1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
5 * The Regents of the University of California.
6 * (c) UNIX System Laboratories, Inc.
7 * Copyright (c) 2000-2001 Robert N. M. Watson.
8 * All rights reserved.
9 *
10 * All or some portions of this file are derived from material licensed
11 * to the University of California by American Telephone and Telegraph
12 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
13 * the permission of UNIX System Laboratories, Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * @(#)kern_prot.c 8.6 (Berkeley) 1/21/94
40 */
41
42 /*
43 * System calls related to processes and protection
44 */
45
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48
49 #include "opt_inet.h"
50 #include "opt_inet6.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/acct.h>
55 #include <sys/kdb.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/loginclass.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/ptrace.h>
62 #include <sys/refcount.h>
63 #include <sys/sx.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #include <sys/sysent.h>
67 #include <sys/sysproto.h>
68 #include <sys/jail.h>
69 #include <sys/racct.h>
70 #include <sys/rctl.h>
71 #include <sys/resourcevar.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74 #include <sys/syscallsubr.h>
75 #include <sys/sysctl.h>
76
77 #ifdef REGRESSION
78 FEATURE(regression,
79 "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
80 #endif
81
82 #include <security/audit/audit.h>
83 #include <security/mac/mac_framework.h>
84
85 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
86
87 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
88 "BSD security policy");
89
90 static void crfree_final(struct ucred *cr);
91 static void crsetgroups_locked(struct ucred *cr, int ngrp,
92 gid_t *groups);
93
94 #ifndef _SYS_SYSPROTO_H_
95 struct getpid_args {
96 int dummy;
97 };
98 #endif
99 /* ARGSUSED */
100 int
sys_getpid(struct thread * td,struct getpid_args * uap)101 sys_getpid(struct thread *td, struct getpid_args *uap)
102 {
103 struct proc *p = td->td_proc;
104
105 td->td_retval[0] = p->p_pid;
106 #if defined(COMPAT_43)
107 if (SV_PROC_FLAG(p, SV_AOUT))
108 td->td_retval[1] = kern_getppid(td);
109 #endif
110 return (0);
111 }
112
113 #ifndef _SYS_SYSPROTO_H_
114 struct getppid_args {
115 int dummy;
116 };
117 #endif
118 /* ARGSUSED */
119 int
sys_getppid(struct thread * td,struct getppid_args * uap)120 sys_getppid(struct thread *td, struct getppid_args *uap)
121 {
122
123 td->td_retval[0] = kern_getppid(td);
124 return (0);
125 }
126
127 int
kern_getppid(struct thread * td)128 kern_getppid(struct thread *td)
129 {
130 struct proc *p = td->td_proc;
131
132 return (p->p_oppid);
133 }
134
135 /*
136 * Get process group ID; note that POSIX getpgrp takes no parameter.
137 */
138 #ifndef _SYS_SYSPROTO_H_
139 struct getpgrp_args {
140 int dummy;
141 };
142 #endif
143 int
sys_getpgrp(struct thread * td,struct getpgrp_args * uap)144 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
145 {
146 struct proc *p = td->td_proc;
147
148 PROC_LOCK(p);
149 td->td_retval[0] = p->p_pgrp->pg_id;
150 PROC_UNLOCK(p);
151 return (0);
152 }
153
154 /* Get an arbitrary pid's process group id */
155 #ifndef _SYS_SYSPROTO_H_
156 struct getpgid_args {
157 pid_t pid;
158 };
159 #endif
160 int
sys_getpgid(struct thread * td,struct getpgid_args * uap)161 sys_getpgid(struct thread *td, struct getpgid_args *uap)
162 {
163 struct proc *p;
164 int error;
165
166 if (uap->pid == 0) {
167 p = td->td_proc;
168 PROC_LOCK(p);
169 } else {
170 p = pfind(uap->pid);
171 if (p == NULL)
172 return (ESRCH);
173 error = p_cansee(td, p);
174 if (error) {
175 PROC_UNLOCK(p);
176 return (error);
177 }
178 }
179 td->td_retval[0] = p->p_pgrp->pg_id;
180 PROC_UNLOCK(p);
181 return (0);
182 }
183
184 /*
185 * Get an arbitrary pid's session id.
186 */
187 #ifndef _SYS_SYSPROTO_H_
188 struct getsid_args {
189 pid_t pid;
190 };
191 #endif
192 int
sys_getsid(struct thread * td,struct getsid_args * uap)193 sys_getsid(struct thread *td, struct getsid_args *uap)
194 {
195
196 return (kern_getsid(td, uap->pid));
197 }
198
199 int
kern_getsid(struct thread * td,pid_t pid)200 kern_getsid(struct thread *td, pid_t pid)
201 {
202 struct proc *p;
203 int error;
204
205 if (pid == 0) {
206 p = td->td_proc;
207 PROC_LOCK(p);
208 } else {
209 p = pfind(pid);
210 if (p == NULL)
211 return (ESRCH);
212 error = p_cansee(td, p);
213 if (error) {
214 PROC_UNLOCK(p);
215 return (error);
216 }
217 }
218 td->td_retval[0] = p->p_session->s_sid;
219 PROC_UNLOCK(p);
220 return (0);
221 }
222
223 #ifndef _SYS_SYSPROTO_H_
224 struct getuid_args {
225 int dummy;
226 };
227 #endif
228 /* ARGSUSED */
229 int
sys_getuid(struct thread * td,struct getuid_args * uap)230 sys_getuid(struct thread *td, struct getuid_args *uap)
231 {
232
233 td->td_retval[0] = td->td_ucred->cr_ruid;
234 #if defined(COMPAT_43)
235 td->td_retval[1] = td->td_ucred->cr_uid;
236 #endif
237 return (0);
238 }
239
240 #ifndef _SYS_SYSPROTO_H_
241 struct geteuid_args {
242 int dummy;
243 };
244 #endif
245 /* ARGSUSED */
246 int
sys_geteuid(struct thread * td,struct geteuid_args * uap)247 sys_geteuid(struct thread *td, struct geteuid_args *uap)
248 {
249
250 td->td_retval[0] = td->td_ucred->cr_uid;
251 return (0);
252 }
253
254 #ifndef _SYS_SYSPROTO_H_
255 struct getgid_args {
256 int dummy;
257 };
258 #endif
259 /* ARGSUSED */
260 int
sys_getgid(struct thread * td,struct getgid_args * uap)261 sys_getgid(struct thread *td, struct getgid_args *uap)
262 {
263
264 td->td_retval[0] = td->td_ucred->cr_rgid;
265 #if defined(COMPAT_43)
266 td->td_retval[1] = td->td_ucred->cr_groups[0];
267 #endif
268 return (0);
269 }
270
271 /*
272 * Get effective group ID. The "egid" is groups[0], and could be obtained
273 * via getgroups. This syscall exists because it is somewhat painful to do
274 * correctly in a library function.
275 */
276 #ifndef _SYS_SYSPROTO_H_
277 struct getegid_args {
278 int dummy;
279 };
280 #endif
281 /* ARGSUSED */
282 int
sys_getegid(struct thread * td,struct getegid_args * uap)283 sys_getegid(struct thread *td, struct getegid_args *uap)
284 {
285
286 td->td_retval[0] = td->td_ucred->cr_groups[0];
287 return (0);
288 }
289
290 #ifndef _SYS_SYSPROTO_H_
291 struct getgroups_args {
292 int gidsetsize;
293 gid_t *gidset;
294 };
295 #endif
296 int
sys_getgroups(struct thread * td,struct getgroups_args * uap)297 sys_getgroups(struct thread *td, struct getgroups_args *uap)
298 {
299 struct ucred *cred;
300 int ngrp, error;
301
302 cred = td->td_ucred;
303 ngrp = cred->cr_ngroups;
304
305 if (uap->gidsetsize == 0) {
306 error = 0;
307 goto out;
308 }
309 if (uap->gidsetsize < ngrp)
310 return (EINVAL);
311
312 error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
313 out:
314 td->td_retval[0] = ngrp;
315 return (error);
316 }
317
318 #ifndef _SYS_SYSPROTO_H_
319 struct setsid_args {
320 int dummy;
321 };
322 #endif
323 /* ARGSUSED */
324 int
sys_setsid(struct thread * td,struct setsid_args * uap)325 sys_setsid(struct thread *td, struct setsid_args *uap)
326 {
327 struct pgrp *pgrp;
328 int error;
329 struct proc *p = td->td_proc;
330 struct pgrp *newpgrp;
331 struct session *newsess;
332
333 error = 0;
334 pgrp = NULL;
335
336 newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
337 newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
338
339 sx_xlock(&proctree_lock);
340
341 if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
342 if (pgrp != NULL)
343 PGRP_UNLOCK(pgrp);
344 error = EPERM;
345 } else {
346 (void)enterpgrp(p, p->p_pid, newpgrp, newsess);
347 td->td_retval[0] = p->p_pid;
348 newpgrp = NULL;
349 newsess = NULL;
350 }
351
352 sx_xunlock(&proctree_lock);
353
354 uma_zfree(pgrp_zone, newpgrp);
355 free(newsess, M_SESSION);
356
357 return (error);
358 }
359
360 /*
361 * set process group (setpgid/old setpgrp)
362 *
363 * caller does setpgid(targpid, targpgid)
364 *
365 * pid must be caller or child of caller (ESRCH)
366 * if a child
367 * pid must be in same session (EPERM)
368 * pid can't have done an exec (EACCES)
369 * if pgid != pid
370 * there must exist some pid in same session having pgid (EPERM)
371 * pid must not be session leader (EPERM)
372 */
373 #ifndef _SYS_SYSPROTO_H_
374 struct setpgid_args {
375 int pid; /* target process id */
376 int pgid; /* target pgrp id */
377 };
378 #endif
379 /* ARGSUSED */
380 int
sys_setpgid(struct thread * td,struct setpgid_args * uap)381 sys_setpgid(struct thread *td, struct setpgid_args *uap)
382 {
383 struct proc *curp = td->td_proc;
384 struct proc *targp; /* target process */
385 struct pgrp *pgrp; /* target pgrp */
386 int error;
387 struct pgrp *newpgrp;
388
389 if (uap->pgid < 0)
390 return (EINVAL);
391
392 error = 0;
393
394 newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
395
396 sx_xlock(&proctree_lock);
397 if (uap->pid != 0 && uap->pid != curp->p_pid) {
398 if ((targp = pfind(uap->pid)) == NULL) {
399 error = ESRCH;
400 goto done;
401 }
402 if (!inferior(targp)) {
403 PROC_UNLOCK(targp);
404 error = ESRCH;
405 goto done;
406 }
407 if ((error = p_cansee(td, targp))) {
408 PROC_UNLOCK(targp);
409 goto done;
410 }
411 if (targp->p_pgrp == NULL ||
412 targp->p_session != curp->p_session) {
413 PROC_UNLOCK(targp);
414 error = EPERM;
415 goto done;
416 }
417 if (targp->p_flag & P_EXEC) {
418 PROC_UNLOCK(targp);
419 error = EACCES;
420 goto done;
421 }
422 PROC_UNLOCK(targp);
423 } else
424 targp = curp;
425 if (SESS_LEADER(targp)) {
426 error = EPERM;
427 goto done;
428 }
429 if (uap->pgid == 0)
430 uap->pgid = targp->p_pid;
431 if ((pgrp = pgfind(uap->pgid)) == NULL) {
432 if (uap->pgid == targp->p_pid) {
433 error = enterpgrp(targp, uap->pgid, newpgrp,
434 NULL);
435 if (error == 0)
436 newpgrp = NULL;
437 } else
438 error = EPERM;
439 } else {
440 if (pgrp == targp->p_pgrp) {
441 PGRP_UNLOCK(pgrp);
442 goto done;
443 }
444 if (pgrp->pg_id != targp->p_pid &&
445 pgrp->pg_session != curp->p_session) {
446 PGRP_UNLOCK(pgrp);
447 error = EPERM;
448 goto done;
449 }
450 PGRP_UNLOCK(pgrp);
451 error = enterthispgrp(targp, pgrp);
452 }
453 done:
454 sx_xunlock(&proctree_lock);
455 KASSERT((error == 0) || (newpgrp != NULL),
456 ("setpgid failed and newpgrp is NULL"));
457 uma_zfree(pgrp_zone, newpgrp);
458 return (error);
459 }
460
461 /*
462 * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
463 * compatible. It says that setting the uid/gid to euid/egid is a special
464 * case of "appropriate privilege". Once the rules are expanded out, this
465 * basically means that setuid(nnn) sets all three id's, in all permitted
466 * cases unless _POSIX_SAVED_IDS is enabled. In that case, setuid(getuid())
467 * does not set the saved id - this is dangerous for traditional BSD
468 * programs. For this reason, we *really* do not want to set
469 * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
470 */
471 #define POSIX_APPENDIX_B_4_2_2
472
473 #ifndef _SYS_SYSPROTO_H_
474 struct setuid_args {
475 uid_t uid;
476 };
477 #endif
478 /* ARGSUSED */
479 int
sys_setuid(struct thread * td,struct setuid_args * uap)480 sys_setuid(struct thread *td, struct setuid_args *uap)
481 {
482 struct proc *p = td->td_proc;
483 struct ucred *newcred, *oldcred;
484 uid_t uid;
485 struct uidinfo *uip;
486 int error;
487
488 uid = uap->uid;
489 AUDIT_ARG_UID(uid);
490 newcred = crget();
491 uip = uifind(uid);
492 PROC_LOCK(p);
493 /*
494 * Copy credentials so other references do not see our changes.
495 */
496 oldcred = crcopysafe(p, newcred);
497
498 #ifdef MAC
499 error = mac_cred_check_setuid(oldcred, uid);
500 if (error)
501 goto fail;
502 #endif
503
504 /*
505 * See if we have "permission" by POSIX 1003.1 rules.
506 *
507 * Note that setuid(geteuid()) is a special case of
508 * "appropriate privileges" in appendix B.4.2.2. We need
509 * to use this clause to be compatible with traditional BSD
510 * semantics. Basically, it means that "setuid(xx)" sets all
511 * three id's (assuming you have privs).
512 *
513 * Notes on the logic. We do things in three steps.
514 * 1: We determine if the euid is going to change, and do EPERM
515 * right away. We unconditionally change the euid later if this
516 * test is satisfied, simplifying that part of the logic.
517 * 2: We determine if the real and/or saved uids are going to
518 * change. Determined by compile options.
519 * 3: Change euid last. (after tests in #2 for "appropriate privs")
520 */
521 if (uid != oldcred->cr_ruid && /* allow setuid(getuid()) */
522 #ifdef _POSIX_SAVED_IDS
523 uid != oldcred->cr_svuid && /* allow setuid(saved gid) */
524 #endif
525 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */
526 uid != oldcred->cr_uid && /* allow setuid(geteuid()) */
527 #endif
528 (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
529 goto fail;
530
531 #ifdef _POSIX_SAVED_IDS
532 /*
533 * Do we have "appropriate privileges" (are we root or uid == euid)
534 * If so, we are changing the real uid and/or saved uid.
535 */
536 if (
537 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use the clause from B.4.2.2 */
538 uid == oldcred->cr_uid ||
539 #endif
540 /* We are using privs. */
541 priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
542 #endif
543 {
544 /*
545 * Set the real uid and transfer proc count to new user.
546 */
547 if (uid != oldcred->cr_ruid) {
548 change_ruid(newcred, uip);
549 setsugid(p);
550 }
551 /*
552 * Set saved uid
553 *
554 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
555 * the security of seteuid() depends on it. B.4.2.2 says it
556 * is important that we should do this.
557 */
558 if (uid != oldcred->cr_svuid) {
559 change_svuid(newcred, uid);
560 setsugid(p);
561 }
562 }
563
564 /*
565 * In all permitted cases, we are changing the euid.
566 */
567 if (uid != oldcred->cr_uid) {
568 change_euid(newcred, uip);
569 setsugid(p);
570 }
571 proc_set_cred(p, newcred);
572 #ifdef RACCT
573 racct_proc_ucred_changed(p, oldcred, newcred);
574 crhold(newcred);
575 #endif
576 PROC_UNLOCK(p);
577 #ifdef RCTL
578 rctl_proc_ucred_changed(p, newcred);
579 crfree(newcred);
580 #endif
581 uifree(uip);
582 crfree(oldcred);
583 return (0);
584
585 fail:
586 PROC_UNLOCK(p);
587 uifree(uip);
588 crfree(newcred);
589 return (error);
590 }
591
592 #ifndef _SYS_SYSPROTO_H_
593 struct seteuid_args {
594 uid_t euid;
595 };
596 #endif
597 /* ARGSUSED */
598 int
sys_seteuid(struct thread * td,struct seteuid_args * uap)599 sys_seteuid(struct thread *td, struct seteuid_args *uap)
600 {
601 struct proc *p = td->td_proc;
602 struct ucred *newcred, *oldcred;
603 uid_t euid;
604 struct uidinfo *euip;
605 int error;
606
607 euid = uap->euid;
608 AUDIT_ARG_EUID(euid);
609 newcred = crget();
610 euip = uifind(euid);
611 PROC_LOCK(p);
612 /*
613 * Copy credentials so other references do not see our changes.
614 */
615 oldcred = crcopysafe(p, newcred);
616
617 #ifdef MAC
618 error = mac_cred_check_seteuid(oldcred, euid);
619 if (error)
620 goto fail;
621 #endif
622
623 if (euid != oldcred->cr_ruid && /* allow seteuid(getuid()) */
624 euid != oldcred->cr_svuid && /* allow seteuid(saved uid) */
625 (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
626 goto fail;
627
628 /*
629 * Everything's okay, do it.
630 */
631 if (oldcred->cr_uid != euid) {
632 change_euid(newcred, euip);
633 setsugid(p);
634 }
635 proc_set_cred(p, newcred);
636 PROC_UNLOCK(p);
637 uifree(euip);
638 crfree(oldcred);
639 return (0);
640
641 fail:
642 PROC_UNLOCK(p);
643 uifree(euip);
644 crfree(newcred);
645 return (error);
646 }
647
648 #ifndef _SYS_SYSPROTO_H_
649 struct setgid_args {
650 gid_t gid;
651 };
652 #endif
653 /* ARGSUSED */
654 int
sys_setgid(struct thread * td,struct setgid_args * uap)655 sys_setgid(struct thread *td, struct setgid_args *uap)
656 {
657 struct proc *p = td->td_proc;
658 struct ucred *newcred, *oldcred;
659 gid_t gid;
660 int error;
661
662 gid = uap->gid;
663 AUDIT_ARG_GID(gid);
664 newcred = crget();
665 PROC_LOCK(p);
666 oldcred = crcopysafe(p, newcred);
667
668 #ifdef MAC
669 error = mac_cred_check_setgid(oldcred, gid);
670 if (error)
671 goto fail;
672 #endif
673
674 /*
675 * See if we have "permission" by POSIX 1003.1 rules.
676 *
677 * Note that setgid(getegid()) is a special case of
678 * "appropriate privileges" in appendix B.4.2.2. We need
679 * to use this clause to be compatible with traditional BSD
680 * semantics. Basically, it means that "setgid(xx)" sets all
681 * three id's (assuming you have privs).
682 *
683 * For notes on the logic here, see setuid() above.
684 */
685 if (gid != oldcred->cr_rgid && /* allow setgid(getgid()) */
686 #ifdef _POSIX_SAVED_IDS
687 gid != oldcred->cr_svgid && /* allow setgid(saved gid) */
688 #endif
689 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */
690 gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
691 #endif
692 (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
693 goto fail;
694
695 #ifdef _POSIX_SAVED_IDS
696 /*
697 * Do we have "appropriate privileges" (are we root or gid == egid)
698 * If so, we are changing the real uid and saved gid.
699 */
700 if (
701 #ifdef POSIX_APPENDIX_B_4_2_2 /* use the clause from B.4.2.2 */
702 gid == oldcred->cr_groups[0] ||
703 #endif
704 /* We are using privs. */
705 priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
706 #endif
707 {
708 /*
709 * Set real gid
710 */
711 if (oldcred->cr_rgid != gid) {
712 change_rgid(newcred, gid);
713 setsugid(p);
714 }
715 /*
716 * Set saved gid
717 *
718 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
719 * the security of setegid() depends on it. B.4.2.2 says it
720 * is important that we should do this.
721 */
722 if (oldcred->cr_svgid != gid) {
723 change_svgid(newcred, gid);
724 setsugid(p);
725 }
726 }
727 /*
728 * In all cases permitted cases, we are changing the egid.
729 * Copy credentials so other references do not see our changes.
730 */
731 if (oldcred->cr_groups[0] != gid) {
732 change_egid(newcred, gid);
733 setsugid(p);
734 }
735 proc_set_cred(p, newcred);
736 PROC_UNLOCK(p);
737 crfree(oldcred);
738 return (0);
739
740 fail:
741 PROC_UNLOCK(p);
742 crfree(newcred);
743 return (error);
744 }
745
746 #ifndef _SYS_SYSPROTO_H_
747 struct setegid_args {
748 gid_t egid;
749 };
750 #endif
751 /* ARGSUSED */
752 int
sys_setegid(struct thread * td,struct setegid_args * uap)753 sys_setegid(struct thread *td, struct setegid_args *uap)
754 {
755 struct proc *p = td->td_proc;
756 struct ucred *newcred, *oldcred;
757 gid_t egid;
758 int error;
759
760 egid = uap->egid;
761 AUDIT_ARG_EGID(egid);
762 newcred = crget();
763 PROC_LOCK(p);
764 oldcred = crcopysafe(p, newcred);
765
766 #ifdef MAC
767 error = mac_cred_check_setegid(oldcred, egid);
768 if (error)
769 goto fail;
770 #endif
771
772 if (egid != oldcred->cr_rgid && /* allow setegid(getgid()) */
773 egid != oldcred->cr_svgid && /* allow setegid(saved gid) */
774 (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
775 goto fail;
776
777 if (oldcred->cr_groups[0] != egid) {
778 change_egid(newcred, egid);
779 setsugid(p);
780 }
781 proc_set_cred(p, newcred);
782 PROC_UNLOCK(p);
783 crfree(oldcred);
784 return (0);
785
786 fail:
787 PROC_UNLOCK(p);
788 crfree(newcred);
789 return (error);
790 }
791
792 #ifndef _SYS_SYSPROTO_H_
793 struct setgroups_args {
794 int gidsetsize;
795 gid_t *gidset;
796 };
797 #endif
798 /* ARGSUSED */
799 int
sys_setgroups(struct thread * td,struct setgroups_args * uap)800 sys_setgroups(struct thread *td, struct setgroups_args *uap)
801 {
802 gid_t smallgroups[XU_NGROUPS];
803 gid_t *groups;
804 int gidsetsize, error;
805
806 gidsetsize = uap->gidsetsize;
807 if (gidsetsize > ngroups_max + 1 || gidsetsize < 0)
808 return (EINVAL);
809
810 if (gidsetsize > XU_NGROUPS)
811 groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
812 else
813 groups = smallgroups;
814
815 error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
816 if (error == 0)
817 error = kern_setgroups(td, gidsetsize, groups);
818
819 if (gidsetsize > XU_NGROUPS)
820 free(groups, M_TEMP);
821 return (error);
822 }
823
824 int
kern_setgroups(struct thread * td,u_int ngrp,gid_t * groups)825 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
826 {
827 struct proc *p = td->td_proc;
828 struct ucred *newcred, *oldcred;
829 int error;
830
831 MPASS(ngrp <= ngroups_max + 1);
832 AUDIT_ARG_GROUPSET(groups, ngrp);
833 newcred = crget();
834 crextend(newcred, ngrp);
835 PROC_LOCK(p);
836 oldcred = crcopysafe(p, newcred);
837
838 #ifdef MAC
839 error = mac_cred_check_setgroups(oldcred, ngrp, groups);
840 if (error)
841 goto fail;
842 #endif
843
844 error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
845 if (error)
846 goto fail;
847
848 if (ngrp == 0) {
849 /*
850 * setgroups(0, NULL) is a legitimate way of clearing the
851 * groups vector on non-BSD systems (which generally do not
852 * have the egid in the groups[0]). We risk security holes
853 * when running non-BSD software if we do not do the same.
854 */
855 newcred->cr_ngroups = 1;
856 } else {
857 crsetgroups_locked(newcred, ngrp, groups);
858 }
859 setsugid(p);
860 proc_set_cred(p, newcred);
861 PROC_UNLOCK(p);
862 crfree(oldcred);
863 return (0);
864
865 fail:
866 PROC_UNLOCK(p);
867 crfree(newcred);
868 return (error);
869 }
870
871 #ifndef _SYS_SYSPROTO_H_
872 struct setreuid_args {
873 uid_t ruid;
874 uid_t euid;
875 };
876 #endif
877 /* ARGSUSED */
878 int
sys_setreuid(struct thread * td,struct setreuid_args * uap)879 sys_setreuid(struct thread *td, struct setreuid_args *uap)
880 {
881 struct proc *p = td->td_proc;
882 struct ucred *newcred, *oldcred;
883 uid_t euid, ruid;
884 struct uidinfo *euip, *ruip;
885 int error;
886
887 euid = uap->euid;
888 ruid = uap->ruid;
889 AUDIT_ARG_EUID(euid);
890 AUDIT_ARG_RUID(ruid);
891 newcred = crget();
892 euip = uifind(euid);
893 ruip = uifind(ruid);
894 PROC_LOCK(p);
895 oldcred = crcopysafe(p, newcred);
896
897 #ifdef MAC
898 error = mac_cred_check_setreuid(oldcred, ruid, euid);
899 if (error)
900 goto fail;
901 #endif
902
903 if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
904 ruid != oldcred->cr_svuid) ||
905 (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
906 euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
907 (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
908 goto fail;
909
910 if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
911 change_euid(newcred, euip);
912 setsugid(p);
913 }
914 if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
915 change_ruid(newcred, ruip);
916 setsugid(p);
917 }
918 if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
919 newcred->cr_svuid != newcred->cr_uid) {
920 change_svuid(newcred, newcred->cr_uid);
921 setsugid(p);
922 }
923 proc_set_cred(p, newcred);
924 #ifdef RACCT
925 racct_proc_ucred_changed(p, oldcred, newcred);
926 crhold(newcred);
927 #endif
928 PROC_UNLOCK(p);
929 #ifdef RCTL
930 rctl_proc_ucred_changed(p, newcred);
931 crfree(newcred);
932 #endif
933 uifree(ruip);
934 uifree(euip);
935 crfree(oldcred);
936 return (0);
937
938 fail:
939 PROC_UNLOCK(p);
940 uifree(ruip);
941 uifree(euip);
942 crfree(newcred);
943 return (error);
944 }
945
946 #ifndef _SYS_SYSPROTO_H_
947 struct setregid_args {
948 gid_t rgid;
949 gid_t egid;
950 };
951 #endif
952 /* ARGSUSED */
953 int
sys_setregid(struct thread * td,struct setregid_args * uap)954 sys_setregid(struct thread *td, struct setregid_args *uap)
955 {
956 struct proc *p = td->td_proc;
957 struct ucred *newcred, *oldcred;
958 gid_t egid, rgid;
959 int error;
960
961 egid = uap->egid;
962 rgid = uap->rgid;
963 AUDIT_ARG_EGID(egid);
964 AUDIT_ARG_RGID(rgid);
965 newcred = crget();
966 PROC_LOCK(p);
967 oldcred = crcopysafe(p, newcred);
968
969 #ifdef MAC
970 error = mac_cred_check_setregid(oldcred, rgid, egid);
971 if (error)
972 goto fail;
973 #endif
974
975 if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
976 rgid != oldcred->cr_svgid) ||
977 (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
978 egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
979 (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
980 goto fail;
981
982 if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
983 change_egid(newcred, egid);
984 setsugid(p);
985 }
986 if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
987 change_rgid(newcred, rgid);
988 setsugid(p);
989 }
990 if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
991 newcred->cr_svgid != newcred->cr_groups[0]) {
992 change_svgid(newcred, newcred->cr_groups[0]);
993 setsugid(p);
994 }
995 proc_set_cred(p, newcred);
996 PROC_UNLOCK(p);
997 crfree(oldcred);
998 return (0);
999
1000 fail:
1001 PROC_UNLOCK(p);
1002 crfree(newcred);
1003 return (error);
1004 }
1005
1006 /*
1007 * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1008 * uid is explicit.
1009 */
1010 #ifndef _SYS_SYSPROTO_H_
1011 struct setresuid_args {
1012 uid_t ruid;
1013 uid_t euid;
1014 uid_t suid;
1015 };
1016 #endif
1017 /* ARGSUSED */
1018 int
sys_setresuid(struct thread * td,struct setresuid_args * uap)1019 sys_setresuid(struct thread *td, struct setresuid_args *uap)
1020 {
1021 struct proc *p = td->td_proc;
1022 struct ucred *newcred, *oldcred;
1023 uid_t euid, ruid, suid;
1024 struct uidinfo *euip, *ruip;
1025 int error;
1026
1027 euid = uap->euid;
1028 ruid = uap->ruid;
1029 suid = uap->suid;
1030 AUDIT_ARG_EUID(euid);
1031 AUDIT_ARG_RUID(ruid);
1032 AUDIT_ARG_SUID(suid);
1033 newcred = crget();
1034 euip = uifind(euid);
1035 ruip = uifind(ruid);
1036 PROC_LOCK(p);
1037 oldcred = crcopysafe(p, newcred);
1038
1039 #ifdef MAC
1040 error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1041 if (error)
1042 goto fail;
1043 #endif
1044
1045 if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1046 ruid != oldcred->cr_svuid &&
1047 ruid != oldcred->cr_uid) ||
1048 (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1049 euid != oldcred->cr_svuid &&
1050 euid != oldcred->cr_uid) ||
1051 (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1052 suid != oldcred->cr_svuid &&
1053 suid != oldcred->cr_uid)) &&
1054 (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
1055 goto fail;
1056
1057 if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1058 change_euid(newcred, euip);
1059 setsugid(p);
1060 }
1061 if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1062 change_ruid(newcred, ruip);
1063 setsugid(p);
1064 }
1065 if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1066 change_svuid(newcred, suid);
1067 setsugid(p);
1068 }
1069 proc_set_cred(p, newcred);
1070 #ifdef RACCT
1071 racct_proc_ucred_changed(p, oldcred, newcred);
1072 crhold(newcred);
1073 #endif
1074 PROC_UNLOCK(p);
1075 #ifdef RCTL
1076 rctl_proc_ucred_changed(p, newcred);
1077 crfree(newcred);
1078 #endif
1079 uifree(ruip);
1080 uifree(euip);
1081 crfree(oldcred);
1082 return (0);
1083
1084 fail:
1085 PROC_UNLOCK(p);
1086 uifree(ruip);
1087 uifree(euip);
1088 crfree(newcred);
1089 return (error);
1090
1091 }
1092
1093 /*
1094 * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1095 * gid is explicit.
1096 */
1097 #ifndef _SYS_SYSPROTO_H_
1098 struct setresgid_args {
1099 gid_t rgid;
1100 gid_t egid;
1101 gid_t sgid;
1102 };
1103 #endif
1104 /* ARGSUSED */
1105 int
sys_setresgid(struct thread * td,struct setresgid_args * uap)1106 sys_setresgid(struct thread *td, struct setresgid_args *uap)
1107 {
1108 struct proc *p = td->td_proc;
1109 struct ucred *newcred, *oldcred;
1110 gid_t egid, rgid, sgid;
1111 int error;
1112
1113 egid = uap->egid;
1114 rgid = uap->rgid;
1115 sgid = uap->sgid;
1116 AUDIT_ARG_EGID(egid);
1117 AUDIT_ARG_RGID(rgid);
1118 AUDIT_ARG_SGID(sgid);
1119 newcred = crget();
1120 PROC_LOCK(p);
1121 oldcred = crcopysafe(p, newcred);
1122
1123 #ifdef MAC
1124 error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1125 if (error)
1126 goto fail;
1127 #endif
1128
1129 if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1130 rgid != oldcred->cr_svgid &&
1131 rgid != oldcred->cr_groups[0]) ||
1132 (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1133 egid != oldcred->cr_svgid &&
1134 egid != oldcred->cr_groups[0]) ||
1135 (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1136 sgid != oldcred->cr_svgid &&
1137 sgid != oldcred->cr_groups[0])) &&
1138 (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
1139 goto fail;
1140
1141 if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1142 change_egid(newcred, egid);
1143 setsugid(p);
1144 }
1145 if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1146 change_rgid(newcred, rgid);
1147 setsugid(p);
1148 }
1149 if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1150 change_svgid(newcred, sgid);
1151 setsugid(p);
1152 }
1153 proc_set_cred(p, newcred);
1154 PROC_UNLOCK(p);
1155 crfree(oldcred);
1156 return (0);
1157
1158 fail:
1159 PROC_UNLOCK(p);
1160 crfree(newcred);
1161 return (error);
1162 }
1163
1164 #ifndef _SYS_SYSPROTO_H_
1165 struct getresuid_args {
1166 uid_t *ruid;
1167 uid_t *euid;
1168 uid_t *suid;
1169 };
1170 #endif
1171 /* ARGSUSED */
1172 int
sys_getresuid(struct thread * td,struct getresuid_args * uap)1173 sys_getresuid(struct thread *td, struct getresuid_args *uap)
1174 {
1175 struct ucred *cred;
1176 int error1 = 0, error2 = 0, error3 = 0;
1177
1178 cred = td->td_ucred;
1179 if (uap->ruid)
1180 error1 = copyout(&cred->cr_ruid,
1181 uap->ruid, sizeof(cred->cr_ruid));
1182 if (uap->euid)
1183 error2 = copyout(&cred->cr_uid,
1184 uap->euid, sizeof(cred->cr_uid));
1185 if (uap->suid)
1186 error3 = copyout(&cred->cr_svuid,
1187 uap->suid, sizeof(cred->cr_svuid));
1188 return (error1 ? error1 : error2 ? error2 : error3);
1189 }
1190
1191 #ifndef _SYS_SYSPROTO_H_
1192 struct getresgid_args {
1193 gid_t *rgid;
1194 gid_t *egid;
1195 gid_t *sgid;
1196 };
1197 #endif
1198 /* ARGSUSED */
1199 int
sys_getresgid(struct thread * td,struct getresgid_args * uap)1200 sys_getresgid(struct thread *td, struct getresgid_args *uap)
1201 {
1202 struct ucred *cred;
1203 int error1 = 0, error2 = 0, error3 = 0;
1204
1205 cred = td->td_ucred;
1206 if (uap->rgid)
1207 error1 = copyout(&cred->cr_rgid,
1208 uap->rgid, sizeof(cred->cr_rgid));
1209 if (uap->egid)
1210 error2 = copyout(&cred->cr_groups[0],
1211 uap->egid, sizeof(cred->cr_groups[0]));
1212 if (uap->sgid)
1213 error3 = copyout(&cred->cr_svgid,
1214 uap->sgid, sizeof(cred->cr_svgid));
1215 return (error1 ? error1 : error2 ? error2 : error3);
1216 }
1217
1218 #ifndef _SYS_SYSPROTO_H_
1219 struct issetugid_args {
1220 int dummy;
1221 };
1222 #endif
1223 /* ARGSUSED */
1224 int
sys_issetugid(struct thread * td,struct issetugid_args * uap)1225 sys_issetugid(struct thread *td, struct issetugid_args *uap)
1226 {
1227 struct proc *p = td->td_proc;
1228
1229 /*
1230 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1231 * we use P_SUGID because we consider changing the owners as
1232 * "tainting" as well.
1233 * This is significant for procs that start as root and "become"
1234 * a user without an exec - programs cannot know *everything*
1235 * that libc *might* have put in their data segment.
1236 */
1237 td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1238 return (0);
1239 }
1240
1241 int
sys___setugid(struct thread * td,struct __setugid_args * uap)1242 sys___setugid(struct thread *td, struct __setugid_args *uap)
1243 {
1244 #ifdef REGRESSION
1245 struct proc *p;
1246
1247 p = td->td_proc;
1248 switch (uap->flag) {
1249 case 0:
1250 PROC_LOCK(p);
1251 p->p_flag &= ~P_SUGID;
1252 PROC_UNLOCK(p);
1253 return (0);
1254 case 1:
1255 PROC_LOCK(p);
1256 p->p_flag |= P_SUGID;
1257 PROC_UNLOCK(p);
1258 return (0);
1259 default:
1260 return (EINVAL);
1261 }
1262 #else /* !REGRESSION */
1263
1264 return (ENOSYS);
1265 #endif /* REGRESSION */
1266 }
1267
1268 /*
1269 * Check if gid is a member of the group set.
1270 */
1271 int
groupmember(gid_t gid,struct ucred * cred)1272 groupmember(gid_t gid, struct ucred *cred)
1273 {
1274 int l;
1275 int h;
1276 int m;
1277
1278 if (cred->cr_groups[0] == gid)
1279 return(1);
1280
1281 /*
1282 * If gid was not our primary group, perform a binary search
1283 * of the supplemental groups. This is possible because we
1284 * sort the groups in crsetgroups().
1285 */
1286 l = 1;
1287 h = cred->cr_ngroups;
1288 while (l < h) {
1289 m = l + ((h - l) / 2);
1290 if (cred->cr_groups[m] < gid)
1291 l = m + 1;
1292 else
1293 h = m;
1294 }
1295 if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
1296 return (1);
1297
1298 return (0);
1299 }
1300
1301 /*
1302 * Test the active securelevel against a given level. securelevel_gt()
1303 * implements (securelevel > level). securelevel_ge() implements
1304 * (securelevel >= level). Note that the logic is inverted -- these
1305 * functions return EPERM on "success" and 0 on "failure".
1306 *
1307 * Due to care taken when setting the securelevel, we know that no jail will
1308 * be less secure that its parent (or the physical system), so it is sufficient
1309 * to test the current jail only.
1310 *
1311 * XXXRW: Possibly since this has to do with privilege, it should move to
1312 * kern_priv.c.
1313 */
1314 int
securelevel_gt(struct ucred * cr,int level)1315 securelevel_gt(struct ucred *cr, int level)
1316 {
1317
1318 return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1319 }
1320
1321 int
securelevel_ge(struct ucred * cr,int level)1322 securelevel_ge(struct ucred *cr, int level)
1323 {
1324
1325 return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1326 }
1327
1328 /*
1329 * 'see_other_uids' determines whether or not visibility of processes
1330 * and sockets with credentials holding different real uids is possible
1331 * using a variety of system MIBs.
1332 * XXX: data declarations should be together near the beginning of the file.
1333 */
1334 static int see_other_uids = 1;
1335 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1336 &see_other_uids, 0,
1337 "Unprivileged processes may see subjects/objects with different real uid");
1338
1339 /*-
1340 * Determine if u1 "can see" the subject specified by u2, according to the
1341 * 'see_other_uids' policy.
1342 * Returns: 0 for permitted, ESRCH otherwise
1343 * Locks: none
1344 * References: *u1 and *u2 must not change during the call
1345 * u1 may equal u2, in which case only one reference is required
1346 */
1347 int
cr_canseeotheruids(struct ucred * u1,struct ucred * u2)1348 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1349 {
1350
1351 if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1352 if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
1353 return (ESRCH);
1354 }
1355 return (0);
1356 }
1357
1358 /*
1359 * 'see_other_gids' determines whether or not visibility of processes
1360 * and sockets with credentials holding different real gids is possible
1361 * using a variety of system MIBs.
1362 * XXX: data declarations should be together near the beginning of the file.
1363 */
1364 static int see_other_gids = 1;
1365 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1366 &see_other_gids, 0,
1367 "Unprivileged processes may see subjects/objects with different real gid");
1368
1369 /*
1370 * Determine if u1 can "see" the subject specified by u2, according to the
1371 * 'see_other_gids' policy.
1372 * Returns: 0 for permitted, ESRCH otherwise
1373 * Locks: none
1374 * References: *u1 and *u2 must not change during the call
1375 * u1 may equal u2, in which case only one reference is required
1376 */
1377 int
cr_canseeothergids(struct ucred * u1,struct ucred * u2)1378 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1379 {
1380 int i, match;
1381
1382 if (!see_other_gids) {
1383 match = 0;
1384 for (i = 0; i < u1->cr_ngroups; i++) {
1385 if (groupmember(u1->cr_groups[i], u2))
1386 match = 1;
1387 if (match)
1388 break;
1389 }
1390 if (!match) {
1391 if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0)
1392 return (ESRCH);
1393 }
1394 }
1395 return (0);
1396 }
1397
1398 /*
1399 * 'see_jail_proc' determines whether or not visibility of processes and
1400 * sockets with credentials holding different jail ids is possible using a
1401 * variety of system MIBs.
1402 *
1403 * XXX: data declarations should be together near the beginning of the file.
1404 */
1405
1406 static int see_jail_proc = 1;
1407 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
1408 &see_jail_proc, 0,
1409 "Unprivileged processes may see subjects/objects with different jail ids");
1410
1411 /*-
1412 * Determine if u1 "can see" the subject specified by u2, according to the
1413 * 'see_jail_proc' policy.
1414 * Returns: 0 for permitted, ESRCH otherwise
1415 * Locks: none
1416 * References: *u1 and *u2 must not change during the call
1417 * u1 may equal u2, in which case only one reference is required
1418 */
1419 int
cr_canseejailproc(struct ucred * u1,struct ucred * u2)1420 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
1421 {
1422 if (u1->cr_uid == 0)
1423 return (0);
1424 return (!see_jail_proc && u1->cr_prison != u2->cr_prison ? ESRCH : 0);
1425 }
1426
1427 /*-
1428 * Determine if u1 "can see" the subject specified by u2.
1429 * Returns: 0 for permitted, an errno value otherwise
1430 * Locks: none
1431 * References: *u1 and *u2 must not change during the call
1432 * u1 may equal u2, in which case only one reference is required
1433 */
1434 int
cr_cansee(struct ucred * u1,struct ucred * u2)1435 cr_cansee(struct ucred *u1, struct ucred *u2)
1436 {
1437 int error;
1438
1439 if ((error = prison_check(u1, u2)))
1440 return (error);
1441 #ifdef MAC
1442 if ((error = mac_cred_check_visible(u1, u2)))
1443 return (error);
1444 #endif
1445 if ((error = cr_canseeotheruids(u1, u2)))
1446 return (error);
1447 if ((error = cr_canseeothergids(u1, u2)))
1448 return (error);
1449 if ((error = cr_canseejailproc(u1, u2)))
1450 return (error);
1451 return (0);
1452 }
1453
1454 /*-
1455 * Determine if td "can see" the subject specified by p.
1456 * Returns: 0 for permitted, an errno value otherwise
1457 * Locks: Sufficient locks to protect p->p_ucred must be held. td really
1458 * should be curthread.
1459 * References: td and p must be valid for the lifetime of the call
1460 */
1461 int
p_cansee(struct thread * td,struct proc * p)1462 p_cansee(struct thread *td, struct proc *p)
1463 {
1464 /* Wrap cr_cansee() for all functionality. */
1465 KASSERT(td == curthread, ("%s: td not curthread", __func__));
1466 PROC_LOCK_ASSERT(p, MA_OWNED);
1467
1468 if (td->td_proc == p)
1469 return (0);
1470 return (cr_cansee(td->td_ucred, p->p_ucred));
1471 }
1472
1473 /*
1474 * 'conservative_signals' prevents the delivery of a broad class of
1475 * signals by unprivileged processes to processes that have changed their
1476 * credentials since the last invocation of execve(). This can prevent
1477 * the leakage of cached information or retained privileges as a result
1478 * of a common class of signal-related vulnerabilities. However, this
1479 * may interfere with some applications that expect to be able to
1480 * deliver these signals to peer processes after having given up
1481 * privilege.
1482 */
1483 static int conservative_signals = 1;
1484 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1485 &conservative_signals, 0, "Unprivileged processes prevented from "
1486 "sending certain signals to processes whose credentials have changed");
1487 /*-
1488 * Determine whether cred may deliver the specified signal to proc.
1489 * Returns: 0 for permitted, an errno value otherwise.
1490 * Locks: A lock must be held for proc.
1491 * References: cred and proc must be valid for the lifetime of the call.
1492 */
1493 int
cr_cansignal(struct ucred * cred,struct proc * proc,int signum)1494 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1495 {
1496 int error;
1497
1498 PROC_LOCK_ASSERT(proc, MA_OWNED);
1499 /*
1500 * Jail semantics limit the scope of signalling to proc in the
1501 * same jail as cred, if cred is in jail.
1502 */
1503 error = prison_check(cred, proc->p_ucred);
1504 if (error)
1505 return (error);
1506 #ifdef MAC
1507 if ((error = mac_proc_check_signal(cred, proc, signum)))
1508 return (error);
1509 #endif
1510 if ((error = cr_canseeotheruids(cred, proc->p_ucred)))
1511 return (error);
1512 if ((error = cr_canseeothergids(cred, proc->p_ucred)))
1513 return (error);
1514
1515 /*
1516 * UNIX signal semantics depend on the status of the P_SUGID
1517 * bit on the target process. If the bit is set, then additional
1518 * restrictions are placed on the set of available signals.
1519 */
1520 if (conservative_signals && (proc->p_flag & P_SUGID)) {
1521 switch (signum) {
1522 case 0:
1523 case SIGKILL:
1524 case SIGINT:
1525 case SIGTERM:
1526 case SIGALRM:
1527 case SIGSTOP:
1528 case SIGTTIN:
1529 case SIGTTOU:
1530 case SIGTSTP:
1531 case SIGHUP:
1532 case SIGUSR1:
1533 case SIGUSR2:
1534 /*
1535 * Generally, permit job and terminal control
1536 * signals.
1537 */
1538 break;
1539 default:
1540 /* Not permitted without privilege. */
1541 error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
1542 if (error)
1543 return (error);
1544 }
1545 }
1546
1547 /*
1548 * Generally, the target credential's ruid or svuid must match the
1549 * subject credential's ruid or euid.
1550 */
1551 if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1552 cred->cr_ruid != proc->p_ucred->cr_svuid &&
1553 cred->cr_uid != proc->p_ucred->cr_ruid &&
1554 cred->cr_uid != proc->p_ucred->cr_svuid) {
1555 error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
1556 if (error)
1557 return (error);
1558 }
1559
1560 return (0);
1561 }
1562
1563 /*-
1564 * Determine whether td may deliver the specified signal to p.
1565 * Returns: 0 for permitted, an errno value otherwise
1566 * Locks: Sufficient locks to protect various components of td and p
1567 * must be held. td must be curthread, and a lock must be
1568 * held for p.
1569 * References: td and p must be valid for the lifetime of the call
1570 */
1571 int
p_cansignal(struct thread * td,struct proc * p,int signum)1572 p_cansignal(struct thread *td, struct proc *p, int signum)
1573 {
1574
1575 KASSERT(td == curthread, ("%s: td not curthread", __func__));
1576 PROC_LOCK_ASSERT(p, MA_OWNED);
1577 if (td->td_proc == p)
1578 return (0);
1579
1580 /*
1581 * UNIX signalling semantics require that processes in the same
1582 * session always be able to deliver SIGCONT to one another,
1583 * overriding the remaining protections.
1584 */
1585 /* XXX: This will require an additional lock of some sort. */
1586 if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1587 return (0);
1588 /*
1589 * Some compat layers use SIGTHR and higher signals for
1590 * communication between different kernel threads of the same
1591 * process, so that they expect that it's always possible to
1592 * deliver them, even for suid applications where cr_cansignal() can
1593 * deny such ability for security consideration. It should be
1594 * pretty safe to do since the only way to create two processes
1595 * with the same p_leader is via rfork(2).
1596 */
1597 if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1598 signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1599 return (0);
1600
1601 return (cr_cansignal(td->td_ucred, p, signum));
1602 }
1603
1604 /*-
1605 * Determine whether td may reschedule p.
1606 * Returns: 0 for permitted, an errno value otherwise
1607 * Locks: Sufficient locks to protect various components of td and p
1608 * must be held. td must be curthread, and a lock must
1609 * be held for p.
1610 * References: td and p must be valid for the lifetime of the call
1611 */
1612 int
p_cansched(struct thread * td,struct proc * p)1613 p_cansched(struct thread *td, struct proc *p)
1614 {
1615 int error;
1616
1617 KASSERT(td == curthread, ("%s: td not curthread", __func__));
1618 PROC_LOCK_ASSERT(p, MA_OWNED);
1619 if (td->td_proc == p)
1620 return (0);
1621 if ((error = prison_check(td->td_ucred, p->p_ucred)))
1622 return (error);
1623 #ifdef MAC
1624 if ((error = mac_proc_check_sched(td->td_ucred, p)))
1625 return (error);
1626 #endif
1627 if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1628 return (error);
1629 if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1630 return (error);
1631 if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1632 td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1633 error = priv_check(td, PRIV_SCHED_DIFFCRED);
1634 if (error)
1635 return (error);
1636 }
1637 return (0);
1638 }
1639
1640 /*
1641 * Handle getting or setting the prison's unprivileged_proc_debug
1642 * value.
1643 */
1644 static int
sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)1645 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
1646 {
1647 int error, val;
1648
1649 val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
1650 error = sysctl_handle_int(oidp, &val, 0, req);
1651 if (error != 0 || req->newptr == NULL)
1652 return (error);
1653 if (val != 0 && val != 1)
1654 return (EINVAL);
1655 prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
1656 return (0);
1657 }
1658
1659 /*
1660 * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1661 * unprivileged inter-process debugging services, including some procfs
1662 * functionality, ptrace(), and ktrace(). In the past, inter-process
1663 * debugging has been involved in a variety of security problems, and sites
1664 * not requiring the service might choose to disable it when hardening
1665 * systems.
1666 */
1667 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
1668 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
1669 CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
1670 "Unprivileged processes may use process debugging facilities");
1671
1672 /*-
1673 * Determine whether td may debug p.
1674 * Returns: 0 for permitted, an errno value otherwise
1675 * Locks: Sufficient locks to protect various components of td and p
1676 * must be held. td must be curthread, and a lock must
1677 * be held for p.
1678 * References: td and p must be valid for the lifetime of the call
1679 */
1680 int
p_candebug(struct thread * td,struct proc * p)1681 p_candebug(struct thread *td, struct proc *p)
1682 {
1683 int credentialchanged, error, grpsubset, i, uidsubset;
1684
1685 KASSERT(td == curthread, ("%s: td not curthread", __func__));
1686 PROC_LOCK_ASSERT(p, MA_OWNED);
1687 if (td->td_proc == p)
1688 return (0);
1689 if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
1690 return (error);
1691 if ((error = prison_check(td->td_ucred, p->p_ucred)))
1692 return (error);
1693 #ifdef MAC
1694 if ((error = mac_proc_check_debug(td->td_ucred, p)))
1695 return (error);
1696 #endif
1697 if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1698 return (error);
1699 if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1700 return (error);
1701
1702 /*
1703 * Is p's group set a subset of td's effective group set? This
1704 * includes p's egid, group access list, rgid, and svgid.
1705 */
1706 grpsubset = 1;
1707 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1708 if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1709 grpsubset = 0;
1710 break;
1711 }
1712 }
1713 grpsubset = grpsubset &&
1714 groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1715 groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1716
1717 /*
1718 * Are the uids present in p's credential equal to td's
1719 * effective uid? This includes p's euid, svuid, and ruid.
1720 */
1721 uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1722 td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1723 td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1724
1725 /*
1726 * Has the credential of the process changed since the last exec()?
1727 */
1728 credentialchanged = (p->p_flag & P_SUGID);
1729
1730 /*
1731 * If p's gids aren't a subset, or the uids aren't a subset,
1732 * or the credential has changed, require appropriate privilege
1733 * for td to debug p.
1734 */
1735 if (!grpsubset || !uidsubset) {
1736 error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1737 if (error)
1738 return (error);
1739 }
1740
1741 if (credentialchanged) {
1742 error = priv_check(td, PRIV_DEBUG_SUGID);
1743 if (error)
1744 return (error);
1745 }
1746
1747 /* Can't trace init when securelevel > 0. */
1748 if (p == initproc) {
1749 error = securelevel_gt(td->td_ucred, 0);
1750 if (error)
1751 return (error);
1752 }
1753
1754 /*
1755 * Can't trace a process that's currently exec'ing.
1756 *
1757 * XXX: Note, this is not a security policy decision, it's a
1758 * basic correctness/functionality decision. Therefore, this check
1759 * should be moved to the caller's of p_candebug().
1760 */
1761 if ((p->p_flag & P_INEXEC) != 0)
1762 return (EBUSY);
1763
1764 /* Denied explicitely */
1765 if ((p->p_flag2 & P2_NOTRACE) != 0) {
1766 error = priv_check(td, PRIV_DEBUG_DENIED);
1767 if (error != 0)
1768 return (error);
1769 }
1770
1771 return (0);
1772 }
1773
1774 /*-
1775 * Determine whether the subject represented by cred can "see" a socket.
1776 * Returns: 0 for permitted, ENOENT otherwise.
1777 */
1778 int
cr_canseesocket(struct ucred * cred,struct socket * so)1779 cr_canseesocket(struct ucred *cred, struct socket *so)
1780 {
1781 int error;
1782
1783 error = prison_check(cred, so->so_cred);
1784 if (error)
1785 return (ENOENT);
1786 #ifdef MAC
1787 error = mac_socket_check_visible(cred, so);
1788 if (error)
1789 return (error);
1790 #endif
1791 if (cr_canseeotheruids(cred, so->so_cred))
1792 return (ENOENT);
1793 if (cr_canseeothergids(cred, so->so_cred))
1794 return (ENOENT);
1795
1796 return (0);
1797 }
1798
1799 /*-
1800 * Determine whether td can wait for the exit of p.
1801 * Returns: 0 for permitted, an errno value otherwise
1802 * Locks: Sufficient locks to protect various components of td and p
1803 * must be held. td must be curthread, and a lock must
1804 * be held for p.
1805 * References: td and p must be valid for the lifetime of the call
1806
1807 */
1808 int
p_canwait(struct thread * td,struct proc * p)1809 p_canwait(struct thread *td, struct proc *p)
1810 {
1811 int error;
1812
1813 KASSERT(td == curthread, ("%s: td not curthread", __func__));
1814 PROC_LOCK_ASSERT(p, MA_OWNED);
1815 if ((error = prison_check(td->td_ucred, p->p_ucred)))
1816 return (error);
1817 #ifdef MAC
1818 if ((error = mac_proc_check_wait(td->td_ucred, p)))
1819 return (error);
1820 #endif
1821 #if 0
1822 /* XXXMAC: This could have odd effects on some shells. */
1823 if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1824 return (error);
1825 #endif
1826
1827 return (0);
1828 }
1829
1830 /*
1831 * Credential management.
1832 *
1833 * struct ucred objects are rarely allocated but gain and lose references all
1834 * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
1835 * a significant source of cache-line ping ponging. Common cases are worked
1836 * around by modifying thread-local counter instead if the cred to operate on
1837 * matches td_realucred.
1838 *
1839 * The counter is split into 2 parts:
1840 * - cr_users -- total count of all struct proc and struct thread objects
1841 * which have given cred in p_ucred and td_ucred respectively
1842 * - cr_ref -- the actual ref count, only valid if cr_users == 0
1843 *
1844 * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
1845 * the count reaches 0 the object is freeable.
1846 * If users > 0 and curthread->td_realucred == cred, then updates are performed
1847 * against td_ucredref.
1848 * In other cases updates are performed against cr_ref.
1849 *
1850 * Changing td_realucred into something else decrements cr_users and transfers
1851 * accumulated updates.
1852 */
1853 struct ucred *
crcowget(struct ucred * cr)1854 crcowget(struct ucred *cr)
1855 {
1856
1857 mtx_lock(&cr->cr_mtx);
1858 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1859 __func__, cr->cr_users, cr));
1860 cr->cr_users++;
1861 cr->cr_ref++;
1862 mtx_unlock(&cr->cr_mtx);
1863 return (cr);
1864 }
1865
1866 static struct ucred *
crunuse(struct thread * td)1867 crunuse(struct thread *td)
1868 {
1869 struct ucred *cr, *crold;
1870
1871 MPASS(td->td_realucred == td->td_ucred);
1872 cr = td->td_realucred;
1873 mtx_lock(&cr->cr_mtx);
1874 cr->cr_ref += td->td_ucredref;
1875 td->td_ucredref = 0;
1876 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1877 __func__, cr->cr_users, cr));
1878 cr->cr_users--;
1879 if (cr->cr_users == 0) {
1880 KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p",
1881 __func__, cr->cr_ref, cr));
1882 crold = cr;
1883 } else {
1884 cr->cr_ref--;
1885 crold = NULL;
1886 }
1887 mtx_unlock(&cr->cr_mtx);
1888 td->td_realucred = NULL;
1889 return (crold);
1890 }
1891
1892 static void
crunusebatch(struct ucred * cr,int users,int ref)1893 crunusebatch(struct ucred *cr, int users, int ref)
1894 {
1895
1896 KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
1897 __func__, users, cr));
1898 mtx_lock(&cr->cr_mtx);
1899 KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
1900 __func__, cr->cr_users, users, cr));
1901 cr->cr_users -= users;
1902 cr->cr_ref += ref;
1903 cr->cr_ref -= users;
1904 if (cr->cr_users > 0) {
1905 mtx_unlock(&cr->cr_mtx);
1906 return;
1907 }
1908 KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p",
1909 __func__, cr->cr_ref, cr));
1910 if (cr->cr_ref > 0) {
1911 mtx_unlock(&cr->cr_mtx);
1912 return;
1913 }
1914 crfree_final(cr);
1915 }
1916
1917 void
crcowfree(struct thread * td)1918 crcowfree(struct thread *td)
1919 {
1920 struct ucred *cr;
1921
1922 cr = crunuse(td);
1923 if (cr != NULL)
1924 crfree(cr);
1925 }
1926
1927 struct ucred *
crcowsync(void)1928 crcowsync(void)
1929 {
1930 struct thread *td;
1931 struct proc *p;
1932 struct ucred *crnew, *crold;
1933
1934 td = curthread;
1935 p = td->td_proc;
1936 PROC_LOCK_ASSERT(p, MA_OWNED);
1937
1938 MPASS(td->td_realucred == td->td_ucred);
1939 if (td->td_realucred == p->p_ucred)
1940 return (NULL);
1941
1942 crnew = crcowget(p->p_ucred);
1943 crold = crunuse(td);
1944 td->td_realucred = crnew;
1945 td->td_ucred = td->td_realucred;
1946 return (crold);
1947 }
1948
1949 /*
1950 * Batching.
1951 */
1952 void
credbatch_add(struct credbatch * crb,struct thread * td)1953 credbatch_add(struct credbatch *crb, struct thread *td)
1954 {
1955 struct ucred *cr;
1956
1957 MPASS(td->td_realucred != NULL);
1958 MPASS(td->td_realucred == td->td_ucred);
1959 MPASS(td->td_state == TDS_INACTIVE);
1960 cr = td->td_realucred;
1961 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1962 __func__, cr->cr_users, cr));
1963 if (crb->cred != cr) {
1964 if (crb->users > 0) {
1965 MPASS(crb->cred != NULL);
1966 crunusebatch(crb->cred, crb->users, crb->ref);
1967 crb->users = 0;
1968 crb->ref = 0;
1969 }
1970 }
1971 crb->cred = cr;
1972 crb->users++;
1973 crb->ref += td->td_ucredref;
1974 td->td_ucredref = 0;
1975 td->td_realucred = NULL;
1976 }
1977
1978 void
credbatch_final(struct credbatch * crb)1979 credbatch_final(struct credbatch *crb)
1980 {
1981
1982 MPASS(crb->cred != NULL);
1983 MPASS(crb->users > 0);
1984 crunusebatch(crb->cred, crb->users, crb->ref);
1985 }
1986
1987 /*
1988 * Allocate a zeroed cred structure.
1989 */
1990 struct ucred *
crget(void)1991 crget(void)
1992 {
1993 struct ucred *cr;
1994
1995 cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
1996 mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
1997 cr->cr_ref = 1;
1998 #ifdef AUDIT
1999 audit_cred_init(cr);
2000 #endif
2001 #ifdef MAC
2002 mac_cred_init(cr);
2003 #endif
2004 cr->cr_groups = cr->cr_smallgroups;
2005 cr->cr_agroups =
2006 sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
2007 return (cr);
2008 }
2009
2010 /*
2011 * Claim another reference to a ucred structure.
2012 */
2013 struct ucred *
crhold(struct ucred * cr)2014 crhold(struct ucred *cr)
2015 {
2016 struct thread *td;
2017
2018 td = curthread;
2019 if (__predict_true(td->td_realucred == cr)) {
2020 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2021 __func__, cr->cr_users, cr));
2022 td->td_ucredref++;
2023 return (cr);
2024 }
2025 mtx_lock(&cr->cr_mtx);
2026 cr->cr_ref++;
2027 mtx_unlock(&cr->cr_mtx);
2028 return (cr);
2029 }
2030
2031 /*
2032 * Free a cred structure. Throws away space when ref count gets to 0.
2033 */
2034 void
crfree(struct ucred * cr)2035 crfree(struct ucred *cr)
2036 {
2037 struct thread *td;
2038
2039 td = curthread;
2040 if (__predict_true(td->td_realucred == cr)) {
2041 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2042 __func__, cr->cr_users, cr));
2043 td->td_ucredref--;
2044 return;
2045 }
2046 mtx_lock(&cr->cr_mtx);
2047 KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
2048 __func__, cr->cr_users, cr));
2049 cr->cr_ref--;
2050 if (cr->cr_users > 0) {
2051 mtx_unlock(&cr->cr_mtx);
2052 return;
2053 }
2054 KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p",
2055 __func__, cr->cr_ref, cr));
2056 if (cr->cr_ref > 0) {
2057 mtx_unlock(&cr->cr_mtx);
2058 return;
2059 }
2060 crfree_final(cr);
2061 }
2062
2063 static void
crfree_final(struct ucred * cr)2064 crfree_final(struct ucred *cr)
2065 {
2066
2067 KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
2068 __func__, cr->cr_users, cr));
2069 KASSERT(cr->cr_ref == 0, ("%s: ref %d not == 0 on cred %p",
2070 __func__, cr->cr_ref, cr));
2071
2072 /*
2073 * Some callers of crget(), such as nfs_statfs(), allocate a temporary
2074 * credential, but don't allocate a uidinfo structure.
2075 */
2076 if (cr->cr_uidinfo != NULL)
2077 uifree(cr->cr_uidinfo);
2078 if (cr->cr_ruidinfo != NULL)
2079 uifree(cr->cr_ruidinfo);
2080 if (cr->cr_prison != NULL)
2081 prison_free(cr->cr_prison);
2082 if (cr->cr_loginclass != NULL)
2083 loginclass_free(cr->cr_loginclass);
2084 #ifdef AUDIT
2085 audit_cred_destroy(cr);
2086 #endif
2087 #ifdef MAC
2088 mac_cred_destroy(cr);
2089 #endif
2090 mtx_destroy(&cr->cr_mtx);
2091 if (cr->cr_groups != cr->cr_smallgroups)
2092 free(cr->cr_groups, M_CRED);
2093 free(cr, M_CRED);
2094 }
2095
2096 /*
2097 * Copy a ucred's contents from a template. Does not block.
2098 */
2099 void
crcopy(struct ucred * dest,struct ucred * src)2100 crcopy(struct ucred *dest, struct ucred *src)
2101 {
2102
2103 KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
2104 bcopy(&src->cr_startcopy, &dest->cr_startcopy,
2105 (unsigned)((caddr_t)&src->cr_endcopy -
2106 (caddr_t)&src->cr_startcopy));
2107 crsetgroups(dest, src->cr_ngroups, src->cr_groups);
2108 uihold(dest->cr_uidinfo);
2109 uihold(dest->cr_ruidinfo);
2110 prison_hold(dest->cr_prison);
2111 loginclass_hold(dest->cr_loginclass);
2112 #ifdef AUDIT
2113 audit_cred_copy(src, dest);
2114 #endif
2115 #ifdef MAC
2116 mac_cred_copy(src, dest);
2117 #endif
2118 }
2119
2120 /*
2121 * Dup cred struct to a new held one.
2122 */
2123 struct ucred *
crdup(struct ucred * cr)2124 crdup(struct ucred *cr)
2125 {
2126 struct ucred *newcr;
2127
2128 newcr = crget();
2129 crcopy(newcr, cr);
2130 return (newcr);
2131 }
2132
2133 /*
2134 * Fill in a struct xucred based on a struct ucred.
2135 */
2136 void
cru2x(struct ucred * cr,struct xucred * xcr)2137 cru2x(struct ucred *cr, struct xucred *xcr)
2138 {
2139 int ngroups;
2140
2141 bzero(xcr, sizeof(*xcr));
2142 xcr->cr_version = XUCRED_VERSION;
2143 xcr->cr_uid = cr->cr_uid;
2144
2145 ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
2146 xcr->cr_ngroups = ngroups;
2147 bcopy(cr->cr_groups, xcr->cr_groups,
2148 ngroups * sizeof(*cr->cr_groups));
2149 }
2150
2151 void
cru2xt(struct thread * td,struct xucred * xcr)2152 cru2xt(struct thread *td, struct xucred *xcr)
2153 {
2154
2155 cru2x(td->td_ucred, xcr);
2156 xcr->cr_pid = td->td_proc->p_pid;
2157 }
2158
2159 /*
2160 * Set initial process credentials.
2161 * Callers are responsible for providing the reference for provided credentials.
2162 */
2163 void
proc_set_cred_init(struct proc * p,struct ucred * newcred)2164 proc_set_cred_init(struct proc *p, struct ucred *newcred)
2165 {
2166
2167 p->p_ucred = crcowget(newcred);
2168 }
2169
2170 /*
2171 * Change process credentials.
2172 * Callers are responsible for providing the reference for passed credentials
2173 * and for freeing old ones.
2174 *
2175 * Process has to be locked except when it does not have credentials (as it
2176 * should not be visible just yet) or when newcred is NULL (as this can be
2177 * only used when the process is about to be freed, at which point it should
2178 * not be visible anymore).
2179 */
2180 void
proc_set_cred(struct proc * p,struct ucred * newcred)2181 proc_set_cred(struct proc *p, struct ucred *newcred)
2182 {
2183 struct ucred *cr;
2184
2185 cr = p->p_ucred;
2186 MPASS(cr != NULL);
2187 PROC_LOCK_ASSERT(p, MA_OWNED);
2188 KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
2189 __func__, newcred->cr_users, newcred));
2190 mtx_lock(&cr->cr_mtx);
2191 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2192 __func__, cr->cr_users, cr));
2193 cr->cr_users--;
2194 mtx_unlock(&cr->cr_mtx);
2195 p->p_ucred = newcred;
2196 newcred->cr_users = 1;
2197 PROC_UPDATE_COW(p);
2198 }
2199
2200 void
proc_unset_cred(struct proc * p)2201 proc_unset_cred(struct proc *p)
2202 {
2203 struct ucred *cr;
2204
2205 MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
2206 cr = p->p_ucred;
2207 p->p_ucred = NULL;
2208 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2209 __func__, cr->cr_users, cr));
2210 mtx_lock(&cr->cr_mtx);
2211 cr->cr_users--;
2212 if (cr->cr_users == 0)
2213 KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p",
2214 __func__, cr->cr_ref, cr));
2215 mtx_unlock(&cr->cr_mtx);
2216 crfree(cr);
2217 }
2218
2219 struct ucred *
crcopysafe(struct proc * p,struct ucred * cr)2220 crcopysafe(struct proc *p, struct ucred *cr)
2221 {
2222 struct ucred *oldcred;
2223 int groups;
2224
2225 PROC_LOCK_ASSERT(p, MA_OWNED);
2226
2227 oldcred = p->p_ucred;
2228 while (cr->cr_agroups < oldcred->cr_agroups) {
2229 groups = oldcred->cr_agroups;
2230 PROC_UNLOCK(p);
2231 crextend(cr, groups);
2232 PROC_LOCK(p);
2233 oldcred = p->p_ucred;
2234 }
2235 crcopy(cr, oldcred);
2236
2237 return (oldcred);
2238 }
2239
2240 /*
2241 * Extend the passed in credential to hold n items.
2242 */
2243 void
crextend(struct ucred * cr,int n)2244 crextend(struct ucred *cr, int n)
2245 {
2246 int cnt;
2247
2248 /* Truncate? */
2249 if (n <= cr->cr_agroups)
2250 return;
2251
2252 /*
2253 * We extend by 2 each time since we're using a power of two
2254 * allocator until we need enough groups to fill a page.
2255 * Once we're allocating multiple pages, only allocate as many
2256 * as we actually need. The case of processes needing a
2257 * non-power of two number of pages seems more likely than
2258 * a real world process that adds thousands of groups one at a
2259 * time.
2260 */
2261 if ( n < PAGE_SIZE / sizeof(gid_t) ) {
2262 if (cr->cr_agroups == 0)
2263 cnt = MAX(1, MINALLOCSIZE / sizeof(gid_t));
2264 else
2265 cnt = cr->cr_agroups * 2;
2266
2267 while (cnt < n)
2268 cnt *= 2;
2269 } else
2270 cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
2271
2272 /* Free the old array. */
2273 if (cr->cr_groups != cr->cr_smallgroups)
2274 free(cr->cr_groups, M_CRED);
2275
2276 cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
2277 cr->cr_agroups = cnt;
2278 }
2279
2280 /*
2281 * Copy groups in to a credential, preserving any necessary invariants.
2282 * Currently this includes the sorting of all supplemental gids.
2283 * crextend() must have been called before hand to ensure sufficient
2284 * space is available.
2285 */
2286 static void
crsetgroups_locked(struct ucred * cr,int ngrp,gid_t * groups)2287 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
2288 {
2289 int i;
2290 int j;
2291 gid_t g;
2292
2293 KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
2294
2295 bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2296 cr->cr_ngroups = ngrp;
2297
2298 /*
2299 * Sort all groups except cr_groups[0] to allow groupmember to
2300 * perform a binary search.
2301 *
2302 * XXX: If large numbers of groups become common this should
2303 * be replaced with shell sort like linux uses or possibly
2304 * heap sort.
2305 */
2306 for (i = 2; i < ngrp; i++) {
2307 g = cr->cr_groups[i];
2308 for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
2309 cr->cr_groups[j + 1] = cr->cr_groups[j];
2310 cr->cr_groups[j + 1] = g;
2311 }
2312 }
2313
2314 /*
2315 * Copy groups in to a credential after expanding it if required.
2316 * Truncate the list to (ngroups_max + 1) if it is too large.
2317 */
2318 void
crsetgroups(struct ucred * cr,int ngrp,gid_t * groups)2319 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
2320 {
2321
2322 if (ngrp > ngroups_max + 1)
2323 ngrp = ngroups_max + 1;
2324
2325 crextend(cr, ngrp);
2326 crsetgroups_locked(cr, ngrp, groups);
2327 }
2328
2329 /*
2330 * Get login name, if available.
2331 */
2332 #ifndef _SYS_SYSPROTO_H_
2333 struct getlogin_args {
2334 char *namebuf;
2335 u_int namelen;
2336 };
2337 #endif
2338 /* ARGSUSED */
2339 int
sys_getlogin(struct thread * td,struct getlogin_args * uap)2340 sys_getlogin(struct thread *td, struct getlogin_args *uap)
2341 {
2342 char login[MAXLOGNAME];
2343 struct proc *p = td->td_proc;
2344 size_t len;
2345
2346 if (uap->namelen > MAXLOGNAME)
2347 uap->namelen = MAXLOGNAME;
2348 PROC_LOCK(p);
2349 SESS_LOCK(p->p_session);
2350 len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
2351 SESS_UNLOCK(p->p_session);
2352 PROC_UNLOCK(p);
2353 if (len > uap->namelen)
2354 return (ERANGE);
2355 return (copyout(login, uap->namebuf, len));
2356 }
2357
2358 /*
2359 * Set login name.
2360 */
2361 #ifndef _SYS_SYSPROTO_H_
2362 struct setlogin_args {
2363 char *namebuf;
2364 };
2365 #endif
2366 /* ARGSUSED */
2367 int
sys_setlogin(struct thread * td,struct setlogin_args * uap)2368 sys_setlogin(struct thread *td, struct setlogin_args *uap)
2369 {
2370 struct proc *p = td->td_proc;
2371 int error;
2372 char logintmp[MAXLOGNAME];
2373
2374 CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
2375
2376 error = priv_check(td, PRIV_PROC_SETLOGIN);
2377 if (error)
2378 return (error);
2379 error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2380 if (error != 0) {
2381 if (error == ENAMETOOLONG)
2382 error = EINVAL;
2383 return (error);
2384 }
2385 AUDIT_ARG_LOGIN(logintmp);
2386 PROC_LOCK(p);
2387 SESS_LOCK(p->p_session);
2388 strcpy(p->p_session->s_login, logintmp);
2389 SESS_UNLOCK(p->p_session);
2390 PROC_UNLOCK(p);
2391 return (0);
2392 }
2393
2394 void
setsugid(struct proc * p)2395 setsugid(struct proc *p)
2396 {
2397
2398 PROC_LOCK_ASSERT(p, MA_OWNED);
2399 p->p_flag |= P_SUGID;
2400 }
2401
2402 /*-
2403 * Change a process's effective uid.
2404 * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2405 * References: newcred must be an exclusive credential reference for the
2406 * duration of the call.
2407 */
2408 void
change_euid(struct ucred * newcred,struct uidinfo * euip)2409 change_euid(struct ucred *newcred, struct uidinfo *euip)
2410 {
2411
2412 newcred->cr_uid = euip->ui_uid;
2413 uihold(euip);
2414 uifree(newcred->cr_uidinfo);
2415 newcred->cr_uidinfo = euip;
2416 }
2417
2418 /*-
2419 * Change a process's effective gid.
2420 * Side effects: newcred->cr_gid will be modified.
2421 * References: newcred must be an exclusive credential reference for the
2422 * duration of the call.
2423 */
2424 void
change_egid(struct ucred * newcred,gid_t egid)2425 change_egid(struct ucred *newcred, gid_t egid)
2426 {
2427
2428 newcred->cr_groups[0] = egid;
2429 }
2430
2431 /*-
2432 * Change a process's real uid.
2433 * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2434 * will be updated, and the old and new cr_ruidinfo proc
2435 * counts will be updated.
2436 * References: newcred must be an exclusive credential reference for the
2437 * duration of the call.
2438 */
2439 void
change_ruid(struct ucred * newcred,struct uidinfo * ruip)2440 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2441 {
2442
2443 (void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2444 newcred->cr_ruid = ruip->ui_uid;
2445 uihold(ruip);
2446 uifree(newcred->cr_ruidinfo);
2447 newcred->cr_ruidinfo = ruip;
2448 (void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2449 }
2450
2451 /*-
2452 * Change a process's real gid.
2453 * Side effects: newcred->cr_rgid will be updated.
2454 * References: newcred must be an exclusive credential reference for the
2455 * duration of the call.
2456 */
2457 void
change_rgid(struct ucred * newcred,gid_t rgid)2458 change_rgid(struct ucred *newcred, gid_t rgid)
2459 {
2460
2461 newcred->cr_rgid = rgid;
2462 }
2463
2464 /*-
2465 * Change a process's saved uid.
2466 * Side effects: newcred->cr_svuid will be updated.
2467 * References: newcred must be an exclusive credential reference for the
2468 * duration of the call.
2469 */
2470 void
change_svuid(struct ucred * newcred,uid_t svuid)2471 change_svuid(struct ucred *newcred, uid_t svuid)
2472 {
2473
2474 newcred->cr_svuid = svuid;
2475 }
2476
2477 /*-
2478 * Change a process's saved gid.
2479 * Side effects: newcred->cr_svgid will be updated.
2480 * References: newcred must be an exclusive credential reference for the
2481 * duration of the call.
2482 */
2483 void
change_svgid(struct ucred * newcred,gid_t svgid)2484 change_svgid(struct ucred *newcred, gid_t svgid)
2485 {
2486
2487 newcred->cr_svgid = svgid;
2488 }
2489
2490 bool allow_ptrace = true;
2491 SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN,
2492 &allow_ptrace, 0,
2493 "Deny ptrace(2) use by returning ENOSYS");
2494