1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 #include <rte_ethdev_driver.h>
7 #include <rte_malloc.h>
8 
9 #include "base/i40e_prototype.h"
10 #include "base/i40e_type.h"
11 #include "i40e_ethdev.h"
12 #include "i40e_rxtx.h"
13 #include "i40e_rxtx_vec_common.h"
14 
15 #include <x86intrin.h>
16 
17 #ifndef __INTEL_COMPILER
18 #pragma GCC diagnostic ignored "-Wcast-qual"
19 #endif
20 
21 static inline void
i40e_rxq_rearm(struct i40e_rx_queue * rxq)22 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
23 {
24 	int i;
25 	uint16_t rx_id;
26 	volatile union i40e_rx_desc *rxdp;
27 	struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
28 
29 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
30 
31 	/* Pull 'n' more MBUFs into the software ring */
32 	if (rte_mempool_get_bulk(rxq->mp,
33 				 (void *)rxep,
34 				 RTE_I40E_RXQ_REARM_THRESH) < 0) {
35 		if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
36 		    rxq->nb_rx_desc) {
37 			__m128i dma_addr0;
38 			dma_addr0 = _mm_setzero_si128();
39 			for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
40 				rxep[i].mbuf = &rxq->fake_mbuf;
41 				_mm_store_si128((__m128i *)&rxdp[i].read,
42 						dma_addr0);
43 			}
44 		}
45 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46 			RTE_I40E_RXQ_REARM_THRESH;
47 		return;
48 	}
49 
50 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
51 	struct rte_mbuf *mb0, *mb1;
52 	__m128i dma_addr0, dma_addr1;
53 	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
54 			RTE_PKTMBUF_HEADROOM);
55 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
56 	for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
57 		__m128i vaddr0, vaddr1;
58 
59 		mb0 = rxep[0].mbuf;
60 		mb1 = rxep[1].mbuf;
61 
62 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
63 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
64 				offsetof(struct rte_mbuf, buf_addr) + 8);
65 		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
66 		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
67 
68 		/* convert pa to dma_addr hdr/data */
69 		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
70 		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
71 
72 		/* add headroom to pa values */
73 		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
74 		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
75 
76 		/* flush desc with pa dma_addr */
77 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
78 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
79 	}
80 #else
81 	struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
82 	__m256i dma_addr0_1, dma_addr2_3;
83 	__m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
84 	/* Initialize the mbufs in vector, process 4 mbufs in one loop */
85 	for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH;
86 			i += 4, rxep += 4, rxdp += 4) {
87 		__m128i vaddr0, vaddr1, vaddr2, vaddr3;
88 		__m256i vaddr0_1, vaddr2_3;
89 
90 		mb0 = rxep[0].mbuf;
91 		mb1 = rxep[1].mbuf;
92 		mb2 = rxep[2].mbuf;
93 		mb3 = rxep[3].mbuf;
94 
95 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
96 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
97 				offsetof(struct rte_mbuf, buf_addr) + 8);
98 		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
99 		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
100 		vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
101 		vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
102 
103 		/*
104 		 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
105 		 * into the high lanes. Similarly for 2 & 3
106 		 */
107 		vaddr0_1 = _mm256_inserti128_si256(
108 				_mm256_castsi128_si256(vaddr0), vaddr1, 1);
109 		vaddr2_3 = _mm256_inserti128_si256(
110 				_mm256_castsi128_si256(vaddr2), vaddr3, 1);
111 
112 		/* convert pa to dma_addr hdr/data */
113 		dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
114 		dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
115 
116 		/* add headroom to pa values */
117 		dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
118 		dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
119 
120 		/* flush desc with pa dma_addr */
121 		_mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
122 		_mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
123 	}
124 
125 #endif
126 
127 	rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
128 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
129 		rxq->rxrearm_start = 0;
130 
131 	rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
132 
133 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
134 			     (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
135 
136 	/* Update the tail pointer on the NIC */
137 	I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
138 }
139 
140 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
141 /* Handles 32B descriptor FDIR ID processing:
142  * rxdp: receive descriptor ring, required to load 2nd 16B half of each desc
143  * rx_pkts: required to store metadata back to mbufs
144  * pkt_idx: offset into the burst, increments in vector widths
145  * desc_idx: required to select the correct shift at compile time
146  */
147 static inline __m256i
desc_fdir_processing_32b(volatile union i40e_rx_desc * rxdp,struct rte_mbuf ** rx_pkts,const uint32_t pkt_idx,const uint32_t desc_idx)148 desc_fdir_processing_32b(volatile union i40e_rx_desc *rxdp,
149 			 struct rte_mbuf **rx_pkts,
150 			 const uint32_t pkt_idx,
151 			 const uint32_t desc_idx)
152 {
153 	/* 32B desc path: load rxdp.wb.qword2 for EXT_STATUS and FLEXBH_STAT */
154 	__m128i *rxdp_desc_0 = (void *)(&rxdp[desc_idx + 0].wb.qword2);
155 	__m128i *rxdp_desc_1 = (void *)(&rxdp[desc_idx + 1].wb.qword2);
156 	const __m128i desc_qw2_0 = _mm_load_si128(rxdp_desc_0);
157 	const __m128i desc_qw2_1 = _mm_load_si128(rxdp_desc_1);
158 
159 	/* Mask for FLEXBH_STAT, and the FDIR_ID value to compare against. The
160 	 * remaining data is set to all 1's to pass through data.
161 	 */
162 	const __m256i flexbh_mask = _mm256_set_epi32(-1, -1, -1, 3 << 4,
163 						     -1, -1, -1, 3 << 4);
164 	const __m256i flexbh_id   = _mm256_set_epi32(-1, -1, -1, 1 << 4,
165 						     -1, -1, -1, 1 << 4);
166 
167 	/* Load descriptor, check for FLEXBH bits, generate a mask for both
168 	 * packets in the register.
169 	 */
170 	__m256i desc_qw2_0_1 =
171 		_mm256_inserti128_si256(_mm256_castsi128_si256(desc_qw2_0),
172 					desc_qw2_1, 1);
173 	__m256i desc_tmp_msk = _mm256_and_si256(flexbh_mask, desc_qw2_0_1);
174 	__m256i fdir_mask = _mm256_cmpeq_epi32(flexbh_id, desc_tmp_msk);
175 	__m256i fdir_data = _mm256_alignr_epi8(desc_qw2_0_1, desc_qw2_0_1, 12);
176 	__m256i desc_fdir_data = _mm256_and_si256(fdir_mask, fdir_data);
177 
178 	/* Write data out to the mbuf. There is no store to this area of the
179 	 * mbuf today, so we cannot combine it with another store.
180 	 */
181 	const uint32_t idx_0 = pkt_idx + desc_idx;
182 	const uint32_t idx_1 = pkt_idx + desc_idx + 1;
183 	rx_pkts[idx_0]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 0);
184 	rx_pkts[idx_1]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 4);
185 
186 	/* Create mbuf flags as required for mbuf_flags layout
187 	 *  (That's high lane [1,3,5,7, 0,2,4,6] as u32 lanes).
188 	 * Approach:
189 	 * - Mask away bits not required from the fdir_mask
190 	 * - Leave the PKT_FDIR_ID bit (1 << 13)
191 	 * - Position that bit correctly based on packet number
192 	 * - OR in the resulting bit to mbuf_flags
193 	 */
194 	RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
195 	__m256i mbuf_flag_mask = _mm256_set_epi32(0, 0, 0, 1 << 13,
196 						  0, 0, 0, 1 << 13);
197 	__m256i desc_flag_bit =  _mm256_and_si256(mbuf_flag_mask, fdir_mask);
198 
199 	/* For static-inline function, this will be stripped out
200 	 * as the desc_idx is a hard-coded constant.
201 	 */
202 	switch (desc_idx) {
203 	case 0:
204 		return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit,  4);
205 	case 2:
206 		return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit,  8);
207 	case 4:
208 		return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 12);
209 	case 6:
210 		return desc_flag_bit;
211 	default:
212 		break;
213 	}
214 
215 	/* NOT REACHED, see above switch returns */
216 	return _mm256_setzero_si256();
217 }
218 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
219 
220 #define PKTLEN_SHIFT     10
221 
222 /* Force inline as some compilers will not inline by default. */
223 static __rte_always_inline uint16_t
_recv_raw_pkts_vec_avx2(struct i40e_rx_queue * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts,uint8_t * split_packet)224 _recv_raw_pkts_vec_avx2(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
225 		uint16_t nb_pkts, uint8_t *split_packet)
226 {
227 #define RTE_I40E_DESCS_PER_LOOP_AVX 8
228 
229 	const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
230 	const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
231 			0, rxq->mbuf_initializer);
232 	struct i40e_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
233 	volatile union i40e_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
234 	const int avx_aligned = ((rxq->rx_tail & 1) == 0);
235 	rte_prefetch0(rxdp);
236 
237 	/* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP_AVX */
238 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP_AVX);
239 
240 	/* See if we need to rearm the RX queue - gives the prefetch a bit
241 	 * of time to act
242 	 */
243 	if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
244 		i40e_rxq_rearm(rxq);
245 
246 	/* Before we start moving massive data around, check to see if
247 	 * there is actually a packet available
248 	 */
249 	if (!(rxdp->wb.qword1.status_error_len &
250 			rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
251 		return 0;
252 
253 	/* constants used in processing loop */
254 	const __m256i crc_adjust = _mm256_set_epi16(
255 			/* first descriptor */
256 			0, 0, 0,       /* ignore non-length fields */
257 			-rxq->crc_len, /* sub crc on data_len */
258 			0,             /* ignore high-16bits of pkt_len */
259 			-rxq->crc_len, /* sub crc on pkt_len */
260 			0, 0,          /* ignore pkt_type field */
261 			/* second descriptor */
262 			0, 0, 0,       /* ignore non-length fields */
263 			-rxq->crc_len, /* sub crc on data_len */
264 			0,             /* ignore high-16bits of pkt_len */
265 			-rxq->crc_len, /* sub crc on pkt_len */
266 			0, 0           /* ignore pkt_type field */
267 	);
268 
269 	/* 8 packets DD mask, LSB in each 32-bit value */
270 	const __m256i dd_check = _mm256_set1_epi32(1);
271 
272 	/* 8 packets EOP mask, second-LSB in each 32-bit value */
273 	const __m256i eop_check = _mm256_slli_epi32(dd_check,
274 			I40E_RX_DESC_STATUS_EOF_SHIFT);
275 
276 	/* mask to shuffle from desc. to mbuf (2 descriptors)*/
277 	const __m256i shuf_msk = _mm256_set_epi8(
278 			/* first descriptor */
279 			7, 6, 5, 4,  /* octet 4~7, 32bits rss */
280 			3, 2,        /* octet 2~3, low 16 bits vlan_macip */
281 			15, 14,      /* octet 15~14, 16 bits data_len */
282 			0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
283 			15, 14,      /* octet 15~14, low 16 bits pkt_len */
284 			0xFF, 0xFF,  /* pkt_type set as unknown */
285 			0xFF, 0xFF,  /*pkt_type set as unknown */
286 			/* second descriptor */
287 			7, 6, 5, 4,  /* octet 4~7, 32bits rss */
288 			3, 2,        /* octet 2~3, low 16 bits vlan_macip */
289 			15, 14,      /* octet 15~14, 16 bits data_len */
290 			0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
291 			15, 14,      /* octet 15~14, low 16 bits pkt_len */
292 			0xFF, 0xFF,  /* pkt_type set as unknown */
293 			0xFF, 0xFF   /*pkt_type set as unknown */
294 	);
295 	/*
296 	 * compile-time check the above crc and shuffle layout is correct.
297 	 * NOTE: the first field (lowest address) is given last in set_epi
298 	 * calls above.
299 	 */
300 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
301 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
302 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
303 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
304 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
305 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
306 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
307 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
308 
309 	/* Status/Error flag masks */
310 	/*
311 	 * mask everything except RSS, flow director and VLAN flags
312 	 * bit2 is for VLAN tag, bit11 for flow director indication
313 	 * bit13:12 for RSS indication. Bits 3-5 of error
314 	 * field (bits 22-24) are for IP/L4 checksum errors
315 	 */
316 	const __m256i flags_mask = _mm256_set1_epi32(
317 			(1 << 2) | (1 << 11) | (3 << 12) | (7 << 22));
318 	/*
319 	 * data to be shuffled by result of flag mask. If VLAN bit is set,
320 	 * (bit 2), then position 4 in this array will be used in the
321 	 * destination
322 	 */
323 	const __m256i vlan_flags_shuf = _mm256_set_epi32(
324 			0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
325 			0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
326 	/*
327 	 * data to be shuffled by result of flag mask, shifted down 11.
328 	 * If RSS/FDIR bits are set, shuffle moves appropriate flags in
329 	 * place.
330 	 */
331 	const __m256i rss_flags_shuf = _mm256_set_epi8(
332 			0, 0, 0, 0, 0, 0, 0, 0,
333 			PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
334 			0, 0, PKT_RX_FDIR, 0, /* end up 128-bits */
335 			0, 0, 0, 0, 0, 0, 0, 0,
336 			PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
337 			0, 0, PKT_RX_FDIR, 0);
338 
339 	/*
340 	 * data to be shuffled by the result of the flags mask shifted by 22
341 	 * bits.  This gives use the l3_l4 flags.
342 	 */
343 	const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
344 			/* shift right 1 bit to make sure it not exceed 255 */
345 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
346 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1,
347 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
348 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
349 			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
350 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
351 			PKT_RX_IP_CKSUM_BAD >> 1,
352 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
353 			/* second 128-bits */
354 			0, 0, 0, 0, 0, 0, 0, 0,
355 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
356 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1,
357 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
358 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
359 			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
360 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
361 			PKT_RX_IP_CKSUM_BAD >> 1,
362 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
363 
364 	const __m256i cksum_mask = _mm256_set1_epi32(
365 			PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
366 			PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
367 			PKT_RX_EIP_CKSUM_BAD);
368 
369 	RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
370 
371 	uint16_t i, received;
372 	for (i = 0, received = 0; i < nb_pkts;
373 			i += RTE_I40E_DESCS_PER_LOOP_AVX,
374 			rxdp += RTE_I40E_DESCS_PER_LOOP_AVX) {
375 		/* step 1, copy over 8 mbuf pointers to rx_pkts array */
376 		_mm256_storeu_si256((void *)&rx_pkts[i],
377 				_mm256_loadu_si256((void *)&sw_ring[i]));
378 #ifdef RTE_ARCH_X86_64
379 		_mm256_storeu_si256((void *)&rx_pkts[i + 4],
380 				_mm256_loadu_si256((void *)&sw_ring[i + 4]));
381 #endif
382 
383 		__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
384 #ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC
385 		/* for AVX we need alignment otherwise loads are not atomic */
386 		if (avx_aligned) {
387 			/* load in descriptors, 2 at a time, in reverse order */
388 			raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
389 			rte_compiler_barrier();
390 			raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
391 			rte_compiler_barrier();
392 			raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
393 			rte_compiler_barrier();
394 			raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
395 		} else
396 #endif
397 		do {
398 			const __m128i raw_desc7 = _mm_load_si128((void *)(rxdp + 7));
399 			rte_compiler_barrier();
400 			const __m128i raw_desc6 = _mm_load_si128((void *)(rxdp + 6));
401 			rte_compiler_barrier();
402 			const __m128i raw_desc5 = _mm_load_si128((void *)(rxdp + 5));
403 			rte_compiler_barrier();
404 			const __m128i raw_desc4 = _mm_load_si128((void *)(rxdp + 4));
405 			rte_compiler_barrier();
406 			const __m128i raw_desc3 = _mm_load_si128((void *)(rxdp + 3));
407 			rte_compiler_barrier();
408 			const __m128i raw_desc2 = _mm_load_si128((void *)(rxdp + 2));
409 			rte_compiler_barrier();
410 			const __m128i raw_desc1 = _mm_load_si128((void *)(rxdp + 1));
411 			rte_compiler_barrier();
412 			const __m128i raw_desc0 = _mm_load_si128((void *)(rxdp + 0));
413 
414 			raw_desc6_7 = _mm256_inserti128_si256(
415 					_mm256_castsi128_si256(raw_desc6), raw_desc7, 1);
416 			raw_desc4_5 = _mm256_inserti128_si256(
417 					_mm256_castsi128_si256(raw_desc4), raw_desc5, 1);
418 			raw_desc2_3 = _mm256_inserti128_si256(
419 					_mm256_castsi128_si256(raw_desc2), raw_desc3, 1);
420 			raw_desc0_1 = _mm256_inserti128_si256(
421 					_mm256_castsi128_si256(raw_desc0), raw_desc1, 1);
422 		} while (0);
423 
424 		if (split_packet) {
425 			int j;
426 			for (j = 0; j < RTE_I40E_DESCS_PER_LOOP_AVX; j++)
427 				rte_mbuf_prefetch_part2(rx_pkts[i + j]);
428 		}
429 
430 		/*
431 		 * convert descriptors 4-7 into mbufs, adjusting length and
432 		 * re-arranging fields. Then write into the mbuf
433 		 */
434 		const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7, PKTLEN_SHIFT);
435 		const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5, PKTLEN_SHIFT);
436 		const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7, len6_7, 0x80);
437 		const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5, len4_5, 0x80);
438 		__m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
439 		__m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
440 		mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
441 		mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
442 		/*
443 		 * to get packet types, shift 64-bit values down 30 bits
444 		 * and so ptype is in lower 8-bits in each
445 		 */
446 		const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
447 		const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
448 		const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
449 		const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
450 		const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
451 		const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
452 		mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
453 		mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
454 		mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
455 		mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
456 		/* merge the status bits into one register */
457 		const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
458 				desc4_5);
459 
460 		/*
461 		 * convert descriptors 0-3 into mbufs, adjusting length and
462 		 * re-arranging fields. Then write into the mbuf
463 		 */
464 		const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3, PKTLEN_SHIFT);
465 		const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1, PKTLEN_SHIFT);
466 		const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3, len2_3, 0x80);
467 		const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1, len0_1, 0x80);
468 		__m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
469 		__m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
470 		mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
471 		mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
472 		/* get the packet types */
473 		const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
474 		const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
475 		const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
476 		const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
477 		const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
478 		const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
479 		mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
480 		mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
481 		mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
482 		mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
483 		/* merge the status bits into one register */
484 		const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
485 				desc0_1);
486 
487 		/*
488 		 * take the two sets of status bits and merge to one
489 		 * After merge, the packets status flags are in the
490 		 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
491 		 */
492 		__m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
493 				status0_3);
494 
495 		/* now do flag manipulation */
496 
497 		/* get only flag/error bits we want */
498 		const __m256i flag_bits = _mm256_and_si256(
499 				status0_7, flags_mask);
500 		/* set vlan and rss flags */
501 		const __m256i vlan_flags = _mm256_shuffle_epi8(
502 				vlan_flags_shuf, flag_bits);
503 		const __m256i rss_fdir_bits = _mm256_srli_epi32(flag_bits, 11);
504 		const __m256i rss_flags = _mm256_shuffle_epi8(rss_flags_shuf,
505 							      rss_fdir_bits);
506 
507 		/*
508 		 * l3_l4_error flags, shuffle, then shift to correct adjustment
509 		 * of flags in flags_shuf, and finally mask out extra bits
510 		 */
511 		__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
512 				_mm256_srli_epi32(flag_bits, 22));
513 		l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
514 		l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
515 
516 		/* merge flags */
517 		__m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
518 				_mm256_or_si256(rss_flags, vlan_flags));
519 
520 		/* If the rxq has FDIR enabled, read and process the FDIR info
521 		 * from the descriptor. This can cause more loads/stores, so is
522 		 * not always performed. Branch over the code when not enabled.
523 		 */
524 		if (rxq->fdir_enabled) {
525 #ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC
526 			/* 16B descriptor code path:
527 			 * RSS and FDIR ID use the same offset in the desc, so
528 			 * only one can be present at a time. The code below
529 			 * identifies an FDIR ID match, and zeros the RSS value
530 			 * in the mbuf on FDIR match to keep mbuf data clean.
531 			 */
532 #define FDIR_BLEND_MASK ((1 << 3) | (1 << 7))
533 
534 			/* Flags:
535 			 * - Take flags, shift bits to null out
536 			 * - CMPEQ with known FDIR ID, to get 0xFFFF or 0 mask
537 			 * - Strip bits from mask, leaving 0 or 1 for FDIR ID
538 			 * - Merge with mbuf_flags
539 			 */
540 			/* FLM = 1, FLTSTAT = 0b01, (FLM | FLTSTAT) == 3.
541 			 * Shift left by 28 to avoid having to mask.
542 			 */
543 			const __m256i fdir = _mm256_slli_epi32(rss_fdir_bits, 28);
544 			const __m256i fdir_id = _mm256_set1_epi32(3 << 28);
545 
546 			/* As above, the fdir_mask to packet mapping is this:
547 			 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
548 			 * Then OR FDIR flags to mbuf_flags on FDIR ID hit.
549 			 */
550 			RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
551 			const __m256i pkt_fdir_bit = _mm256_set1_epi32(1 << 13);
552 			const __m256i fdir_mask = _mm256_cmpeq_epi32(fdir, fdir_id);
553 			__m256i fdir_bits = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
554 			mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_bits);
555 
556 			/* Based on FDIR_MASK, clear the RSS or FDIR value.
557 			 * The FDIR ID value is masked to zero if not a hit,
558 			 * otherwise the mb0_1 register RSS field is zeroed.
559 			 */
560 			const __m256i fdir_zero_mask = _mm256_setzero_si256();
561 			__m256i tmp0_1 = _mm256_blend_epi32(fdir_zero_mask,
562 						fdir_mask, FDIR_BLEND_MASK);
563 			__m256i fdir_mb0_1 = _mm256_and_si256(mb0_1, fdir_mask);
564 			mb0_1 = _mm256_andnot_si256(tmp0_1, mb0_1);
565 
566 			/* Write to mbuf: no stores to combine with, so just a
567 			 * scalar store to push data here.
568 			 */
569 			rx_pkts[i + 0]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb0_1, 3);
570 			rx_pkts[i + 1]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb0_1, 7);
571 
572 			/* Same as above, only shift the fdir_mask to align
573 			 * the packet FDIR mask with the FDIR_ID desc lane.
574 			 */
575 			__m256i tmp2_3 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 12);
576 			__m256i fdir_mb2_3 = _mm256_and_si256(mb2_3, tmp2_3);
577 			tmp2_3 = _mm256_blend_epi32(fdir_zero_mask, tmp2_3,
578 						    FDIR_BLEND_MASK);
579 			mb2_3 = _mm256_andnot_si256(tmp2_3, mb2_3);
580 			rx_pkts[i + 2]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb2_3, 3);
581 			rx_pkts[i + 3]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb2_3, 7);
582 
583 			__m256i tmp4_5 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 8);
584 			__m256i fdir_mb4_5 = _mm256_and_si256(mb4_5, tmp4_5);
585 			tmp4_5 = _mm256_blend_epi32(fdir_zero_mask, tmp4_5,
586 						    FDIR_BLEND_MASK);
587 			mb4_5 = _mm256_andnot_si256(tmp4_5, mb4_5);
588 			rx_pkts[i + 4]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb4_5, 3);
589 			rx_pkts[i + 5]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb4_5, 7);
590 
591 			__m256i tmp6_7 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 4);
592 			__m256i fdir_mb6_7 = _mm256_and_si256(mb6_7, tmp6_7);
593 			tmp6_7 = _mm256_blend_epi32(fdir_zero_mask, tmp6_7,
594 						    FDIR_BLEND_MASK);
595 			mb6_7 = _mm256_andnot_si256(tmp6_7, mb6_7);
596 			rx_pkts[i + 6]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb6_7, 3);
597 			rx_pkts[i + 7]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb6_7, 7);
598 
599 			/* End of 16B descriptor handling */
600 #else
601 			/* 32B descriptor FDIR ID mark handling. Returns bits
602 			 * to be OR-ed into the mbuf olflags.
603 			 */
604 			__m256i fdir_add_flags;
605 			fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 0);
606 			mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
607 
608 			fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 2);
609 			mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
610 
611 			fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 4);
612 			mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
613 
614 			fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 6);
615 			mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
616 			/* End 32B desc handling */
617 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
618 
619 		} /* if() on FDIR enabled */
620 
621 		/*
622 		 * At this point, we have the 8 sets of flags in the low 16-bits
623 		 * of each 32-bit value in vlan0.
624 		 * We want to extract these, and merge them with the mbuf init data
625 		 * so we can do a single write to the mbuf to set the flags
626 		 * and all the other initialization fields. Extracting the
627 		 * appropriate flags means that we have to do a shift and blend for
628 		 * each mbuf before we do the write. However, we can also
629 		 * add in the previously computed rx_descriptor fields to
630 		 * make a single 256-bit write per mbuf
631 		 */
632 		/* check the structure matches expectations */
633 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
634 				offsetof(struct rte_mbuf, rearm_data) + 8);
635 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
636 				RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
637 		/* build up data and do writes */
638 		__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
639 				rearm6, rearm7;
640 		rearm6 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 8), 0x04);
641 		rearm4 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 4), 0x04);
642 		rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
643 		rearm0 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(mbuf_flags, 4), 0x04);
644 		/* permute to add in the rx_descriptor e.g. rss fields */
645 		rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
646 		rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
647 		rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
648 		rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
649 		/* write to mbuf */
650 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6);
651 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, rearm4);
652 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, rearm2);
653 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, rearm0);
654 
655 		/* repeat for the odd mbufs */
656 		const __m256i odd_flags = _mm256_castsi128_si256(
657 				_mm256_extracti128_si256(mbuf_flags, 1));
658 		rearm7 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 8), 0x04);
659 		rearm5 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 4), 0x04);
660 		rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
661 		rearm1 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(odd_flags, 4), 0x04);
662 		/* since odd mbufs are already in hi 128-bits use blend */
663 		rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
664 		rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
665 		rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
666 		rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
667 		/* again write to mbufs */
668 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7);
669 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, rearm5);
670 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, rearm3);
671 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, rearm1);
672 
673 		/* extract and record EOP bit */
674 		if (split_packet) {
675 			const __m128i eop_mask = _mm_set1_epi16(
676 					1 << I40E_RX_DESC_STATUS_EOF_SHIFT);
677 			const __m256i eop_bits256 = _mm256_and_si256(status0_7,
678 					eop_check);
679 			/* pack status bits into a single 128-bit register */
680 			const __m128i eop_bits = _mm_packus_epi32(
681 					_mm256_castsi256_si128(eop_bits256),
682 					_mm256_extractf128_si256(eop_bits256, 1));
683 			/*
684 			 * flip bits, and mask out the EOP bit, which is now
685 			 * a split-packet bit i.e. !EOP, rather than EOP one.
686 			 */
687 			__m128i split_bits = _mm_andnot_si128(eop_bits,
688 					eop_mask);
689 			/*
690 			 * eop bits are out of order, so we need to shuffle them
691 			 * back into order again. In doing so, only use low 8
692 			 * bits, which acts like another pack instruction
693 			 * The original order is (hi->lo): 1,3,5,7,0,2,4,6
694 			 * [Since we use epi8, the 16-bit positions are
695 			 * multiplied by 2 in the eop_shuffle value.]
696 			 */
697 			__m128i eop_shuffle = _mm_set_epi8(
698 					0xFF, 0xFF, 0xFF, 0xFF, /* zero hi 64b */
699 					0xFF, 0xFF, 0xFF, 0xFF,
700 					8, 0, 10, 2, /* move values to lo 64b */
701 					12, 4, 14, 6);
702 			split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
703 			*(uint64_t *)split_packet = _mm_cvtsi128_si64(split_bits);
704 			split_packet += RTE_I40E_DESCS_PER_LOOP_AVX;
705 		}
706 
707 		/* perform dd_check */
708 		status0_7 = _mm256_and_si256(status0_7, dd_check);
709 		status0_7 = _mm256_packs_epi32(status0_7,
710 				_mm256_setzero_si256());
711 
712 		uint64_t burst = __builtin_popcountll(_mm_cvtsi128_si64(
713 				_mm256_extracti128_si256(status0_7, 1)));
714 		burst += __builtin_popcountll(_mm_cvtsi128_si64(
715 				_mm256_castsi256_si128(status0_7)));
716 		received += burst;
717 		if (burst != RTE_I40E_DESCS_PER_LOOP_AVX)
718 			break;
719 	}
720 
721 	/* update tail pointers */
722 	rxq->rx_tail += received;
723 	rxq->rx_tail &= (rxq->nb_rx_desc - 1);
724 	if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
725 		rxq->rx_tail--;
726 		received--;
727 	}
728 	rxq->rxrearm_nb += received;
729 	return received;
730 }
731 
732 /*
733  * Notice:
734  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
735  */
736 uint16_t
i40e_recv_pkts_vec_avx2(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)737 i40e_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
738 		   uint16_t nb_pkts)
739 {
740 	return _recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
741 }
742 
743 /*
744  * vPMD receive routine that reassembles single burst of 32 scattered packets
745  * Notice:
746  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
747  */
748 static uint16_t
i40e_recv_scattered_burst_vec_avx2(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)749 i40e_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
750 			     uint16_t nb_pkts)
751 {
752 	struct i40e_rx_queue *rxq = rx_queue;
753 	uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
754 
755 	/* get some new buffers */
756 	uint16_t nb_bufs = _recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
757 			split_flags);
758 	if (nb_bufs == 0)
759 		return 0;
760 
761 	/* happy day case, full burst + no packets to be joined */
762 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
763 
764 	if (rxq->pkt_first_seg == NULL &&
765 			split_fl64[0] == 0 && split_fl64[1] == 0 &&
766 			split_fl64[2] == 0 && split_fl64[3] == 0)
767 		return nb_bufs;
768 
769 	/* reassemble any packets that need reassembly*/
770 	unsigned int i = 0;
771 
772 	if (rxq->pkt_first_seg == NULL) {
773 		/* find the first split flag, and only reassemble then*/
774 		while (i < nb_bufs && !split_flags[i])
775 			i++;
776 		if (i == nb_bufs)
777 			return nb_bufs;
778 		rxq->pkt_first_seg = rx_pkts[i];
779 	}
780 	return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
781 		&split_flags[i]);
782 }
783 
784 /*
785  * vPMD receive routine that reassembles scattered packets.
786  * Main receive routine that can handle arbitrary burst sizes
787  * Notice:
788  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
789  */
790 uint16_t
i40e_recv_scattered_pkts_vec_avx2(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)791 i40e_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
792 			     uint16_t nb_pkts)
793 {
794 	uint16_t retval = 0;
795 	while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
796 		uint16_t burst = i40e_recv_scattered_burst_vec_avx2(rx_queue,
797 				rx_pkts + retval, RTE_I40E_VPMD_RX_BURST);
798 		retval += burst;
799 		nb_pkts -= burst;
800 		if (burst < RTE_I40E_VPMD_RX_BURST)
801 			return retval;
802 	}
803 	return retval + i40e_recv_scattered_burst_vec_avx2(rx_queue,
804 				rx_pkts + retval, nb_pkts);
805 }
806 
807 
808 static inline void
vtx1(volatile struct i40e_tx_desc * txdp,struct rte_mbuf * pkt,uint64_t flags)809 vtx1(volatile struct i40e_tx_desc *txdp,
810 		struct rte_mbuf *pkt, uint64_t flags)
811 {
812 	uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
813 			((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
814 			((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
815 
816 	__m128i descriptor = _mm_set_epi64x(high_qw,
817 				pkt->buf_iova + pkt->data_off);
818 	_mm_store_si128((__m128i *)txdp, descriptor);
819 }
820 
821 static inline void
vtx(volatile struct i40e_tx_desc * txdp,struct rte_mbuf ** pkt,uint16_t nb_pkts,uint64_t flags)822 vtx(volatile struct i40e_tx_desc *txdp,
823 		struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
824 {
825 	const uint64_t hi_qw_tmpl = (I40E_TX_DESC_DTYPE_DATA |
826 			((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT));
827 
828 	/* if unaligned on 32-bit boundary, do one to align */
829 	if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
830 		vtx1(txdp, *pkt, flags);
831 		nb_pkts--, txdp++, pkt++;
832 	}
833 
834 	/* do two at a time while possible, in bursts */
835 	for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
836 		uint64_t hi_qw3 = hi_qw_tmpl |
837 				((uint64_t)pkt[3]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
838 		uint64_t hi_qw2 = hi_qw_tmpl |
839 				((uint64_t)pkt[2]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
840 		uint64_t hi_qw1 = hi_qw_tmpl |
841 				((uint64_t)pkt[1]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
842 		uint64_t hi_qw0 = hi_qw_tmpl |
843 				((uint64_t)pkt[0]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
844 
845 		__m256i desc2_3 = _mm256_set_epi64x(
846 				hi_qw3, pkt[3]->buf_iova + pkt[3]->data_off,
847 				hi_qw2, pkt[2]->buf_iova + pkt[2]->data_off);
848 		__m256i desc0_1 = _mm256_set_epi64x(
849 				hi_qw1, pkt[1]->buf_iova + pkt[1]->data_off,
850 				hi_qw0, pkt[0]->buf_iova + pkt[0]->data_off);
851 		_mm256_store_si256((void *)(txdp + 2), desc2_3);
852 		_mm256_store_si256((void *)txdp, desc0_1);
853 	}
854 
855 	/* do any last ones */
856 	while (nb_pkts) {
857 		vtx1(txdp, *pkt, flags);
858 		txdp++, pkt++, nb_pkts--;
859 	}
860 }
861 
862 static inline uint16_t
i40e_xmit_fixed_burst_vec_avx2(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)863 i40e_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
864 			  uint16_t nb_pkts)
865 {
866 	struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
867 	volatile struct i40e_tx_desc *txdp;
868 	struct i40e_tx_entry *txep;
869 	uint16_t n, nb_commit, tx_id;
870 	uint64_t flags = I40E_TD_CMD;
871 	uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
872 
873 	/* cross rx_thresh boundary is not allowed */
874 	nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
875 
876 	if (txq->nb_tx_free < txq->tx_free_thresh)
877 		i40e_tx_free_bufs(txq);
878 
879 	nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
880 	if (unlikely(nb_pkts == 0))
881 		return 0;
882 
883 	tx_id = txq->tx_tail;
884 	txdp = &txq->tx_ring[tx_id];
885 	txep = &txq->sw_ring[tx_id];
886 
887 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
888 
889 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
890 	if (nb_commit >= n) {
891 		tx_backlog_entry(txep, tx_pkts, n);
892 
893 		vtx(txdp, tx_pkts, n - 1, flags);
894 		tx_pkts += (n - 1);
895 		txdp += (n - 1);
896 
897 		vtx1(txdp, *tx_pkts++, rs);
898 
899 		nb_commit = (uint16_t)(nb_commit - n);
900 
901 		tx_id = 0;
902 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
903 
904 		/* avoid reach the end of ring */
905 		txdp = &txq->tx_ring[tx_id];
906 		txep = &txq->sw_ring[tx_id];
907 	}
908 
909 	tx_backlog_entry(txep, tx_pkts, nb_commit);
910 
911 	vtx(txdp, tx_pkts, nb_commit, flags);
912 
913 	tx_id = (uint16_t)(tx_id + nb_commit);
914 	if (tx_id > txq->tx_next_rs) {
915 		txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
916 			rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
917 						I40E_TXD_QW1_CMD_SHIFT);
918 		txq->tx_next_rs =
919 			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
920 	}
921 
922 	txq->tx_tail = tx_id;
923 
924 	I40E_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
925 
926 	return nb_pkts;
927 }
928 
929 uint16_t
i40e_xmit_pkts_vec_avx2(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)930 i40e_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
931 		   uint16_t nb_pkts)
932 {
933 	uint16_t nb_tx = 0;
934 	struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
935 
936 	while (nb_pkts) {
937 		uint16_t ret, num;
938 
939 		num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
940 		ret = i40e_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
941 						num);
942 		nb_tx += ret;
943 		nb_pkts -= ret;
944 		if (ret < num)
945 			break;
946 	}
947 
948 	return nb_tx;
949 }
950