1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2012 Sandvine, Inc.
5 * Copyright (c) 2012 NetApp, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD$
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #ifdef _KERNEL
36 #include <sys/param.h>
37 #include <sys/pcpu.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43
44 #include <machine/vmparam.h>
45 #include <machine/vmm.h>
46 #else /* !_KERNEL */
47 #include <sys/types.h>
48 #include <sys/errno.h>
49 #include <sys/_iovec.h>
50
51 #include <machine/vmm.h>
52
53 #include <err.h>
54 #include <assert.h>
55 #include <stdbool.h>
56 #include <stddef.h>
57 #include <stdio.h>
58 #include <string.h>
59 #include <strings.h>
60 #include <vmmapi.h>
61 #define KASSERT(exp,msg) assert((exp))
62 #define panic(...) errx(4, __VA_ARGS__)
63 #endif /* _KERNEL */
64
65 #include <machine/vmm_instruction_emul.h>
66 #include <x86/psl.h>
67 #include <x86/specialreg.h>
68
69 /* struct vie_op.op_type */
70 enum {
71 VIE_OP_TYPE_NONE = 0,
72 VIE_OP_TYPE_MOV,
73 VIE_OP_TYPE_MOVSX,
74 VIE_OP_TYPE_MOVZX,
75 VIE_OP_TYPE_AND,
76 VIE_OP_TYPE_OR,
77 VIE_OP_TYPE_SUB,
78 VIE_OP_TYPE_TWO_BYTE,
79 VIE_OP_TYPE_PUSH,
80 VIE_OP_TYPE_CMP,
81 VIE_OP_TYPE_POP,
82 VIE_OP_TYPE_MOVS,
83 VIE_OP_TYPE_GROUP1,
84 VIE_OP_TYPE_STOS,
85 VIE_OP_TYPE_BITTEST,
86 VIE_OP_TYPE_TWOB_GRP15,
87 VIE_OP_TYPE_ADD,
88 VIE_OP_TYPE_TEST,
89 VIE_OP_TYPE_BEXTR,
90 VIE_OP_TYPE_LAST
91 };
92
93 /* struct vie_op.op_flags */
94 #define VIE_OP_F_IMM (1 << 0) /* 16/32-bit immediate operand */
95 #define VIE_OP_F_IMM8 (1 << 1) /* 8-bit immediate operand */
96 #define VIE_OP_F_MOFFSET (1 << 2) /* 16/32/64-bit immediate moffset */
97 #define VIE_OP_F_NO_MODRM (1 << 3)
98 #define VIE_OP_F_NO_GLA_VERIFICATION (1 << 4)
99
100 static const struct vie_op three_byte_opcodes_0f38[256] = {
101 [0xF7] = {
102 .op_byte = 0xF7,
103 .op_type = VIE_OP_TYPE_BEXTR,
104 },
105 };
106
107 static const struct vie_op two_byte_opcodes[256] = {
108 [0xAE] = {
109 .op_byte = 0xAE,
110 .op_type = VIE_OP_TYPE_TWOB_GRP15,
111 },
112 [0xB6] = {
113 .op_byte = 0xB6,
114 .op_type = VIE_OP_TYPE_MOVZX,
115 },
116 [0xB7] = {
117 .op_byte = 0xB7,
118 .op_type = VIE_OP_TYPE_MOVZX,
119 },
120 [0xBA] = {
121 .op_byte = 0xBA,
122 .op_type = VIE_OP_TYPE_BITTEST,
123 .op_flags = VIE_OP_F_IMM8,
124 },
125 [0xBE] = {
126 .op_byte = 0xBE,
127 .op_type = VIE_OP_TYPE_MOVSX,
128 },
129 };
130
131 static const struct vie_op one_byte_opcodes[256] = {
132 [0x03] = {
133 .op_byte = 0x03,
134 .op_type = VIE_OP_TYPE_ADD,
135 },
136 [0x0F] = {
137 .op_byte = 0x0F,
138 .op_type = VIE_OP_TYPE_TWO_BYTE
139 },
140 [0x0B] = {
141 .op_byte = 0x0B,
142 .op_type = VIE_OP_TYPE_OR,
143 },
144 [0x2B] = {
145 .op_byte = 0x2B,
146 .op_type = VIE_OP_TYPE_SUB,
147 },
148 [0x39] = {
149 .op_byte = 0x39,
150 .op_type = VIE_OP_TYPE_CMP,
151 },
152 [0x3B] = {
153 .op_byte = 0x3B,
154 .op_type = VIE_OP_TYPE_CMP,
155 },
156 [0x88] = {
157 .op_byte = 0x88,
158 .op_type = VIE_OP_TYPE_MOV,
159 },
160 [0x89] = {
161 .op_byte = 0x89,
162 .op_type = VIE_OP_TYPE_MOV,
163 },
164 [0x8A] = {
165 .op_byte = 0x8A,
166 .op_type = VIE_OP_TYPE_MOV,
167 },
168 [0x8B] = {
169 .op_byte = 0x8B,
170 .op_type = VIE_OP_TYPE_MOV,
171 },
172 [0xA1] = {
173 .op_byte = 0xA1,
174 .op_type = VIE_OP_TYPE_MOV,
175 .op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
176 },
177 [0xA3] = {
178 .op_byte = 0xA3,
179 .op_type = VIE_OP_TYPE_MOV,
180 .op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
181 },
182 [0xA4] = {
183 .op_byte = 0xA4,
184 .op_type = VIE_OP_TYPE_MOVS,
185 .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
186 },
187 [0xA5] = {
188 .op_byte = 0xA5,
189 .op_type = VIE_OP_TYPE_MOVS,
190 .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
191 },
192 [0xAA] = {
193 .op_byte = 0xAA,
194 .op_type = VIE_OP_TYPE_STOS,
195 .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
196 },
197 [0xAB] = {
198 .op_byte = 0xAB,
199 .op_type = VIE_OP_TYPE_STOS,
200 .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
201 },
202 [0xC6] = {
203 /* XXX Group 11 extended opcode - not just MOV */
204 .op_byte = 0xC6,
205 .op_type = VIE_OP_TYPE_MOV,
206 .op_flags = VIE_OP_F_IMM8,
207 },
208 [0xC7] = {
209 .op_byte = 0xC7,
210 .op_type = VIE_OP_TYPE_MOV,
211 .op_flags = VIE_OP_F_IMM,
212 },
213 [0x23] = {
214 .op_byte = 0x23,
215 .op_type = VIE_OP_TYPE_AND,
216 },
217 [0x80] = {
218 /* Group 1 extended opcode */
219 .op_byte = 0x80,
220 .op_type = VIE_OP_TYPE_GROUP1,
221 .op_flags = VIE_OP_F_IMM8,
222 },
223 [0x81] = {
224 /* Group 1 extended opcode */
225 .op_byte = 0x81,
226 .op_type = VIE_OP_TYPE_GROUP1,
227 .op_flags = VIE_OP_F_IMM,
228 },
229 [0x83] = {
230 /* Group 1 extended opcode */
231 .op_byte = 0x83,
232 .op_type = VIE_OP_TYPE_GROUP1,
233 .op_flags = VIE_OP_F_IMM8,
234 },
235 [0x8F] = {
236 /* XXX Group 1A extended opcode - not just POP */
237 .op_byte = 0x8F,
238 .op_type = VIE_OP_TYPE_POP,
239 },
240 [0xF7] = {
241 /* XXX Group 3 extended opcode - not just TEST */
242 .op_byte = 0xF7,
243 .op_type = VIE_OP_TYPE_TEST,
244 .op_flags = VIE_OP_F_IMM,
245 },
246 [0xFF] = {
247 /* XXX Group 5 extended opcode - not just PUSH */
248 .op_byte = 0xFF,
249 .op_type = VIE_OP_TYPE_PUSH,
250 }
251 };
252
253 /* struct vie.mod */
254 #define VIE_MOD_INDIRECT 0
255 #define VIE_MOD_INDIRECT_DISP8 1
256 #define VIE_MOD_INDIRECT_DISP32 2
257 #define VIE_MOD_DIRECT 3
258
259 /* struct vie.rm */
260 #define VIE_RM_SIB 4
261 #define VIE_RM_DISP32 5
262
263 #define GB (1024 * 1024 * 1024)
264
265 static enum vm_reg_name gpr_map[16] = {
266 VM_REG_GUEST_RAX,
267 VM_REG_GUEST_RCX,
268 VM_REG_GUEST_RDX,
269 VM_REG_GUEST_RBX,
270 VM_REG_GUEST_RSP,
271 VM_REG_GUEST_RBP,
272 VM_REG_GUEST_RSI,
273 VM_REG_GUEST_RDI,
274 VM_REG_GUEST_R8,
275 VM_REG_GUEST_R9,
276 VM_REG_GUEST_R10,
277 VM_REG_GUEST_R11,
278 VM_REG_GUEST_R12,
279 VM_REG_GUEST_R13,
280 VM_REG_GUEST_R14,
281 VM_REG_GUEST_R15
282 };
283
284 static uint64_t size2mask[] = {
285 [1] = 0xff,
286 [2] = 0xffff,
287 [4] = 0xffffffff,
288 [8] = 0xffffffffffffffff,
289 };
290
291 static int
vie_read_register(void * vm,int vcpuid,enum vm_reg_name reg,uint64_t * rval)292 vie_read_register(void *vm, int vcpuid, enum vm_reg_name reg, uint64_t *rval)
293 {
294 int error;
295
296 error = vm_get_register(vm, vcpuid, reg, rval);
297
298 return (error);
299 }
300
301 static void
vie_calc_bytereg(struct vie * vie,enum vm_reg_name * reg,int * lhbr)302 vie_calc_bytereg(struct vie *vie, enum vm_reg_name *reg, int *lhbr)
303 {
304 *lhbr = 0;
305 *reg = gpr_map[vie->reg];
306
307 /*
308 * 64-bit mode imposes limitations on accessing legacy high byte
309 * registers (lhbr).
310 *
311 * The legacy high-byte registers cannot be addressed if the REX
312 * prefix is present. In this case the values 4, 5, 6 and 7 of the
313 * 'ModRM:reg' field address %spl, %bpl, %sil and %dil respectively.
314 *
315 * If the REX prefix is not present then the values 4, 5, 6 and 7
316 * of the 'ModRM:reg' field address the legacy high-byte registers,
317 * %ah, %ch, %dh and %bh respectively.
318 */
319 if (!vie->rex_present) {
320 if (vie->reg & 0x4) {
321 *lhbr = 1;
322 *reg = gpr_map[vie->reg & 0x3];
323 }
324 }
325 }
326
327 static int
vie_read_bytereg(void * vm,int vcpuid,struct vie * vie,uint8_t * rval)328 vie_read_bytereg(void *vm, int vcpuid, struct vie *vie, uint8_t *rval)
329 {
330 uint64_t val;
331 int error, lhbr;
332 enum vm_reg_name reg;
333
334 vie_calc_bytereg(vie, ®, &lhbr);
335 error = vm_get_register(vm, vcpuid, reg, &val);
336
337 /*
338 * To obtain the value of a legacy high byte register shift the
339 * base register right by 8 bits (%ah = %rax >> 8).
340 */
341 if (lhbr)
342 *rval = val >> 8;
343 else
344 *rval = val;
345 return (error);
346 }
347
348 static int
vie_write_bytereg(void * vm,int vcpuid,struct vie * vie,uint8_t byte)349 vie_write_bytereg(void *vm, int vcpuid, struct vie *vie, uint8_t byte)
350 {
351 uint64_t origval, val, mask;
352 int error, lhbr;
353 enum vm_reg_name reg;
354
355 vie_calc_bytereg(vie, ®, &lhbr);
356 error = vm_get_register(vm, vcpuid, reg, &origval);
357 if (error == 0) {
358 val = byte;
359 mask = 0xff;
360 if (lhbr) {
361 /*
362 * Shift left by 8 to store 'byte' in a legacy high
363 * byte register.
364 */
365 val <<= 8;
366 mask <<= 8;
367 }
368 val |= origval & ~mask;
369 error = vm_set_register(vm, vcpuid, reg, val);
370 }
371 return (error);
372 }
373
374 int
vie_update_register(void * vm,int vcpuid,enum vm_reg_name reg,uint64_t val,int size)375 vie_update_register(void *vm, int vcpuid, enum vm_reg_name reg,
376 uint64_t val, int size)
377 {
378 int error;
379 uint64_t origval;
380
381 switch (size) {
382 case 1:
383 case 2:
384 error = vie_read_register(vm, vcpuid, reg, &origval);
385 if (error)
386 return (error);
387 val &= size2mask[size];
388 val |= origval & ~size2mask[size];
389 break;
390 case 4:
391 val &= 0xffffffffUL;
392 break;
393 case 8:
394 break;
395 default:
396 return (EINVAL);
397 }
398
399 error = vm_set_register(vm, vcpuid, reg, val);
400 return (error);
401 }
402
403 #define RFLAGS_STATUS_BITS (PSL_C | PSL_PF | PSL_AF | PSL_Z | PSL_N | PSL_V)
404
405 /*
406 * Return the status flags that would result from doing (x - y).
407 */
408 #define GETCC(sz) \
409 static u_long \
410 getcc##sz(uint##sz##_t x, uint##sz##_t y) \
411 { \
412 u_long rflags; \
413 \
414 __asm __volatile("sub %2,%1; pushfq; popq %0" : \
415 "=r" (rflags), "+r" (x) : "m" (y)); \
416 return (rflags); \
417 } struct __hack
418
419 GETCC(8);
420 GETCC(16);
421 GETCC(32);
422 GETCC(64);
423
424 static u_long
getcc(int opsize,uint64_t x,uint64_t y)425 getcc(int opsize, uint64_t x, uint64_t y)
426 {
427 KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
428 ("getcc: invalid operand size %d", opsize));
429
430 if (opsize == 1)
431 return (getcc8(x, y));
432 else if (opsize == 2)
433 return (getcc16(x, y));
434 else if (opsize == 4)
435 return (getcc32(x, y));
436 else
437 return (getcc64(x, y));
438 }
439
440 /*
441 * Macro creation of functions getaddflags{8,16,32,64}
442 */
443 #define GETADDFLAGS(sz) \
444 static u_long \
445 getaddflags##sz(uint##sz##_t x, uint##sz##_t y) \
446 { \
447 u_long rflags; \
448 \
449 __asm __volatile("add %2,%1; pushfq; popq %0" : \
450 "=r" (rflags), "+r" (x) : "m" (y)); \
451 return (rflags); \
452 } struct __hack
453
454 GETADDFLAGS(8);
455 GETADDFLAGS(16);
456 GETADDFLAGS(32);
457 GETADDFLAGS(64);
458
459 static u_long
getaddflags(int opsize,uint64_t x,uint64_t y)460 getaddflags(int opsize, uint64_t x, uint64_t y)
461 {
462 KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
463 ("getaddflags: invalid operand size %d", opsize));
464
465 if (opsize == 1)
466 return (getaddflags8(x, y));
467 else if (opsize == 2)
468 return (getaddflags16(x, y));
469 else if (opsize == 4)
470 return (getaddflags32(x, y));
471 else
472 return (getaddflags64(x, y));
473 }
474
475 /*
476 * Return the status flags that would result from doing (x & y).
477 */
478 #define GETANDFLAGS(sz) \
479 static u_long \
480 getandflags##sz(uint##sz##_t x, uint##sz##_t y) \
481 { \
482 u_long rflags; \
483 \
484 __asm __volatile("and %2,%1; pushfq; popq %0" : \
485 "=r" (rflags), "+r" (x) : "m" (y)); \
486 return (rflags); \
487 } struct __hack
488
489 GETANDFLAGS(8);
490 GETANDFLAGS(16);
491 GETANDFLAGS(32);
492 GETANDFLAGS(64);
493
494 static u_long
getandflags(int opsize,uint64_t x,uint64_t y)495 getandflags(int opsize, uint64_t x, uint64_t y)
496 {
497 KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
498 ("getandflags: invalid operand size %d", opsize));
499
500 if (opsize == 1)
501 return (getandflags8(x, y));
502 else if (opsize == 2)
503 return (getandflags16(x, y));
504 else if (opsize == 4)
505 return (getandflags32(x, y));
506 else
507 return (getandflags64(x, y));
508 }
509
510 static int
emulate_mov(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)511 emulate_mov(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
512 mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
513 {
514 int error, size;
515 enum vm_reg_name reg;
516 uint8_t byte;
517 uint64_t val;
518
519 size = vie->opsize;
520 error = EINVAL;
521
522 switch (vie->op.op_byte) {
523 case 0x88:
524 /*
525 * MOV byte from reg (ModRM:reg) to mem (ModRM:r/m)
526 * 88/r: mov r/m8, r8
527 * REX + 88/r: mov r/m8, r8 (%ah, %ch, %dh, %bh not available)
528 */
529 size = 1; /* override for byte operation */
530 error = vie_read_bytereg(vm, vcpuid, vie, &byte);
531 if (error == 0)
532 error = memwrite(vm, vcpuid, gpa, byte, size, arg);
533 break;
534 case 0x89:
535 /*
536 * MOV from reg (ModRM:reg) to mem (ModRM:r/m)
537 * 89/r: mov r/m16, r16
538 * 89/r: mov r/m32, r32
539 * REX.W + 89/r mov r/m64, r64
540 */
541 reg = gpr_map[vie->reg];
542 error = vie_read_register(vm, vcpuid, reg, &val);
543 if (error == 0) {
544 val &= size2mask[size];
545 error = memwrite(vm, vcpuid, gpa, val, size, arg);
546 }
547 break;
548 case 0x8A:
549 /*
550 * MOV byte from mem (ModRM:r/m) to reg (ModRM:reg)
551 * 8A/r: mov r8, r/m8
552 * REX + 8A/r: mov r8, r/m8
553 */
554 size = 1; /* override for byte operation */
555 error = memread(vm, vcpuid, gpa, &val, size, arg);
556 if (error == 0)
557 error = vie_write_bytereg(vm, vcpuid, vie, val);
558 break;
559 case 0x8B:
560 /*
561 * MOV from mem (ModRM:r/m) to reg (ModRM:reg)
562 * 8B/r: mov r16, r/m16
563 * 8B/r: mov r32, r/m32
564 * REX.W 8B/r: mov r64, r/m64
565 */
566 error = memread(vm, vcpuid, gpa, &val, size, arg);
567 if (error == 0) {
568 reg = gpr_map[vie->reg];
569 error = vie_update_register(vm, vcpuid, reg, val, size);
570 }
571 break;
572 case 0xA1:
573 /*
574 * MOV from seg:moffset to AX/EAX/RAX
575 * A1: mov AX, moffs16
576 * A1: mov EAX, moffs32
577 * REX.W + A1: mov RAX, moffs64
578 */
579 error = memread(vm, vcpuid, gpa, &val, size, arg);
580 if (error == 0) {
581 reg = VM_REG_GUEST_RAX;
582 error = vie_update_register(vm, vcpuid, reg, val, size);
583 }
584 break;
585 case 0xA3:
586 /*
587 * MOV from AX/EAX/RAX to seg:moffset
588 * A3: mov moffs16, AX
589 * A3: mov moffs32, EAX
590 * REX.W + A3: mov moffs64, RAX
591 */
592 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RAX, &val);
593 if (error == 0) {
594 val &= size2mask[size];
595 error = memwrite(vm, vcpuid, gpa, val, size, arg);
596 }
597 break;
598 case 0xC6:
599 /*
600 * MOV from imm8 to mem (ModRM:r/m)
601 * C6/0 mov r/m8, imm8
602 * REX + C6/0 mov r/m8, imm8
603 */
604 size = 1; /* override for byte operation */
605 error = memwrite(vm, vcpuid, gpa, vie->immediate, size, arg);
606 break;
607 case 0xC7:
608 /*
609 * MOV from imm16/imm32 to mem (ModRM:r/m)
610 * C7/0 mov r/m16, imm16
611 * C7/0 mov r/m32, imm32
612 * REX.W + C7/0 mov r/m64, imm32 (sign-extended to 64-bits)
613 */
614 val = vie->immediate & size2mask[size];
615 error = memwrite(vm, vcpuid, gpa, val, size, arg);
616 break;
617 default:
618 break;
619 }
620
621 return (error);
622 }
623
624 static int
emulate_movx(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)625 emulate_movx(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
626 mem_region_read_t memread, mem_region_write_t memwrite,
627 void *arg)
628 {
629 int error, size;
630 enum vm_reg_name reg;
631 uint64_t val;
632
633 size = vie->opsize;
634 error = EINVAL;
635
636 switch (vie->op.op_byte) {
637 case 0xB6:
638 /*
639 * MOV and zero extend byte from mem (ModRM:r/m) to
640 * reg (ModRM:reg).
641 *
642 * 0F B6/r movzx r16, r/m8
643 * 0F B6/r movzx r32, r/m8
644 * REX.W + 0F B6/r movzx r64, r/m8
645 */
646
647 /* get the first operand */
648 error = memread(vm, vcpuid, gpa, &val, 1, arg);
649 if (error)
650 break;
651
652 /* get the second operand */
653 reg = gpr_map[vie->reg];
654
655 /* zero-extend byte */
656 val = (uint8_t)val;
657
658 /* write the result */
659 error = vie_update_register(vm, vcpuid, reg, val, size);
660 break;
661 case 0xB7:
662 /*
663 * MOV and zero extend word from mem (ModRM:r/m) to
664 * reg (ModRM:reg).
665 *
666 * 0F B7/r movzx r32, r/m16
667 * REX.W + 0F B7/r movzx r64, r/m16
668 */
669 error = memread(vm, vcpuid, gpa, &val, 2, arg);
670 if (error)
671 return (error);
672
673 reg = gpr_map[vie->reg];
674
675 /* zero-extend word */
676 val = (uint16_t)val;
677
678 error = vie_update_register(vm, vcpuid, reg, val, size);
679 break;
680 case 0xBE:
681 /*
682 * MOV and sign extend byte from mem (ModRM:r/m) to
683 * reg (ModRM:reg).
684 *
685 * 0F BE/r movsx r16, r/m8
686 * 0F BE/r movsx r32, r/m8
687 * REX.W + 0F BE/r movsx r64, r/m8
688 */
689
690 /* get the first operand */
691 error = memread(vm, vcpuid, gpa, &val, 1, arg);
692 if (error)
693 break;
694
695 /* get the second operand */
696 reg = gpr_map[vie->reg];
697
698 /* sign extend byte */
699 val = (int8_t)val;
700
701 /* write the result */
702 error = vie_update_register(vm, vcpuid, reg, val, size);
703 break;
704 default:
705 break;
706 }
707 return (error);
708 }
709
710 /*
711 * Helper function to calculate and validate a linear address.
712 */
713 static int
get_gla(void * vm,int vcpuid,struct vie * vie,struct vm_guest_paging * paging,int opsize,int addrsize,int prot,enum vm_reg_name seg,enum vm_reg_name gpr,uint64_t * gla,int * fault)714 get_gla(void *vm, int vcpuid, struct vie *vie, struct vm_guest_paging *paging,
715 int opsize, int addrsize, int prot, enum vm_reg_name seg,
716 enum vm_reg_name gpr, uint64_t *gla, int *fault)
717 {
718 struct seg_desc desc;
719 uint64_t cr0, val, rflags;
720 int error;
721
722 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_CR0, &cr0);
723 KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
724
725 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
726 KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
727
728 error = vm_get_seg_desc(vm, vcpuid, seg, &desc);
729 KASSERT(error == 0, ("%s: error %d getting segment descriptor %d",
730 __func__, error, seg));
731
732 error = vie_read_register(vm, vcpuid, gpr, &val);
733 KASSERT(error == 0, ("%s: error %d getting register %d", __func__,
734 error, gpr));
735
736 if (vie_calculate_gla(paging->cpu_mode, seg, &desc, val, opsize,
737 addrsize, prot, gla)) {
738 if (seg == VM_REG_GUEST_SS)
739 vm_inject_ss(vm, vcpuid, 0);
740 else
741 vm_inject_gp(vm, vcpuid);
742 goto guest_fault;
743 }
744
745 if (vie_canonical_check(paging->cpu_mode, *gla)) {
746 if (seg == VM_REG_GUEST_SS)
747 vm_inject_ss(vm, vcpuid, 0);
748 else
749 vm_inject_gp(vm, vcpuid);
750 goto guest_fault;
751 }
752
753 if (vie_alignment_check(paging->cpl, opsize, cr0, rflags, *gla)) {
754 vm_inject_ac(vm, vcpuid, 0);
755 goto guest_fault;
756 }
757
758 *fault = 0;
759 return (0);
760
761 guest_fault:
762 *fault = 1;
763 return (0);
764 }
765
766 static int
emulate_movs(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,struct vm_guest_paging * paging,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)767 emulate_movs(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
768 struct vm_guest_paging *paging, mem_region_read_t memread,
769 mem_region_write_t memwrite, void *arg)
770 {
771 #ifdef _KERNEL
772 struct vm_copyinfo copyinfo[2];
773 #else
774 struct iovec copyinfo[2];
775 #endif
776 uint64_t dstaddr, srcaddr, dstgpa, srcgpa, val;
777 uint64_t rcx, rdi, rsi, rflags;
778 int error, fault, opsize, seg, repeat;
779
780 opsize = (vie->op.op_byte == 0xA4) ? 1 : vie->opsize;
781 val = 0;
782 error = 0;
783
784 /*
785 * XXX although the MOVS instruction is only supposed to be used with
786 * the "rep" prefix some guests like FreeBSD will use "repnz" instead.
787 *
788 * Empirically the "repnz" prefix has identical behavior to "rep"
789 * and the zero flag does not make a difference.
790 */
791 repeat = vie->repz_present | vie->repnz_present;
792
793 if (repeat) {
794 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RCX, &rcx);
795 KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
796
797 /*
798 * The count register is %rcx, %ecx or %cx depending on the
799 * address size of the instruction.
800 */
801 if ((rcx & vie_size2mask(vie->addrsize)) == 0) {
802 error = 0;
803 goto done;
804 }
805 }
806
807 /*
808 * Source Destination Comments
809 * --------------------------------------------
810 * (1) memory memory n/a
811 * (2) memory mmio emulated
812 * (3) mmio memory emulated
813 * (4) mmio mmio emulated
814 *
815 * At this point we don't have sufficient information to distinguish
816 * between (2), (3) and (4). We use 'vm_copy_setup()' to tease this
817 * out because it will succeed only when operating on regular memory.
818 *
819 * XXX the emulation doesn't properly handle the case where 'gpa'
820 * is straddling the boundary between the normal memory and MMIO.
821 */
822
823 seg = vie->segment_override ? vie->segment_register : VM_REG_GUEST_DS;
824 error = get_gla(vm, vcpuid, vie, paging, opsize, vie->addrsize,
825 PROT_READ, seg, VM_REG_GUEST_RSI, &srcaddr, &fault);
826 if (error || fault)
827 goto done;
828
829 error = vm_copy_setup(vm, vcpuid, paging, srcaddr, opsize, PROT_READ,
830 copyinfo, nitems(copyinfo), &fault);
831 if (error == 0) {
832 if (fault)
833 goto done; /* Resume guest to handle fault */
834
835 /*
836 * case (2): read from system memory and write to mmio.
837 */
838 vm_copyin(vm, vcpuid, copyinfo, &val, opsize);
839 vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
840 error = memwrite(vm, vcpuid, gpa, val, opsize, arg);
841 if (error)
842 goto done;
843 } else {
844 /*
845 * 'vm_copy_setup()' is expected to fail for cases (3) and (4)
846 * if 'srcaddr' is in the mmio space.
847 */
848
849 error = get_gla(vm, vcpuid, vie, paging, opsize, vie->addrsize,
850 PROT_WRITE, VM_REG_GUEST_ES, VM_REG_GUEST_RDI, &dstaddr,
851 &fault);
852 if (error || fault)
853 goto done;
854
855 error = vm_copy_setup(vm, vcpuid, paging, dstaddr, opsize,
856 PROT_WRITE, copyinfo, nitems(copyinfo), &fault);
857 if (error == 0) {
858 if (fault)
859 goto done; /* Resume guest to handle fault */
860
861 /*
862 * case (3): read from MMIO and write to system memory.
863 *
864 * A MMIO read can have side-effects so we
865 * commit to it only after vm_copy_setup() is
866 * successful. If a page-fault needs to be
867 * injected into the guest then it will happen
868 * before the MMIO read is attempted.
869 */
870 error = memread(vm, vcpuid, gpa, &val, opsize, arg);
871 if (error)
872 goto done;
873
874 vm_copyout(vm, vcpuid, &val, copyinfo, opsize);
875 vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
876 } else {
877 /*
878 * Case (4): read from and write to mmio.
879 *
880 * Commit to the MMIO read/write (with potential
881 * side-effects) only after we are sure that the
882 * instruction is not going to be restarted due
883 * to address translation faults.
884 */
885 error = vm_gla2gpa(vm, vcpuid, paging, srcaddr,
886 PROT_READ, &srcgpa, &fault);
887 if (error || fault)
888 goto done;
889
890 error = vm_gla2gpa(vm, vcpuid, paging, dstaddr,
891 PROT_WRITE, &dstgpa, &fault);
892 if (error || fault)
893 goto done;
894
895 error = memread(vm, vcpuid, srcgpa, &val, opsize, arg);
896 if (error)
897 goto done;
898
899 error = memwrite(vm, vcpuid, dstgpa, val, opsize, arg);
900 if (error)
901 goto done;
902 }
903 }
904
905 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RSI, &rsi);
906 KASSERT(error == 0, ("%s: error %d getting rsi", __func__, error));
907
908 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RDI, &rdi);
909 KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
910
911 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
912 KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
913
914 if (rflags & PSL_D) {
915 rsi -= opsize;
916 rdi -= opsize;
917 } else {
918 rsi += opsize;
919 rdi += opsize;
920 }
921
922 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RSI, rsi,
923 vie->addrsize);
924 KASSERT(error == 0, ("%s: error %d updating rsi", __func__, error));
925
926 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RDI, rdi,
927 vie->addrsize);
928 KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
929
930 if (repeat) {
931 rcx = rcx - 1;
932 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RCX,
933 rcx, vie->addrsize);
934 KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
935
936 /*
937 * Repeat the instruction if the count register is not zero.
938 */
939 if ((rcx & vie_size2mask(vie->addrsize)) != 0)
940 vm_restart_instruction(vm, vcpuid);
941 }
942 done:
943 KASSERT(error == 0 || error == EFAULT, ("%s: unexpected error %d",
944 __func__, error));
945 return (error);
946 }
947
948 static int
emulate_stos(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,struct vm_guest_paging * paging,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)949 emulate_stos(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
950 struct vm_guest_paging *paging, mem_region_read_t memread,
951 mem_region_write_t memwrite, void *arg)
952 {
953 int error, opsize, repeat;
954 uint64_t val;
955 uint64_t rcx, rdi, rflags;
956
957 opsize = (vie->op.op_byte == 0xAA) ? 1 : vie->opsize;
958 repeat = vie->repz_present | vie->repnz_present;
959
960 if (repeat) {
961 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RCX, &rcx);
962 KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
963
964 /*
965 * The count register is %rcx, %ecx or %cx depending on the
966 * address size of the instruction.
967 */
968 if ((rcx & vie_size2mask(vie->addrsize)) == 0)
969 return (0);
970 }
971
972 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RAX, &val);
973 KASSERT(!error, ("%s: error %d getting rax", __func__, error));
974
975 error = memwrite(vm, vcpuid, gpa, val, opsize, arg);
976 if (error)
977 return (error);
978
979 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RDI, &rdi);
980 KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
981
982 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
983 KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
984
985 if (rflags & PSL_D)
986 rdi -= opsize;
987 else
988 rdi += opsize;
989
990 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RDI, rdi,
991 vie->addrsize);
992 KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
993
994 if (repeat) {
995 rcx = rcx - 1;
996 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RCX,
997 rcx, vie->addrsize);
998 KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
999
1000 /*
1001 * Repeat the instruction if the count register is not zero.
1002 */
1003 if ((rcx & vie_size2mask(vie->addrsize)) != 0)
1004 vm_restart_instruction(vm, vcpuid);
1005 }
1006
1007 return (0);
1008 }
1009
1010 static int
emulate_and(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)1011 emulate_and(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1012 mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
1013 {
1014 int error, size;
1015 enum vm_reg_name reg;
1016 uint64_t result, rflags, rflags2, val1, val2;
1017
1018 size = vie->opsize;
1019 error = EINVAL;
1020
1021 switch (vie->op.op_byte) {
1022 case 0x23:
1023 /*
1024 * AND reg (ModRM:reg) and mem (ModRM:r/m) and store the
1025 * result in reg.
1026 *
1027 * 23/r and r16, r/m16
1028 * 23/r and r32, r/m32
1029 * REX.W + 23/r and r64, r/m64
1030 */
1031
1032 /* get the first operand */
1033 reg = gpr_map[vie->reg];
1034 error = vie_read_register(vm, vcpuid, reg, &val1);
1035 if (error)
1036 break;
1037
1038 /* get the second operand */
1039 error = memread(vm, vcpuid, gpa, &val2, size, arg);
1040 if (error)
1041 break;
1042
1043 /* perform the operation and write the result */
1044 result = val1 & val2;
1045 error = vie_update_register(vm, vcpuid, reg, result, size);
1046 break;
1047 case 0x81:
1048 case 0x83:
1049 /*
1050 * AND mem (ModRM:r/m) with immediate and store the
1051 * result in mem.
1052 *
1053 * 81 /4 and r/m16, imm16
1054 * 81 /4 and r/m32, imm32
1055 * REX.W + 81 /4 and r/m64, imm32 sign-extended to 64
1056 *
1057 * 83 /4 and r/m16, imm8 sign-extended to 16
1058 * 83 /4 and r/m32, imm8 sign-extended to 32
1059 * REX.W + 83/4 and r/m64, imm8 sign-extended to 64
1060 */
1061
1062 /* get the first operand */
1063 error = memread(vm, vcpuid, gpa, &val1, size, arg);
1064 if (error)
1065 break;
1066
1067 /*
1068 * perform the operation with the pre-fetched immediate
1069 * operand and write the result
1070 */
1071 result = val1 & vie->immediate;
1072 error = memwrite(vm, vcpuid, gpa, result, size, arg);
1073 break;
1074 default:
1075 break;
1076 }
1077 if (error)
1078 return (error);
1079
1080 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1081 if (error)
1082 return (error);
1083
1084 /*
1085 * OF and CF are cleared; the SF, ZF and PF flags are set according
1086 * to the result; AF is undefined.
1087 *
1088 * The updated status flags are obtained by subtracting 0 from 'result'.
1089 */
1090 rflags2 = getcc(size, result, 0);
1091 rflags &= ~RFLAGS_STATUS_BITS;
1092 rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
1093
1094 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
1095 return (error);
1096 }
1097
1098 static int
emulate_or(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)1099 emulate_or(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1100 mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
1101 {
1102 int error, size;
1103 enum vm_reg_name reg;
1104 uint64_t result, rflags, rflags2, val1, val2;
1105
1106 size = vie->opsize;
1107 error = EINVAL;
1108
1109 switch (vie->op.op_byte) {
1110 case 0x0B:
1111 /*
1112 * OR reg (ModRM:reg) and mem (ModRM:r/m) and store the
1113 * result in reg.
1114 *
1115 * 0b/r or r16, r/m16
1116 * 0b/r or r32, r/m32
1117 * REX.W + 0b/r or r64, r/m64
1118 */
1119
1120 /* get the first operand */
1121 reg = gpr_map[vie->reg];
1122 error = vie_read_register(vm, vcpuid, reg, &val1);
1123 if (error)
1124 break;
1125
1126 /* get the second operand */
1127 error = memread(vm, vcpuid, gpa, &val2, size, arg);
1128 if (error)
1129 break;
1130
1131 /* perform the operation and write the result */
1132 result = val1 | val2;
1133 error = vie_update_register(vm, vcpuid, reg, result, size);
1134 break;
1135 case 0x81:
1136 case 0x83:
1137 /*
1138 * OR mem (ModRM:r/m) with immediate and store the
1139 * result in mem.
1140 *
1141 * 81 /1 or r/m16, imm16
1142 * 81 /1 or r/m32, imm32
1143 * REX.W + 81 /1 or r/m64, imm32 sign-extended to 64
1144 *
1145 * 83 /1 or r/m16, imm8 sign-extended to 16
1146 * 83 /1 or r/m32, imm8 sign-extended to 32
1147 * REX.W + 83/1 or r/m64, imm8 sign-extended to 64
1148 */
1149
1150 /* get the first operand */
1151 error = memread(vm, vcpuid, gpa, &val1, size, arg);
1152 if (error)
1153 break;
1154
1155 /*
1156 * perform the operation with the pre-fetched immediate
1157 * operand and write the result
1158 */
1159 result = val1 | vie->immediate;
1160 error = memwrite(vm, vcpuid, gpa, result, size, arg);
1161 break;
1162 default:
1163 break;
1164 }
1165 if (error)
1166 return (error);
1167
1168 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1169 if (error)
1170 return (error);
1171
1172 /*
1173 * OF and CF are cleared; the SF, ZF and PF flags are set according
1174 * to the result; AF is undefined.
1175 *
1176 * The updated status flags are obtained by subtracting 0 from 'result'.
1177 */
1178 rflags2 = getcc(size, result, 0);
1179 rflags &= ~RFLAGS_STATUS_BITS;
1180 rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
1181
1182 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
1183 return (error);
1184 }
1185
1186 static int
emulate_cmp(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)1187 emulate_cmp(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1188 mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
1189 {
1190 int error, size;
1191 uint64_t regop, memop, op1, op2, rflags, rflags2;
1192 enum vm_reg_name reg;
1193
1194 size = vie->opsize;
1195 switch (vie->op.op_byte) {
1196 case 0x39:
1197 case 0x3B:
1198 /*
1199 * 39/r CMP r/m16, r16
1200 * 39/r CMP r/m32, r32
1201 * REX.W 39/r CMP r/m64, r64
1202 *
1203 * 3B/r CMP r16, r/m16
1204 * 3B/r CMP r32, r/m32
1205 * REX.W + 3B/r CMP r64, r/m64
1206 *
1207 * Compare the first operand with the second operand and
1208 * set status flags in EFLAGS register. The comparison is
1209 * performed by subtracting the second operand from the first
1210 * operand and then setting the status flags.
1211 */
1212
1213 /* Get the register operand */
1214 reg = gpr_map[vie->reg];
1215 error = vie_read_register(vm, vcpuid, reg, ®op);
1216 if (error)
1217 return (error);
1218
1219 /* Get the memory operand */
1220 error = memread(vm, vcpuid, gpa, &memop, size, arg);
1221 if (error)
1222 return (error);
1223
1224 if (vie->op.op_byte == 0x3B) {
1225 op1 = regop;
1226 op2 = memop;
1227 } else {
1228 op1 = memop;
1229 op2 = regop;
1230 }
1231 rflags2 = getcc(size, op1, op2);
1232 break;
1233 case 0x80:
1234 case 0x81:
1235 case 0x83:
1236 /*
1237 * 80 /7 cmp r/m8, imm8
1238 * REX + 80 /7 cmp r/m8, imm8
1239 *
1240 * 81 /7 cmp r/m16, imm16
1241 * 81 /7 cmp r/m32, imm32
1242 * REX.W + 81 /7 cmp r/m64, imm32 sign-extended to 64
1243 *
1244 * 83 /7 cmp r/m16, imm8 sign-extended to 16
1245 * 83 /7 cmp r/m32, imm8 sign-extended to 32
1246 * REX.W + 83 /7 cmp r/m64, imm8 sign-extended to 64
1247 *
1248 * Compare mem (ModRM:r/m) with immediate and set
1249 * status flags according to the results. The
1250 * comparison is performed by subtracting the
1251 * immediate from the first operand and then setting
1252 * the status flags.
1253 *
1254 */
1255 if (vie->op.op_byte == 0x80)
1256 size = 1;
1257
1258 /* get the first operand */
1259 error = memread(vm, vcpuid, gpa, &op1, size, arg);
1260 if (error)
1261 return (error);
1262
1263 rflags2 = getcc(size, op1, vie->immediate);
1264 break;
1265 default:
1266 return (EINVAL);
1267 }
1268 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1269 if (error)
1270 return (error);
1271 rflags &= ~RFLAGS_STATUS_BITS;
1272 rflags |= rflags2 & RFLAGS_STATUS_BITS;
1273
1274 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
1275 return (error);
1276 }
1277
1278 static int
emulate_test(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)1279 emulate_test(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1280 mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
1281 {
1282 int error, size;
1283 uint64_t op1, rflags, rflags2;
1284
1285 size = vie->opsize;
1286 error = EINVAL;
1287
1288 switch (vie->op.op_byte) {
1289 case 0xF7:
1290 /*
1291 * F7 /0 test r/m16, imm16
1292 * F7 /0 test r/m32, imm32
1293 * REX.W + F7 /0 test r/m64, imm32 sign-extended to 64
1294 *
1295 * Test mem (ModRM:r/m) with immediate and set status
1296 * flags according to the results. The comparison is
1297 * performed by anding the immediate from the first
1298 * operand and then setting the status flags.
1299 */
1300 if ((vie->reg & 7) != 0)
1301 return (EINVAL);
1302
1303 error = memread(vm, vcpuid, gpa, &op1, size, arg);
1304 if (error)
1305 return (error);
1306
1307 rflags2 = getandflags(size, op1, vie->immediate);
1308 break;
1309 default:
1310 return (EINVAL);
1311 }
1312 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1313 if (error)
1314 return (error);
1315
1316 /*
1317 * OF and CF are cleared; the SF, ZF and PF flags are set according
1318 * to the result; AF is undefined.
1319 */
1320 rflags &= ~RFLAGS_STATUS_BITS;
1321 rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
1322
1323 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
1324 return (error);
1325 }
1326
1327 static int
emulate_bextr(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,struct vm_guest_paging * paging,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)1328 emulate_bextr(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1329 struct vm_guest_paging *paging, mem_region_read_t memread,
1330 mem_region_write_t memwrite, void *arg)
1331 {
1332 uint64_t src1, src2, dst, rflags;
1333 unsigned start, len;
1334 int error, size;
1335
1336 size = vie->opsize;
1337 error = EINVAL;
1338
1339 /*
1340 * VEX.LZ.0F38.W0 F7 /r BEXTR r32a, r/m32, r32b
1341 * VEX.LZ.0F38.W1 F7 /r BEXTR r64a, r/m64, r64b
1342 *
1343 * Destination operand is ModRM:reg. Source operands are ModRM:r/m and
1344 * Vex.vvvv.
1345 *
1346 * Operand size is always 32-bit if not in 64-bit mode (W1 is ignored).
1347 */
1348 if (size != 4 && paging->cpu_mode != CPU_MODE_64BIT)
1349 size = 4;
1350
1351 /*
1352 * Extracts contiguous bits from the first /source/ operand (second
1353 * operand) using an index and length specified in the second /source/
1354 * operand (third operand).
1355 */
1356 error = memread(vm, vcpuid, gpa, &src1, size, arg);
1357 if (error)
1358 return (error);
1359 error = vie_read_register(vm, vcpuid, gpr_map[vie->vex_reg], &src2);
1360 if (error)
1361 return (error);
1362 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1363 if (error)
1364 return (error);
1365
1366 start = (src2 & 0xff);
1367 len = (src2 & 0xff00) >> 8;
1368
1369 /* If no bits are extracted, the destination register is cleared. */
1370 dst = 0;
1371
1372 /* If START exceeds the operand size, no bits are extracted. */
1373 if (start > size * 8)
1374 goto done;
1375 /* Length is bounded by both the destination size and start offset. */
1376 if (start + len > size * 8)
1377 len = (size * 8) - start;
1378 if (len == 0)
1379 goto done;
1380
1381 if (start > 0)
1382 src1 = (src1 >> start);
1383 if (len < 64)
1384 src1 = src1 & ((1ull << len) - 1);
1385 dst = src1;
1386
1387 done:
1388 error = vie_update_register(vm, vcpuid, gpr_map[vie->reg], dst, size);
1389 if (error)
1390 return (error);
1391
1392 /*
1393 * AMD: OF, CF cleared; SF/AF/PF undefined; ZF set by result.
1394 * Intel: ZF is set by result; AF/SF/PF undefined; all others cleared.
1395 */
1396 rflags &= ~RFLAGS_STATUS_BITS;
1397 if (dst == 0)
1398 rflags |= PSL_Z;
1399 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags,
1400 8);
1401 return (error);
1402 }
1403
1404 static int
emulate_add(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)1405 emulate_add(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1406 mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
1407 {
1408 int error, size;
1409 uint64_t nval, rflags, rflags2, val1, val2;
1410 enum vm_reg_name reg;
1411
1412 size = vie->opsize;
1413 error = EINVAL;
1414
1415 switch (vie->op.op_byte) {
1416 case 0x03:
1417 /*
1418 * ADD r/m to r and store the result in r
1419 *
1420 * 03/r ADD r16, r/m16
1421 * 03/r ADD r32, r/m32
1422 * REX.W + 03/r ADD r64, r/m64
1423 */
1424
1425 /* get the first operand */
1426 reg = gpr_map[vie->reg];
1427 error = vie_read_register(vm, vcpuid, reg, &val1);
1428 if (error)
1429 break;
1430
1431 /* get the second operand */
1432 error = memread(vm, vcpuid, gpa, &val2, size, arg);
1433 if (error)
1434 break;
1435
1436 /* perform the operation and write the result */
1437 nval = val1 + val2;
1438 error = vie_update_register(vm, vcpuid, reg, nval, size);
1439 break;
1440 default:
1441 break;
1442 }
1443
1444 if (!error) {
1445 rflags2 = getaddflags(size, val1, val2);
1446 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
1447 &rflags);
1448 if (error)
1449 return (error);
1450
1451 rflags &= ~RFLAGS_STATUS_BITS;
1452 rflags |= rflags2 & RFLAGS_STATUS_BITS;
1453 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
1454 rflags, 8);
1455 }
1456
1457 return (error);
1458 }
1459
1460 static int
emulate_sub(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)1461 emulate_sub(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1462 mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
1463 {
1464 int error, size;
1465 uint64_t nval, rflags, rflags2, val1, val2;
1466 enum vm_reg_name reg;
1467
1468 size = vie->opsize;
1469 error = EINVAL;
1470
1471 switch (vie->op.op_byte) {
1472 case 0x2B:
1473 /*
1474 * SUB r/m from r and store the result in r
1475 *
1476 * 2B/r SUB r16, r/m16
1477 * 2B/r SUB r32, r/m32
1478 * REX.W + 2B/r SUB r64, r/m64
1479 */
1480
1481 /* get the first operand */
1482 reg = gpr_map[vie->reg];
1483 error = vie_read_register(vm, vcpuid, reg, &val1);
1484 if (error)
1485 break;
1486
1487 /* get the second operand */
1488 error = memread(vm, vcpuid, gpa, &val2, size, arg);
1489 if (error)
1490 break;
1491
1492 /* perform the operation and write the result */
1493 nval = val1 - val2;
1494 error = vie_update_register(vm, vcpuid, reg, nval, size);
1495 break;
1496 default:
1497 break;
1498 }
1499
1500 if (!error) {
1501 rflags2 = getcc(size, val1, val2);
1502 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
1503 &rflags);
1504 if (error)
1505 return (error);
1506
1507 rflags &= ~RFLAGS_STATUS_BITS;
1508 rflags |= rflags2 & RFLAGS_STATUS_BITS;
1509 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
1510 rflags, 8);
1511 }
1512
1513 return (error);
1514 }
1515
1516 static int
emulate_stack_op(void * vm,int vcpuid,uint64_t mmio_gpa,struct vie * vie,struct vm_guest_paging * paging,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)1517 emulate_stack_op(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
1518 struct vm_guest_paging *paging, mem_region_read_t memread,
1519 mem_region_write_t memwrite, void *arg)
1520 {
1521 #ifdef _KERNEL
1522 struct vm_copyinfo copyinfo[2];
1523 #else
1524 struct iovec copyinfo[2];
1525 #endif
1526 struct seg_desc ss_desc;
1527 uint64_t cr0, rflags, rsp, stack_gla, val;
1528 int error, fault, size, stackaddrsize, pushop;
1529
1530 val = 0;
1531 size = vie->opsize;
1532 pushop = (vie->op.op_type == VIE_OP_TYPE_PUSH) ? 1 : 0;
1533
1534 /*
1535 * From "Address-Size Attributes for Stack Accesses", Intel SDL, Vol 1
1536 */
1537 if (paging->cpu_mode == CPU_MODE_REAL) {
1538 stackaddrsize = 2;
1539 } else if (paging->cpu_mode == CPU_MODE_64BIT) {
1540 /*
1541 * "Stack Manipulation Instructions in 64-bit Mode", SDM, Vol 3
1542 * - Stack pointer size is always 64-bits.
1543 * - PUSH/POP of 32-bit values is not possible in 64-bit mode.
1544 * - 16-bit PUSH/POP is supported by using the operand size
1545 * override prefix (66H).
1546 */
1547 stackaddrsize = 8;
1548 size = vie->opsize_override ? 2 : 8;
1549 } else {
1550 /*
1551 * In protected or compatibility mode the 'B' flag in the
1552 * stack-segment descriptor determines the size of the
1553 * stack pointer.
1554 */
1555 error = vm_get_seg_desc(vm, vcpuid, VM_REG_GUEST_SS, &ss_desc);
1556 KASSERT(error == 0, ("%s: error %d getting SS descriptor",
1557 __func__, error));
1558 if (SEG_DESC_DEF32(ss_desc.access))
1559 stackaddrsize = 4;
1560 else
1561 stackaddrsize = 2;
1562 }
1563
1564 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_CR0, &cr0);
1565 KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
1566
1567 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1568 KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
1569
1570 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RSP, &rsp);
1571 KASSERT(error == 0, ("%s: error %d getting rsp", __func__, error));
1572 if (pushop) {
1573 rsp -= size;
1574 }
1575
1576 if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS, &ss_desc,
1577 rsp, size, stackaddrsize, pushop ? PROT_WRITE : PROT_READ,
1578 &stack_gla)) {
1579 vm_inject_ss(vm, vcpuid, 0);
1580 return (0);
1581 }
1582
1583 if (vie_canonical_check(paging->cpu_mode, stack_gla)) {
1584 vm_inject_ss(vm, vcpuid, 0);
1585 return (0);
1586 }
1587
1588 if (vie_alignment_check(paging->cpl, size, cr0, rflags, stack_gla)) {
1589 vm_inject_ac(vm, vcpuid, 0);
1590 return (0);
1591 }
1592
1593 error = vm_copy_setup(vm, vcpuid, paging, stack_gla, size,
1594 pushop ? PROT_WRITE : PROT_READ, copyinfo, nitems(copyinfo),
1595 &fault);
1596 if (error || fault)
1597 return (error);
1598
1599 if (pushop) {
1600 error = memread(vm, vcpuid, mmio_gpa, &val, size, arg);
1601 if (error == 0)
1602 vm_copyout(vm, vcpuid, &val, copyinfo, size);
1603 } else {
1604 vm_copyin(vm, vcpuid, copyinfo, &val, size);
1605 error = memwrite(vm, vcpuid, mmio_gpa, val, size, arg);
1606 rsp += size;
1607 }
1608 vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
1609
1610 if (error == 0) {
1611 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RSP, rsp,
1612 stackaddrsize);
1613 KASSERT(error == 0, ("error %d updating rsp", error));
1614 }
1615 return (error);
1616 }
1617
1618 static int
emulate_push(void * vm,int vcpuid,uint64_t mmio_gpa,struct vie * vie,struct vm_guest_paging * paging,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)1619 emulate_push(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
1620 struct vm_guest_paging *paging, mem_region_read_t memread,
1621 mem_region_write_t memwrite, void *arg)
1622 {
1623 int error;
1624
1625 /*
1626 * Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
1627 *
1628 * PUSH is part of the group 5 extended opcodes and is identified
1629 * by ModRM:reg = b110.
1630 */
1631 if ((vie->reg & 7) != 6)
1632 return (EINVAL);
1633
1634 error = emulate_stack_op(vm, vcpuid, mmio_gpa, vie, paging, memread,
1635 memwrite, arg);
1636 return (error);
1637 }
1638
1639 static int
emulate_pop(void * vm,int vcpuid,uint64_t mmio_gpa,struct vie * vie,struct vm_guest_paging * paging,mem_region_read_t memread,mem_region_write_t memwrite,void * arg)1640 emulate_pop(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
1641 struct vm_guest_paging *paging, mem_region_read_t memread,
1642 mem_region_write_t memwrite, void *arg)
1643 {
1644 int error;
1645
1646 /*
1647 * Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
1648 *
1649 * POP is part of the group 1A extended opcodes and is identified
1650 * by ModRM:reg = b000.
1651 */
1652 if ((vie->reg & 7) != 0)
1653 return (EINVAL);
1654
1655 error = emulate_stack_op(vm, vcpuid, mmio_gpa, vie, paging, memread,
1656 memwrite, arg);
1657 return (error);
1658 }
1659
1660 static int
emulate_group1(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,struct vm_guest_paging * paging,mem_region_read_t memread,mem_region_write_t memwrite,void * memarg)1661 emulate_group1(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1662 struct vm_guest_paging *paging, mem_region_read_t memread,
1663 mem_region_write_t memwrite, void *memarg)
1664 {
1665 int error;
1666
1667 switch (vie->reg & 7) {
1668 case 0x1: /* OR */
1669 error = emulate_or(vm, vcpuid, gpa, vie,
1670 memread, memwrite, memarg);
1671 break;
1672 case 0x4: /* AND */
1673 error = emulate_and(vm, vcpuid, gpa, vie,
1674 memread, memwrite, memarg);
1675 break;
1676 case 0x7: /* CMP */
1677 error = emulate_cmp(vm, vcpuid, gpa, vie,
1678 memread, memwrite, memarg);
1679 break;
1680 default:
1681 error = EINVAL;
1682 break;
1683 }
1684
1685 return (error);
1686 }
1687
1688 static int
emulate_bittest(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,mem_region_read_t memread,mem_region_write_t memwrite,void * memarg)1689 emulate_bittest(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1690 mem_region_read_t memread, mem_region_write_t memwrite, void *memarg)
1691 {
1692 uint64_t val, rflags;
1693 int error, bitmask, bitoff;
1694
1695 /*
1696 * 0F BA is a Group 8 extended opcode.
1697 *
1698 * Currently we only emulate the 'Bit Test' instruction which is
1699 * identified by a ModR/M:reg encoding of 100b.
1700 */
1701 if ((vie->reg & 7) != 4)
1702 return (EINVAL);
1703
1704 error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1705 KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
1706
1707 error = memread(vm, vcpuid, gpa, &val, vie->opsize, memarg);
1708 if (error)
1709 return (error);
1710
1711 /*
1712 * Intel SDM, Vol 2, Table 3-2:
1713 * "Range of Bit Positions Specified by Bit Offset Operands"
1714 */
1715 bitmask = vie->opsize * 8 - 1;
1716 bitoff = vie->immediate & bitmask;
1717
1718 /* Copy the bit into the Carry flag in %rflags */
1719 if (val & (1UL << bitoff))
1720 rflags |= PSL_C;
1721 else
1722 rflags &= ~PSL_C;
1723
1724 error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
1725 KASSERT(error == 0, ("%s: error %d updating rflags", __func__, error));
1726
1727 return (0);
1728 }
1729
1730 static int
emulate_twob_group15(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,mem_region_read_t memread,mem_region_write_t memwrite,void * memarg)1731 emulate_twob_group15(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1732 mem_region_read_t memread, mem_region_write_t memwrite, void *memarg)
1733 {
1734 int error;
1735 uint64_t buf;
1736
1737 switch (vie->reg & 7) {
1738 case 0x7: /* CLFLUSH, CLFLUSHOPT, and SFENCE */
1739 if (vie->mod == 0x3) {
1740 /*
1741 * SFENCE. Ignore it, VM exit provides enough
1742 * barriers on its own.
1743 */
1744 error = 0;
1745 } else {
1746 /*
1747 * CLFLUSH, CLFLUSHOPT. Only check for access
1748 * rights.
1749 */
1750 error = memread(vm, vcpuid, gpa, &buf, 1, memarg);
1751 }
1752 break;
1753 default:
1754 error = EINVAL;
1755 break;
1756 }
1757
1758 return (error);
1759 }
1760
1761 int
vmm_emulate_instruction(void * vm,int vcpuid,uint64_t gpa,struct vie * vie,struct vm_guest_paging * paging,mem_region_read_t memread,mem_region_write_t memwrite,void * memarg)1762 vmm_emulate_instruction(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1763 struct vm_guest_paging *paging, mem_region_read_t memread,
1764 mem_region_write_t memwrite, void *memarg)
1765 {
1766 int error;
1767
1768 if (!vie->decoded)
1769 return (EINVAL);
1770
1771 switch (vie->op.op_type) {
1772 case VIE_OP_TYPE_GROUP1:
1773 error = emulate_group1(vm, vcpuid, gpa, vie, paging, memread,
1774 memwrite, memarg);
1775 break;
1776 case VIE_OP_TYPE_POP:
1777 error = emulate_pop(vm, vcpuid, gpa, vie, paging, memread,
1778 memwrite, memarg);
1779 break;
1780 case VIE_OP_TYPE_PUSH:
1781 error = emulate_push(vm, vcpuid, gpa, vie, paging, memread,
1782 memwrite, memarg);
1783 break;
1784 case VIE_OP_TYPE_CMP:
1785 error = emulate_cmp(vm, vcpuid, gpa, vie,
1786 memread, memwrite, memarg);
1787 break;
1788 case VIE_OP_TYPE_MOV:
1789 error = emulate_mov(vm, vcpuid, gpa, vie,
1790 memread, memwrite, memarg);
1791 break;
1792 case VIE_OP_TYPE_MOVSX:
1793 case VIE_OP_TYPE_MOVZX:
1794 error = emulate_movx(vm, vcpuid, gpa, vie,
1795 memread, memwrite, memarg);
1796 break;
1797 case VIE_OP_TYPE_MOVS:
1798 error = emulate_movs(vm, vcpuid, gpa, vie, paging, memread,
1799 memwrite, memarg);
1800 break;
1801 case VIE_OP_TYPE_STOS:
1802 error = emulate_stos(vm, vcpuid, gpa, vie, paging, memread,
1803 memwrite, memarg);
1804 break;
1805 case VIE_OP_TYPE_AND:
1806 error = emulate_and(vm, vcpuid, gpa, vie,
1807 memread, memwrite, memarg);
1808 break;
1809 case VIE_OP_TYPE_OR:
1810 error = emulate_or(vm, vcpuid, gpa, vie,
1811 memread, memwrite, memarg);
1812 break;
1813 case VIE_OP_TYPE_SUB:
1814 error = emulate_sub(vm, vcpuid, gpa, vie,
1815 memread, memwrite, memarg);
1816 break;
1817 case VIE_OP_TYPE_BITTEST:
1818 error = emulate_bittest(vm, vcpuid, gpa, vie,
1819 memread, memwrite, memarg);
1820 break;
1821 case VIE_OP_TYPE_TWOB_GRP15:
1822 error = emulate_twob_group15(vm, vcpuid, gpa, vie,
1823 memread, memwrite, memarg);
1824 break;
1825 case VIE_OP_TYPE_ADD:
1826 error = emulate_add(vm, vcpuid, gpa, vie, memread,
1827 memwrite, memarg);
1828 break;
1829 case VIE_OP_TYPE_TEST:
1830 error = emulate_test(vm, vcpuid, gpa, vie,
1831 memread, memwrite, memarg);
1832 break;
1833 case VIE_OP_TYPE_BEXTR:
1834 error = emulate_bextr(vm, vcpuid, gpa, vie, paging,
1835 memread, memwrite, memarg);
1836 break;
1837 default:
1838 error = EINVAL;
1839 break;
1840 }
1841
1842 return (error);
1843 }
1844
1845 int
vie_alignment_check(int cpl,int size,uint64_t cr0,uint64_t rf,uint64_t gla)1846 vie_alignment_check(int cpl, int size, uint64_t cr0, uint64_t rf, uint64_t gla)
1847 {
1848 KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
1849 ("%s: invalid size %d", __func__, size));
1850 KASSERT(cpl >= 0 && cpl <= 3, ("%s: invalid cpl %d", __func__, cpl));
1851
1852 if (cpl != 3 || (cr0 & CR0_AM) == 0 || (rf & PSL_AC) == 0)
1853 return (0);
1854
1855 return ((gla & (size - 1)) ? 1 : 0);
1856 }
1857
1858 int
vie_canonical_check(enum vm_cpu_mode cpu_mode,uint64_t gla)1859 vie_canonical_check(enum vm_cpu_mode cpu_mode, uint64_t gla)
1860 {
1861 uint64_t mask;
1862
1863 if (cpu_mode != CPU_MODE_64BIT)
1864 return (0);
1865
1866 /*
1867 * The value of the bit 47 in the 'gla' should be replicated in the
1868 * most significant 16 bits.
1869 */
1870 mask = ~((1UL << 48) - 1);
1871 if (gla & (1UL << 47))
1872 return ((gla & mask) != mask);
1873 else
1874 return ((gla & mask) != 0);
1875 }
1876
1877 uint64_t
vie_size2mask(int size)1878 vie_size2mask(int size)
1879 {
1880 KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
1881 ("vie_size2mask: invalid size %d", size));
1882 return (size2mask[size]);
1883 }
1884
1885 int
vie_calculate_gla(enum vm_cpu_mode cpu_mode,enum vm_reg_name seg,struct seg_desc * desc,uint64_t offset,int length,int addrsize,int prot,uint64_t * gla)1886 vie_calculate_gla(enum vm_cpu_mode cpu_mode, enum vm_reg_name seg,
1887 struct seg_desc *desc, uint64_t offset, int length, int addrsize,
1888 int prot, uint64_t *gla)
1889 {
1890 uint64_t firstoff, low_limit, high_limit, segbase;
1891 int glasize, type;
1892
1893 KASSERT(seg >= VM_REG_GUEST_ES && seg <= VM_REG_GUEST_GS,
1894 ("%s: invalid segment %d", __func__, seg));
1895 KASSERT(length == 1 || length == 2 || length == 4 || length == 8,
1896 ("%s: invalid operand size %d", __func__, length));
1897 KASSERT((prot & ~(PROT_READ | PROT_WRITE)) == 0,
1898 ("%s: invalid prot %#x", __func__, prot));
1899
1900 firstoff = offset;
1901 if (cpu_mode == CPU_MODE_64BIT) {
1902 KASSERT(addrsize == 4 || addrsize == 8, ("%s: invalid address "
1903 "size %d for cpu_mode %d", __func__, addrsize, cpu_mode));
1904 glasize = 8;
1905 } else {
1906 KASSERT(addrsize == 2 || addrsize == 4, ("%s: invalid address "
1907 "size %d for cpu mode %d", __func__, addrsize, cpu_mode));
1908 glasize = 4;
1909 /*
1910 * If the segment selector is loaded with a NULL selector
1911 * then the descriptor is unusable and attempting to use
1912 * it results in a #GP(0).
1913 */
1914 if (SEG_DESC_UNUSABLE(desc->access))
1915 return (-1);
1916
1917 /*
1918 * The processor generates a #NP exception when a segment
1919 * register is loaded with a selector that points to a
1920 * descriptor that is not present. If this was the case then
1921 * it would have been checked before the VM-exit.
1922 */
1923 KASSERT(SEG_DESC_PRESENT(desc->access),
1924 ("segment %d not present: %#x", seg, desc->access));
1925
1926 /*
1927 * The descriptor type must indicate a code/data segment.
1928 */
1929 type = SEG_DESC_TYPE(desc->access);
1930 KASSERT(type >= 16 && type <= 31, ("segment %d has invalid "
1931 "descriptor type %#x", seg, type));
1932
1933 if (prot & PROT_READ) {
1934 /* #GP on a read access to a exec-only code segment */
1935 if ((type & 0xA) == 0x8)
1936 return (-1);
1937 }
1938
1939 if (prot & PROT_WRITE) {
1940 /*
1941 * #GP on a write access to a code segment or a
1942 * read-only data segment.
1943 */
1944 if (type & 0x8) /* code segment */
1945 return (-1);
1946
1947 if ((type & 0xA) == 0) /* read-only data seg */
1948 return (-1);
1949 }
1950
1951 /*
1952 * 'desc->limit' is fully expanded taking granularity into
1953 * account.
1954 */
1955 if ((type & 0xC) == 0x4) {
1956 /* expand-down data segment */
1957 low_limit = desc->limit + 1;
1958 high_limit = SEG_DESC_DEF32(desc->access) ?
1959 0xffffffff : 0xffff;
1960 } else {
1961 /* code segment or expand-up data segment */
1962 low_limit = 0;
1963 high_limit = desc->limit;
1964 }
1965
1966 while (length > 0) {
1967 offset &= vie_size2mask(addrsize);
1968 if (offset < low_limit || offset > high_limit)
1969 return (-1);
1970 offset++;
1971 length--;
1972 }
1973 }
1974
1975 /*
1976 * In 64-bit mode all segments except %fs and %gs have a segment
1977 * base address of 0.
1978 */
1979 if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
1980 seg != VM_REG_GUEST_GS) {
1981 segbase = 0;
1982 } else {
1983 segbase = desc->base;
1984 }
1985
1986 /*
1987 * Truncate 'firstoff' to the effective address size before adding
1988 * it to the segment base.
1989 */
1990 firstoff &= vie_size2mask(addrsize);
1991 *gla = (segbase + firstoff) & vie_size2mask(glasize);
1992 return (0);
1993 }
1994
1995 /*
1996 * Prepare a partially decoded vie for a 2nd attempt.
1997 */
1998 void
vie_restart(struct vie * vie)1999 vie_restart(struct vie *vie)
2000 {
2001 _Static_assert(
2002 offsetof(struct vie, inst) < offsetof(struct vie, vie_startzero) &&
2003 offsetof(struct vie, num_valid) < offsetof(struct vie, vie_startzero),
2004 "restart should not erase instruction length or contents");
2005
2006 memset((char *)vie + offsetof(struct vie, vie_startzero), 0,
2007 sizeof(*vie) - offsetof(struct vie, vie_startzero));
2008
2009 vie->base_register = VM_REG_LAST;
2010 vie->index_register = VM_REG_LAST;
2011 vie->segment_register = VM_REG_LAST;
2012 }
2013
2014 void
vie_init(struct vie * vie,const char * inst_bytes,int inst_length)2015 vie_init(struct vie *vie, const char *inst_bytes, int inst_length)
2016 {
2017 KASSERT(inst_length >= 0 && inst_length <= VIE_INST_SIZE,
2018 ("%s: invalid instruction length (%d)", __func__, inst_length));
2019
2020 vie_restart(vie);
2021 memset(vie->inst, 0, sizeof(vie->inst));
2022 if (inst_length != 0)
2023 memcpy(vie->inst, inst_bytes, inst_length);
2024 vie->num_valid = inst_length;
2025 }
2026
2027 #ifdef _KERNEL
2028 static int
pf_error_code(int usermode,int prot,int rsvd,uint64_t pte)2029 pf_error_code(int usermode, int prot, int rsvd, uint64_t pte)
2030 {
2031 int error_code = 0;
2032
2033 if (pte & PG_V)
2034 error_code |= PGEX_P;
2035 if (prot & VM_PROT_WRITE)
2036 error_code |= PGEX_W;
2037 if (usermode)
2038 error_code |= PGEX_U;
2039 if (rsvd)
2040 error_code |= PGEX_RSV;
2041 if (prot & VM_PROT_EXECUTE)
2042 error_code |= PGEX_I;
2043
2044 return (error_code);
2045 }
2046
2047 static void
ptp_release(void ** cookie)2048 ptp_release(void **cookie)
2049 {
2050 if (*cookie != NULL) {
2051 vm_gpa_release(*cookie);
2052 *cookie = NULL;
2053 }
2054 }
2055
2056 static void *
ptp_hold(struct vm * vm,int vcpu,vm_paddr_t ptpphys,size_t len,void ** cookie)2057 ptp_hold(struct vm *vm, int vcpu, vm_paddr_t ptpphys, size_t len, void **cookie)
2058 {
2059 void *ptr;
2060
2061 ptp_release(cookie);
2062 ptr = vm_gpa_hold(vm, vcpu, ptpphys, len, VM_PROT_RW, cookie);
2063 return (ptr);
2064 }
2065
2066 static int
_vm_gla2gpa(struct vm * vm,int vcpuid,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * guest_fault,bool check_only)2067 _vm_gla2gpa(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
2068 uint64_t gla, int prot, uint64_t *gpa, int *guest_fault, bool check_only)
2069 {
2070 int nlevels, pfcode, ptpshift, ptpindex, retval, usermode, writable;
2071 u_int retries;
2072 uint64_t *ptpbase, ptpphys, pte, pgsize;
2073 uint32_t *ptpbase32, pte32;
2074 void *cookie;
2075
2076 *guest_fault = 0;
2077
2078 usermode = (paging->cpl == 3 ? 1 : 0);
2079 writable = prot & VM_PROT_WRITE;
2080 cookie = NULL;
2081 retval = 0;
2082 retries = 0;
2083 restart:
2084 ptpphys = paging->cr3; /* root of the page tables */
2085 ptp_release(&cookie);
2086 if (retries++ > 0)
2087 maybe_yield();
2088
2089 if (vie_canonical_check(paging->cpu_mode, gla)) {
2090 /*
2091 * XXX assuming a non-stack reference otherwise a stack fault
2092 * should be generated.
2093 */
2094 if (!check_only)
2095 vm_inject_gp(vm, vcpuid);
2096 goto fault;
2097 }
2098
2099 if (paging->paging_mode == PAGING_MODE_FLAT) {
2100 *gpa = gla;
2101 goto done;
2102 }
2103
2104 if (paging->paging_mode == PAGING_MODE_32) {
2105 nlevels = 2;
2106 while (--nlevels >= 0) {
2107 /* Zero out the lower 12 bits. */
2108 ptpphys &= ~0xfff;
2109
2110 ptpbase32 = ptp_hold(vm, vcpuid, ptpphys, PAGE_SIZE,
2111 &cookie);
2112
2113 if (ptpbase32 == NULL)
2114 goto error;
2115
2116 ptpshift = PAGE_SHIFT + nlevels * 10;
2117 ptpindex = (gla >> ptpshift) & 0x3FF;
2118 pgsize = 1UL << ptpshift;
2119
2120 pte32 = ptpbase32[ptpindex];
2121
2122 if ((pte32 & PG_V) == 0 ||
2123 (usermode && (pte32 & PG_U) == 0) ||
2124 (writable && (pte32 & PG_RW) == 0)) {
2125 if (!check_only) {
2126 pfcode = pf_error_code(usermode, prot, 0,
2127 pte32);
2128 vm_inject_pf(vm, vcpuid, pfcode, gla);
2129 }
2130 goto fault;
2131 }
2132
2133 /*
2134 * Emulate the x86 MMU's management of the accessed
2135 * and dirty flags. While the accessed flag is set
2136 * at every level of the page table, the dirty flag
2137 * is only set at the last level providing the guest
2138 * physical address.
2139 */
2140 if (!check_only && (pte32 & PG_A) == 0) {
2141 if (atomic_cmpset_32(&ptpbase32[ptpindex],
2142 pte32, pte32 | PG_A) == 0) {
2143 goto restart;
2144 }
2145 }
2146
2147 /* XXX must be ignored if CR4.PSE=0 */
2148 if (nlevels > 0 && (pte32 & PG_PS) != 0)
2149 break;
2150
2151 ptpphys = pte32;
2152 }
2153
2154 /* Set the dirty bit in the page table entry if necessary */
2155 if (!check_only && writable && (pte32 & PG_M) == 0) {
2156 if (atomic_cmpset_32(&ptpbase32[ptpindex],
2157 pte32, pte32 | PG_M) == 0) {
2158 goto restart;
2159 }
2160 }
2161
2162 /* Zero out the lower 'ptpshift' bits */
2163 pte32 >>= ptpshift; pte32 <<= ptpshift;
2164 *gpa = pte32 | (gla & (pgsize - 1));
2165 goto done;
2166 }
2167
2168 if (paging->paging_mode == PAGING_MODE_PAE) {
2169 /* Zero out the lower 5 bits and the upper 32 bits */
2170 ptpphys &= 0xffffffe0UL;
2171
2172 ptpbase = ptp_hold(vm, vcpuid, ptpphys, sizeof(*ptpbase) * 4,
2173 &cookie);
2174 if (ptpbase == NULL)
2175 goto error;
2176
2177 ptpindex = (gla >> 30) & 0x3;
2178
2179 pte = ptpbase[ptpindex];
2180
2181 if ((pte & PG_V) == 0) {
2182 if (!check_only) {
2183 pfcode = pf_error_code(usermode, prot, 0, pte);
2184 vm_inject_pf(vm, vcpuid, pfcode, gla);
2185 }
2186 goto fault;
2187 }
2188
2189 ptpphys = pte;
2190
2191 nlevels = 2;
2192 } else if (paging->paging_mode == PAGING_MODE_64_LA57) {
2193 nlevels = 5;
2194 } else {
2195 nlevels = 4;
2196 }
2197
2198 while (--nlevels >= 0) {
2199 /* Zero out the lower 12 bits and the upper 12 bits */
2200 ptpphys >>= 12; ptpphys <<= 24; ptpphys >>= 12;
2201
2202 ptpbase = ptp_hold(vm, vcpuid, ptpphys, PAGE_SIZE, &cookie);
2203 if (ptpbase == NULL)
2204 goto error;
2205
2206 ptpshift = PAGE_SHIFT + nlevels * 9;
2207 ptpindex = (gla >> ptpshift) & 0x1FF;
2208 pgsize = 1UL << ptpshift;
2209
2210 pte = ptpbase[ptpindex];
2211
2212 if ((pte & PG_V) == 0 ||
2213 (usermode && (pte & PG_U) == 0) ||
2214 (writable && (pte & PG_RW) == 0)) {
2215 if (!check_only) {
2216 pfcode = pf_error_code(usermode, prot, 0, pte);
2217 vm_inject_pf(vm, vcpuid, pfcode, gla);
2218 }
2219 goto fault;
2220 }
2221
2222 /* Set the accessed bit in the page table entry */
2223 if (!check_only && (pte & PG_A) == 0) {
2224 if (atomic_cmpset_64(&ptpbase[ptpindex],
2225 pte, pte | PG_A) == 0) {
2226 goto restart;
2227 }
2228 }
2229
2230 if (nlevels > 0 && (pte & PG_PS) != 0) {
2231 if (pgsize > 1 * GB) {
2232 if (!check_only) {
2233 pfcode = pf_error_code(usermode, prot, 1,
2234 pte);
2235 vm_inject_pf(vm, vcpuid, pfcode, gla);
2236 }
2237 goto fault;
2238 }
2239 break;
2240 }
2241
2242 ptpphys = pte;
2243 }
2244
2245 /* Set the dirty bit in the page table entry if necessary */
2246 if (!check_only && writable && (pte & PG_M) == 0) {
2247 if (atomic_cmpset_64(&ptpbase[ptpindex], pte, pte | PG_M) == 0)
2248 goto restart;
2249 }
2250
2251 /* Zero out the lower 'ptpshift' bits and the upper 12 bits */
2252 pte >>= ptpshift; pte <<= (ptpshift + 12); pte >>= 12;
2253 *gpa = pte | (gla & (pgsize - 1));
2254 done:
2255 ptp_release(&cookie);
2256 KASSERT(retval == 0 || retval == EFAULT, ("%s: unexpected retval %d",
2257 __func__, retval));
2258 return (retval);
2259 error:
2260 retval = EFAULT;
2261 goto done;
2262 fault:
2263 *guest_fault = 1;
2264 goto done;
2265 }
2266
2267 int
vm_gla2gpa(struct vm * vm,int vcpuid,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * guest_fault)2268 vm_gla2gpa(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
2269 uint64_t gla, int prot, uint64_t *gpa, int *guest_fault)
2270 {
2271
2272 return (_vm_gla2gpa(vm, vcpuid, paging, gla, prot, gpa, guest_fault,
2273 false));
2274 }
2275
2276 int
vm_gla2gpa_nofault(struct vm * vm,int vcpuid,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * guest_fault)2277 vm_gla2gpa_nofault(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
2278 uint64_t gla, int prot, uint64_t *gpa, int *guest_fault)
2279 {
2280
2281 return (_vm_gla2gpa(vm, vcpuid, paging, gla, prot, gpa, guest_fault,
2282 true));
2283 }
2284
2285 int
vmm_fetch_instruction(struct vm * vm,int vcpuid,struct vm_guest_paging * paging,uint64_t rip,int inst_length,struct vie * vie,int * faultptr)2286 vmm_fetch_instruction(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
2287 uint64_t rip, int inst_length, struct vie *vie, int *faultptr)
2288 {
2289 struct vm_copyinfo copyinfo[2];
2290 int error, prot;
2291
2292 if (inst_length > VIE_INST_SIZE)
2293 panic("vmm_fetch_instruction: invalid length %d", inst_length);
2294
2295 prot = PROT_READ | PROT_EXEC;
2296 error = vm_copy_setup(vm, vcpuid, paging, rip, inst_length, prot,
2297 copyinfo, nitems(copyinfo), faultptr);
2298 if (error || *faultptr)
2299 return (error);
2300
2301 vm_copyin(vm, vcpuid, copyinfo, vie->inst, inst_length);
2302 vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
2303 vie->num_valid = inst_length;
2304 return (0);
2305 }
2306 #endif /* _KERNEL */
2307
2308 static int
vie_peek(struct vie * vie,uint8_t * x)2309 vie_peek(struct vie *vie, uint8_t *x)
2310 {
2311
2312 if (vie->num_processed < vie->num_valid) {
2313 *x = vie->inst[vie->num_processed];
2314 return (0);
2315 } else
2316 return (-1);
2317 }
2318
2319 static void
vie_advance(struct vie * vie)2320 vie_advance(struct vie *vie)
2321 {
2322
2323 vie->num_processed++;
2324 }
2325
2326 static bool
segment_override(uint8_t x,int * seg)2327 segment_override(uint8_t x, int *seg)
2328 {
2329
2330 switch (x) {
2331 case 0x2E:
2332 *seg = VM_REG_GUEST_CS;
2333 break;
2334 case 0x36:
2335 *seg = VM_REG_GUEST_SS;
2336 break;
2337 case 0x3E:
2338 *seg = VM_REG_GUEST_DS;
2339 break;
2340 case 0x26:
2341 *seg = VM_REG_GUEST_ES;
2342 break;
2343 case 0x64:
2344 *seg = VM_REG_GUEST_FS;
2345 break;
2346 case 0x65:
2347 *seg = VM_REG_GUEST_GS;
2348 break;
2349 default:
2350 return (false);
2351 }
2352 return (true);
2353 }
2354
2355 static int
decode_prefixes(struct vie * vie,enum vm_cpu_mode cpu_mode,int cs_d)2356 decode_prefixes(struct vie *vie, enum vm_cpu_mode cpu_mode, int cs_d)
2357 {
2358 uint8_t x;
2359
2360 while (1) {
2361 if (vie_peek(vie, &x))
2362 return (-1);
2363
2364 if (x == 0x66)
2365 vie->opsize_override = 1;
2366 else if (x == 0x67)
2367 vie->addrsize_override = 1;
2368 else if (x == 0xF3)
2369 vie->repz_present = 1;
2370 else if (x == 0xF2)
2371 vie->repnz_present = 1;
2372 else if (segment_override(x, &vie->segment_register))
2373 vie->segment_override = 1;
2374 else
2375 break;
2376
2377 vie_advance(vie);
2378 }
2379
2380 /*
2381 * From section 2.2.1, "REX Prefixes", Intel SDM Vol 2:
2382 * - Only one REX prefix is allowed per instruction.
2383 * - The REX prefix must immediately precede the opcode byte or the
2384 * escape opcode byte.
2385 * - If an instruction has a mandatory prefix (0x66, 0xF2 or 0xF3)
2386 * the mandatory prefix must come before the REX prefix.
2387 */
2388 if (cpu_mode == CPU_MODE_64BIT && x >= 0x40 && x <= 0x4F) {
2389 vie->rex_present = 1;
2390 vie->rex_w = x & 0x8 ? 1 : 0;
2391 vie->rex_r = x & 0x4 ? 1 : 0;
2392 vie->rex_x = x & 0x2 ? 1 : 0;
2393 vie->rex_b = x & 0x1 ? 1 : 0;
2394 vie_advance(vie);
2395 }
2396
2397 /*
2398 * § 2.3.5, "The VEX Prefix", SDM Vol 2.
2399 */
2400 if ((cpu_mode == CPU_MODE_64BIT || cpu_mode == CPU_MODE_COMPATIBILITY)
2401 && x == 0xC4) {
2402 const struct vie_op *optab;
2403
2404 /* 3-byte VEX prefix. */
2405 vie->vex_present = 1;
2406
2407 vie_advance(vie);
2408 if (vie_peek(vie, &x))
2409 return (-1);
2410
2411 /*
2412 * 2nd byte: [R', X', B', mmmmm[4:0]]. Bits are inverted
2413 * relative to REX encoding.
2414 */
2415 vie->rex_r = x & 0x80 ? 0 : 1;
2416 vie->rex_x = x & 0x40 ? 0 : 1;
2417 vie->rex_b = x & 0x20 ? 0 : 1;
2418
2419 switch (x & 0x1F) {
2420 case 0x2:
2421 /* 0F 38. */
2422 optab = three_byte_opcodes_0f38;
2423 break;
2424 case 0x1:
2425 /* 0F class - nothing handled here yet. */
2426 /* FALLTHROUGH */
2427 case 0x3:
2428 /* 0F 3A class - nothing handled here yet. */
2429 /* FALLTHROUGH */
2430 default:
2431 /* Reserved (#UD). */
2432 return (-1);
2433 }
2434
2435 vie_advance(vie);
2436 if (vie_peek(vie, &x))
2437 return (-1);
2438
2439 /* 3rd byte: [W, vvvv[6:3], L, pp[1:0]]. */
2440 vie->rex_w = x & 0x80 ? 1 : 0;
2441
2442 vie->vex_reg = ((~(unsigned)x & 0x78u) >> 3);
2443 vie->vex_l = !!(x & 0x4);
2444 vie->vex_pp = (x & 0x3);
2445
2446 /* PP: 1=66 2=F3 3=F2 prefixes. */
2447 switch (vie->vex_pp) {
2448 case 0x1:
2449 vie->opsize_override = 1;
2450 break;
2451 case 0x2:
2452 vie->repz_present = 1;
2453 break;
2454 case 0x3:
2455 vie->repnz_present = 1;
2456 break;
2457 }
2458
2459 vie_advance(vie);
2460
2461 /* Opcode, sans literal prefix prefix. */
2462 if (vie_peek(vie, &x))
2463 return (-1);
2464
2465 vie->op = optab[x];
2466 if (vie->op.op_type == VIE_OP_TYPE_NONE)
2467 return (-1);
2468
2469 vie_advance(vie);
2470 }
2471
2472 /*
2473 * Section "Operand-Size And Address-Size Attributes", Intel SDM, Vol 1
2474 */
2475 if (cpu_mode == CPU_MODE_64BIT) {
2476 /*
2477 * Default address size is 64-bits and default operand size
2478 * is 32-bits.
2479 */
2480 vie->addrsize = vie->addrsize_override ? 4 : 8;
2481 if (vie->rex_w)
2482 vie->opsize = 8;
2483 else if (vie->opsize_override)
2484 vie->opsize = 2;
2485 else
2486 vie->opsize = 4;
2487 } else if (cs_d) {
2488 /* Default address and operand sizes are 32-bits */
2489 vie->addrsize = vie->addrsize_override ? 2 : 4;
2490 vie->opsize = vie->opsize_override ? 2 : 4;
2491 } else {
2492 /* Default address and operand sizes are 16-bits */
2493 vie->addrsize = vie->addrsize_override ? 4 : 2;
2494 vie->opsize = vie->opsize_override ? 4 : 2;
2495 }
2496 return (0);
2497 }
2498
2499 static int
decode_two_byte_opcode(struct vie * vie)2500 decode_two_byte_opcode(struct vie *vie)
2501 {
2502 uint8_t x;
2503
2504 if (vie_peek(vie, &x))
2505 return (-1);
2506
2507 vie->op = two_byte_opcodes[x];
2508
2509 if (vie->op.op_type == VIE_OP_TYPE_NONE)
2510 return (-1);
2511
2512 vie_advance(vie);
2513 return (0);
2514 }
2515
2516 static int
decode_opcode(struct vie * vie)2517 decode_opcode(struct vie *vie)
2518 {
2519 uint8_t x;
2520
2521 if (vie_peek(vie, &x))
2522 return (-1);
2523
2524 /* Already did this via VEX prefix. */
2525 if (vie->op.op_type != VIE_OP_TYPE_NONE)
2526 return (0);
2527
2528 vie->op = one_byte_opcodes[x];
2529
2530 if (vie->op.op_type == VIE_OP_TYPE_NONE)
2531 return (-1);
2532
2533 vie_advance(vie);
2534
2535 if (vie->op.op_type == VIE_OP_TYPE_TWO_BYTE)
2536 return (decode_two_byte_opcode(vie));
2537
2538 return (0);
2539 }
2540
2541 static int
decode_modrm(struct vie * vie,enum vm_cpu_mode cpu_mode)2542 decode_modrm(struct vie *vie, enum vm_cpu_mode cpu_mode)
2543 {
2544 uint8_t x;
2545
2546 if (vie->op.op_flags & VIE_OP_F_NO_MODRM)
2547 return (0);
2548
2549 if (cpu_mode == CPU_MODE_REAL)
2550 return (-1);
2551
2552 if (vie_peek(vie, &x))
2553 return (-1);
2554
2555 vie->mod = (x >> 6) & 0x3;
2556 vie->rm = (x >> 0) & 0x7;
2557 vie->reg = (x >> 3) & 0x7;
2558
2559 /*
2560 * A direct addressing mode makes no sense in the context of an EPT
2561 * fault. There has to be a memory access involved to cause the
2562 * EPT fault.
2563 */
2564 if (vie->mod == VIE_MOD_DIRECT)
2565 return (-1);
2566
2567 if ((vie->mod == VIE_MOD_INDIRECT && vie->rm == VIE_RM_DISP32) ||
2568 (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)) {
2569 /*
2570 * Table 2-5: Special Cases of REX Encodings
2571 *
2572 * mod=0, r/m=5 is used in the compatibility mode to
2573 * indicate a disp32 without a base register.
2574 *
2575 * mod!=3, r/m=4 is used in the compatibility mode to
2576 * indicate that the SIB byte is present.
2577 *
2578 * The 'b' bit in the REX prefix is don't care in
2579 * this case.
2580 */
2581 } else {
2582 vie->rm |= (vie->rex_b << 3);
2583 }
2584
2585 vie->reg |= (vie->rex_r << 3);
2586
2587 /* SIB */
2588 if (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)
2589 goto done;
2590
2591 vie->base_register = gpr_map[vie->rm];
2592
2593 switch (vie->mod) {
2594 case VIE_MOD_INDIRECT_DISP8:
2595 vie->disp_bytes = 1;
2596 break;
2597 case VIE_MOD_INDIRECT_DISP32:
2598 vie->disp_bytes = 4;
2599 break;
2600 case VIE_MOD_INDIRECT:
2601 if (vie->rm == VIE_RM_DISP32) {
2602 vie->disp_bytes = 4;
2603 /*
2604 * Table 2-7. RIP-Relative Addressing
2605 *
2606 * In 64-bit mode mod=00 r/m=101 implies [rip] + disp32
2607 * whereas in compatibility mode it just implies disp32.
2608 */
2609
2610 if (cpu_mode == CPU_MODE_64BIT)
2611 vie->base_register = VM_REG_GUEST_RIP;
2612 else
2613 vie->base_register = VM_REG_LAST;
2614 }
2615 break;
2616 }
2617
2618 done:
2619 vie_advance(vie);
2620
2621 return (0);
2622 }
2623
2624 static int
decode_sib(struct vie * vie)2625 decode_sib(struct vie *vie)
2626 {
2627 uint8_t x;
2628
2629 /* Proceed only if SIB byte is present */
2630 if (vie->mod == VIE_MOD_DIRECT || vie->rm != VIE_RM_SIB)
2631 return (0);
2632
2633 if (vie_peek(vie, &x))
2634 return (-1);
2635
2636 /* De-construct the SIB byte */
2637 vie->ss = (x >> 6) & 0x3;
2638 vie->index = (x >> 3) & 0x7;
2639 vie->base = (x >> 0) & 0x7;
2640
2641 /* Apply the REX prefix modifiers */
2642 vie->index |= vie->rex_x << 3;
2643 vie->base |= vie->rex_b << 3;
2644
2645 switch (vie->mod) {
2646 case VIE_MOD_INDIRECT_DISP8:
2647 vie->disp_bytes = 1;
2648 break;
2649 case VIE_MOD_INDIRECT_DISP32:
2650 vie->disp_bytes = 4;
2651 break;
2652 }
2653
2654 if (vie->mod == VIE_MOD_INDIRECT &&
2655 (vie->base == 5 || vie->base == 13)) {
2656 /*
2657 * Special case when base register is unused if mod = 0
2658 * and base = %rbp or %r13.
2659 *
2660 * Documented in:
2661 * Table 2-3: 32-bit Addressing Forms with the SIB Byte
2662 * Table 2-5: Special Cases of REX Encodings
2663 */
2664 vie->disp_bytes = 4;
2665 } else {
2666 vie->base_register = gpr_map[vie->base];
2667 }
2668
2669 /*
2670 * All encodings of 'index' are valid except for %rsp (4).
2671 *
2672 * Documented in:
2673 * Table 2-3: 32-bit Addressing Forms with the SIB Byte
2674 * Table 2-5: Special Cases of REX Encodings
2675 */
2676 if (vie->index != 4)
2677 vie->index_register = gpr_map[vie->index];
2678
2679 /* 'scale' makes sense only in the context of an index register */
2680 if (vie->index_register < VM_REG_LAST)
2681 vie->scale = 1 << vie->ss;
2682
2683 vie_advance(vie);
2684
2685 return (0);
2686 }
2687
2688 static int
decode_displacement(struct vie * vie)2689 decode_displacement(struct vie *vie)
2690 {
2691 int n, i;
2692 uint8_t x;
2693
2694 union {
2695 char buf[4];
2696 int8_t signed8;
2697 int32_t signed32;
2698 } u;
2699
2700 if ((n = vie->disp_bytes) == 0)
2701 return (0);
2702
2703 if (n != 1 && n != 4)
2704 panic("decode_displacement: invalid disp_bytes %d", n);
2705
2706 for (i = 0; i < n; i++) {
2707 if (vie_peek(vie, &x))
2708 return (-1);
2709
2710 u.buf[i] = x;
2711 vie_advance(vie);
2712 }
2713
2714 if (n == 1)
2715 vie->displacement = u.signed8; /* sign-extended */
2716 else
2717 vie->displacement = u.signed32; /* sign-extended */
2718
2719 return (0);
2720 }
2721
2722 static int
decode_immediate(struct vie * vie)2723 decode_immediate(struct vie *vie)
2724 {
2725 int i, n;
2726 uint8_t x;
2727 union {
2728 char buf[4];
2729 int8_t signed8;
2730 int16_t signed16;
2731 int32_t signed32;
2732 } u;
2733
2734 /* Figure out immediate operand size (if any) */
2735 if (vie->op.op_flags & VIE_OP_F_IMM) {
2736 /*
2737 * Section 2.2.1.5 "Immediates", Intel SDM:
2738 * In 64-bit mode the typical size of immediate operands
2739 * remains 32-bits. When the operand size if 64-bits, the
2740 * processor sign-extends all immediates to 64-bits prior
2741 * to their use.
2742 */
2743 if (vie->opsize == 4 || vie->opsize == 8)
2744 vie->imm_bytes = 4;
2745 else
2746 vie->imm_bytes = 2;
2747 } else if (vie->op.op_flags & VIE_OP_F_IMM8) {
2748 vie->imm_bytes = 1;
2749 }
2750
2751 if ((n = vie->imm_bytes) == 0)
2752 return (0);
2753
2754 KASSERT(n == 1 || n == 2 || n == 4,
2755 ("%s: invalid number of immediate bytes: %d", __func__, n));
2756
2757 for (i = 0; i < n; i++) {
2758 if (vie_peek(vie, &x))
2759 return (-1);
2760
2761 u.buf[i] = x;
2762 vie_advance(vie);
2763 }
2764
2765 /* sign-extend the immediate value before use */
2766 if (n == 1)
2767 vie->immediate = u.signed8;
2768 else if (n == 2)
2769 vie->immediate = u.signed16;
2770 else
2771 vie->immediate = u.signed32;
2772
2773 return (0);
2774 }
2775
2776 static int
decode_moffset(struct vie * vie)2777 decode_moffset(struct vie *vie)
2778 {
2779 int i, n;
2780 uint8_t x;
2781 union {
2782 char buf[8];
2783 uint64_t u64;
2784 } u;
2785
2786 if ((vie->op.op_flags & VIE_OP_F_MOFFSET) == 0)
2787 return (0);
2788
2789 /*
2790 * Section 2.2.1.4, "Direct Memory-Offset MOVs", Intel SDM:
2791 * The memory offset size follows the address-size of the instruction.
2792 */
2793 n = vie->addrsize;
2794 KASSERT(n == 2 || n == 4 || n == 8, ("invalid moffset bytes: %d", n));
2795
2796 u.u64 = 0;
2797 for (i = 0; i < n; i++) {
2798 if (vie_peek(vie, &x))
2799 return (-1);
2800
2801 u.buf[i] = x;
2802 vie_advance(vie);
2803 }
2804 vie->displacement = u.u64;
2805 return (0);
2806 }
2807
2808 #ifdef _KERNEL
2809 /*
2810 * Verify that the 'guest linear address' provided as collateral of the nested
2811 * page table fault matches with our instruction decoding.
2812 */
2813 static int
verify_gla(struct vm * vm,int cpuid,uint64_t gla,struct vie * vie,enum vm_cpu_mode cpu_mode)2814 verify_gla(struct vm *vm, int cpuid, uint64_t gla, struct vie *vie,
2815 enum vm_cpu_mode cpu_mode)
2816 {
2817 int error;
2818 uint64_t base, segbase, idx, gla2;
2819 enum vm_reg_name seg;
2820 struct seg_desc desc;
2821
2822 /* Skip 'gla' verification */
2823 if (gla == VIE_INVALID_GLA)
2824 return (0);
2825
2826 base = 0;
2827 if (vie->base_register != VM_REG_LAST) {
2828 error = vm_get_register(vm, cpuid, vie->base_register, &base);
2829 if (error) {
2830 printf("verify_gla: error %d getting base reg %d\n",
2831 error, vie->base_register);
2832 return (-1);
2833 }
2834
2835 /*
2836 * RIP-relative addressing starts from the following
2837 * instruction
2838 */
2839 if (vie->base_register == VM_REG_GUEST_RIP)
2840 base += vie->num_processed;
2841 }
2842
2843 idx = 0;
2844 if (vie->index_register != VM_REG_LAST) {
2845 error = vm_get_register(vm, cpuid, vie->index_register, &idx);
2846 if (error) {
2847 printf("verify_gla: error %d getting index reg %d\n",
2848 error, vie->index_register);
2849 return (-1);
2850 }
2851 }
2852
2853 /*
2854 * From "Specifying a Segment Selector", Intel SDM, Vol 1
2855 *
2856 * In 64-bit mode, segmentation is generally (but not
2857 * completely) disabled. The exceptions are the FS and GS
2858 * segments.
2859 *
2860 * In legacy IA-32 mode, when the ESP or EBP register is used
2861 * as the base, the SS segment is the default segment. For
2862 * other data references, except when relative to stack or
2863 * string destination the DS segment is the default. These
2864 * can be overridden to allow other segments to be accessed.
2865 */
2866 if (vie->segment_override)
2867 seg = vie->segment_register;
2868 else if (vie->base_register == VM_REG_GUEST_RSP ||
2869 vie->base_register == VM_REG_GUEST_RBP)
2870 seg = VM_REG_GUEST_SS;
2871 else
2872 seg = VM_REG_GUEST_DS;
2873 if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
2874 seg != VM_REG_GUEST_GS) {
2875 segbase = 0;
2876 } else {
2877 error = vm_get_seg_desc(vm, cpuid, seg, &desc);
2878 if (error) {
2879 printf("verify_gla: error %d getting segment"
2880 " descriptor %d", error,
2881 vie->segment_register);
2882 return (-1);
2883 }
2884 segbase = desc.base;
2885 }
2886
2887 gla2 = segbase + base + vie->scale * idx + vie->displacement;
2888 gla2 &= size2mask[vie->addrsize];
2889 if (gla != gla2) {
2890 printf("verify_gla mismatch: segbase(0x%0lx)"
2891 "base(0x%0lx), scale(%d), index(0x%0lx), "
2892 "disp(0x%0lx), gla(0x%0lx), gla2(0x%0lx)\n",
2893 segbase, base, vie->scale, idx, vie->displacement,
2894 gla, gla2);
2895 return (-1);
2896 }
2897
2898 return (0);
2899 }
2900 #endif /* _KERNEL */
2901
2902 int
2903 #ifdef _KERNEL
vmm_decode_instruction(struct vm * vm,int cpuid,uint64_t gla,enum vm_cpu_mode cpu_mode,int cs_d,struct vie * vie)2904 vmm_decode_instruction(struct vm *vm, int cpuid, uint64_t gla,
2905 enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
2906 #else
2907 vmm_decode_instruction(enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
2908 #endif
2909 {
2910
2911 if (decode_prefixes(vie, cpu_mode, cs_d))
2912 return (-1);
2913
2914 if (decode_opcode(vie))
2915 return (-1);
2916
2917 if (decode_modrm(vie, cpu_mode))
2918 return (-1);
2919
2920 if (decode_sib(vie))
2921 return (-1);
2922
2923 if (decode_displacement(vie))
2924 return (-1);
2925
2926 if (decode_immediate(vie))
2927 return (-1);
2928
2929 if (decode_moffset(vie))
2930 return (-1);
2931
2932 #ifdef _KERNEL
2933 if ((vie->op.op_flags & VIE_OP_F_NO_GLA_VERIFICATION) == 0) {
2934 if (verify_gla(vm, cpuid, gla, vie, cpu_mode))
2935 return (-1);
2936 }
2937 #endif
2938
2939 vie->decoded = 1; /* success */
2940
2941 return (0);
2942 }
2943