1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1996-1999
5 * Kazutaka YOKOTA ([email protected])
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote
17 * products derived from this software without specific prior written
18 * permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from kbdio.c,v 1.13 1998/09/25 11:55:46 yokota Exp
33 */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include "opt_kbd.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/malloc.h>
44 #include <sys/syslog.h>
45 #include <machine/bus.h>
46 #include <machine/resource.h>
47 #include <sys/rman.h>
48
49 #if defined(__amd64__)
50 #include <machine/clock.h>
51 #endif
52
53 #include <dev/atkbdc/atkbdcreg.h>
54
55 #ifdef __sparc64__
56 #include <dev/ofw/openfirm.h>
57 #include <machine/bus_private.h>
58 #include <machine/ofw_machdep.h>
59 #else
60 #include <isa/isareg.h>
61 #endif
62
63 /* constants */
64
65 #define MAXKBDC 1 /* XXX */
66
67 /* macros */
68
69 #ifndef MAX
70 #define MAX(x, y) ((x) > (y) ? (x) : (y))
71 #endif
72
73 #define kbdcp(p) ((atkbdc_softc_t *)(p))
74 #define nextq(i) (((i) + 1) % KBDQ_BUFSIZE)
75 #define availq(q) ((q)->head != (q)->tail)
76 #if KBDIO_DEBUG >= 2
77 #define emptyq(q) ((q)->tail = (q)->head = (q)->qcount = 0)
78 #else
79 #define emptyq(q) ((q)->tail = (q)->head = 0)
80 #endif
81
82 #define read_data(k) (bus_space_read_1((k)->iot, (k)->ioh0, 0))
83 #define read_status(k) (bus_space_read_1((k)->iot, (k)->ioh1, 0))
84 #define write_data(k, d) \
85 (bus_space_write_1((k)->iot, (k)->ioh0, 0, (d)))
86 #define write_command(k, d) \
87 (bus_space_write_1((k)->iot, (k)->ioh1, 0, (d)))
88
89 /* local variables */
90
91 /*
92 * We always need at least one copy of the kbdc_softc struct for the
93 * low-level console. As the low-level console accesses the keyboard
94 * controller before kbdc, and all other devices, is probed, we
95 * statically allocate one entry. XXX
96 */
97 static atkbdc_softc_t default_kbdc;
98 static atkbdc_softc_t *atkbdc_softc[MAXKBDC] = { &default_kbdc };
99
100 static int verbose = KBDIO_DEBUG;
101
102 #ifdef __sparc64__
103 static struct bus_space_tag atkbdc_bst_store[MAXKBDC];
104 #endif
105
106 /* function prototypes */
107
108 static int atkbdc_setup(atkbdc_softc_t *sc, bus_space_tag_t tag,
109 bus_space_handle_t h0, bus_space_handle_t h1);
110 static int addq(kqueue *q, int c);
111 static int removeq(kqueue *q);
112 static int wait_while_controller_busy(atkbdc_softc_t *kbdc);
113 static int wait_for_data(atkbdc_softc_t *kbdc);
114 static int wait_for_kbd_data(atkbdc_softc_t *kbdc);
115 static int wait_for_kbd_ack(atkbdc_softc_t *kbdc);
116 static int wait_for_aux_data(atkbdc_softc_t *kbdc);
117 static int wait_for_aux_ack(atkbdc_softc_t *kbdc);
118
119 struct atkbdc_quirks {
120 const char* bios_vendor;
121 const char* maker;
122 const char* product;
123 int quirk;
124 };
125
126 static struct atkbdc_quirks quirks[] = {
127 {"coreboot", NULL, NULL,
128 KBDC_QUIRK_KEEP_ACTIVATED | KBDC_QUIRK_IGNORE_PROBE_RESULT |
129 KBDC_QUIRK_RESET_AFTER_PROBE | KBDC_QUIRK_SETLEDS_ON_INIT},
130
131 {NULL, NULL, NULL, 0}
132 };
133
134 #define QUIRK_STR_MATCH(s1, s2) (s1 == NULL || \
135 (s2 != NULL && !strcmp(s1, s2)))
136
137 static int
atkbdc_getquirks(void)138 atkbdc_getquirks(void)
139 {
140 int i;
141 char* bios_vendor = kern_getenv("smbios.bios.vendor");
142 char* maker = kern_getenv("smbios.system.maker");
143 char* product = kern_getenv("smbios.system.product");
144
145 for (i=0; quirks[i].quirk != 0; ++i)
146 if (QUIRK_STR_MATCH(quirks[i].bios_vendor, bios_vendor) &&
147 QUIRK_STR_MATCH(quirks[i].maker, maker) &&
148 QUIRK_STR_MATCH(quirks[i].product, product))
149 return (quirks[i].quirk);
150
151 return (0);
152 }
153
154 atkbdc_softc_t
atkbdc_get_softc(int unit)155 *atkbdc_get_softc(int unit)
156 {
157 atkbdc_softc_t *sc;
158
159 if (unit >= nitems(atkbdc_softc))
160 return NULL;
161 sc = atkbdc_softc[unit];
162 if (sc == NULL) {
163 sc = atkbdc_softc[unit]
164 = malloc(sizeof(*sc), M_DEVBUF, M_NOWAIT | M_ZERO);
165 if (sc == NULL)
166 return NULL;
167 }
168 return sc;
169 }
170
171 int
atkbdc_probe_unit(int unit,struct resource * port0,struct resource * port1)172 atkbdc_probe_unit(int unit, struct resource *port0, struct resource *port1)
173 {
174 if (rman_get_start(port0) <= 0)
175 return ENXIO;
176 if (rman_get_start(port1) <= 0)
177 return ENXIO;
178 return 0;
179 }
180
181 int
atkbdc_attach_unit(int unit,atkbdc_softc_t * sc,struct resource * port0,struct resource * port1)182 atkbdc_attach_unit(int unit, atkbdc_softc_t *sc, struct resource *port0,
183 struct resource *port1)
184 {
185 return atkbdc_setup(sc, rman_get_bustag(port0),
186 rman_get_bushandle(port0),
187 rman_get_bushandle(port1));
188 }
189
190 /* the backdoor to the keyboard controller! XXX */
191 int
atkbdc_configure(void)192 atkbdc_configure(void)
193 {
194 bus_space_tag_t tag;
195 bus_space_handle_t h0;
196 bus_space_handle_t h1;
197 #if defined(__i386__) || defined(__amd64__)
198 volatile int i;
199 register_t flags;
200 #endif
201 #ifdef __sparc64__
202 char name[32];
203 phandle_t chosen, node;
204 ihandle_t stdin;
205 bus_addr_t port0;
206 bus_addr_t port1;
207 int space;
208 #else
209 int port0;
210 int port1;
211 #endif
212
213 /* XXX: tag should be passed from the caller */
214 #if defined(__amd64__) || defined(__i386__)
215 tag = X86_BUS_SPACE_IO;
216 #elif defined(__sparc64__)
217 tag = &atkbdc_bst_store[0];
218 #else
219 #error "define tag!"
220 #endif
221
222 #ifdef __sparc64__
223 if ((chosen = OF_finddevice("/chosen")) == -1)
224 return 0;
225 if (OF_getprop(chosen, "stdin", &stdin, sizeof(stdin)) == -1)
226 return 0;
227 if ((node = OF_instance_to_package(stdin)) == -1)
228 return 0;
229 if (OF_getprop(node, "name", name, sizeof(name)) == -1)
230 return 0;
231 name[sizeof(name) - 1] = '\0';
232 if (strcmp(name, "kb_ps2") != 0)
233 return 0;
234 /*
235 * The stdin handle points to an instance of a PS/2 keyboard
236 * package but we want the 8042 controller, which is the parent
237 * of that keyboard node.
238 */
239 if ((node = OF_parent(node)) == 0)
240 return 0;
241 if (OF_decode_addr(node, 0, &space, &port0) != 0)
242 return 0;
243 h0 = sparc64_fake_bustag(space, port0, tag);
244 bus_space_subregion(tag, h0, KBD_DATA_PORT, 1, &h0);
245 if (OF_decode_addr(node, 1, &space, &port1) != 0)
246 return 0;
247 h1 = sparc64_fake_bustag(space, port1, tag);
248 bus_space_subregion(tag, h1, KBD_STATUS_PORT, 1, &h1);
249 #else
250 port0 = IO_KBD;
251 resource_int_value("atkbdc", 0, "port", &port0);
252 port1 = IO_KBD + KBD_STATUS_PORT;
253 #ifdef notyet
254 bus_space_map(tag, port0, IO_KBDSIZE, 0, &h0);
255 bus_space_map(tag, port1, IO_KBDSIZE, 0, &h1);
256 #else
257 h0 = (bus_space_handle_t)port0;
258 h1 = (bus_space_handle_t)port1;
259 #endif
260 #endif
261
262 #if defined(__i386__) || defined(__amd64__)
263 /*
264 * Check if we really have AT keyboard controller. Poll status
265 * register until we get "all clear" indication. If no such
266 * indication comes, it probably means that there is no AT
267 * keyboard controller present. Give up in such case. Check relies
268 * on the fact that reading from non-existing in/out port returns
269 * 0xff on i386. May or may not be true on other platforms.
270 */
271 flags = intr_disable();
272 for (i = 0; i != 65535; i++) {
273 if ((bus_space_read_1(tag, h1, 0) & 0x2) == 0)
274 break;
275 }
276 intr_restore(flags);
277 if (i == 65535)
278 return ENXIO;
279 #endif
280
281 return atkbdc_setup(atkbdc_softc[0], tag, h0, h1);
282 }
283
284 static int
atkbdc_setup(atkbdc_softc_t * sc,bus_space_tag_t tag,bus_space_handle_t h0,bus_space_handle_t h1)285 atkbdc_setup(atkbdc_softc_t *sc, bus_space_tag_t tag, bus_space_handle_t h0,
286 bus_space_handle_t h1)
287 {
288 #if defined(__amd64__)
289 u_int64_t tscval[3], read_delay;
290 register_t flags;
291 #endif
292
293 if (sc->ioh0 == 0) { /* XXX */
294 sc->command_byte = -1;
295 sc->command_mask = 0;
296 sc->lock = FALSE;
297 sc->kbd.head = sc->kbd.tail = 0;
298 sc->aux.head = sc->aux.tail = 0;
299 sc->aux_mux_enabled = FALSE;
300 #if KBDIO_DEBUG >= 2
301 sc->kbd.call_count = 0;
302 sc->kbd.qcount = sc->kbd.max_qcount = 0;
303 sc->aux.call_count = 0;
304 sc->aux.qcount = sc->aux.max_qcount = 0;
305 #endif
306 }
307 sc->iot = tag;
308 sc->ioh0 = h0;
309 sc->ioh1 = h1;
310
311 #if defined(__amd64__)
312 /*
313 * On certain chipsets AT keyboard controller isn't present and is
314 * emulated by BIOS using SMI interrupt. On those chipsets reading
315 * from the status port may be thousand times slower than usually.
316 * Sometimes this emilation is not working properly resulting in
317 * commands timing our and since we assume that inb() operation
318 * takes very little time to complete we need to adjust number of
319 * retries to keep waiting time within a designed limits (100ms).
320 * Measure time it takes to make read_status() call and adjust
321 * number of retries accordingly.
322 */
323 flags = intr_disable();
324 tscval[0] = rdtsc();
325 read_status(sc);
326 tscval[1] = rdtsc();
327 DELAY(1000);
328 tscval[2] = rdtsc();
329 intr_restore(flags);
330 read_delay = tscval[1] - tscval[0];
331 read_delay /= (tscval[2] - tscval[1]) / 1000;
332 sc->retry = 100000 / ((KBDD_DELAYTIME * 2) + read_delay);
333 #else
334 sc->retry = 5000;
335 #endif
336 sc->quirks = atkbdc_getquirks();
337
338 return 0;
339 }
340
341 /* open a keyboard controller */
342 KBDC
atkbdc_open(int unit)343 atkbdc_open(int unit)
344 {
345 if (unit <= 0)
346 unit = 0;
347 if (unit >= MAXKBDC)
348 return NULL;
349 if ((atkbdc_softc[unit]->port0 != NULL)
350 || (atkbdc_softc[unit]->ioh0 != 0)) /* XXX */
351 return (KBDC)atkbdc_softc[unit];
352 return NULL;
353 }
354
355 /*
356 * I/O access arbitration in `kbdio'
357 *
358 * The `kbdio' module uses a simplistic convention to arbitrate
359 * I/O access to the controller/keyboard/mouse. The convention requires
360 * close cooperation of the calling device driver.
361 *
362 * The device drivers which utilize the `kbdio' module are assumed to
363 * have the following set of routines.
364 * a. An interrupt handler (the bottom half of the driver).
365 * b. Timeout routines which may briefly poll the keyboard controller.
366 * c. Routines outside interrupt context (the top half of the driver).
367 * They should follow the rules below:
368 * 1. The interrupt handler may assume that it always has full access
369 * to the controller/keyboard/mouse.
370 * 2. The other routines must issue `spltty()' if they wish to
371 * prevent the interrupt handler from accessing
372 * the controller/keyboard/mouse.
373 * 3. The timeout routines and the top half routines of the device driver
374 * arbitrate I/O access by observing the lock flag in `kbdio'.
375 * The flag is manipulated via `kbdc_lock()'; when one wants to
376 * perform I/O, call `kbdc_lock(kbdc, TRUE)' and proceed only if
377 * the call returns with TRUE. Otherwise the caller must back off.
378 * Call `kbdc_lock(kbdc, FALSE)' when necessary I/O operaion
379 * is finished. This mechanism does not prevent the interrupt
380 * handler from being invoked at any time and carrying out I/O.
381 * Therefore, `spltty()' must be strategically placed in the device
382 * driver code. Also note that the timeout routine may interrupt
383 * `kbdc_lock()' called by the top half of the driver, but this
384 * interruption is OK so long as the timeout routine observes
385 * rule 4 below.
386 * 4. The interrupt and timeout routines should not extend I/O operation
387 * across more than one interrupt or timeout; they must complete any
388 * necessary I/O operation within one invocation of the routine.
389 * This means that if the timeout routine acquires the lock flag,
390 * it must reset the flag to FALSE before it returns.
391 */
392
393 /* set/reset polling lock */
394 int
kbdc_lock(KBDC p,int lock)395 kbdc_lock(KBDC p, int lock)
396 {
397 int prevlock;
398
399 prevlock = kbdcp(p)->lock;
400 kbdcp(p)->lock = lock;
401
402 return (prevlock != lock);
403 }
404
405 /* check if any data is waiting to be processed */
406 int
kbdc_data_ready(KBDC p)407 kbdc_data_ready(KBDC p)
408 {
409 return (availq(&kbdcp(p)->kbd) || availq(&kbdcp(p)->aux)
410 || (read_status(kbdcp(p)) & KBDS_ANY_BUFFER_FULL));
411 }
412
413 /* queuing functions */
414
415 static int
addq(kqueue * q,int c)416 addq(kqueue *q, int c)
417 {
418 if (nextq(q->tail) != q->head) {
419 q->q[q->tail] = c;
420 q->tail = nextq(q->tail);
421 #if KBDIO_DEBUG >= 2
422 ++q->call_count;
423 ++q->qcount;
424 if (q->qcount > q->max_qcount)
425 q->max_qcount = q->qcount;
426 #endif
427 return TRUE;
428 }
429 return FALSE;
430 }
431
432 static int
removeq(kqueue * q)433 removeq(kqueue *q)
434 {
435 int c;
436
437 if (q->tail != q->head) {
438 c = q->q[q->head];
439 q->head = nextq(q->head);
440 #if KBDIO_DEBUG >= 2
441 --q->qcount;
442 #endif
443 return c;
444 }
445 return -1;
446 }
447
448 /*
449 * device I/O routines
450 */
451 static int
wait_while_controller_busy(struct atkbdc_softc * kbdc)452 wait_while_controller_busy(struct atkbdc_softc *kbdc)
453 {
454 int retry;
455 int f;
456
457 /* CPU will stay inside the loop for 100msec at most */
458 retry = kbdc->retry;
459
460 while ((f = read_status(kbdc)) & KBDS_INPUT_BUFFER_FULL) {
461 if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) {
462 DELAY(KBDD_DELAYTIME);
463 addq(&kbdc->kbd, read_data(kbdc));
464 } else if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) {
465 DELAY(KBDD_DELAYTIME);
466 addq(&kbdc->aux, read_data(kbdc));
467 }
468 DELAY(KBDC_DELAYTIME);
469 if (--retry < 0)
470 return FALSE;
471 }
472 return TRUE;
473 }
474
475 /*
476 * wait for any data; whether it's from the controller,
477 * the keyboard, or the aux device.
478 */
479 static int
wait_for_data(struct atkbdc_softc * kbdc)480 wait_for_data(struct atkbdc_softc *kbdc)
481 {
482 int retry;
483 int f;
484
485 /* CPU will stay inside the loop for 200msec at most */
486 retry = kbdc->retry * 2;
487
488 while ((f = read_status(kbdc) & KBDS_ANY_BUFFER_FULL) == 0) {
489 DELAY(KBDC_DELAYTIME);
490 if (--retry < 0)
491 return 0;
492 }
493 DELAY(KBDD_DELAYTIME);
494 return f;
495 }
496
497 /* wait for data from the keyboard */
498 static int
wait_for_kbd_data(struct atkbdc_softc * kbdc)499 wait_for_kbd_data(struct atkbdc_softc *kbdc)
500 {
501 int retry;
502 int f;
503
504 /* CPU will stay inside the loop for 200msec at most */
505 retry = kbdc->retry * 2;
506
507 while ((f = read_status(kbdc) & KBDS_BUFFER_FULL)
508 != KBDS_KBD_BUFFER_FULL) {
509 if (f == KBDS_AUX_BUFFER_FULL) {
510 DELAY(KBDD_DELAYTIME);
511 addq(&kbdc->aux, read_data(kbdc));
512 }
513 DELAY(KBDC_DELAYTIME);
514 if (--retry < 0)
515 return 0;
516 }
517 DELAY(KBDD_DELAYTIME);
518 return f;
519 }
520
521 /*
522 * wait for an ACK(FAh), RESEND(FEh), or RESET_FAIL(FCh) from the keyboard.
523 * queue anything else.
524 */
525 static int
wait_for_kbd_ack(struct atkbdc_softc * kbdc)526 wait_for_kbd_ack(struct atkbdc_softc *kbdc)
527 {
528 int retry;
529 int f;
530 int b;
531
532 /* CPU will stay inside the loop for 200msec at most */
533 retry = kbdc->retry * 2;
534
535 while (retry-- > 0) {
536 if ((f = read_status(kbdc)) & KBDS_ANY_BUFFER_FULL) {
537 DELAY(KBDD_DELAYTIME);
538 b = read_data(kbdc);
539 if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) {
540 if ((b == KBD_ACK) || (b == KBD_RESEND)
541 || (b == KBD_RESET_FAIL))
542 return b;
543 addq(&kbdc->kbd, b);
544 } else if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) {
545 addq(&kbdc->aux, b);
546 }
547 }
548 DELAY(KBDC_DELAYTIME);
549 }
550 return -1;
551 }
552
553 /* wait for data from the aux device */
554 static int
wait_for_aux_data(struct atkbdc_softc * kbdc)555 wait_for_aux_data(struct atkbdc_softc *kbdc)
556 {
557 int retry;
558 int f;
559
560 /* CPU will stay inside the loop for 200msec at most */
561 retry = kbdc->retry * 2;
562
563 while ((f = read_status(kbdc) & KBDS_BUFFER_FULL)
564 != KBDS_AUX_BUFFER_FULL) {
565 if (f == KBDS_KBD_BUFFER_FULL) {
566 DELAY(KBDD_DELAYTIME);
567 addq(&kbdc->kbd, read_data(kbdc));
568 }
569 DELAY(KBDC_DELAYTIME);
570 if (--retry < 0)
571 return 0;
572 }
573 DELAY(KBDD_DELAYTIME);
574 return f;
575 }
576
577 /*
578 * wait for an ACK(FAh), RESEND(FEh), or RESET_FAIL(FCh) from the aux device.
579 * queue anything else.
580 */
581 static int
wait_for_aux_ack(struct atkbdc_softc * kbdc)582 wait_for_aux_ack(struct atkbdc_softc *kbdc)
583 {
584 int retry;
585 int f;
586 int b;
587
588 /* CPU will stay inside the loop for 200msec at most */
589 retry = kbdc->retry * 2;
590
591 while (retry-- > 0) {
592 if ((f = read_status(kbdc)) & KBDS_ANY_BUFFER_FULL) {
593 DELAY(KBDD_DELAYTIME);
594 b = read_data(kbdc);
595 if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) {
596 if ((b == PSM_ACK) || (b == PSM_RESEND)
597 || (b == PSM_RESET_FAIL))
598 return b;
599 addq(&kbdc->aux, b);
600 } else if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) {
601 addq(&kbdc->kbd, b);
602 }
603 }
604 DELAY(KBDC_DELAYTIME);
605 }
606 return -1;
607 }
608
609 /* write a one byte command to the controller */
610 int
write_controller_command(KBDC p,int c)611 write_controller_command(KBDC p, int c)
612 {
613 if (!wait_while_controller_busy(kbdcp(p)))
614 return FALSE;
615 write_command(kbdcp(p), c);
616 return TRUE;
617 }
618
619 /* write a one byte data to the controller */
620 int
write_controller_data(KBDC p,int c)621 write_controller_data(KBDC p, int c)
622 {
623 if (!wait_while_controller_busy(kbdcp(p)))
624 return FALSE;
625 write_data(kbdcp(p), c);
626 return TRUE;
627 }
628
629 /* write a one byte keyboard command */
630 int
write_kbd_command(KBDC p,int c)631 write_kbd_command(KBDC p, int c)
632 {
633 if (!wait_while_controller_busy(kbdcp(p)))
634 return FALSE;
635 write_data(kbdcp(p), c);
636 return TRUE;
637 }
638
639 /* write a one byte auxiliary device command */
640 int
write_aux_command(KBDC p,int c)641 write_aux_command(KBDC p, int c)
642 {
643 int f;
644
645 f = aux_mux_is_enabled(p) ?
646 KBDC_WRITE_TO_AUX_MUX + kbdcp(p)->aux_mux_port : KBDC_WRITE_TO_AUX;
647
648 if (!write_controller_command(p, f))
649 return FALSE;
650 return write_controller_data(p, c);
651 }
652
653 /* send a command to the keyboard and wait for ACK */
654 int
send_kbd_command(KBDC p,int c)655 send_kbd_command(KBDC p, int c)
656 {
657 int retry = KBD_MAXRETRY;
658 int res = -1;
659
660 while (retry-- > 0) {
661 if (!write_kbd_command(p, c))
662 continue;
663 res = wait_for_kbd_ack(kbdcp(p));
664 if (res == KBD_ACK)
665 break;
666 }
667 return res;
668 }
669
670 /* send a command to the auxiliary device and wait for ACK */
671 int
send_aux_command(KBDC p,int c)672 send_aux_command(KBDC p, int c)
673 {
674 int retry = KBD_MAXRETRY;
675 int res = -1;
676
677 while (retry-- > 0) {
678 if (!write_aux_command(p, c))
679 continue;
680 /*
681 * FIXME: XXX
682 * The aux device may have already sent one or two bytes of
683 * status data, when a command is received. It will immediately
684 * stop data transmission, thus, leaving an incomplete data
685 * packet in our buffer. We have to discard any unprocessed
686 * data in order to remove such packets. Well, we may remove
687 * unprocessed, but necessary data byte as well...
688 */
689 emptyq(&kbdcp(p)->aux);
690 res = wait_for_aux_ack(kbdcp(p));
691 if (res == PSM_ACK)
692 break;
693 }
694 return res;
695 }
696
697 /* send a command and a data to the keyboard, wait for ACKs */
698 int
send_kbd_command_and_data(KBDC p,int c,int d)699 send_kbd_command_and_data(KBDC p, int c, int d)
700 {
701 int retry;
702 int res = -1;
703
704 for (retry = KBD_MAXRETRY; retry > 0; --retry) {
705 if (!write_kbd_command(p, c))
706 continue;
707 res = wait_for_kbd_ack(kbdcp(p));
708 if (res == KBD_ACK)
709 break;
710 else if (res != KBD_RESEND)
711 return res;
712 }
713 if (retry <= 0)
714 return res;
715
716 for (retry = KBD_MAXRETRY, res = -1; retry > 0; --retry) {
717 if (!write_kbd_command(p, d))
718 continue;
719 res = wait_for_kbd_ack(kbdcp(p));
720 if (res != KBD_RESEND)
721 break;
722 }
723 return res;
724 }
725
726 /* send a command and a data to the auxiliary device, wait for ACKs */
727 int
send_aux_command_and_data(KBDC p,int c,int d)728 send_aux_command_and_data(KBDC p, int c, int d)
729 {
730 int retry;
731 int res = -1;
732
733 for (retry = KBD_MAXRETRY; retry > 0; --retry) {
734 if (!write_aux_command(p, c))
735 continue;
736 emptyq(&kbdcp(p)->aux);
737 res = wait_for_aux_ack(kbdcp(p));
738 if (res == PSM_ACK)
739 break;
740 else if (res != PSM_RESEND)
741 return res;
742 }
743 if (retry <= 0)
744 return res;
745
746 for (retry = KBD_MAXRETRY, res = -1; retry > 0; --retry) {
747 if (!write_aux_command(p, d))
748 continue;
749 res = wait_for_aux_ack(kbdcp(p));
750 if (res != PSM_RESEND)
751 break;
752 }
753 return res;
754 }
755
756 /*
757 * read one byte from any source; whether from the controller,
758 * the keyboard, or the aux device
759 */
760 int
read_controller_data(KBDC p)761 read_controller_data(KBDC p)
762 {
763 if (availq(&kbdcp(p)->kbd))
764 return removeq(&kbdcp(p)->kbd);
765 if (availq(&kbdcp(p)->aux))
766 return removeq(&kbdcp(p)->aux);
767 if (!wait_for_data(kbdcp(p)))
768 return -1; /* timeout */
769 return read_data(kbdcp(p));
770 }
771
772 #if KBDIO_DEBUG >= 2
773 static int call = 0;
774 #endif
775
776 /* read one byte from the keyboard */
777 int
read_kbd_data(KBDC p)778 read_kbd_data(KBDC p)
779 {
780 #if KBDIO_DEBUG >= 2
781 if (++call > 2000) {
782 call = 0;
783 log(LOG_DEBUG, "kbdc: kbd q: %d calls, max %d chars, "
784 "aux q: %d calls, max %d chars\n",
785 kbdcp(p)->kbd.call_count, kbdcp(p)->kbd.max_qcount,
786 kbdcp(p)->aux.call_count, kbdcp(p)->aux.max_qcount);
787 }
788 #endif
789
790 if (availq(&kbdcp(p)->kbd))
791 return removeq(&kbdcp(p)->kbd);
792 if (!wait_for_kbd_data(kbdcp(p)))
793 return -1; /* timeout */
794 return read_data(kbdcp(p));
795 }
796
797 /* read one byte from the keyboard, but return immediately if
798 * no data is waiting
799 */
800 int
read_kbd_data_no_wait(KBDC p)801 read_kbd_data_no_wait(KBDC p)
802 {
803 int f;
804
805 #if KBDIO_DEBUG >= 2
806 if (++call > 2000) {
807 call = 0;
808 log(LOG_DEBUG, "kbdc: kbd q: %d calls, max %d chars, "
809 "aux q: %d calls, max %d chars\n",
810 kbdcp(p)->kbd.call_count, kbdcp(p)->kbd.max_qcount,
811 kbdcp(p)->aux.call_count, kbdcp(p)->aux.max_qcount);
812 }
813 #endif
814
815 if (availq(&kbdcp(p)->kbd))
816 return removeq(&kbdcp(p)->kbd);
817 f = read_status(kbdcp(p)) & KBDS_BUFFER_FULL;
818 if (f == KBDS_AUX_BUFFER_FULL) {
819 DELAY(KBDD_DELAYTIME);
820 addq(&kbdcp(p)->aux, read_data(kbdcp(p)));
821 f = read_status(kbdcp(p)) & KBDS_BUFFER_FULL;
822 }
823 if (f == KBDS_KBD_BUFFER_FULL) {
824 DELAY(KBDD_DELAYTIME);
825 return read_data(kbdcp(p));
826 }
827 return -1; /* no data */
828 }
829
830 /* read one byte from the aux device */
831 int
read_aux_data(KBDC p)832 read_aux_data(KBDC p)
833 {
834 if (availq(&kbdcp(p)->aux))
835 return removeq(&kbdcp(p)->aux);
836 if (!wait_for_aux_data(kbdcp(p)))
837 return -1; /* timeout */
838 return read_data(kbdcp(p));
839 }
840
841 /* read one byte from the aux device, but return immediately if
842 * no data is waiting
843 */
844 int
read_aux_data_no_wait(KBDC p)845 read_aux_data_no_wait(KBDC p)
846 {
847 int f;
848
849 if (availq(&kbdcp(p)->aux))
850 return removeq(&kbdcp(p)->aux);
851 f = read_status(kbdcp(p)) & KBDS_BUFFER_FULL;
852 if (f == KBDS_KBD_BUFFER_FULL) {
853 DELAY(KBDD_DELAYTIME);
854 addq(&kbdcp(p)->kbd, read_data(kbdcp(p)));
855 f = read_status(kbdcp(p)) & KBDS_BUFFER_FULL;
856 }
857 if (f == KBDS_AUX_BUFFER_FULL) {
858 DELAY(KBDD_DELAYTIME);
859 return read_data(kbdcp(p));
860 }
861 return -1; /* no data */
862 }
863
864 /* discard data from the keyboard */
865 void
empty_kbd_buffer(KBDC p,int wait)866 empty_kbd_buffer(KBDC p, int wait)
867 {
868 int t;
869 int b;
870 int f;
871 #if KBDIO_DEBUG >= 2
872 int c1 = 0;
873 int c2 = 0;
874 #endif
875 int delta = 2;
876
877 for (t = wait; t > 0; ) {
878 if ((f = read_status(kbdcp(p))) & KBDS_ANY_BUFFER_FULL) {
879 DELAY(KBDD_DELAYTIME);
880 b = read_data(kbdcp(p));
881 if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) {
882 addq(&kbdcp(p)->aux, b);
883 #if KBDIO_DEBUG >= 2
884 ++c2;
885 } else {
886 ++c1;
887 #endif
888 }
889 t = wait;
890 } else {
891 t -= delta;
892 }
893 DELAY(delta*1000);
894 }
895 #if KBDIO_DEBUG >= 2
896 if ((c1 > 0) || (c2 > 0))
897 log(LOG_DEBUG, "kbdc: %d:%d char read (empty_kbd_buffer)\n", c1, c2);
898 #endif
899
900 emptyq(&kbdcp(p)->kbd);
901 }
902
903 /* discard data from the aux device */
904 void
empty_aux_buffer(KBDC p,int wait)905 empty_aux_buffer(KBDC p, int wait)
906 {
907 int t;
908 int b;
909 int f;
910 #if KBDIO_DEBUG >= 2
911 int c1 = 0;
912 int c2 = 0;
913 #endif
914 int delta = 2;
915
916 for (t = wait; t > 0; ) {
917 if ((f = read_status(kbdcp(p))) & KBDS_ANY_BUFFER_FULL) {
918 DELAY(KBDD_DELAYTIME);
919 b = read_data(kbdcp(p));
920 if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) {
921 addq(&kbdcp(p)->kbd, b);
922 #if KBDIO_DEBUG >= 2
923 ++c1;
924 } else {
925 ++c2;
926 #endif
927 }
928 t = wait;
929 } else {
930 t -= delta;
931 }
932 DELAY(delta*1000);
933 }
934 #if KBDIO_DEBUG >= 2
935 if ((c1 > 0) || (c2 > 0))
936 log(LOG_DEBUG, "kbdc: %d:%d char read (empty_aux_buffer)\n", c1, c2);
937 #endif
938
939 emptyq(&kbdcp(p)->aux);
940 }
941
942 /* discard any data from the keyboard or the aux device */
943 void
empty_both_buffers(KBDC p,int wait)944 empty_both_buffers(KBDC p, int wait)
945 {
946 int t;
947 int f;
948 int waited = 0;
949 #if KBDIO_DEBUG >= 2
950 int c1 = 0;
951 int c2 = 0;
952 #endif
953 int delta = 2;
954
955 for (t = wait; t > 0; ) {
956 if ((f = read_status(kbdcp(p))) & KBDS_ANY_BUFFER_FULL) {
957 DELAY(KBDD_DELAYTIME);
958 (void)read_data(kbdcp(p));
959 #if KBDIO_DEBUG >= 2
960 if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL)
961 ++c1;
962 else
963 ++c2;
964 #endif
965 t = wait;
966 } else {
967 t -= delta;
968 }
969
970 /*
971 * Some systems (Intel/IBM blades) do not have keyboard devices and
972 * will thus hang in this procedure. Time out after delta seconds to
973 * avoid this hang -- the keyboard attach will fail later on.
974 */
975 waited += (delta * 1000);
976 if (waited == (delta * 1000000))
977 return;
978
979 DELAY(delta*1000);
980 }
981 #if KBDIO_DEBUG >= 2
982 if ((c1 > 0) || (c2 > 0))
983 log(LOG_DEBUG, "kbdc: %d:%d char read (empty_both_buffers)\n", c1, c2);
984 #endif
985
986 emptyq(&kbdcp(p)->kbd);
987 emptyq(&kbdcp(p)->aux);
988 }
989
990 /* keyboard and mouse device control */
991
992 /* NOTE: enable the keyboard port but disable the keyboard
993 * interrupt before calling "reset_kbd()".
994 */
995 int
reset_kbd(KBDC p)996 reset_kbd(KBDC p)
997 {
998 int retry = KBD_MAXRETRY;
999 int again = KBD_MAXWAIT;
1000 int c = KBD_RESEND; /* keep the compiler happy */
1001
1002 while (retry-- > 0) {
1003 empty_both_buffers(p, 10);
1004 if (!write_kbd_command(p, KBDC_RESET_KBD))
1005 continue;
1006 emptyq(&kbdcp(p)->kbd);
1007 c = read_controller_data(p);
1008 if (verbose || bootverbose)
1009 log(LOG_DEBUG, "kbdc: RESET_KBD return code:%04x\n", c);
1010 if (c == KBD_ACK) /* keyboard has agreed to reset itself... */
1011 break;
1012 }
1013 if (retry < 0)
1014 return FALSE;
1015
1016 while (again-- > 0) {
1017 /* wait awhile, well, in fact we must wait quite loooooooooooong */
1018 DELAY(KBD_RESETDELAY*1000);
1019 c = read_controller_data(p); /* RESET_DONE/RESET_FAIL */
1020 if (c != -1) /* wait again if the controller is not ready */
1021 break;
1022 }
1023 if (verbose || bootverbose)
1024 log(LOG_DEBUG, "kbdc: RESET_KBD status:%04x\n", c);
1025 if (c != KBD_RESET_DONE)
1026 return FALSE;
1027 return TRUE;
1028 }
1029
1030 /* NOTE: enable the aux port but disable the aux interrupt
1031 * before calling `reset_aux_dev()'.
1032 */
1033 int
reset_aux_dev(KBDC p)1034 reset_aux_dev(KBDC p)
1035 {
1036 int retry = KBD_MAXRETRY;
1037 int again = KBD_MAXWAIT;
1038 int c = PSM_RESEND; /* keep the compiler happy */
1039
1040 while (retry-- > 0) {
1041 empty_both_buffers(p, 10);
1042 if (!write_aux_command(p, PSMC_RESET_DEV))
1043 continue;
1044 emptyq(&kbdcp(p)->aux);
1045 /* NOTE: Compaq Armada laptops require extra delay here. XXX */
1046 for (again = KBD_MAXWAIT; again > 0; --again) {
1047 DELAY(KBD_RESETDELAY*1000);
1048 c = read_aux_data_no_wait(p);
1049 if (c != -1)
1050 break;
1051 }
1052 if (verbose || bootverbose)
1053 log(LOG_DEBUG, "kbdc: RESET_AUX return code:%04x\n", c);
1054 if (c == PSM_ACK) /* aux dev is about to reset... */
1055 break;
1056 }
1057 if (retry < 0)
1058 return FALSE;
1059
1060 for (again = KBD_MAXWAIT; again > 0; --again) {
1061 /* wait awhile, well, quite looooooooooooong */
1062 DELAY(KBD_RESETDELAY*1000);
1063 c = read_aux_data_no_wait(p); /* RESET_DONE/RESET_FAIL */
1064 if (c != -1) /* wait again if the controller is not ready */
1065 break;
1066 }
1067 if (verbose || bootverbose)
1068 log(LOG_DEBUG, "kbdc: RESET_AUX status:%04x\n", c);
1069 if (c != PSM_RESET_DONE) /* reset status */
1070 return FALSE;
1071
1072 c = read_aux_data(p); /* device ID */
1073 if (verbose || bootverbose)
1074 log(LOG_DEBUG, "kbdc: RESET_AUX ID:%04x\n", c);
1075 /* NOTE: we could check the device ID now, but leave it later... */
1076 return TRUE;
1077 }
1078
1079 /* controller diagnostics and setup */
1080
1081 int
test_controller(KBDC p)1082 test_controller(KBDC p)
1083 {
1084 int retry = KBD_MAXRETRY;
1085 int again = KBD_MAXWAIT;
1086 int c = KBD_DIAG_FAIL;
1087
1088 while (retry-- > 0) {
1089 empty_both_buffers(p, 10);
1090 if (write_controller_command(p, KBDC_DIAGNOSE))
1091 break;
1092 }
1093 if (retry < 0)
1094 return FALSE;
1095
1096 emptyq(&kbdcp(p)->kbd);
1097 while (again-- > 0) {
1098 /* wait awhile */
1099 DELAY(KBD_RESETDELAY*1000);
1100 c = read_controller_data(p); /* DIAG_DONE/DIAG_FAIL */
1101 if (c != -1) /* wait again if the controller is not ready */
1102 break;
1103 }
1104 if (verbose || bootverbose)
1105 log(LOG_DEBUG, "kbdc: DIAGNOSE status:%04x\n", c);
1106 return (c == KBD_DIAG_DONE);
1107 }
1108
1109 int
test_kbd_port(KBDC p)1110 test_kbd_port(KBDC p)
1111 {
1112 int retry = KBD_MAXRETRY;
1113 int again = KBD_MAXWAIT;
1114 int c = -1;
1115
1116 while (retry-- > 0) {
1117 empty_both_buffers(p, 10);
1118 if (write_controller_command(p, KBDC_TEST_KBD_PORT))
1119 break;
1120 }
1121 if (retry < 0)
1122 return FALSE;
1123
1124 emptyq(&kbdcp(p)->kbd);
1125 while (again-- > 0) {
1126 c = read_controller_data(p);
1127 if (c != -1) /* try again if the controller is not ready */
1128 break;
1129 }
1130 if (verbose || bootverbose)
1131 log(LOG_DEBUG, "kbdc: TEST_KBD_PORT status:%04x\n", c);
1132 return c;
1133 }
1134
1135 int
test_aux_port(KBDC p)1136 test_aux_port(KBDC p)
1137 {
1138 int retry = KBD_MAXRETRY;
1139 int again = KBD_MAXWAIT;
1140 int c = -1;
1141
1142 while (retry-- > 0) {
1143 empty_both_buffers(p, 10);
1144 if (write_controller_command(p, KBDC_TEST_AUX_PORT))
1145 break;
1146 }
1147 if (retry < 0)
1148 return FALSE;
1149
1150 emptyq(&kbdcp(p)->kbd);
1151 while (again-- > 0) {
1152 c = read_controller_data(p);
1153 if (c != -1) /* try again if the controller is not ready */
1154 break;
1155 }
1156 if (verbose || bootverbose)
1157 log(LOG_DEBUG, "kbdc: TEST_AUX_PORT status:%04x\n", c);
1158 return c;
1159 }
1160
1161 int
kbdc_get_device_mask(KBDC p)1162 kbdc_get_device_mask(KBDC p)
1163 {
1164 return kbdcp(p)->command_mask;
1165 }
1166
1167 void
kbdc_set_device_mask(KBDC p,int mask)1168 kbdc_set_device_mask(KBDC p, int mask)
1169 {
1170 kbdcp(p)->command_mask =
1171 mask & (((kbdcp(p)->quirks & KBDC_QUIRK_KEEP_ACTIVATED)
1172 ? 0 : KBD_KBD_CONTROL_BITS) | KBD_AUX_CONTROL_BITS);
1173 }
1174
1175 int
get_controller_command_byte(KBDC p)1176 get_controller_command_byte(KBDC p)
1177 {
1178 if (kbdcp(p)->command_byte != -1)
1179 return kbdcp(p)->command_byte;
1180 if (!write_controller_command(p, KBDC_GET_COMMAND_BYTE))
1181 return -1;
1182 emptyq(&kbdcp(p)->kbd);
1183 kbdcp(p)->command_byte = read_controller_data(p);
1184 return kbdcp(p)->command_byte;
1185 }
1186
1187 int
set_controller_command_byte(KBDC p,int mask,int command)1188 set_controller_command_byte(KBDC p, int mask, int command)
1189 {
1190 if (get_controller_command_byte(p) == -1)
1191 return FALSE;
1192
1193 command = (kbdcp(p)->command_byte & ~mask) | (command & mask);
1194 if (command & KBD_DISABLE_KBD_PORT) {
1195 if (!write_controller_command(p, KBDC_DISABLE_KBD_PORT))
1196 return FALSE;
1197 }
1198 if (!write_controller_command(p, KBDC_SET_COMMAND_BYTE))
1199 return FALSE;
1200 if (!write_controller_data(p, command))
1201 return FALSE;
1202 kbdcp(p)->command_byte = command;
1203
1204 if (verbose)
1205 log(LOG_DEBUG, "kbdc: new command byte:%04x (set_controller...)\n",
1206 command);
1207
1208 return TRUE;
1209 }
1210
1211 /*
1212 * Rudimentary support for active PS/2 AUX port multiplexing.
1213 * Only write commands can be routed to a selected AUX port.
1214 * Source port of data processed by read commands is totally ignored.
1215 */
1216 static int
set_aux_mux_state(KBDC p,int enabled)1217 set_aux_mux_state(KBDC p, int enabled)
1218 {
1219 int command, version;
1220
1221 if (write_controller_command(p, KBDC_FORCE_AUX_OUTPUT) == 0 ||
1222 write_controller_data(p, 0xF0) == 0 ||
1223 read_controller_data(p) != 0xF0)
1224 return (-1);
1225
1226 if (write_controller_command(p, KBDC_FORCE_AUX_OUTPUT) == 0 ||
1227 write_controller_data(p, 0x56) == 0 ||
1228 read_controller_data(p) != 0x56)
1229 return (-1);
1230
1231 command = enabled ? 0xa4 : 0xa5;
1232 if (write_controller_command(p, KBDC_FORCE_AUX_OUTPUT) == 0 ||
1233 write_controller_data(p, command) == 0 ||
1234 (version = read_controller_data(p)) == command)
1235 return (-1);
1236
1237 return (version);
1238 }
1239
1240 int
set_active_aux_mux_port(KBDC p,int port)1241 set_active_aux_mux_port(KBDC p, int port)
1242 {
1243
1244 if (!aux_mux_is_enabled(p))
1245 return (FALSE);
1246
1247 if (port < 0 || port >= KBDC_AUX_MUX_NUM_PORTS)
1248 return (FALSE);
1249
1250 kbdcp(p)->aux_mux_port = port;
1251
1252 return (TRUE);
1253 }
1254
1255 /* Checks for active multiplexing support and enables it */
1256 int
enable_aux_mux(KBDC p)1257 enable_aux_mux(KBDC p)
1258 {
1259 int version;
1260
1261 version = set_aux_mux_state(p, TRUE);
1262 if (version >= 0) {
1263 kbdcp(p)->aux_mux_enabled = TRUE;
1264 set_active_aux_mux_port(p, 0);
1265 }
1266
1267 return (version);
1268 }
1269
1270 int
disable_aux_mux(KBDC p)1271 disable_aux_mux(KBDC p)
1272 {
1273
1274 kbdcp(p)->aux_mux_enabled = FALSE;
1275
1276 return (set_aux_mux_state(p, FALSE));
1277 }
1278
1279 int
aux_mux_is_enabled(KBDC p)1280 aux_mux_is_enabled(KBDC p)
1281 {
1282
1283 return (kbdcp(p)->aux_mux_enabled);
1284 }
1285