1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/conf.h>
35 #include <sys/types.h>
36 #include <sys/bio.h>
37 #include <sys/bus.h>
38 #include <sys/devicestat.h>
39 #include <sys/errno.h>
40 #include <sys/fcntl.h>
41 #include <sys/malloc.h>
42 #include <sys/proc.h>
43 #include <sys/poll.h>
44 #include <sys/selinfo.h>
45 #include <sys/sdt.h>
46 #include <sys/sysent.h>
47 #include <sys/taskqueue.h>
48 #include <vm/uma.h>
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51
52 #include <machine/bus.h>
53
54 #include <cam/cam.h>
55 #include <cam/cam_ccb.h>
56 #include <cam/cam_periph.h>
57 #include <cam/cam_queue.h>
58 #include <cam/cam_xpt.h>
59 #include <cam/cam_xpt_periph.h>
60 #include <cam/cam_debug.h>
61 #include <cam/cam_compat.h>
62 #include <cam/cam_xpt_periph.h>
63
64 #include <cam/scsi/scsi_all.h>
65 #include <cam/scsi/scsi_pass.h>
66
67 typedef enum {
68 PASS_FLAG_OPEN = 0x01,
69 PASS_FLAG_LOCKED = 0x02,
70 PASS_FLAG_INVALID = 0x04,
71 PASS_FLAG_INITIAL_PHYSPATH = 0x08,
72 PASS_FLAG_ZONE_INPROG = 0x10,
73 PASS_FLAG_ZONE_VALID = 0x20,
74 PASS_FLAG_UNMAPPED_CAPABLE = 0x40,
75 PASS_FLAG_ABANDONED_REF_SET = 0x80
76 } pass_flags;
77
78 typedef enum {
79 PASS_STATE_NORMAL
80 } pass_state;
81
82 typedef enum {
83 PASS_CCB_BUFFER_IO,
84 PASS_CCB_QUEUED_IO
85 } pass_ccb_types;
86
87 #define ccb_type ppriv_field0
88 #define ccb_ioreq ppriv_ptr1
89
90 /*
91 * The maximum number of memory segments we preallocate.
92 */
93 #define PASS_MAX_SEGS 16
94
95 typedef enum {
96 PASS_IO_NONE = 0x00,
97 PASS_IO_USER_SEG_MALLOC = 0x01,
98 PASS_IO_KERN_SEG_MALLOC = 0x02,
99 PASS_IO_ABANDONED = 0x04
100 } pass_io_flags;
101
102 struct pass_io_req {
103 union ccb ccb;
104 union ccb *alloced_ccb;
105 union ccb *user_ccb_ptr;
106 camq_entry user_periph_links;
107 ccb_ppriv_area user_periph_priv;
108 struct cam_periph_map_info mapinfo;
109 pass_io_flags flags;
110 ccb_flags data_flags;
111 int num_user_segs;
112 bus_dma_segment_t user_segs[PASS_MAX_SEGS];
113 int num_kern_segs;
114 bus_dma_segment_t kern_segs[PASS_MAX_SEGS];
115 bus_dma_segment_t *user_segptr;
116 bus_dma_segment_t *kern_segptr;
117 int num_bufs;
118 uint32_t dirs[CAM_PERIPH_MAXMAPS];
119 uint32_t lengths[CAM_PERIPH_MAXMAPS];
120 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS];
121 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS];
122 struct bintime start_time;
123 TAILQ_ENTRY(pass_io_req) links;
124 };
125
126 struct pass_softc {
127 pass_state state;
128 pass_flags flags;
129 uint8_t pd_type;
130 int open_count;
131 u_int maxio;
132 struct devstat *device_stats;
133 struct cdev *dev;
134 struct cdev *alias_dev;
135 struct task add_physpath_task;
136 struct task shutdown_kqueue_task;
137 struct selinfo read_select;
138 TAILQ_HEAD(, pass_io_req) incoming_queue;
139 TAILQ_HEAD(, pass_io_req) active_queue;
140 TAILQ_HEAD(, pass_io_req) abandoned_queue;
141 TAILQ_HEAD(, pass_io_req) done_queue;
142 struct cam_periph *periph;
143 char zone_name[12];
144 char io_zone_name[12];
145 uma_zone_t pass_zone;
146 uma_zone_t pass_io_zone;
147 size_t io_zone_size;
148 };
149
150 static d_open_t passopen;
151 static d_close_t passclose;
152 static d_ioctl_t passioctl;
153 static d_ioctl_t passdoioctl;
154 static d_poll_t passpoll;
155 static d_kqfilter_t passkqfilter;
156 static void passreadfiltdetach(struct knote *kn);
157 static int passreadfilt(struct knote *kn, long hint);
158
159 static periph_init_t passinit;
160 static periph_ctor_t passregister;
161 static periph_oninv_t passoninvalidate;
162 static periph_dtor_t passcleanup;
163 static periph_start_t passstart;
164 static void pass_shutdown_kqueue(void *context, int pending);
165 static void pass_add_physpath(void *context, int pending);
166 static void passasync(void *callback_arg, uint32_t code,
167 struct cam_path *path, void *arg);
168 static void passdone(struct cam_periph *periph,
169 union ccb *done_ccb);
170 static int passcreatezone(struct cam_periph *periph);
171 static void passiocleanup(struct pass_softc *softc,
172 struct pass_io_req *io_req);
173 static int passcopysglist(struct cam_periph *periph,
174 struct pass_io_req *io_req,
175 ccb_flags direction);
176 static int passmemsetup(struct cam_periph *periph,
177 struct pass_io_req *io_req);
178 static int passmemdone(struct cam_periph *periph,
179 struct pass_io_req *io_req);
180 static int passerror(union ccb *ccb, uint32_t cam_flags,
181 uint32_t sense_flags);
182 static int passsendccb(struct cam_periph *periph, union ccb *ccb,
183 union ccb *inccb);
184 static void passflags(union ccb *ccb, uint32_t *cam_flags,
185 uint32_t *sense_flags);
186
187 static struct periph_driver passdriver =
188 {
189 passinit, "pass",
190 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
191 };
192
193 PERIPHDRIVER_DECLARE(pass, passdriver);
194
195 static struct cdevsw pass_cdevsw = {
196 .d_version = D_VERSION,
197 .d_flags = D_TRACKCLOSE,
198 .d_open = passopen,
199 .d_close = passclose,
200 .d_ioctl = passioctl,
201 .d_poll = passpoll,
202 .d_kqfilter = passkqfilter,
203 .d_name = "pass",
204 };
205
206 static struct filterops passread_filtops = {
207 .f_isfd = 1,
208 .f_detach = passreadfiltdetach,
209 .f_event = passreadfilt
210 };
211
212 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
213
214 static void
passinit(void)215 passinit(void)
216 {
217 cam_status status;
218
219 /*
220 * Install a global async callback. This callback will
221 * receive async callbacks like "new device found".
222 */
223 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
224
225 if (status != CAM_REQ_CMP) {
226 printf("pass: Failed to attach master async callback "
227 "due to status 0x%x!\n", status);
228 }
229
230 }
231
232 static void
passrejectios(struct cam_periph * periph)233 passrejectios(struct cam_periph *periph)
234 {
235 struct pass_io_req *io_req, *io_req2;
236 struct pass_softc *softc;
237
238 softc = (struct pass_softc *)periph->softc;
239
240 /*
241 * The user can no longer get status for I/O on the done queue, so
242 * clean up all outstanding I/O on the done queue.
243 */
244 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
245 TAILQ_REMOVE(&softc->done_queue, io_req, links);
246 passiocleanup(softc, io_req);
247 uma_zfree(softc->pass_zone, io_req);
248 }
249
250 /*
251 * The underlying device is gone, so we can't issue these I/Os.
252 * The devfs node has been shut down, so we can't return status to
253 * the user. Free any I/O left on the incoming queue.
254 */
255 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
256 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
257 passiocleanup(softc, io_req);
258 uma_zfree(softc->pass_zone, io_req);
259 }
260
261 /*
262 * Normally we would put I/Os on the abandoned queue and acquire a
263 * reference when we saw the final close. But, the device went
264 * away and devfs may have moved everything off to deadfs by the
265 * time the I/O done callback is called; as a result, we won't see
266 * any more closes. So, if we have any active I/Os, we need to put
267 * them on the abandoned queue. When the abandoned queue is empty,
268 * we'll release the remaining reference (see below) to the peripheral.
269 */
270 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
271 TAILQ_REMOVE(&softc->active_queue, io_req, links);
272 io_req->flags |= PASS_IO_ABANDONED;
273 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
274 }
275
276 /*
277 * If we put any I/O on the abandoned queue, acquire a reference.
278 */
279 if ((!TAILQ_EMPTY(&softc->abandoned_queue))
280 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
281 cam_periph_doacquire(periph);
282 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
283 }
284 }
285
286 static void
passdevgonecb(void * arg)287 passdevgonecb(void *arg)
288 {
289 struct cam_periph *periph;
290 struct mtx *mtx;
291 struct pass_softc *softc;
292 int i;
293
294 periph = (struct cam_periph *)arg;
295 mtx = cam_periph_mtx(periph);
296 mtx_lock(mtx);
297
298 softc = (struct pass_softc *)periph->softc;
299 KASSERT(softc->open_count >= 0, ("Negative open count %d",
300 softc->open_count));
301
302 /*
303 * When we get this callback, we will get no more close calls from
304 * devfs. So if we have any dangling opens, we need to release the
305 * reference held for that particular context.
306 */
307 for (i = 0; i < softc->open_count; i++)
308 cam_periph_release_locked(periph);
309
310 softc->open_count = 0;
311
312 /*
313 * Release the reference held for the device node, it is gone now.
314 * Accordingly, inform all queued I/Os of their fate.
315 */
316 cam_periph_release_locked(periph);
317 passrejectios(periph);
318
319 /*
320 * We reference the SIM lock directly here, instead of using
321 * cam_periph_unlock(). The reason is that the final call to
322 * cam_periph_release_locked() above could result in the periph
323 * getting freed. If that is the case, dereferencing the periph
324 * with a cam_periph_unlock() call would cause a page fault.
325 */
326 mtx_unlock(mtx);
327
328 /*
329 * We have to remove our kqueue context from a thread because it
330 * may sleep. It would be nice if we could get a callback from
331 * kqueue when it is done cleaning up resources.
332 */
333 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
334 }
335
336 static void
passoninvalidate(struct cam_periph * periph)337 passoninvalidate(struct cam_periph *periph)
338 {
339 struct pass_softc *softc;
340
341 softc = (struct pass_softc *)periph->softc;
342
343 /*
344 * De-register any async callbacks.
345 */
346 xpt_register_async(0, passasync, periph, periph->path);
347
348 softc->flags |= PASS_FLAG_INVALID;
349
350 /*
351 * Tell devfs this device has gone away, and ask for a callback
352 * when it has cleaned up its state.
353 */
354 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
355 }
356
357 static void
passcleanup(struct cam_periph * periph)358 passcleanup(struct cam_periph *periph)
359 {
360 struct pass_softc *softc;
361
362 softc = (struct pass_softc *)periph->softc;
363
364 cam_periph_assert(periph, MA_OWNED);
365 KASSERT(TAILQ_EMPTY(&softc->active_queue),
366 ("%s called when there are commands on the active queue!\n",
367 __func__));
368 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
369 ("%s called when there are commands on the abandoned queue!\n",
370 __func__));
371 KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
372 ("%s called when there are commands on the incoming queue!\n",
373 __func__));
374 KASSERT(TAILQ_EMPTY(&softc->done_queue),
375 ("%s called when there are commands on the done queue!\n",
376 __func__));
377
378 devstat_remove_entry(softc->device_stats);
379
380 cam_periph_unlock(periph);
381
382 /*
383 * We call taskqueue_drain() for the physpath task to make sure it
384 * is complete. We drop the lock because this can potentially
385 * sleep. XXX KDM that is bad. Need a way to get a callback when
386 * a taskqueue is drained.
387 *
388 * Note that we don't drain the kqueue shutdown task queue. This
389 * is because we hold a reference on the periph for kqueue, and
390 * release that reference from the kqueue shutdown task queue. So
391 * we cannot come into this routine unless we've released that
392 * reference. Also, because that could be the last reference, we
393 * could be called from the cam_periph_release() call in
394 * pass_shutdown_kqueue(). In that case, the taskqueue_drain()
395 * would deadlock. It would be preferable if we had a way to
396 * get a callback when a taskqueue is done.
397 */
398 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
399
400 /*
401 * It should be safe to destroy the zones from here, because all
402 * of the references to this peripheral have been freed, and all
403 * I/O has been terminated and freed. We check the zones for NULL
404 * because they may not have been allocated yet if the device went
405 * away before any asynchronous I/O has been issued.
406 */
407 if (softc->pass_zone != NULL)
408 uma_zdestroy(softc->pass_zone);
409 if (softc->pass_io_zone != NULL)
410 uma_zdestroy(softc->pass_io_zone);
411
412 cam_periph_lock(periph);
413
414 free(softc, M_DEVBUF);
415 }
416
417 static void
pass_shutdown_kqueue(void * context,int pending)418 pass_shutdown_kqueue(void *context, int pending)
419 {
420 struct cam_periph *periph;
421 struct pass_softc *softc;
422
423 periph = context;
424 softc = periph->softc;
425
426 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
427 knlist_destroy(&softc->read_select.si_note);
428
429 /*
430 * Release the reference we held for kqueue.
431 */
432 cam_periph_release(periph);
433 }
434
435 static void
pass_add_physpath(void * context,int pending)436 pass_add_physpath(void *context, int pending)
437 {
438 struct cam_periph *periph;
439 struct pass_softc *softc;
440 struct mtx *mtx;
441 char *physpath;
442
443 /*
444 * If we have one, create a devfs alias for our
445 * physical path.
446 */
447 periph = context;
448 softc = periph->softc;
449 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
450 mtx = cam_periph_mtx(periph);
451 mtx_lock(mtx);
452
453 if (periph->flags & CAM_PERIPH_INVALID)
454 goto out;
455
456 if (xpt_getattr(physpath, MAXPATHLEN,
457 "GEOM::physpath", periph->path) == 0
458 && strlen(physpath) != 0) {
459 mtx_unlock(mtx);
460 make_dev_physpath_alias(MAKEDEV_WAITOK | MAKEDEV_CHECKNAME,
461 &softc->alias_dev, softc->dev,
462 softc->alias_dev, physpath);
463 mtx_lock(mtx);
464 }
465
466 out:
467 /*
468 * Now that we've made our alias, we no longer have to have a
469 * reference to the device.
470 */
471 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
472 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
473
474 /*
475 * We always acquire a reference to the periph before queueing this
476 * task queue function, so it won't go away before we run.
477 */
478 while (pending-- > 0)
479 cam_periph_release_locked(periph);
480 mtx_unlock(mtx);
481
482 free(physpath, M_DEVBUF);
483 }
484
485 static void
passasync(void * callback_arg,uint32_t code,struct cam_path * path,void * arg)486 passasync(void *callback_arg, uint32_t code,
487 struct cam_path *path, void *arg)
488 {
489 struct cam_periph *periph;
490
491 periph = (struct cam_periph *)callback_arg;
492
493 switch (code) {
494 case AC_FOUND_DEVICE:
495 {
496 struct ccb_getdev *cgd;
497 cam_status status;
498
499 cgd = (struct ccb_getdev *)arg;
500 if (cgd == NULL)
501 break;
502
503 /*
504 * Allocate a peripheral instance for
505 * this device and start the probe
506 * process.
507 */
508 status = cam_periph_alloc(passregister, passoninvalidate,
509 passcleanup, passstart, "pass",
510 CAM_PERIPH_BIO, path,
511 passasync, AC_FOUND_DEVICE, cgd);
512
513 if (status != CAM_REQ_CMP
514 && status != CAM_REQ_INPROG) {
515 const struct cam_status_entry *entry;
516
517 entry = cam_fetch_status_entry(status);
518
519 printf("passasync: Unable to attach new device "
520 "due to status %#x: %s\n", status, entry ?
521 entry->status_text : "Unknown");
522 }
523
524 break;
525 }
526 case AC_ADVINFO_CHANGED:
527 {
528 uintptr_t buftype;
529
530 buftype = (uintptr_t)arg;
531 if (buftype == CDAI_TYPE_PHYS_PATH) {
532 struct pass_softc *softc;
533
534 softc = (struct pass_softc *)periph->softc;
535 /*
536 * Acquire a reference to the periph before we
537 * start the taskqueue, so that we don't run into
538 * a situation where the periph goes away before
539 * the task queue has a chance to run.
540 */
541 if (cam_periph_acquire(periph) != 0)
542 break;
543
544 taskqueue_enqueue(taskqueue_thread,
545 &softc->add_physpath_task);
546 }
547 break;
548 }
549 default:
550 cam_periph_async(periph, code, path, arg);
551 break;
552 }
553 }
554
555 static cam_status
passregister(struct cam_periph * periph,void * arg)556 passregister(struct cam_periph *periph, void *arg)
557 {
558 struct pass_softc *softc;
559 struct ccb_getdev *cgd;
560 struct ccb_pathinq cpi;
561 struct make_dev_args args;
562 int error, no_tags;
563
564 cgd = (struct ccb_getdev *)arg;
565 if (cgd == NULL) {
566 printf("%s: no getdev CCB, can't register device\n", __func__);
567 return(CAM_REQ_CMP_ERR);
568 }
569
570 softc = (struct pass_softc *)malloc(sizeof(*softc),
571 M_DEVBUF, M_NOWAIT);
572
573 if (softc == NULL) {
574 printf("%s: Unable to probe new device. "
575 "Unable to allocate softc\n", __func__);
576 return(CAM_REQ_CMP_ERR);
577 }
578
579 bzero(softc, sizeof(*softc));
580 softc->state = PASS_STATE_NORMAL;
581 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
582 softc->pd_type = SID_TYPE(&cgd->inq_data);
583 else if (cgd->protocol == PROTO_SATAPM)
584 softc->pd_type = T_ENCLOSURE;
585 else
586 softc->pd_type = T_DIRECT;
587
588 periph->softc = softc;
589 softc->periph = periph;
590 TAILQ_INIT(&softc->incoming_queue);
591 TAILQ_INIT(&softc->active_queue);
592 TAILQ_INIT(&softc->abandoned_queue);
593 TAILQ_INIT(&softc->done_queue);
594 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
595 periph->periph_name, periph->unit_number);
596 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
597 periph->periph_name, periph->unit_number);
598 softc->io_zone_size = maxphys;
599 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
600
601 xpt_path_inq(&cpi, periph->path);
602
603 if (cpi.maxio == 0)
604 softc->maxio = DFLTPHYS; /* traditional default */
605 else if (cpi.maxio > maxphys)
606 softc->maxio = maxphys; /* for safety */
607 else
608 softc->maxio = cpi.maxio; /* real value */
609
610 if (cpi.hba_misc & PIM_UNMAPPED)
611 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
612
613 /*
614 * We pass in 0 for a blocksize, since we don't
615 * know what the blocksize of this device is, if
616 * it even has a blocksize.
617 */
618 cam_periph_unlock(periph);
619 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
620 softc->device_stats = devstat_new_entry("pass",
621 periph->unit_number, 0,
622 DEVSTAT_NO_BLOCKSIZE
623 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
624 softc->pd_type |
625 XPORT_DEVSTAT_TYPE(cpi.transport) |
626 DEVSTAT_TYPE_PASS,
627 DEVSTAT_PRIORITY_PASS);
628
629 /*
630 * Initialize the taskqueue handler for shutting down kqueue.
631 */
632 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
633 pass_shutdown_kqueue, periph);
634
635 /*
636 * Acquire a reference to the periph that we can release once we've
637 * cleaned up the kqueue.
638 */
639 if (cam_periph_acquire(periph) != 0) {
640 xpt_print(periph->path, "%s: lost periph during "
641 "registration!\n", __func__);
642 cam_periph_lock(periph);
643 return (CAM_REQ_CMP_ERR);
644 }
645
646 /*
647 * Acquire a reference to the periph before we create the devfs
648 * instance for it. We'll release this reference once the devfs
649 * instance has been freed.
650 */
651 if (cam_periph_acquire(periph) != 0) {
652 xpt_print(periph->path, "%s: lost periph during "
653 "registration!\n", __func__);
654 cam_periph_lock(periph);
655 return (CAM_REQ_CMP_ERR);
656 }
657
658 /* Register the device */
659 make_dev_args_init(&args);
660 args.mda_devsw = &pass_cdevsw;
661 args.mda_unit = periph->unit_number;
662 args.mda_uid = UID_ROOT;
663 args.mda_gid = GID_OPERATOR;
664 args.mda_mode = 0600;
665 args.mda_si_drv1 = periph;
666 args.mda_flags = MAKEDEV_NOWAIT;
667 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
668 periph->unit_number);
669 if (error != 0) {
670 cam_periph_lock(periph);
671 cam_periph_release_locked(periph);
672 return (CAM_REQ_CMP_ERR);
673 }
674
675 /*
676 * Hold a reference to the periph before we create the physical
677 * path alias so it can't go away.
678 */
679 if (cam_periph_acquire(periph) != 0) {
680 xpt_print(periph->path, "%s: lost periph during "
681 "registration!\n", __func__);
682 cam_periph_lock(periph);
683 return (CAM_REQ_CMP_ERR);
684 }
685
686 cam_periph_lock(periph);
687
688 TASK_INIT(&softc->add_physpath_task, /*priority*/0,
689 pass_add_physpath, periph);
690
691 /*
692 * See if physical path information is already available.
693 */
694 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
695
696 /*
697 * Add an async callback so that we get notified if
698 * this device goes away or its physical path
699 * (stored in the advanced info data of the EDT) has
700 * changed.
701 */
702 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
703 passasync, periph, periph->path);
704
705 if (bootverbose)
706 xpt_announce_periph(periph, NULL);
707
708 return(CAM_REQ_CMP);
709 }
710
711 static int
passopen(struct cdev * dev,int flags,int fmt,struct thread * td)712 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
713 {
714 struct cam_periph *periph;
715 struct pass_softc *softc;
716 int error;
717
718 periph = (struct cam_periph *)dev->si_drv1;
719 if (cam_periph_acquire(periph) != 0)
720 return (ENXIO);
721
722 cam_periph_lock(periph);
723
724 softc = (struct pass_softc *)periph->softc;
725
726 if (softc->flags & PASS_FLAG_INVALID) {
727 cam_periph_release_locked(periph);
728 cam_periph_unlock(periph);
729 return(ENXIO);
730 }
731
732 /*
733 * Don't allow access when we're running at a high securelevel.
734 */
735 error = securelevel_gt(td->td_ucred, 1);
736 if (error) {
737 cam_periph_release_locked(periph);
738 cam_periph_unlock(periph);
739 return(error);
740 }
741
742 /*
743 * Only allow read-write access.
744 */
745 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
746 cam_periph_release_locked(periph);
747 cam_periph_unlock(periph);
748 return(EPERM);
749 }
750
751 /*
752 * We don't allow nonblocking access.
753 */
754 if ((flags & O_NONBLOCK) != 0) {
755 xpt_print(periph->path, "can't do nonblocking access\n");
756 cam_periph_release_locked(periph);
757 cam_periph_unlock(periph);
758 return(EINVAL);
759 }
760
761 softc->open_count++;
762
763 cam_periph_unlock(periph);
764
765 return (error);
766 }
767
768 static int
passclose(struct cdev * dev,int flag,int fmt,struct thread * td)769 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
770 {
771 struct cam_periph *periph;
772 struct pass_softc *softc;
773 struct mtx *mtx;
774
775 periph = (struct cam_periph *)dev->si_drv1;
776 mtx = cam_periph_mtx(periph);
777 mtx_lock(mtx);
778
779 softc = periph->softc;
780 softc->open_count--;
781
782 if (softc->open_count == 0) {
783 struct pass_io_req *io_req, *io_req2;
784
785 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
786 TAILQ_REMOVE(&softc->done_queue, io_req, links);
787 passiocleanup(softc, io_req);
788 uma_zfree(softc->pass_zone, io_req);
789 }
790
791 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
792 io_req2) {
793 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
794 passiocleanup(softc, io_req);
795 uma_zfree(softc->pass_zone, io_req);
796 }
797
798 /*
799 * If there are any active I/Os, we need to forcibly acquire a
800 * reference to the peripheral so that we don't go away
801 * before they complete. We'll release the reference when
802 * the abandoned queue is empty.
803 */
804 io_req = TAILQ_FIRST(&softc->active_queue);
805 if ((io_req != NULL)
806 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
807 cam_periph_doacquire(periph);
808 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
809 }
810
811 /*
812 * Since the I/O in the active queue is not under our
813 * control, just set a flag so that we can clean it up when
814 * it completes and put it on the abandoned queue. This
815 * will prevent our sending spurious completions in the
816 * event that the device is opened again before these I/Os
817 * complete.
818 */
819 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
820 io_req2) {
821 TAILQ_REMOVE(&softc->active_queue, io_req, links);
822 io_req->flags |= PASS_IO_ABANDONED;
823 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
824 links);
825 }
826 }
827
828 cam_periph_release_locked(periph);
829
830 /*
831 * We reference the lock directly here, instead of using
832 * cam_periph_unlock(). The reason is that the call to
833 * cam_periph_release_locked() above could result in the periph
834 * getting freed. If that is the case, dereferencing the periph
835 * with a cam_periph_unlock() call would cause a page fault.
836 *
837 * cam_periph_release() avoids this problem using the same method,
838 * but we're manually acquiring and dropping the lock here to
839 * protect the open count and avoid another lock acquisition and
840 * release.
841 */
842 mtx_unlock(mtx);
843
844 return (0);
845 }
846
847 static void
passstart(struct cam_periph * periph,union ccb * start_ccb)848 passstart(struct cam_periph *periph, union ccb *start_ccb)
849 {
850 struct pass_softc *softc;
851
852 softc = (struct pass_softc *)periph->softc;
853
854 switch (softc->state) {
855 case PASS_STATE_NORMAL: {
856 struct pass_io_req *io_req;
857
858 /*
859 * Check for any queued I/O requests that require an
860 * allocated slot.
861 */
862 io_req = TAILQ_FIRST(&softc->incoming_queue);
863 if (io_req == NULL) {
864 xpt_release_ccb(start_ccb);
865 break;
866 }
867 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
868 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
869 /*
870 * Merge the user's CCB into the allocated CCB.
871 */
872 xpt_merge_ccb(start_ccb, &io_req->ccb);
873 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
874 start_ccb->ccb_h.ccb_ioreq = io_req;
875 start_ccb->ccb_h.cbfcnp = passdone;
876 io_req->alloced_ccb = start_ccb;
877 binuptime(&io_req->start_time);
878 devstat_start_transaction(softc->device_stats,
879 &io_req->start_time);
880
881 xpt_action(start_ccb);
882
883 /*
884 * If we have any more I/O waiting, schedule ourselves again.
885 */
886 if (!TAILQ_EMPTY(&softc->incoming_queue))
887 xpt_schedule(periph, CAM_PRIORITY_NORMAL);
888 break;
889 }
890 default:
891 break;
892 }
893 }
894
895 static void
passdone(struct cam_periph * periph,union ccb * done_ccb)896 passdone(struct cam_periph *periph, union ccb *done_ccb)
897 {
898 struct pass_softc *softc;
899 struct ccb_scsiio *csio;
900
901 softc = (struct pass_softc *)periph->softc;
902
903 cam_periph_assert(periph, MA_OWNED);
904
905 csio = &done_ccb->csio;
906 switch (csio->ccb_h.ccb_type) {
907 case PASS_CCB_QUEUED_IO: {
908 struct pass_io_req *io_req;
909
910 io_req = done_ccb->ccb_h.ccb_ioreq;
911 #if 0
912 xpt_print(periph->path, "%s: called for user CCB %p\n",
913 __func__, io_req->user_ccb_ptr);
914 #endif
915 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) &&
916 ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
917 int error;
918 uint32_t cam_flags, sense_flags;
919
920 passflags(done_ccb, &cam_flags, &sense_flags);
921 error = passerror(done_ccb, cam_flags, sense_flags);
922
923 if (error == ERESTART) {
924 KASSERT(((sense_flags & SF_NO_RETRY) == 0),
925 ("passerror returned ERESTART with no retry requested\n"));
926 return;
927 }
928 }
929
930 /*
931 * Copy the allocated CCB contents back to the malloced CCB
932 * so we can give status back to the user when he requests it.
933 */
934 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
935
936 /*
937 * Log data/transaction completion with devstat(9).
938 */
939 switch (done_ccb->ccb_h.func_code) {
940 case XPT_SCSI_IO:
941 devstat_end_transaction(softc->device_stats,
942 done_ccb->csio.dxfer_len - done_ccb->csio.resid,
943 done_ccb->csio.tag_action & 0x3,
944 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
945 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
946 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
947 DEVSTAT_WRITE : DEVSTAT_READ, NULL,
948 &io_req->start_time);
949 break;
950 case XPT_ATA_IO:
951 devstat_end_transaction(softc->device_stats,
952 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
953 0, /* Not used in ATA */
954 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
955 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
956 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
957 DEVSTAT_WRITE : DEVSTAT_READ, NULL,
958 &io_req->start_time);
959 break;
960 case XPT_SMP_IO:
961 /*
962 * XXX KDM this isn't quite right, but there isn't
963 * currently an easy way to represent a bidirectional
964 * transfer in devstat. The only way to do it
965 * and have the byte counts come out right would
966 * mean that we would have to record two
967 * transactions, one for the request and one for the
968 * response. For now, so that we report something,
969 * just treat the entire thing as a read.
970 */
971 devstat_end_transaction(softc->device_stats,
972 done_ccb->smpio.smp_request_len +
973 done_ccb->smpio.smp_response_len,
974 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
975 &io_req->start_time);
976 break;
977 default:
978 devstat_end_transaction(softc->device_stats, 0,
979 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
980 &io_req->start_time);
981 break;
982 }
983
984 /*
985 * In the normal case, take the completed I/O off of the
986 * active queue and put it on the done queue. Notitfy the
987 * user that we have a completed I/O.
988 */
989 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
990 TAILQ_REMOVE(&softc->active_queue, io_req, links);
991 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
992 selwakeuppri(&softc->read_select, PRIBIO);
993 KNOTE_LOCKED(&softc->read_select.si_note, 0);
994 } else {
995 /*
996 * In the case of an abandoned I/O (final close
997 * without fetching the I/O), take it off of the
998 * abandoned queue and free it.
999 */
1000 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
1001 passiocleanup(softc, io_req);
1002 uma_zfree(softc->pass_zone, io_req);
1003
1004 /*
1005 * Release the done_ccb here, since we may wind up
1006 * freeing the peripheral when we decrement the
1007 * reference count below.
1008 */
1009 xpt_release_ccb(done_ccb);
1010
1011 /*
1012 * If the abandoned queue is empty, we can release
1013 * our reference to the periph since we won't have
1014 * any more completions coming.
1015 */
1016 if ((TAILQ_EMPTY(&softc->abandoned_queue))
1017 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1018 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1019 cam_periph_release_locked(periph);
1020 }
1021
1022 /*
1023 * We have already released the CCB, so we can
1024 * return.
1025 */
1026 return;
1027 }
1028 break;
1029 }
1030 }
1031 xpt_release_ccb(done_ccb);
1032 }
1033
1034 static int
passcreatezone(struct cam_periph * periph)1035 passcreatezone(struct cam_periph *periph)
1036 {
1037 struct pass_softc *softc;
1038 int error;
1039
1040 error = 0;
1041 softc = (struct pass_softc *)periph->softc;
1042
1043 cam_periph_assert(periph, MA_OWNED);
1044 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
1045 ("%s called when the pass(4) zone is valid!\n", __func__));
1046 KASSERT((softc->pass_zone == NULL),
1047 ("%s called when the pass(4) zone is allocated!\n", __func__));
1048
1049 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1050 /*
1051 * We're the first context through, so we need to create
1052 * the pass(4) UMA zone for I/O requests.
1053 */
1054 softc->flags |= PASS_FLAG_ZONE_INPROG;
1055
1056 /*
1057 * uma_zcreate() does a blocking (M_WAITOK) allocation,
1058 * so we cannot hold a mutex while we call it.
1059 */
1060 cam_periph_unlock(periph);
1061
1062 softc->pass_zone = uma_zcreate(softc->zone_name,
1063 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1064 /*align*/ 0, /*flags*/ 0);
1065
1066 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1067 softc->io_zone_size, NULL, NULL, NULL, NULL,
1068 /*align*/ 0, /*flags*/ 0);
1069
1070 cam_periph_lock(periph);
1071
1072 if ((softc->pass_zone == NULL)
1073 || (softc->pass_io_zone == NULL)) {
1074 if (softc->pass_zone == NULL)
1075 xpt_print(periph->path, "unable to allocate "
1076 "IO Req UMA zone\n");
1077 else
1078 xpt_print(periph->path, "unable to allocate "
1079 "IO UMA zone\n");
1080 softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1081 goto bailout;
1082 }
1083
1084 /*
1085 * Set the flags appropriately and notify any other waiters.
1086 */
1087 softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1088 softc->flags |= PASS_FLAG_ZONE_VALID;
1089 wakeup(&softc->pass_zone);
1090 } else {
1091 /*
1092 * In this case, the UMA zone has not yet been created, but
1093 * another context is in the process of creating it. We
1094 * need to sleep until the creation is either done or has
1095 * failed.
1096 */
1097 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1098 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1099 error = msleep(&softc->pass_zone,
1100 cam_periph_mtx(periph), PRIBIO,
1101 "paszon", 0);
1102 if (error != 0)
1103 goto bailout;
1104 }
1105 /*
1106 * If the zone creation failed, no luck for the user.
1107 */
1108 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1109 error = ENOMEM;
1110 goto bailout;
1111 }
1112 }
1113 bailout:
1114 return (error);
1115 }
1116
1117 static void
passiocleanup(struct pass_softc * softc,struct pass_io_req * io_req)1118 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1119 {
1120 union ccb *ccb;
1121 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1122 int i, numbufs;
1123
1124 ccb = &io_req->ccb;
1125
1126 switch (ccb->ccb_h.func_code) {
1127 case XPT_DEV_MATCH:
1128 numbufs = min(io_req->num_bufs, 2);
1129
1130 if (numbufs == 1) {
1131 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1132 } else {
1133 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1134 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1135 }
1136 break;
1137 case XPT_SCSI_IO:
1138 case XPT_CONT_TARGET_IO:
1139 data_ptrs[0] = &ccb->csio.data_ptr;
1140 numbufs = min(io_req->num_bufs, 1);
1141 break;
1142 case XPT_ATA_IO:
1143 data_ptrs[0] = &ccb->ataio.data_ptr;
1144 numbufs = min(io_req->num_bufs, 1);
1145 break;
1146 case XPT_SMP_IO:
1147 numbufs = min(io_req->num_bufs, 2);
1148 data_ptrs[0] = &ccb->smpio.smp_request;
1149 data_ptrs[1] = &ccb->smpio.smp_response;
1150 break;
1151 case XPT_DEV_ADVINFO:
1152 numbufs = min(io_req->num_bufs, 1);
1153 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1154 break;
1155 case XPT_NVME_IO:
1156 case XPT_NVME_ADMIN:
1157 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1158 numbufs = min(io_req->num_bufs, 1);
1159 break;
1160 default:
1161 /* allow ourselves to be swapped once again */
1162 return;
1163 break; /* NOTREACHED */
1164 }
1165
1166 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1167 free(io_req->user_segptr, M_SCSIPASS);
1168 io_req->user_segptr = NULL;
1169 }
1170
1171 /*
1172 * We only want to free memory we malloced.
1173 */
1174 if (io_req->data_flags == CAM_DATA_VADDR) {
1175 for (i = 0; i < io_req->num_bufs; i++) {
1176 if (io_req->kern_bufs[i] == NULL)
1177 continue;
1178
1179 free(io_req->kern_bufs[i], M_SCSIPASS);
1180 io_req->kern_bufs[i] = NULL;
1181 }
1182 } else if (io_req->data_flags == CAM_DATA_SG) {
1183 for (i = 0; i < io_req->num_kern_segs; i++) {
1184 if ((uint8_t *)(uintptr_t)
1185 io_req->kern_segptr[i].ds_addr == NULL)
1186 continue;
1187
1188 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1189 io_req->kern_segptr[i].ds_addr);
1190 io_req->kern_segptr[i].ds_addr = 0;
1191 }
1192 }
1193
1194 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1195 free(io_req->kern_segptr, M_SCSIPASS);
1196 io_req->kern_segptr = NULL;
1197 }
1198
1199 if (io_req->data_flags != CAM_DATA_PADDR) {
1200 for (i = 0; i < numbufs; i++) {
1201 /*
1202 * Restore the user's buffer pointers to their
1203 * previous values.
1204 */
1205 if (io_req->user_bufs[i] != NULL)
1206 *data_ptrs[i] = io_req->user_bufs[i];
1207 }
1208 }
1209
1210 }
1211
1212 static int
passcopysglist(struct cam_periph * periph,struct pass_io_req * io_req,ccb_flags direction)1213 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1214 ccb_flags direction)
1215 {
1216 bus_size_t kern_watermark, user_watermark, len_to_copy;
1217 bus_dma_segment_t *user_sglist, *kern_sglist;
1218 int i, j, error;
1219
1220 error = 0;
1221 kern_watermark = 0;
1222 user_watermark = 0;
1223 len_to_copy = 0;
1224 user_sglist = io_req->user_segptr;
1225 kern_sglist = io_req->kern_segptr;
1226
1227 for (i = 0, j = 0; i < io_req->num_user_segs &&
1228 j < io_req->num_kern_segs;) {
1229 uint8_t *user_ptr, *kern_ptr;
1230
1231 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1232 kern_sglist[j].ds_len - kern_watermark);
1233
1234 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1235 user_ptr = user_ptr + user_watermark;
1236 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1237 kern_ptr = kern_ptr + kern_watermark;
1238
1239 user_watermark += len_to_copy;
1240 kern_watermark += len_to_copy;
1241
1242 if (direction == CAM_DIR_IN) {
1243 error = copyout(kern_ptr, user_ptr, len_to_copy);
1244 if (error != 0) {
1245 xpt_print(periph->path, "%s: copyout of %u "
1246 "bytes from %p to %p failed with "
1247 "error %d\n", __func__, len_to_copy,
1248 kern_ptr, user_ptr, error);
1249 goto bailout;
1250 }
1251 } else {
1252 error = copyin(user_ptr, kern_ptr, len_to_copy);
1253 if (error != 0) {
1254 xpt_print(periph->path, "%s: copyin of %u "
1255 "bytes from %p to %p failed with "
1256 "error %d\n", __func__, len_to_copy,
1257 user_ptr, kern_ptr, error);
1258 goto bailout;
1259 }
1260 }
1261
1262 if (user_sglist[i].ds_len == user_watermark) {
1263 i++;
1264 user_watermark = 0;
1265 }
1266
1267 if (kern_sglist[j].ds_len == kern_watermark) {
1268 j++;
1269 kern_watermark = 0;
1270 }
1271 }
1272
1273 bailout:
1274
1275 return (error);
1276 }
1277
1278 static int
passmemsetup(struct cam_periph * periph,struct pass_io_req * io_req)1279 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1280 {
1281 union ccb *ccb;
1282 struct pass_softc *softc;
1283 int numbufs, i;
1284 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1285 uint32_t lengths[CAM_PERIPH_MAXMAPS];
1286 uint32_t dirs[CAM_PERIPH_MAXMAPS];
1287 uint32_t num_segs;
1288 uint16_t *seg_cnt_ptr;
1289 size_t maxmap;
1290 int error;
1291
1292 cam_periph_assert(periph, MA_NOTOWNED);
1293
1294 softc = periph->softc;
1295
1296 error = 0;
1297 ccb = &io_req->ccb;
1298 maxmap = 0;
1299 num_segs = 0;
1300 seg_cnt_ptr = NULL;
1301
1302 switch(ccb->ccb_h.func_code) {
1303 case XPT_DEV_MATCH:
1304 if (ccb->cdm.match_buf_len == 0) {
1305 printf("%s: invalid match buffer length 0\n", __func__);
1306 return(EINVAL);
1307 }
1308 if (ccb->cdm.pattern_buf_len > 0) {
1309 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1310 lengths[0] = ccb->cdm.pattern_buf_len;
1311 dirs[0] = CAM_DIR_OUT;
1312 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1313 lengths[1] = ccb->cdm.match_buf_len;
1314 dirs[1] = CAM_DIR_IN;
1315 numbufs = 2;
1316 } else {
1317 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1318 lengths[0] = ccb->cdm.match_buf_len;
1319 dirs[0] = CAM_DIR_IN;
1320 numbufs = 1;
1321 }
1322 io_req->data_flags = CAM_DATA_VADDR;
1323 break;
1324 case XPT_SCSI_IO:
1325 case XPT_CONT_TARGET_IO:
1326 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1327 return(0);
1328
1329 /*
1330 * The user shouldn't be able to supply a bio.
1331 */
1332 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1333 return (EINVAL);
1334
1335 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1336
1337 data_ptrs[0] = &ccb->csio.data_ptr;
1338 lengths[0] = ccb->csio.dxfer_len;
1339 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1340 num_segs = ccb->csio.sglist_cnt;
1341 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1342 numbufs = 1;
1343 maxmap = softc->maxio;
1344 break;
1345 case XPT_ATA_IO:
1346 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1347 return(0);
1348
1349 /*
1350 * We only support a single virtual address for ATA I/O.
1351 */
1352 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1353 return (EINVAL);
1354
1355 io_req->data_flags = CAM_DATA_VADDR;
1356
1357 data_ptrs[0] = &ccb->ataio.data_ptr;
1358 lengths[0] = ccb->ataio.dxfer_len;
1359 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1360 numbufs = 1;
1361 maxmap = softc->maxio;
1362 break;
1363 case XPT_SMP_IO:
1364 io_req->data_flags = CAM_DATA_VADDR;
1365
1366 data_ptrs[0] = &ccb->smpio.smp_request;
1367 lengths[0] = ccb->smpio.smp_request_len;
1368 dirs[0] = CAM_DIR_OUT;
1369 data_ptrs[1] = &ccb->smpio.smp_response;
1370 lengths[1] = ccb->smpio.smp_response_len;
1371 dirs[1] = CAM_DIR_IN;
1372 numbufs = 2;
1373 maxmap = softc->maxio;
1374 break;
1375 case XPT_DEV_ADVINFO:
1376 if (ccb->cdai.bufsiz == 0)
1377 return (0);
1378
1379 io_req->data_flags = CAM_DATA_VADDR;
1380
1381 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1382 lengths[0] = ccb->cdai.bufsiz;
1383 dirs[0] = CAM_DIR_IN;
1384 numbufs = 1;
1385 break;
1386 case XPT_NVME_ADMIN:
1387 case XPT_NVME_IO:
1388 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1389 return (0);
1390
1391 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1392
1393 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1394 lengths[0] = ccb->nvmeio.dxfer_len;
1395 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1396 num_segs = ccb->nvmeio.sglist_cnt;
1397 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
1398 numbufs = 1;
1399 maxmap = softc->maxio;
1400 break;
1401 default:
1402 return(EINVAL);
1403 break; /* NOTREACHED */
1404 }
1405
1406 io_req->num_bufs = numbufs;
1407
1408 /*
1409 * If there is a maximum, check to make sure that the user's
1410 * request fits within the limit. In general, we should only have
1411 * a maximum length for requests that go to hardware. Otherwise it
1412 * is whatever we're able to malloc.
1413 */
1414 for (i = 0; i < numbufs; i++) {
1415 io_req->user_bufs[i] = *data_ptrs[i];
1416 io_req->dirs[i] = dirs[i];
1417 io_req->lengths[i] = lengths[i];
1418
1419 if (maxmap == 0)
1420 continue;
1421
1422 if (lengths[i] <= maxmap)
1423 continue;
1424
1425 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1426 "bytes\n", __func__, lengths[i], maxmap);
1427 error = EINVAL;
1428 goto bailout;
1429 }
1430
1431 switch (io_req->data_flags) {
1432 case CAM_DATA_VADDR:
1433 /* Map or copy the buffer into kernel address space */
1434 for (i = 0; i < numbufs; i++) {
1435 uint8_t *tmp_buf;
1436
1437 /*
1438 * If for some reason no length is specified, we
1439 * don't need to allocate anything.
1440 */
1441 if (io_req->lengths[i] == 0)
1442 continue;
1443
1444 tmp_buf = malloc(lengths[i], M_SCSIPASS,
1445 M_WAITOK | M_ZERO);
1446 io_req->kern_bufs[i] = tmp_buf;
1447 *data_ptrs[i] = tmp_buf;
1448
1449 #if 0
1450 xpt_print(periph->path, "%s: malloced %p len %u, user "
1451 "buffer %p, operation: %s\n", __func__,
1452 tmp_buf, lengths[i], io_req->user_bufs[i],
1453 (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1454 #endif
1455 /*
1456 * We only need to copy in if the user is writing.
1457 */
1458 if (dirs[i] != CAM_DIR_OUT)
1459 continue;
1460
1461 error = copyin(io_req->user_bufs[i],
1462 io_req->kern_bufs[i], lengths[i]);
1463 if (error != 0) {
1464 xpt_print(periph->path, "%s: copy of user "
1465 "buffer from %p to %p failed with "
1466 "error %d\n", __func__,
1467 io_req->user_bufs[i],
1468 io_req->kern_bufs[i], error);
1469 goto bailout;
1470 }
1471 }
1472 break;
1473 case CAM_DATA_PADDR:
1474 /* Pass down the pointer as-is */
1475 break;
1476 case CAM_DATA_SG: {
1477 size_t sg_length, size_to_go, alloc_size;
1478 uint32_t num_segs_needed;
1479
1480 /*
1481 * Copy the user S/G list in, and then copy in the
1482 * individual segments.
1483 */
1484 /*
1485 * We shouldn't see this, but check just in case.
1486 */
1487 if (numbufs != 1) {
1488 xpt_print(periph->path, "%s: cannot currently handle "
1489 "more than one S/G list per CCB\n", __func__);
1490 error = EINVAL;
1491 goto bailout;
1492 }
1493
1494 /*
1495 * We have to have at least one segment.
1496 */
1497 if (num_segs == 0) {
1498 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1499 "but sglist_cnt=0!\n", __func__);
1500 error = EINVAL;
1501 goto bailout;
1502 }
1503
1504 /*
1505 * Make sure the user specified the total length and didn't
1506 * just leave it to us to decode the S/G list.
1507 */
1508 if (lengths[0] == 0) {
1509 xpt_print(periph->path, "%s: no dxfer_len specified, "
1510 "but CAM_DATA_SG flag is set!\n", __func__);
1511 error = EINVAL;
1512 goto bailout;
1513 }
1514
1515 /*
1516 * We allocate buffers in io_zone_size increments for an
1517 * S/G list. This will generally be maxphys.
1518 */
1519 if (lengths[0] <= softc->io_zone_size)
1520 num_segs_needed = 1;
1521 else {
1522 num_segs_needed = lengths[0] / softc->io_zone_size;
1523 if ((lengths[0] % softc->io_zone_size) != 0)
1524 num_segs_needed++;
1525 }
1526
1527 /* Figure out the size of the S/G list */
1528 sg_length = num_segs * sizeof(bus_dma_segment_t);
1529 io_req->num_user_segs = num_segs;
1530 io_req->num_kern_segs = num_segs_needed;
1531
1532 /* Save the user's S/G list pointer for later restoration */
1533 io_req->user_bufs[0] = *data_ptrs[0];
1534
1535 /*
1536 * If we have enough segments allocated by default to handle
1537 * the length of the user's S/G list,
1538 */
1539 if (num_segs > PASS_MAX_SEGS) {
1540 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1541 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1542 io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1543 } else
1544 io_req->user_segptr = io_req->user_segs;
1545
1546 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1547 if (error != 0) {
1548 xpt_print(periph->path, "%s: copy of user S/G list "
1549 "from %p to %p failed with error %d\n",
1550 __func__, *data_ptrs[0], io_req->user_segptr,
1551 error);
1552 goto bailout;
1553 }
1554
1555 if (num_segs_needed > PASS_MAX_SEGS) {
1556 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1557 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1558 io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1559 } else {
1560 io_req->kern_segptr = io_req->kern_segs;
1561 }
1562
1563 /*
1564 * Allocate the kernel S/G list.
1565 */
1566 for (size_to_go = lengths[0], i = 0;
1567 size_to_go > 0 && i < num_segs_needed;
1568 i++, size_to_go -= alloc_size) {
1569 uint8_t *kern_ptr;
1570
1571 alloc_size = min(size_to_go, softc->io_zone_size);
1572 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1573 io_req->kern_segptr[i].ds_addr =
1574 (bus_addr_t)(uintptr_t)kern_ptr;
1575 io_req->kern_segptr[i].ds_len = alloc_size;
1576 }
1577 if (size_to_go > 0) {
1578 printf("%s: size_to_go = %zu, software error!\n",
1579 __func__, size_to_go);
1580 error = EINVAL;
1581 goto bailout;
1582 }
1583
1584 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1585 *seg_cnt_ptr = io_req->num_kern_segs;
1586
1587 /*
1588 * We only need to copy data here if the user is writing.
1589 */
1590 if (dirs[0] == CAM_DIR_OUT)
1591 error = passcopysglist(periph, io_req, dirs[0]);
1592 break;
1593 }
1594 case CAM_DATA_SG_PADDR: {
1595 size_t sg_length;
1596
1597 /*
1598 * We shouldn't see this, but check just in case.
1599 */
1600 if (numbufs != 1) {
1601 printf("%s: cannot currently handle more than one "
1602 "S/G list per CCB\n", __func__);
1603 error = EINVAL;
1604 goto bailout;
1605 }
1606
1607 /*
1608 * We have to have at least one segment.
1609 */
1610 if (num_segs == 0) {
1611 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1612 "set, but sglist_cnt=0!\n", __func__);
1613 error = EINVAL;
1614 goto bailout;
1615 }
1616
1617 /*
1618 * Make sure the user specified the total length and didn't
1619 * just leave it to us to decode the S/G list.
1620 */
1621 if (lengths[0] == 0) {
1622 xpt_print(periph->path, "%s: no dxfer_len specified, "
1623 "but CAM_DATA_SG flag is set!\n", __func__);
1624 error = EINVAL;
1625 goto bailout;
1626 }
1627
1628 /* Figure out the size of the S/G list */
1629 sg_length = num_segs * sizeof(bus_dma_segment_t);
1630 io_req->num_user_segs = num_segs;
1631 io_req->num_kern_segs = io_req->num_user_segs;
1632
1633 /* Save the user's S/G list pointer for later restoration */
1634 io_req->user_bufs[0] = *data_ptrs[0];
1635
1636 if (num_segs > PASS_MAX_SEGS) {
1637 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1638 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1639 io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1640 } else
1641 io_req->user_segptr = io_req->user_segs;
1642
1643 io_req->kern_segptr = io_req->user_segptr;
1644
1645 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1646 if (error != 0) {
1647 xpt_print(periph->path, "%s: copy of user S/G list "
1648 "from %p to %p failed with error %d\n",
1649 __func__, *data_ptrs[0], io_req->user_segptr,
1650 error);
1651 goto bailout;
1652 }
1653 break;
1654 }
1655 default:
1656 case CAM_DATA_BIO:
1657 /*
1658 * A user shouldn't be attaching a bio to the CCB. It
1659 * isn't a user-accessible structure.
1660 */
1661 error = EINVAL;
1662 break;
1663 }
1664
1665 bailout:
1666 if (error != 0)
1667 passiocleanup(softc, io_req);
1668
1669 return (error);
1670 }
1671
1672 static int
passmemdone(struct cam_periph * periph,struct pass_io_req * io_req)1673 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1674 {
1675 struct pass_softc *softc;
1676 int error;
1677 int i;
1678
1679 error = 0;
1680 softc = (struct pass_softc *)periph->softc;
1681
1682 switch (io_req->data_flags) {
1683 case CAM_DATA_VADDR:
1684 /*
1685 * Copy back to the user buffer if this was a read.
1686 */
1687 for (i = 0; i < io_req->num_bufs; i++) {
1688 if (io_req->dirs[i] != CAM_DIR_IN)
1689 continue;
1690
1691 error = copyout(io_req->kern_bufs[i],
1692 io_req->user_bufs[i], io_req->lengths[i]);
1693 if (error != 0) {
1694 xpt_print(periph->path, "Unable to copy %u "
1695 "bytes from %p to user address %p\n",
1696 io_req->lengths[i],
1697 io_req->kern_bufs[i],
1698 io_req->user_bufs[i]);
1699 goto bailout;
1700 }
1701 }
1702 break;
1703 case CAM_DATA_PADDR:
1704 /* Do nothing. The pointer is a physical address already */
1705 break;
1706 case CAM_DATA_SG:
1707 /*
1708 * Copy back to the user buffer if this was a read.
1709 * Restore the user's S/G list buffer pointer.
1710 */
1711 if (io_req->dirs[0] == CAM_DIR_IN)
1712 error = passcopysglist(periph, io_req, io_req->dirs[0]);
1713 break;
1714 case CAM_DATA_SG_PADDR:
1715 /*
1716 * Restore the user's S/G list buffer pointer. No need to
1717 * copy.
1718 */
1719 break;
1720 default:
1721 case CAM_DATA_BIO:
1722 error = EINVAL;
1723 break;
1724 }
1725
1726 bailout:
1727 /*
1728 * Reset the user's pointers to their original values and free
1729 * allocated memory.
1730 */
1731 passiocleanup(softc, io_req);
1732
1733 return (error);
1734 }
1735
1736 static int
passioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)1737 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1738 {
1739 int error;
1740
1741 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1742 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1743 }
1744 return (error);
1745 }
1746
1747 static int
passdoioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)1748 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1749 {
1750 struct cam_periph *periph;
1751 struct pass_softc *softc;
1752 int error;
1753 uint32_t priority;
1754
1755 periph = (struct cam_periph *)dev->si_drv1;
1756 cam_periph_lock(periph);
1757 softc = (struct pass_softc *)periph->softc;
1758
1759 error = 0;
1760
1761 switch (cmd) {
1762 case CAMIOCOMMAND:
1763 {
1764 union ccb *inccb;
1765 union ccb *ccb;
1766 int ccb_malloced;
1767
1768 inccb = (union ccb *)addr;
1769 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1770 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
1771 inccb->csio.bio = NULL;
1772 #endif
1773
1774 if (inccb->ccb_h.flags & CAM_UNLOCKED) {
1775 error = EINVAL;
1776 break;
1777 }
1778
1779 /*
1780 * Some CCB types, like scan bus and scan lun can only go
1781 * through the transport layer device.
1782 */
1783 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1784 xpt_print(periph->path, "CCB function code %#x is "
1785 "restricted to the XPT device\n",
1786 inccb->ccb_h.func_code);
1787 error = ENODEV;
1788 break;
1789 }
1790
1791 /* Compatibility for RL/priority-unaware code. */
1792 priority = inccb->ccb_h.pinfo.priority;
1793 if (priority <= CAM_PRIORITY_OOB)
1794 priority += CAM_PRIORITY_OOB + 1;
1795
1796 /*
1797 * Non-immediate CCBs need a CCB from the per-device pool
1798 * of CCBs, which is scheduled by the transport layer.
1799 * Immediate CCBs and user-supplied CCBs should just be
1800 * malloced.
1801 */
1802 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1803 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1804 ccb = cam_periph_getccb(periph, priority);
1805 ccb_malloced = 0;
1806 } else {
1807 ccb = xpt_alloc_ccb_nowait();
1808
1809 if (ccb != NULL)
1810 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1811 priority);
1812 ccb_malloced = 1;
1813 }
1814
1815 if (ccb == NULL) {
1816 xpt_print(periph->path, "unable to allocate CCB\n");
1817 error = ENOMEM;
1818 break;
1819 }
1820
1821 error = passsendccb(periph, ccb, inccb);
1822
1823 if (ccb_malloced)
1824 xpt_free_ccb(ccb);
1825 else
1826 xpt_release_ccb(ccb);
1827
1828 break;
1829 }
1830 case CAMIOQUEUE:
1831 {
1832 struct pass_io_req *io_req;
1833 union ccb **user_ccb, *ccb;
1834 xpt_opcode fc;
1835
1836 #ifdef COMPAT_FREEBSD32
1837 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1838 error = ENOTTY;
1839 goto bailout;
1840 }
1841 #endif
1842 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1843 error = passcreatezone(periph);
1844 if (error != 0)
1845 goto bailout;
1846 }
1847
1848 /*
1849 * We're going to do a blocking allocation for this I/O
1850 * request, so we have to drop the lock.
1851 */
1852 cam_periph_unlock(periph);
1853
1854 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1855 ccb = &io_req->ccb;
1856 user_ccb = (union ccb **)addr;
1857
1858 /*
1859 * Unlike the CAMIOCOMMAND ioctl above, we only have a
1860 * pointer to the user's CCB, so we have to copy the whole
1861 * thing in to a buffer we have allocated (above) instead
1862 * of allowing the ioctl code to malloc a buffer and copy
1863 * it in.
1864 *
1865 * This is an advantage for this asynchronous interface,
1866 * since we don't want the memory to get freed while the
1867 * CCB is outstanding.
1868 */
1869 #if 0
1870 xpt_print(periph->path, "Copying user CCB %p to "
1871 "kernel address %p\n", *user_ccb, ccb);
1872 #endif
1873 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1874 if (error != 0) {
1875 xpt_print(periph->path, "Copy of user CCB %p to "
1876 "kernel address %p failed with error %d\n",
1877 *user_ccb, ccb, error);
1878 goto camioqueue_error;
1879 }
1880 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1881 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
1882 ccb->csio.bio = NULL;
1883 #endif
1884
1885 if (ccb->ccb_h.flags & CAM_UNLOCKED) {
1886 error = EINVAL;
1887 goto camioqueue_error;
1888 }
1889
1890 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1891 if (ccb->csio.cdb_len > IOCDBLEN) {
1892 error = EINVAL;
1893 goto camioqueue_error;
1894 }
1895 error = copyin(ccb->csio.cdb_io.cdb_ptr,
1896 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1897 if (error != 0)
1898 goto camioqueue_error;
1899 ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1900 }
1901
1902 /*
1903 * Some CCB types, like scan bus and scan lun can only go
1904 * through the transport layer device.
1905 */
1906 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1907 xpt_print(periph->path, "CCB function code %#x is "
1908 "restricted to the XPT device\n",
1909 ccb->ccb_h.func_code);
1910 error = ENODEV;
1911 goto camioqueue_error;
1912 }
1913
1914 /*
1915 * Save the user's CCB pointer as well as his linked list
1916 * pointers and peripheral private area so that we can
1917 * restore these later.
1918 */
1919 io_req->user_ccb_ptr = *user_ccb;
1920 io_req->user_periph_links = ccb->ccb_h.periph_links;
1921 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1922
1923 /*
1924 * Now that we've saved the user's values, we can set our
1925 * own peripheral private entry.
1926 */
1927 ccb->ccb_h.ccb_ioreq = io_req;
1928
1929 /* Compatibility for RL/priority-unaware code. */
1930 priority = ccb->ccb_h.pinfo.priority;
1931 if (priority <= CAM_PRIORITY_OOB)
1932 priority += CAM_PRIORITY_OOB + 1;
1933
1934 /*
1935 * Setup fields in the CCB like the path and the priority.
1936 * The path in particular cannot be done in userland, since
1937 * it is a pointer to a kernel data structure.
1938 */
1939 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1940 ccb->ccb_h.flags);
1941
1942 /*
1943 * Setup our done routine. There is no way for the user to
1944 * have a valid pointer here.
1945 */
1946 ccb->ccb_h.cbfcnp = passdone;
1947
1948 fc = ccb->ccb_h.func_code;
1949 /*
1950 * If this function code has memory that can be mapped in
1951 * or out, we need to call passmemsetup().
1952 */
1953 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1954 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1955 || (fc == XPT_DEV_ADVINFO)
1956 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
1957 error = passmemsetup(periph, io_req);
1958 if (error != 0)
1959 goto camioqueue_error;
1960 } else
1961 io_req->mapinfo.num_bufs_used = 0;
1962
1963 cam_periph_lock(periph);
1964
1965 /*
1966 * Everything goes on the incoming queue initially.
1967 */
1968 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1969
1970 /*
1971 * If the CCB is queued, and is not a user CCB, then
1972 * we need to allocate a slot for it. Call xpt_schedule()
1973 * so that our start routine will get called when a CCB is
1974 * available.
1975 */
1976 if ((fc & XPT_FC_QUEUED)
1977 && ((fc & XPT_FC_USER_CCB) == 0)) {
1978 xpt_schedule(periph, priority);
1979 break;
1980 }
1981
1982 /*
1983 * At this point, the CCB in question is either an
1984 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1985 * and therefore should be malloced, not allocated via a slot.
1986 * Remove the CCB from the incoming queue and add it to the
1987 * active queue.
1988 */
1989 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1990 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1991
1992 xpt_action(ccb);
1993
1994 /*
1995 * If this is not a queued CCB (i.e. it is an immediate CCB),
1996 * then it is already done. We need to put it on the done
1997 * queue for the user to fetch.
1998 */
1999 if ((fc & XPT_FC_QUEUED) == 0) {
2000 TAILQ_REMOVE(&softc->active_queue, io_req, links);
2001 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
2002 }
2003 break;
2004
2005 camioqueue_error:
2006 uma_zfree(softc->pass_zone, io_req);
2007 cam_periph_lock(periph);
2008 break;
2009 }
2010 case CAMIOGET:
2011 {
2012 union ccb **user_ccb;
2013 struct pass_io_req *io_req;
2014 int old_error;
2015
2016 #ifdef COMPAT_FREEBSD32
2017 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
2018 error = ENOTTY;
2019 goto bailout;
2020 }
2021 #endif
2022 user_ccb = (union ccb **)addr;
2023 old_error = 0;
2024
2025 io_req = TAILQ_FIRST(&softc->done_queue);
2026 if (io_req == NULL) {
2027 error = ENOENT;
2028 break;
2029 }
2030
2031 /*
2032 * Remove the I/O from the done queue.
2033 */
2034 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2035
2036 /*
2037 * We have to drop the lock during the copyout because the
2038 * copyout can result in VM faults that require sleeping.
2039 */
2040 cam_periph_unlock(periph);
2041
2042 /*
2043 * Do any needed copies (e.g. for reads) and revert the
2044 * pointers in the CCB back to the user's pointers.
2045 */
2046 error = passmemdone(periph, io_req);
2047
2048 old_error = error;
2049
2050 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2051 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2052
2053 #if 0
2054 xpt_print(periph->path, "Copying to user CCB %p from "
2055 "kernel address %p\n", *user_ccb, &io_req->ccb);
2056 #endif
2057
2058 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2059 if (error != 0) {
2060 xpt_print(periph->path, "Copy to user CCB %p from "
2061 "kernel address %p failed with error %d\n",
2062 *user_ccb, &io_req->ccb, error);
2063 }
2064
2065 /*
2066 * Prefer the first error we got back, and make sure we
2067 * don't overwrite bad status with good.
2068 */
2069 if (old_error != 0)
2070 error = old_error;
2071
2072 cam_periph_lock(periph);
2073
2074 /*
2075 * At this point, if there was an error, we could potentially
2076 * re-queue the I/O and try again. But why? The error
2077 * would almost certainly happen again. We might as well
2078 * not leak memory.
2079 */
2080 uma_zfree(softc->pass_zone, io_req);
2081 break;
2082 }
2083 default:
2084 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2085 break;
2086 }
2087
2088 bailout:
2089 cam_periph_unlock(periph);
2090
2091 return(error);
2092 }
2093
2094 static int
passpoll(struct cdev * dev,int poll_events,struct thread * td)2095 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2096 {
2097 struct cam_periph *periph;
2098 struct pass_softc *softc;
2099 int revents;
2100
2101 periph = (struct cam_periph *)dev->si_drv1;
2102 softc = (struct pass_softc *)periph->softc;
2103
2104 revents = poll_events & (POLLOUT | POLLWRNORM);
2105 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2106 cam_periph_lock(periph);
2107
2108 if (!TAILQ_EMPTY(&softc->done_queue)) {
2109 revents |= poll_events & (POLLIN | POLLRDNORM);
2110 }
2111 cam_periph_unlock(periph);
2112 if (revents == 0)
2113 selrecord(td, &softc->read_select);
2114 }
2115
2116 return (revents);
2117 }
2118
2119 static int
passkqfilter(struct cdev * dev,struct knote * kn)2120 passkqfilter(struct cdev *dev, struct knote *kn)
2121 {
2122 struct cam_periph *periph;
2123 struct pass_softc *softc;
2124
2125 periph = (struct cam_periph *)dev->si_drv1;
2126 softc = (struct pass_softc *)periph->softc;
2127
2128 kn->kn_hook = (caddr_t)periph;
2129 kn->kn_fop = &passread_filtops;
2130 knlist_add(&softc->read_select.si_note, kn, 0);
2131
2132 return (0);
2133 }
2134
2135 static void
passreadfiltdetach(struct knote * kn)2136 passreadfiltdetach(struct knote *kn)
2137 {
2138 struct cam_periph *periph;
2139 struct pass_softc *softc;
2140
2141 periph = (struct cam_periph *)kn->kn_hook;
2142 softc = (struct pass_softc *)periph->softc;
2143
2144 knlist_remove(&softc->read_select.si_note, kn, 0);
2145 }
2146
2147 static int
passreadfilt(struct knote * kn,long hint)2148 passreadfilt(struct knote *kn, long hint)
2149 {
2150 struct cam_periph *periph;
2151 struct pass_softc *softc;
2152 int retval;
2153
2154 periph = (struct cam_periph *)kn->kn_hook;
2155 softc = (struct pass_softc *)periph->softc;
2156
2157 cam_periph_assert(periph, MA_OWNED);
2158
2159 if (TAILQ_EMPTY(&softc->done_queue))
2160 retval = 0;
2161 else
2162 retval = 1;
2163
2164 return (retval);
2165 }
2166
2167 /*
2168 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb"
2169 * should be the CCB that is copied in from the user.
2170 */
2171 static int
passsendccb(struct cam_periph * periph,union ccb * ccb,union ccb * inccb)2172 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2173 {
2174 struct pass_softc *softc;
2175 struct cam_periph_map_info mapinfo;
2176 uint8_t *cmd;
2177 xpt_opcode fc;
2178 int error;
2179
2180 softc = (struct pass_softc *)periph->softc;
2181
2182 /*
2183 * There are some fields in the CCB header that need to be
2184 * preserved, the rest we get from the user.
2185 */
2186 xpt_merge_ccb(ccb, inccb);
2187
2188 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2189 cmd = __builtin_alloca(ccb->csio.cdb_len);
2190 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2191 if (error)
2192 return (error);
2193 ccb->csio.cdb_io.cdb_ptr = cmd;
2194 }
2195
2196 /*
2197 * Let cam_periph_mapmem do a sanity check on the data pointer format.
2198 * Even if no data transfer is needed, it's a cheap check and it
2199 * simplifies the code.
2200 */
2201 fc = ccb->ccb_h.func_code;
2202 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2203 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
2204 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
2205 bzero(&mapinfo, sizeof(mapinfo));
2206
2207 /*
2208 * cam_periph_mapmem calls into proc and vm functions that can
2209 * sleep as well as trigger I/O, so we can't hold the lock.
2210 * Dropping it here is reasonably safe.
2211 */
2212 cam_periph_unlock(periph);
2213 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2214 cam_periph_lock(periph);
2215
2216 /*
2217 * cam_periph_mapmem returned an error, we can't continue.
2218 * Return the error to the user.
2219 */
2220 if (error)
2221 return(error);
2222 } else
2223 /* Ensure that the unmap call later on is a no-op. */
2224 mapinfo.num_bufs_used = 0;
2225
2226 /*
2227 * If the user wants us to perform any error recovery, then honor
2228 * that request. Otherwise, it's up to the user to perform any
2229 * error recovery.
2230 */
2231 {
2232 uint32_t cam_flags, sense_flags;
2233
2234 passflags(ccb, &cam_flags, &sense_flags);
2235 cam_periph_runccb(ccb, passerror, cam_flags,
2236 sense_flags, softc->device_stats);
2237 }
2238
2239 cam_periph_unlock(periph);
2240 error = cam_periph_unmapmem(ccb, &mapinfo);
2241 cam_periph_lock(periph);
2242
2243 ccb->ccb_h.cbfcnp = NULL;
2244 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2245 bcopy(ccb, inccb, sizeof(union ccb));
2246
2247 return (error);
2248 }
2249
2250 /*
2251 * Set the cam_flags and sense_flags based on whether or not the request wants
2252 * error recovery. In order to log errors via devctl, we need to do at least
2253 * minimal recovery. We do this by not retrying unit attention (we let the
2254 * requester do it, or not, if appropriate) and specifically asking for no
2255 * recovery, like we do during device probing.
2256 */
2257 static void
passflags(union ccb * ccb,uint32_t * cam_flags,uint32_t * sense_flags)2258 passflags(union ccb *ccb, uint32_t *cam_flags, uint32_t *sense_flags)
2259 {
2260 if ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) != 0) {
2261 *cam_flags = CAM_RETRY_SELTO;
2262 *sense_flags = SF_RETRY_UA | SF_NO_PRINT;
2263 } else {
2264 *cam_flags = 0;
2265 *sense_flags = SF_NO_RETRY | SF_NO_RECOVERY | SF_NO_PRINT;
2266 }
2267 }
2268
2269 static int
passerror(union ccb * ccb,uint32_t cam_flags,uint32_t sense_flags)2270 passerror(union ccb *ccb, uint32_t cam_flags, uint32_t sense_flags)
2271 {
2272
2273 return(cam_periph_error(ccb, cam_flags, sense_flags));
2274 }
2275