xref: /freebsd-14.2/sys/kern/vfs_subr.c (revision c16d0924)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 #include "opt_ddb.h"
45 #include "opt_watchdog.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/asan.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/capsicum.h>
53 #include <sys/condvar.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/dirent.h>
57 #include <sys/event.h>
58 #include <sys/eventhandler.h>
59 #include <sys/extattr.h>
60 #include <sys/file.h>
61 #include <sys/fcntl.h>
62 #include <sys/jail.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/ktr.h>
67 #include <sys/limits.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smr.h>
80 #include <sys/smp.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <machine/stdarg.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_extern.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_kern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/uma.h>
101 
102 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
103 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
104 #endif
105 
106 #ifdef DDB
107 #include <ddb/ddb.h>
108 #endif
109 
110 static void	delmntque(struct vnode *vp);
111 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
112 		    int slpflag, int slptimeo);
113 static void	syncer_shutdown(void *arg, int howto);
114 static int	vtryrecycle(struct vnode *vp, bool isvnlru);
115 static void	v_init_counters(struct vnode *);
116 static void	vn_seqc_init(struct vnode *);
117 static void	vn_seqc_write_end_free(struct vnode *vp);
118 static void	vgonel(struct vnode *);
119 static bool	vhold_recycle_free(struct vnode *);
120 static void	vdropl_recycle(struct vnode *vp);
121 static void	vdrop_recycle(struct vnode *vp);
122 static void	vfs_knllock(void *arg);
123 static void	vfs_knlunlock(void *arg);
124 static void	vfs_knl_assert_lock(void *arg, int what);
125 static void	destroy_vpollinfo(struct vpollinfo *vi);
126 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
127 		    daddr_t startlbn, daddr_t endlbn);
128 static void	vnlru_recalc(void);
129 
130 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131     "vnode configuration and statistics");
132 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133     "vnode configuration");
134 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
135     "vnode statistics");
136 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
137     "vnode recycling");
138 
139 /*
140  * Number of vnodes in existence.  Increased whenever getnewvnode()
141  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
142  */
143 static u_long __exclusive_cache_line numvnodes;
144 
145 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
146     "Number of vnodes in existence (legacy)");
147 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
148     "Number of vnodes in existence");
149 
150 static counter_u64_t vnodes_created;
151 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
152     "Number of vnodes created by getnewvnode (legacy)");
153 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
154     "Number of vnodes created by getnewvnode");
155 
156 /*
157  * Conversion tables for conversion from vnode types to inode formats
158  * and back.
159  */
160 __enum_uint8(vtype) iftovt_tab[16] = {
161 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
162 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
163 };
164 int vttoif_tab[10] = {
165 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
166 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
167 };
168 
169 /*
170  * List of allocates vnodes in the system.
171  */
172 static TAILQ_HEAD(freelst, vnode) vnode_list;
173 static struct vnode *vnode_list_free_marker;
174 static struct vnode *vnode_list_reclaim_marker;
175 
176 /*
177  * "Free" vnode target.  Free vnodes are rarely completely free, but are
178  * just ones that are cheap to recycle.  Usually they are for files which
179  * have been stat'd but not read; these usually have inode and namecache
180  * data attached to them.  This target is the preferred minimum size of a
181  * sub-cache consisting mostly of such files. The system balances the size
182  * of this sub-cache with its complement to try to prevent either from
183  * thrashing while the other is relatively inactive.  The targets express
184  * a preference for the best balance.
185  *
186  * "Above" this target there are 2 further targets (watermarks) related
187  * to recyling of free vnodes.  In the best-operating case, the cache is
188  * exactly full, the free list has size between vlowat and vhiwat above the
189  * free target, and recycling from it and normal use maintains this state.
190  * Sometimes the free list is below vlowat or even empty, but this state
191  * is even better for immediate use provided the cache is not full.
192  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
193  * ones) to reach one of these states.  The watermarks are currently hard-
194  * coded as 4% and 9% of the available space higher.  These and the default
195  * of 25% for wantfreevnodes are too large if the memory size is large.
196  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
197  * whenever vnlru_proc() becomes active.
198  */
199 static long wantfreevnodes;
200 static long __exclusive_cache_line freevnodes;
201 static long freevnodes_old;
202 
203 static u_long recycles_count;
204 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
205     "Number of vnodes recycled to meet vnode cache targets (legacy)");
206 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
207     &recycles_count, 0,
208     "Number of vnodes recycled to meet vnode cache targets");
209 
210 static u_long recycles_free_count;
211 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
212     &recycles_free_count, 0,
213     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
214 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
215     &recycles_free_count, 0,
216     "Number of free vnodes recycled to meet vnode cache targets");
217 
218 static counter_u64_t direct_recycles_free_count;
219 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
220     &direct_recycles_free_count,
221     "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
222 
223 static counter_u64_t vnode_skipped_requeues;
224 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
225     "Number of times LRU requeue was skipped due to lock contention");
226 
227 static __read_mostly bool vnode_can_skip_requeue;
228 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
229     &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
230 
231 static u_long deferred_inact;
232 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
233     &deferred_inact, 0, "Number of times inactive processing was deferred");
234 
235 /* To keep more than one thread at a time from running vfs_getnewfsid */
236 static struct mtx mntid_mtx;
237 
238 /*
239  * Lock for any access to the following:
240  *	vnode_list
241  *	numvnodes
242  *	freevnodes
243  */
244 static struct mtx __exclusive_cache_line vnode_list_mtx;
245 
246 /* Publicly exported FS */
247 struct nfs_public nfs_pub;
248 
249 static uma_zone_t buf_trie_zone;
250 static smr_t buf_trie_smr;
251 
252 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
253 static uma_zone_t vnode_zone;
254 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
255 
256 __read_frequently smr_t vfs_smr;
257 
258 /*
259  * The workitem queue.
260  *
261  * It is useful to delay writes of file data and filesystem metadata
262  * for tens of seconds so that quickly created and deleted files need
263  * not waste disk bandwidth being created and removed. To realize this,
264  * we append vnodes to a "workitem" queue. When running with a soft
265  * updates implementation, most pending metadata dependencies should
266  * not wait for more than a few seconds. Thus, mounted on block devices
267  * are delayed only about a half the time that file data is delayed.
268  * Similarly, directory updates are more critical, so are only delayed
269  * about a third the time that file data is delayed. Thus, there are
270  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
271  * one each second (driven off the filesystem syncer process). The
272  * syncer_delayno variable indicates the next queue that is to be processed.
273  * Items that need to be processed soon are placed in this queue:
274  *
275  *	syncer_workitem_pending[syncer_delayno]
276  *
277  * A delay of fifteen seconds is done by placing the request fifteen
278  * entries later in the queue:
279  *
280  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
281  *
282  */
283 static int syncer_delayno;
284 static long syncer_mask;
285 LIST_HEAD(synclist, bufobj);
286 static struct synclist *syncer_workitem_pending;
287 /*
288  * The sync_mtx protects:
289  *	bo->bo_synclist
290  *	sync_vnode_count
291  *	syncer_delayno
292  *	syncer_state
293  *	syncer_workitem_pending
294  *	syncer_worklist_len
295  *	rushjob
296  */
297 static struct mtx sync_mtx;
298 static struct cv sync_wakeup;
299 
300 #define SYNCER_MAXDELAY		32
301 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
302 static int syncdelay = 30;		/* max time to delay syncing data */
303 static int filedelay = 30;		/* time to delay syncing files */
304 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
305     "Time to delay syncing files (in seconds)");
306 static int dirdelay = 29;		/* time to delay syncing directories */
307 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
308     "Time to delay syncing directories (in seconds)");
309 static int metadelay = 28;		/* time to delay syncing metadata */
310 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
311     "Time to delay syncing metadata (in seconds)");
312 static int rushjob;		/* number of slots to run ASAP */
313 static int stat_rush_requests;	/* number of times I/O speeded up */
314 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
315     "Number of times I/O speeded up (rush requests)");
316 
317 #define	VDBATCH_SIZE 8
318 struct vdbatch {
319 	u_int index;
320 	struct mtx lock;
321 	struct vnode *tab[VDBATCH_SIZE];
322 };
323 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
324 
325 static void	vdbatch_dequeue(struct vnode *vp);
326 
327 /*
328  * When shutting down the syncer, run it at four times normal speed.
329  */
330 #define SYNCER_SHUTDOWN_SPEEDUP		4
331 static int sync_vnode_count;
332 static int syncer_worklist_len;
333 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
334     syncer_state;
335 
336 /* Target for maximum number of vnodes. */
337 u_long desiredvnodes;
338 static u_long gapvnodes;		/* gap between wanted and desired */
339 static u_long vhiwat;		/* enough extras after expansion */
340 static u_long vlowat;		/* minimal extras before expansion */
341 static bool vstir;		/* nonzero to stir non-free vnodes */
342 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
343 
344 static u_long vnlru_read_freevnodes(void);
345 
346 /*
347  * Note that no attempt is made to sanitize these parameters.
348  */
349 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)350 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
351 {
352 	u_long val;
353 	int error;
354 
355 	val = desiredvnodes;
356 	error = sysctl_handle_long(oidp, &val, 0, req);
357 	if (error != 0 || req->newptr == NULL)
358 		return (error);
359 
360 	if (val == desiredvnodes)
361 		return (0);
362 	mtx_lock(&vnode_list_mtx);
363 	desiredvnodes = val;
364 	wantfreevnodes = desiredvnodes / 4;
365 	vnlru_recalc();
366 	mtx_unlock(&vnode_list_mtx);
367 	/*
368 	 * XXX There is no protection against multiple threads changing
369 	 * desiredvnodes at the same time. Locking above only helps vnlru and
370 	 * getnewvnode.
371 	 */
372 	vfs_hash_changesize(desiredvnodes);
373 	cache_changesize(desiredvnodes);
374 	return (0);
375 }
376 
377 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
378     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
379     "LU", "Target for maximum number of vnodes (legacy)");
380 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
381     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
382     "LU", "Target for maximum number of vnodes");
383 
384 static int
sysctl_freevnodes(SYSCTL_HANDLER_ARGS)385 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
386 {
387 	u_long rfreevnodes;
388 
389 	rfreevnodes = vnlru_read_freevnodes();
390 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
391 }
392 
393 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
394     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
395     "LU", "Number of \"free\" vnodes (legacy)");
396 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
397     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
398     "LU", "Number of \"free\" vnodes");
399 
400 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)401 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
402 {
403 	u_long val;
404 	int error;
405 
406 	val = wantfreevnodes;
407 	error = sysctl_handle_long(oidp, &val, 0, req);
408 	if (error != 0 || req->newptr == NULL)
409 		return (error);
410 
411 	if (val == wantfreevnodes)
412 		return (0);
413 	mtx_lock(&vnode_list_mtx);
414 	wantfreevnodes = val;
415 	vnlru_recalc();
416 	mtx_unlock(&vnode_list_mtx);
417 	return (0);
418 }
419 
420 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
421     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
422     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
423 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
424     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
425     "LU", "Target for minimum number of \"free\" vnodes");
426 
427 static int vnlru_nowhere;
428 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
429     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
430 
431 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)432 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
433 {
434 	struct vnode *vp;
435 	struct nameidata nd;
436 	char *buf;
437 	unsigned long ndflags;
438 	int error;
439 
440 	if (req->newptr == NULL)
441 		return (EINVAL);
442 	if (req->newlen >= PATH_MAX)
443 		return (E2BIG);
444 
445 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
446 	error = SYSCTL_IN(req, buf, req->newlen);
447 	if (error != 0)
448 		goto out;
449 
450 	buf[req->newlen] = '\0';
451 
452 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
453 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
454 	if ((error = namei(&nd)) != 0)
455 		goto out;
456 	vp = nd.ni_vp;
457 
458 	if (VN_IS_DOOMED(vp)) {
459 		/*
460 		 * This vnode is being recycled.  Return != 0 to let the caller
461 		 * know that the sysctl had no effect.  Return EAGAIN because a
462 		 * subsequent call will likely succeed (since namei will create
463 		 * a new vnode if necessary)
464 		 */
465 		error = EAGAIN;
466 		goto putvnode;
467 	}
468 
469 	vgone(vp);
470 putvnode:
471 	vput(vp);
472 	NDFREE_PNBUF(&nd);
473 out:
474 	free(buf, M_TEMP);
475 	return (error);
476 }
477 
478 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)479 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
480 {
481 	struct thread *td = curthread;
482 	struct vnode *vp;
483 	struct file *fp;
484 	int error;
485 	int fd;
486 
487 	if (req->newptr == NULL)
488 		return (EBADF);
489 
490         error = sysctl_handle_int(oidp, &fd, 0, req);
491         if (error != 0)
492                 return (error);
493 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
494 	if (error != 0)
495 		return (error);
496 	vp = fp->f_vnode;
497 
498 	error = vn_lock(vp, LK_EXCLUSIVE);
499 	if (error != 0)
500 		goto drop;
501 
502 	vgone(vp);
503 	VOP_UNLOCK(vp);
504 drop:
505 	fdrop(fp, td);
506 	return (error);
507 }
508 
509 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
510     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
511     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
512 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
513     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
514     sysctl_ftry_reclaim_vnode, "I",
515     "Try to reclaim a vnode by its file descriptor");
516 
517 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
518 #define vnsz2log 8
519 #ifndef DEBUG_LOCKS
520 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
521     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
522     "vnsz2log needs to be updated");
523 #endif
524 
525 /*
526  * Support for the bufobj clean & dirty pctrie.
527  */
528 static void *
buf_trie_alloc(struct pctrie * ptree)529 buf_trie_alloc(struct pctrie *ptree)
530 {
531 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
532 }
533 
534 static void
buf_trie_free(struct pctrie * ptree,void * node)535 buf_trie_free(struct pctrie *ptree, void *node)
536 {
537 	uma_zfree_smr(buf_trie_zone, node);
538 }
539 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
540     buf_trie_smr);
541 
542 /*
543  * Initialize the vnode management data structures.
544  *
545  * Reevaluate the following cap on the number of vnodes after the physical
546  * memory size exceeds 512GB.  In the limit, as the physical memory size
547  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
548  */
549 #ifndef	MAXVNODES_MAX
550 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
551 #endif
552 
553 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
554 
555 static struct vnode *
vn_alloc_marker(struct mount * mp)556 vn_alloc_marker(struct mount *mp)
557 {
558 	struct vnode *vp;
559 
560 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
561 	vp->v_type = VMARKER;
562 	vp->v_mount = mp;
563 
564 	return (vp);
565 }
566 
567 static void
vn_free_marker(struct vnode * vp)568 vn_free_marker(struct vnode *vp)
569 {
570 
571 	MPASS(vp->v_type == VMARKER);
572 	free(vp, M_VNODE_MARKER);
573 }
574 
575 #ifdef KASAN
576 static int
vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)577 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
578 {
579 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
580 	return (0);
581 }
582 
583 static void
vnode_dtor(void * mem,int size,void * arg __unused)584 vnode_dtor(void *mem, int size, void *arg __unused)
585 {
586 	size_t end1, end2, off1, off2;
587 
588 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
589 	    offsetof(struct vnode, v_dbatchcpu),
590 	    "KASAN marks require updating");
591 
592 	off1 = offsetof(struct vnode, v_vnodelist);
593 	off2 = offsetof(struct vnode, v_dbatchcpu);
594 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
595 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
596 
597 	/*
598 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
599 	 * after the vnode has been freed.  Try to get some KASAN coverage by
600 	 * marking everything except those two fields as invalid.  Because
601 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
602 	 * the same 8-byte aligned word must also be marked valid.
603 	 */
604 
605 	/* Handle the area from the start until v_vnodelist... */
606 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
607 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
608 
609 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
610 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
611 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
612 	if (off2 > off1)
613 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
614 		    off2 - off1, KASAN_UMA_FREED);
615 
616 	/* ... and finally the area from v_dbatchcpu to the end. */
617 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
618 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
619 	    KASAN_UMA_FREED);
620 }
621 #endif /* KASAN */
622 
623 /*
624  * Initialize a vnode as it first enters the zone.
625  */
626 static int
vnode_init(void * mem,int size,int flags)627 vnode_init(void *mem, int size, int flags)
628 {
629 	struct vnode *vp;
630 
631 	vp = mem;
632 	bzero(vp, size);
633 	/*
634 	 * Setup locks.
635 	 */
636 	vp->v_vnlock = &vp->v_lock;
637 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
638 	/*
639 	 * By default, don't allow shared locks unless filesystems opt-in.
640 	 */
641 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
642 	    LK_NOSHARE | LK_IS_VNODE);
643 	/*
644 	 * Initialize bufobj.
645 	 */
646 	bufobj_init(&vp->v_bufobj, vp);
647 	/*
648 	 * Initialize namecache.
649 	 */
650 	cache_vnode_init(vp);
651 	/*
652 	 * Initialize rangelocks.
653 	 */
654 	rangelock_init(&vp->v_rl);
655 
656 	vp->v_dbatchcpu = NOCPU;
657 
658 	vp->v_state = VSTATE_DEAD;
659 
660 	/*
661 	 * Check vhold_recycle_free for an explanation.
662 	 */
663 	vp->v_holdcnt = VHOLD_NO_SMR;
664 	vp->v_type = VNON;
665 	mtx_lock(&vnode_list_mtx);
666 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
667 	mtx_unlock(&vnode_list_mtx);
668 	return (0);
669 }
670 
671 /*
672  * Free a vnode when it is cleared from the zone.
673  */
674 static void
vnode_fini(void * mem,int size)675 vnode_fini(void *mem, int size)
676 {
677 	struct vnode *vp;
678 	struct bufobj *bo;
679 
680 	vp = mem;
681 	vdbatch_dequeue(vp);
682 	mtx_lock(&vnode_list_mtx);
683 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
684 	mtx_unlock(&vnode_list_mtx);
685 	rangelock_destroy(&vp->v_rl);
686 	lockdestroy(vp->v_vnlock);
687 	mtx_destroy(&vp->v_interlock);
688 	bo = &vp->v_bufobj;
689 	rw_destroy(BO_LOCKPTR(bo));
690 
691 	kasan_mark(mem, size, size, 0);
692 }
693 
694 /*
695  * Provide the size of NFS nclnode and NFS fh for calculation of the
696  * vnode memory consumption.  The size is specified directly to
697  * eliminate dependency on NFS-private header.
698  *
699  * Other filesystems may use bigger or smaller (like UFS and ZFS)
700  * private inode data, but the NFS-based estimation is ample enough.
701  * Still, we care about differences in the size between 64- and 32-bit
702  * platforms.
703  *
704  * Namecache structure size is heuristically
705  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
706  */
707 #ifdef _LP64
708 #define	NFS_NCLNODE_SZ	(528 + 64)
709 #define	NC_SZ		148
710 #else
711 #define	NFS_NCLNODE_SZ	(360 + 32)
712 #define	NC_SZ		92
713 #endif
714 
715 static void
vntblinit(void * dummy __unused)716 vntblinit(void *dummy __unused)
717 {
718 	struct vdbatch *vd;
719 	uma_ctor ctor;
720 	uma_dtor dtor;
721 	int cpu, physvnodes, virtvnodes;
722 
723 	/*
724 	 * Desiredvnodes is a function of the physical memory size and the
725 	 * kernel's heap size.  Generally speaking, it scales with the
726 	 * physical memory size.  The ratio of desiredvnodes to the physical
727 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
728 	 * Thereafter, the
729 	 * marginal ratio of desiredvnodes to the physical memory size is
730 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
731 	 * size.  The memory required by desiredvnodes vnodes and vm objects
732 	 * must not exceed 1/10th of the kernel's heap size.
733 	 */
734 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
735 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
736 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
737 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
738 	desiredvnodes = min(physvnodes, virtvnodes);
739 	if (desiredvnodes > MAXVNODES_MAX) {
740 		if (bootverbose)
741 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
742 			    desiredvnodes, MAXVNODES_MAX);
743 		desiredvnodes = MAXVNODES_MAX;
744 	}
745 	wantfreevnodes = desiredvnodes / 4;
746 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
747 	TAILQ_INIT(&vnode_list);
748 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
749 	/*
750 	 * The lock is taken to appease WITNESS.
751 	 */
752 	mtx_lock(&vnode_list_mtx);
753 	vnlru_recalc();
754 	mtx_unlock(&vnode_list_mtx);
755 	vnode_list_free_marker = vn_alloc_marker(NULL);
756 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
757 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
758 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
759 
760 #ifdef KASAN
761 	ctor = vnode_ctor;
762 	dtor = vnode_dtor;
763 #else
764 	ctor = NULL;
765 	dtor = NULL;
766 #endif
767 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
768 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
769 	uma_zone_set_smr(vnode_zone, vfs_smr);
770 
771 	/*
772 	 * Preallocate enough nodes to support one-per buf so that
773 	 * we can not fail an insert.  reassignbuf() callers can not
774 	 * tolerate the insertion failure.
775 	 */
776 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
777 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
778 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
779 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
780 	uma_prealloc(buf_trie_zone, nbuf);
781 
782 	vnodes_created = counter_u64_alloc(M_WAITOK);
783 	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
784 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
785 
786 	/*
787 	 * Initialize the filesystem syncer.
788 	 */
789 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
790 	    &syncer_mask);
791 	syncer_maxdelay = syncer_mask + 1;
792 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
793 	cv_init(&sync_wakeup, "syncer");
794 
795 	CPU_FOREACH(cpu) {
796 		vd = DPCPU_ID_PTR((cpu), vd);
797 		bzero(vd, sizeof(*vd));
798 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
799 	}
800 }
801 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
802 
803 /*
804  * Mark a mount point as busy. Used to synchronize access and to delay
805  * unmounting. Eventually, mountlist_mtx is not released on failure.
806  *
807  * vfs_busy() is a custom lock, it can block the caller.
808  * vfs_busy() only sleeps if the unmount is active on the mount point.
809  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
810  * vnode belonging to mp.
811  *
812  * Lookup uses vfs_busy() to traverse mount points.
813  * root fs			var fs
814  * / vnode lock		A	/ vnode lock (/var)		D
815  * /var vnode lock	B	/log vnode lock(/var/log)	E
816  * vfs_busy lock	C	vfs_busy lock			F
817  *
818  * Within each file system, the lock order is C->A->B and F->D->E.
819  *
820  * When traversing across mounts, the system follows that lock order:
821  *
822  *        C->A->B
823  *              |
824  *              +->F->D->E
825  *
826  * The lookup() process for namei("/var") illustrates the process:
827  *  1. VOP_LOOKUP() obtains B while A is held
828  *  2. vfs_busy() obtains a shared lock on F while A and B are held
829  *  3. vput() releases lock on B
830  *  4. vput() releases lock on A
831  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
832  *  6. vfs_unbusy() releases shared lock on F
833  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
834  *     Attempt to lock A (instead of vp_crossmp) while D is held would
835  *     violate the global order, causing deadlocks.
836  *
837  * dounmount() locks B while F is drained.  Note that for stacked
838  * filesystems, D and B in the example above may be the same lock,
839  * which introdues potential lock order reversal deadlock between
840  * dounmount() and step 5 above.  These filesystems may avoid the LOR
841  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
842  * remain held until after step 5.
843  */
844 int
vfs_busy(struct mount * mp,int flags)845 vfs_busy(struct mount *mp, int flags)
846 {
847 	struct mount_pcpu *mpcpu;
848 
849 	MPASS((flags & ~MBF_MASK) == 0);
850 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
851 
852 	if (vfs_op_thread_enter(mp, mpcpu)) {
853 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
854 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
855 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
856 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
857 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
858 		vfs_op_thread_exit(mp, mpcpu);
859 		if (flags & MBF_MNTLSTLOCK)
860 			mtx_unlock(&mountlist_mtx);
861 		return (0);
862 	}
863 
864 	MNT_ILOCK(mp);
865 	vfs_assert_mount_counters(mp);
866 	MNT_REF(mp);
867 	/*
868 	 * If mount point is currently being unmounted, sleep until the
869 	 * mount point fate is decided.  If thread doing the unmounting fails,
870 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
871 	 * that this mount point has survived the unmount attempt and vfs_busy
872 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
873 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
874 	 * about to be really destroyed.  vfs_busy needs to release its
875 	 * reference on the mount point in this case and return with ENOENT,
876 	 * telling the caller the mount it tried to busy is no longer valid.
877 	 */
878 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
879 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
880 		    ("%s: non-empty upper mount list with pending unmount",
881 		    __func__));
882 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
883 			MNT_REL(mp);
884 			MNT_IUNLOCK(mp);
885 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
886 			    __func__);
887 			return (ENOENT);
888 		}
889 		if (flags & MBF_MNTLSTLOCK)
890 			mtx_unlock(&mountlist_mtx);
891 		mp->mnt_kern_flag |= MNTK_MWAIT;
892 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
893 		if (flags & MBF_MNTLSTLOCK)
894 			mtx_lock(&mountlist_mtx);
895 		MNT_ILOCK(mp);
896 	}
897 	if (flags & MBF_MNTLSTLOCK)
898 		mtx_unlock(&mountlist_mtx);
899 	mp->mnt_lockref++;
900 	MNT_IUNLOCK(mp);
901 	return (0);
902 }
903 
904 /*
905  * Free a busy filesystem.
906  */
907 void
vfs_unbusy(struct mount * mp)908 vfs_unbusy(struct mount *mp)
909 {
910 	struct mount_pcpu *mpcpu;
911 	int c;
912 
913 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
914 
915 	if (vfs_op_thread_enter(mp, mpcpu)) {
916 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
917 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
918 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
919 		vfs_op_thread_exit(mp, mpcpu);
920 		return;
921 	}
922 
923 	MNT_ILOCK(mp);
924 	vfs_assert_mount_counters(mp);
925 	MNT_REL(mp);
926 	c = --mp->mnt_lockref;
927 	if (mp->mnt_vfs_ops == 0) {
928 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
929 		MNT_IUNLOCK(mp);
930 		return;
931 	}
932 	if (c < 0)
933 		vfs_dump_mount_counters(mp);
934 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
935 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
936 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
937 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
938 		wakeup(&mp->mnt_lockref);
939 	}
940 	MNT_IUNLOCK(mp);
941 }
942 
943 /*
944  * Lookup a mount point by filesystem identifier.
945  */
946 struct mount *
vfs_getvfs(fsid_t * fsid)947 vfs_getvfs(fsid_t *fsid)
948 {
949 	struct mount *mp;
950 
951 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
952 	mtx_lock(&mountlist_mtx);
953 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
954 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
955 			vfs_ref(mp);
956 			mtx_unlock(&mountlist_mtx);
957 			return (mp);
958 		}
959 	}
960 	mtx_unlock(&mountlist_mtx);
961 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
962 	return ((struct mount *) 0);
963 }
964 
965 /*
966  * Lookup a mount point by filesystem identifier, busying it before
967  * returning.
968  *
969  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
970  * cache for popular filesystem identifiers.  The cache is lockess, using
971  * the fact that struct mount's are never freed.  In worst case we may
972  * get pointer to unmounted or even different filesystem, so we have to
973  * check what we got, and go slow way if so.
974  */
975 struct mount *
vfs_busyfs(fsid_t * fsid)976 vfs_busyfs(fsid_t *fsid)
977 {
978 #define	FSID_CACHE_SIZE	256
979 	typedef struct mount * volatile vmp_t;
980 	static vmp_t cache[FSID_CACHE_SIZE];
981 	struct mount *mp;
982 	int error;
983 	uint32_t hash;
984 
985 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
986 	hash = fsid->val[0] ^ fsid->val[1];
987 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
988 	mp = cache[hash];
989 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
990 		goto slow;
991 	if (vfs_busy(mp, 0) != 0) {
992 		cache[hash] = NULL;
993 		goto slow;
994 	}
995 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
996 		return (mp);
997 	else
998 	    vfs_unbusy(mp);
999 
1000 slow:
1001 	mtx_lock(&mountlist_mtx);
1002 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1003 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1004 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
1005 			if (error) {
1006 				cache[hash] = NULL;
1007 				mtx_unlock(&mountlist_mtx);
1008 				return (NULL);
1009 			}
1010 			cache[hash] = mp;
1011 			return (mp);
1012 		}
1013 	}
1014 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1015 	mtx_unlock(&mountlist_mtx);
1016 	return ((struct mount *) 0);
1017 }
1018 
1019 /*
1020  * Check if a user can access privileged mount options.
1021  */
1022 int
vfs_suser(struct mount * mp,struct thread * td)1023 vfs_suser(struct mount *mp, struct thread *td)
1024 {
1025 	int error;
1026 
1027 	if (jailed(td->td_ucred)) {
1028 		/*
1029 		 * If the jail of the calling thread lacks permission for
1030 		 * this type of file system, deny immediately.
1031 		 */
1032 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1033 			return (EPERM);
1034 
1035 		/*
1036 		 * If the file system was mounted outside the jail of the
1037 		 * calling thread, deny immediately.
1038 		 */
1039 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1040 			return (EPERM);
1041 	}
1042 
1043 	/*
1044 	 * If file system supports delegated administration, we don't check
1045 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1046 	 * by the file system itself.
1047 	 * If this is not the user that did original mount, we check for
1048 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1049 	 */
1050 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1051 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1052 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1053 			return (error);
1054 	}
1055 	return (0);
1056 }
1057 
1058 /*
1059  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1060  * will be used to create fake device numbers for stat().  Also try (but
1061  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1062  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1063  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1064  *
1065  * Keep in mind that several mounts may be running in parallel.  Starting
1066  * the search one past where the previous search terminated is both a
1067  * micro-optimization and a defense against returning the same fsid to
1068  * different mounts.
1069  */
1070 void
vfs_getnewfsid(struct mount * mp)1071 vfs_getnewfsid(struct mount *mp)
1072 {
1073 	static uint16_t mntid_base;
1074 	struct mount *nmp;
1075 	fsid_t tfsid;
1076 	int mtype;
1077 
1078 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1079 	mtx_lock(&mntid_mtx);
1080 	mtype = mp->mnt_vfc->vfc_typenum;
1081 	tfsid.val[1] = mtype;
1082 	mtype = (mtype & 0xFF) << 24;
1083 	for (;;) {
1084 		tfsid.val[0] = makedev(255,
1085 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1086 		mntid_base++;
1087 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1088 			break;
1089 		vfs_rel(nmp);
1090 	}
1091 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1092 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1093 	mtx_unlock(&mntid_mtx);
1094 }
1095 
1096 /*
1097  * Knob to control the precision of file timestamps:
1098  *
1099  *   0 = seconds only; nanoseconds zeroed.
1100  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1101  *   2 = seconds and nanoseconds, truncated to microseconds.
1102  * >=3 = seconds and nanoseconds, maximum precision.
1103  */
1104 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1105 
1106 static int timestamp_precision = TSP_USEC;
1107 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1108     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1109     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1110     "3+: sec + ns (max. precision))");
1111 
1112 /*
1113  * Get a current timestamp.
1114  */
1115 void
vfs_timestamp(struct timespec * tsp)1116 vfs_timestamp(struct timespec *tsp)
1117 {
1118 	struct timeval tv;
1119 
1120 	switch (timestamp_precision) {
1121 	case TSP_SEC:
1122 		tsp->tv_sec = time_second;
1123 		tsp->tv_nsec = 0;
1124 		break;
1125 	case TSP_HZ:
1126 		getnanotime(tsp);
1127 		break;
1128 	case TSP_USEC:
1129 		microtime(&tv);
1130 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1131 		break;
1132 	case TSP_NSEC:
1133 	default:
1134 		nanotime(tsp);
1135 		break;
1136 	}
1137 }
1138 
1139 /*
1140  * Set vnode attributes to VNOVAL
1141  */
1142 void
vattr_null(struct vattr * vap)1143 vattr_null(struct vattr *vap)
1144 {
1145 
1146 	vap->va_type = VNON;
1147 	vap->va_size = VNOVAL;
1148 	vap->va_bytes = VNOVAL;
1149 	vap->va_mode = VNOVAL;
1150 	vap->va_nlink = VNOVAL;
1151 	vap->va_uid = VNOVAL;
1152 	vap->va_gid = VNOVAL;
1153 	vap->va_fsid = VNOVAL;
1154 	vap->va_fileid = VNOVAL;
1155 	vap->va_blocksize = VNOVAL;
1156 	vap->va_rdev = VNOVAL;
1157 	vap->va_atime.tv_sec = VNOVAL;
1158 	vap->va_atime.tv_nsec = VNOVAL;
1159 	vap->va_mtime.tv_sec = VNOVAL;
1160 	vap->va_mtime.tv_nsec = VNOVAL;
1161 	vap->va_ctime.tv_sec = VNOVAL;
1162 	vap->va_ctime.tv_nsec = VNOVAL;
1163 	vap->va_birthtime.tv_sec = VNOVAL;
1164 	vap->va_birthtime.tv_nsec = VNOVAL;
1165 	vap->va_flags = VNOVAL;
1166 	vap->va_gen = VNOVAL;
1167 	vap->va_vaflags = 0;
1168 }
1169 
1170 /*
1171  * Try to reduce the total number of vnodes.
1172  *
1173  * This routine (and its user) are buggy in at least the following ways:
1174  * - all parameters were picked years ago when RAM sizes were significantly
1175  *   smaller
1176  * - it can pick vnodes based on pages used by the vm object, but filesystems
1177  *   like ZFS don't use it making the pick broken
1178  * - since ZFS has its own aging policy it gets partially combated by this one
1179  * - a dedicated method should be provided for filesystems to let them decide
1180  *   whether the vnode should be recycled
1181  *
1182  * This routine is called when we have too many vnodes.  It attempts
1183  * to free <count> vnodes and will potentially free vnodes that still
1184  * have VM backing store (VM backing store is typically the cause
1185  * of a vnode blowout so we want to do this).  Therefore, this operation
1186  * is not considered cheap.
1187  *
1188  * A number of conditions may prevent a vnode from being reclaimed.
1189  * the buffer cache may have references on the vnode, a directory
1190  * vnode may still have references due to the namei cache representing
1191  * underlying files, or the vnode may be in active use.   It is not
1192  * desirable to reuse such vnodes.  These conditions may cause the
1193  * number of vnodes to reach some minimum value regardless of what
1194  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1195  *
1196  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1197  * 			 entries if this argument is strue
1198  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1199  *			 pages.
1200  * @param target	 How many vnodes to reclaim.
1201  * @return		 The number of vnodes that were reclaimed.
1202  */
1203 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1204 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1205 {
1206 	struct vnode *vp, *mvp;
1207 	struct mount *mp;
1208 	struct vm_object *object;
1209 	u_long done;
1210 	bool retried;
1211 
1212 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1213 
1214 	retried = false;
1215 	done = 0;
1216 
1217 	mvp = vnode_list_reclaim_marker;
1218 restart:
1219 	vp = mvp;
1220 	while (done < target) {
1221 		vp = TAILQ_NEXT(vp, v_vnodelist);
1222 		if (__predict_false(vp == NULL))
1223 			break;
1224 
1225 		if (__predict_false(vp->v_type == VMARKER))
1226 			continue;
1227 
1228 		/*
1229 		 * If it's been deconstructed already, it's still
1230 		 * referenced, or it exceeds the trigger, skip it.
1231 		 * Also skip free vnodes.  We are trying to make space
1232 		 * to expand the free list, not reduce it.
1233 		 */
1234 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1235 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1236 			goto next_iter;
1237 
1238 		if (vp->v_type == VBAD || vp->v_type == VNON)
1239 			goto next_iter;
1240 
1241 		object = atomic_load_ptr(&vp->v_object);
1242 		if (object == NULL || object->resident_page_count > trigger) {
1243 			goto next_iter;
1244 		}
1245 
1246 		/*
1247 		 * Handle races against vnode allocation. Filesystems lock the
1248 		 * vnode some time after it gets returned from getnewvnode,
1249 		 * despite type and hold count being manipulated earlier.
1250 		 * Resorting to checking v_mount restores guarantees present
1251 		 * before the global list was reworked to contain all vnodes.
1252 		 */
1253 		if (!VI_TRYLOCK(vp))
1254 			goto next_iter;
1255 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1256 			VI_UNLOCK(vp);
1257 			goto next_iter;
1258 		}
1259 		if (vp->v_mount == NULL) {
1260 			VI_UNLOCK(vp);
1261 			goto next_iter;
1262 		}
1263 		vholdl(vp);
1264 		VI_UNLOCK(vp);
1265 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1266 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1267 		mtx_unlock(&vnode_list_mtx);
1268 
1269 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1270 			vdrop_recycle(vp);
1271 			goto next_iter_unlocked;
1272 		}
1273 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1274 			vdrop_recycle(vp);
1275 			vn_finished_write(mp);
1276 			goto next_iter_unlocked;
1277 		}
1278 
1279 		VI_LOCK(vp);
1280 		if (vp->v_usecount > 0 ||
1281 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1282 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1283 		    vp->v_object->resident_page_count > trigger)) {
1284 			VOP_UNLOCK(vp);
1285 			vdropl_recycle(vp);
1286 			vn_finished_write(mp);
1287 			goto next_iter_unlocked;
1288 		}
1289 		recycles_count++;
1290 		vgonel(vp);
1291 		VOP_UNLOCK(vp);
1292 		vdropl_recycle(vp);
1293 		vn_finished_write(mp);
1294 		done++;
1295 next_iter_unlocked:
1296 		maybe_yield();
1297 		mtx_lock(&vnode_list_mtx);
1298 		goto restart;
1299 next_iter:
1300 		MPASS(vp->v_type != VMARKER);
1301 		if (!should_yield())
1302 			continue;
1303 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1304 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1305 		mtx_unlock(&vnode_list_mtx);
1306 		kern_yield(PRI_USER);
1307 		mtx_lock(&vnode_list_mtx);
1308 		goto restart;
1309 	}
1310 	if (done == 0 && !retried) {
1311 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1312 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1313 		retried = true;
1314 		goto restart;
1315 	}
1316 	return (done);
1317 }
1318 
1319 static int max_free_per_call = 10000;
1320 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1321     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1322 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1323     &max_free_per_call, 0,
1324     "limit on vnode free requests per call to the vnlru_free routine");
1325 
1326 /*
1327  * Attempt to reduce the free list by the requested amount.
1328  */
1329 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp,bool isvnlru)1330 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1331 {
1332 	struct vnode *vp;
1333 	struct mount *mp;
1334 	int ocount;
1335 	bool retried;
1336 
1337 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1338 	if (count > max_free_per_call)
1339 		count = max_free_per_call;
1340 	if (count == 0) {
1341 		mtx_unlock(&vnode_list_mtx);
1342 		return (0);
1343 	}
1344 	ocount = count;
1345 	retried = false;
1346 	vp = mvp;
1347 	for (;;) {
1348 		vp = TAILQ_NEXT(vp, v_vnodelist);
1349 		if (__predict_false(vp == NULL)) {
1350 			/*
1351 			 * The free vnode marker can be past eligible vnodes:
1352 			 * 1. if vdbatch_process trylock failed
1353 			 * 2. if vtryrecycle failed
1354 			 *
1355 			 * If so, start the scan from scratch.
1356 			 */
1357 			if (!retried && vnlru_read_freevnodes() > 0) {
1358 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1359 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1360 				vp = mvp;
1361 				retried = true;
1362 				continue;
1363 			}
1364 
1365 			/*
1366 			 * Give up
1367 			 */
1368 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1369 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1370 			mtx_unlock(&vnode_list_mtx);
1371 			break;
1372 		}
1373 		if (__predict_false(vp->v_type == VMARKER))
1374 			continue;
1375 		if (vp->v_holdcnt > 0)
1376 			continue;
1377 		/*
1378 		 * Don't recycle if our vnode is from different type
1379 		 * of mount point.  Note that mp is type-safe, the
1380 		 * check does not reach unmapped address even if
1381 		 * vnode is reclaimed.
1382 		 */
1383 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1384 		    mp->mnt_op != mnt_op) {
1385 			continue;
1386 		}
1387 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1388 			continue;
1389 		}
1390 		if (!vhold_recycle_free(vp))
1391 			continue;
1392 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1393 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1394 		mtx_unlock(&vnode_list_mtx);
1395 		/*
1396 		 * FIXME: ignores the return value, meaning it may be nothing
1397 		 * got recycled but it claims otherwise to the caller.
1398 		 *
1399 		 * Originally the value started being ignored in 2005 with
1400 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1401 		 *
1402 		 * Respecting the value can run into significant stalls if most
1403 		 * vnodes belong to one file system and it has writes
1404 		 * suspended.  In presence of many threads and millions of
1405 		 * vnodes they keep contending on the vnode_list_mtx lock only
1406 		 * to find vnodes they can't recycle.
1407 		 *
1408 		 * The solution would be to pre-check if the vnode is likely to
1409 		 * be recycle-able, but it needs to happen with the
1410 		 * vnode_list_mtx lock held. This runs into a problem where
1411 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1412 		 * writes are frozen) can take locks which LOR against it.
1413 		 *
1414 		 * Check nullfs for one example (null_getwritemount).
1415 		 */
1416 		vtryrecycle(vp, isvnlru);
1417 		count--;
1418 		if (count == 0) {
1419 			break;
1420 		}
1421 		mtx_lock(&vnode_list_mtx);
1422 		vp = mvp;
1423 	}
1424 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1425 	return (ocount - count);
1426 }
1427 
1428 /*
1429  * XXX: returns without vnode_list_mtx locked!
1430  */
1431 static int
vnlru_free_locked_direct(int count)1432 vnlru_free_locked_direct(int count)
1433 {
1434 	int ret;
1435 
1436 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1437 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1438 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1439 	return (ret);
1440 }
1441 
1442 static int
vnlru_free_locked_vnlru(int count)1443 vnlru_free_locked_vnlru(int count)
1444 {
1445 	int ret;
1446 
1447 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1448 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1449 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1450 	return (ret);
1451 }
1452 
1453 static int
vnlru_free_vnlru(int count)1454 vnlru_free_vnlru(int count)
1455 {
1456 
1457 	mtx_lock(&vnode_list_mtx);
1458 	return (vnlru_free_locked_vnlru(count));
1459 }
1460 
1461 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1462 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1463 {
1464 
1465 	MPASS(mnt_op != NULL);
1466 	MPASS(mvp != NULL);
1467 	VNPASS(mvp->v_type == VMARKER, mvp);
1468 	mtx_lock(&vnode_list_mtx);
1469 	vnlru_free_impl(count, mnt_op, mvp, true);
1470 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1471 }
1472 
1473 struct vnode *
vnlru_alloc_marker(void)1474 vnlru_alloc_marker(void)
1475 {
1476 	struct vnode *mvp;
1477 
1478 	mvp = vn_alloc_marker(NULL);
1479 	mtx_lock(&vnode_list_mtx);
1480 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1481 	mtx_unlock(&vnode_list_mtx);
1482 	return (mvp);
1483 }
1484 
1485 void
vnlru_free_marker(struct vnode * mvp)1486 vnlru_free_marker(struct vnode *mvp)
1487 {
1488 	mtx_lock(&vnode_list_mtx);
1489 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1490 	mtx_unlock(&vnode_list_mtx);
1491 	vn_free_marker(mvp);
1492 }
1493 
1494 static void
vnlru_recalc(void)1495 vnlru_recalc(void)
1496 {
1497 
1498 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1499 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1500 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1501 	vlowat = vhiwat / 2;
1502 }
1503 
1504 /*
1505  * Attempt to recycle vnodes in a context that is always safe to block.
1506  * Calling vlrurecycle() from the bowels of filesystem code has some
1507  * interesting deadlock problems.
1508  */
1509 static struct proc *vnlruproc;
1510 static int vnlruproc_sig;
1511 static u_long vnlruproc_kicks;
1512 
1513 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1514     "Number of times vnlru got woken up due to vnode shortage");
1515 
1516 #define VNLRU_COUNT_SLOP 100
1517 
1518 /*
1519  * The main freevnodes counter is only updated when a counter local to CPU
1520  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1521  * walked to compute a more accurate total.
1522  *
1523  * Note: the actual value at any given moment can still exceed slop, but it
1524  * should not be by significant margin in practice.
1525  */
1526 #define VNLRU_FREEVNODES_SLOP 126
1527 
1528 static void __noinline
vfs_freevnodes_rollup(int8_t * lfreevnodes)1529 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1530 {
1531 
1532 	atomic_add_long(&freevnodes, *lfreevnodes);
1533 	*lfreevnodes = 0;
1534 	critical_exit();
1535 }
1536 
1537 static __inline void
vfs_freevnodes_inc(void)1538 vfs_freevnodes_inc(void)
1539 {
1540 	int8_t *lfreevnodes;
1541 
1542 	critical_enter();
1543 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1544 	(*lfreevnodes)++;
1545 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1546 		vfs_freevnodes_rollup(lfreevnodes);
1547 	else
1548 		critical_exit();
1549 }
1550 
1551 static __inline void
vfs_freevnodes_dec(void)1552 vfs_freevnodes_dec(void)
1553 {
1554 	int8_t *lfreevnodes;
1555 
1556 	critical_enter();
1557 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1558 	(*lfreevnodes)--;
1559 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1560 		vfs_freevnodes_rollup(lfreevnodes);
1561 	else
1562 		critical_exit();
1563 }
1564 
1565 static u_long
vnlru_read_freevnodes(void)1566 vnlru_read_freevnodes(void)
1567 {
1568 	long slop, rfreevnodes, rfreevnodes_old;
1569 	int cpu;
1570 
1571 	rfreevnodes = atomic_load_long(&freevnodes);
1572 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1573 
1574 	if (rfreevnodes > rfreevnodes_old)
1575 		slop = rfreevnodes - rfreevnodes_old;
1576 	else
1577 		slop = rfreevnodes_old - rfreevnodes;
1578 	if (slop < VNLRU_FREEVNODES_SLOP)
1579 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1580 	CPU_FOREACH(cpu) {
1581 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1582 	}
1583 	atomic_store_long(&freevnodes_old, rfreevnodes);
1584 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1585 }
1586 
1587 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1588 vnlru_under(u_long rnumvnodes, u_long limit)
1589 {
1590 	u_long rfreevnodes, space;
1591 
1592 	if (__predict_false(rnumvnodes > desiredvnodes))
1593 		return (true);
1594 
1595 	space = desiredvnodes - rnumvnodes;
1596 	if (space < limit) {
1597 		rfreevnodes = vnlru_read_freevnodes();
1598 		if (rfreevnodes > wantfreevnodes)
1599 			space += rfreevnodes - wantfreevnodes;
1600 	}
1601 	return (space < limit);
1602 }
1603 
1604 static void
vnlru_kick_locked(void)1605 vnlru_kick_locked(void)
1606 {
1607 
1608 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1609 	if (vnlruproc_sig == 0) {
1610 		vnlruproc_sig = 1;
1611 		vnlruproc_kicks++;
1612 		wakeup(vnlruproc);
1613 	}
1614 }
1615 
1616 static void
vnlru_kick_cond(void)1617 vnlru_kick_cond(void)
1618 {
1619 
1620 	if (vnlru_read_freevnodes() > wantfreevnodes)
1621 		return;
1622 
1623 	if (vnlruproc_sig)
1624 		return;
1625 	mtx_lock(&vnode_list_mtx);
1626 	vnlru_kick_locked();
1627 	mtx_unlock(&vnode_list_mtx);
1628 }
1629 
1630 static void
vnlru_proc_sleep(void)1631 vnlru_proc_sleep(void)
1632 {
1633 
1634 	if (vnlruproc_sig) {
1635 		vnlruproc_sig = 0;
1636 		wakeup(&vnlruproc_sig);
1637 	}
1638 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1639 }
1640 
1641 /*
1642  * A lighter version of the machinery below.
1643  *
1644  * Tries to reach goals only by recycling free vnodes and does not invoke
1645  * uma_reclaim(UMA_RECLAIM_DRAIN).
1646  *
1647  * This works around pathological behavior in vnlru in presence of tons of free
1648  * vnodes, but without having to rewrite the machinery at this time. Said
1649  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1650  * (cycling through all levels of "force") when the count is transiently above
1651  * limit. This happens a lot when all vnodes are used up and vn_alloc
1652  * speculatively increments the counter.
1653  *
1654  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1655  * 1 million files in total and 20 find(1) processes stating them in parallel
1656  * (one per each tree).
1657  *
1658  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1659  * seconds to execute (time varies *wildly* between runs). With the workaround
1660  * it consistently stays around 20 seconds [it got further down with later
1661  * changes].
1662  *
1663  * That is to say the entire thing needs a fundamental redesign (most notably
1664  * to accommodate faster recycling), the above only tries to get it ouf the way.
1665  *
1666  * Return values are:
1667  * -1 -- fallback to regular vnlru loop
1668  *  0 -- do nothing, go to sleep
1669  * >0 -- recycle this many vnodes
1670  */
1671 static long
vnlru_proc_light_pick(void)1672 vnlru_proc_light_pick(void)
1673 {
1674 	u_long rnumvnodes, rfreevnodes;
1675 
1676 	if (vstir || vnlruproc_sig == 1)
1677 		return (-1);
1678 
1679 	rnumvnodes = atomic_load_long(&numvnodes);
1680 	rfreevnodes = vnlru_read_freevnodes();
1681 
1682 	/*
1683 	 * vnode limit might have changed and now we may be at a significant
1684 	 * excess. Bail if we can't sort it out with free vnodes.
1685 	 *
1686 	 * Due to atomic updates the count can legitimately go above
1687 	 * the limit for a short period, don't bother doing anything in
1688 	 * that case.
1689 	 */
1690 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1691 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1692 		    rfreevnodes <= wantfreevnodes) {
1693 			return (-1);
1694 		}
1695 
1696 		return (rnumvnodes - desiredvnodes);
1697 	}
1698 
1699 	/*
1700 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1701 	 * to begin with.
1702 	 */
1703 	if (rnumvnodes < wantfreevnodes) {
1704 		return (0);
1705 	}
1706 
1707 	if (rfreevnodes < wantfreevnodes) {
1708 		return (-1);
1709 	}
1710 
1711 	return (0);
1712 }
1713 
1714 static bool
vnlru_proc_light(void)1715 vnlru_proc_light(void)
1716 {
1717 	long freecount;
1718 
1719 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1720 
1721 	freecount = vnlru_proc_light_pick();
1722 	if (freecount == -1)
1723 		return (false);
1724 
1725 	if (freecount != 0) {
1726 		vnlru_free_vnlru(freecount);
1727 	}
1728 
1729 	mtx_lock(&vnode_list_mtx);
1730 	vnlru_proc_sleep();
1731 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1732 	return (true);
1733 }
1734 
1735 static u_long uma_reclaim_calls;
1736 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1737     &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1738 
1739 static void
vnlru_proc(void)1740 vnlru_proc(void)
1741 {
1742 	u_long rnumvnodes, rfreevnodes, target;
1743 	unsigned long onumvnodes;
1744 	int done, force, trigger, usevnodes;
1745 	bool reclaim_nc_src, want_reread;
1746 
1747 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1748 	    SHUTDOWN_PRI_FIRST);
1749 
1750 	force = 0;
1751 	want_reread = false;
1752 	for (;;) {
1753 		kproc_suspend_check(vnlruproc);
1754 
1755 		if (force == 0 && vnlru_proc_light())
1756 			continue;
1757 
1758 		mtx_lock(&vnode_list_mtx);
1759 		rnumvnodes = atomic_load_long(&numvnodes);
1760 
1761 		if (want_reread) {
1762 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1763 			want_reread = false;
1764 		}
1765 
1766 		/*
1767 		 * If numvnodes is too large (due to desiredvnodes being
1768 		 * adjusted using its sysctl, or emergency growth), first
1769 		 * try to reduce it by discarding from the free list.
1770 		 */
1771 		if (rnumvnodes > desiredvnodes + 10) {
1772 			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1773 			mtx_lock(&vnode_list_mtx);
1774 			rnumvnodes = atomic_load_long(&numvnodes);
1775 		}
1776 		/*
1777 		 * Sleep if the vnode cache is in a good state.  This is
1778 		 * when it is not over-full and has space for about a 4%
1779 		 * or 9% expansion (by growing its size or inexcessively
1780 		 * reducing its free list).  Otherwise, try to reclaim
1781 		 * space for a 10% expansion.
1782 		 */
1783 		if (vstir && force == 0) {
1784 			force = 1;
1785 			vstir = false;
1786 		}
1787 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1788 			vnlru_proc_sleep();
1789 			continue;
1790 		}
1791 		rfreevnodes = vnlru_read_freevnodes();
1792 
1793 		onumvnodes = rnumvnodes;
1794 		/*
1795 		 * Calculate parameters for recycling.  These are the same
1796 		 * throughout the loop to give some semblance of fairness.
1797 		 * The trigger point is to avoid recycling vnodes with lots
1798 		 * of resident pages.  We aren't trying to free memory; we
1799 		 * are trying to recycle or at least free vnodes.
1800 		 */
1801 		if (rnumvnodes <= desiredvnodes)
1802 			usevnodes = rnumvnodes - rfreevnodes;
1803 		else
1804 			usevnodes = rnumvnodes;
1805 		if (usevnodes <= 0)
1806 			usevnodes = 1;
1807 		/*
1808 		 * The trigger value is chosen to give a conservatively
1809 		 * large value to ensure that it alone doesn't prevent
1810 		 * making progress.  The value can easily be so large that
1811 		 * it is effectively infinite in some congested and
1812 		 * misconfigured cases, and this is necessary.  Normally
1813 		 * it is about 8 to 100 (pages), which is quite large.
1814 		 */
1815 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1816 		if (force < 2)
1817 			trigger = vsmalltrigger;
1818 		reclaim_nc_src = force >= 3;
1819 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1820 		target = target / 10 + 1;
1821 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1822 		mtx_unlock(&vnode_list_mtx);
1823 		/*
1824 		 * Total number of vnodes can transiently go slightly above the
1825 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1826 		 * this happens.
1827 		 */
1828 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1829 		    numvnodes <= desiredvnodes) {
1830 			uma_reclaim_calls++;
1831 			uma_reclaim(UMA_RECLAIM_DRAIN);
1832 		}
1833 		if (done == 0) {
1834 			if (force == 0 || force == 1) {
1835 				force = 2;
1836 				continue;
1837 			}
1838 			if (force == 2) {
1839 				force = 3;
1840 				continue;
1841 			}
1842 			want_reread = true;
1843 			force = 0;
1844 			vnlru_nowhere++;
1845 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1846 		} else {
1847 			want_reread = true;
1848 			kern_yield(PRI_USER);
1849 		}
1850 	}
1851 }
1852 
1853 static struct kproc_desc vnlru_kp = {
1854 	"vnlru",
1855 	vnlru_proc,
1856 	&vnlruproc
1857 };
1858 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1859     &vnlru_kp);
1860 
1861 /*
1862  * Routines having to do with the management of the vnode table.
1863  */
1864 
1865 /*
1866  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1867  * before we actually vgone().  This function must be called with the vnode
1868  * held to prevent the vnode from being returned to the free list midway
1869  * through vgone().
1870  */
1871 static int
vtryrecycle(struct vnode * vp,bool isvnlru)1872 vtryrecycle(struct vnode *vp, bool isvnlru)
1873 {
1874 	struct mount *vnmp;
1875 
1876 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1877 	VNPASS(vp->v_holdcnt > 0, vp);
1878 	/*
1879 	 * This vnode may found and locked via some other list, if so we
1880 	 * can't recycle it yet.
1881 	 */
1882 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1883 		CTR2(KTR_VFS,
1884 		    "%s: impossible to recycle, vp %p lock is already held",
1885 		    __func__, vp);
1886 		vdrop_recycle(vp);
1887 		return (EWOULDBLOCK);
1888 	}
1889 	/*
1890 	 * Don't recycle if its filesystem is being suspended.
1891 	 */
1892 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1893 		VOP_UNLOCK(vp);
1894 		CTR2(KTR_VFS,
1895 		    "%s: impossible to recycle, cannot start the write for %p",
1896 		    __func__, vp);
1897 		vdrop_recycle(vp);
1898 		return (EBUSY);
1899 	}
1900 	/*
1901 	 * If we got this far, we need to acquire the interlock and see if
1902 	 * anyone picked up this vnode from another list.  If not, we will
1903 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1904 	 * will skip over it.
1905 	 */
1906 	VI_LOCK(vp);
1907 	if (vp->v_usecount) {
1908 		VOP_UNLOCK(vp);
1909 		vdropl_recycle(vp);
1910 		vn_finished_write(vnmp);
1911 		CTR2(KTR_VFS,
1912 		    "%s: impossible to recycle, %p is already referenced",
1913 		    __func__, vp);
1914 		return (EBUSY);
1915 	}
1916 	if (!VN_IS_DOOMED(vp)) {
1917 		if (isvnlru)
1918 			recycles_free_count++;
1919 		else
1920 			counter_u64_add(direct_recycles_free_count, 1);
1921 		vgonel(vp);
1922 	}
1923 	VOP_UNLOCK(vp);
1924 	vdropl_recycle(vp);
1925 	vn_finished_write(vnmp);
1926 	return (0);
1927 }
1928 
1929 /*
1930  * Allocate a new vnode.
1931  *
1932  * The operation never returns an error. Returning an error was disabled
1933  * in r145385 (dated 2005) with the following comment:
1934  *
1935  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1936  *
1937  * Given the age of this commit (almost 15 years at the time of writing this
1938  * comment) restoring the ability to fail requires a significant audit of
1939  * all codepaths.
1940  *
1941  * The routine can try to free a vnode or stall for up to 1 second waiting for
1942  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1943  */
1944 static u_long vn_alloc_cyclecount;
1945 static u_long vn_alloc_sleeps;
1946 
1947 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1948     "Number of times vnode allocation blocked waiting on vnlru");
1949 
1950 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp,u_long rnumvnodes,bool bumped)1951 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1952 {
1953 	u_long rfreevnodes;
1954 
1955 	if (bumped) {
1956 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1957 			atomic_subtract_long(&numvnodes, 1);
1958 			bumped = false;
1959 		}
1960 	}
1961 
1962 	mtx_lock(&vnode_list_mtx);
1963 
1964 	rfreevnodes = vnlru_read_freevnodes();
1965 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1966 		vn_alloc_cyclecount = 0;
1967 		vstir = true;
1968 	}
1969 	/*
1970 	 * Grow the vnode cache if it will not be above its target max
1971 	 * after growing.  Otherwise, if the free list is nonempty, try
1972 	 * to reclaim 1 item from it before growing the cache (possibly
1973 	 * above its target max if the reclamation failed or is delayed).
1974 	 * Otherwise, wait for some space.  In all cases, schedule
1975 	 * vnlru_proc() if we are getting short of space.  The watermarks
1976 	 * should be chosen so that we never wait or even reclaim from
1977 	 * the free list to below its target minimum.
1978 	 */
1979 	if (vnlru_free_locked_direct(1) > 0)
1980 		goto alloc;
1981 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1982 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1983 		/*
1984 		 * Wait for space for a new vnode.
1985 		 */
1986 		if (bumped) {
1987 			atomic_subtract_long(&numvnodes, 1);
1988 			bumped = false;
1989 		}
1990 		mtx_lock(&vnode_list_mtx);
1991 		vnlru_kick_locked();
1992 		vn_alloc_sleeps++;
1993 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1994 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1995 		    vnlru_read_freevnodes() > 1)
1996 			vnlru_free_locked_direct(1);
1997 		else
1998 			mtx_unlock(&vnode_list_mtx);
1999 	}
2000 alloc:
2001 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2002 	if (!bumped)
2003 		atomic_add_long(&numvnodes, 1);
2004 	vnlru_kick_cond();
2005 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2006 }
2007 
2008 static struct vnode *
vn_alloc(struct mount * mp)2009 vn_alloc(struct mount *mp)
2010 {
2011 	u_long rnumvnodes;
2012 
2013 	if (__predict_false(vn_alloc_cyclecount != 0))
2014 		return (vn_alloc_hard(mp, 0, false));
2015 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2016 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2017 		return (vn_alloc_hard(mp, rnumvnodes, true));
2018 	}
2019 
2020 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2021 }
2022 
2023 static void
vn_free(struct vnode * vp)2024 vn_free(struct vnode *vp)
2025 {
2026 
2027 	atomic_subtract_long(&numvnodes, 1);
2028 	uma_zfree_smr(vnode_zone, vp);
2029 }
2030 
2031 /*
2032  * Return the next vnode from the free list.
2033  */
2034 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)2035 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2036     struct vnode **vpp)
2037 {
2038 	struct vnode *vp;
2039 	struct thread *td;
2040 	struct lock_object *lo;
2041 
2042 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2043 
2044 	KASSERT(vops->registered,
2045 	    ("%s: not registered vector op %p\n", __func__, vops));
2046 	cache_validate_vop_vector(mp, vops);
2047 
2048 	td = curthread;
2049 	if (td->td_vp_reserved != NULL) {
2050 		vp = td->td_vp_reserved;
2051 		td->td_vp_reserved = NULL;
2052 	} else {
2053 		vp = vn_alloc(mp);
2054 	}
2055 	counter_u64_add(vnodes_created, 1);
2056 
2057 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2058 
2059 	/*
2060 	 * Locks are given the generic name "vnode" when created.
2061 	 * Follow the historic practice of using the filesystem
2062 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2063 	 *
2064 	 * Locks live in a witness group keyed on their name. Thus,
2065 	 * when a lock is renamed, it must also move from the witness
2066 	 * group of its old name to the witness group of its new name.
2067 	 *
2068 	 * The change only needs to be made when the vnode moves
2069 	 * from one filesystem type to another. We ensure that each
2070 	 * filesystem use a single static name pointer for its tag so
2071 	 * that we can compare pointers rather than doing a strcmp().
2072 	 */
2073 	lo = &vp->v_vnlock->lock_object;
2074 #ifdef WITNESS
2075 	if (lo->lo_name != tag) {
2076 #endif
2077 		lo->lo_name = tag;
2078 #ifdef WITNESS
2079 		WITNESS_DESTROY(lo);
2080 		WITNESS_INIT(lo, tag);
2081 	}
2082 #endif
2083 	/*
2084 	 * By default, don't allow shared locks unless filesystems opt-in.
2085 	 */
2086 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2087 	/*
2088 	 * Finalize various vnode identity bits.
2089 	 */
2090 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2091 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2092 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2093 	vp->v_type = VNON;
2094 	vp->v_op = vops;
2095 	vp->v_irflag = 0;
2096 	v_init_counters(vp);
2097 	vn_seqc_init(vp);
2098 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2099 #ifdef DIAGNOSTIC
2100 	if (mp == NULL && vops != &dead_vnodeops)
2101 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2102 #endif
2103 #ifdef MAC
2104 	mac_vnode_init(vp);
2105 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2106 		mac_vnode_associate_singlelabel(mp, vp);
2107 #endif
2108 	if (mp != NULL) {
2109 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2110 	}
2111 
2112 	/*
2113 	 * For the filesystems which do not use vfs_hash_insert(),
2114 	 * still initialize v_hash to have vfs_hash_index() useful.
2115 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2116 	 * its own hashing.
2117 	 */
2118 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2119 
2120 	*vpp = vp;
2121 	return (0);
2122 }
2123 
2124 void
getnewvnode_reserve(void)2125 getnewvnode_reserve(void)
2126 {
2127 	struct thread *td;
2128 
2129 	td = curthread;
2130 	MPASS(td->td_vp_reserved == NULL);
2131 	td->td_vp_reserved = vn_alloc(NULL);
2132 }
2133 
2134 void
getnewvnode_drop_reserve(void)2135 getnewvnode_drop_reserve(void)
2136 {
2137 	struct thread *td;
2138 
2139 	td = curthread;
2140 	if (td->td_vp_reserved != NULL) {
2141 		vn_free(td->td_vp_reserved);
2142 		td->td_vp_reserved = NULL;
2143 	}
2144 }
2145 
2146 static void __noinline
freevnode(struct vnode * vp)2147 freevnode(struct vnode *vp)
2148 {
2149 	struct bufobj *bo;
2150 
2151 	/*
2152 	 * The vnode has been marked for destruction, so free it.
2153 	 *
2154 	 * The vnode will be returned to the zone where it will
2155 	 * normally remain until it is needed for another vnode. We
2156 	 * need to cleanup (or verify that the cleanup has already
2157 	 * been done) any residual data left from its current use
2158 	 * so as not to contaminate the freshly allocated vnode.
2159 	 */
2160 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2161 	/*
2162 	 * Paired with vgone.
2163 	 */
2164 	vn_seqc_write_end_free(vp);
2165 
2166 	bo = &vp->v_bufobj;
2167 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2168 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2169 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2170 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2171 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2172 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2173 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2174 	    ("clean blk trie not empty"));
2175 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2176 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2177 	    ("dirty blk trie not empty"));
2178 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2179 	    ("Dangling rangelock waiters"));
2180 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2181 	    ("Leaked inactivation"));
2182 	VI_UNLOCK(vp);
2183 	cache_assert_no_entries(vp);
2184 
2185 #ifdef MAC
2186 	mac_vnode_destroy(vp);
2187 #endif
2188 	if (vp->v_pollinfo != NULL) {
2189 		/*
2190 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2191 		 * here while having another vnode locked when trying to
2192 		 * satisfy a lookup and needing to recycle.
2193 		 */
2194 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2195 		destroy_vpollinfo(vp->v_pollinfo);
2196 		VOP_UNLOCK(vp);
2197 		vp->v_pollinfo = NULL;
2198 	}
2199 	vp->v_mountedhere = NULL;
2200 	vp->v_unpcb = NULL;
2201 	vp->v_rdev = NULL;
2202 	vp->v_fifoinfo = NULL;
2203 	vp->v_iflag = 0;
2204 	vp->v_vflag = 0;
2205 	bo->bo_flag = 0;
2206 	vn_free(vp);
2207 }
2208 
2209 /*
2210  * Delete from old mount point vnode list, if on one.
2211  */
2212 static void
delmntque(struct vnode * vp)2213 delmntque(struct vnode *vp)
2214 {
2215 	struct mount *mp;
2216 
2217 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2218 
2219 	mp = vp->v_mount;
2220 	MNT_ILOCK(mp);
2221 	VI_LOCK(vp);
2222 	vp->v_mount = NULL;
2223 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2224 		("bad mount point vnode list size"));
2225 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2226 	mp->mnt_nvnodelistsize--;
2227 	MNT_REL(mp);
2228 	MNT_IUNLOCK(mp);
2229 	/*
2230 	 * The caller expects the interlock to be still held.
2231 	 */
2232 	ASSERT_VI_LOCKED(vp, __func__);
2233 }
2234 
2235 static int
insmntque1_int(struct vnode * vp,struct mount * mp,bool dtr)2236 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2237 {
2238 
2239 	KASSERT(vp->v_mount == NULL,
2240 		("insmntque: vnode already on per mount vnode list"));
2241 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2242 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2243 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2244 	} else {
2245 		KASSERT(!dtr,
2246 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2247 		    __func__));
2248 	}
2249 
2250 	/*
2251 	 * We acquire the vnode interlock early to ensure that the
2252 	 * vnode cannot be recycled by another process releasing a
2253 	 * holdcnt on it before we get it on both the vnode list
2254 	 * and the active vnode list. The mount mutex protects only
2255 	 * manipulation of the vnode list and the vnode freelist
2256 	 * mutex protects only manipulation of the active vnode list.
2257 	 * Hence the need to hold the vnode interlock throughout.
2258 	 */
2259 	MNT_ILOCK(mp);
2260 	VI_LOCK(vp);
2261 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2262 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2263 	    mp->mnt_nvnodelistsize == 0)) &&
2264 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2265 		VI_UNLOCK(vp);
2266 		MNT_IUNLOCK(mp);
2267 		if (dtr) {
2268 			vp->v_data = NULL;
2269 			vp->v_op = &dead_vnodeops;
2270 			vgone(vp);
2271 			vput(vp);
2272 		}
2273 		return (EBUSY);
2274 	}
2275 	vp->v_mount = mp;
2276 	MNT_REF(mp);
2277 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2278 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2279 		("neg mount point vnode list size"));
2280 	mp->mnt_nvnodelistsize++;
2281 	VI_UNLOCK(vp);
2282 	MNT_IUNLOCK(mp);
2283 	return (0);
2284 }
2285 
2286 /*
2287  * Insert into list of vnodes for the new mount point, if available.
2288  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2289  * leaves handling of the vnode to the caller.
2290  */
2291 int
insmntque(struct vnode * vp,struct mount * mp)2292 insmntque(struct vnode *vp, struct mount *mp)
2293 {
2294 	return (insmntque1_int(vp, mp, true));
2295 }
2296 
2297 int
insmntque1(struct vnode * vp,struct mount * mp)2298 insmntque1(struct vnode *vp, struct mount *mp)
2299 {
2300 	return (insmntque1_int(vp, mp, false));
2301 }
2302 
2303 /*
2304  * Flush out and invalidate all buffers associated with a bufobj
2305  * Called with the underlying object locked.
2306  */
2307 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2308 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2309 {
2310 	int error;
2311 
2312 	BO_LOCK(bo);
2313 	if (flags & V_SAVE) {
2314 		error = bufobj_wwait(bo, slpflag, slptimeo);
2315 		if (error) {
2316 			BO_UNLOCK(bo);
2317 			return (error);
2318 		}
2319 		if (bo->bo_dirty.bv_cnt > 0) {
2320 			BO_UNLOCK(bo);
2321 			do {
2322 				error = BO_SYNC(bo, MNT_WAIT);
2323 			} while (error == ERELOOKUP);
2324 			if (error != 0)
2325 				return (error);
2326 			BO_LOCK(bo);
2327 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2328 				BO_UNLOCK(bo);
2329 				return (EBUSY);
2330 			}
2331 		}
2332 	}
2333 	/*
2334 	 * If you alter this loop please notice that interlock is dropped and
2335 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2336 	 * no race conditions occur from this.
2337 	 */
2338 	do {
2339 		error = flushbuflist(&bo->bo_clean,
2340 		    flags, bo, slpflag, slptimeo);
2341 		if (error == 0 && !(flags & V_CLEANONLY))
2342 			error = flushbuflist(&bo->bo_dirty,
2343 			    flags, bo, slpflag, slptimeo);
2344 		if (error != 0 && error != EAGAIN) {
2345 			BO_UNLOCK(bo);
2346 			return (error);
2347 		}
2348 	} while (error != 0);
2349 
2350 	/*
2351 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2352 	 * have write I/O in-progress but if there is a VM object then the
2353 	 * VM object can also have read-I/O in-progress.
2354 	 */
2355 	do {
2356 		bufobj_wwait(bo, 0, 0);
2357 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2358 			BO_UNLOCK(bo);
2359 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2360 			BO_LOCK(bo);
2361 		}
2362 	} while (bo->bo_numoutput > 0);
2363 	BO_UNLOCK(bo);
2364 
2365 	/*
2366 	 * Destroy the copy in the VM cache, too.
2367 	 */
2368 	if (bo->bo_object != NULL &&
2369 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2370 		VM_OBJECT_WLOCK(bo->bo_object);
2371 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2372 		    OBJPR_CLEANONLY : 0);
2373 		VM_OBJECT_WUNLOCK(bo->bo_object);
2374 	}
2375 
2376 #ifdef INVARIANTS
2377 	BO_LOCK(bo);
2378 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2379 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2380 	    bo->bo_clean.bv_cnt > 0))
2381 		panic("vinvalbuf: flush failed");
2382 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2383 	    bo->bo_dirty.bv_cnt > 0)
2384 		panic("vinvalbuf: flush dirty failed");
2385 	BO_UNLOCK(bo);
2386 #endif
2387 	return (0);
2388 }
2389 
2390 /*
2391  * Flush out and invalidate all buffers associated with a vnode.
2392  * Called with the underlying object locked.
2393  */
2394 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2395 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2396 {
2397 
2398 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2399 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2400 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2401 		return (0);
2402 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2403 }
2404 
2405 /*
2406  * Flush out buffers on the specified list.
2407  *
2408  */
2409 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2410 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2411     int slptimeo)
2412 {
2413 	struct buf *bp, *nbp;
2414 	int retval, error;
2415 	daddr_t lblkno;
2416 	b_xflags_t xflags;
2417 
2418 	ASSERT_BO_WLOCKED(bo);
2419 
2420 	retval = 0;
2421 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2422 		/*
2423 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2424 		 * do not skip any buffers. If we are flushing only V_NORMAL
2425 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2426 		 * flushing only V_ALT buffers then skip buffers not marked
2427 		 * as BX_ALTDATA.
2428 		 */
2429 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2430 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2431 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2432 			continue;
2433 		}
2434 		if (nbp != NULL) {
2435 			lblkno = nbp->b_lblkno;
2436 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2437 		}
2438 		retval = EAGAIN;
2439 		error = BUF_TIMELOCK(bp,
2440 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2441 		    "flushbuf", slpflag, slptimeo);
2442 		if (error) {
2443 			BO_LOCK(bo);
2444 			return (error != ENOLCK ? error : EAGAIN);
2445 		}
2446 		KASSERT(bp->b_bufobj == bo,
2447 		    ("bp %p wrong b_bufobj %p should be %p",
2448 		    bp, bp->b_bufobj, bo));
2449 		/*
2450 		 * XXX Since there are no node locks for NFS, I
2451 		 * believe there is a slight chance that a delayed
2452 		 * write will occur while sleeping just above, so
2453 		 * check for it.
2454 		 */
2455 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2456 		    (flags & V_SAVE)) {
2457 			bremfree(bp);
2458 			bp->b_flags |= B_ASYNC;
2459 			bwrite(bp);
2460 			BO_LOCK(bo);
2461 			return (EAGAIN);	/* XXX: why not loop ? */
2462 		}
2463 		bremfree(bp);
2464 		bp->b_flags |= (B_INVAL | B_RELBUF);
2465 		bp->b_flags &= ~B_ASYNC;
2466 		brelse(bp);
2467 		BO_LOCK(bo);
2468 		if (nbp == NULL)
2469 			break;
2470 		nbp = gbincore(bo, lblkno);
2471 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2472 		    != xflags)
2473 			break;			/* nbp invalid */
2474 	}
2475 	return (retval);
2476 }
2477 
2478 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2479 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2480 {
2481 	struct buf *bp;
2482 	int error;
2483 	daddr_t lblkno;
2484 
2485 	ASSERT_BO_LOCKED(bo);
2486 
2487 	for (lblkno = startn;;) {
2488 again:
2489 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2490 		if (bp == NULL || bp->b_lblkno >= endn ||
2491 		    bp->b_lblkno < startn)
2492 			break;
2493 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2494 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2495 		if (error != 0) {
2496 			BO_RLOCK(bo);
2497 			if (error == ENOLCK)
2498 				goto again;
2499 			return (error);
2500 		}
2501 		KASSERT(bp->b_bufobj == bo,
2502 		    ("bp %p wrong b_bufobj %p should be %p",
2503 		    bp, bp->b_bufobj, bo));
2504 		lblkno = bp->b_lblkno + 1;
2505 		if ((bp->b_flags & B_MANAGED) == 0)
2506 			bremfree(bp);
2507 		bp->b_flags |= B_RELBUF;
2508 		/*
2509 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2510 		 * pages backing each buffer in the range are unlikely to be
2511 		 * reused.  Dirty buffers will have the hint applied once
2512 		 * they've been written.
2513 		 */
2514 		if ((bp->b_flags & B_VMIO) != 0)
2515 			bp->b_flags |= B_NOREUSE;
2516 		brelse(bp);
2517 		BO_RLOCK(bo);
2518 	}
2519 	return (0);
2520 }
2521 
2522 /*
2523  * Truncate a file's buffer and pages to a specified length.  This
2524  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2525  * sync activity.
2526  */
2527 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2528 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2529 {
2530 	struct buf *bp, *nbp;
2531 	struct bufobj *bo;
2532 	daddr_t startlbn;
2533 
2534 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2535 	    vp, blksize, (uintmax_t)length);
2536 
2537 	/*
2538 	 * Round up to the *next* lbn.
2539 	 */
2540 	startlbn = howmany(length, blksize);
2541 
2542 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2543 
2544 	bo = &vp->v_bufobj;
2545 restart_unlocked:
2546 	BO_LOCK(bo);
2547 
2548 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2549 		;
2550 
2551 	if (length > 0) {
2552 		/*
2553 		 * Write out vnode metadata, e.g. indirect blocks.
2554 		 */
2555 restartsync:
2556 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2557 			if (bp->b_lblkno >= 0)
2558 				continue;
2559 			/*
2560 			 * Since we hold the vnode lock this should only
2561 			 * fail if we're racing with the buf daemon.
2562 			 */
2563 			if (BUF_LOCK(bp,
2564 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2565 			    BO_LOCKPTR(bo)) == ENOLCK)
2566 				goto restart_unlocked;
2567 
2568 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2569 			    ("buf(%p) on dirty queue without DELWRI", bp));
2570 
2571 			bremfree(bp);
2572 			bawrite(bp);
2573 			BO_LOCK(bo);
2574 			goto restartsync;
2575 		}
2576 	}
2577 
2578 	bufobj_wwait(bo, 0, 0);
2579 	BO_UNLOCK(bo);
2580 	vnode_pager_setsize(vp, length);
2581 
2582 	return (0);
2583 }
2584 
2585 /*
2586  * Invalidate the cached pages of a file's buffer within the range of block
2587  * numbers [startlbn, endlbn).
2588  */
2589 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2590 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2591     int blksize)
2592 {
2593 	struct bufobj *bo;
2594 	off_t start, end;
2595 
2596 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2597 
2598 	start = blksize * startlbn;
2599 	end = blksize * endlbn;
2600 
2601 	bo = &vp->v_bufobj;
2602 	BO_LOCK(bo);
2603 	MPASS(blksize == bo->bo_bsize);
2604 
2605 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2606 		;
2607 
2608 	BO_UNLOCK(bo);
2609 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2610 }
2611 
2612 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2613 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2614     daddr_t startlbn, daddr_t endlbn)
2615 {
2616 	struct buf *bp, *nbp;
2617 	bool anyfreed;
2618 
2619 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2620 	ASSERT_BO_LOCKED(bo);
2621 
2622 	do {
2623 		anyfreed = false;
2624 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2625 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2626 				continue;
2627 			if (BUF_LOCK(bp,
2628 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2629 			    BO_LOCKPTR(bo)) == ENOLCK) {
2630 				BO_LOCK(bo);
2631 				return (EAGAIN);
2632 			}
2633 
2634 			bremfree(bp);
2635 			bp->b_flags |= B_INVAL | B_RELBUF;
2636 			bp->b_flags &= ~B_ASYNC;
2637 			brelse(bp);
2638 			anyfreed = true;
2639 
2640 			BO_LOCK(bo);
2641 			if (nbp != NULL &&
2642 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2643 			    nbp->b_vp != vp ||
2644 			    (nbp->b_flags & B_DELWRI) != 0))
2645 				return (EAGAIN);
2646 		}
2647 
2648 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2649 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2650 				continue;
2651 			if (BUF_LOCK(bp,
2652 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2653 			    BO_LOCKPTR(bo)) == ENOLCK) {
2654 				BO_LOCK(bo);
2655 				return (EAGAIN);
2656 			}
2657 			bremfree(bp);
2658 			bp->b_flags |= B_INVAL | B_RELBUF;
2659 			bp->b_flags &= ~B_ASYNC;
2660 			brelse(bp);
2661 			anyfreed = true;
2662 
2663 			BO_LOCK(bo);
2664 			if (nbp != NULL &&
2665 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2666 			    (nbp->b_vp != vp) ||
2667 			    (nbp->b_flags & B_DELWRI) == 0))
2668 				return (EAGAIN);
2669 		}
2670 	} while (anyfreed);
2671 	return (0);
2672 }
2673 
2674 static void
buf_vlist_remove(struct buf * bp)2675 buf_vlist_remove(struct buf *bp)
2676 {
2677 	struct bufv *bv;
2678 	b_xflags_t flags;
2679 
2680 	flags = bp->b_xflags;
2681 
2682 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2683 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2684 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2685 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2686 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2687 
2688 	if ((flags & BX_VNDIRTY) != 0)
2689 		bv = &bp->b_bufobj->bo_dirty;
2690 	else
2691 		bv = &bp->b_bufobj->bo_clean;
2692 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2693 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2694 	bv->bv_cnt--;
2695 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2696 }
2697 
2698 /*
2699  * Add the buffer to the sorted clean or dirty block list.
2700  *
2701  * NOTE: xflags is passed as a constant, optimizing this inline function!
2702  */
2703 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2704 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2705 {
2706 	struct bufv *bv;
2707 	struct buf *n;
2708 	int error;
2709 
2710 	ASSERT_BO_WLOCKED(bo);
2711 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2712 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2713 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2714 	    ("dead bo %p", bo));
2715 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2716 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2717 	bp->b_xflags |= xflags;
2718 	if (xflags & BX_VNDIRTY)
2719 		bv = &bo->bo_dirty;
2720 	else
2721 		bv = &bo->bo_clean;
2722 
2723 	/*
2724 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2725 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2726 	 * than _ge.
2727 	 */
2728 	if (bv->bv_cnt == 0 ||
2729 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2730 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2731 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2732 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2733 	else
2734 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2735 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2736 	if (error)
2737 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2738 	bv->bv_cnt++;
2739 }
2740 
2741 /*
2742  * Look up a buffer using the buffer tries.
2743  */
2744 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2745 gbincore(struct bufobj *bo, daddr_t lblkno)
2746 {
2747 	struct buf *bp;
2748 
2749 	ASSERT_BO_LOCKED(bo);
2750 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2751 	if (bp != NULL)
2752 		return (bp);
2753 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2754 }
2755 
2756 /*
2757  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2758  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2759  * stability of the result.  Like other lockless lookups, the found buf may
2760  * already be invalid by the time this function returns.
2761  */
2762 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2763 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2764 {
2765 	struct buf *bp;
2766 
2767 	ASSERT_BO_UNLOCKED(bo);
2768 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2769 	if (bp != NULL)
2770 		return (bp);
2771 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2772 }
2773 
2774 /*
2775  * Associate a buffer with a vnode.
2776  */
2777 void
bgetvp(struct vnode * vp,struct buf * bp)2778 bgetvp(struct vnode *vp, struct buf *bp)
2779 {
2780 	struct bufobj *bo;
2781 
2782 	bo = &vp->v_bufobj;
2783 	ASSERT_BO_WLOCKED(bo);
2784 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2785 
2786 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2787 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2788 	    ("bgetvp: bp already attached! %p", bp));
2789 
2790 	vhold(vp);
2791 	bp->b_vp = vp;
2792 	bp->b_bufobj = bo;
2793 	/*
2794 	 * Insert onto list for new vnode.
2795 	 */
2796 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2797 }
2798 
2799 /*
2800  * Disassociate a buffer from a vnode.
2801  */
2802 void
brelvp(struct buf * bp)2803 brelvp(struct buf *bp)
2804 {
2805 	struct bufobj *bo;
2806 	struct vnode *vp;
2807 
2808 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2809 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2810 
2811 	/*
2812 	 * Delete from old vnode list, if on one.
2813 	 */
2814 	vp = bp->b_vp;		/* XXX */
2815 	bo = bp->b_bufobj;
2816 	BO_LOCK(bo);
2817 	buf_vlist_remove(bp);
2818 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2819 		bo->bo_flag &= ~BO_ONWORKLST;
2820 		mtx_lock(&sync_mtx);
2821 		LIST_REMOVE(bo, bo_synclist);
2822 		syncer_worklist_len--;
2823 		mtx_unlock(&sync_mtx);
2824 	}
2825 	bp->b_vp = NULL;
2826 	bp->b_bufobj = NULL;
2827 	BO_UNLOCK(bo);
2828 	vdrop(vp);
2829 }
2830 
2831 /*
2832  * Add an item to the syncer work queue.
2833  */
2834 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2835 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2836 {
2837 	int slot;
2838 
2839 	ASSERT_BO_WLOCKED(bo);
2840 
2841 	mtx_lock(&sync_mtx);
2842 	if (bo->bo_flag & BO_ONWORKLST)
2843 		LIST_REMOVE(bo, bo_synclist);
2844 	else {
2845 		bo->bo_flag |= BO_ONWORKLST;
2846 		syncer_worklist_len++;
2847 	}
2848 
2849 	if (delay > syncer_maxdelay - 2)
2850 		delay = syncer_maxdelay - 2;
2851 	slot = (syncer_delayno + delay) & syncer_mask;
2852 
2853 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2854 	mtx_unlock(&sync_mtx);
2855 }
2856 
2857 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2858 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2859 {
2860 	int error, len;
2861 
2862 	mtx_lock(&sync_mtx);
2863 	len = syncer_worklist_len - sync_vnode_count;
2864 	mtx_unlock(&sync_mtx);
2865 	error = SYSCTL_OUT(req, &len, sizeof(len));
2866 	return (error);
2867 }
2868 
2869 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2870     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2871     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2872 
2873 static struct proc *updateproc;
2874 static void sched_sync(void);
2875 static struct kproc_desc up_kp = {
2876 	"syncer",
2877 	sched_sync,
2878 	&updateproc
2879 };
2880 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2881 
2882 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2883 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2884 {
2885 	struct vnode *vp;
2886 	struct mount *mp;
2887 
2888 	*bo = LIST_FIRST(slp);
2889 	if (*bo == NULL)
2890 		return (0);
2891 	vp = bo2vnode(*bo);
2892 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2893 		return (1);
2894 	/*
2895 	 * We use vhold in case the vnode does not
2896 	 * successfully sync.  vhold prevents the vnode from
2897 	 * going away when we unlock the sync_mtx so that
2898 	 * we can acquire the vnode interlock.
2899 	 */
2900 	vholdl(vp);
2901 	mtx_unlock(&sync_mtx);
2902 	VI_UNLOCK(vp);
2903 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2904 		vdrop(vp);
2905 		mtx_lock(&sync_mtx);
2906 		return (*bo == LIST_FIRST(slp));
2907 	}
2908 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2909 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2910 	    ("suspended mp syncing vp %p", vp));
2911 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2912 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2913 	VOP_UNLOCK(vp);
2914 	vn_finished_write(mp);
2915 	BO_LOCK(*bo);
2916 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2917 		/*
2918 		 * Put us back on the worklist.  The worklist
2919 		 * routine will remove us from our current
2920 		 * position and then add us back in at a later
2921 		 * position.
2922 		 */
2923 		vn_syncer_add_to_worklist(*bo, syncdelay);
2924 	}
2925 	BO_UNLOCK(*bo);
2926 	vdrop(vp);
2927 	mtx_lock(&sync_mtx);
2928 	return (0);
2929 }
2930 
2931 static int first_printf = 1;
2932 
2933 /*
2934  * System filesystem synchronizer daemon.
2935  */
2936 static void
sched_sync(void)2937 sched_sync(void)
2938 {
2939 	struct synclist *next, *slp;
2940 	struct bufobj *bo;
2941 	long starttime;
2942 	struct thread *td = curthread;
2943 	int last_work_seen;
2944 	int net_worklist_len;
2945 	int syncer_final_iter;
2946 	int error;
2947 
2948 	last_work_seen = 0;
2949 	syncer_final_iter = 0;
2950 	syncer_state = SYNCER_RUNNING;
2951 	starttime = time_uptime;
2952 	td->td_pflags |= TDP_NORUNNINGBUF;
2953 
2954 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2955 	    SHUTDOWN_PRI_LAST);
2956 
2957 	mtx_lock(&sync_mtx);
2958 	for (;;) {
2959 		if (syncer_state == SYNCER_FINAL_DELAY &&
2960 		    syncer_final_iter == 0) {
2961 			mtx_unlock(&sync_mtx);
2962 			kproc_suspend_check(td->td_proc);
2963 			mtx_lock(&sync_mtx);
2964 		}
2965 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2966 		if (syncer_state != SYNCER_RUNNING &&
2967 		    starttime != time_uptime) {
2968 			if (first_printf) {
2969 				printf("\nSyncing disks, vnodes remaining... ");
2970 				first_printf = 0;
2971 			}
2972 			printf("%d ", net_worklist_len);
2973 		}
2974 		starttime = time_uptime;
2975 
2976 		/*
2977 		 * Push files whose dirty time has expired.  Be careful
2978 		 * of interrupt race on slp queue.
2979 		 *
2980 		 * Skip over empty worklist slots when shutting down.
2981 		 */
2982 		do {
2983 			slp = &syncer_workitem_pending[syncer_delayno];
2984 			syncer_delayno += 1;
2985 			if (syncer_delayno == syncer_maxdelay)
2986 				syncer_delayno = 0;
2987 			next = &syncer_workitem_pending[syncer_delayno];
2988 			/*
2989 			 * If the worklist has wrapped since the
2990 			 * it was emptied of all but syncer vnodes,
2991 			 * switch to the FINAL_DELAY state and run
2992 			 * for one more second.
2993 			 */
2994 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2995 			    net_worklist_len == 0 &&
2996 			    last_work_seen == syncer_delayno) {
2997 				syncer_state = SYNCER_FINAL_DELAY;
2998 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2999 			}
3000 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3001 		    syncer_worklist_len > 0);
3002 
3003 		/*
3004 		 * Keep track of the last time there was anything
3005 		 * on the worklist other than syncer vnodes.
3006 		 * Return to the SHUTTING_DOWN state if any
3007 		 * new work appears.
3008 		 */
3009 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3010 			last_work_seen = syncer_delayno;
3011 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3012 			syncer_state = SYNCER_SHUTTING_DOWN;
3013 		while (!LIST_EMPTY(slp)) {
3014 			error = sync_vnode(slp, &bo, td);
3015 			if (error == 1) {
3016 				LIST_REMOVE(bo, bo_synclist);
3017 				LIST_INSERT_HEAD(next, bo, bo_synclist);
3018 				continue;
3019 			}
3020 
3021 			if (first_printf == 0) {
3022 				/*
3023 				 * Drop the sync mutex, because some watchdog
3024 				 * drivers need to sleep while patting
3025 				 */
3026 				mtx_unlock(&sync_mtx);
3027 				wdog_kern_pat(WD_LASTVAL);
3028 				mtx_lock(&sync_mtx);
3029 			}
3030 		}
3031 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3032 			syncer_final_iter--;
3033 		/*
3034 		 * The variable rushjob allows the kernel to speed up the
3035 		 * processing of the filesystem syncer process. A rushjob
3036 		 * value of N tells the filesystem syncer to process the next
3037 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3038 		 * is used by the soft update code to speed up the filesystem
3039 		 * syncer process when the incore state is getting so far
3040 		 * ahead of the disk that the kernel memory pool is being
3041 		 * threatened with exhaustion.
3042 		 */
3043 		if (rushjob > 0) {
3044 			rushjob -= 1;
3045 			continue;
3046 		}
3047 		/*
3048 		 * Just sleep for a short period of time between
3049 		 * iterations when shutting down to allow some I/O
3050 		 * to happen.
3051 		 *
3052 		 * If it has taken us less than a second to process the
3053 		 * current work, then wait. Otherwise start right over
3054 		 * again. We can still lose time if any single round
3055 		 * takes more than two seconds, but it does not really
3056 		 * matter as we are just trying to generally pace the
3057 		 * filesystem activity.
3058 		 */
3059 		if (syncer_state != SYNCER_RUNNING ||
3060 		    time_uptime == starttime) {
3061 			thread_lock(td);
3062 			sched_prio(td, PPAUSE);
3063 			thread_unlock(td);
3064 		}
3065 		if (syncer_state != SYNCER_RUNNING)
3066 			cv_timedwait(&sync_wakeup, &sync_mtx,
3067 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3068 		else if (time_uptime == starttime)
3069 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3070 	}
3071 }
3072 
3073 /*
3074  * Request the syncer daemon to speed up its work.
3075  * We never push it to speed up more than half of its
3076  * normal turn time, otherwise it could take over the cpu.
3077  */
3078 int
speedup_syncer(void)3079 speedup_syncer(void)
3080 {
3081 	int ret = 0;
3082 
3083 	mtx_lock(&sync_mtx);
3084 	if (rushjob < syncdelay / 2) {
3085 		rushjob += 1;
3086 		stat_rush_requests += 1;
3087 		ret = 1;
3088 	}
3089 	mtx_unlock(&sync_mtx);
3090 	cv_broadcast(&sync_wakeup);
3091 	return (ret);
3092 }
3093 
3094 /*
3095  * Tell the syncer to speed up its work and run though its work
3096  * list several times, then tell it to shut down.
3097  */
3098 static void
syncer_shutdown(void * arg,int howto)3099 syncer_shutdown(void *arg, int howto)
3100 {
3101 
3102 	if (howto & RB_NOSYNC)
3103 		return;
3104 	mtx_lock(&sync_mtx);
3105 	syncer_state = SYNCER_SHUTTING_DOWN;
3106 	rushjob = 0;
3107 	mtx_unlock(&sync_mtx);
3108 	cv_broadcast(&sync_wakeup);
3109 	kproc_shutdown(arg, howto);
3110 }
3111 
3112 void
syncer_suspend(void)3113 syncer_suspend(void)
3114 {
3115 
3116 	syncer_shutdown(updateproc, 0);
3117 }
3118 
3119 void
syncer_resume(void)3120 syncer_resume(void)
3121 {
3122 
3123 	mtx_lock(&sync_mtx);
3124 	first_printf = 1;
3125 	syncer_state = SYNCER_RUNNING;
3126 	mtx_unlock(&sync_mtx);
3127 	cv_broadcast(&sync_wakeup);
3128 	kproc_resume(updateproc);
3129 }
3130 
3131 /*
3132  * Move the buffer between the clean and dirty lists of its vnode.
3133  */
3134 void
reassignbuf(struct buf * bp)3135 reassignbuf(struct buf *bp)
3136 {
3137 	struct vnode *vp;
3138 	struct bufobj *bo;
3139 	int delay;
3140 #ifdef INVARIANTS
3141 	struct bufv *bv;
3142 #endif
3143 
3144 	vp = bp->b_vp;
3145 	bo = bp->b_bufobj;
3146 
3147 	KASSERT((bp->b_flags & B_PAGING) == 0,
3148 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3149 
3150 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3151 	    bp, bp->b_vp, bp->b_flags);
3152 
3153 	BO_LOCK(bo);
3154 	buf_vlist_remove(bp);
3155 
3156 	/*
3157 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3158 	 * of clean buffers.
3159 	 */
3160 	if (bp->b_flags & B_DELWRI) {
3161 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3162 			switch (vp->v_type) {
3163 			case VDIR:
3164 				delay = dirdelay;
3165 				break;
3166 			case VCHR:
3167 				delay = metadelay;
3168 				break;
3169 			default:
3170 				delay = filedelay;
3171 			}
3172 			vn_syncer_add_to_worklist(bo, delay);
3173 		}
3174 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3175 	} else {
3176 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3177 
3178 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3179 			mtx_lock(&sync_mtx);
3180 			LIST_REMOVE(bo, bo_synclist);
3181 			syncer_worklist_len--;
3182 			mtx_unlock(&sync_mtx);
3183 			bo->bo_flag &= ~BO_ONWORKLST;
3184 		}
3185 	}
3186 #ifdef INVARIANTS
3187 	bv = &bo->bo_clean;
3188 	bp = TAILQ_FIRST(&bv->bv_hd);
3189 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3190 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3191 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3192 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3193 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3194 	bv = &bo->bo_dirty;
3195 	bp = TAILQ_FIRST(&bv->bv_hd);
3196 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3197 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3198 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3199 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3200 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3201 #endif
3202 	BO_UNLOCK(bo);
3203 }
3204 
3205 static void
v_init_counters(struct vnode * vp)3206 v_init_counters(struct vnode *vp)
3207 {
3208 
3209 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3210 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3211 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3212 
3213 	refcount_init(&vp->v_holdcnt, 1);
3214 	refcount_init(&vp->v_usecount, 1);
3215 }
3216 
3217 /*
3218  * Grab a particular vnode from the free list, increment its
3219  * reference count and lock it.  VIRF_DOOMED is set if the vnode
3220  * is being destroyed.  Only callers who specify LK_RETRY will
3221  * see doomed vnodes.  If inactive processing was delayed in
3222  * vput try to do it here.
3223  *
3224  * usecount is manipulated using atomics without holding any locks.
3225  *
3226  * holdcnt can be manipulated using atomics without holding any locks,
3227  * except when transitioning 1<->0, in which case the interlock is held.
3228  *
3229  * Consumers which don't guarantee liveness of the vnode can use SMR to
3230  * try to get a reference. Note this operation can fail since the vnode
3231  * may be awaiting getting freed by the time they get to it.
3232  */
3233 enum vgetstate
vget_prep_smr(struct vnode * vp)3234 vget_prep_smr(struct vnode *vp)
3235 {
3236 	enum vgetstate vs;
3237 
3238 	VFS_SMR_ASSERT_ENTERED();
3239 
3240 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3241 		vs = VGET_USECOUNT;
3242 	} else {
3243 		if (vhold_smr(vp))
3244 			vs = VGET_HOLDCNT;
3245 		else
3246 			vs = VGET_NONE;
3247 	}
3248 	return (vs);
3249 }
3250 
3251 enum vgetstate
vget_prep(struct vnode * vp)3252 vget_prep(struct vnode *vp)
3253 {
3254 	enum vgetstate vs;
3255 
3256 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3257 		vs = VGET_USECOUNT;
3258 	} else {
3259 		vhold(vp);
3260 		vs = VGET_HOLDCNT;
3261 	}
3262 	return (vs);
3263 }
3264 
3265 void
vget_abort(struct vnode * vp,enum vgetstate vs)3266 vget_abort(struct vnode *vp, enum vgetstate vs)
3267 {
3268 
3269 	switch (vs) {
3270 	case VGET_USECOUNT:
3271 		vrele(vp);
3272 		break;
3273 	case VGET_HOLDCNT:
3274 		vdrop(vp);
3275 		break;
3276 	default:
3277 		__assert_unreachable();
3278 	}
3279 }
3280 
3281 int
vget(struct vnode * vp,int flags)3282 vget(struct vnode *vp, int flags)
3283 {
3284 	enum vgetstate vs;
3285 
3286 	vs = vget_prep(vp);
3287 	return (vget_finish(vp, flags, vs));
3288 }
3289 
3290 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3291 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3292 {
3293 	int error;
3294 
3295 	if ((flags & LK_INTERLOCK) != 0)
3296 		ASSERT_VI_LOCKED(vp, __func__);
3297 	else
3298 		ASSERT_VI_UNLOCKED(vp, __func__);
3299 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3300 	VNPASS(vp->v_holdcnt > 0, vp);
3301 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3302 
3303 	error = vn_lock(vp, flags);
3304 	if (__predict_false(error != 0)) {
3305 		vget_abort(vp, vs);
3306 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3307 		    vp);
3308 		return (error);
3309 	}
3310 
3311 	vget_finish_ref(vp, vs);
3312 	return (0);
3313 }
3314 
3315 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)3316 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3317 {
3318 	int old;
3319 
3320 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3321 	VNPASS(vp->v_holdcnt > 0, vp);
3322 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3323 
3324 	if (vs == VGET_USECOUNT)
3325 		return;
3326 
3327 	/*
3328 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3329 	 * the vnode around. Otherwise someone else lended their hold count and
3330 	 * we have to drop ours.
3331 	 */
3332 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3333 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3334 	if (old != 0) {
3335 #ifdef INVARIANTS
3336 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3337 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3338 #else
3339 		refcount_release(&vp->v_holdcnt);
3340 #endif
3341 	}
3342 }
3343 
3344 void
vref(struct vnode * vp)3345 vref(struct vnode *vp)
3346 {
3347 	enum vgetstate vs;
3348 
3349 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3350 	vs = vget_prep(vp);
3351 	vget_finish_ref(vp, vs);
3352 }
3353 
3354 void
vrefact(struct vnode * vp)3355 vrefact(struct vnode *vp)
3356 {
3357 	int old __diagused;
3358 
3359 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3360 	old = refcount_acquire(&vp->v_usecount);
3361 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3362 }
3363 
3364 void
vlazy(struct vnode * vp)3365 vlazy(struct vnode *vp)
3366 {
3367 	struct mount *mp;
3368 
3369 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3370 
3371 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3372 		return;
3373 	/*
3374 	 * We may get here for inactive routines after the vnode got doomed.
3375 	 */
3376 	if (VN_IS_DOOMED(vp))
3377 		return;
3378 	mp = vp->v_mount;
3379 	mtx_lock(&mp->mnt_listmtx);
3380 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3381 		vp->v_mflag |= VMP_LAZYLIST;
3382 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3383 		mp->mnt_lazyvnodelistsize++;
3384 	}
3385 	mtx_unlock(&mp->mnt_listmtx);
3386 }
3387 
3388 static void
vunlazy(struct vnode * vp)3389 vunlazy(struct vnode *vp)
3390 {
3391 	struct mount *mp;
3392 
3393 	ASSERT_VI_LOCKED(vp, __func__);
3394 	VNPASS(!VN_IS_DOOMED(vp), vp);
3395 
3396 	mp = vp->v_mount;
3397 	mtx_lock(&mp->mnt_listmtx);
3398 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3399 	/*
3400 	 * Don't remove the vnode from the lazy list if another thread
3401 	 * has increased the hold count. It may have re-enqueued the
3402 	 * vnode to the lazy list and is now responsible for its
3403 	 * removal.
3404 	 */
3405 	if (vp->v_holdcnt == 0) {
3406 		vp->v_mflag &= ~VMP_LAZYLIST;
3407 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3408 		mp->mnt_lazyvnodelistsize--;
3409 	}
3410 	mtx_unlock(&mp->mnt_listmtx);
3411 }
3412 
3413 /*
3414  * This routine is only meant to be called from vgonel prior to dooming
3415  * the vnode.
3416  */
3417 static void
vunlazy_gone(struct vnode * vp)3418 vunlazy_gone(struct vnode *vp)
3419 {
3420 	struct mount *mp;
3421 
3422 	ASSERT_VOP_ELOCKED(vp, __func__);
3423 	ASSERT_VI_LOCKED(vp, __func__);
3424 	VNPASS(!VN_IS_DOOMED(vp), vp);
3425 
3426 	if (vp->v_mflag & VMP_LAZYLIST) {
3427 		mp = vp->v_mount;
3428 		mtx_lock(&mp->mnt_listmtx);
3429 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3430 		vp->v_mflag &= ~VMP_LAZYLIST;
3431 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3432 		mp->mnt_lazyvnodelistsize--;
3433 		mtx_unlock(&mp->mnt_listmtx);
3434 	}
3435 }
3436 
3437 static void
vdefer_inactive(struct vnode * vp)3438 vdefer_inactive(struct vnode *vp)
3439 {
3440 
3441 	ASSERT_VI_LOCKED(vp, __func__);
3442 	VNPASS(vp->v_holdcnt > 0, vp);
3443 	if (VN_IS_DOOMED(vp)) {
3444 		vdropl(vp);
3445 		return;
3446 	}
3447 	if (vp->v_iflag & VI_DEFINACT) {
3448 		VNPASS(vp->v_holdcnt > 1, vp);
3449 		vdropl(vp);
3450 		return;
3451 	}
3452 	if (vp->v_usecount > 0) {
3453 		vp->v_iflag &= ~VI_OWEINACT;
3454 		vdropl(vp);
3455 		return;
3456 	}
3457 	vlazy(vp);
3458 	vp->v_iflag |= VI_DEFINACT;
3459 	VI_UNLOCK(vp);
3460 	atomic_add_long(&deferred_inact, 1);
3461 }
3462 
3463 static void
vdefer_inactive_unlocked(struct vnode * vp)3464 vdefer_inactive_unlocked(struct vnode *vp)
3465 {
3466 
3467 	VI_LOCK(vp);
3468 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3469 		vdropl(vp);
3470 		return;
3471 	}
3472 	vdefer_inactive(vp);
3473 }
3474 
3475 enum vput_op { VRELE, VPUT, VUNREF };
3476 
3477 /*
3478  * Handle ->v_usecount transitioning to 0.
3479  *
3480  * By releasing the last usecount we take ownership of the hold count which
3481  * provides liveness of the vnode, meaning we have to vdrop.
3482  *
3483  * For all vnodes we may need to perform inactive processing. It requires an
3484  * exclusive lock on the vnode, while it is legal to call here with only a
3485  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3486  * inactive processing gets deferred to the syncer.
3487  *
3488  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3489  * on the lock being held all the way until VOP_INACTIVE. This in particular
3490  * happens with UFS which adds half-constructed vnodes to the hash, where they
3491  * can be found by other code.
3492  */
3493 static void
vput_final(struct vnode * vp,enum vput_op func)3494 vput_final(struct vnode *vp, enum vput_op func)
3495 {
3496 	int error;
3497 	bool want_unlock;
3498 
3499 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3500 	VNPASS(vp->v_holdcnt > 0, vp);
3501 
3502 	VI_LOCK(vp);
3503 
3504 	/*
3505 	 * By the time we got here someone else might have transitioned
3506 	 * the count back to > 0.
3507 	 */
3508 	if (vp->v_usecount > 0)
3509 		goto out;
3510 
3511 	/*
3512 	 * If the vnode is doomed vgone already performed inactive processing
3513 	 * (if needed).
3514 	 */
3515 	if (VN_IS_DOOMED(vp))
3516 		goto out;
3517 
3518 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3519 		goto out;
3520 
3521 	if (vp->v_iflag & VI_DOINGINACT)
3522 		goto out;
3523 
3524 	/*
3525 	 * Locking operations here will drop the interlock and possibly the
3526 	 * vnode lock, opening a window where the vnode can get doomed all the
3527 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3528 	 * perform inactive.
3529 	 */
3530 	vp->v_iflag |= VI_OWEINACT;
3531 	want_unlock = false;
3532 	error = 0;
3533 	switch (func) {
3534 	case VRELE:
3535 		switch (VOP_ISLOCKED(vp)) {
3536 		case LK_EXCLUSIVE:
3537 			break;
3538 		case LK_EXCLOTHER:
3539 		case 0:
3540 			want_unlock = true;
3541 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3542 			VI_LOCK(vp);
3543 			break;
3544 		default:
3545 			/*
3546 			 * The lock has at least one sharer, but we have no way
3547 			 * to conclude whether this is us. Play it safe and
3548 			 * defer processing.
3549 			 */
3550 			error = EAGAIN;
3551 			break;
3552 		}
3553 		break;
3554 	case VPUT:
3555 		want_unlock = true;
3556 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3557 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3558 			    LK_NOWAIT);
3559 			VI_LOCK(vp);
3560 		}
3561 		break;
3562 	case VUNREF:
3563 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3564 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3565 			VI_LOCK(vp);
3566 		}
3567 		break;
3568 	}
3569 	if (error == 0) {
3570 		if (func == VUNREF) {
3571 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3572 			    ("recursive vunref"));
3573 			vp->v_vflag |= VV_UNREF;
3574 		}
3575 		for (;;) {
3576 			error = vinactive(vp);
3577 			if (want_unlock)
3578 				VOP_UNLOCK(vp);
3579 			if (error != ERELOOKUP || !want_unlock)
3580 				break;
3581 			VOP_LOCK(vp, LK_EXCLUSIVE);
3582 		}
3583 		if (func == VUNREF)
3584 			vp->v_vflag &= ~VV_UNREF;
3585 		vdropl(vp);
3586 	} else {
3587 		vdefer_inactive(vp);
3588 	}
3589 	return;
3590 out:
3591 	if (func == VPUT)
3592 		VOP_UNLOCK(vp);
3593 	vdropl(vp);
3594 }
3595 
3596 /*
3597  * Decrement ->v_usecount for a vnode.
3598  *
3599  * Releasing the last use count requires additional processing, see vput_final
3600  * above for details.
3601  *
3602  * Comment above each variant denotes lock state on entry and exit.
3603  */
3604 
3605 /*
3606  * in: any
3607  * out: same as passed in
3608  */
3609 void
vrele(struct vnode * vp)3610 vrele(struct vnode *vp)
3611 {
3612 
3613 	ASSERT_VI_UNLOCKED(vp, __func__);
3614 	if (!refcount_release(&vp->v_usecount))
3615 		return;
3616 	vput_final(vp, VRELE);
3617 }
3618 
3619 /*
3620  * in: locked
3621  * out: unlocked
3622  */
3623 void
vput(struct vnode * vp)3624 vput(struct vnode *vp)
3625 {
3626 
3627 	ASSERT_VOP_LOCKED(vp, __func__);
3628 	ASSERT_VI_UNLOCKED(vp, __func__);
3629 	if (!refcount_release(&vp->v_usecount)) {
3630 		VOP_UNLOCK(vp);
3631 		return;
3632 	}
3633 	vput_final(vp, VPUT);
3634 }
3635 
3636 /*
3637  * in: locked
3638  * out: locked
3639  */
3640 void
vunref(struct vnode * vp)3641 vunref(struct vnode *vp)
3642 {
3643 
3644 	ASSERT_VOP_LOCKED(vp, __func__);
3645 	ASSERT_VI_UNLOCKED(vp, __func__);
3646 	if (!refcount_release(&vp->v_usecount))
3647 		return;
3648 	vput_final(vp, VUNREF);
3649 }
3650 
3651 void
vhold(struct vnode * vp)3652 vhold(struct vnode *vp)
3653 {
3654 	int old;
3655 
3656 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3657 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3658 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3659 	    ("%s: wrong hold count %d", __func__, old));
3660 	if (old == 0)
3661 		vfs_freevnodes_dec();
3662 }
3663 
3664 void
vholdnz(struct vnode * vp)3665 vholdnz(struct vnode *vp)
3666 {
3667 
3668 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3669 #ifdef INVARIANTS
3670 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3671 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3672 	    ("%s: wrong hold count %d", __func__, old));
3673 #else
3674 	atomic_add_int(&vp->v_holdcnt, 1);
3675 #endif
3676 }
3677 
3678 /*
3679  * Grab a hold count unless the vnode is freed.
3680  *
3681  * Only use this routine if vfs smr is the only protection you have against
3682  * freeing the vnode.
3683  *
3684  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3685  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3686  * the thread which managed to set the flag.
3687  *
3688  * It may be tempting to replace the loop with:
3689  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3690  * if (count & VHOLD_NO_SMR) {
3691  *     backpedal and error out;
3692  * }
3693  *
3694  * However, while this is more performant, it hinders debugging by eliminating
3695  * the previously mentioned invariant.
3696  */
3697 bool
vhold_smr(struct vnode * vp)3698 vhold_smr(struct vnode *vp)
3699 {
3700 	int count;
3701 
3702 	VFS_SMR_ASSERT_ENTERED();
3703 
3704 	count = atomic_load_int(&vp->v_holdcnt);
3705 	for (;;) {
3706 		if (count & VHOLD_NO_SMR) {
3707 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3708 			    ("non-zero hold count with flags %d\n", count));
3709 			return (false);
3710 		}
3711 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3712 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3713 			if (count == 0)
3714 				vfs_freevnodes_dec();
3715 			return (true);
3716 		}
3717 	}
3718 }
3719 
3720 /*
3721  * Hold a free vnode for recycling.
3722  *
3723  * Note: vnode_init references this comment.
3724  *
3725  * Attempts to recycle only need the global vnode list lock and have no use for
3726  * SMR.
3727  *
3728  * However, vnodes get inserted into the global list before they get fully
3729  * initialized and stay there until UMA decides to free the memory. This in
3730  * particular means the target can be found before it becomes usable and after
3731  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3732  * VHOLD_NO_SMR.
3733  *
3734  * Note: the vnode may gain more references after we transition the count 0->1.
3735  */
3736 static bool
vhold_recycle_free(struct vnode * vp)3737 vhold_recycle_free(struct vnode *vp)
3738 {
3739 	int count;
3740 
3741 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3742 
3743 	count = atomic_load_int(&vp->v_holdcnt);
3744 	for (;;) {
3745 		if (count & VHOLD_NO_SMR) {
3746 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3747 			    ("non-zero hold count with flags %d\n", count));
3748 			return (false);
3749 		}
3750 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3751 		if (count > 0) {
3752 			return (false);
3753 		}
3754 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3755 			vfs_freevnodes_dec();
3756 			return (true);
3757 		}
3758 	}
3759 }
3760 
3761 static void __noinline
vdbatch_process(struct vdbatch * vd)3762 vdbatch_process(struct vdbatch *vd)
3763 {
3764 	struct vnode *vp;
3765 	int i;
3766 
3767 	mtx_assert(&vd->lock, MA_OWNED);
3768 	MPASS(curthread->td_pinned > 0);
3769 	MPASS(vd->index == VDBATCH_SIZE);
3770 
3771 	/*
3772 	 * Attempt to requeue the passed batch, but give up easily.
3773 	 *
3774 	 * Despite batching the mechanism is prone to transient *significant*
3775 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3776 	 * if multiple CPUs get here (one real-world example is highly parallel
3777 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3778 	 * quasi-LRU (read: not that great even if fully honoured) provide an
3779 	 * option to just dodge the problem. Parties which don't like it are
3780 	 * welcome to implement something better.
3781 	 */
3782 	if (vnode_can_skip_requeue) {
3783 		if (!mtx_trylock(&vnode_list_mtx)) {
3784 			counter_u64_add(vnode_skipped_requeues, 1);
3785 			critical_enter();
3786 			for (i = 0; i < VDBATCH_SIZE; i++) {
3787 				vp = vd->tab[i];
3788 				vd->tab[i] = NULL;
3789 				MPASS(vp->v_dbatchcpu != NOCPU);
3790 				vp->v_dbatchcpu = NOCPU;
3791 			}
3792 			vd->index = 0;
3793 			critical_exit();
3794 			return;
3795 
3796 		}
3797 		/* fallthrough to locked processing */
3798 	} else {
3799 		mtx_lock(&vnode_list_mtx);
3800 	}
3801 
3802 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3803 	critical_enter();
3804 	for (i = 0; i < VDBATCH_SIZE; i++) {
3805 		vp = vd->tab[i];
3806 		vd->tab[i] = NULL;
3807 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3808 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3809 		MPASS(vp->v_dbatchcpu != NOCPU);
3810 		vp->v_dbatchcpu = NOCPU;
3811 	}
3812 	mtx_unlock(&vnode_list_mtx);
3813 	vd->index = 0;
3814 	critical_exit();
3815 }
3816 
3817 static void
vdbatch_enqueue(struct vnode * vp)3818 vdbatch_enqueue(struct vnode *vp)
3819 {
3820 	struct vdbatch *vd;
3821 
3822 	ASSERT_VI_LOCKED(vp, __func__);
3823 	VNPASS(!VN_IS_DOOMED(vp), vp);
3824 
3825 	if (vp->v_dbatchcpu != NOCPU) {
3826 		VI_UNLOCK(vp);
3827 		return;
3828 	}
3829 
3830 	sched_pin();
3831 	vd = DPCPU_PTR(vd);
3832 	mtx_lock(&vd->lock);
3833 	MPASS(vd->index < VDBATCH_SIZE);
3834 	MPASS(vd->tab[vd->index] == NULL);
3835 	/*
3836 	 * A hack: we depend on being pinned so that we know what to put in
3837 	 * ->v_dbatchcpu.
3838 	 */
3839 	vp->v_dbatchcpu = curcpu;
3840 	vd->tab[vd->index] = vp;
3841 	vd->index++;
3842 	VI_UNLOCK(vp);
3843 	if (vd->index == VDBATCH_SIZE)
3844 		vdbatch_process(vd);
3845 	mtx_unlock(&vd->lock);
3846 	sched_unpin();
3847 }
3848 
3849 /*
3850  * This routine must only be called for vnodes which are about to be
3851  * deallocated. Supporting dequeue for arbitrary vndoes would require
3852  * validating that the locked batch matches.
3853  */
3854 static void
vdbatch_dequeue(struct vnode * vp)3855 vdbatch_dequeue(struct vnode *vp)
3856 {
3857 	struct vdbatch *vd;
3858 	int i;
3859 	short cpu;
3860 
3861 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3862 
3863 	cpu = vp->v_dbatchcpu;
3864 	if (cpu == NOCPU)
3865 		return;
3866 
3867 	vd = DPCPU_ID_PTR(cpu, vd);
3868 	mtx_lock(&vd->lock);
3869 	for (i = 0; i < vd->index; i++) {
3870 		if (vd->tab[i] != vp)
3871 			continue;
3872 		vp->v_dbatchcpu = NOCPU;
3873 		vd->index--;
3874 		vd->tab[i] = vd->tab[vd->index];
3875 		vd->tab[vd->index] = NULL;
3876 		break;
3877 	}
3878 	mtx_unlock(&vd->lock);
3879 	/*
3880 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3881 	 */
3882 	MPASS(vp->v_dbatchcpu == NOCPU);
3883 }
3884 
3885 /*
3886  * Drop the hold count of the vnode.  If this is the last reference to
3887  * the vnode we place it on the free list unless it has been vgone'd
3888  * (marked VIRF_DOOMED) in which case we will free it.
3889  *
3890  * Because the vnode vm object keeps a hold reference on the vnode if
3891  * there is at least one resident non-cached page, the vnode cannot
3892  * leave the active list without the page cleanup done.
3893  */
3894 static void __noinline
vdropl_final(struct vnode * vp)3895 vdropl_final(struct vnode *vp)
3896 {
3897 
3898 	ASSERT_VI_LOCKED(vp, __func__);
3899 	VNPASS(VN_IS_DOOMED(vp), vp);
3900 	/*
3901 	 * Set the VHOLD_NO_SMR flag.
3902 	 *
3903 	 * We may be racing against vhold_smr. If they win we can just pretend
3904 	 * we never got this far, they will vdrop later.
3905 	 */
3906 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3907 		vfs_freevnodes_inc();
3908 		VI_UNLOCK(vp);
3909 		/*
3910 		 * We lost the aforementioned race. Any subsequent access is
3911 		 * invalid as they might have managed to vdropl on their own.
3912 		 */
3913 		return;
3914 	}
3915 	/*
3916 	 * Don't bump freevnodes as this one is going away.
3917 	 */
3918 	freevnode(vp);
3919 }
3920 
3921 void
vdrop(struct vnode * vp)3922 vdrop(struct vnode *vp)
3923 {
3924 
3925 	ASSERT_VI_UNLOCKED(vp, __func__);
3926 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3927 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3928 		return;
3929 	VI_LOCK(vp);
3930 	vdropl(vp);
3931 }
3932 
3933 static void __always_inline
vdropl_impl(struct vnode * vp,bool enqueue)3934 vdropl_impl(struct vnode *vp, bool enqueue)
3935 {
3936 
3937 	ASSERT_VI_LOCKED(vp, __func__);
3938 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3939 	if (!refcount_release(&vp->v_holdcnt)) {
3940 		VI_UNLOCK(vp);
3941 		return;
3942 	}
3943 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3944 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3945 	if (VN_IS_DOOMED(vp)) {
3946 		vdropl_final(vp);
3947 		return;
3948 	}
3949 
3950 	vfs_freevnodes_inc();
3951 	if (vp->v_mflag & VMP_LAZYLIST) {
3952 		vunlazy(vp);
3953 	}
3954 
3955 	if (!enqueue) {
3956 		VI_UNLOCK(vp);
3957 		return;
3958 	}
3959 
3960 	/*
3961 	 * Also unlocks the interlock. We can't assert on it as we
3962 	 * released our hold and by now the vnode might have been
3963 	 * freed.
3964 	 */
3965 	vdbatch_enqueue(vp);
3966 }
3967 
3968 void
vdropl(struct vnode * vp)3969 vdropl(struct vnode *vp)
3970 {
3971 
3972 	vdropl_impl(vp, true);
3973 }
3974 
3975 /*
3976  * vdrop a vnode when recycling
3977  *
3978  * This is a special case routine only to be used when recycling, differs from
3979  * regular vdrop by not requeieing the vnode on LRU.
3980  *
3981  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3982  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3983  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3984  * loop which can last for as long as writes are frozen.
3985  */
3986 static void
vdropl_recycle(struct vnode * vp)3987 vdropl_recycle(struct vnode *vp)
3988 {
3989 
3990 	vdropl_impl(vp, false);
3991 }
3992 
3993 static void
vdrop_recycle(struct vnode * vp)3994 vdrop_recycle(struct vnode *vp)
3995 {
3996 
3997 	VI_LOCK(vp);
3998 	vdropl_recycle(vp);
3999 }
4000 
4001 /*
4002  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4003  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
4004  */
4005 static int
vinactivef(struct vnode * vp)4006 vinactivef(struct vnode *vp)
4007 {
4008 	int error;
4009 
4010 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4011 	ASSERT_VI_LOCKED(vp, "vinactive");
4012 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4013 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4014 	vp->v_iflag |= VI_DOINGINACT;
4015 	vp->v_iflag &= ~VI_OWEINACT;
4016 	VI_UNLOCK(vp);
4017 
4018 	/*
4019 	 * Before moving off the active list, we must be sure that any
4020 	 * modified pages are converted into the vnode's dirty
4021 	 * buffers, since these will no longer be checked once the
4022 	 * vnode is on the inactive list.
4023 	 *
4024 	 * The write-out of the dirty pages is asynchronous.  At the
4025 	 * point that VOP_INACTIVE() is called, there could still be
4026 	 * pending I/O and dirty pages in the object.
4027 	 */
4028 	if ((vp->v_vflag & VV_NOSYNC) == 0)
4029 		vnode_pager_clean_async(vp);
4030 
4031 	error = VOP_INACTIVE(vp);
4032 	VI_LOCK(vp);
4033 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4034 	vp->v_iflag &= ~VI_DOINGINACT;
4035 	return (error);
4036 }
4037 
4038 int
vinactive(struct vnode * vp)4039 vinactive(struct vnode *vp)
4040 {
4041 
4042 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4043 	ASSERT_VI_LOCKED(vp, "vinactive");
4044 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4045 
4046 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4047 		return (0);
4048 	if (vp->v_iflag & VI_DOINGINACT)
4049 		return (0);
4050 	if (vp->v_usecount > 0) {
4051 		vp->v_iflag &= ~VI_OWEINACT;
4052 		return (0);
4053 	}
4054 	return (vinactivef(vp));
4055 }
4056 
4057 /*
4058  * Remove any vnodes in the vnode table belonging to mount point mp.
4059  *
4060  * If FORCECLOSE is not specified, there should not be any active ones,
4061  * return error if any are found (nb: this is a user error, not a
4062  * system error). If FORCECLOSE is specified, detach any active vnodes
4063  * that are found.
4064  *
4065  * If WRITECLOSE is set, only flush out regular file vnodes open for
4066  * writing.
4067  *
4068  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4069  *
4070  * `rootrefs' specifies the base reference count for the root vnode
4071  * of this filesystem. The root vnode is considered busy if its
4072  * v_usecount exceeds this value. On a successful return, vflush(, td)
4073  * will call vrele() on the root vnode exactly rootrefs times.
4074  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4075  * be zero.
4076  */
4077 #ifdef DIAGNOSTIC
4078 static int busyprt = 0;		/* print out busy vnodes */
4079 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4080 #endif
4081 
4082 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)4083 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4084 {
4085 	struct vnode *vp, *mvp, *rootvp = NULL;
4086 	struct vattr vattr;
4087 	int busy = 0, error;
4088 
4089 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4090 	    rootrefs, flags);
4091 	if (rootrefs > 0) {
4092 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4093 		    ("vflush: bad args"));
4094 		/*
4095 		 * Get the filesystem root vnode. We can vput() it
4096 		 * immediately, since with rootrefs > 0, it won't go away.
4097 		 */
4098 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4099 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4100 			    __func__, error);
4101 			return (error);
4102 		}
4103 		vput(rootvp);
4104 	}
4105 loop:
4106 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4107 		vholdl(vp);
4108 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4109 		if (error) {
4110 			vdrop(vp);
4111 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4112 			goto loop;
4113 		}
4114 		/*
4115 		 * Skip over a vnodes marked VV_SYSTEM.
4116 		 */
4117 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4118 			VOP_UNLOCK(vp);
4119 			vdrop(vp);
4120 			continue;
4121 		}
4122 		/*
4123 		 * If WRITECLOSE is set, flush out unlinked but still open
4124 		 * files (even if open only for reading) and regular file
4125 		 * vnodes open for writing.
4126 		 */
4127 		if (flags & WRITECLOSE) {
4128 			vnode_pager_clean_async(vp);
4129 			do {
4130 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4131 			} while (error == ERELOOKUP);
4132 			if (error != 0) {
4133 				VOP_UNLOCK(vp);
4134 				vdrop(vp);
4135 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4136 				return (error);
4137 			}
4138 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4139 			VI_LOCK(vp);
4140 
4141 			if ((vp->v_type == VNON ||
4142 			    (error == 0 && vattr.va_nlink > 0)) &&
4143 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4144 				VOP_UNLOCK(vp);
4145 				vdropl(vp);
4146 				continue;
4147 			}
4148 		} else
4149 			VI_LOCK(vp);
4150 		/*
4151 		 * With v_usecount == 0, all we need to do is clear out the
4152 		 * vnode data structures and we are done.
4153 		 *
4154 		 * If FORCECLOSE is set, forcibly close the vnode.
4155 		 */
4156 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4157 			vgonel(vp);
4158 		} else {
4159 			busy++;
4160 #ifdef DIAGNOSTIC
4161 			if (busyprt)
4162 				vn_printf(vp, "vflush: busy vnode ");
4163 #endif
4164 		}
4165 		VOP_UNLOCK(vp);
4166 		vdropl(vp);
4167 	}
4168 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4169 		/*
4170 		 * If just the root vnode is busy, and if its refcount
4171 		 * is equal to `rootrefs', then go ahead and kill it.
4172 		 */
4173 		VI_LOCK(rootvp);
4174 		KASSERT(busy > 0, ("vflush: not busy"));
4175 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4176 		    ("vflush: usecount %d < rootrefs %d",
4177 		     rootvp->v_usecount, rootrefs));
4178 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4179 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4180 			vgone(rootvp);
4181 			VOP_UNLOCK(rootvp);
4182 			busy = 0;
4183 		} else
4184 			VI_UNLOCK(rootvp);
4185 	}
4186 	if (busy) {
4187 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4188 		    busy);
4189 		return (EBUSY);
4190 	}
4191 	for (; rootrefs > 0; rootrefs--)
4192 		vrele(rootvp);
4193 	return (0);
4194 }
4195 
4196 /*
4197  * Recycle an unused vnode to the front of the free list.
4198  */
4199 int
vrecycle(struct vnode * vp)4200 vrecycle(struct vnode *vp)
4201 {
4202 	int recycled;
4203 
4204 	VI_LOCK(vp);
4205 	recycled = vrecyclel(vp);
4206 	VI_UNLOCK(vp);
4207 	return (recycled);
4208 }
4209 
4210 /*
4211  * vrecycle, with the vp interlock held.
4212  */
4213 int
vrecyclel(struct vnode * vp)4214 vrecyclel(struct vnode *vp)
4215 {
4216 	int recycled;
4217 
4218 	ASSERT_VOP_ELOCKED(vp, __func__);
4219 	ASSERT_VI_LOCKED(vp, __func__);
4220 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4221 	recycled = 0;
4222 	if (vp->v_usecount == 0) {
4223 		recycled = 1;
4224 		vgonel(vp);
4225 	}
4226 	return (recycled);
4227 }
4228 
4229 /*
4230  * Eliminate all activity associated with a vnode
4231  * in preparation for reuse.
4232  */
4233 void
vgone(struct vnode * vp)4234 vgone(struct vnode *vp)
4235 {
4236 	VI_LOCK(vp);
4237 	vgonel(vp);
4238 	VI_UNLOCK(vp);
4239 }
4240 
4241 /*
4242  * Notify upper mounts about reclaimed or unlinked vnode.
4243  */
4244 void
vfs_notify_upper(struct vnode * vp,enum vfs_notify_upper_type event)4245 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4246 {
4247 	struct mount *mp;
4248 	struct mount_upper_node *ump;
4249 
4250 	mp = atomic_load_ptr(&vp->v_mount);
4251 	if (mp == NULL)
4252 		return;
4253 	if (TAILQ_EMPTY(&mp->mnt_notify))
4254 		return;
4255 
4256 	MNT_ILOCK(mp);
4257 	mp->mnt_upper_pending++;
4258 	KASSERT(mp->mnt_upper_pending > 0,
4259 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4260 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4261 		MNT_IUNLOCK(mp);
4262 		switch (event) {
4263 		case VFS_NOTIFY_UPPER_RECLAIM:
4264 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4265 			break;
4266 		case VFS_NOTIFY_UPPER_UNLINK:
4267 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4268 			break;
4269 		}
4270 		MNT_ILOCK(mp);
4271 	}
4272 	mp->mnt_upper_pending--;
4273 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4274 	    mp->mnt_upper_pending == 0) {
4275 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4276 		wakeup(&mp->mnt_uppers);
4277 	}
4278 	MNT_IUNLOCK(mp);
4279 }
4280 
4281 /*
4282  * vgone, with the vp interlock held.
4283  */
4284 static void
vgonel(struct vnode * vp)4285 vgonel(struct vnode *vp)
4286 {
4287 	struct thread *td;
4288 	struct mount *mp;
4289 	vm_object_t object;
4290 	bool active, doinginact, oweinact;
4291 
4292 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4293 	ASSERT_VI_LOCKED(vp, "vgonel");
4294 	VNASSERT(vp->v_holdcnt, vp,
4295 	    ("vgonel: vp %p has no reference.", vp));
4296 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4297 	td = curthread;
4298 
4299 	/*
4300 	 * Don't vgonel if we're already doomed.
4301 	 */
4302 	if (VN_IS_DOOMED(vp)) {
4303 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4304 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4305 		return;
4306 	}
4307 	/*
4308 	 * Paired with freevnode.
4309 	 */
4310 	vn_seqc_write_begin_locked(vp);
4311 	vunlazy_gone(vp);
4312 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4313 	vn_set_state(vp, VSTATE_DESTROYING);
4314 
4315 	/*
4316 	 * Check to see if the vnode is in use.  If so, we have to
4317 	 * call VOP_CLOSE() and VOP_INACTIVE().
4318 	 *
4319 	 * It could be that VOP_INACTIVE() requested reclamation, in
4320 	 * which case we should avoid recursion, so check
4321 	 * VI_DOINGINACT.  This is not precise but good enough.
4322 	 */
4323 	active = vp->v_usecount > 0;
4324 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4325 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4326 
4327 	/*
4328 	 * If we need to do inactive VI_OWEINACT will be set.
4329 	 */
4330 	if (vp->v_iflag & VI_DEFINACT) {
4331 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4332 		vp->v_iflag &= ~VI_DEFINACT;
4333 		vdropl(vp);
4334 	} else {
4335 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4336 		VI_UNLOCK(vp);
4337 	}
4338 	cache_purge_vgone(vp);
4339 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4340 
4341 	/*
4342 	 * If purging an active vnode, it must be closed and
4343 	 * deactivated before being reclaimed.
4344 	 */
4345 	if (active)
4346 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4347 	if (!doinginact) {
4348 		do {
4349 			if (oweinact || active) {
4350 				VI_LOCK(vp);
4351 				vinactivef(vp);
4352 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4353 				VI_UNLOCK(vp);
4354 			}
4355 		} while (oweinact);
4356 	}
4357 	if (vp->v_type == VSOCK)
4358 		vfs_unp_reclaim(vp);
4359 
4360 	/*
4361 	 * Clean out any buffers associated with the vnode.
4362 	 * If the flush fails, just toss the buffers.
4363 	 */
4364 	mp = NULL;
4365 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4366 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4367 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4368 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4369 			;
4370 	}
4371 
4372 	BO_LOCK(&vp->v_bufobj);
4373 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4374 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4375 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4376 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4377 	    ("vp %p bufobj not invalidated", vp));
4378 
4379 	/*
4380 	 * For VMIO bufobj, BO_DEAD is set later, or in
4381 	 * vm_object_terminate() after the object's page queue is
4382 	 * flushed.
4383 	 */
4384 	object = vp->v_bufobj.bo_object;
4385 	if (object == NULL)
4386 		vp->v_bufobj.bo_flag |= BO_DEAD;
4387 	BO_UNLOCK(&vp->v_bufobj);
4388 
4389 	/*
4390 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4391 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4392 	 * should not touch the object borrowed from the lower vnode
4393 	 * (the handle check).
4394 	 */
4395 	if (object != NULL && object->type == OBJT_VNODE &&
4396 	    object->handle == vp)
4397 		vnode_destroy_vobject(vp);
4398 
4399 	/*
4400 	 * Reclaim the vnode.
4401 	 */
4402 	if (VOP_RECLAIM(vp))
4403 		panic("vgone: cannot reclaim");
4404 	if (mp != NULL)
4405 		vn_finished_secondary_write(mp);
4406 	VNASSERT(vp->v_object == NULL, vp,
4407 	    ("vop_reclaim left v_object vp=%p", vp));
4408 	/*
4409 	 * Clear the advisory locks and wake up waiting threads.
4410 	 */
4411 	if (vp->v_lockf != NULL) {
4412 		(void)VOP_ADVLOCKPURGE(vp);
4413 		vp->v_lockf = NULL;
4414 	}
4415 	/*
4416 	 * Delete from old mount point vnode list.
4417 	 */
4418 	if (vp->v_mount == NULL) {
4419 		VI_LOCK(vp);
4420 	} else {
4421 		delmntque(vp);
4422 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4423 	}
4424 	/*
4425 	 * Done with purge, reset to the standard lock and invalidate
4426 	 * the vnode.
4427 	 */
4428 	vp->v_vnlock = &vp->v_lock;
4429 	vp->v_op = &dead_vnodeops;
4430 	vp->v_type = VBAD;
4431 	vn_set_state(vp, VSTATE_DEAD);
4432 }
4433 
4434 /*
4435  * Print out a description of a vnode.
4436  */
4437 static const char *const vtypename[] = {
4438 	[VNON] = "VNON",
4439 	[VREG] = "VREG",
4440 	[VDIR] = "VDIR",
4441 	[VBLK] = "VBLK",
4442 	[VCHR] = "VCHR",
4443 	[VLNK] = "VLNK",
4444 	[VSOCK] = "VSOCK",
4445 	[VFIFO] = "VFIFO",
4446 	[VBAD] = "VBAD",
4447 	[VMARKER] = "VMARKER",
4448 };
4449 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4450     "vnode type name not added to vtypename");
4451 
4452 static const char *const vstatename[] = {
4453 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4454 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4455 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4456 	[VSTATE_DEAD] = "VSTATE_DEAD",
4457 };
4458 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4459     "vnode state name not added to vstatename");
4460 
4461 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4462     "new hold count flag not added to vn_printf");
4463 
4464 void
vn_printf(struct vnode * vp,const char * fmt,...)4465 vn_printf(struct vnode *vp, const char *fmt, ...)
4466 {
4467 	va_list ap;
4468 	char buf[256], buf2[16];
4469 	u_long flags;
4470 	u_int holdcnt;
4471 	short irflag;
4472 
4473 	va_start(ap, fmt);
4474 	vprintf(fmt, ap);
4475 	va_end(ap);
4476 	printf("%p: ", (void *)vp);
4477 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4478 	    vstatename[vp->v_state], vp->v_op);
4479 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4480 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4481 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4482 	    vp->v_seqc_users);
4483 	switch (vp->v_type) {
4484 	case VDIR:
4485 		printf(" mountedhere %p\n", vp->v_mountedhere);
4486 		break;
4487 	case VCHR:
4488 		printf(" rdev %p\n", vp->v_rdev);
4489 		break;
4490 	case VSOCK:
4491 		printf(" socket %p\n", vp->v_unpcb);
4492 		break;
4493 	case VFIFO:
4494 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4495 		break;
4496 	default:
4497 		printf("\n");
4498 		break;
4499 	}
4500 	buf[0] = '\0';
4501 	buf[1] = '\0';
4502 	if (holdcnt & VHOLD_NO_SMR)
4503 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4504 	printf("    hold count flags (%s)\n", buf + 1);
4505 
4506 	buf[0] = '\0';
4507 	buf[1] = '\0';
4508 	irflag = vn_irflag_read(vp);
4509 	if (irflag & VIRF_DOOMED)
4510 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4511 	if (irflag & VIRF_PGREAD)
4512 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4513 	if (irflag & VIRF_MOUNTPOINT)
4514 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4515 	if (irflag & VIRF_TEXT_REF)
4516 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4517 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4518 	if (flags != 0) {
4519 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4520 		strlcat(buf, buf2, sizeof(buf));
4521 	}
4522 	if (vp->v_vflag & VV_ROOT)
4523 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4524 	if (vp->v_vflag & VV_ISTTY)
4525 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4526 	if (vp->v_vflag & VV_NOSYNC)
4527 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4528 	if (vp->v_vflag & VV_ETERNALDEV)
4529 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4530 	if (vp->v_vflag & VV_CACHEDLABEL)
4531 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4532 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4533 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4534 	if (vp->v_vflag & VV_COPYONWRITE)
4535 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4536 	if (vp->v_vflag & VV_SYSTEM)
4537 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4538 	if (vp->v_vflag & VV_PROCDEP)
4539 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4540 	if (vp->v_vflag & VV_DELETED)
4541 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4542 	if (vp->v_vflag & VV_MD)
4543 		strlcat(buf, "|VV_MD", sizeof(buf));
4544 	if (vp->v_vflag & VV_FORCEINSMQ)
4545 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4546 	if (vp->v_vflag & VV_READLINK)
4547 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4548 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4549 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4550 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4551 	if (flags != 0) {
4552 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4553 		strlcat(buf, buf2, sizeof(buf));
4554 	}
4555 	if (vp->v_iflag & VI_MOUNT)
4556 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4557 	if (vp->v_iflag & VI_DOINGINACT)
4558 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4559 	if (vp->v_iflag & VI_OWEINACT)
4560 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4561 	if (vp->v_iflag & VI_DEFINACT)
4562 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4563 	if (vp->v_iflag & VI_FOPENING)
4564 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4565 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4566 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4567 	if (flags != 0) {
4568 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4569 		strlcat(buf, buf2, sizeof(buf));
4570 	}
4571 	if (vp->v_mflag & VMP_LAZYLIST)
4572 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4573 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4574 	if (flags != 0) {
4575 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4576 		strlcat(buf, buf2, sizeof(buf));
4577 	}
4578 	printf("    flags (%s)", buf + 1);
4579 	if (mtx_owned(VI_MTX(vp)))
4580 		printf(" VI_LOCKed");
4581 	printf("\n");
4582 	if (vp->v_object != NULL)
4583 		printf("    v_object %p ref %d pages %d "
4584 		    "cleanbuf %d dirtybuf %d\n",
4585 		    vp->v_object, vp->v_object->ref_count,
4586 		    vp->v_object->resident_page_count,
4587 		    vp->v_bufobj.bo_clean.bv_cnt,
4588 		    vp->v_bufobj.bo_dirty.bv_cnt);
4589 	printf("    ");
4590 	lockmgr_printinfo(vp->v_vnlock);
4591 	if (vp->v_data != NULL)
4592 		VOP_PRINT(vp);
4593 }
4594 
4595 #ifdef DDB
4596 /*
4597  * List all of the locked vnodes in the system.
4598  * Called when debugging the kernel.
4599  */
DB_SHOW_COMMAND_FLAGS(lockedvnods,lockedvnodes,DB_CMD_MEMSAFE)4600 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4601 {
4602 	struct mount *mp;
4603 	struct vnode *vp;
4604 
4605 	/*
4606 	 * Note: because this is DDB, we can't obey the locking semantics
4607 	 * for these structures, which means we could catch an inconsistent
4608 	 * state and dereference a nasty pointer.  Not much to be done
4609 	 * about that.
4610 	 */
4611 	db_printf("Locked vnodes\n");
4612 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4613 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4614 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4615 				vn_printf(vp, "vnode ");
4616 		}
4617 	}
4618 }
4619 
4620 /*
4621  * Show details about the given vnode.
4622  */
DB_SHOW_COMMAND(vnode,db_show_vnode)4623 DB_SHOW_COMMAND(vnode, db_show_vnode)
4624 {
4625 	struct vnode *vp;
4626 
4627 	if (!have_addr)
4628 		return;
4629 	vp = (struct vnode *)addr;
4630 	vn_printf(vp, "vnode ");
4631 }
4632 
4633 /*
4634  * Show details about the given mount point.
4635  */
DB_SHOW_COMMAND(mount,db_show_mount)4636 DB_SHOW_COMMAND(mount, db_show_mount)
4637 {
4638 	struct mount *mp;
4639 	struct vfsopt *opt;
4640 	struct statfs *sp;
4641 	struct vnode *vp;
4642 	char buf[512];
4643 	uint64_t mflags;
4644 	u_int flags;
4645 
4646 	if (!have_addr) {
4647 		/* No address given, print short info about all mount points. */
4648 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4649 			db_printf("%p %s on %s (%s)\n", mp,
4650 			    mp->mnt_stat.f_mntfromname,
4651 			    mp->mnt_stat.f_mntonname,
4652 			    mp->mnt_stat.f_fstypename);
4653 			if (db_pager_quit)
4654 				break;
4655 		}
4656 		db_printf("\nMore info: show mount <addr>\n");
4657 		return;
4658 	}
4659 
4660 	mp = (struct mount *)addr;
4661 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4662 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4663 
4664 	buf[0] = '\0';
4665 	mflags = mp->mnt_flag;
4666 #define	MNT_FLAG(flag)	do {						\
4667 	if (mflags & (flag)) {						\
4668 		if (buf[0] != '\0')					\
4669 			strlcat(buf, ", ", sizeof(buf));		\
4670 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4671 		mflags &= ~(flag);					\
4672 	}								\
4673 } while (0)
4674 	MNT_FLAG(MNT_RDONLY);
4675 	MNT_FLAG(MNT_SYNCHRONOUS);
4676 	MNT_FLAG(MNT_NOEXEC);
4677 	MNT_FLAG(MNT_NOSUID);
4678 	MNT_FLAG(MNT_NFS4ACLS);
4679 	MNT_FLAG(MNT_UNION);
4680 	MNT_FLAG(MNT_ASYNC);
4681 	MNT_FLAG(MNT_SUIDDIR);
4682 	MNT_FLAG(MNT_SOFTDEP);
4683 	MNT_FLAG(MNT_NOSYMFOLLOW);
4684 	MNT_FLAG(MNT_GJOURNAL);
4685 	MNT_FLAG(MNT_MULTILABEL);
4686 	MNT_FLAG(MNT_ACLS);
4687 	MNT_FLAG(MNT_NOATIME);
4688 	MNT_FLAG(MNT_NOCLUSTERR);
4689 	MNT_FLAG(MNT_NOCLUSTERW);
4690 	MNT_FLAG(MNT_SUJ);
4691 	MNT_FLAG(MNT_EXRDONLY);
4692 	MNT_FLAG(MNT_EXPORTED);
4693 	MNT_FLAG(MNT_DEFEXPORTED);
4694 	MNT_FLAG(MNT_EXPORTANON);
4695 	MNT_FLAG(MNT_EXKERB);
4696 	MNT_FLAG(MNT_EXPUBLIC);
4697 	MNT_FLAG(MNT_LOCAL);
4698 	MNT_FLAG(MNT_QUOTA);
4699 	MNT_FLAG(MNT_ROOTFS);
4700 	MNT_FLAG(MNT_USER);
4701 	MNT_FLAG(MNT_IGNORE);
4702 	MNT_FLAG(MNT_UPDATE);
4703 	MNT_FLAG(MNT_DELEXPORT);
4704 	MNT_FLAG(MNT_RELOAD);
4705 	MNT_FLAG(MNT_FORCE);
4706 	MNT_FLAG(MNT_SNAPSHOT);
4707 	MNT_FLAG(MNT_BYFSID);
4708 #undef MNT_FLAG
4709 	if (mflags != 0) {
4710 		if (buf[0] != '\0')
4711 			strlcat(buf, ", ", sizeof(buf));
4712 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4713 		    "0x%016jx", mflags);
4714 	}
4715 	db_printf("    mnt_flag = %s\n", buf);
4716 
4717 	buf[0] = '\0';
4718 	flags = mp->mnt_kern_flag;
4719 #define	MNT_KERN_FLAG(flag)	do {					\
4720 	if (flags & (flag)) {						\
4721 		if (buf[0] != '\0')					\
4722 			strlcat(buf, ", ", sizeof(buf));		\
4723 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4724 		flags &= ~(flag);					\
4725 	}								\
4726 } while (0)
4727 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4728 	MNT_KERN_FLAG(MNTK_ASYNC);
4729 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4730 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4731 	MNT_KERN_FLAG(MNTK_DRAINING);
4732 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4733 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4734 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4735 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4736 	MNT_KERN_FLAG(MNTK_RECURSE);
4737 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4738 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4739 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4740 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4741 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4742 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4743 	MNT_KERN_FLAG(MNTK_NOASYNC);
4744 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4745 	MNT_KERN_FLAG(MNTK_MWAIT);
4746 	MNT_KERN_FLAG(MNTK_SUSPEND);
4747 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4748 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4749 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4750 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4751 #undef MNT_KERN_FLAG
4752 	if (flags != 0) {
4753 		if (buf[0] != '\0')
4754 			strlcat(buf, ", ", sizeof(buf));
4755 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4756 		    "0x%08x", flags);
4757 	}
4758 	db_printf("    mnt_kern_flag = %s\n", buf);
4759 
4760 	db_printf("    mnt_opt = ");
4761 	opt = TAILQ_FIRST(mp->mnt_opt);
4762 	if (opt != NULL) {
4763 		db_printf("%s", opt->name);
4764 		opt = TAILQ_NEXT(opt, link);
4765 		while (opt != NULL) {
4766 			db_printf(", %s", opt->name);
4767 			opt = TAILQ_NEXT(opt, link);
4768 		}
4769 	}
4770 	db_printf("\n");
4771 
4772 	sp = &mp->mnt_stat;
4773 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4774 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4775 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4776 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4777 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4778 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4779 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4780 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4781 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4782 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4783 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4784 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4785 
4786 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4787 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4788 	if (jailed(mp->mnt_cred))
4789 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4790 	db_printf(" }\n");
4791 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4792 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4793 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4794 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4795 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4796 	    mp->mnt_lazyvnodelistsize);
4797 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4798 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4799 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4800 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4801 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4802 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4803 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4804 	db_printf("    mnt_secondary_accwrites = %d\n",
4805 	    mp->mnt_secondary_accwrites);
4806 	db_printf("    mnt_gjprovider = %s\n",
4807 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4808 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4809 
4810 	db_printf("\n\nList of active vnodes\n");
4811 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4812 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4813 			vn_printf(vp, "vnode ");
4814 			if (db_pager_quit)
4815 				break;
4816 		}
4817 	}
4818 	db_printf("\n\nList of inactive vnodes\n");
4819 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4820 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4821 			vn_printf(vp, "vnode ");
4822 			if (db_pager_quit)
4823 				break;
4824 		}
4825 	}
4826 }
4827 #endif	/* DDB */
4828 
4829 /*
4830  * Fill in a struct xvfsconf based on a struct vfsconf.
4831  */
4832 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4833 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4834 {
4835 	struct xvfsconf xvfsp;
4836 
4837 	bzero(&xvfsp, sizeof(xvfsp));
4838 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4839 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4840 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4841 	xvfsp.vfc_flags = vfsp->vfc_flags;
4842 	/*
4843 	 * These are unused in userland, we keep them
4844 	 * to not break binary compatibility.
4845 	 */
4846 	xvfsp.vfc_vfsops = NULL;
4847 	xvfsp.vfc_next = NULL;
4848 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4849 }
4850 
4851 #ifdef COMPAT_FREEBSD32
4852 struct xvfsconf32 {
4853 	uint32_t	vfc_vfsops;
4854 	char		vfc_name[MFSNAMELEN];
4855 	int32_t		vfc_typenum;
4856 	int32_t		vfc_refcount;
4857 	int32_t		vfc_flags;
4858 	uint32_t	vfc_next;
4859 };
4860 
4861 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4862 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4863 {
4864 	struct xvfsconf32 xvfsp;
4865 
4866 	bzero(&xvfsp, sizeof(xvfsp));
4867 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4868 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4869 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4870 	xvfsp.vfc_flags = vfsp->vfc_flags;
4871 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4872 }
4873 #endif
4874 
4875 /*
4876  * Top level filesystem related information gathering.
4877  */
4878 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4879 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4880 {
4881 	struct vfsconf *vfsp;
4882 	int error;
4883 
4884 	error = 0;
4885 	vfsconf_slock();
4886 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4887 #ifdef COMPAT_FREEBSD32
4888 		if (req->flags & SCTL_MASK32)
4889 			error = vfsconf2x32(req, vfsp);
4890 		else
4891 #endif
4892 			error = vfsconf2x(req, vfsp);
4893 		if (error)
4894 			break;
4895 	}
4896 	vfsconf_sunlock();
4897 	return (error);
4898 }
4899 
4900 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4901     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4902     "S,xvfsconf", "List of all configured filesystems");
4903 
4904 #ifndef BURN_BRIDGES
4905 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4906 
4907 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)4908 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4909 {
4910 	int *name = (int *)arg1 - 1;	/* XXX */
4911 	u_int namelen = arg2 + 1;	/* XXX */
4912 	struct vfsconf *vfsp;
4913 
4914 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4915 	    "please rebuild world\n");
4916 
4917 #if 1 || defined(COMPAT_PRELITE2)
4918 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4919 	if (namelen == 1)
4920 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4921 #endif
4922 
4923 	switch (name[1]) {
4924 	case VFS_MAXTYPENUM:
4925 		if (namelen != 2)
4926 			return (ENOTDIR);
4927 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4928 	case VFS_CONF:
4929 		if (namelen != 3)
4930 			return (ENOTDIR);	/* overloaded */
4931 		vfsconf_slock();
4932 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4933 			if (vfsp->vfc_typenum == name[2])
4934 				break;
4935 		}
4936 		vfsconf_sunlock();
4937 		if (vfsp == NULL)
4938 			return (EOPNOTSUPP);
4939 #ifdef COMPAT_FREEBSD32
4940 		if (req->flags & SCTL_MASK32)
4941 			return (vfsconf2x32(req, vfsp));
4942 		else
4943 #endif
4944 			return (vfsconf2x(req, vfsp));
4945 	}
4946 	return (EOPNOTSUPP);
4947 }
4948 
4949 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4950     CTLFLAG_MPSAFE, vfs_sysctl,
4951     "Generic filesystem");
4952 
4953 #if 1 || defined(COMPAT_PRELITE2)
4954 
4955 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)4956 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4957 {
4958 	int error;
4959 	struct vfsconf *vfsp;
4960 	struct ovfsconf ovfs;
4961 
4962 	vfsconf_slock();
4963 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4964 		bzero(&ovfs, sizeof(ovfs));
4965 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4966 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4967 		ovfs.vfc_index = vfsp->vfc_typenum;
4968 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4969 		ovfs.vfc_flags = vfsp->vfc_flags;
4970 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4971 		if (error != 0) {
4972 			vfsconf_sunlock();
4973 			return (error);
4974 		}
4975 	}
4976 	vfsconf_sunlock();
4977 	return (0);
4978 }
4979 
4980 #endif /* 1 || COMPAT_PRELITE2 */
4981 #endif /* !BURN_BRIDGES */
4982 
4983 static void
unmount_or_warn(struct mount * mp)4984 unmount_or_warn(struct mount *mp)
4985 {
4986 	int error;
4987 
4988 	error = dounmount(mp, MNT_FORCE, curthread);
4989 	if (error != 0) {
4990 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4991 		if (error == EBUSY)
4992 			printf("BUSY)\n");
4993 		else
4994 			printf("%d)\n", error);
4995 	}
4996 }
4997 
4998 /*
4999  * Unmount all filesystems. The list is traversed in reverse order
5000  * of mounting to avoid dependencies.
5001  */
5002 void
vfs_unmountall(void)5003 vfs_unmountall(void)
5004 {
5005 	struct mount *mp, *tmp;
5006 
5007 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5008 
5009 	/*
5010 	 * Since this only runs when rebooting, it is not interlocked.
5011 	 */
5012 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5013 		vfs_ref(mp);
5014 
5015 		/*
5016 		 * Forcibly unmounting "/dev" before "/" would prevent clean
5017 		 * unmount of the latter.
5018 		 */
5019 		if (mp == rootdevmp)
5020 			continue;
5021 
5022 		unmount_or_warn(mp);
5023 	}
5024 
5025 	if (rootdevmp != NULL)
5026 		unmount_or_warn(rootdevmp);
5027 }
5028 
5029 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)5030 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5031 {
5032 
5033 	ASSERT_VI_LOCKED(vp, __func__);
5034 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5035 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5036 		vdropl(vp);
5037 		return;
5038 	}
5039 	if (vn_lock(vp, lkflags) == 0) {
5040 		VI_LOCK(vp);
5041 		vinactive(vp);
5042 		VOP_UNLOCK(vp);
5043 		vdropl(vp);
5044 		return;
5045 	}
5046 	vdefer_inactive_unlocked(vp);
5047 }
5048 
5049 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)5050 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5051 {
5052 
5053 	return (vp->v_iflag & VI_DEFINACT);
5054 }
5055 
5056 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)5057 vfs_periodic_inactive(struct mount *mp, int flags)
5058 {
5059 	struct vnode *vp, *mvp;
5060 	int lkflags;
5061 
5062 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5063 	if (flags != MNT_WAIT)
5064 		lkflags |= LK_NOWAIT;
5065 
5066 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5067 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5068 			VI_UNLOCK(vp);
5069 			continue;
5070 		}
5071 		vp->v_iflag &= ~VI_DEFINACT;
5072 		vfs_deferred_inactive(vp, lkflags);
5073 	}
5074 }
5075 
5076 static inline bool
vfs_want_msync(struct vnode * vp)5077 vfs_want_msync(struct vnode *vp)
5078 {
5079 	struct vm_object *obj;
5080 
5081 	/*
5082 	 * This test may be performed without any locks held.
5083 	 * We rely on vm_object's type stability.
5084 	 */
5085 	if (vp->v_vflag & VV_NOSYNC)
5086 		return (false);
5087 	obj = vp->v_object;
5088 	return (obj != NULL && vm_object_mightbedirty(obj));
5089 }
5090 
5091 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)5092 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5093 {
5094 
5095 	if (vp->v_vflag & VV_NOSYNC)
5096 		return (false);
5097 	if (vp->v_iflag & VI_DEFINACT)
5098 		return (true);
5099 	return (vfs_want_msync(vp));
5100 }
5101 
5102 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)5103 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5104 {
5105 	struct vnode *vp, *mvp;
5106 	int lkflags;
5107 	bool seen_defer;
5108 
5109 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5110 	if (flags != MNT_WAIT)
5111 		lkflags |= LK_NOWAIT;
5112 
5113 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5114 		seen_defer = false;
5115 		if (vp->v_iflag & VI_DEFINACT) {
5116 			vp->v_iflag &= ~VI_DEFINACT;
5117 			seen_defer = true;
5118 		}
5119 		if (!vfs_want_msync(vp)) {
5120 			if (seen_defer)
5121 				vfs_deferred_inactive(vp, lkflags);
5122 			else
5123 				VI_UNLOCK(vp);
5124 			continue;
5125 		}
5126 		if (vget(vp, lkflags) == 0) {
5127 			if ((vp->v_vflag & VV_NOSYNC) == 0) {
5128 				if (flags == MNT_WAIT)
5129 					vnode_pager_clean_sync(vp);
5130 				else
5131 					vnode_pager_clean_async(vp);
5132 			}
5133 			vput(vp);
5134 			if (seen_defer)
5135 				vdrop(vp);
5136 		} else {
5137 			if (seen_defer)
5138 				vdefer_inactive_unlocked(vp);
5139 		}
5140 	}
5141 }
5142 
5143 void
vfs_periodic(struct mount * mp,int flags)5144 vfs_periodic(struct mount *mp, int flags)
5145 {
5146 
5147 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5148 
5149 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5150 		vfs_periodic_inactive(mp, flags);
5151 	else
5152 		vfs_periodic_msync_inactive(mp, flags);
5153 }
5154 
5155 static void
destroy_vpollinfo_free(struct vpollinfo * vi)5156 destroy_vpollinfo_free(struct vpollinfo *vi)
5157 {
5158 
5159 	knlist_destroy(&vi->vpi_selinfo.si_note);
5160 	mtx_destroy(&vi->vpi_lock);
5161 	free(vi, M_VNODEPOLL);
5162 }
5163 
5164 static void
destroy_vpollinfo(struct vpollinfo * vi)5165 destroy_vpollinfo(struct vpollinfo *vi)
5166 {
5167 
5168 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5169 	seldrain(&vi->vpi_selinfo);
5170 	destroy_vpollinfo_free(vi);
5171 }
5172 
5173 /*
5174  * Initialize per-vnode helper structure to hold poll-related state.
5175  */
5176 void
v_addpollinfo(struct vnode * vp)5177 v_addpollinfo(struct vnode *vp)
5178 {
5179 	struct vpollinfo *vi;
5180 
5181 	if (vp->v_pollinfo != NULL)
5182 		return;
5183 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5184 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5185 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5186 	    vfs_knlunlock, vfs_knl_assert_lock);
5187 	VI_LOCK(vp);
5188 	if (vp->v_pollinfo != NULL) {
5189 		VI_UNLOCK(vp);
5190 		destroy_vpollinfo_free(vi);
5191 		return;
5192 	}
5193 	vp->v_pollinfo = vi;
5194 	VI_UNLOCK(vp);
5195 }
5196 
5197 /*
5198  * Record a process's interest in events which might happen to
5199  * a vnode.  Because poll uses the historic select-style interface
5200  * internally, this routine serves as both the ``check for any
5201  * pending events'' and the ``record my interest in future events''
5202  * functions.  (These are done together, while the lock is held,
5203  * to avoid race conditions.)
5204  */
5205 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)5206 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5207 {
5208 
5209 	v_addpollinfo(vp);
5210 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5211 	if (vp->v_pollinfo->vpi_revents & events) {
5212 		/*
5213 		 * This leaves events we are not interested
5214 		 * in available for the other process which
5215 		 * which presumably had requested them
5216 		 * (otherwise they would never have been
5217 		 * recorded).
5218 		 */
5219 		events &= vp->v_pollinfo->vpi_revents;
5220 		vp->v_pollinfo->vpi_revents &= ~events;
5221 
5222 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5223 		return (events);
5224 	}
5225 	vp->v_pollinfo->vpi_events |= events;
5226 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5227 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5228 	return (0);
5229 }
5230 
5231 /*
5232  * Routine to create and manage a filesystem syncer vnode.
5233  */
5234 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5235 static int	sync_fsync(struct  vop_fsync_args *);
5236 static int	sync_inactive(struct  vop_inactive_args *);
5237 static int	sync_reclaim(struct  vop_reclaim_args *);
5238 
5239 static struct vop_vector sync_vnodeops = {
5240 	.vop_bypass =	VOP_EOPNOTSUPP,
5241 	.vop_close =	sync_close,
5242 	.vop_fsync =	sync_fsync,
5243 	.vop_getwritemount = vop_stdgetwritemount,
5244 	.vop_inactive =	sync_inactive,
5245 	.vop_need_inactive = vop_stdneed_inactive,
5246 	.vop_reclaim =	sync_reclaim,
5247 	.vop_lock1 =	vop_stdlock,
5248 	.vop_unlock =	vop_stdunlock,
5249 	.vop_islocked =	vop_stdislocked,
5250 	.vop_fplookup_vexec = VOP_EAGAIN,
5251 	.vop_fplookup_symlink = VOP_EAGAIN,
5252 };
5253 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5254 
5255 /*
5256  * Create a new filesystem syncer vnode for the specified mount point.
5257  */
5258 void
vfs_allocate_syncvnode(struct mount * mp)5259 vfs_allocate_syncvnode(struct mount *mp)
5260 {
5261 	struct vnode *vp;
5262 	struct bufobj *bo;
5263 	static long start, incr, next;
5264 	int error;
5265 
5266 	/* Allocate a new vnode */
5267 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5268 	if (error != 0)
5269 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5270 	vp->v_type = VNON;
5271 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5272 	vp->v_vflag |= VV_FORCEINSMQ;
5273 	error = insmntque1(vp, mp);
5274 	if (error != 0)
5275 		panic("vfs_allocate_syncvnode: insmntque() failed");
5276 	vp->v_vflag &= ~VV_FORCEINSMQ;
5277 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5278 	VOP_UNLOCK(vp);
5279 	/*
5280 	 * Place the vnode onto the syncer worklist. We attempt to
5281 	 * scatter them about on the list so that they will go off
5282 	 * at evenly distributed times even if all the filesystems
5283 	 * are mounted at once.
5284 	 */
5285 	next += incr;
5286 	if (next == 0 || next > syncer_maxdelay) {
5287 		start /= 2;
5288 		incr /= 2;
5289 		if (start == 0) {
5290 			start = syncer_maxdelay / 2;
5291 			incr = syncer_maxdelay;
5292 		}
5293 		next = start;
5294 	}
5295 	bo = &vp->v_bufobj;
5296 	BO_LOCK(bo);
5297 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5298 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5299 	mtx_lock(&sync_mtx);
5300 	sync_vnode_count++;
5301 	if (mp->mnt_syncer == NULL) {
5302 		mp->mnt_syncer = vp;
5303 		vp = NULL;
5304 	}
5305 	mtx_unlock(&sync_mtx);
5306 	BO_UNLOCK(bo);
5307 	if (vp != NULL) {
5308 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5309 		vgone(vp);
5310 		vput(vp);
5311 	}
5312 }
5313 
5314 void
vfs_deallocate_syncvnode(struct mount * mp)5315 vfs_deallocate_syncvnode(struct mount *mp)
5316 {
5317 	struct vnode *vp;
5318 
5319 	mtx_lock(&sync_mtx);
5320 	vp = mp->mnt_syncer;
5321 	if (vp != NULL)
5322 		mp->mnt_syncer = NULL;
5323 	mtx_unlock(&sync_mtx);
5324 	if (vp != NULL)
5325 		vrele(vp);
5326 }
5327 
5328 /*
5329  * Do a lazy sync of the filesystem.
5330  */
5331 static int
sync_fsync(struct vop_fsync_args * ap)5332 sync_fsync(struct vop_fsync_args *ap)
5333 {
5334 	struct vnode *syncvp = ap->a_vp;
5335 	struct mount *mp = syncvp->v_mount;
5336 	int error, save;
5337 	struct bufobj *bo;
5338 
5339 	/*
5340 	 * We only need to do something if this is a lazy evaluation.
5341 	 */
5342 	if (ap->a_waitfor != MNT_LAZY)
5343 		return (0);
5344 
5345 	/*
5346 	 * Move ourselves to the back of the sync list.
5347 	 */
5348 	bo = &syncvp->v_bufobj;
5349 	BO_LOCK(bo);
5350 	vn_syncer_add_to_worklist(bo, syncdelay);
5351 	BO_UNLOCK(bo);
5352 
5353 	/*
5354 	 * Walk the list of vnodes pushing all that are dirty and
5355 	 * not already on the sync list.
5356 	 */
5357 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5358 		return (0);
5359 	VOP_UNLOCK(syncvp);
5360 	save = curthread_pflags_set(TDP_SYNCIO);
5361 	/*
5362 	 * The filesystem at hand may be idle with free vnodes stored in the
5363 	 * batch.  Return them instead of letting them stay there indefinitely.
5364 	 */
5365 	vfs_periodic(mp, MNT_NOWAIT);
5366 	error = VFS_SYNC(mp, MNT_LAZY);
5367 	curthread_pflags_restore(save);
5368 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5369 	vfs_unbusy(mp);
5370 	return (error);
5371 }
5372 
5373 /*
5374  * The syncer vnode is no referenced.
5375  */
5376 static int
sync_inactive(struct vop_inactive_args * ap)5377 sync_inactive(struct vop_inactive_args *ap)
5378 {
5379 
5380 	vgone(ap->a_vp);
5381 	return (0);
5382 }
5383 
5384 /*
5385  * The syncer vnode is no longer needed and is being decommissioned.
5386  *
5387  * Modifications to the worklist must be protected by sync_mtx.
5388  */
5389 static int
sync_reclaim(struct vop_reclaim_args * ap)5390 sync_reclaim(struct vop_reclaim_args *ap)
5391 {
5392 	struct vnode *vp = ap->a_vp;
5393 	struct bufobj *bo;
5394 
5395 	bo = &vp->v_bufobj;
5396 	BO_LOCK(bo);
5397 	mtx_lock(&sync_mtx);
5398 	if (vp->v_mount->mnt_syncer == vp)
5399 		vp->v_mount->mnt_syncer = NULL;
5400 	if (bo->bo_flag & BO_ONWORKLST) {
5401 		LIST_REMOVE(bo, bo_synclist);
5402 		syncer_worklist_len--;
5403 		sync_vnode_count--;
5404 		bo->bo_flag &= ~BO_ONWORKLST;
5405 	}
5406 	mtx_unlock(&sync_mtx);
5407 	BO_UNLOCK(bo);
5408 
5409 	return (0);
5410 }
5411 
5412 int
vn_need_pageq_flush(struct vnode * vp)5413 vn_need_pageq_flush(struct vnode *vp)
5414 {
5415 	struct vm_object *obj;
5416 
5417 	obj = vp->v_object;
5418 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5419 	    vm_object_mightbedirty(obj));
5420 }
5421 
5422 /*
5423  * Check if vnode represents a disk device
5424  */
5425 bool
vn_isdisk_error(struct vnode * vp,int * errp)5426 vn_isdisk_error(struct vnode *vp, int *errp)
5427 {
5428 	int error;
5429 
5430 	if (vp->v_type != VCHR) {
5431 		error = ENOTBLK;
5432 		goto out;
5433 	}
5434 	error = 0;
5435 	dev_lock();
5436 	if (vp->v_rdev == NULL)
5437 		error = ENXIO;
5438 	else if (vp->v_rdev->si_devsw == NULL)
5439 		error = ENXIO;
5440 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5441 		error = ENOTBLK;
5442 	dev_unlock();
5443 out:
5444 	*errp = error;
5445 	return (error == 0);
5446 }
5447 
5448 bool
vn_isdisk(struct vnode * vp)5449 vn_isdisk(struct vnode *vp)
5450 {
5451 	int error;
5452 
5453 	return (vn_isdisk_error(vp, &error));
5454 }
5455 
5456 /*
5457  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5458  * the comment above cache_fplookup for details.
5459  */
5460 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5461 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5462 {
5463 	int error;
5464 
5465 	VFS_SMR_ASSERT_ENTERED();
5466 
5467 	/* Check the owner. */
5468 	if (cred->cr_uid == file_uid) {
5469 		if (file_mode & S_IXUSR)
5470 			return (0);
5471 		goto out_error;
5472 	}
5473 
5474 	/* Otherwise, check the groups (first match) */
5475 	if (groupmember(file_gid, cred)) {
5476 		if (file_mode & S_IXGRP)
5477 			return (0);
5478 		goto out_error;
5479 	}
5480 
5481 	/* Otherwise, check everyone else. */
5482 	if (file_mode & S_IXOTH)
5483 		return (0);
5484 out_error:
5485 	/*
5486 	 * Permission check failed, but it is possible denial will get overwritten
5487 	 * (e.g., when root is traversing through a 700 directory owned by someone
5488 	 * else).
5489 	 *
5490 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5491 	 * modules overriding this result. It's quite unclear what semantics
5492 	 * are allowed for them to operate, thus for safety we don't call them
5493 	 * from within the SMR section. This also means if any such modules
5494 	 * are present, we have to let the regular lookup decide.
5495 	 */
5496 	error = priv_check_cred_vfs_lookup_nomac(cred);
5497 	switch (error) {
5498 	case 0:
5499 		return (0);
5500 	case EAGAIN:
5501 		/*
5502 		 * MAC modules present.
5503 		 */
5504 		return (EAGAIN);
5505 	case EPERM:
5506 		return (EACCES);
5507 	default:
5508 		return (error);
5509 	}
5510 }
5511 
5512 /*
5513  * Common filesystem object access control check routine.  Accepts a
5514  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5515  * Returns 0 on success, or an errno on failure.
5516  */
5517 int
vaccess(__enum_uint8 (vtype)type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5518 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5519     accmode_t accmode, struct ucred *cred)
5520 {
5521 	accmode_t dac_granted;
5522 	accmode_t priv_granted;
5523 
5524 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5525 	    ("invalid bit in accmode"));
5526 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5527 	    ("VAPPEND without VWRITE"));
5528 
5529 	/*
5530 	 * Look for a normal, non-privileged way to access the file/directory
5531 	 * as requested.  If it exists, go with that.
5532 	 */
5533 
5534 	dac_granted = 0;
5535 
5536 	/* Check the owner. */
5537 	if (cred->cr_uid == file_uid) {
5538 		dac_granted |= VADMIN;
5539 		if (file_mode & S_IXUSR)
5540 			dac_granted |= VEXEC;
5541 		if (file_mode & S_IRUSR)
5542 			dac_granted |= VREAD;
5543 		if (file_mode & S_IWUSR)
5544 			dac_granted |= (VWRITE | VAPPEND);
5545 
5546 		if ((accmode & dac_granted) == accmode)
5547 			return (0);
5548 
5549 		goto privcheck;
5550 	}
5551 
5552 	/* Otherwise, check the groups (first match) */
5553 	if (groupmember(file_gid, cred)) {
5554 		if (file_mode & S_IXGRP)
5555 			dac_granted |= VEXEC;
5556 		if (file_mode & S_IRGRP)
5557 			dac_granted |= VREAD;
5558 		if (file_mode & S_IWGRP)
5559 			dac_granted |= (VWRITE | VAPPEND);
5560 
5561 		if ((accmode & dac_granted) == accmode)
5562 			return (0);
5563 
5564 		goto privcheck;
5565 	}
5566 
5567 	/* Otherwise, check everyone else. */
5568 	if (file_mode & S_IXOTH)
5569 		dac_granted |= VEXEC;
5570 	if (file_mode & S_IROTH)
5571 		dac_granted |= VREAD;
5572 	if (file_mode & S_IWOTH)
5573 		dac_granted |= (VWRITE | VAPPEND);
5574 	if ((accmode & dac_granted) == accmode)
5575 		return (0);
5576 
5577 privcheck:
5578 	/*
5579 	 * Build a privilege mask to determine if the set of privileges
5580 	 * satisfies the requirements when combined with the granted mask
5581 	 * from above.  For each privilege, if the privilege is required,
5582 	 * bitwise or the request type onto the priv_granted mask.
5583 	 */
5584 	priv_granted = 0;
5585 
5586 	if (type == VDIR) {
5587 		/*
5588 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5589 		 * requests, instead of PRIV_VFS_EXEC.
5590 		 */
5591 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5592 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5593 			priv_granted |= VEXEC;
5594 	} else {
5595 		/*
5596 		 * Ensure that at least one execute bit is on. Otherwise,
5597 		 * a privileged user will always succeed, and we don't want
5598 		 * this to happen unless the file really is executable.
5599 		 */
5600 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5601 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5602 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5603 			priv_granted |= VEXEC;
5604 	}
5605 
5606 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5607 	    !priv_check_cred(cred, PRIV_VFS_READ))
5608 		priv_granted |= VREAD;
5609 
5610 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5611 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5612 		priv_granted |= (VWRITE | VAPPEND);
5613 
5614 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5615 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5616 		priv_granted |= VADMIN;
5617 
5618 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5619 		return (0);
5620 	}
5621 
5622 	return ((accmode & VADMIN) ? EPERM : EACCES);
5623 }
5624 
5625 /*
5626  * Credential check based on process requesting service, and per-attribute
5627  * permissions.
5628  */
5629 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5630 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5631     struct thread *td, accmode_t accmode)
5632 {
5633 
5634 	/*
5635 	 * Kernel-invoked always succeeds.
5636 	 */
5637 	if (cred == NOCRED)
5638 		return (0);
5639 
5640 	/*
5641 	 * Do not allow privileged processes in jail to directly manipulate
5642 	 * system attributes.
5643 	 */
5644 	switch (attrnamespace) {
5645 	case EXTATTR_NAMESPACE_SYSTEM:
5646 		/* Potentially should be: return (EPERM); */
5647 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5648 	case EXTATTR_NAMESPACE_USER:
5649 		return (VOP_ACCESS(vp, accmode, cred, td));
5650 	default:
5651 		return (EPERM);
5652 	}
5653 }
5654 
5655 #ifdef DEBUG_VFS_LOCKS
5656 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5657 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5658     "Drop into debugger on lock violation");
5659 
5660 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5661 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5662     0, "Check for interlock across VOPs");
5663 
5664 int vfs_badlock_print = 1;	/* Print lock violations. */
5665 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5666     0, "Print lock violations");
5667 
5668 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5669 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5670     0, "Print vnode details on lock violations");
5671 
5672 #ifdef KDB
5673 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5674 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5675     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5676 #endif
5677 
5678 static void
vfs_badlock(const char * msg,const char * str,struct vnode * vp)5679 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5680 {
5681 
5682 #ifdef KDB
5683 	if (vfs_badlock_backtrace)
5684 		kdb_backtrace();
5685 #endif
5686 	if (vfs_badlock_vnode)
5687 		vn_printf(vp, "vnode ");
5688 	if (vfs_badlock_print)
5689 		printf("%s: %p %s\n", str, (void *)vp, msg);
5690 	if (vfs_badlock_ddb)
5691 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5692 }
5693 
5694 void
assert_vi_locked(struct vnode * vp,const char * str)5695 assert_vi_locked(struct vnode *vp, const char *str)
5696 {
5697 
5698 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5699 		vfs_badlock("interlock is not locked but should be", str, vp);
5700 }
5701 
5702 void
assert_vi_unlocked(struct vnode * vp,const char * str)5703 assert_vi_unlocked(struct vnode *vp, const char *str)
5704 {
5705 
5706 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5707 		vfs_badlock("interlock is locked but should not be", str, vp);
5708 }
5709 
5710 void
assert_vop_locked(struct vnode * vp,const char * str)5711 assert_vop_locked(struct vnode *vp, const char *str)
5712 {
5713 	if (KERNEL_PANICKED() || vp == NULL)
5714 		return;
5715 
5716 #ifdef WITNESS
5717 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5718 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5719 #else
5720 	int locked = VOP_ISLOCKED(vp);
5721 	if (locked == 0 || locked == LK_EXCLOTHER)
5722 #endif
5723 		vfs_badlock("is not locked but should be", str, vp);
5724 }
5725 
5726 void
assert_vop_unlocked(struct vnode * vp,const char * str)5727 assert_vop_unlocked(struct vnode *vp, const char *str)
5728 {
5729 	if (KERNEL_PANICKED() || vp == NULL)
5730 		return;
5731 
5732 #ifdef WITNESS
5733 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5734 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5735 #else
5736 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5737 #endif
5738 		vfs_badlock("is locked but should not be", str, vp);
5739 }
5740 
5741 void
assert_vop_elocked(struct vnode * vp,const char * str)5742 assert_vop_elocked(struct vnode *vp, const char *str)
5743 {
5744 	if (KERNEL_PANICKED() || vp == NULL)
5745 		return;
5746 
5747 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5748 		vfs_badlock("is not exclusive locked but should be", str, vp);
5749 }
5750 #endif /* DEBUG_VFS_LOCKS */
5751 
5752 void
vop_rename_fail(struct vop_rename_args * ap)5753 vop_rename_fail(struct vop_rename_args *ap)
5754 {
5755 
5756 	if (ap->a_tvp != NULL)
5757 		vput(ap->a_tvp);
5758 	if (ap->a_tdvp == ap->a_tvp)
5759 		vrele(ap->a_tdvp);
5760 	else
5761 		vput(ap->a_tdvp);
5762 	vrele(ap->a_fdvp);
5763 	vrele(ap->a_fvp);
5764 }
5765 
5766 void
vop_rename_pre(void * ap)5767 vop_rename_pre(void *ap)
5768 {
5769 	struct vop_rename_args *a = ap;
5770 
5771 #ifdef DEBUG_VFS_LOCKS
5772 	if (a->a_tvp)
5773 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5774 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5775 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5776 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5777 
5778 	/* Check the source (from). */
5779 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5780 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5781 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5782 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5783 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5784 
5785 	/* Check the target. */
5786 	if (a->a_tvp)
5787 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5788 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5789 #endif
5790 	/*
5791 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5792 	 * in vop_rename_post but that's not going to work out since some
5793 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5794 	 *
5795 	 * For now filesystems are expected to do the relevant calls after they
5796 	 * decide what vnodes to operate on.
5797 	 */
5798 	if (a->a_tdvp != a->a_fdvp)
5799 		vhold(a->a_fdvp);
5800 	if (a->a_tvp != a->a_fvp)
5801 		vhold(a->a_fvp);
5802 	vhold(a->a_tdvp);
5803 	if (a->a_tvp)
5804 		vhold(a->a_tvp);
5805 }
5806 
5807 #ifdef DEBUG_VFS_LOCKS
5808 void
vop_fplookup_vexec_debugpre(void * ap __unused)5809 vop_fplookup_vexec_debugpre(void *ap __unused)
5810 {
5811 
5812 	VFS_SMR_ASSERT_ENTERED();
5813 }
5814 
5815 void
vop_fplookup_vexec_debugpost(void * ap,int rc)5816 vop_fplookup_vexec_debugpost(void *ap, int rc)
5817 {
5818 	struct vop_fplookup_vexec_args *a;
5819 	struct vnode *vp;
5820 
5821 	a = ap;
5822 	vp = a->a_vp;
5823 
5824 	VFS_SMR_ASSERT_ENTERED();
5825 	if (rc == EOPNOTSUPP)
5826 		VNPASS(VN_IS_DOOMED(vp), vp);
5827 }
5828 
5829 void
vop_fplookup_symlink_debugpre(void * ap __unused)5830 vop_fplookup_symlink_debugpre(void *ap __unused)
5831 {
5832 
5833 	VFS_SMR_ASSERT_ENTERED();
5834 }
5835 
5836 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5837 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5838 {
5839 
5840 	VFS_SMR_ASSERT_ENTERED();
5841 }
5842 
5843 static void
vop_fsync_debugprepost(struct vnode * vp,const char * name)5844 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5845 {
5846 	if (vp->v_type == VCHR)
5847 		;
5848 	/*
5849 	 * The shared vs. exclusive locking policy for fsync()
5850 	 * is actually determined by vp's write mount as indicated
5851 	 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5852 	 * may not be the same as vp->v_mount.  However, if the
5853 	 * underlying filesystem which really handles the fsync()
5854 	 * supports shared locking, the stacked filesystem must also
5855 	 * be prepared for its VOP_FSYNC() operation to be called
5856 	 * with only a shared lock.  On the other hand, if the
5857 	 * stacked filesystem claims support for shared write
5858 	 * locking but the underlying filesystem does not, and the
5859 	 * caller incorrectly uses a shared lock, this condition
5860 	 * should still be caught when the stacked filesystem
5861 	 * invokes VOP_FSYNC() on the underlying filesystem.
5862 	 */
5863 	else if (MNT_SHARED_WRITES(vp->v_mount))
5864 		ASSERT_VOP_LOCKED(vp, name);
5865 	else
5866 		ASSERT_VOP_ELOCKED(vp, name);
5867 }
5868 
5869 void
vop_fsync_debugpre(void * a)5870 vop_fsync_debugpre(void *a)
5871 {
5872 	struct vop_fsync_args *ap;
5873 
5874 	ap = a;
5875 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5876 }
5877 
5878 void
vop_fsync_debugpost(void * a,int rc __unused)5879 vop_fsync_debugpost(void *a, int rc __unused)
5880 {
5881 	struct vop_fsync_args *ap;
5882 
5883 	ap = a;
5884 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5885 }
5886 
5887 void
vop_fdatasync_debugpre(void * a)5888 vop_fdatasync_debugpre(void *a)
5889 {
5890 	struct vop_fdatasync_args *ap;
5891 
5892 	ap = a;
5893 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5894 }
5895 
5896 void
vop_fdatasync_debugpost(void * a,int rc __unused)5897 vop_fdatasync_debugpost(void *a, int rc __unused)
5898 {
5899 	struct vop_fdatasync_args *ap;
5900 
5901 	ap = a;
5902 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5903 }
5904 
5905 void
vop_strategy_debugpre(void * ap)5906 vop_strategy_debugpre(void *ap)
5907 {
5908 	struct vop_strategy_args *a;
5909 	struct buf *bp;
5910 
5911 	a = ap;
5912 	bp = a->a_bp;
5913 
5914 	/*
5915 	 * Cluster ops lock their component buffers but not the IO container.
5916 	 */
5917 	if ((bp->b_flags & B_CLUSTER) != 0)
5918 		return;
5919 
5920 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5921 		if (vfs_badlock_print)
5922 			printf(
5923 			    "VOP_STRATEGY: bp is not locked but should be\n");
5924 		if (vfs_badlock_ddb)
5925 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5926 	}
5927 }
5928 
5929 void
vop_lock_debugpre(void * ap)5930 vop_lock_debugpre(void *ap)
5931 {
5932 	struct vop_lock1_args *a = ap;
5933 
5934 	if ((a->a_flags & LK_INTERLOCK) == 0)
5935 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5936 	else
5937 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5938 }
5939 
5940 void
vop_lock_debugpost(void * ap,int rc)5941 vop_lock_debugpost(void *ap, int rc)
5942 {
5943 	struct vop_lock1_args *a = ap;
5944 
5945 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5946 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5947 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5948 }
5949 
5950 void
vop_unlock_debugpre(void * ap)5951 vop_unlock_debugpre(void *ap)
5952 {
5953 	struct vop_unlock_args *a = ap;
5954 	struct vnode *vp = a->a_vp;
5955 
5956 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5957 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5958 }
5959 
5960 void
vop_need_inactive_debugpre(void * ap)5961 vop_need_inactive_debugpre(void *ap)
5962 {
5963 	struct vop_need_inactive_args *a = ap;
5964 
5965 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5966 }
5967 
5968 void
vop_need_inactive_debugpost(void * ap,int rc)5969 vop_need_inactive_debugpost(void *ap, int rc)
5970 {
5971 	struct vop_need_inactive_args *a = ap;
5972 
5973 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5974 }
5975 #endif
5976 
5977 void
vop_create_pre(void * ap)5978 vop_create_pre(void *ap)
5979 {
5980 	struct vop_create_args *a;
5981 	struct vnode *dvp;
5982 
5983 	a = ap;
5984 	dvp = a->a_dvp;
5985 	vn_seqc_write_begin(dvp);
5986 }
5987 
5988 void
vop_create_post(void * ap,int rc)5989 vop_create_post(void *ap, int rc)
5990 {
5991 	struct vop_create_args *a;
5992 	struct vnode *dvp;
5993 
5994 	a = ap;
5995 	dvp = a->a_dvp;
5996 	vn_seqc_write_end(dvp);
5997 	if (!rc)
5998 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5999 }
6000 
6001 void
vop_whiteout_pre(void * ap)6002 vop_whiteout_pre(void *ap)
6003 {
6004 	struct vop_whiteout_args *a;
6005 	struct vnode *dvp;
6006 
6007 	a = ap;
6008 	dvp = a->a_dvp;
6009 	vn_seqc_write_begin(dvp);
6010 }
6011 
6012 void
vop_whiteout_post(void * ap,int rc)6013 vop_whiteout_post(void *ap, int rc)
6014 {
6015 	struct vop_whiteout_args *a;
6016 	struct vnode *dvp;
6017 
6018 	a = ap;
6019 	dvp = a->a_dvp;
6020 	vn_seqc_write_end(dvp);
6021 }
6022 
6023 void
vop_deleteextattr_pre(void * ap)6024 vop_deleteextattr_pre(void *ap)
6025 {
6026 	struct vop_deleteextattr_args *a;
6027 	struct vnode *vp;
6028 
6029 	a = ap;
6030 	vp = a->a_vp;
6031 	vn_seqc_write_begin(vp);
6032 }
6033 
6034 void
vop_deleteextattr_post(void * ap,int rc)6035 vop_deleteextattr_post(void *ap, int rc)
6036 {
6037 	struct vop_deleteextattr_args *a;
6038 	struct vnode *vp;
6039 
6040 	a = ap;
6041 	vp = a->a_vp;
6042 	vn_seqc_write_end(vp);
6043 	if (!rc)
6044 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6045 }
6046 
6047 void
vop_link_pre(void * ap)6048 vop_link_pre(void *ap)
6049 {
6050 	struct vop_link_args *a;
6051 	struct vnode *vp, *tdvp;
6052 
6053 	a = ap;
6054 	vp = a->a_vp;
6055 	tdvp = a->a_tdvp;
6056 	vn_seqc_write_begin(vp);
6057 	vn_seqc_write_begin(tdvp);
6058 }
6059 
6060 void
vop_link_post(void * ap,int rc)6061 vop_link_post(void *ap, int rc)
6062 {
6063 	struct vop_link_args *a;
6064 	struct vnode *vp, *tdvp;
6065 
6066 	a = ap;
6067 	vp = a->a_vp;
6068 	tdvp = a->a_tdvp;
6069 	vn_seqc_write_end(vp);
6070 	vn_seqc_write_end(tdvp);
6071 	if (!rc) {
6072 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6073 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6074 	}
6075 }
6076 
6077 void
vop_mkdir_pre(void * ap)6078 vop_mkdir_pre(void *ap)
6079 {
6080 	struct vop_mkdir_args *a;
6081 	struct vnode *dvp;
6082 
6083 	a = ap;
6084 	dvp = a->a_dvp;
6085 	vn_seqc_write_begin(dvp);
6086 }
6087 
6088 void
vop_mkdir_post(void * ap,int rc)6089 vop_mkdir_post(void *ap, int rc)
6090 {
6091 	struct vop_mkdir_args *a;
6092 	struct vnode *dvp;
6093 
6094 	a = ap;
6095 	dvp = a->a_dvp;
6096 	vn_seqc_write_end(dvp);
6097 	if (!rc)
6098 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6099 }
6100 
6101 #ifdef DEBUG_VFS_LOCKS
6102 void
vop_mkdir_debugpost(void * ap,int rc)6103 vop_mkdir_debugpost(void *ap, int rc)
6104 {
6105 	struct vop_mkdir_args *a;
6106 
6107 	a = ap;
6108 	if (!rc)
6109 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6110 }
6111 #endif
6112 
6113 void
vop_mknod_pre(void * ap)6114 vop_mknod_pre(void *ap)
6115 {
6116 	struct vop_mknod_args *a;
6117 	struct vnode *dvp;
6118 
6119 	a = ap;
6120 	dvp = a->a_dvp;
6121 	vn_seqc_write_begin(dvp);
6122 }
6123 
6124 void
vop_mknod_post(void * ap,int rc)6125 vop_mknod_post(void *ap, int rc)
6126 {
6127 	struct vop_mknod_args *a;
6128 	struct vnode *dvp;
6129 
6130 	a = ap;
6131 	dvp = a->a_dvp;
6132 	vn_seqc_write_end(dvp);
6133 	if (!rc)
6134 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6135 }
6136 
6137 void
vop_reclaim_post(void * ap,int rc)6138 vop_reclaim_post(void *ap, int rc)
6139 {
6140 	struct vop_reclaim_args *a;
6141 	struct vnode *vp;
6142 
6143 	a = ap;
6144 	vp = a->a_vp;
6145 	ASSERT_VOP_IN_SEQC(vp);
6146 	if (!rc)
6147 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6148 }
6149 
6150 void
vop_remove_pre(void * ap)6151 vop_remove_pre(void *ap)
6152 {
6153 	struct vop_remove_args *a;
6154 	struct vnode *dvp, *vp;
6155 
6156 	a = ap;
6157 	dvp = a->a_dvp;
6158 	vp = a->a_vp;
6159 	vn_seqc_write_begin(dvp);
6160 	vn_seqc_write_begin(vp);
6161 }
6162 
6163 void
vop_remove_post(void * ap,int rc)6164 vop_remove_post(void *ap, int rc)
6165 {
6166 	struct vop_remove_args *a;
6167 	struct vnode *dvp, *vp;
6168 
6169 	a = ap;
6170 	dvp = a->a_dvp;
6171 	vp = a->a_vp;
6172 	vn_seqc_write_end(dvp);
6173 	vn_seqc_write_end(vp);
6174 	if (!rc) {
6175 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6176 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6177 	}
6178 }
6179 
6180 void
vop_rename_post(void * ap,int rc)6181 vop_rename_post(void *ap, int rc)
6182 {
6183 	struct vop_rename_args *a = ap;
6184 	long hint;
6185 
6186 	if (!rc) {
6187 		hint = NOTE_WRITE;
6188 		if (a->a_fdvp == a->a_tdvp) {
6189 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6190 				hint |= NOTE_LINK;
6191 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6192 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6193 		} else {
6194 			hint |= NOTE_EXTEND;
6195 			if (a->a_fvp->v_type == VDIR)
6196 				hint |= NOTE_LINK;
6197 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6198 
6199 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6200 			    a->a_tvp->v_type == VDIR)
6201 				hint &= ~NOTE_LINK;
6202 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6203 		}
6204 
6205 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6206 		if (a->a_tvp)
6207 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6208 	}
6209 	if (a->a_tdvp != a->a_fdvp)
6210 		vdrop(a->a_fdvp);
6211 	if (a->a_tvp != a->a_fvp)
6212 		vdrop(a->a_fvp);
6213 	vdrop(a->a_tdvp);
6214 	if (a->a_tvp)
6215 		vdrop(a->a_tvp);
6216 }
6217 
6218 void
vop_rmdir_pre(void * ap)6219 vop_rmdir_pre(void *ap)
6220 {
6221 	struct vop_rmdir_args *a;
6222 	struct vnode *dvp, *vp;
6223 
6224 	a = ap;
6225 	dvp = a->a_dvp;
6226 	vp = a->a_vp;
6227 	vn_seqc_write_begin(dvp);
6228 	vn_seqc_write_begin(vp);
6229 }
6230 
6231 void
vop_rmdir_post(void * ap,int rc)6232 vop_rmdir_post(void *ap, int rc)
6233 {
6234 	struct vop_rmdir_args *a;
6235 	struct vnode *dvp, *vp;
6236 
6237 	a = ap;
6238 	dvp = a->a_dvp;
6239 	vp = a->a_vp;
6240 	vn_seqc_write_end(dvp);
6241 	vn_seqc_write_end(vp);
6242 	if (!rc) {
6243 		vp->v_vflag |= VV_UNLINKED;
6244 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6245 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6246 	}
6247 }
6248 
6249 void
vop_setattr_pre(void * ap)6250 vop_setattr_pre(void *ap)
6251 {
6252 	struct vop_setattr_args *a;
6253 	struct vnode *vp;
6254 
6255 	a = ap;
6256 	vp = a->a_vp;
6257 	vn_seqc_write_begin(vp);
6258 }
6259 
6260 void
vop_setattr_post(void * ap,int rc)6261 vop_setattr_post(void *ap, int rc)
6262 {
6263 	struct vop_setattr_args *a;
6264 	struct vnode *vp;
6265 
6266 	a = ap;
6267 	vp = a->a_vp;
6268 	vn_seqc_write_end(vp);
6269 	if (!rc)
6270 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6271 }
6272 
6273 void
vop_setacl_pre(void * ap)6274 vop_setacl_pre(void *ap)
6275 {
6276 	struct vop_setacl_args *a;
6277 	struct vnode *vp;
6278 
6279 	a = ap;
6280 	vp = a->a_vp;
6281 	vn_seqc_write_begin(vp);
6282 }
6283 
6284 void
vop_setacl_post(void * ap,int rc __unused)6285 vop_setacl_post(void *ap, int rc __unused)
6286 {
6287 	struct vop_setacl_args *a;
6288 	struct vnode *vp;
6289 
6290 	a = ap;
6291 	vp = a->a_vp;
6292 	vn_seqc_write_end(vp);
6293 }
6294 
6295 void
vop_setextattr_pre(void * ap)6296 vop_setextattr_pre(void *ap)
6297 {
6298 	struct vop_setextattr_args *a;
6299 	struct vnode *vp;
6300 
6301 	a = ap;
6302 	vp = a->a_vp;
6303 	vn_seqc_write_begin(vp);
6304 }
6305 
6306 void
vop_setextattr_post(void * ap,int rc)6307 vop_setextattr_post(void *ap, int rc)
6308 {
6309 	struct vop_setextattr_args *a;
6310 	struct vnode *vp;
6311 
6312 	a = ap;
6313 	vp = a->a_vp;
6314 	vn_seqc_write_end(vp);
6315 	if (!rc)
6316 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6317 }
6318 
6319 void
vop_symlink_pre(void * ap)6320 vop_symlink_pre(void *ap)
6321 {
6322 	struct vop_symlink_args *a;
6323 	struct vnode *dvp;
6324 
6325 	a = ap;
6326 	dvp = a->a_dvp;
6327 	vn_seqc_write_begin(dvp);
6328 }
6329 
6330 void
vop_symlink_post(void * ap,int rc)6331 vop_symlink_post(void *ap, int rc)
6332 {
6333 	struct vop_symlink_args *a;
6334 	struct vnode *dvp;
6335 
6336 	a = ap;
6337 	dvp = a->a_dvp;
6338 	vn_seqc_write_end(dvp);
6339 	if (!rc)
6340 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6341 }
6342 
6343 void
vop_open_post(void * ap,int rc)6344 vop_open_post(void *ap, int rc)
6345 {
6346 	struct vop_open_args *a = ap;
6347 
6348 	if (!rc)
6349 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6350 }
6351 
6352 void
vop_close_post(void * ap,int rc)6353 vop_close_post(void *ap, int rc)
6354 {
6355 	struct vop_close_args *a = ap;
6356 
6357 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6358 	    !VN_IS_DOOMED(a->a_vp))) {
6359 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6360 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6361 	}
6362 }
6363 
6364 void
vop_read_post(void * ap,int rc)6365 vop_read_post(void *ap, int rc)
6366 {
6367 	struct vop_read_args *a = ap;
6368 
6369 	if (!rc)
6370 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6371 }
6372 
6373 void
vop_read_pgcache_post(void * ap,int rc)6374 vop_read_pgcache_post(void *ap, int rc)
6375 {
6376 	struct vop_read_pgcache_args *a = ap;
6377 
6378 	if (!rc)
6379 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6380 }
6381 
6382 void
vop_readdir_post(void * ap,int rc)6383 vop_readdir_post(void *ap, int rc)
6384 {
6385 	struct vop_readdir_args *a = ap;
6386 
6387 	if (!rc)
6388 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6389 }
6390 
6391 static struct knlist fs_knlist;
6392 
6393 static void
vfs_event_init(void * arg)6394 vfs_event_init(void *arg)
6395 {
6396 	knlist_init_mtx(&fs_knlist, NULL);
6397 }
6398 /* XXX - correct order? */
6399 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6400 
6401 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6402 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6403 {
6404 
6405 	KNOTE_UNLOCKED(&fs_knlist, event);
6406 }
6407 
6408 static int	filt_fsattach(struct knote *kn);
6409 static void	filt_fsdetach(struct knote *kn);
6410 static int	filt_fsevent(struct knote *kn, long hint);
6411 
6412 struct filterops fs_filtops = {
6413 	.f_isfd = 0,
6414 	.f_attach = filt_fsattach,
6415 	.f_detach = filt_fsdetach,
6416 	.f_event = filt_fsevent
6417 };
6418 
6419 static int
filt_fsattach(struct knote * kn)6420 filt_fsattach(struct knote *kn)
6421 {
6422 
6423 	kn->kn_flags |= EV_CLEAR;
6424 	knlist_add(&fs_knlist, kn, 0);
6425 	return (0);
6426 }
6427 
6428 static void
filt_fsdetach(struct knote * kn)6429 filt_fsdetach(struct knote *kn)
6430 {
6431 
6432 	knlist_remove(&fs_knlist, kn, 0);
6433 }
6434 
6435 static int
filt_fsevent(struct knote * kn,long hint)6436 filt_fsevent(struct knote *kn, long hint)
6437 {
6438 
6439 	kn->kn_fflags |= kn->kn_sfflags & hint;
6440 
6441 	return (kn->kn_fflags != 0);
6442 }
6443 
6444 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6445 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6446 {
6447 	struct vfsidctl vc;
6448 	int error;
6449 	struct mount *mp;
6450 
6451 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6452 	if (error)
6453 		return (error);
6454 	if (vc.vc_vers != VFS_CTL_VERS1)
6455 		return (EINVAL);
6456 	mp = vfs_getvfs(&vc.vc_fsid);
6457 	if (mp == NULL)
6458 		return (ENOENT);
6459 	/* ensure that a specific sysctl goes to the right filesystem. */
6460 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6461 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6462 		vfs_rel(mp);
6463 		return (EINVAL);
6464 	}
6465 	VCTLTOREQ(&vc, req);
6466 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6467 	vfs_rel(mp);
6468 	return (error);
6469 }
6470 
6471 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6472     NULL, 0, sysctl_vfs_ctl, "",
6473     "Sysctl by fsid");
6474 
6475 /*
6476  * Function to initialize a va_filerev field sensibly.
6477  * XXX: Wouldn't a random number make a lot more sense ??
6478  */
6479 u_quad_t
init_va_filerev(void)6480 init_va_filerev(void)
6481 {
6482 	struct bintime bt;
6483 
6484 	getbinuptime(&bt);
6485 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6486 }
6487 
6488 static int	filt_vfsread(struct knote *kn, long hint);
6489 static int	filt_vfswrite(struct knote *kn, long hint);
6490 static int	filt_vfsvnode(struct knote *kn, long hint);
6491 static void	filt_vfsdetach(struct knote *kn);
6492 static struct filterops vfsread_filtops = {
6493 	.f_isfd = 1,
6494 	.f_detach = filt_vfsdetach,
6495 	.f_event = filt_vfsread
6496 };
6497 static struct filterops vfswrite_filtops = {
6498 	.f_isfd = 1,
6499 	.f_detach = filt_vfsdetach,
6500 	.f_event = filt_vfswrite
6501 };
6502 static struct filterops vfsvnode_filtops = {
6503 	.f_isfd = 1,
6504 	.f_detach = filt_vfsdetach,
6505 	.f_event = filt_vfsvnode
6506 };
6507 
6508 static void
vfs_knllock(void * arg)6509 vfs_knllock(void *arg)
6510 {
6511 	struct vnode *vp = arg;
6512 
6513 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6514 }
6515 
6516 static void
vfs_knlunlock(void * arg)6517 vfs_knlunlock(void *arg)
6518 {
6519 	struct vnode *vp = arg;
6520 
6521 	VOP_UNLOCK(vp);
6522 }
6523 
6524 static void
vfs_knl_assert_lock(void * arg,int what)6525 vfs_knl_assert_lock(void *arg, int what)
6526 {
6527 #ifdef DEBUG_VFS_LOCKS
6528 	struct vnode *vp = arg;
6529 
6530 	if (what == LA_LOCKED)
6531 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6532 	else
6533 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6534 #endif
6535 }
6536 
6537 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6538 vfs_kqfilter(struct vop_kqfilter_args *ap)
6539 {
6540 	struct vnode *vp = ap->a_vp;
6541 	struct knote *kn = ap->a_kn;
6542 	struct knlist *knl;
6543 
6544 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6545 	    kn->kn_filter != EVFILT_WRITE),
6546 	    ("READ/WRITE filter on a FIFO leaked through"));
6547 	switch (kn->kn_filter) {
6548 	case EVFILT_READ:
6549 		kn->kn_fop = &vfsread_filtops;
6550 		break;
6551 	case EVFILT_WRITE:
6552 		kn->kn_fop = &vfswrite_filtops;
6553 		break;
6554 	case EVFILT_VNODE:
6555 		kn->kn_fop = &vfsvnode_filtops;
6556 		break;
6557 	default:
6558 		return (EINVAL);
6559 	}
6560 
6561 	kn->kn_hook = (caddr_t)vp;
6562 
6563 	v_addpollinfo(vp);
6564 	if (vp->v_pollinfo == NULL)
6565 		return (ENOMEM);
6566 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6567 	vhold(vp);
6568 	knlist_add(knl, kn, 0);
6569 
6570 	return (0);
6571 }
6572 
6573 /*
6574  * Detach knote from vnode
6575  */
6576 static void
filt_vfsdetach(struct knote * kn)6577 filt_vfsdetach(struct knote *kn)
6578 {
6579 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6580 
6581 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6582 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6583 	vdrop(vp);
6584 }
6585 
6586 /*ARGSUSED*/
6587 static int
filt_vfsread(struct knote * kn,long hint)6588 filt_vfsread(struct knote *kn, long hint)
6589 {
6590 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6591 	off_t size;
6592 	int res;
6593 
6594 	/*
6595 	 * filesystem is gone, so set the EOF flag and schedule
6596 	 * the knote for deletion.
6597 	 */
6598 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6599 		VI_LOCK(vp);
6600 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6601 		VI_UNLOCK(vp);
6602 		return (1);
6603 	}
6604 
6605 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6606 		return (0);
6607 
6608 	VI_LOCK(vp);
6609 	kn->kn_data = size - kn->kn_fp->f_offset;
6610 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6611 	VI_UNLOCK(vp);
6612 	return (res);
6613 }
6614 
6615 /*ARGSUSED*/
6616 static int
filt_vfswrite(struct knote * kn,long hint)6617 filt_vfswrite(struct knote *kn, long hint)
6618 {
6619 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6620 
6621 	VI_LOCK(vp);
6622 
6623 	/*
6624 	 * filesystem is gone, so set the EOF flag and schedule
6625 	 * the knote for deletion.
6626 	 */
6627 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6628 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6629 
6630 	kn->kn_data = 0;
6631 	VI_UNLOCK(vp);
6632 	return (1);
6633 }
6634 
6635 static int
filt_vfsvnode(struct knote * kn,long hint)6636 filt_vfsvnode(struct knote *kn, long hint)
6637 {
6638 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6639 	int res;
6640 
6641 	VI_LOCK(vp);
6642 	if (kn->kn_sfflags & hint)
6643 		kn->kn_fflags |= hint;
6644 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6645 		kn->kn_flags |= EV_EOF;
6646 		VI_UNLOCK(vp);
6647 		return (1);
6648 	}
6649 	res = (kn->kn_fflags != 0);
6650 	VI_UNLOCK(vp);
6651 	return (res);
6652 }
6653 
6654 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6655 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6656 {
6657 	int error;
6658 
6659 	if (dp->d_reclen > ap->a_uio->uio_resid)
6660 		return (ENAMETOOLONG);
6661 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6662 	if (error) {
6663 		if (ap->a_ncookies != NULL) {
6664 			if (ap->a_cookies != NULL)
6665 				free(ap->a_cookies, M_TEMP);
6666 			ap->a_cookies = NULL;
6667 			*ap->a_ncookies = 0;
6668 		}
6669 		return (error);
6670 	}
6671 	if (ap->a_ncookies == NULL)
6672 		return (0);
6673 
6674 	KASSERT(ap->a_cookies,
6675 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6676 
6677 	*ap->a_cookies = realloc(*ap->a_cookies,
6678 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6679 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6680 	*ap->a_ncookies += 1;
6681 	return (0);
6682 }
6683 
6684 /*
6685  * The purpose of this routine is to remove granularity from accmode_t,
6686  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6687  * VADMIN and VAPPEND.
6688  *
6689  * If it returns 0, the caller is supposed to continue with the usual
6690  * access checks using 'accmode' as modified by this routine.  If it
6691  * returns nonzero value, the caller is supposed to return that value
6692  * as errno.
6693  *
6694  * Note that after this routine runs, accmode may be zero.
6695  */
6696 int
vfs_unixify_accmode(accmode_t * accmode)6697 vfs_unixify_accmode(accmode_t *accmode)
6698 {
6699 	/*
6700 	 * There is no way to specify explicit "deny" rule using
6701 	 * file mode or POSIX.1e ACLs.
6702 	 */
6703 	if (*accmode & VEXPLICIT_DENY) {
6704 		*accmode = 0;
6705 		return (0);
6706 	}
6707 
6708 	/*
6709 	 * None of these can be translated into usual access bits.
6710 	 * Also, the common case for NFSv4 ACLs is to not contain
6711 	 * either of these bits. Caller should check for VWRITE
6712 	 * on the containing directory instead.
6713 	 */
6714 	if (*accmode & (VDELETE_CHILD | VDELETE))
6715 		return (EPERM);
6716 
6717 	if (*accmode & VADMIN_PERMS) {
6718 		*accmode &= ~VADMIN_PERMS;
6719 		*accmode |= VADMIN;
6720 	}
6721 
6722 	/*
6723 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6724 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6725 	 */
6726 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6727 
6728 	return (0);
6729 }
6730 
6731 /*
6732  * Clear out a doomed vnode (if any) and replace it with a new one as long
6733  * as the fs is not being unmounted. Return the root vnode to the caller.
6734  */
6735 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6736 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6737 {
6738 	struct vnode *vp;
6739 	int error;
6740 
6741 restart:
6742 	if (mp->mnt_rootvnode != NULL) {
6743 		MNT_ILOCK(mp);
6744 		vp = mp->mnt_rootvnode;
6745 		if (vp != NULL) {
6746 			if (!VN_IS_DOOMED(vp)) {
6747 				vrefact(vp);
6748 				MNT_IUNLOCK(mp);
6749 				error = vn_lock(vp, flags);
6750 				if (error == 0) {
6751 					*vpp = vp;
6752 					return (0);
6753 				}
6754 				vrele(vp);
6755 				goto restart;
6756 			}
6757 			/*
6758 			 * Clear the old one.
6759 			 */
6760 			mp->mnt_rootvnode = NULL;
6761 		}
6762 		MNT_IUNLOCK(mp);
6763 		if (vp != NULL) {
6764 			vfs_op_barrier_wait(mp);
6765 			vrele(vp);
6766 		}
6767 	}
6768 	error = VFS_CACHEDROOT(mp, flags, vpp);
6769 	if (error != 0)
6770 		return (error);
6771 	if (mp->mnt_vfs_ops == 0) {
6772 		MNT_ILOCK(mp);
6773 		if (mp->mnt_vfs_ops != 0) {
6774 			MNT_IUNLOCK(mp);
6775 			return (0);
6776 		}
6777 		if (mp->mnt_rootvnode == NULL) {
6778 			vrefact(*vpp);
6779 			mp->mnt_rootvnode = *vpp;
6780 		} else {
6781 			if (mp->mnt_rootvnode != *vpp) {
6782 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6783 					panic("%s: mismatch between vnode returned "
6784 					    " by VFS_CACHEDROOT and the one cached "
6785 					    " (%p != %p)",
6786 					    __func__, *vpp, mp->mnt_rootvnode);
6787 				}
6788 			}
6789 		}
6790 		MNT_IUNLOCK(mp);
6791 	}
6792 	return (0);
6793 }
6794 
6795 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6796 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6797 {
6798 	struct mount_pcpu *mpcpu;
6799 	struct vnode *vp;
6800 	int error;
6801 
6802 	if (!vfs_op_thread_enter(mp, mpcpu))
6803 		return (vfs_cache_root_fallback(mp, flags, vpp));
6804 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6805 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6806 		vfs_op_thread_exit(mp, mpcpu);
6807 		return (vfs_cache_root_fallback(mp, flags, vpp));
6808 	}
6809 	vrefact(vp);
6810 	vfs_op_thread_exit(mp, mpcpu);
6811 	error = vn_lock(vp, flags);
6812 	if (error != 0) {
6813 		vrele(vp);
6814 		return (vfs_cache_root_fallback(mp, flags, vpp));
6815 	}
6816 	*vpp = vp;
6817 	return (0);
6818 }
6819 
6820 struct vnode *
vfs_cache_root_clear(struct mount * mp)6821 vfs_cache_root_clear(struct mount *mp)
6822 {
6823 	struct vnode *vp;
6824 
6825 	/*
6826 	 * ops > 0 guarantees there is nobody who can see this vnode
6827 	 */
6828 	MPASS(mp->mnt_vfs_ops > 0);
6829 	vp = mp->mnt_rootvnode;
6830 	if (vp != NULL)
6831 		vn_seqc_write_begin(vp);
6832 	mp->mnt_rootvnode = NULL;
6833 	return (vp);
6834 }
6835 
6836 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)6837 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6838 {
6839 
6840 	MPASS(mp->mnt_vfs_ops > 0);
6841 	vrefact(vp);
6842 	mp->mnt_rootvnode = vp;
6843 }
6844 
6845 /*
6846  * These are helper functions for filesystems to traverse all
6847  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6848  *
6849  * This interface replaces MNT_VNODE_FOREACH.
6850  */
6851 
6852 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)6853 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6854 {
6855 	struct vnode *vp;
6856 
6857 	maybe_yield();
6858 	MNT_ILOCK(mp);
6859 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6860 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6861 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6862 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6863 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6864 			continue;
6865 		VI_LOCK(vp);
6866 		if (VN_IS_DOOMED(vp)) {
6867 			VI_UNLOCK(vp);
6868 			continue;
6869 		}
6870 		break;
6871 	}
6872 	if (vp == NULL) {
6873 		__mnt_vnode_markerfree_all(mvp, mp);
6874 		/* MNT_IUNLOCK(mp); -- done in above function */
6875 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6876 		return (NULL);
6877 	}
6878 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6879 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6880 	MNT_IUNLOCK(mp);
6881 	return (vp);
6882 }
6883 
6884 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)6885 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6886 {
6887 	struct vnode *vp;
6888 
6889 	*mvp = vn_alloc_marker(mp);
6890 	MNT_ILOCK(mp);
6891 	MNT_REF(mp);
6892 
6893 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6894 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6895 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6896 			continue;
6897 		VI_LOCK(vp);
6898 		if (VN_IS_DOOMED(vp)) {
6899 			VI_UNLOCK(vp);
6900 			continue;
6901 		}
6902 		break;
6903 	}
6904 	if (vp == NULL) {
6905 		MNT_REL(mp);
6906 		MNT_IUNLOCK(mp);
6907 		vn_free_marker(*mvp);
6908 		*mvp = NULL;
6909 		return (NULL);
6910 	}
6911 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6912 	MNT_IUNLOCK(mp);
6913 	return (vp);
6914 }
6915 
6916 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)6917 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6918 {
6919 
6920 	if (*mvp == NULL) {
6921 		MNT_IUNLOCK(mp);
6922 		return;
6923 	}
6924 
6925 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6926 
6927 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6928 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6929 	MNT_REL(mp);
6930 	MNT_IUNLOCK(mp);
6931 	vn_free_marker(*mvp);
6932 	*mvp = NULL;
6933 }
6934 
6935 /*
6936  * These are helper functions for filesystems to traverse their
6937  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6938  */
6939 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)6940 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6941 {
6942 
6943 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6944 
6945 	MNT_ILOCK(mp);
6946 	MNT_REL(mp);
6947 	MNT_IUNLOCK(mp);
6948 	vn_free_marker(*mvp);
6949 	*mvp = NULL;
6950 }
6951 
6952 /*
6953  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6954  * conventional lock order during mnt_vnode_next_lazy iteration.
6955  *
6956  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6957  * The list lock is dropped and reacquired.  On success, both locks are held.
6958  * On failure, the mount vnode list lock is held but the vnode interlock is
6959  * not, and the procedure may have yielded.
6960  */
6961 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)6962 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6963     struct vnode *vp)
6964 {
6965 
6966 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6967 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6968 	    ("%s: bad marker", __func__));
6969 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6970 	    ("%s: inappropriate vnode", __func__));
6971 	ASSERT_VI_UNLOCKED(vp, __func__);
6972 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6973 
6974 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6975 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6976 
6977 	/*
6978 	 * Note we may be racing against vdrop which transitioned the hold
6979 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6980 	 * if we are the only user after we get the interlock we will just
6981 	 * vdrop.
6982 	 */
6983 	vhold(vp);
6984 	mtx_unlock(&mp->mnt_listmtx);
6985 	VI_LOCK(vp);
6986 	if (VN_IS_DOOMED(vp)) {
6987 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6988 		goto out_lost;
6989 	}
6990 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6991 	/*
6992 	 * There is nothing to do if we are the last user.
6993 	 */
6994 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6995 		goto out_lost;
6996 	mtx_lock(&mp->mnt_listmtx);
6997 	return (true);
6998 out_lost:
6999 	vdropl(vp);
7000 	maybe_yield();
7001 	mtx_lock(&mp->mnt_listmtx);
7002 	return (false);
7003 }
7004 
7005 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7006 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7007     void *cbarg)
7008 {
7009 	struct vnode *vp;
7010 
7011 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7012 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7013 restart:
7014 	vp = TAILQ_NEXT(*mvp, v_lazylist);
7015 	while (vp != NULL) {
7016 		if (vp->v_type == VMARKER) {
7017 			vp = TAILQ_NEXT(vp, v_lazylist);
7018 			continue;
7019 		}
7020 		/*
7021 		 * See if we want to process the vnode. Note we may encounter a
7022 		 * long string of vnodes we don't care about and hog the list
7023 		 * as a result. Check for it and requeue the marker.
7024 		 */
7025 		VNPASS(!VN_IS_DOOMED(vp), vp);
7026 		if (!cb(vp, cbarg)) {
7027 			if (!should_yield()) {
7028 				vp = TAILQ_NEXT(vp, v_lazylist);
7029 				continue;
7030 			}
7031 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7032 			    v_lazylist);
7033 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7034 			    v_lazylist);
7035 			mtx_unlock(&mp->mnt_listmtx);
7036 			kern_yield(PRI_USER);
7037 			mtx_lock(&mp->mnt_listmtx);
7038 			goto restart;
7039 		}
7040 		/*
7041 		 * Try-lock because this is the wrong lock order.
7042 		 */
7043 		if (!VI_TRYLOCK(vp) &&
7044 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7045 			goto restart;
7046 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7047 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7048 		    ("alien vnode on the lazy list %p %p", vp, mp));
7049 		VNPASS(vp->v_mount == mp, vp);
7050 		VNPASS(!VN_IS_DOOMED(vp), vp);
7051 		break;
7052 	}
7053 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7054 
7055 	/* Check if we are done */
7056 	if (vp == NULL) {
7057 		mtx_unlock(&mp->mnt_listmtx);
7058 		mnt_vnode_markerfree_lazy(mvp, mp);
7059 		return (NULL);
7060 	}
7061 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7062 	mtx_unlock(&mp->mnt_listmtx);
7063 	ASSERT_VI_LOCKED(vp, "lazy iter");
7064 	return (vp);
7065 }
7066 
7067 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7068 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7069     void *cbarg)
7070 {
7071 
7072 	maybe_yield();
7073 	mtx_lock(&mp->mnt_listmtx);
7074 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7075 }
7076 
7077 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7078 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7079     void *cbarg)
7080 {
7081 	struct vnode *vp;
7082 
7083 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7084 		return (NULL);
7085 
7086 	*mvp = vn_alloc_marker(mp);
7087 	MNT_ILOCK(mp);
7088 	MNT_REF(mp);
7089 	MNT_IUNLOCK(mp);
7090 
7091 	mtx_lock(&mp->mnt_listmtx);
7092 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7093 	if (vp == NULL) {
7094 		mtx_unlock(&mp->mnt_listmtx);
7095 		mnt_vnode_markerfree_lazy(mvp, mp);
7096 		return (NULL);
7097 	}
7098 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7099 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7100 }
7101 
7102 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7103 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7104 {
7105 
7106 	if (*mvp == NULL)
7107 		return;
7108 
7109 	mtx_lock(&mp->mnt_listmtx);
7110 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7111 	mtx_unlock(&mp->mnt_listmtx);
7112 	mnt_vnode_markerfree_lazy(mvp, mp);
7113 }
7114 
7115 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)7116 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7117 {
7118 
7119 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7120 		cnp->cn_flags &= ~NOEXECCHECK;
7121 		return (0);
7122 	}
7123 
7124 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7125 }
7126 
7127 /*
7128  * Do not use this variant unless you have means other than the hold count
7129  * to prevent the vnode from getting freed.
7130  */
7131 void
vn_seqc_write_begin_locked(struct vnode * vp)7132 vn_seqc_write_begin_locked(struct vnode *vp)
7133 {
7134 
7135 	ASSERT_VI_LOCKED(vp, __func__);
7136 	VNPASS(vp->v_holdcnt > 0, vp);
7137 	VNPASS(vp->v_seqc_users >= 0, vp);
7138 	vp->v_seqc_users++;
7139 	if (vp->v_seqc_users == 1)
7140 		seqc_sleepable_write_begin(&vp->v_seqc);
7141 }
7142 
7143 void
vn_seqc_write_begin(struct vnode * vp)7144 vn_seqc_write_begin(struct vnode *vp)
7145 {
7146 
7147 	VI_LOCK(vp);
7148 	vn_seqc_write_begin_locked(vp);
7149 	VI_UNLOCK(vp);
7150 }
7151 
7152 void
vn_seqc_write_end_locked(struct vnode * vp)7153 vn_seqc_write_end_locked(struct vnode *vp)
7154 {
7155 
7156 	ASSERT_VI_LOCKED(vp, __func__);
7157 	VNPASS(vp->v_seqc_users > 0, vp);
7158 	vp->v_seqc_users--;
7159 	if (vp->v_seqc_users == 0)
7160 		seqc_sleepable_write_end(&vp->v_seqc);
7161 }
7162 
7163 void
vn_seqc_write_end(struct vnode * vp)7164 vn_seqc_write_end(struct vnode *vp)
7165 {
7166 
7167 	VI_LOCK(vp);
7168 	vn_seqc_write_end_locked(vp);
7169 	VI_UNLOCK(vp);
7170 }
7171 
7172 /*
7173  * Special case handling for allocating and freeing vnodes.
7174  *
7175  * The counter remains unchanged on free so that a doomed vnode will
7176  * keep testing as in modify as long as it is accessible with SMR.
7177  */
7178 static void
vn_seqc_init(struct vnode * vp)7179 vn_seqc_init(struct vnode *vp)
7180 {
7181 
7182 	vp->v_seqc = 0;
7183 	vp->v_seqc_users = 0;
7184 }
7185 
7186 static void
vn_seqc_write_end_free(struct vnode * vp)7187 vn_seqc_write_end_free(struct vnode *vp)
7188 {
7189 
7190 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7191 	VNPASS(vp->v_seqc_users == 1, vp);
7192 }
7193 
7194 void
vn_irflag_set_locked(struct vnode * vp,short toset)7195 vn_irflag_set_locked(struct vnode *vp, short toset)
7196 {
7197 	short flags;
7198 
7199 	ASSERT_VI_LOCKED(vp, __func__);
7200 	flags = vn_irflag_read(vp);
7201 	VNASSERT((flags & toset) == 0, vp,
7202 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7203 	    __func__, flags, toset));
7204 	atomic_store_short(&vp->v_irflag, flags | toset);
7205 }
7206 
7207 void
vn_irflag_set(struct vnode * vp,short toset)7208 vn_irflag_set(struct vnode *vp, short toset)
7209 {
7210 
7211 	VI_LOCK(vp);
7212 	vn_irflag_set_locked(vp, toset);
7213 	VI_UNLOCK(vp);
7214 }
7215 
7216 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)7217 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7218 {
7219 	short flags;
7220 
7221 	ASSERT_VI_LOCKED(vp, __func__);
7222 	flags = vn_irflag_read(vp);
7223 	atomic_store_short(&vp->v_irflag, flags | toset);
7224 }
7225 
7226 void
vn_irflag_set_cond(struct vnode * vp,short toset)7227 vn_irflag_set_cond(struct vnode *vp, short toset)
7228 {
7229 
7230 	VI_LOCK(vp);
7231 	vn_irflag_set_cond_locked(vp, toset);
7232 	VI_UNLOCK(vp);
7233 }
7234 
7235 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)7236 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7237 {
7238 	short flags;
7239 
7240 	ASSERT_VI_LOCKED(vp, __func__);
7241 	flags = vn_irflag_read(vp);
7242 	VNASSERT((flags & tounset) == tounset, vp,
7243 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7244 	    __func__, flags, tounset));
7245 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7246 }
7247 
7248 void
vn_irflag_unset(struct vnode * vp,short tounset)7249 vn_irflag_unset(struct vnode *vp, short tounset)
7250 {
7251 
7252 	VI_LOCK(vp);
7253 	vn_irflag_unset_locked(vp, tounset);
7254 	VI_UNLOCK(vp);
7255 }
7256 
7257 int
vn_getsize_locked(struct vnode * vp,off_t * size,struct ucred * cred)7258 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7259 {
7260 	struct vattr vattr;
7261 	int error;
7262 
7263 	ASSERT_VOP_LOCKED(vp, __func__);
7264 	error = VOP_GETATTR(vp, &vattr, cred);
7265 	if (__predict_true(error == 0)) {
7266 		if (vattr.va_size <= OFF_MAX)
7267 			*size = vattr.va_size;
7268 		else
7269 			error = EFBIG;
7270 	}
7271 	return (error);
7272 }
7273 
7274 int
vn_getsize(struct vnode * vp,off_t * size,struct ucred * cred)7275 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7276 {
7277 	int error;
7278 
7279 	VOP_LOCK(vp, LK_SHARED);
7280 	error = vn_getsize_locked(vp, size, cred);
7281 	VOP_UNLOCK(vp);
7282 	return (error);
7283 }
7284 
7285 #ifdef INVARIANTS
7286 void
vn_set_state_validate(struct vnode * vp,__enum_uint8 (vstate)state)7287 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7288 {
7289 
7290 	switch (vp->v_state) {
7291 	case VSTATE_UNINITIALIZED:
7292 		switch (state) {
7293 		case VSTATE_CONSTRUCTED:
7294 		case VSTATE_DESTROYING:
7295 			return;
7296 		default:
7297 			break;
7298 		}
7299 		break;
7300 	case VSTATE_CONSTRUCTED:
7301 		ASSERT_VOP_ELOCKED(vp, __func__);
7302 		switch (state) {
7303 		case VSTATE_DESTROYING:
7304 			return;
7305 		default:
7306 			break;
7307 		}
7308 		break;
7309 	case VSTATE_DESTROYING:
7310 		ASSERT_VOP_ELOCKED(vp, __func__);
7311 		switch (state) {
7312 		case VSTATE_DEAD:
7313 			return;
7314 		default:
7315 			break;
7316 		}
7317 		break;
7318 	case VSTATE_DEAD:
7319 		switch (state) {
7320 		case VSTATE_UNINITIALIZED:
7321 			return;
7322 		default:
7323 			break;
7324 		}
7325 		break;
7326 	}
7327 
7328 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7329 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7330 }
7331 #endif
7332