen & gen_mask;
1770 	if (zp_gen == 0)
1771 		zp_gen = 1;
1772 	if ((fid_gen == 0) && (zfsvfs->z_root == object))
1773 		fid_gen = zp_gen;
1774 	if (zp->z_unlinked || zp_gen != fid_gen) {
1775 		dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1776 		    fid_gen);
1777 		zrele(zp);
1778 		ZFS_EXIT(zfsvfs);
1779 		return (SET_ERROR(ENOENT));
1780 	}
1781 
1782 	*ipp = ZTOI(zp);
1783 	if (*ipp)
1784 		zfs_znode_update_vfs(ITOZ(*ipp));
1785 
1786 	ZFS_EXIT(zfsvfs);
1787 	return (0);
1788 }
1789 
1790 /*
1791  * Block out VFS ops and close zfsvfs_t
1792  *
1793  * Note, if successful, then we return with the 'z_teardown_lock' and
1794  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
1795  * dataset and objset intact so that they can be atomically handed off during
1796  * a subsequent rollback or recv operation and the resume thereafter.
1797  */
1798 int
zfs_suspend_fs(zfsvfs_t * zfsvfs)1799 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1800 {
1801 	int error;
1802 
1803 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1804 		return (error);
1805 
1806 	return (0);
1807 }
1808 
1809 /*
1810  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
1811  * is an invariant across any of the operations that can be performed while the
1812  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
1813  * are the same: the relevant objset and associated dataset are owned by
1814  * zfsvfs, held, and long held on entry.
1815  */
1816 int
zfs_resume_fs(zfsvfs_t * zfsvfs,dsl_dataset_t * ds)1817 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1818 {
1819 	int err, err2;
1820 	znode_t *zp;
1821 
1822 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1823 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1824 
1825 	/*
1826 	 * We already own this, so just update the objset_t, as the one we
1827 	 * had before may have been evicted.
1828 	 */
1829 	objset_t *os;
1830 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1831 	VERIFY(dsl_dataset_long_held(ds));
1832 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1833 	dsl_pool_config_enter(dp, FTAG);
1834 	VERIFY0(dmu_objset_from_ds(ds, &os));
1835 	dsl_pool_config_exit(dp, FTAG);
1836 
1837 	err = zfsvfs_init(zfsvfs, os);
1838 	if (err != 0)
1839 		goto bail;
1840 
1841 	ds->ds_dir->dd_activity_cancelled = B_FALSE;
1842 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1843 
1844 	zfs_set_fuid_feature(zfsvfs);
1845 	zfsvfs->z_rollback_time = jiffies;
1846 
1847 	/*
1848 	 * Attempt to re-establish all the active inodes with their
1849 	 * dbufs.  If a zfs_rezget() fails, then we unhash the inode
1850 	 * and mark it stale.  This prevents a collision if a new
1851 	 * inode/object is created which must use the same inode
1852 	 * number.  The stale inode will be be released when the
1853 	 * VFS prunes the dentry holding the remaining references
1854 	 * on the stale inode.
1855 	 */
1856 	mutex_enter(&zfsvfs->z_znodes_lock);
1857 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1858 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1859 		err2 = zfs_rezget(zp);
1860 		if (err2) {
1861 			remove_inode_hash(ZTOI(zp));
1862 			zp->z_is_stale = B_TRUE;
1863 		}
1864 
1865 		/* see comment in zfs_suspend_fs() */
1866 		if (zp->z_suspended) {
1867 			zfs_zrele_async(zp);
1868 			zp->z_suspended = B_FALSE;
1869 		}
1870 	}
1871 	mutex_exit(&zfsvfs->z_znodes_lock);
1872 
1873 	if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1874 		/*
1875 		 * zfs_suspend_fs() could have interrupted freeing
1876 		 * of dnodes. We need to restart this freeing so
1877 		 * that we don't "leak" the space.
1878 		 */
1879 		zfs_unlinked_drain(zfsvfs);
1880 	}
1881 
1882 	/*
1883 	 * Most of the time zfs_suspend_fs is used for changing the contents
1884 	 * of the underlying dataset. ZFS rollback and receive operations
1885 	 * might create files for which negative dentries are present in
1886 	 * the cache. Since walking the dcache would require a lot of GPL-only
1887 	 * code duplication, it's much easier on these rather rare occasions
1888 	 * just to flush the whole dcache for the given dataset/filesystem.
1889 	 */
1890 	shrink_dcache_sb(zfsvfs->z_sb);
1891 
1892 bail:
1893 	if (err != 0)
1894 		zfsvfs->z_unmounted = B_TRUE;
1895 
1896 	/* release the VFS ops */
1897 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1898 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1899 
1900 	if (err != 0) {
1901 		/*
1902 		 * Since we couldn't setup the sa framework, try to force
1903 		 * unmount this file system.
1904 		 */
1905 		if (zfsvfs->z_os)
1906 			(void) zfs_umount(zfsvfs->z_sb);
1907 	}
1908 	return (err);
1909 }
1910 
1911 /*
1912  * Release VOPs and unmount a suspended filesystem.
1913  */
1914 int
zfs_end_fs(zfsvfs_t * zfsvfs,dsl_dataset_t * ds)1915 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1916 {
1917 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1918 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1919 
1920 	/*
1921 	 * We already own this, so just hold and rele it to update the
1922 	 * objset_t, as the one we had before may have been evicted.
1923 	 */
1924 	objset_t *os;
1925 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1926 	VERIFY(dsl_dataset_long_held(ds));
1927 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1928 	dsl_pool_config_enter(dp, FTAG);
1929 	VERIFY0(dmu_objset_from_ds(ds, &os));
1930 	dsl_pool_config_exit(dp, FTAG);
1931 	zfsvfs->z_os = os;
1932 
1933 	/* release the VOPs */
1934 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1935 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1936 
1937 	/*
1938 	 * Try to force unmount this file system.
1939 	 */
1940 	(void) zfs_umount(zfsvfs->z_sb);
1941 	zfsvfs->z_unmounted = B_TRUE;
1942 	return (0);
1943 }
1944 
1945 /*
1946  * Automounted snapshots rely on periodic revalidation
1947  * to defer snapshots from being automatically unmounted.
1948  */
1949 
1950 inline void
zfs_exit_fs(zfsvfs_t * zfsvfs)1951 zfs_exit_fs(zfsvfs_t *zfsvfs)
1952 {
1953 	if (!zfsvfs->z_issnap)
1954 		return;
1955 
1956 	if (time_after(jiffies, zfsvfs->z_snap_defer_time +
1957 	    MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1958 		zfsvfs->z_snap_defer_time = jiffies;
1959 		zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
1960 		    dmu_objset_id(zfsvfs->z_os),
1961 		    zfs_expire_snapshot);
1962 	}
1963 }
1964 
1965 int
zfs_set_version(zfsvfs_t * zfsvfs,uint64_t newvers)1966 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1967 {
1968 	int error;
1969 	objset_t *os = zfsvfs->z_os;
1970 	dmu_tx_t *tx;
1971 
1972 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1973 		return (SET_ERROR(EINVAL));
1974 
1975 	if (newvers < zfsvfs->z_version)
1976 		return (SET_ERROR(EINVAL));
1977 
1978 	if (zfs_spa_version_map(newvers) >
1979 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
1980 		return (SET_ERROR(ENOTSUP));
1981 
1982 	tx = dmu_tx_create(os);
1983 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1984 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1985 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1986 		    ZFS_SA_ATTRS);
1987 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1988 	}
1989 	error = dmu_tx_assign(tx, TXG_WAIT);
1990 	if (error) {
1991 		dmu_tx_abort(tx);
1992 		return (error);
1993 	}
1994 
1995 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1996 	    8, 1, &newvers, tx);
1997 
1998 	if (error) {
1999 		dmu_tx_commit(tx);
2000 		return (error);
2001 	}
2002 
2003 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2004 		uint64_t sa_obj;
2005 
2006 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2007 		    SPA_VERSION_SA);
2008 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2009 		    DMU_OT_NONE, 0, tx);
2010 
2011 		error = zap_add(os, MASTER_NODE_OBJ,
2012 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2013 		ASSERT0(error);
2014 
2015 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2016 		sa_register_update_callback(os, zfs_sa_upgrade);
2017 	}
2018 
2019 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2020 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2021 
2022 	dmu_tx_commit(tx);
2023 
2024 	zfsvfs->z_version = newvers;
2025 	os->os_version = newvers;
2026 
2027 	zfs_set_fuid_feature(zfsvfs);
2028 
2029 	return (0);
2030 }
2031 
2032 /*
2033  * Read a property stored within the master node.
2034  */
2035 int
zfs_get_zplprop(objset_t * os,zfs_prop_t prop,uint64_t * value)2036 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2037 {
2038 	uint64_t *cached_copy = NULL;
2039 
2040 	/*
2041 	 * Figure out where in the objset_t the cached copy would live, if it
2042 	 * is available for the requested property.
2043 	 */
2044 	if (os != NULL) {
2045 		switch (prop) {
2046 		case ZFS_PROP_VERSION:
2047 			cached_copy = &os->os_version;
2048 			break;
2049 		case ZFS_PROP_NORMALIZE:
2050 			cached_copy = &os->os_normalization;
2051 			break;
2052 		case ZFS_PROP_UTF8ONLY:
2053 			cached_copy = &os->os_utf8only;
2054 			break;
2055 		case ZFS_PROP_CASE:
2056 			cached_copy = &os->os_casesensitivity;
2057 			break;
2058 		default:
2059 			break;
2060 		}
2061 	}
2062 	if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
2063 		*value = *cached_copy;
2064 		return (0);
2065 	}
2066 
2067 	/*
2068 	 * If the property wasn't cached, look up the file system's value for
2069 	 * the property. For the version property, we look up a slightly
2070 	 * different string.
2071 	 */
2072 	const char *pname;
2073 	int error = ENOENT;
2074 	if (prop == ZFS_PROP_VERSION)
2075 		pname = ZPL_VERSION_STR;
2076 	else
2077 		pname = zfs_prop_to_name(prop);
2078 
2079 	if (os != NULL) {
2080 		ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
2081 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2082 	}
2083 
2084 	if (error == ENOENT) {
2085 		/* No value set, use the default value */
2086 		switch (prop) {
2087 		case ZFS_PROP_VERSION:
2088 			*value = ZPL_VERSION;
2089 			break;
2090 		case ZFS_PROP_NORMALIZE:
2091 		case ZFS_PROP_UTF8ONLY:
2092 			*value = 0;
2093 			break;
2094 		case ZFS_PROP_CASE:
2095 			*value = ZFS_CASE_SENSITIVE;
2096 			break;
2097 		case ZFS_PROP_ACLTYPE:
2098 			*value = ZFS_ACLTYPE_OFF;
2099 			break;
2100 		default:
2101 			return (error);
2102 		}
2103 		error = 0;
2104 	}
2105 
2106 	/*
2107 	 * If one of the methods for getting the property value above worked,
2108 	 * copy it into the objset_t's cache.
2109 	 */
2110 	if (error == 0 && cached_copy != NULL) {
2111 		*cached_copy = *value;
2112 	}
2113 
2114 	return (error);
2115 }
2116 
2117 /*
2118  * Return true if the corresponding vfs's unmounted flag is set.
2119  * Otherwise return false.
2120  * If this function returns true we know VFS unmount has been initiated.
2121  */
2122 boolean_t
zfs_get_vfs_flag_unmounted(objset_t * os)2123 zfs_get_vfs_flag_unmounted(objset_t *os)
2124 {
2125 	zfsvfs_t *zfvp;
2126 	boolean_t unmounted = B_FALSE;
2127 
2128 	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2129 
2130 	mutex_enter(&os->os_user_ptr_lock);
2131 	zfvp = dmu_objset_get_user(os);
2132 	if (zfvp != NULL && zfvp->z_unmounted)
2133 		unmounted = B_TRUE;
2134 	mutex_exit(&os->os_user_ptr_lock);
2135 
2136 	return (unmounted);
2137 }
2138 
2139 /*ARGSUSED*/
2140 void
zfsvfs_update_fromname(const char * oldname,const char * newname)2141 zfsvfs_update_fromname(const char *oldname, const char *newname)
2142 {
2143 	/*
2144 	 * We don't need to do anything here, the devname is always current by
2145 	 * virtue of zfsvfs->z_sb->s_op->show_devname.
2146 	 */
2147 }
2148 
2149 void
zfs_init(void)2150 zfs_init(void)
2151 {
2152 	zfsctl_init();
2153 	zfs_znode_init();
2154 	dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2155 	register_filesystem(&zpl_fs_type);
2156 }
2157 
2158 void
zfs_fini(void)2159 zfs_fini(void)
2160 {
2161 	/*
2162 	 * we don't use outstanding because zpl_posix_acl_free might add more.
2163 	 */
2164 	taskq_wait(system_delay_taskq);
2165 	taskq_wait(system_taskq);
2166 	unregister_filesystem(&zpl_fs_type);
2167 	zfs_znode_fini();
2168 	zfsctl_fini();
2169 }
2170 
2171 #if defined(_KERNEL)
2172 EXPORT_SYMBOL(zfs_suspend_fs);
2173 EXPORT_SYMBOL(zfs_resume_fs);
2174 EXPORT_SYMBOL(zfs_set_version);
2175 EXPORT_SYMBOL(zfsvfs_create);
2176 EXPORT_SYMBOL(zfsvfs_free);
2177 EXPORT_SYMBOL(zfs_is_readonly);
2178 EXPORT_SYMBOL(zfs_domount);
2179 EXPORT_SYMBOL(zfs_preumount);
2180 EXPORT_SYMBOL(zfs_umount);
2181 EXPORT_SYMBOL(zfs_remount);
2182 EXPORT_SYMBOL(zfs_statvfs);
2183 EXPORT_SYMBOL(zfs_vget);
2184 EXPORT_SYMBOL(zfs_prune);
2185 #endif
2186