1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2019, loli10K <[email protected]>. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 *
33 * [1] Portions of this software were developed by Allan Jude
34 * under sponsorship from the FreeBSD Foundation.
35 */
36
37 /*
38 * DVA-based Adjustable Replacement Cache
39 *
40 * While much of the theory of operation used here is
41 * based on the self-tuning, low overhead replacement cache
42 * presented by Megiddo and Modha at FAST 2003, there are some
43 * significant differences:
44 *
45 * 1. The Megiddo and Modha model assumes any page is evictable.
46 * Pages in its cache cannot be "locked" into memory. This makes
47 * the eviction algorithm simple: evict the last page in the list.
48 * This also make the performance characteristics easy to reason
49 * about. Our cache is not so simple. At any given moment, some
50 * subset of the blocks in the cache are un-evictable because we
51 * have handed out a reference to them. Blocks are only evictable
52 * when there are no external references active. This makes
53 * eviction far more problematic: we choose to evict the evictable
54 * blocks that are the "lowest" in the list.
55 *
56 * There are times when it is not possible to evict the requested
57 * space. In these circumstances we are unable to adjust the cache
58 * size. To prevent the cache growing unbounded at these times we
59 * implement a "cache throttle" that slows the flow of new data
60 * into the cache until we can make space available.
61 *
62 * 2. The Megiddo and Modha model assumes a fixed cache size.
63 * Pages are evicted when the cache is full and there is a cache
64 * miss. Our model has a variable sized cache. It grows with
65 * high use, but also tries to react to memory pressure from the
66 * operating system: decreasing its size when system memory is
67 * tight.
68 *
69 * 3. The Megiddo and Modha model assumes a fixed page size. All
70 * elements of the cache are therefore exactly the same size. So
71 * when adjusting the cache size following a cache miss, its simply
72 * a matter of choosing a single page to evict. In our model, we
73 * have variable sized cache blocks (ranging from 512 bytes to
74 * 128K bytes). We therefore choose a set of blocks to evict to make
75 * space for a cache miss that approximates as closely as possible
76 * the space used by the new block.
77 *
78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79 * by N. Megiddo & D. Modha, FAST 2003
80 */
81
82 /*
83 * The locking model:
84 *
85 * A new reference to a cache buffer can be obtained in two
86 * ways: 1) via a hash table lookup using the DVA as a key,
87 * or 2) via one of the ARC lists. The arc_read() interface
88 * uses method 1, while the internal ARC algorithms for
89 * adjusting the cache use method 2. We therefore provide two
90 * types of locks: 1) the hash table lock array, and 2) the
91 * ARC list locks.
92 *
93 * Buffers do not have their own mutexes, rather they rely on the
94 * hash table mutexes for the bulk of their protection (i.e. most
95 * fields in the arc_buf_hdr_t are protected by these mutexes).
96 *
97 * buf_hash_find() returns the appropriate mutex (held) when it
98 * locates the requested buffer in the hash table. It returns
99 * NULL for the mutex if the buffer was not in the table.
100 *
101 * buf_hash_remove() expects the appropriate hash mutex to be
102 * already held before it is invoked.
103 *
104 * Each ARC state also has a mutex which is used to protect the
105 * buffer list associated with the state. When attempting to
106 * obtain a hash table lock while holding an ARC list lock you
107 * must use: mutex_tryenter() to avoid deadlock. Also note that
108 * the active state mutex must be held before the ghost state mutex.
109 *
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
130 /*
131 * ARC operation:
132 *
133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134 * This structure can point either to a block that is still in the cache or to
135 * one that is only accessible in an L2 ARC device, or it can provide
136 * information about a block that was recently evicted. If a block is
137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138 * information to retrieve it from the L2ARC device. This information is
139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140 * that is in this state cannot access the data directly.
141 *
142 * Blocks that are actively being referenced or have not been evicted
143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144 * the arc_buf_hdr_t that will point to the data block in memory. A block can
145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
148 *
149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150 * ability to store the physical data (b_pabd) associated with the DVA of the
151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152 * it will match its on-disk compression characteristics. This behavior can be
153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154 * compressed ARC functionality is disabled, the b_pabd will point to an
155 * uncompressed version of the on-disk data.
156 *
157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160 * consumer. The ARC will provide references to this data and will keep it
161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162 * data block and will evict any arc_buf_t that is no longer referenced. The
163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164 * "overhead_size" kstat.
165 *
166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167 * compressed form. The typical case is that consumers will want uncompressed
168 * data, and when that happens a new data buffer is allocated where the data is
169 * decompressed for them to use. Currently the only consumer who wants
170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172 * with the arc_buf_hdr_t.
173 *
174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175 * first one is owned by a compressed send consumer (and therefore references
176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177 * used by any other consumer (and has its own uncompressed copy of the data
178 * buffer).
179 *
180 * arc_buf_hdr_t
181 * +-----------+
182 * | fields |
183 * | common to |
184 * | L1- and |
185 * | L2ARC |
186 * +-----------+
187 * | l2arc_buf_hdr_t
188 * | |
189 * +-----------+
190 * | l1arc_buf_hdr_t
191 * | | arc_buf_t
192 * | b_buf +------------>+-----------+ arc_buf_t
193 * | b_pabd +-+ |b_next +---->+-----------+
194 * +-----------+ | |-----------| |b_next +-->NULL
195 * | |b_comp = T | +-----------+
196 * | |b_data +-+ |b_comp = F |
197 * | +-----------+ | |b_data +-+
198 * +->+------+ | +-----------+ |
199 * compressed | | | |
200 * data | |<--------------+ | uncompressed
201 * +------+ compressed, | data
202 * shared +-->+------+
203 * data | |
204 * | |
205 * +------+
206 *
207 * When a consumer reads a block, the ARC must first look to see if the
208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209 * arc_buf_t and either copies uncompressed data into a new data buffer from an
210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212 * hdr is compressed and the desired compression characteristics of the
213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216 * be anywhere in the hdr's list.
217 *
218 * The diagram below shows an example of an uncompressed ARC hdr that is
219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220 * the last element in the buf list):
221 *
222 * arc_buf_hdr_t
223 * +-----------+
224 * | |
225 * | |
226 * | |
227 * +-----------+
228 * l2arc_buf_hdr_t| |
229 * | |
230 * +-----------+
231 * l1arc_buf_hdr_t| |
232 * | | arc_buf_t (shared)
233 * | b_buf +------------>+---------+ arc_buf_t
234 * | | |b_next +---->+---------+
235 * | b_pabd +-+ |---------| |b_next +-->NULL
236 * +-----------+ | | | +---------+
237 * | |b_data +-+ | |
238 * | +---------+ | |b_data +-+
239 * +->+------+ | +---------+ |
240 * | | | |
241 * uncompressed | | | |
242 * data +------+ | |
243 * ^ +->+------+ |
244 * | uncompressed | | |
245 * | data | | |
246 * | +------+ |
247 * +---------------------------------+
248 *
249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250 * since the physical block is about to be rewritten. The new data contents
251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252 * it may compress the data before writing it to disk. The ARC will be called
253 * with the transformed data and will bcopy the transformed on-disk block into
254 * a newly allocated b_pabd. Writes are always done into buffers which have
255 * either been loaned (and hence are new and don't have other readers) or
256 * buffers which have been released (and hence have their own hdr, if there
257 * were originally other readers of the buf's original hdr). This ensures that
258 * the ARC only needs to update a single buf and its hdr after a write occurs.
259 *
260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262 * that when compressed ARC is enabled that the L2ARC blocks are identical
263 * to the on-disk block in the main data pool. This provides a significant
264 * advantage since the ARC can leverage the bp's checksum when reading from the
265 * L2ARC to determine if the contents are valid. However, if the compressed
266 * ARC is disabled, then the L2ARC's block must be transformed to look
267 * like the physical block in the main data pool before comparing the
268 * checksum and determining its validity.
269 *
270 * The L1ARC has a slightly different system for storing encrypted data.
271 * Raw (encrypted + possibly compressed) data has a few subtle differences from
272 * data that is just compressed. The biggest difference is that it is not
273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274 * The other difference is that encryption cannot be treated as a suggestion.
275 * If a caller would prefer compressed data, but they actually wind up with
276 * uncompressed data the worst thing that could happen is there might be a
277 * performance hit. If the caller requests encrypted data, however, we must be
278 * sure they actually get it or else secret information could be leaked. Raw
279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280 * may have both an encrypted version and a decrypted version of its data at
281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282 * copied out of this header. To avoid complications with b_pabd, raw buffers
283 * cannot be shared.
284 */
285
286 #include <sys/spa.h>
287 #include <sys/zio.h>
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
292 #include <sys/arc.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
298 #include <sys/abd.h>
299 #include <sys/zil.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
313
314 #ifndef _KERNEL
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch = B_FALSE;
317 #endif
318
319 /*
320 * This thread's job is to keep enough free memory in the system, by
321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322 * arc_available_memory().
323 */
324 static zthr_t *arc_reap_zthr;
325
326 /*
327 * This thread's job is to keep arc_size under arc_c, by calling
328 * arc_evict(), which improves arc_is_overflowing().
329 */
330 static zthr_t *arc_evict_zthr;
331 static arc_buf_hdr_t **arc_state_evict_markers;
332 static int arc_state_evict_marker_count;
333
334 static kmutex_t arc_evict_lock;
335 static boolean_t arc_evict_needed = B_FALSE;
336
337 /*
338 * Count of bytes evicted since boot.
339 */
340 static uint64_t arc_evict_count;
341
342 /*
343 * List of arc_evict_waiter_t's, representing threads waiting for the
344 * arc_evict_count to reach specific values.
345 */
346 static list_t arc_evict_waiters;
347
348 /*
349 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
350 * the requested amount of data to be evicted. For example, by default for
351 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
352 * Since this is above 100%, it ensures that progress is made towards getting
353 * arc_size under arc_c. Since this is finite, it ensures that allocations
354 * can still happen, even during the potentially long time that arc_size is
355 * more than arc_c.
356 */
357 int zfs_arc_eviction_pct = 200;
358
359 /*
360 * The number of headers to evict in arc_evict_state_impl() before
361 * dropping the sublist lock and evicting from another sublist. A lower
362 * value means we're more likely to evict the "correct" header (i.e. the
363 * oldest header in the arc state), but comes with higher overhead
364 * (i.e. more invocations of arc_evict_state_impl()).
365 */
366 int zfs_arc_evict_batch_limit = 10;
367
368 /* number of seconds before growing cache again */
369 int arc_grow_retry = 5;
370
371 /*
372 * Minimum time between calls to arc_kmem_reap_soon().
373 */
374 int arc_kmem_cache_reap_retry_ms = 1000;
375
376 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
377 int zfs_arc_overflow_shift = 8;
378
379 /* shift of arc_c for calculating both min and max arc_p */
380 int arc_p_min_shift = 4;
381
382 /* log2(fraction of arc to reclaim) */
383 int arc_shrink_shift = 7;
384
385 /* percent of pagecache to reclaim arc to */
386 #ifdef _KERNEL
387 uint_t zfs_arc_pc_percent = 0;
388 #endif
389
390 /*
391 * log2(fraction of ARC which must be free to allow growing).
392 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
393 * when reading a new block into the ARC, we will evict an equal-sized block
394 * from the ARC.
395 *
396 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
397 * we will still not allow it to grow.
398 */
399 int arc_no_grow_shift = 5;
400
401
402 /*
403 * minimum lifespan of a prefetch block in clock ticks
404 * (initialized in arc_init())
405 */
406 static int arc_min_prefetch_ms;
407 static int arc_min_prescient_prefetch_ms;
408
409 /*
410 * If this percent of memory is free, don't throttle.
411 */
412 int arc_lotsfree_percent = 10;
413
414 /*
415 * The arc has filled available memory and has now warmed up.
416 */
417 boolean_t arc_warm;
418
419 /*
420 * These tunables are for performance analysis.
421 */
422 unsigned long zfs_arc_max = 0;
423 unsigned long zfs_arc_min = 0;
424 unsigned long zfs_arc_meta_limit = 0;
425 unsigned long zfs_arc_meta_min = 0;
426 unsigned long zfs_arc_dnode_limit = 0;
427 unsigned long zfs_arc_dnode_reduce_percent = 10;
428 int zfs_arc_grow_retry = 0;
429 int zfs_arc_shrink_shift = 0;
430 int zfs_arc_p_min_shift = 0;
431 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
432
433 /*
434 * ARC dirty data constraints for arc_tempreserve_space() throttle.
435 */
436 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */
437 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */
438 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */
439
440 /*
441 * Enable or disable compressed arc buffers.
442 */
443 int zfs_compressed_arc_enabled = B_TRUE;
444
445 /*
446 * ARC will evict meta buffers that exceed arc_meta_limit. This
447 * tunable make arc_meta_limit adjustable for different workloads.
448 */
449 unsigned long zfs_arc_meta_limit_percent = 75;
450
451 /*
452 * Percentage that can be consumed by dnodes of ARC meta buffers.
453 */
454 unsigned long zfs_arc_dnode_limit_percent = 10;
455
456 /*
457 * These tunables are Linux specific
458 */
459 unsigned long zfs_arc_sys_free = 0;
460 int zfs_arc_min_prefetch_ms = 0;
461 int zfs_arc_min_prescient_prefetch_ms = 0;
462 int zfs_arc_p_dampener_disable = 1;
463 int zfs_arc_meta_prune = 10000;
464 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
465 int zfs_arc_meta_adjust_restarts = 4096;
466 int zfs_arc_lotsfree_percent = 10;
467
468 /*
469 * Number of arc_prune threads
470 */
471 static int zfs_arc_prune_task_threads = 1;
472
473 /* The 6 states: */
474 arc_state_t ARC_anon;
475 arc_state_t ARC_mru;
476 arc_state_t ARC_mru_ghost;
477 arc_state_t ARC_mfu;
478 arc_state_t ARC_mfu_ghost;
479 arc_state_t ARC_l2c_only;
480
481 arc_stats_t arc_stats = {
482 { "hits", KSTAT_DATA_UINT64 },
483 { "misses", KSTAT_DATA_UINT64 },
484 { "demand_data_hits", KSTAT_DATA_UINT64 },
485 { "demand_data_misses", KSTAT_DATA_UINT64 },
486 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
487 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
488 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
489 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
490 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
491 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
492 { "mru_hits", KSTAT_DATA_UINT64 },
493 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
494 { "mfu_hits", KSTAT_DATA_UINT64 },
495 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
496 { "deleted", KSTAT_DATA_UINT64 },
497 { "mutex_miss", KSTAT_DATA_UINT64 },
498 { "access_skip", KSTAT_DATA_UINT64 },
499 { "evict_skip", KSTAT_DATA_UINT64 },
500 { "evict_not_enough", KSTAT_DATA_UINT64 },
501 { "evict_l2_cached", KSTAT_DATA_UINT64 },
502 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
503 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 },
504 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 },
505 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
506 { "evict_l2_skip", KSTAT_DATA_UINT64 },
507 { "hash_elements", KSTAT_DATA_UINT64 },
508 { "hash_elements_max", KSTAT_DATA_UINT64 },
509 { "hash_collisions", KSTAT_DATA_UINT64 },
510 { "hash_chains", KSTAT_DATA_UINT64 },
511 { "hash_chain_max", KSTAT_DATA_UINT64 },
512 { "p", KSTAT_DATA_UINT64 },
513 { "c", KSTAT_DATA_UINT64 },
514 { "c_min", KSTAT_DATA_UINT64 },
515 { "c_max", KSTAT_DATA_UINT64 },
516 { "size", KSTAT_DATA_UINT64 },
517 { "compressed_size", KSTAT_DATA_UINT64 },
518 { "uncompressed_size", KSTAT_DATA_UINT64 },
519 { "overhead_size", KSTAT_DATA_UINT64 },
520 { "hdr_size", KSTAT_DATA_UINT64 },
521 { "data_size", KSTAT_DATA_UINT64 },
522 { "metadata_size", KSTAT_DATA_UINT64 },
523 { "dbuf_size", KSTAT_DATA_UINT64 },
524 { "dnode_size", KSTAT_DATA_UINT64 },
525 { "bonus_size", KSTAT_DATA_UINT64 },
526 #if defined(COMPAT_FREEBSD11)
527 { "other_size", KSTAT_DATA_UINT64 },
528 #endif
529 { "anon_size", KSTAT_DATA_UINT64 },
530 { "anon_evictable_data", KSTAT_DATA_UINT64 },
531 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
532 { "mru_size", KSTAT_DATA_UINT64 },
533 { "mru_evictable_data", KSTAT_DATA_UINT64 },
534 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
535 { "mru_ghost_size", KSTAT_DATA_UINT64 },
536 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
537 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
538 { "mfu_size", KSTAT_DATA_UINT64 },
539 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
540 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
541 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
542 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
543 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
544 { "l2_hits", KSTAT_DATA_UINT64 },
545 { "l2_misses", KSTAT_DATA_UINT64 },
546 { "l2_prefetch_asize", KSTAT_DATA_UINT64 },
547 { "l2_mru_asize", KSTAT_DATA_UINT64 },
548 { "l2_mfu_asize", KSTAT_DATA_UINT64 },
549 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 },
550 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 },
551 { "l2_feeds", KSTAT_DATA_UINT64 },
552 { "l2_rw_clash", KSTAT_DATA_UINT64 },
553 { "l2_read_bytes", KSTAT_DATA_UINT64 },
554 { "l2_write_bytes", KSTAT_DATA_UINT64 },
555 { "l2_writes_sent", KSTAT_DATA_UINT64 },
556 { "l2_writes_done", KSTAT_DATA_UINT64 },
557 { "l2_writes_error", KSTAT_DATA_UINT64 },
558 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
559 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
560 { "l2_evict_reading", KSTAT_DATA_UINT64 },
561 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
562 { "l2_free_on_write", KSTAT_DATA_UINT64 },
563 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
564 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
565 { "l2_io_error", KSTAT_DATA_UINT64 },
566 { "l2_size", KSTAT_DATA_UINT64 },
567 { "l2_asize", KSTAT_DATA_UINT64 },
568 { "l2_hdr_size", KSTAT_DATA_UINT64 },
569 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
570 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 },
571 { "l2_log_blk_asize", KSTAT_DATA_UINT64 },
572 { "l2_log_blk_count", KSTAT_DATA_UINT64 },
573 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
574 { "l2_rebuild_success", KSTAT_DATA_UINT64 },
575 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
576 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
577 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 },
578 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
579 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
580 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
581 { "l2_rebuild_asize", KSTAT_DATA_UINT64 },
582 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
583 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
584 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
585 { "memory_throttle_count", KSTAT_DATA_UINT64 },
586 { "memory_direct_count", KSTAT_DATA_UINT64 },
587 { "memory_indirect_count", KSTAT_DATA_UINT64 },
588 { "memory_all_bytes", KSTAT_DATA_UINT64 },
589 { "memory_free_bytes", KSTAT_DATA_UINT64 },
590 { "memory_available_bytes", KSTAT_DATA_INT64 },
591 { "arc_no_grow", KSTAT_DATA_UINT64 },
592 { "arc_tempreserve", KSTAT_DATA_UINT64 },
593 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
594 { "arc_prune", KSTAT_DATA_UINT64 },
595 { "arc_meta_used", KSTAT_DATA_UINT64 },
596 { "arc_meta_limit", KSTAT_DATA_UINT64 },
597 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
598 { "arc_meta_max", KSTAT_DATA_UINT64 },
599 { "arc_meta_min", KSTAT_DATA_UINT64 },
600 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
601 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
602 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
603 { "arc_need_free", KSTAT_DATA_UINT64 },
604 { "arc_sys_free", KSTAT_DATA_UINT64 },
605 { "arc_raw_size", KSTAT_DATA_UINT64 },
606 { "cached_only_in_progress", KSTAT_DATA_UINT64 },
607 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 },
608 };
609
610 arc_sums_t arc_sums;
611
612 #define ARCSTAT_MAX(stat, val) { \
613 uint64_t m; \
614 while ((val) > (m = arc_stats.stat.value.ui64) && \
615 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
616 continue; \
617 }
618
619 /*
620 * We define a macro to allow ARC hits/misses to be easily broken down by
621 * two separate conditions, giving a total of four different subtypes for
622 * each of hits and misses (so eight statistics total).
623 */
624 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
625 if (cond1) { \
626 if (cond2) { \
627 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
628 } else { \
629 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
630 } \
631 } else { \
632 if (cond2) { \
633 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
634 } else { \
635 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
636 } \
637 }
638
639 /*
640 * This macro allows us to use kstats as floating averages. Each time we
641 * update this kstat, we first factor it and the update value by
642 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
643 * average. This macro assumes that integer loads and stores are atomic, but
644 * is not safe for multiple writers updating the kstat in parallel (only the
645 * last writer's update will remain).
646 */
647 #define ARCSTAT_F_AVG_FACTOR 3
648 #define ARCSTAT_F_AVG(stat, value) \
649 do { \
650 uint64_t x = ARCSTAT(stat); \
651 x = x - x / ARCSTAT_F_AVG_FACTOR + \
652 (value) / ARCSTAT_F_AVG_FACTOR; \
653 ARCSTAT(stat) = x; \
654 _NOTE(CONSTCOND) \
655 } while (0)
656
657 kstat_t *arc_ksp;
658
659 /*
660 * There are several ARC variables that are critical to export as kstats --
661 * but we don't want to have to grovel around in the kstat whenever we wish to
662 * manipulate them. For these variables, we therefore define them to be in
663 * terms of the statistic variable. This assures that we are not introducing
664 * the possibility of inconsistency by having shadow copies of the variables,
665 * while still allowing the code to be readable.
666 */
667 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
668 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
669 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
670 /* max size for dnodes */
671 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit)
672 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
673 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
674
675 hrtime_t arc_growtime;
676 list_t arc_prune_list;
677 kmutex_t arc_prune_mtx;
678 taskq_t *arc_prune_taskq;
679
680 #define GHOST_STATE(state) \
681 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
682 (state) == arc_l2c_only)
683
684 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
685 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
686 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
687 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
688 #define HDR_PRESCIENT_PREFETCH(hdr) \
689 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
690 #define HDR_COMPRESSION_ENABLED(hdr) \
691 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
692
693 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
694 #define HDR_L2_READING(hdr) \
695 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
696 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
697 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
698 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
699 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
700 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
701 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
702 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
703
704 #define HDR_ISTYPE_METADATA(hdr) \
705 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
706 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
707
708 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
709 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
710 #define HDR_HAS_RABD(hdr) \
711 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
712 (hdr)->b_crypt_hdr.b_rabd != NULL)
713 #define HDR_ENCRYPTED(hdr) \
714 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
715 #define HDR_AUTHENTICATED(hdr) \
716 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
717
718 /* For storing compression mode in b_flags */
719 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
720
721 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
722 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
723 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
724 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
725
726 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
727 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
728 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
729 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
730
731 /*
732 * Other sizes
733 */
734
735 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
736 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
737 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
738
739 /*
740 * Hash table routines
741 */
742
743 #define BUF_LOCKS 2048
744 typedef struct buf_hash_table {
745 uint64_t ht_mask;
746 arc_buf_hdr_t **ht_table;
747 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
748 } buf_hash_table_t;
749
750 static buf_hash_table_t buf_hash_table;
751
752 #define BUF_HASH_INDEX(spa, dva, birth) \
753 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
754 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
755 #define HDR_LOCK(hdr) \
756 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
757
758 uint64_t zfs_crc64_table[256];
759
760 /*
761 * Level 2 ARC
762 */
763
764 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
765 #define L2ARC_HEADROOM 2 /* num of writes */
766
767 /*
768 * If we discover during ARC scan any buffers to be compressed, we boost
769 * our headroom for the next scanning cycle by this percentage multiple.
770 */
771 #define L2ARC_HEADROOM_BOOST 200
772 #define L2ARC_FEED_SECS 1 /* caching interval secs */
773 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
774
775 /*
776 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
777 * and each of the state has two types: data and metadata.
778 */
779 #define L2ARC_FEED_TYPES 4
780
781 /* L2ARC Performance Tunables */
782 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
783 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
784 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
785 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
786 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
787 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
788 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
789 int l2arc_feed_again = B_TRUE; /* turbo warmup */
790 int l2arc_norw = B_FALSE; /* no reads during writes */
791 int l2arc_meta_percent = 33; /* limit on headers size */
792
793 /*
794 * L2ARC Internals
795 */
796 static list_t L2ARC_dev_list; /* device list */
797 static list_t *l2arc_dev_list; /* device list pointer */
798 static kmutex_t l2arc_dev_mtx; /* device list mutex */
799 static l2arc_dev_t *l2arc_dev_last; /* last device used */
800 static list_t L2ARC_free_on_write; /* free after write buf list */
801 static list_t *l2arc_free_on_write; /* free after write list ptr */
802 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
803 static uint64_t l2arc_ndev; /* number of devices */
804
805 typedef struct l2arc_read_callback {
806 arc_buf_hdr_t *l2rcb_hdr; /* read header */
807 blkptr_t l2rcb_bp; /* original blkptr */
808 zbookmark_phys_t l2rcb_zb; /* original bookmark */
809 int l2rcb_flags; /* original flags */
810 abd_t *l2rcb_abd; /* temporary buffer */
811 } l2arc_read_callback_t;
812
813 typedef struct l2arc_data_free {
814 /* protected by l2arc_free_on_write_mtx */
815 abd_t *l2df_abd;
816 size_t l2df_size;
817 arc_buf_contents_t l2df_type;
818 list_node_t l2df_list_node;
819 } l2arc_data_free_t;
820
821 typedef enum arc_fill_flags {
822 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
823 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
824 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
825 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
826 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
827 } arc_fill_flags_t;
828
829 typedef enum arc_ovf_level {
830 ARC_OVF_NONE, /* ARC within target size. */
831 ARC_OVF_SOME, /* ARC is slightly overflowed. */
832 ARC_OVF_SEVERE /* ARC is severely overflowed. */
833 } arc_ovf_level_t;
834
835 static kmutex_t l2arc_feed_thr_lock;
836 static kcondvar_t l2arc_feed_thr_cv;
837 static uint8_t l2arc_thread_exit;
838
839 static kmutex_t l2arc_rebuild_thr_lock;
840 static kcondvar_t l2arc_rebuild_thr_cv;
841
842 enum arc_hdr_alloc_flags {
843 ARC_HDR_ALLOC_RDATA = 0x1,
844 ARC_HDR_DO_ADAPT = 0x2,
845 ARC_HDR_USE_RESERVE = 0x4,
846 };
847
848
849 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, int);
850 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
851 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, int);
852 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
853 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
854 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
855 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
856 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
857 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
858 static void arc_buf_watch(arc_buf_t *);
859
860 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
861 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
862 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
863 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
864
865 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
866 static void l2arc_read_done(zio_t *);
867 static void l2arc_do_free_on_write(void);
868 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
869 boolean_t state_only);
870
871 #define l2arc_hdr_arcstats_increment(hdr) \
872 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
873 #define l2arc_hdr_arcstats_decrement(hdr) \
874 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
875 #define l2arc_hdr_arcstats_increment_state(hdr) \
876 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
877 #define l2arc_hdr_arcstats_decrement_state(hdr) \
878 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
879
880 /*
881 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
882 * metadata and data are cached from ARC into L2ARC.
883 */
884 int l2arc_mfuonly = 0;
885
886 /*
887 * L2ARC TRIM
888 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
889 * the current write size (l2arc_write_max) we should TRIM if we
890 * have filled the device. It is defined as a percentage of the
891 * write size. If set to 100 we trim twice the space required to
892 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
893 * It also enables TRIM of the whole L2ARC device upon creation or
894 * addition to an existing pool or if the header of the device is
895 * invalid upon importing a pool or onlining a cache device. The
896 * default is 0, which disables TRIM on L2ARC altogether as it can
897 * put significant stress on the underlying storage devices. This
898 * will vary depending of how well the specific device handles
899 * these commands.
900 */
901 unsigned long l2arc_trim_ahead = 0;
902
903 /*
904 * Performance tuning of L2ARC persistence:
905 *
906 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
907 * an L2ARC device (either at pool import or later) will attempt
908 * to rebuild L2ARC buffer contents.
909 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
910 * whether log blocks are written to the L2ARC device. If the L2ARC
911 * device is less than 1GB, the amount of data l2arc_evict()
912 * evicts is significant compared to the amount of restored L2ARC
913 * data. In this case do not write log blocks in L2ARC in order
914 * not to waste space.
915 */
916 int l2arc_rebuild_enabled = B_TRUE;
917 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
918
919 /* L2ARC persistence rebuild control routines. */
920 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
921 static void l2arc_dev_rebuild_thread(void *arg);
922 static int l2arc_rebuild(l2arc_dev_t *dev);
923
924 /* L2ARC persistence read I/O routines. */
925 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
926 static int l2arc_log_blk_read(l2arc_dev_t *dev,
927 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
928 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
929 zio_t *this_io, zio_t **next_io);
930 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
931 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
932 static void l2arc_log_blk_fetch_abort(zio_t *zio);
933
934 /* L2ARC persistence block restoration routines. */
935 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
936 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
937 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
938 l2arc_dev_t *dev);
939
940 /* L2ARC persistence write I/O routines. */
941 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
942 l2arc_write_callback_t *cb);
943
944 /* L2ARC persistence auxiliary routines. */
945 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
946 const l2arc_log_blkptr_t *lbp);
947 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
948 const arc_buf_hdr_t *ab);
949 boolean_t l2arc_range_check_overlap(uint64_t bottom,
950 uint64_t top, uint64_t check);
951 static void l2arc_blk_fetch_done(zio_t *zio);
952 static inline uint64_t
953 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
954
955 /*
956 * We use Cityhash for this. It's fast, and has good hash properties without
957 * requiring any large static buffers.
958 */
959 static uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)960 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
961 {
962 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
963 }
964
965 #define HDR_EMPTY(hdr) \
966 ((hdr)->b_dva.dva_word[0] == 0 && \
967 (hdr)->b_dva.dva_word[1] == 0)
968
969 #define HDR_EMPTY_OR_LOCKED(hdr) \
970 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
971
972 #define HDR_EQUAL(spa, dva, birth, hdr) \
973 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
974 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
975 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
976
977 static void
buf_discard_identity(arc_buf_hdr_t * hdr)978 buf_discard_identity(arc_buf_hdr_t *hdr)
979 {
980 hdr->b_dva.dva_word[0] = 0;
981 hdr->b_dva.dva_word[1] = 0;
982 hdr->b_birth = 0;
983 }
984
985 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const blkptr_t * bp,kmutex_t ** lockp)986 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
987 {
988 const dva_t *dva = BP_IDENTITY(bp);
989 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
990 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
991 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
992 arc_buf_hdr_t *hdr;
993
994 mutex_enter(hash_lock);
995 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
996 hdr = hdr->b_hash_next) {
997 if (HDR_EQUAL(spa, dva, birth, hdr)) {
998 *lockp = hash_lock;
999 return (hdr);
1000 }
1001 }
1002 mutex_exit(hash_lock);
1003 *lockp = NULL;
1004 return (NULL);
1005 }
1006
1007 /*
1008 * Insert an entry into the hash table. If there is already an element
1009 * equal to elem in the hash table, then the already existing element
1010 * will be returned and the new element will not be inserted.
1011 * Otherwise returns NULL.
1012 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1013 */
1014 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * hdr,kmutex_t ** lockp)1015 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1016 {
1017 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1018 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1019 arc_buf_hdr_t *fhdr;
1020 uint32_t i;
1021
1022 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1023 ASSERT(hdr->b_birth != 0);
1024 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1025
1026 if (lockp != NULL) {
1027 *lockp = hash_lock;
1028 mutex_enter(hash_lock);
1029 } else {
1030 ASSERT(MUTEX_HELD(hash_lock));
1031 }
1032
1033 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1034 fhdr = fhdr->b_hash_next, i++) {
1035 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1036 return (fhdr);
1037 }
1038
1039 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1040 buf_hash_table.ht_table[idx] = hdr;
1041 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1042
1043 /* collect some hash table performance data */
1044 if (i > 0) {
1045 ARCSTAT_BUMP(arcstat_hash_collisions);
1046 if (i == 1)
1047 ARCSTAT_BUMP(arcstat_hash_chains);
1048
1049 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1050 }
1051 uint64_t he = atomic_inc_64_nv(
1052 &arc_stats.arcstat_hash_elements.value.ui64);
1053 ARCSTAT_MAX(arcstat_hash_elements_max, he);
1054
1055 return (NULL);
1056 }
1057
1058 static void
buf_hash_remove(arc_buf_hdr_t * hdr)1059 buf_hash_remove(arc_buf_hdr_t *hdr)
1060 {
1061 arc_buf_hdr_t *fhdr, **hdrp;
1062 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1063
1064 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1065 ASSERT(HDR_IN_HASH_TABLE(hdr));
1066
1067 hdrp = &buf_hash_table.ht_table[idx];
1068 while ((fhdr = *hdrp) != hdr) {
1069 ASSERT3P(fhdr, !=, NULL);
1070 hdrp = &fhdr->b_hash_next;
1071 }
1072 *hdrp = hdr->b_hash_next;
1073 hdr->b_hash_next = NULL;
1074 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1075
1076 /* collect some hash table performance data */
1077 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64);
1078
1079 if (buf_hash_table.ht_table[idx] &&
1080 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1081 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1082 }
1083
1084 /*
1085 * Global data structures and functions for the buf kmem cache.
1086 */
1087
1088 static kmem_cache_t *hdr_full_cache;
1089 static kmem_cache_t *hdr_full_crypt_cache;
1090 static kmem_cache_t *hdr_l2only_cache;
1091 static kmem_cache_t *buf_cache;
1092
1093 static void
buf_fini(void)1094 buf_fini(void)
1095 {
1096 #if defined(_KERNEL)
1097 /*
1098 * Large allocations which do not require contiguous pages
1099 * should be using vmem_free() in the linux kernel\
1100 */
1101 vmem_free(buf_hash_table.ht_table,
1102 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1103 #else
1104 kmem_free(buf_hash_table.ht_table,
1105 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1106 #endif
1107 for (int i = 0; i < BUF_LOCKS; i++)
1108 mutex_destroy(BUF_HASH_LOCK(i));
1109 kmem_cache_destroy(hdr_full_cache);
1110 kmem_cache_destroy(hdr_full_crypt_cache);
1111 kmem_cache_destroy(hdr_l2only_cache);
1112 kmem_cache_destroy(buf_cache);
1113 }
1114
1115 /*
1116 * Constructor callback - called when the cache is empty
1117 * and a new buf is requested.
1118 */
1119 static int
hdr_full_cons(void * vbuf,void * unused,int kmflag)1120 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1121 {
1122 (void) unused, (void) kmflag;
1123 arc_buf_hdr_t *hdr = vbuf;
1124
1125 bzero(hdr, HDR_FULL_SIZE);
1126 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1127 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1128 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1129 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1130 list_link_init(&hdr->b_l1hdr.b_arc_node);
1131 list_link_init(&hdr->b_l2hdr.b_l2node);
1132 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1133 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1134
1135 return (0);
1136 }
1137
1138 static int
hdr_full_crypt_cons(void * vbuf,void * unused,int kmflag)1139 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1140 {
1141 (void) unused;
1142 arc_buf_hdr_t *hdr = vbuf;
1143
1144 hdr_full_cons(vbuf, unused, kmflag);
1145 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1146 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1147
1148 return (0);
1149 }
1150
1151 static int
hdr_l2only_cons(void * vbuf,void * unused,int kmflag)1152 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1153 {
1154 (void) unused, (void) kmflag;
1155 arc_buf_hdr_t *hdr = vbuf;
1156
1157 bzero(hdr, HDR_L2ONLY_SIZE);
1158 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1159
1160 return (0);
1161 }
1162
1163 static int
buf_cons(void * vbuf,void * unused,int kmflag)1164 buf_cons(void *vbuf, void *unused, int kmflag)
1165 {
1166 (void) unused, (void) kmflag;
1167 arc_buf_t *buf = vbuf;
1168
1169 bzero(buf, sizeof (arc_buf_t));
1170 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1171 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1172
1173 return (0);
1174 }
1175
1176 /*
1177 * Destructor callback - called when a cached buf is
1178 * no longer required.
1179 */
1180 static void
hdr_full_dest(void * vbuf,void * unused)1181 hdr_full_dest(void *vbuf, void *unused)
1182 {
1183 (void) unused;
1184 arc_buf_hdr_t *hdr = vbuf;
1185
1186 ASSERT(HDR_EMPTY(hdr));
1187 cv_destroy(&hdr->b_l1hdr.b_cv);
1188 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1189 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1190 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1191 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1192 }
1193
1194 static void
hdr_full_crypt_dest(void * vbuf,void * unused)1195 hdr_full_crypt_dest(void *vbuf, void *unused)
1196 {
1197 (void) unused;
1198 arc_buf_hdr_t *hdr = vbuf;
1199
1200 hdr_full_dest(vbuf, unused);
1201 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1202 }
1203
1204 static void
hdr_l2only_dest(void * vbuf,void * unused)1205 hdr_l2only_dest(void *vbuf, void *unused)
1206 {
1207 (void) unused;
1208 arc_buf_hdr_t *hdr __maybe_unused = vbuf;
1209
1210 ASSERT(HDR_EMPTY(hdr));
1211 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1212 }
1213
1214 static void
buf_dest(void * vbuf,void * unused)1215 buf_dest(void *vbuf, void *unused)
1216 {
1217 (void) unused;
1218 arc_buf_t *buf = vbuf;
1219
1220 mutex_destroy(&buf->b_evict_lock);
1221 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1222 }
1223
1224 static void
buf_init(void)1225 buf_init(void)
1226 {
1227 uint64_t *ct = NULL;
1228 uint64_t hsize = 1ULL << 12;
1229 int i, j;
1230
1231 /*
1232 * The hash table is big enough to fill all of physical memory
1233 * with an average block size of zfs_arc_average_blocksize (default 8K).
1234 * By default, the table will take up
1235 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1236 */
1237 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1238 hsize <<= 1;
1239 retry:
1240 buf_hash_table.ht_mask = hsize - 1;
1241 #if defined(_KERNEL)
1242 /*
1243 * Large allocations which do not require contiguous pages
1244 * should be using vmem_alloc() in the linux kernel
1245 */
1246 buf_hash_table.ht_table =
1247 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1248 #else
1249 buf_hash_table.ht_table =
1250 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1251 #endif
1252 if (buf_hash_table.ht_table == NULL) {
1253 ASSERT(hsize > (1ULL << 8));
1254 hsize >>= 1;
1255 goto retry;
1256 }
1257
1258 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1259 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
1260 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1261 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1262 NULL, NULL, NULL, 0);
1263 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1264 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1265 NULL, NULL, 0);
1266 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1267 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1268
1269 for (i = 0; i < 256; i++)
1270 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1271 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1272
1273 for (i = 0; i < BUF_LOCKS; i++)
1274 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1275 }
1276
1277 #define ARC_MINTIME (hz>>4) /* 62 ms */
1278
1279 /*
1280 * This is the size that the buf occupies in memory. If the buf is compressed,
1281 * it will correspond to the compressed size. You should use this method of
1282 * getting the buf size unless you explicitly need the logical size.
1283 */
1284 uint64_t
arc_buf_size(arc_buf_t * buf)1285 arc_buf_size(arc_buf_t *buf)
1286 {
1287 return (ARC_BUF_COMPRESSED(buf) ?
1288 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1289 }
1290
1291 uint64_t
arc_buf_lsize(arc_buf_t * buf)1292 arc_buf_lsize(arc_buf_t *buf)
1293 {
1294 return (HDR_GET_LSIZE(buf->b_hdr));
1295 }
1296
1297 /*
1298 * This function will return B_TRUE if the buffer is encrypted in memory.
1299 * This buffer can be decrypted by calling arc_untransform().
1300 */
1301 boolean_t
arc_is_encrypted(arc_buf_t * buf)1302 arc_is_encrypted(arc_buf_t *buf)
1303 {
1304 return (ARC_BUF_ENCRYPTED(buf) != 0);
1305 }
1306
1307 /*
1308 * Returns B_TRUE if the buffer represents data that has not had its MAC
1309 * verified yet.
1310 */
1311 boolean_t
arc_is_unauthenticated(arc_buf_t * buf)1312 arc_is_unauthenticated(arc_buf_t *buf)
1313 {
1314 return (HDR_NOAUTH(buf->b_hdr) != 0);
1315 }
1316
1317 void
arc_get_raw_params(arc_buf_t * buf,boolean_t * byteorder,uint8_t * salt,uint8_t * iv,uint8_t * mac)1318 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1319 uint8_t *iv, uint8_t *mac)
1320 {
1321 arc_buf_hdr_t *hdr = buf->b_hdr;
1322
1323 ASSERT(HDR_PROTECTED(hdr));
1324
1325 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1326 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1327 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1328 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1329 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1330 }
1331
1332 /*
1333 * Indicates how this buffer is compressed in memory. If it is not compressed
1334 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1335 * arc_untransform() as long as it is also unencrypted.
1336 */
1337 enum zio_compress
arc_get_compression(arc_buf_t * buf)1338 arc_get_compression(arc_buf_t *buf)
1339 {
1340 return (ARC_BUF_COMPRESSED(buf) ?
1341 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1342 }
1343
1344 /*
1345 * Return the compression algorithm used to store this data in the ARC. If ARC
1346 * compression is enabled or this is an encrypted block, this will be the same
1347 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1348 */
1349 static inline enum zio_compress
arc_hdr_get_compress(arc_buf_hdr_t * hdr)1350 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1351 {
1352 return (HDR_COMPRESSION_ENABLED(hdr) ?
1353 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1354 }
1355
1356 uint8_t
arc_get_complevel(arc_buf_t * buf)1357 arc_get_complevel(arc_buf_t *buf)
1358 {
1359 return (buf->b_hdr->b_complevel);
1360 }
1361
1362 static inline boolean_t
arc_buf_is_shared(arc_buf_t * buf)1363 arc_buf_is_shared(arc_buf_t *buf)
1364 {
1365 boolean_t shared = (buf->b_data != NULL &&
1366 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1367 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1368 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1369 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1370 IMPLY(shared, ARC_BUF_SHARED(buf));
1371 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1372
1373 /*
1374 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1375 * already being shared" requirement prevents us from doing that.
1376 */
1377
1378 return (shared);
1379 }
1380
1381 /*
1382 * Free the checksum associated with this header. If there is no checksum, this
1383 * is a no-op.
1384 */
1385 static inline void
arc_cksum_free(arc_buf_hdr_t * hdr)1386 arc_cksum_free(arc_buf_hdr_t *hdr)
1387 {
1388 ASSERT(HDR_HAS_L1HDR(hdr));
1389
1390 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1391 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1392 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1393 hdr->b_l1hdr.b_freeze_cksum = NULL;
1394 }
1395 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1396 }
1397
1398 /*
1399 * Return true iff at least one of the bufs on hdr is not compressed.
1400 * Encrypted buffers count as compressed.
1401 */
1402 static boolean_t
arc_hdr_has_uncompressed_buf(arc_buf_hdr_t * hdr)1403 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1404 {
1405 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1406
1407 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1408 if (!ARC_BUF_COMPRESSED(b)) {
1409 return (B_TRUE);
1410 }
1411 }
1412 return (B_FALSE);
1413 }
1414
1415
1416 /*
1417 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1418 * matches the checksum that is stored in the hdr. If there is no checksum,
1419 * or if the buf is compressed, this is a no-op.
1420 */
1421 static void
arc_cksum_verify(arc_buf_t * buf)1422 arc_cksum_verify(arc_buf_t *buf)
1423 {
1424 arc_buf_hdr_t *hdr = buf->b_hdr;
1425 zio_cksum_t zc;
1426
1427 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1428 return;
1429
1430 if (ARC_BUF_COMPRESSED(buf))
1431 return;
1432
1433 ASSERT(HDR_HAS_L1HDR(hdr));
1434
1435 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1436
1437 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1438 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1439 return;
1440 }
1441
1442 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1443 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1444 panic("buffer modified while frozen!");
1445 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1446 }
1447
1448 /*
1449 * This function makes the assumption that data stored in the L2ARC
1450 * will be transformed exactly as it is in the main pool. Because of
1451 * this we can verify the checksum against the reading process's bp.
1452 */
1453 static boolean_t
arc_cksum_is_equal(arc_buf_hdr_t * hdr,zio_t * zio)1454 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1455 {
1456 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1457 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1458
1459 /*
1460 * Block pointers always store the checksum for the logical data.
1461 * If the block pointer has the gang bit set, then the checksum
1462 * it represents is for the reconstituted data and not for an
1463 * individual gang member. The zio pipeline, however, must be able to
1464 * determine the checksum of each of the gang constituents so it
1465 * treats the checksum comparison differently than what we need
1466 * for l2arc blocks. This prevents us from using the
1467 * zio_checksum_error() interface directly. Instead we must call the
1468 * zio_checksum_error_impl() so that we can ensure the checksum is
1469 * generated using the correct checksum algorithm and accounts for the
1470 * logical I/O size and not just a gang fragment.
1471 */
1472 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1473 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1474 zio->io_offset, NULL) == 0);
1475 }
1476
1477 /*
1478 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1479 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1480 * isn't modified later on. If buf is compressed or there is already a checksum
1481 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1482 */
1483 static void
arc_cksum_compute(arc_buf_t * buf)1484 arc_cksum_compute(arc_buf_t *buf)
1485 {
1486 arc_buf_hdr_t *hdr = buf->b_hdr;
1487
1488 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1489 return;
1490
1491 ASSERT(HDR_HAS_L1HDR(hdr));
1492
1493 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1494 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1495 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1496 return;
1497 }
1498
1499 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1500 ASSERT(!ARC_BUF_COMPRESSED(buf));
1501 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1502 KM_SLEEP);
1503 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1504 hdr->b_l1hdr.b_freeze_cksum);
1505 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1506 arc_buf_watch(buf);
1507 }
1508
1509 #ifndef _KERNEL
1510 void
arc_buf_sigsegv(int sig,siginfo_t * si,void * unused)1511 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1512 {
1513 (void) sig, (void) unused;
1514 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1515 }
1516 #endif
1517
1518 static void
arc_buf_unwatch(arc_buf_t * buf)1519 arc_buf_unwatch(arc_buf_t *buf)
1520 {
1521 #ifndef _KERNEL
1522 if (arc_watch) {
1523 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1524 PROT_READ | PROT_WRITE));
1525 }
1526 #else
1527 (void) buf;
1528 #endif
1529 }
1530
1531 static void
arc_buf_watch(arc_buf_t * buf)1532 arc_buf_watch(arc_buf_t *buf)
1533 {
1534 #ifndef _KERNEL
1535 if (arc_watch)
1536 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1537 PROT_READ));
1538 #else
1539 (void) buf;
1540 #endif
1541 }
1542
1543 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t * hdr)1544 arc_buf_type(arc_buf_hdr_t *hdr)
1545 {
1546 arc_buf_contents_t type;
1547 if (HDR_ISTYPE_METADATA(hdr)) {
1548 type = ARC_BUFC_METADATA;
1549 } else {
1550 type = ARC_BUFC_DATA;
1551 }
1552 VERIFY3U(hdr->b_type, ==, type);
1553 return (type);
1554 }
1555
1556 boolean_t
arc_is_metadata(arc_buf_t * buf)1557 arc_is_metadata(arc_buf_t *buf)
1558 {
1559 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1560 }
1561
1562 static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)1563 arc_bufc_to_flags(arc_buf_contents_t type)
1564 {
1565 switch (type) {
1566 case ARC_BUFC_DATA:
1567 /* metadata field is 0 if buffer contains normal data */
1568 return (0);
1569 case ARC_BUFC_METADATA:
1570 return (ARC_FLAG_BUFC_METADATA);
1571 default:
1572 break;
1573 }
1574 panic("undefined ARC buffer type!");
1575 return ((uint32_t)-1);
1576 }
1577
1578 void
arc_buf_thaw(arc_buf_t * buf)1579 arc_buf_thaw(arc_buf_t *buf)
1580 {
1581 arc_buf_hdr_t *hdr = buf->b_hdr;
1582
1583 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1584 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1585
1586 arc_cksum_verify(buf);
1587
1588 /*
1589 * Compressed buffers do not manipulate the b_freeze_cksum.
1590 */
1591 if (ARC_BUF_COMPRESSED(buf))
1592 return;
1593
1594 ASSERT(HDR_HAS_L1HDR(hdr));
1595 arc_cksum_free(hdr);
1596 arc_buf_unwatch(buf);
1597 }
1598
1599 void
arc_buf_freeze(arc_buf_t * buf)1600 arc_buf_freeze(arc_buf_t *buf)
1601 {
1602 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1603 return;
1604
1605 if (ARC_BUF_COMPRESSED(buf))
1606 return;
1607
1608 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1609 arc_cksum_compute(buf);
1610 }
1611
1612 /*
1613 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1614 * the following functions should be used to ensure that the flags are
1615 * updated in a thread-safe way. When manipulating the flags either
1616 * the hash_lock must be held or the hdr must be undiscoverable. This
1617 * ensures that we're not racing with any other threads when updating
1618 * the flags.
1619 */
1620 static inline void
arc_hdr_set_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1621 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1622 {
1623 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1624 hdr->b_flags |= flags;
1625 }
1626
1627 static inline void
arc_hdr_clear_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1628 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1629 {
1630 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1631 hdr->b_flags &= ~flags;
1632 }
1633
1634 /*
1635 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1636 * done in a special way since we have to clear and set bits
1637 * at the same time. Consumers that wish to set the compression bits
1638 * must use this function to ensure that the flags are updated in
1639 * thread-safe manner.
1640 */
1641 static void
arc_hdr_set_compress(arc_buf_hdr_t * hdr,enum zio_compress cmp)1642 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1643 {
1644 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1645
1646 /*
1647 * Holes and embedded blocks will always have a psize = 0 so
1648 * we ignore the compression of the blkptr and set the
1649 * want to uncompress them. Mark them as uncompressed.
1650 */
1651 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1652 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1653 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1654 } else {
1655 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1656 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1657 }
1658
1659 HDR_SET_COMPRESS(hdr, cmp);
1660 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1661 }
1662
1663 /*
1664 * Looks for another buf on the same hdr which has the data decompressed, copies
1665 * from it, and returns true. If no such buf exists, returns false.
1666 */
1667 static boolean_t
arc_buf_try_copy_decompressed_data(arc_buf_t * buf)1668 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1669 {
1670 arc_buf_hdr_t *hdr = buf->b_hdr;
1671 boolean_t copied = B_FALSE;
1672
1673 ASSERT(HDR_HAS_L1HDR(hdr));
1674 ASSERT3P(buf->b_data, !=, NULL);
1675 ASSERT(!ARC_BUF_COMPRESSED(buf));
1676
1677 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1678 from = from->b_next) {
1679 /* can't use our own data buffer */
1680 if (from == buf) {
1681 continue;
1682 }
1683
1684 if (!ARC_BUF_COMPRESSED(from)) {
1685 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1686 copied = B_TRUE;
1687 break;
1688 }
1689 }
1690
1691 /*
1692 * There were no decompressed bufs, so there should not be a
1693 * checksum on the hdr either.
1694 */
1695 if (zfs_flags & ZFS_DEBUG_MODIFY)
1696 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1697
1698 return (copied);
1699 }
1700
1701 /*
1702 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1703 * This is used during l2arc reconstruction to make empty ARC buffers
1704 * which circumvent the regular disk->arc->l2arc path and instead come
1705 * into being in the reverse order, i.e. l2arc->arc.
1706 */
1707 static arc_buf_hdr_t *
arc_buf_alloc_l2only(size_t size,arc_buf_contents_t type,l2arc_dev_t * dev,dva_t dva,uint64_t daddr,int32_t psize,uint64_t birth,enum zio_compress compress,uint8_t complevel,boolean_t protected,boolean_t prefetch,arc_state_type_t arcs_state)1708 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1709 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
1710 enum zio_compress compress, uint8_t complevel, boolean_t protected,
1711 boolean_t prefetch, arc_state_type_t arcs_state)
1712 {
1713 arc_buf_hdr_t *hdr;
1714
1715 ASSERT(size != 0);
1716 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1717 hdr->b_birth = birth;
1718 hdr->b_type = type;
1719 hdr->b_flags = 0;
1720 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1721 HDR_SET_LSIZE(hdr, size);
1722 HDR_SET_PSIZE(hdr, psize);
1723 arc_hdr_set_compress(hdr, compress);
1724 hdr->b_complevel = complevel;
1725 if (protected)
1726 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1727 if (prefetch)
1728 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1729 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1730
1731 hdr->b_dva = dva;
1732
1733 hdr->b_l2hdr.b_dev = dev;
1734 hdr->b_l2hdr.b_daddr = daddr;
1735 hdr->b_l2hdr.b_arcs_state = arcs_state;
1736
1737 return (hdr);
1738 }
1739
1740 /*
1741 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1742 */
1743 static uint64_t
arc_hdr_size(arc_buf_hdr_t * hdr)1744 arc_hdr_size(arc_buf_hdr_t *hdr)
1745 {
1746 uint64_t size;
1747
1748 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1749 HDR_GET_PSIZE(hdr) > 0) {
1750 size = HDR_GET_PSIZE(hdr);
1751 } else {
1752 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1753 size = HDR_GET_LSIZE(hdr);
1754 }
1755 return (size);
1756 }
1757
1758 static int
arc_hdr_authenticate(arc_buf_hdr_t * hdr,spa_t * spa,uint64_t dsobj)1759 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1760 {
1761 int ret;
1762 uint64_t csize;
1763 uint64_t lsize = HDR_GET_LSIZE(hdr);
1764 uint64_t psize = HDR_GET_PSIZE(hdr);
1765 void *tmpbuf = NULL;
1766 abd_t *abd = hdr->b_l1hdr.b_pabd;
1767
1768 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1769 ASSERT(HDR_AUTHENTICATED(hdr));
1770 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1771
1772 /*
1773 * The MAC is calculated on the compressed data that is stored on disk.
1774 * However, if compressed arc is disabled we will only have the
1775 * decompressed data available to us now. Compress it into a temporary
1776 * abd so we can verify the MAC. The performance overhead of this will
1777 * be relatively low, since most objects in an encrypted objset will
1778 * be encrypted (instead of authenticated) anyway.
1779 */
1780 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1781 !HDR_COMPRESSION_ENABLED(hdr)) {
1782 tmpbuf = zio_buf_alloc(lsize);
1783 abd = abd_get_from_buf(tmpbuf, lsize);
1784 abd_take_ownership_of_buf(abd, B_TRUE);
1785 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1786 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel);
1787 ASSERT3U(csize, <=, psize);
1788 abd_zero_off(abd, csize, psize - csize);
1789 }
1790
1791 /*
1792 * Authentication is best effort. We authenticate whenever the key is
1793 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1794 */
1795 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1796 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1797 ASSERT3U(lsize, ==, psize);
1798 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1799 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1800 } else {
1801 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1802 hdr->b_crypt_hdr.b_mac);
1803 }
1804
1805 if (ret == 0)
1806 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1807 else if (ret != ENOENT)
1808 goto error;
1809
1810 if (tmpbuf != NULL)
1811 abd_free(abd);
1812
1813 return (0);
1814
1815 error:
1816 if (tmpbuf != NULL)
1817 abd_free(abd);
1818
1819 return (ret);
1820 }
1821
1822 /*
1823 * This function will take a header that only has raw encrypted data in
1824 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1825 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1826 * also decompress the data.
1827 */
1828 static int
arc_hdr_decrypt(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb)1829 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1830 {
1831 int ret;
1832 abd_t *cabd = NULL;
1833 void *tmp = NULL;
1834 boolean_t no_crypt = B_FALSE;
1835 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1836
1837 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1838 ASSERT(HDR_ENCRYPTED(hdr));
1839
1840 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
1841
1842 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1843 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1844 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1845 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1846 if (ret != 0)
1847 goto error;
1848
1849 if (no_crypt) {
1850 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1851 HDR_GET_PSIZE(hdr));
1852 }
1853
1854 /*
1855 * If this header has disabled arc compression but the b_pabd is
1856 * compressed after decrypting it, we need to decompress the newly
1857 * decrypted data.
1858 */
1859 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1860 !HDR_COMPRESSION_ENABLED(hdr)) {
1861 /*
1862 * We want to make sure that we are correctly honoring the
1863 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1864 * and then loan a buffer from it, rather than allocating a
1865 * linear buffer and wrapping it in an abd later.
1866 */
1867 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
1868 ARC_HDR_DO_ADAPT);
1869 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1870
1871 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1872 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1873 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1874 if (ret != 0) {
1875 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1876 goto error;
1877 }
1878
1879 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1880 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1881 arc_hdr_size(hdr), hdr);
1882 hdr->b_l1hdr.b_pabd = cabd;
1883 }
1884
1885 return (0);
1886
1887 error:
1888 arc_hdr_free_abd(hdr, B_FALSE);
1889 if (cabd != NULL)
1890 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1891
1892 return (ret);
1893 }
1894
1895 /*
1896 * This function is called during arc_buf_fill() to prepare the header's
1897 * abd plaintext pointer for use. This involves authenticated protected
1898 * data and decrypting encrypted data into the plaintext abd.
1899 */
1900 static int
arc_fill_hdr_crypt(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,spa_t * spa,const zbookmark_phys_t * zb,boolean_t noauth)1901 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1902 const zbookmark_phys_t *zb, boolean_t noauth)
1903 {
1904 int ret;
1905
1906 ASSERT(HDR_PROTECTED(hdr));
1907
1908 if (hash_lock != NULL)
1909 mutex_enter(hash_lock);
1910
1911 if (HDR_NOAUTH(hdr) && !noauth) {
1912 /*
1913 * The caller requested authenticated data but our data has
1914 * not been authenticated yet. Verify the MAC now if we can.
1915 */
1916 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1917 if (ret != 0)
1918 goto error;
1919 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1920 /*
1921 * If we only have the encrypted version of the data, but the
1922 * unencrypted version was requested we take this opportunity
1923 * to store the decrypted version in the header for future use.
1924 */
1925 ret = arc_hdr_decrypt(hdr, spa, zb);
1926 if (ret != 0)
1927 goto error;
1928 }
1929
1930 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1931
1932 if (hash_lock != NULL)
1933 mutex_exit(hash_lock);
1934
1935 return (0);
1936
1937 error:
1938 if (hash_lock != NULL)
1939 mutex_exit(hash_lock);
1940
1941 return (ret);
1942 }
1943
1944 /*
1945 * This function is used by the dbuf code to decrypt bonus buffers in place.
1946 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1947 * block, so we use the hash lock here to protect against concurrent calls to
1948 * arc_buf_fill().
1949 */
1950 static void
arc_buf_untransform_in_place(arc_buf_t * buf)1951 arc_buf_untransform_in_place(arc_buf_t *buf)
1952 {
1953 arc_buf_hdr_t *hdr = buf->b_hdr;
1954
1955 ASSERT(HDR_ENCRYPTED(hdr));
1956 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1957 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1958 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1959
1960 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1961 arc_buf_size(buf));
1962 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1963 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1964 hdr->b_crypt_hdr.b_ebufcnt -= 1;
1965 }
1966
1967 /*
1968 * Given a buf that has a data buffer attached to it, this function will
1969 * efficiently fill the buf with data of the specified compression setting from
1970 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1971 * are already sharing a data buf, no copy is performed.
1972 *
1973 * If the buf is marked as compressed but uncompressed data was requested, this
1974 * will allocate a new data buffer for the buf, remove that flag, and fill the
1975 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1976 * uncompressed data, and (since we haven't added support for it yet) if you
1977 * want compressed data your buf must already be marked as compressed and have
1978 * the correct-sized data buffer.
1979 */
1980 static int
arc_buf_fill(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,arc_fill_flags_t flags)1981 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1982 arc_fill_flags_t flags)
1983 {
1984 int error = 0;
1985 arc_buf_hdr_t *hdr = buf->b_hdr;
1986 boolean_t hdr_compressed =
1987 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1988 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1989 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1990 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1991 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1992
1993 ASSERT3P(buf->b_data, !=, NULL);
1994 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1995 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1996 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
1997 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
1998 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
1999 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2000
2001 /*
2002 * If the caller wanted encrypted data we just need to copy it from
2003 * b_rabd and potentially byteswap it. We won't be able to do any
2004 * further transforms on it.
2005 */
2006 if (encrypted) {
2007 ASSERT(HDR_HAS_RABD(hdr));
2008 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2009 HDR_GET_PSIZE(hdr));
2010 goto byteswap;
2011 }
2012
2013 /*
2014 * Adjust encrypted and authenticated headers to accommodate
2015 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2016 * allowed to fail decryption due to keys not being loaded
2017 * without being marked as an IO error.
2018 */
2019 if (HDR_PROTECTED(hdr)) {
2020 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2021 zb, !!(flags & ARC_FILL_NOAUTH));
2022 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2023 return (error);
2024 } else if (error != 0) {
2025 if (hash_lock != NULL)
2026 mutex_enter(hash_lock);
2027 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2028 if (hash_lock != NULL)
2029 mutex_exit(hash_lock);
2030 return (error);
2031 }
2032 }
2033
2034 /*
2035 * There is a special case here for dnode blocks which are
2036 * decrypting their bonus buffers. These blocks may request to
2037 * be decrypted in-place. This is necessary because there may
2038 * be many dnodes pointing into this buffer and there is
2039 * currently no method to synchronize replacing the backing
2040 * b_data buffer and updating all of the pointers. Here we use
2041 * the hash lock to ensure there are no races. If the need
2042 * arises for other types to be decrypted in-place, they must
2043 * add handling here as well.
2044 */
2045 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2046 ASSERT(!hdr_compressed);
2047 ASSERT(!compressed);
2048 ASSERT(!encrypted);
2049
2050 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2051 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2052
2053 if (hash_lock != NULL)
2054 mutex_enter(hash_lock);
2055 arc_buf_untransform_in_place(buf);
2056 if (hash_lock != NULL)
2057 mutex_exit(hash_lock);
2058
2059 /* Compute the hdr's checksum if necessary */
2060 arc_cksum_compute(buf);
2061 }
2062
2063 return (0);
2064 }
2065
2066 if (hdr_compressed == compressed) {
2067 if (!arc_buf_is_shared(buf)) {
2068 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2069 arc_buf_size(buf));
2070 }
2071 } else {
2072 ASSERT(hdr_compressed);
2073 ASSERT(!compressed);
2074
2075 /*
2076 * If the buf is sharing its data with the hdr, unlink it and
2077 * allocate a new data buffer for the buf.
2078 */
2079 if (arc_buf_is_shared(buf)) {
2080 ASSERT(ARC_BUF_COMPRESSED(buf));
2081
2082 /* We need to give the buf its own b_data */
2083 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2084 buf->b_data =
2085 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2086 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2087
2088 /* Previously overhead was 0; just add new overhead */
2089 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2090 } else if (ARC_BUF_COMPRESSED(buf)) {
2091 /* We need to reallocate the buf's b_data */
2092 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2093 buf);
2094 buf->b_data =
2095 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2096
2097 /* We increased the size of b_data; update overhead */
2098 ARCSTAT_INCR(arcstat_overhead_size,
2099 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2100 }
2101
2102 /*
2103 * Regardless of the buf's previous compression settings, it
2104 * should not be compressed at the end of this function.
2105 */
2106 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2107
2108 /*
2109 * Try copying the data from another buf which already has a
2110 * decompressed version. If that's not possible, it's time to
2111 * bite the bullet and decompress the data from the hdr.
2112 */
2113 if (arc_buf_try_copy_decompressed_data(buf)) {
2114 /* Skip byteswapping and checksumming (already done) */
2115 return (0);
2116 } else {
2117 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2118 hdr->b_l1hdr.b_pabd, buf->b_data,
2119 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2120 &hdr->b_complevel);
2121
2122 /*
2123 * Absent hardware errors or software bugs, this should
2124 * be impossible, but log it anyway so we can debug it.
2125 */
2126 if (error != 0) {
2127 zfs_dbgmsg(
2128 "hdr %px, compress %d, psize %d, lsize %d",
2129 hdr, arc_hdr_get_compress(hdr),
2130 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2131 if (hash_lock != NULL)
2132 mutex_enter(hash_lock);
2133 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2134 if (hash_lock != NULL)
2135 mutex_exit(hash_lock);
2136 return (SET_ERROR(EIO));
2137 }
2138 }
2139 }
2140
2141 byteswap:
2142 /* Byteswap the buf's data if necessary */
2143 if (bswap != DMU_BSWAP_NUMFUNCS) {
2144 ASSERT(!HDR_SHARED_DATA(hdr));
2145 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2146 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2147 }
2148
2149 /* Compute the hdr's checksum if necessary */
2150 arc_cksum_compute(buf);
2151
2152 return (0);
2153 }
2154
2155 /*
2156 * If this function is being called to decrypt an encrypted buffer or verify an
2157 * authenticated one, the key must be loaded and a mapping must be made
2158 * available in the keystore via spa_keystore_create_mapping() or one of its
2159 * callers.
2160 */
2161 int
arc_untransform(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,boolean_t in_place)2162 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2163 boolean_t in_place)
2164 {
2165 int ret;
2166 arc_fill_flags_t flags = 0;
2167
2168 if (in_place)
2169 flags |= ARC_FILL_IN_PLACE;
2170
2171 ret = arc_buf_fill(buf, spa, zb, flags);
2172 if (ret == ECKSUM) {
2173 /*
2174 * Convert authentication and decryption errors to EIO
2175 * (and generate an ereport) before leaving the ARC.
2176 */
2177 ret = SET_ERROR(EIO);
2178 spa_log_error(spa, zb);
2179 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2180 spa, NULL, zb, NULL, 0);
2181 }
2182
2183 return (ret);
2184 }
2185
2186 /*
2187 * Increment the amount of evictable space in the arc_state_t's refcount.
2188 * We account for the space used by the hdr and the arc buf individually
2189 * so that we can add and remove them from the refcount individually.
2190 */
2191 static void
arc_evictable_space_increment(arc_buf_hdr_t * hdr,arc_state_t * state)2192 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2193 {
2194 arc_buf_contents_t type = arc_buf_type(hdr);
2195
2196 ASSERT(HDR_HAS_L1HDR(hdr));
2197
2198 if (GHOST_STATE(state)) {
2199 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2200 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2201 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2202 ASSERT(!HDR_HAS_RABD(hdr));
2203 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2204 HDR_GET_LSIZE(hdr), hdr);
2205 return;
2206 }
2207
2208 if (hdr->b_l1hdr.b_pabd != NULL) {
2209 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2210 arc_hdr_size(hdr), hdr);
2211 }
2212 if (HDR_HAS_RABD(hdr)) {
2213 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2214 HDR_GET_PSIZE(hdr), hdr);
2215 }
2216
2217 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2218 buf = buf->b_next) {
2219 if (arc_buf_is_shared(buf))
2220 continue;
2221 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2222 arc_buf_size(buf), buf);
2223 }
2224 }
2225
2226 /*
2227 * Decrement the amount of evictable space in the arc_state_t's refcount.
2228 * We account for the space used by the hdr and the arc buf individually
2229 * so that we can add and remove them from the refcount individually.
2230 */
2231 static void
arc_evictable_space_decrement(arc_buf_hdr_t * hdr,arc_state_t * state)2232 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2233 {
2234 arc_buf_contents_t type = arc_buf_type(hdr);
2235
2236 ASSERT(HDR_HAS_L1HDR(hdr));
2237
2238 if (GHOST_STATE(state)) {
2239 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2240 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2241 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2242 ASSERT(!HDR_HAS_RABD(hdr));
2243 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2244 HDR_GET_LSIZE(hdr), hdr);
2245 return;
2246 }
2247
2248 if (hdr->b_l1hdr.b_pabd != NULL) {
2249 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2250 arc_hdr_size(hdr), hdr);
2251 }
2252 if (HDR_HAS_RABD(hdr)) {
2253 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2254 HDR_GET_PSIZE(hdr), hdr);
2255 }
2256
2257 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2258 buf = buf->b_next) {
2259 if (arc_buf_is_shared(buf))
2260 continue;
2261 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2262 arc_buf_size(buf), buf);
2263 }
2264 }
2265
2266 /*
2267 * Add a reference to this hdr indicating that someone is actively
2268 * referencing that memory. When the refcount transitions from 0 to 1,
2269 * we remove it from the respective arc_state_t list to indicate that
2270 * it is not evictable.
2271 */
2272 static void
add_reference(arc_buf_hdr_t * hdr,void * tag)2273 add_reference(arc_buf_hdr_t *hdr, void *tag)
2274 {
2275 arc_state_t *state;
2276
2277 ASSERT(HDR_HAS_L1HDR(hdr));
2278 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2279 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2280 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2281 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2282 }
2283
2284 state = hdr->b_l1hdr.b_state;
2285
2286 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2287 (state != arc_anon)) {
2288 /* We don't use the L2-only state list. */
2289 if (state != arc_l2c_only) {
2290 multilist_remove(&state->arcs_list[arc_buf_type(hdr)],
2291 hdr);
2292 arc_evictable_space_decrement(hdr, state);
2293 }
2294 /* remove the prefetch flag if we get a reference */
2295 if (HDR_HAS_L2HDR(hdr))
2296 l2arc_hdr_arcstats_decrement_state(hdr);
2297 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2298 if (HDR_HAS_L2HDR(hdr))
2299 l2arc_hdr_arcstats_increment_state(hdr);
2300 }
2301 }
2302
2303 /*
2304 * Remove a reference from this hdr. When the reference transitions from
2305 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2306 * list making it eligible for eviction.
2307 */
2308 static int
remove_reference(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,void * tag)2309 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2310 {
2311 int cnt;
2312 arc_state_t *state = hdr->b_l1hdr.b_state;
2313
2314 ASSERT(HDR_HAS_L1HDR(hdr));
2315 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2316 ASSERT(!GHOST_STATE(state));
2317
2318 /*
2319 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2320 * check to prevent usage of the arc_l2c_only list.
2321 */
2322 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2323 (state != arc_anon)) {
2324 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2325 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2326 arc_evictable_space_increment(hdr, state);
2327 }
2328 return (cnt);
2329 }
2330
2331 /*
2332 * Returns detailed information about a specific arc buffer. When the
2333 * state_index argument is set the function will calculate the arc header
2334 * list position for its arc state. Since this requires a linear traversal
2335 * callers are strongly encourage not to do this. However, it can be helpful
2336 * for targeted analysis so the functionality is provided.
2337 */
2338 void
arc_buf_info(arc_buf_t * ab,arc_buf_info_t * abi,int state_index)2339 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2340 {
2341 (void) state_index;
2342 arc_buf_hdr_t *hdr = ab->b_hdr;
2343 l1arc_buf_hdr_t *l1hdr = NULL;
2344 l2arc_buf_hdr_t *l2hdr = NULL;
2345 arc_state_t *state = NULL;
2346
2347 memset(abi, 0, sizeof (arc_buf_info_t));
2348
2349 if (hdr == NULL)
2350 return;
2351
2352 abi->abi_flags = hdr->b_flags;
2353
2354 if (HDR_HAS_L1HDR(hdr)) {
2355 l1hdr = &hdr->b_l1hdr;
2356 state = l1hdr->b_state;
2357 }
2358 if (HDR_HAS_L2HDR(hdr))
2359 l2hdr = &hdr->b_l2hdr;
2360
2361 if (l1hdr) {
2362 abi->abi_bufcnt = l1hdr->b_bufcnt;
2363 abi->abi_access = l1hdr->b_arc_access;
2364 abi->abi_mru_hits = l1hdr->b_mru_hits;
2365 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2366 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2367 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2368 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2369 }
2370
2371 if (l2hdr) {
2372 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2373 abi->abi_l2arc_hits = l2hdr->b_hits;
2374 }
2375
2376 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2377 abi->abi_state_contents = arc_buf_type(hdr);
2378 abi->abi_size = arc_hdr_size(hdr);
2379 }
2380
2381 /*
2382 * Move the supplied buffer to the indicated state. The hash lock
2383 * for the buffer must be held by the caller.
2384 */
2385 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * hdr,kmutex_t * hash_lock)2386 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2387 kmutex_t *hash_lock)
2388 {
2389 arc_state_t *old_state;
2390 int64_t refcnt;
2391 uint32_t bufcnt;
2392 boolean_t update_old, update_new;
2393 arc_buf_contents_t buftype = arc_buf_type(hdr);
2394
2395 /*
2396 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2397 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2398 * L1 hdr doesn't always exist when we change state to arc_anon before
2399 * destroying a header, in which case reallocating to add the L1 hdr is
2400 * pointless.
2401 */
2402 if (HDR_HAS_L1HDR(hdr)) {
2403 old_state = hdr->b_l1hdr.b_state;
2404 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2405 bufcnt = hdr->b_l1hdr.b_bufcnt;
2406 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2407 HDR_HAS_RABD(hdr));
2408 } else {
2409 old_state = arc_l2c_only;
2410 refcnt = 0;
2411 bufcnt = 0;
2412 update_old = B_FALSE;
2413 }
2414 update_new = update_old;
2415
2416 ASSERT(MUTEX_HELD(hash_lock));
2417 ASSERT3P(new_state, !=, old_state);
2418 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2419 ASSERT(old_state != arc_anon || bufcnt <= 1);
2420
2421 /*
2422 * If this buffer is evictable, transfer it from the
2423 * old state list to the new state list.
2424 */
2425 if (refcnt == 0) {
2426 if (old_state != arc_anon && old_state != arc_l2c_only) {
2427 ASSERT(HDR_HAS_L1HDR(hdr));
2428 multilist_remove(&old_state->arcs_list[buftype], hdr);
2429
2430 if (GHOST_STATE(old_state)) {
2431 ASSERT0(bufcnt);
2432 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2433 update_old = B_TRUE;
2434 }
2435 arc_evictable_space_decrement(hdr, old_state);
2436 }
2437 if (new_state != arc_anon && new_state != arc_l2c_only) {
2438 /*
2439 * An L1 header always exists here, since if we're
2440 * moving to some L1-cached state (i.e. not l2c_only or
2441 * anonymous), we realloc the header to add an L1hdr
2442 * beforehand.
2443 */
2444 ASSERT(HDR_HAS_L1HDR(hdr));
2445 multilist_insert(&new_state->arcs_list[buftype], hdr);
2446
2447 if (GHOST_STATE(new_state)) {
2448 ASSERT0(bufcnt);
2449 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2450 update_new = B_TRUE;
2451 }
2452 arc_evictable_space_increment(hdr, new_state);
2453 }
2454 }
2455
2456 ASSERT(!HDR_EMPTY(hdr));
2457 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2458 buf_hash_remove(hdr);
2459
2460 /* adjust state sizes (ignore arc_l2c_only) */
2461
2462 if (update_new && new_state != arc_l2c_only) {
2463 ASSERT(HDR_HAS_L1HDR(hdr));
2464 if (GHOST_STATE(new_state)) {
2465 ASSERT0(bufcnt);
2466
2467 /*
2468 * When moving a header to a ghost state, we first
2469 * remove all arc buffers. Thus, we'll have a
2470 * bufcnt of zero, and no arc buffer to use for
2471 * the reference. As a result, we use the arc
2472 * header pointer for the reference.
2473 */
2474 (void) zfs_refcount_add_many(&new_state->arcs_size,
2475 HDR_GET_LSIZE(hdr), hdr);
2476 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2477 ASSERT(!HDR_HAS_RABD(hdr));
2478 } else {
2479 uint32_t buffers = 0;
2480
2481 /*
2482 * Each individual buffer holds a unique reference,
2483 * thus we must remove each of these references one
2484 * at a time.
2485 */
2486 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2487 buf = buf->b_next) {
2488 ASSERT3U(bufcnt, !=, 0);
2489 buffers++;
2490
2491 /*
2492 * When the arc_buf_t is sharing the data
2493 * block with the hdr, the owner of the
2494 * reference belongs to the hdr. Only
2495 * add to the refcount if the arc_buf_t is
2496 * not shared.
2497 */
2498 if (arc_buf_is_shared(buf))
2499 continue;
2500
2501 (void) zfs_refcount_add_many(
2502 &new_state->arcs_size,
2503 arc_buf_size(buf), buf);
2504 }
2505 ASSERT3U(bufcnt, ==, buffers);
2506
2507 if (hdr->b_l1hdr.b_pabd != NULL) {
2508 (void) zfs_refcount_add_many(
2509 &new_state->arcs_size,
2510 arc_hdr_size(hdr), hdr);
2511 }
2512
2513 if (HDR_HAS_RABD(hdr)) {
2514 (void) zfs_refcount_add_many(
2515 &new_state->arcs_size,
2516 HDR_GET_PSIZE(hdr), hdr);
2517 }
2518 }
2519 }
2520
2521 if (update_old && old_state != arc_l2c_only) {
2522 ASSERT(HDR_HAS_L1HDR(hdr));
2523 if (GHOST_STATE(old_state)) {
2524 ASSERT0(bufcnt);
2525 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2526 ASSERT(!HDR_HAS_RABD(hdr));
2527
2528 /*
2529 * When moving a header off of a ghost state,
2530 * the header will not contain any arc buffers.
2531 * We use the arc header pointer for the reference
2532 * which is exactly what we did when we put the
2533 * header on the ghost state.
2534 */
2535
2536 (void) zfs_refcount_remove_many(&old_state->arcs_size,
2537 HDR_GET_LSIZE(hdr), hdr);
2538 } else {
2539 uint32_t buffers = 0;
2540
2541 /*
2542 * Each individual buffer holds a unique reference,
2543 * thus we must remove each of these references one
2544 * at a time.
2545 */
2546 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2547 buf = buf->b_next) {
2548 ASSERT3U(bufcnt, !=, 0);
2549 buffers++;
2550
2551 /*
2552 * When the arc_buf_t is sharing the data
2553 * block with the hdr, the owner of the
2554 * reference belongs to the hdr. Only
2555 * add to the refcount if the arc_buf_t is
2556 * not shared.
2557 */
2558 if (arc_buf_is_shared(buf))
2559 continue;
2560
2561 (void) zfs_refcount_remove_many(
2562 &old_state->arcs_size, arc_buf_size(buf),
2563 buf);
2564 }
2565 ASSERT3U(bufcnt, ==, buffers);
2566 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2567 HDR_HAS_RABD(hdr));
2568
2569 if (hdr->b_l1hdr.b_pabd != NULL) {
2570 (void) zfs_refcount_remove_many(
2571 &old_state->arcs_size, arc_hdr_size(hdr),
2572 hdr);
2573 }
2574
2575 if (HDR_HAS_RABD(hdr)) {
2576 (void) zfs_refcount_remove_many(
2577 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2578 hdr);
2579 }
2580 }
2581 }
2582
2583 if (HDR_HAS_L1HDR(hdr)) {
2584 hdr->b_l1hdr.b_state = new_state;
2585
2586 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2587 l2arc_hdr_arcstats_decrement_state(hdr);
2588 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2589 l2arc_hdr_arcstats_increment_state(hdr);
2590 }
2591 }
2592 }
2593
2594 void
arc_space_consume(uint64_t space,arc_space_type_t type)2595 arc_space_consume(uint64_t space, arc_space_type_t type)
2596 {
2597 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2598
2599 switch (type) {
2600 default:
2601 break;
2602 case ARC_SPACE_DATA:
2603 ARCSTAT_INCR(arcstat_data_size, space);
2604 break;
2605 case ARC_SPACE_META:
2606 ARCSTAT_INCR(arcstat_metadata_size, space);
2607 break;
2608 case ARC_SPACE_BONUS:
2609 ARCSTAT_INCR(arcstat_bonus_size, space);
2610 break;
2611 case ARC_SPACE_DNODE:
2612 aggsum_add(&arc_sums.arcstat_dnode_size, space);
2613 break;
2614 case ARC_SPACE_DBUF:
2615 ARCSTAT_INCR(arcstat_dbuf_size, space);
2616 break;
2617 case ARC_SPACE_HDRS:
2618 ARCSTAT_INCR(arcstat_hdr_size, space);
2619 break;
2620 case ARC_SPACE_L2HDRS:
2621 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2622 break;
2623 case ARC_SPACE_ABD_CHUNK_WASTE:
2624 /*
2625 * Note: this includes space wasted by all scatter ABD's, not
2626 * just those allocated by the ARC. But the vast majority of
2627 * scatter ABD's come from the ARC, because other users are
2628 * very short-lived.
2629 */
2630 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2631 break;
2632 }
2633
2634 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2635 aggsum_add(&arc_sums.arcstat_meta_used, space);
2636
2637 aggsum_add(&arc_sums.arcstat_size, space);
2638 }
2639
2640 void
arc_space_return(uint64_t space,arc_space_type_t type)2641 arc_space_return(uint64_t space, arc_space_type_t type)
2642 {
2643 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2644
2645 switch (type) {
2646 default:
2647 break;
2648 case ARC_SPACE_DATA:
2649 ARCSTAT_INCR(arcstat_data_size, -space);
2650 break;
2651 case ARC_SPACE_META:
2652 ARCSTAT_INCR(arcstat_metadata_size, -space);
2653 break;
2654 case ARC_SPACE_BONUS:
2655 ARCSTAT_INCR(arcstat_bonus_size, -space);
2656 break;
2657 case ARC_SPACE_DNODE:
2658 aggsum_add(&arc_sums.arcstat_dnode_size, -space);
2659 break;
2660 case ARC_SPACE_DBUF:
2661 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2662 break;
2663 case ARC_SPACE_HDRS:
2664 ARCSTAT_INCR(arcstat_hdr_size, -space);
2665 break;
2666 case ARC_SPACE_L2HDRS:
2667 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2668 break;
2669 case ARC_SPACE_ABD_CHUNK_WASTE:
2670 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2671 break;
2672 }
2673
2674 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) {
2675 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used,
2676 space) >= 0);
2677 ARCSTAT_MAX(arcstat_meta_max,
2678 aggsum_upper_bound(&arc_sums.arcstat_meta_used));
2679 aggsum_add(&arc_sums.arcstat_meta_used, -space);
2680 }
2681
2682 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2683 aggsum_add(&arc_sums.arcstat_size, -space);
2684 }
2685
2686 /*
2687 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2688 * with the hdr's b_pabd.
2689 */
2690 static boolean_t
arc_can_share(arc_buf_hdr_t * hdr,arc_buf_t * buf)2691 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2692 {
2693 /*
2694 * The criteria for sharing a hdr's data are:
2695 * 1. the buffer is not encrypted
2696 * 2. the hdr's compression matches the buf's compression
2697 * 3. the hdr doesn't need to be byteswapped
2698 * 4. the hdr isn't already being shared
2699 * 5. the buf is either compressed or it is the last buf in the hdr list
2700 *
2701 * Criterion #5 maintains the invariant that shared uncompressed
2702 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2703 * might ask, "if a compressed buf is allocated first, won't that be the
2704 * last thing in the list?", but in that case it's impossible to create
2705 * a shared uncompressed buf anyway (because the hdr must be compressed
2706 * to have the compressed buf). You might also think that #3 is
2707 * sufficient to make this guarantee, however it's possible
2708 * (specifically in the rare L2ARC write race mentioned in
2709 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2710 * is shareable, but wasn't at the time of its allocation. Rather than
2711 * allow a new shared uncompressed buf to be created and then shuffle
2712 * the list around to make it the last element, this simply disallows
2713 * sharing if the new buf isn't the first to be added.
2714 */
2715 ASSERT3P(buf->b_hdr, ==, hdr);
2716 boolean_t hdr_compressed =
2717 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2718 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2719 return (!ARC_BUF_ENCRYPTED(buf) &&
2720 buf_compressed == hdr_compressed &&
2721 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2722 !HDR_SHARED_DATA(hdr) &&
2723 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2724 }
2725
2726 /*
2727 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2728 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2729 * copy was made successfully, or an error code otherwise.
2730 */
2731 static int
arc_buf_alloc_impl(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb,void * tag,boolean_t encrypted,boolean_t compressed,boolean_t noauth,boolean_t fill,arc_buf_t ** ret)2732 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2733 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2734 boolean_t fill, arc_buf_t **ret)
2735 {
2736 arc_buf_t *buf;
2737 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2738
2739 ASSERT(HDR_HAS_L1HDR(hdr));
2740 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2741 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2742 hdr->b_type == ARC_BUFC_METADATA);
2743 ASSERT3P(ret, !=, NULL);
2744 ASSERT3P(*ret, ==, NULL);
2745 IMPLY(encrypted, compressed);
2746
2747 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2748 buf->b_hdr = hdr;
2749 buf->b_data = NULL;
2750 buf->b_next = hdr->b_l1hdr.b_buf;
2751 buf->b_flags = 0;
2752
2753 add_reference(hdr, tag);
2754
2755 /*
2756 * We're about to change the hdr's b_flags. We must either
2757 * hold the hash_lock or be undiscoverable.
2758 */
2759 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2760
2761 /*
2762 * Only honor requests for compressed bufs if the hdr is actually
2763 * compressed. This must be overridden if the buffer is encrypted since
2764 * encrypted buffers cannot be decompressed.
2765 */
2766 if (encrypted) {
2767 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2768 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2769 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2770 } else if (compressed &&
2771 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2772 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2773 flags |= ARC_FILL_COMPRESSED;
2774 }
2775
2776 if (noauth) {
2777 ASSERT0(encrypted);
2778 flags |= ARC_FILL_NOAUTH;
2779 }
2780
2781 /*
2782 * If the hdr's data can be shared then we share the data buffer and
2783 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2784 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2785 * buffer to store the buf's data.
2786 *
2787 * There are two additional restrictions here because we're sharing
2788 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2789 * actively involved in an L2ARC write, because if this buf is used by
2790 * an arc_write() then the hdr's data buffer will be released when the
2791 * write completes, even though the L2ARC write might still be using it.
2792 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2793 * need to be ABD-aware. It must be allocated via
2794 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2795 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2796 * page" buffers because the ABD code needs to handle freeing them
2797 * specially.
2798 */
2799 boolean_t can_share = arc_can_share(hdr, buf) &&
2800 !HDR_L2_WRITING(hdr) &&
2801 hdr->b_l1hdr.b_pabd != NULL &&
2802 abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2803 !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2804
2805 /* Set up b_data and sharing */
2806 if (can_share) {
2807 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2808 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2809 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2810 } else {
2811 buf->b_data =
2812 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2813 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2814 }
2815 VERIFY3P(buf->b_data, !=, NULL);
2816
2817 hdr->b_l1hdr.b_buf = buf;
2818 hdr->b_l1hdr.b_bufcnt += 1;
2819 if (encrypted)
2820 hdr->b_crypt_hdr.b_ebufcnt += 1;
2821
2822 /*
2823 * If the user wants the data from the hdr, we need to either copy or
2824 * decompress the data.
2825 */
2826 if (fill) {
2827 ASSERT3P(zb, !=, NULL);
2828 return (arc_buf_fill(buf, spa, zb, flags));
2829 }
2830
2831 return (0);
2832 }
2833
2834 static char *arc_onloan_tag = "onloan";
2835
2836 static inline void
arc_loaned_bytes_update(int64_t delta)2837 arc_loaned_bytes_update(int64_t delta)
2838 {
2839 atomic_add_64(&arc_loaned_bytes, delta);
2840
2841 /* assert that it did not wrap around */
2842 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2843 }
2844
2845 /*
2846 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2847 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2848 * buffers must be returned to the arc before they can be used by the DMU or
2849 * freed.
2850 */
2851 arc_buf_t *
arc_loan_buf(spa_t * spa,boolean_t is_metadata,int size)2852 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2853 {
2854 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2855 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2856
2857 arc_loaned_bytes_update(arc_buf_size(buf));
2858
2859 return (buf);
2860 }
2861
2862 arc_buf_t *
arc_loan_compressed_buf(spa_t * spa,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2863 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2864 enum zio_compress compression_type, uint8_t complevel)
2865 {
2866 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2867 psize, lsize, compression_type, complevel);
2868
2869 arc_loaned_bytes_update(arc_buf_size(buf));
2870
2871 return (buf);
2872 }
2873
2874 arc_buf_t *
arc_loan_raw_buf(spa_t * spa,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2875 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2876 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2877 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2878 enum zio_compress compression_type, uint8_t complevel)
2879 {
2880 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2881 byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2882 complevel);
2883
2884 atomic_add_64(&arc_loaned_bytes, psize);
2885 return (buf);
2886 }
2887
2888
2889 /*
2890 * Return a loaned arc buffer to the arc.
2891 */
2892 void
arc_return_buf(arc_buf_t * buf,void * tag)2893 arc_return_buf(arc_buf_t *buf, void *tag)
2894 {
2895 arc_buf_hdr_t *hdr = buf->b_hdr;
2896
2897 ASSERT3P(buf->b_data, !=, NULL);
2898 ASSERT(HDR_HAS_L1HDR(hdr));
2899 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2900 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2901
2902 arc_loaned_bytes_update(-arc_buf_size(buf));
2903 }
2904
2905 /* Detach an arc_buf from a dbuf (tag) */
2906 void
arc_loan_inuse_buf(arc_buf_t * buf,void * tag)2907 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2908 {
2909 arc_buf_hdr_t *hdr = buf->b_hdr;
2910
2911 ASSERT3P(buf->b_data, !=, NULL);
2912 ASSERT(HDR_HAS_L1HDR(hdr));
2913 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2914 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2915
2916 arc_loaned_bytes_update(arc_buf_size(buf));
2917 }
2918
2919 static void
l2arc_free_abd_on_write(abd_t * abd,size_t size,arc_buf_contents_t type)2920 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2921 {
2922 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2923
2924 df->l2df_abd = abd;
2925 df->l2df_size = size;
2926 df->l2df_type = type;
2927 mutex_enter(&l2arc_free_on_write_mtx);
2928 list_insert_head(l2arc_free_on_write, df);
2929 mutex_exit(&l2arc_free_on_write_mtx);
2930 }
2931
2932 static void
arc_hdr_free_on_write(arc_buf_hdr_t * hdr,boolean_t free_rdata)2933 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2934 {
2935 arc_state_t *state = hdr->b_l1hdr.b_state;
2936 arc_buf_contents_t type = arc_buf_type(hdr);
2937 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2938
2939 /* protected by hash lock, if in the hash table */
2940 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2941 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2942 ASSERT(state != arc_anon && state != arc_l2c_only);
2943
2944 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2945 size, hdr);
2946 }
2947 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
2948 if (type == ARC_BUFC_METADATA) {
2949 arc_space_return(size, ARC_SPACE_META);
2950 } else {
2951 ASSERT(type == ARC_BUFC_DATA);
2952 arc_space_return(size, ARC_SPACE_DATA);
2953 }
2954
2955 if (free_rdata) {
2956 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2957 } else {
2958 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2959 }
2960 }
2961
2962 /*
2963 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2964 * data buffer, we transfer the refcount ownership to the hdr and update
2965 * the appropriate kstats.
2966 */
2967 static void
arc_share_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2968 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2969 {
2970 ASSERT(arc_can_share(hdr, buf));
2971 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2972 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2973 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2974
2975 /*
2976 * Start sharing the data buffer. We transfer the
2977 * refcount ownership to the hdr since it always owns
2978 * the refcount whenever an arc_buf_t is shared.
2979 */
2980 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2981 arc_hdr_size(hdr), buf, hdr);
2982 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2983 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2984 HDR_ISTYPE_METADATA(hdr));
2985 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2986 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2987
2988 /*
2989 * Since we've transferred ownership to the hdr we need
2990 * to increment its compressed and uncompressed kstats and
2991 * decrement the overhead size.
2992 */
2993 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2994 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2995 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2996 }
2997
2998 static void
arc_unshare_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2999 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3000 {
3001 ASSERT(arc_buf_is_shared(buf));
3002 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3003 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3004
3005 /*
3006 * We are no longer sharing this buffer so we need
3007 * to transfer its ownership to the rightful owner.
3008 */
3009 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3010 arc_hdr_size(hdr), hdr, buf);
3011 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3012 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3013 abd_free(hdr->b_l1hdr.b_pabd);
3014 hdr->b_l1hdr.b_pabd = NULL;
3015 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3016
3017 /*
3018 * Since the buffer is no longer shared between
3019 * the arc buf and the hdr, count it as overhead.
3020 */
3021 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3022 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3023 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3024 }
3025
3026 /*
3027 * Remove an arc_buf_t from the hdr's buf list and return the last
3028 * arc_buf_t on the list. If no buffers remain on the list then return
3029 * NULL.
3030 */
3031 static arc_buf_t *
arc_buf_remove(arc_buf_hdr_t * hdr,arc_buf_t * buf)3032 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3033 {
3034 ASSERT(HDR_HAS_L1HDR(hdr));
3035 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3036
3037 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3038 arc_buf_t *lastbuf = NULL;
3039
3040 /*
3041 * Remove the buf from the hdr list and locate the last
3042 * remaining buffer on the list.
3043 */
3044 while (*bufp != NULL) {
3045 if (*bufp == buf)
3046 *bufp = buf->b_next;
3047
3048 /*
3049 * If we've removed a buffer in the middle of
3050 * the list then update the lastbuf and update
3051 * bufp.
3052 */
3053 if (*bufp != NULL) {
3054 lastbuf = *bufp;
3055 bufp = &(*bufp)->b_next;
3056 }
3057 }
3058 buf->b_next = NULL;
3059 ASSERT3P(lastbuf, !=, buf);
3060 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3061 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3062 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3063
3064 return (lastbuf);
3065 }
3066
3067 /*
3068 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3069 * list and free it.
3070 */
3071 static void
arc_buf_destroy_impl(arc_buf_t * buf)3072 arc_buf_destroy_impl(arc_buf_t *buf)
3073 {
3074 arc_buf_hdr_t *hdr = buf->b_hdr;
3075
3076 /*
3077 * Free up the data associated with the buf but only if we're not
3078 * sharing this with the hdr. If we are sharing it with the hdr, the
3079 * hdr is responsible for doing the free.
3080 */
3081 if (buf->b_data != NULL) {
3082 /*
3083 * We're about to change the hdr's b_flags. We must either
3084 * hold the hash_lock or be undiscoverable.
3085 */
3086 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3087
3088 arc_cksum_verify(buf);
3089 arc_buf_unwatch(buf);
3090
3091 if (arc_buf_is_shared(buf)) {
3092 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3093 } else {
3094 uint64_t size = arc_buf_size(buf);
3095 arc_free_data_buf(hdr, buf->b_data, size, buf);
3096 ARCSTAT_INCR(arcstat_overhead_size, -size);
3097 }
3098 buf->b_data = NULL;
3099
3100 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3101 hdr->b_l1hdr.b_bufcnt -= 1;
3102
3103 if (ARC_BUF_ENCRYPTED(buf)) {
3104 hdr->b_crypt_hdr.b_ebufcnt -= 1;
3105
3106 /*
3107 * If we have no more encrypted buffers and we've
3108 * already gotten a copy of the decrypted data we can
3109 * free b_rabd to save some space.
3110 */
3111 if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3112 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3113 !HDR_IO_IN_PROGRESS(hdr)) {
3114 arc_hdr_free_abd(hdr, B_TRUE);
3115 }
3116 }
3117 }
3118
3119 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3120
3121 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3122 /*
3123 * If the current arc_buf_t is sharing its data buffer with the
3124 * hdr, then reassign the hdr's b_pabd to share it with the new
3125 * buffer at the end of the list. The shared buffer is always
3126 * the last one on the hdr's buffer list.
3127 *
3128 * There is an equivalent case for compressed bufs, but since
3129 * they aren't guaranteed to be the last buf in the list and
3130 * that is an exceedingly rare case, we just allow that space be
3131 * wasted temporarily. We must also be careful not to share
3132 * encrypted buffers, since they cannot be shared.
3133 */
3134 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3135 /* Only one buf can be shared at once */
3136 VERIFY(!arc_buf_is_shared(lastbuf));
3137 /* hdr is uncompressed so can't have compressed buf */
3138 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3139
3140 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3141 arc_hdr_free_abd(hdr, B_FALSE);
3142
3143 /*
3144 * We must setup a new shared block between the
3145 * last buffer and the hdr. The data would have
3146 * been allocated by the arc buf so we need to transfer
3147 * ownership to the hdr since it's now being shared.
3148 */
3149 arc_share_buf(hdr, lastbuf);
3150 }
3151 } else if (HDR_SHARED_DATA(hdr)) {
3152 /*
3153 * Uncompressed shared buffers are always at the end
3154 * of the list. Compressed buffers don't have the
3155 * same requirements. This makes it hard to
3156 * simply assert that the lastbuf is shared so
3157 * we rely on the hdr's compression flags to determine
3158 * if we have a compressed, shared buffer.
3159 */
3160 ASSERT3P(lastbuf, !=, NULL);
3161 ASSERT(arc_buf_is_shared(lastbuf) ||
3162 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3163 }
3164
3165 /*
3166 * Free the checksum if we're removing the last uncompressed buf from
3167 * this hdr.
3168 */
3169 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3170 arc_cksum_free(hdr);
3171 }
3172
3173 /* clean up the buf */
3174 buf->b_hdr = NULL;
3175 kmem_cache_free(buf_cache, buf);
3176 }
3177
3178 static void
arc_hdr_alloc_abd(arc_buf_hdr_t * hdr,int alloc_flags)3179 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3180 {
3181 uint64_t size;
3182 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3183
3184 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3185 ASSERT(HDR_HAS_L1HDR(hdr));
3186 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3187 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3188
3189 if (alloc_rdata) {
3190 size = HDR_GET_PSIZE(hdr);
3191 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3192 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3193 alloc_flags);
3194 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3195 ARCSTAT_INCR(arcstat_raw_size, size);
3196 } else {
3197 size = arc_hdr_size(hdr);
3198 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3199 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3200 alloc_flags);
3201 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3202 }
3203
3204 ARCSTAT_INCR(arcstat_compressed_size, size);
3205 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3206 }
3207
3208 static void
arc_hdr_free_abd(arc_buf_hdr_t * hdr,boolean_t free_rdata)3209 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3210 {
3211 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3212
3213 ASSERT(HDR_HAS_L1HDR(hdr));
3214 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3215 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3216
3217 /*
3218 * If the hdr is currently being written to the l2arc then
3219 * we defer freeing the data by adding it to the l2arc_free_on_write
3220 * list. The l2arc will free the data once it's finished
3221 * writing it to the l2arc device.
3222 */
3223 if (HDR_L2_WRITING(hdr)) {
3224 arc_hdr_free_on_write(hdr, free_rdata);
3225 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3226 } else if (free_rdata) {
3227 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3228 } else {
3229 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3230 }
3231
3232 if (free_rdata) {
3233 hdr->b_crypt_hdr.b_rabd = NULL;
3234 ARCSTAT_INCR(arcstat_raw_size, -size);
3235 } else {
3236 hdr->b_l1hdr.b_pabd = NULL;
3237 }
3238
3239 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3240 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3241
3242 ARCSTAT_INCR(arcstat_compressed_size, -size);
3243 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3244 }
3245
3246 /*
3247 * Allocate empty anonymous ARC header. The header will get its identity
3248 * assigned and buffers attached later as part of read or write operations.
3249 *
3250 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3251 * inserts it into ARC hash to become globally visible and allocates physical
3252 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3253 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3254 * sharing one of them with the physical ABD buffer.
3255 *
3256 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3257 * data. Then after compression and/or encryption arc_write_ready() allocates
3258 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3259 * buffer. On disk write completion arc_write_done() assigns the header its
3260 * new identity (b_dva + b_birth) and inserts into ARC hash.
3261 *
3262 * In case of partial overwrite the old data is read first as described. Then
3263 * arc_release() either allocates new anonymous ARC header and moves the ARC
3264 * buffer to it, or reuses the old ARC header by discarding its identity and
3265 * removing it from ARC hash. After buffer modification normal write process
3266 * follows as described.
3267 */
3268 static arc_buf_hdr_t *
arc_hdr_alloc(uint64_t spa,int32_t psize,int32_t lsize,boolean_t protected,enum zio_compress compression_type,uint8_t complevel,arc_buf_contents_t type)3269 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3270 boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3271 arc_buf_contents_t type)
3272 {
3273 arc_buf_hdr_t *hdr;
3274
3275 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3276 if (protected) {
3277 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3278 } else {
3279 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3280 }
3281
3282 ASSERT(HDR_EMPTY(hdr));
3283 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3284 HDR_SET_PSIZE(hdr, psize);
3285 HDR_SET_LSIZE(hdr, lsize);
3286 hdr->b_spa = spa;
3287 hdr->b_type = type;
3288 hdr->b_flags = 0;
3289 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3290 arc_hdr_set_compress(hdr, compression_type);
3291 hdr->b_complevel = complevel;
3292 if (protected)
3293 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3294
3295 hdr->b_l1hdr.b_state = arc_anon;
3296 hdr->b_l1hdr.b_arc_access = 0;
3297 hdr->b_l1hdr.b_mru_hits = 0;
3298 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3299 hdr->b_l1hdr.b_mfu_hits = 0;
3300 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3301 hdr->b_l1hdr.b_bufcnt = 0;
3302 hdr->b_l1hdr.b_buf = NULL;
3303
3304 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3305
3306 return (hdr);
3307 }
3308
3309 /*
3310 * Transition between the two allocation states for the arc_buf_hdr struct.
3311 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3312 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3313 * version is used when a cache buffer is only in the L2ARC in order to reduce
3314 * memory usage.
3315 */
3316 static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t * hdr,kmem_cache_t * old,kmem_cache_t * new)3317 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3318 {
3319 ASSERT(HDR_HAS_L2HDR(hdr));
3320
3321 arc_buf_hdr_t *nhdr;
3322 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3323
3324 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3325 (old == hdr_l2only_cache && new == hdr_full_cache));
3326
3327 /*
3328 * if the caller wanted a new full header and the header is to be
3329 * encrypted we will actually allocate the header from the full crypt
3330 * cache instead. The same applies to freeing from the old cache.
3331 */
3332 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3333 new = hdr_full_crypt_cache;
3334 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3335 old = hdr_full_crypt_cache;
3336
3337 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3338
3339 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3340 buf_hash_remove(hdr);
3341
3342 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3343
3344 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3345 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3346 /*
3347 * arc_access and arc_change_state need to be aware that a
3348 * header has just come out of L2ARC, so we set its state to
3349 * l2c_only even though it's about to change.
3350 */
3351 nhdr->b_l1hdr.b_state = arc_l2c_only;
3352
3353 /* Verify previous threads set to NULL before freeing */
3354 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3355 ASSERT(!HDR_HAS_RABD(hdr));
3356 } else {
3357 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3358 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3359 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3360
3361 /*
3362 * If we've reached here, We must have been called from
3363 * arc_evict_hdr(), as such we should have already been
3364 * removed from any ghost list we were previously on
3365 * (which protects us from racing with arc_evict_state),
3366 * thus no locking is needed during this check.
3367 */
3368 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3369
3370 /*
3371 * A buffer must not be moved into the arc_l2c_only
3372 * state if it's not finished being written out to the
3373 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3374 * might try to be accessed, even though it was removed.
3375 */
3376 VERIFY(!HDR_L2_WRITING(hdr));
3377 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3378 ASSERT(!HDR_HAS_RABD(hdr));
3379
3380 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3381 }
3382 /*
3383 * The header has been reallocated so we need to re-insert it into any
3384 * lists it was on.
3385 */
3386 (void) buf_hash_insert(nhdr, NULL);
3387
3388 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3389
3390 mutex_enter(&dev->l2ad_mtx);
3391
3392 /*
3393 * We must place the realloc'ed header back into the list at
3394 * the same spot. Otherwise, if it's placed earlier in the list,
3395 * l2arc_write_buffers() could find it during the function's
3396 * write phase, and try to write it out to the l2arc.
3397 */
3398 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3399 list_remove(&dev->l2ad_buflist, hdr);
3400
3401 mutex_exit(&dev->l2ad_mtx);
3402
3403 /*
3404 * Since we're using the pointer address as the tag when
3405 * incrementing and decrementing the l2ad_alloc refcount, we
3406 * must remove the old pointer (that we're about to destroy) and
3407 * add the new pointer to the refcount. Otherwise we'd remove
3408 * the wrong pointer address when calling arc_hdr_destroy() later.
3409 */
3410
3411 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3412 arc_hdr_size(hdr), hdr);
3413 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3414 arc_hdr_size(nhdr), nhdr);
3415
3416 buf_discard_identity(hdr);
3417 kmem_cache_free(old, hdr);
3418
3419 return (nhdr);
3420 }
3421
3422 /*
3423 * This function allows an L1 header to be reallocated as a crypt
3424 * header and vice versa. If we are going to a crypt header, the
3425 * new fields will be zeroed out.
3426 */
3427 static arc_buf_hdr_t *
arc_hdr_realloc_crypt(arc_buf_hdr_t * hdr,boolean_t need_crypt)3428 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3429 {
3430 arc_buf_hdr_t *nhdr;
3431 arc_buf_t *buf;
3432 kmem_cache_t *ncache, *ocache;
3433 unsigned nsize, osize;
3434
3435 /*
3436 * This function requires that hdr is in the arc_anon state.
3437 * Therefore it won't have any L2ARC data for us to worry
3438 * about copying.
3439 */
3440 ASSERT(HDR_HAS_L1HDR(hdr));
3441 ASSERT(!HDR_HAS_L2HDR(hdr));
3442 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3443 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3444 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3445 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3446 ASSERT3P(hdr->b_hash_next, ==, NULL);
3447
3448 if (need_crypt) {
3449 ncache = hdr_full_crypt_cache;
3450 nsize = sizeof (hdr->b_crypt_hdr);
3451 ocache = hdr_full_cache;
3452 osize = HDR_FULL_SIZE;
3453 } else {
3454 ncache = hdr_full_cache;
3455 nsize = HDR_FULL_SIZE;
3456 ocache = hdr_full_crypt_cache;
3457 osize = sizeof (hdr->b_crypt_hdr);
3458 }
3459
3460 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3461
3462 /*
3463 * Copy all members that aren't locks or condvars to the new header.
3464 * No lists are pointing to us (as we asserted above), so we don't
3465 * need to worry about the list nodes.
3466 */
3467 nhdr->b_dva = hdr->b_dva;
3468 nhdr->b_birth = hdr->b_birth;
3469 nhdr->b_type = hdr->b_type;
3470 nhdr->b_flags = hdr->b_flags;
3471 nhdr->b_psize = hdr->b_psize;
3472 nhdr->b_lsize = hdr->b_lsize;
3473 nhdr->b_spa = hdr->b_spa;
3474 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3475 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3476 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3477 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3478 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3479 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3480 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3481 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3482 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3483 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3484 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3485
3486 /*
3487 * This zfs_refcount_add() exists only to ensure that the individual
3488 * arc buffers always point to a header that is referenced, avoiding
3489 * a small race condition that could trigger ASSERTs.
3490 */
3491 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3492 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3493 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3494 mutex_enter(&buf->b_evict_lock);
3495 buf->b_hdr = nhdr;
3496 mutex_exit(&buf->b_evict_lock);
3497 }
3498
3499 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3500 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3501 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3502
3503 if (need_crypt) {
3504 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3505 } else {
3506 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3507 }
3508
3509 /* unset all members of the original hdr */
3510 bzero(&hdr->b_dva, sizeof (dva_t));
3511 hdr->b_birth = 0;
3512 hdr->b_type = ARC_BUFC_INVALID;
3513 hdr->b_flags = 0;
3514 hdr->b_psize = 0;
3515 hdr->b_lsize = 0;
3516 hdr->b_spa = 0;
3517 hdr->b_l1hdr.b_freeze_cksum = NULL;
3518 hdr->b_l1hdr.b_buf = NULL;
3519 hdr->b_l1hdr.b_bufcnt = 0;
3520 hdr->b_l1hdr.b_byteswap = 0;
3521 hdr->b_l1hdr.b_state = NULL;
3522 hdr->b_l1hdr.b_arc_access = 0;
3523 hdr->b_l1hdr.b_mru_hits = 0;
3524 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3525 hdr->b_l1hdr.b_mfu_hits = 0;
3526 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3527 hdr->b_l1hdr.b_acb = NULL;
3528 hdr->b_l1hdr.b_pabd = NULL;
3529
3530 if (ocache == hdr_full_crypt_cache) {
3531 ASSERT(!HDR_HAS_RABD(hdr));
3532 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3533 hdr->b_crypt_hdr.b_ebufcnt = 0;
3534 hdr->b_crypt_hdr.b_dsobj = 0;
3535 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3536 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3537 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3538 }
3539
3540 buf_discard_identity(hdr);
3541 kmem_cache_free(ocache, hdr);
3542
3543 return (nhdr);
3544 }
3545
3546 /*
3547 * This function is used by the send / receive code to convert a newly
3548 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3549 * is also used to allow the root objset block to be updated without altering
3550 * its embedded MACs. Both block types will always be uncompressed so we do not
3551 * have to worry about compression type or psize.
3552 */
3553 void
arc_convert_to_raw(arc_buf_t * buf,uint64_t dsobj,boolean_t byteorder,dmu_object_type_t ot,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac)3554 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3555 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3556 const uint8_t *mac)
3557 {
3558 arc_buf_hdr_t *hdr = buf->b_hdr;
3559
3560 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3561 ASSERT(HDR_HAS_L1HDR(hdr));
3562 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3563
3564 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3565 if (!HDR_PROTECTED(hdr))
3566 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3567 hdr->b_crypt_hdr.b_dsobj = dsobj;
3568 hdr->b_crypt_hdr.b_ot = ot;
3569 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3570 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3571 if (!arc_hdr_has_uncompressed_buf(hdr))
3572 arc_cksum_free(hdr);
3573
3574 if (salt != NULL)
3575 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3576 if (iv != NULL)
3577 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3578 if (mac != NULL)
3579 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3580 }
3581
3582 /*
3583 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3584 * The buf is returned thawed since we expect the consumer to modify it.
3585 */
3586 arc_buf_t *
arc_alloc_buf(spa_t * spa,void * tag,arc_buf_contents_t type,int32_t size)3587 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3588 {
3589 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3590 B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3591
3592 arc_buf_t *buf = NULL;
3593 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3594 B_FALSE, B_FALSE, &buf));
3595 arc_buf_thaw(buf);
3596
3597 return (buf);
3598 }
3599
3600 /*
3601 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3602 * for bufs containing metadata.
3603 */
3604 arc_buf_t *
arc_alloc_compressed_buf(spa_t * spa,void * tag,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3605 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3606 enum zio_compress compression_type, uint8_t complevel)
3607 {
3608 ASSERT3U(lsize, >, 0);
3609 ASSERT3U(lsize, >=, psize);
3610 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3611 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3612
3613 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3614 B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3615
3616 arc_buf_t *buf = NULL;
3617 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3618 B_TRUE, B_FALSE, B_FALSE, &buf));
3619 arc_buf_thaw(buf);
3620 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3621
3622 /*
3623 * To ensure that the hdr has the correct data in it if we call
3624 * arc_untransform() on this buf before it's been written to disk,
3625 * it's easiest if we just set up sharing between the buf and the hdr.
3626 */
3627 arc_share_buf(hdr, buf);
3628
3629 return (buf);
3630 }
3631
3632 arc_buf_t *
arc_alloc_raw_buf(spa_t * spa,void * tag,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3633 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3634 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3635 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3636 enum zio_compress compression_type, uint8_t complevel)
3637 {
3638 arc_buf_hdr_t *hdr;
3639 arc_buf_t *buf;
3640 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3641 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3642
3643 ASSERT3U(lsize, >, 0);
3644 ASSERT3U(lsize, >=, psize);
3645 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3646 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3647
3648 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3649 compression_type, complevel, type);
3650
3651 hdr->b_crypt_hdr.b_dsobj = dsobj;
3652 hdr->b_crypt_hdr.b_ot = ot;
3653 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3654 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3655 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3656 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3657 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3658
3659 /*
3660 * This buffer will be considered encrypted even if the ot is not an
3661 * encrypted type. It will become authenticated instead in
3662 * arc_write_ready().
3663 */
3664 buf = NULL;
3665 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3666 B_FALSE, B_FALSE, &buf));
3667 arc_buf_thaw(buf);
3668 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3669
3670 return (buf);
3671 }
3672
3673 static void
l2arc_hdr_arcstats_update(arc_buf_hdr_t * hdr,boolean_t incr,boolean_t state_only)3674 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3675 boolean_t state_only)
3676 {
3677 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3678 l2arc_dev_t *dev = l2hdr->b_dev;
3679 uint64_t lsize = HDR_GET_LSIZE(hdr);
3680 uint64_t psize = HDR_GET_PSIZE(hdr);
3681 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3682 arc_buf_contents_t type = hdr->b_type;
3683 int64_t lsize_s;
3684 int64_t psize_s;
3685 int64_t asize_s;
3686
3687 if (incr) {
3688 lsize_s = lsize;
3689 psize_s = psize;
3690 asize_s = asize;
3691 } else {
3692 lsize_s = -lsize;
3693 psize_s = -psize;
3694 asize_s = -asize;
3695 }
3696
3697 /* If the buffer is a prefetch, count it as such. */
3698 if (HDR_PREFETCH(hdr)) {
3699 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3700 } else {
3701 /*
3702 * We use the value stored in the L2 header upon initial
3703 * caching in L2ARC. This value will be updated in case
3704 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3705 * metadata (log entry) cannot currently be updated. Having
3706 * the ARC state in the L2 header solves the problem of a
3707 * possibly absent L1 header (apparent in buffers restored
3708 * from persistent L2ARC).
3709 */
3710 switch (hdr->b_l2hdr.b_arcs_state) {
3711 case ARC_STATE_MRU_GHOST:
3712 case ARC_STATE_MRU:
3713 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3714 break;
3715 case ARC_STATE_MFU_GHOST:
3716 case ARC_STATE_MFU:
3717 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3718 break;
3719 default:
3720 break;
3721 }
3722 }
3723
3724 if (state_only)
3725 return;
3726
3727 ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3728 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3729
3730 switch (type) {
3731 case ARC_BUFC_DATA:
3732 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3733 break;
3734 case ARC_BUFC_METADATA:
3735 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3736 break;
3737 default:
3738 break;
3739 }
3740 }
3741
3742
3743 static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t * hdr)3744 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3745 {
3746 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3747 l2arc_dev_t *dev = l2hdr->b_dev;
3748 uint64_t psize = HDR_GET_PSIZE(hdr);
3749 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3750
3751 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3752 ASSERT(HDR_HAS_L2HDR(hdr));
3753
3754 list_remove(&dev->l2ad_buflist, hdr);
3755
3756 l2arc_hdr_arcstats_decrement(hdr);
3757 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3758
3759 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3760 hdr);
3761 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3762 }
3763
3764 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)3765 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3766 {
3767 if (HDR_HAS_L1HDR(hdr)) {
3768 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3769 hdr->b_l1hdr.b_bufcnt > 0);
3770 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3771 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3772 }
3773 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3774 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3775
3776 if (HDR_HAS_L2HDR(hdr)) {
3777 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3778 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3779
3780 if (!buflist_held)
3781 mutex_enter(&dev->l2ad_mtx);
3782
3783 /*
3784 * Even though we checked this conditional above, we
3785 * need to check this again now that we have the
3786 * l2ad_mtx. This is because we could be racing with
3787 * another thread calling l2arc_evict() which might have
3788 * destroyed this header's L2 portion as we were waiting
3789 * to acquire the l2ad_mtx. If that happens, we don't
3790 * want to re-destroy the header's L2 portion.
3791 */
3792 if (HDR_HAS_L2HDR(hdr))
3793 arc_hdr_l2hdr_destroy(hdr);
3794
3795 if (!buflist_held)
3796 mutex_exit(&dev->l2ad_mtx);
3797 }
3798
3799 /*
3800 * The header's identify can only be safely discarded once it is no
3801 * longer discoverable. This requires removing it from the hash table
3802 * and the l2arc header list. After this point the hash lock can not
3803 * be used to protect the header.
3804 */
3805 if (!HDR_EMPTY(hdr))
3806 buf_discard_identity(hdr);
3807
3808 if (HDR_HAS_L1HDR(hdr)) {
3809 arc_cksum_free(hdr);
3810
3811 while (hdr->b_l1hdr.b_buf != NULL)
3812 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3813
3814 if (hdr->b_l1hdr.b_pabd != NULL)
3815 arc_hdr_free_abd(hdr, B_FALSE);
3816
3817 if (HDR_HAS_RABD(hdr))
3818 arc_hdr_free_abd(hdr, B_TRUE);
3819 }
3820
3821 ASSERT3P(hdr->b_hash_next, ==, NULL);
3822 if (HDR_HAS_L1HDR(hdr)) {
3823 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3824 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3825
3826 if (!HDR_PROTECTED(hdr)) {
3827 kmem_cache_free(hdr_full_cache, hdr);
3828 } else {
3829 kmem_cache_free(hdr_full_crypt_cache, hdr);
3830 }
3831 } else {
3832 kmem_cache_free(hdr_l2only_cache, hdr);
3833 }
3834 }
3835
3836 void
arc_buf_destroy(arc_buf_t * buf,void * tag)3837 arc_buf_destroy(arc_buf_t *buf, void* tag)
3838 {
3839 arc_buf_hdr_t *hdr = buf->b_hdr;
3840
3841 if (hdr->b_l1hdr.b_state == arc_anon) {
3842 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3843 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3844 VERIFY0(remove_reference(hdr, NULL, tag));
3845 arc_hdr_destroy(hdr);
3846 return;
3847 }
3848
3849 kmutex_t *hash_lock = HDR_LOCK(hdr);
3850 mutex_enter(hash_lock);
3851
3852 ASSERT3P(hdr, ==, buf->b_hdr);
3853 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3854 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3855 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3856 ASSERT3P(buf->b_data, !=, NULL);
3857
3858 (void) remove_reference(hdr, hash_lock, tag);
3859 arc_buf_destroy_impl(buf);
3860 mutex_exit(hash_lock);
3861 }
3862
3863 /*
3864 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3865 * state of the header is dependent on its state prior to entering this
3866 * function. The following transitions are possible:
3867 *
3868 * - arc_mru -> arc_mru_ghost
3869 * - arc_mfu -> arc_mfu_ghost
3870 * - arc_mru_ghost -> arc_l2c_only
3871 * - arc_mru_ghost -> deleted
3872 * - arc_mfu_ghost -> arc_l2c_only
3873 * - arc_mfu_ghost -> deleted
3874 *
3875 * Return total size of evicted data buffers for eviction progress tracking.
3876 * When evicting from ghost states return logical buffer size to make eviction
3877 * progress at the same (or at least comparable) rate as from non-ghost states.
3878 *
3879 * Return *real_evicted for actual ARC size reduction to wake up threads
3880 * waiting for it. For non-ghost states it includes size of evicted data
3881 * buffers (the headers are not freed there). For ghost states it includes
3882 * only the evicted headers size.
3883 */
3884 static int64_t
arc_evict_hdr(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,uint64_t * real_evicted)3885 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted)
3886 {
3887 arc_state_t *evicted_state, *state;
3888 int64_t bytes_evicted = 0;
3889 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3890 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3891
3892 ASSERT(MUTEX_HELD(hash_lock));
3893 ASSERT(HDR_HAS_L1HDR(hdr));
3894
3895 *real_evicted = 0;
3896 state = hdr->b_l1hdr.b_state;
3897 if (GHOST_STATE(state)) {
3898 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3899 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3900
3901 /*
3902 * l2arc_write_buffers() relies on a header's L1 portion
3903 * (i.e. its b_pabd field) during it's write phase.
3904 * Thus, we cannot push a header onto the arc_l2c_only
3905 * state (removing its L1 piece) until the header is
3906 * done being written to the l2arc.
3907 */
3908 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3909 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3910 return (bytes_evicted);
3911 }
3912
3913 ARCSTAT_BUMP(arcstat_deleted);
3914 bytes_evicted += HDR_GET_LSIZE(hdr);
3915
3916 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3917
3918 if (HDR_HAS_L2HDR(hdr)) {
3919 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3920 ASSERT(!HDR_HAS_RABD(hdr));
3921 /*
3922 * This buffer is cached on the 2nd Level ARC;
3923 * don't destroy the header.
3924 */
3925 arc_change_state(arc_l2c_only, hdr, hash_lock);
3926 /*
3927 * dropping from L1+L2 cached to L2-only,
3928 * realloc to remove the L1 header.
3929 */
3930 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3931 hdr_l2only_cache);
3932 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3933 } else {
3934 arc_change_state(arc_anon, hdr, hash_lock);
3935 arc_hdr_destroy(hdr);
3936 *real_evicted += HDR_FULL_SIZE;
3937 }
3938 return (bytes_evicted);
3939 }
3940
3941 ASSERT(state == arc_mru || state == arc_mfu);
3942 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3943
3944 /* prefetch buffers have a minimum lifespan */
3945 if (HDR_IO_IN_PROGRESS(hdr) ||
3946 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3947 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3948 MSEC_TO_TICK(min_lifetime))) {
3949 ARCSTAT_BUMP(arcstat_evict_skip);
3950 return (bytes_evicted);
3951 }
3952
3953 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3954 while (hdr->b_l1hdr.b_buf) {
3955 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3956 if (!mutex_tryenter(&buf->b_evict_lock)) {
3957 ARCSTAT_BUMP(arcstat_mutex_miss);
3958 break;
3959 }
3960 if (buf->b_data != NULL) {
3961 bytes_evicted += HDR_GET_LSIZE(hdr);
3962 *real_evicted += HDR_GET_LSIZE(hdr);
3963 }
3964 mutex_exit(&buf->b_evict_lock);
3965 arc_buf_destroy_impl(buf);
3966 }
3967
3968 if (HDR_HAS_L2HDR(hdr)) {
3969 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3970 } else {
3971 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3972 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3973 HDR_GET_LSIZE(hdr));
3974
3975 switch (state->arcs_state) {
3976 case ARC_STATE_MRU:
3977 ARCSTAT_INCR(
3978 arcstat_evict_l2_eligible_mru,
3979 HDR_GET_LSIZE(hdr));
3980 break;
3981 case ARC_STATE_MFU:
3982 ARCSTAT_INCR(
3983 arcstat_evict_l2_eligible_mfu,
3984 HDR_GET_LSIZE(hdr));
3985 break;
3986 default:
3987 break;
3988 }
3989 } else {
3990 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3991 HDR_GET_LSIZE(hdr));
3992 }
3993 }
3994
3995 if (hdr->b_l1hdr.b_bufcnt == 0) {
3996 arc_cksum_free(hdr);
3997
3998 bytes_evicted += arc_hdr_size(hdr);
3999 *real_evicted += arc_hdr_size(hdr);
4000
4001 /*
4002 * If this hdr is being evicted and has a compressed
4003 * buffer then we discard it here before we change states.
4004 * This ensures that the accounting is updated correctly
4005 * in arc_free_data_impl().
4006 */
4007 if (hdr->b_l1hdr.b_pabd != NULL)
4008 arc_hdr_free_abd(hdr, B_FALSE);
4009
4010 if (HDR_HAS_RABD(hdr))
4011 arc_hdr_free_abd(hdr, B_TRUE);
4012
4013 arc_change_state(evicted_state, hdr, hash_lock);
4014 ASSERT(HDR_IN_HASH_TABLE(hdr));
4015 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
4016 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
4017 }
4018
4019 return (bytes_evicted);
4020 }
4021
4022 static void
arc_set_need_free(void)4023 arc_set_need_free(void)
4024 {
4025 ASSERT(MUTEX_HELD(&arc_evict_lock));
4026 int64_t remaining = arc_free_memory() - arc_sys_free / 2;
4027 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
4028 if (aw == NULL) {
4029 arc_need_free = MAX(-remaining, 0);
4030 } else {
4031 arc_need_free =
4032 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
4033 }
4034 }
4035
4036 static uint64_t
arc_evict_state_impl(multilist_t * ml,int idx,arc_buf_hdr_t * marker,uint64_t spa,uint64_t bytes)4037 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
4038 uint64_t spa, uint64_t bytes)
4039 {
4040 multilist_sublist_t *mls;
4041 uint64_t bytes_evicted = 0, real_evicted = 0;
4042 arc_buf_hdr_t *hdr;
4043 kmutex_t *hash_lock;
4044 int evict_count = zfs_arc_evict_batch_limit;
4045
4046 ASSERT3P(marker, !=, NULL);
4047
4048 mls = multilist_sublist_lock(ml, idx);
4049
4050 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
4051 hdr = multilist_sublist_prev(mls, marker)) {
4052 if ((evict_count <= 0) || (bytes_evicted >= bytes))
4053 break;
4054
4055 /*
4056 * To keep our iteration location, move the marker
4057 * forward. Since we're not holding hdr's hash lock, we
4058 * must be very careful and not remove 'hdr' from the
4059 * sublist. Otherwise, other consumers might mistake the
4060 * 'hdr' as not being on a sublist when they call the
4061 * multilist_link_active() function (they all rely on
4062 * the hash lock protecting concurrent insertions and
4063 * removals). multilist_sublist_move_forward() was
4064 * specifically implemented to ensure this is the case
4065 * (only 'marker' will be removed and re-inserted).
4066 */
4067 multilist_sublist_move_forward(mls, marker);
4068
4069 /*
4070 * The only case where the b_spa field should ever be
4071 * zero, is the marker headers inserted by
4072 * arc_evict_state(). It's possible for multiple threads
4073 * to be calling arc_evict_state() concurrently (e.g.
4074 * dsl_pool_close() and zio_inject_fault()), so we must
4075 * skip any markers we see from these other threads.
4076 */
4077 if (hdr->b_spa == 0)
4078 continue;
4079
4080 /* we're only interested in evicting buffers of a certain spa */
4081 if (spa != 0 && hdr->b_spa != spa) {
4082 ARCSTAT_BUMP(arcstat_evict_skip);
4083 continue;
4084 }
4085
4086 hash_lock = HDR_LOCK(hdr);
4087
4088 /*
4089 * We aren't calling this function from any code path
4090 * that would already be holding a hash lock, so we're
4091 * asserting on this assumption to be defensive in case
4092 * this ever changes. Without this check, it would be
4093 * possible to incorrectly increment arcstat_mutex_miss
4094 * below (e.g. if the code changed such that we called
4095 * this function with a hash lock held).
4096 */
4097 ASSERT(!MUTEX_HELD(hash_lock));
4098
4099 if (mutex_tryenter(hash_lock)) {
4100 uint64_t revicted;
4101 uint64_t evicted = arc_evict_hdr(hdr, hash_lock,
4102 &revicted);
4103 mutex_exit(hash_lock);
4104
4105 bytes_evicted += evicted;
4106 real_evicted += revicted;
4107
4108 /*
4109 * If evicted is zero, arc_evict_hdr() must have
4110 * decided to skip this header, don't increment
4111 * evict_count in this case.
4112 */
4113 if (evicted != 0)
4114 evict_count--;
4115
4116 } else {
4117 ARCSTAT_BUMP(arcstat_mutex_miss);
4118 }
4119 }
4120
4121 multilist_sublist_unlock(mls);
4122
4123 /*
4124 * Increment the count of evicted bytes, and wake up any threads that
4125 * are waiting for the count to reach this value. Since the list is
4126 * ordered by ascending aew_count, we pop off the beginning of the
4127 * list until we reach the end, or a waiter that's past the current
4128 * "count". Doing this outside the loop reduces the number of times
4129 * we need to acquire the global arc_evict_lock.
4130 *
4131 * Only wake when there's sufficient free memory in the system
4132 * (specifically, arc_sys_free/2, which by default is a bit more than
4133 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
4134 */
4135 mutex_enter(&arc_evict_lock);
4136 arc_evict_count += real_evicted;
4137
4138 if (arc_free_memory() > arc_sys_free / 2) {
4139 arc_evict_waiter_t *aw;
4140 while ((aw = list_head(&arc_evict_waiters)) != NULL &&
4141 aw->aew_count <= arc_evict_count) {
4142 list_remove(&arc_evict_waiters, aw);
4143 cv_broadcast(&aw->aew_cv);
4144 }
4145 }
4146 arc_set_need_free();
4147 mutex_exit(&arc_evict_lock);
4148
4149 /*
4150 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4151 * if the average cached block is small), eviction can be on-CPU for
4152 * many seconds. To ensure that other threads that may be bound to
4153 * this CPU are able to make progress, make a voluntary preemption
4154 * call here.
4155 */
4156 cond_resched();
4157
4158 return (bytes_evicted);
4159 }
4160
4161 /*
4162 * Allocate an array of buffer headers used as placeholders during arc state
4163 * eviction.
4164 */
4165 static arc_buf_hdr_t **
arc_state_alloc_markers(int count)4166 arc_state_alloc_markers(int count)
4167 {
4168 arc_buf_hdr_t **markers;
4169
4170 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4171 for (int i = 0; i < count; i++) {
4172 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4173
4174 /*
4175 * A b_spa of 0 is used to indicate that this header is
4176 * a marker. This fact is used in arc_evict_type() and
4177 * arc_evict_state_impl().
4178 */
4179 markers[i]->b_spa = 0;
4180
4181 }
4182 return (markers);
4183 }
4184
4185 static void
arc_state_free_markers(arc_buf_hdr_t ** markers,int count)4186 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4187 {
4188 for (int i = 0; i < count; i++)
4189 kmem_cache_free(hdr_full_cache, markers[i]);
4190 kmem_free(markers, sizeof (*markers) * count);
4191 }
4192
4193 /*
4194 * Evict buffers from the given arc state, until we've removed the
4195 * specified number of bytes. Move the removed buffers to the
4196 * appropriate evict state.
4197 *
4198 * This function makes a "best effort". It skips over any buffers
4199 * it can't get a hash_lock on, and so, may not catch all candidates.
4200 * It may also return without evicting as much space as requested.
4201 *
4202 * If bytes is specified using the special value ARC_EVICT_ALL, this
4203 * will evict all available (i.e. unlocked and evictable) buffers from
4204 * the given arc state; which is used by arc_flush().
4205 */
4206 static uint64_t
arc_evict_state(arc_state_t * state,uint64_t spa,uint64_t bytes,arc_buf_contents_t type)4207 arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes,
4208 arc_buf_contents_t type)
4209 {
4210 uint64_t total_evicted = 0;
4211 multilist_t *ml = &state->arcs_list[type];
4212 int num_sublists;
4213 arc_buf_hdr_t **markers;
4214
4215 num_sublists = multilist_get_num_sublists(ml);
4216
4217 /*
4218 * If we've tried to evict from each sublist, made some
4219 * progress, but still have not hit the target number of bytes
4220 * to evict, we want to keep trying. The markers allow us to
4221 * pick up where we left off for each individual sublist, rather
4222 * than starting from the tail each time.
4223 */
4224 if (zthr_iscurthread(arc_evict_zthr)) {
4225 markers = arc_state_evict_markers;
4226 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4227 } else {
4228 markers = arc_state_alloc_markers(num_sublists);
4229 }
4230 for (int i = 0; i < num_sublists; i++) {
4231 multilist_sublist_t *mls;
4232
4233 mls = multilist_sublist_lock(ml, i);
4234 multilist_sublist_insert_tail(mls, markers[i]);
4235 multilist_sublist_unlock(mls);
4236 }
4237
4238 /*
4239 * While we haven't hit our target number of bytes to evict, or
4240 * we're evicting all available buffers.
4241 */
4242 while (total_evicted < bytes) {
4243 int sublist_idx = multilist_get_random_index(ml);
4244 uint64_t scan_evicted = 0;
4245
4246 /*
4247 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4248 * Request that 10% of the LRUs be scanned by the superblock
4249 * shrinker.
4250 */
4251 if (type == ARC_BUFC_DATA && aggsum_compare(
4252 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) {
4253 arc_prune_async((aggsum_upper_bound(
4254 &arc_sums.arcstat_dnode_size) -
4255 arc_dnode_size_limit) / sizeof (dnode_t) /
4256 zfs_arc_dnode_reduce_percent);
4257 }
4258
4259 /*
4260 * Start eviction using a randomly selected sublist,
4261 * this is to try and evenly balance eviction across all
4262 * sublists. Always starting at the same sublist
4263 * (e.g. index 0) would cause evictions to favor certain
4264 * sublists over others.
4265 */
4266 for (int i = 0; i < num_sublists; i++) {
4267 uint64_t bytes_remaining;
4268 uint64_t bytes_evicted;
4269
4270 if (total_evicted < bytes)
4271 bytes_remaining = bytes - total_evicted;
4272 else
4273 break;
4274
4275 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4276 markers[sublist_idx], spa, bytes_remaining);
4277
4278 scan_evicted += bytes_evicted;
4279 total_evicted += bytes_evicted;
4280
4281 /* we've reached the end, wrap to the beginning */
4282 if (++sublist_idx >= num_sublists)
4283 sublist_idx = 0;
4284 }
4285
4286 /*
4287 * If we didn't evict anything during this scan, we have
4288 * no reason to believe we'll evict more during another
4289 * scan, so break the loop.
4290 */
4291 if (scan_evicted == 0) {
4292 /* This isn't possible, let's make that obvious */
4293 ASSERT3S(bytes, !=, 0);
4294
4295 /*
4296 * When bytes is ARC_EVICT_ALL, the only way to
4297 * break the loop is when scan_evicted is zero.
4298 * In that case, we actually have evicted enough,
4299 * so we don't want to increment the kstat.
4300 */
4301 if (bytes != ARC_EVICT_ALL) {
4302 ASSERT3S(total_evicted, <, bytes);
4303 ARCSTAT_BUMP(arcstat_evict_not_enough);
4304 }
4305
4306 break;
4307 }
4308 }
4309
4310 for (int i = 0; i < num_sublists; i++) {
4311 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4312 multilist_sublist_remove(mls, markers[i]);
4313 multilist_sublist_unlock(mls);
4314 }
4315 if (markers != arc_state_evict_markers)
4316 arc_state_free_markers(markers, num_sublists);
4317
4318 return (total_evicted);
4319 }
4320
4321 /*
4322 * Flush all "evictable" data of the given type from the arc state
4323 * specified. This will not evict any "active" buffers (i.e. referenced).
4324 *
4325 * When 'retry' is set to B_FALSE, the function will make a single pass
4326 * over the state and evict any buffers that it can. Since it doesn't
4327 * continually retry the eviction, it might end up leaving some buffers
4328 * in the ARC due to lock misses.
4329 *
4330 * When 'retry' is set to B_TRUE, the function will continually retry the
4331 * eviction until *all* evictable buffers have been removed from the
4332 * state. As a result, if concurrent insertions into the state are
4333 * allowed (e.g. if the ARC isn't shutting down), this function might
4334 * wind up in an infinite loop, continually trying to evict buffers.
4335 */
4336 static uint64_t
arc_flush_state(arc_state_t * state,uint64_t spa,arc_buf_contents_t type,boolean_t retry)4337 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4338 boolean_t retry)
4339 {
4340 uint64_t evicted = 0;
4341
4342 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4343 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4344
4345 if (!retry)
4346 break;
4347 }
4348
4349 return (evicted);
4350 }
4351
4352 /*
4353 * Evict the specified number of bytes from the state specified,
4354 * restricting eviction to the spa and type given. This function
4355 * prevents us from trying to evict more from a state's list than
4356 * is "evictable", and to skip evicting altogether when passed a
4357 * negative value for "bytes". In contrast, arc_evict_state() will
4358 * evict everything it can, when passed a negative value for "bytes".
4359 */
4360 static uint64_t
arc_evict_impl(arc_state_t * state,uint64_t spa,int64_t bytes,arc_buf_contents_t type)4361 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4362 arc_buf_contents_t type)
4363 {
4364 uint64_t delta;
4365
4366 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4367 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4368 bytes);
4369 return (arc_evict_state(state, spa, delta, type));
4370 }
4371
4372 return (0);
4373 }
4374
4375 /*
4376 * The goal of this function is to evict enough meta data buffers from the
4377 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4378 * more complicated than it appears because it is common for data buffers
4379 * to have holds on meta data buffers. In addition, dnode meta data buffers
4380 * will be held by the dnodes in the block preventing them from being freed.
4381 * This means we can't simply traverse the ARC and expect to always find
4382 * enough unheld meta data buffer to release.
4383 *
4384 * Therefore, this function has been updated to make alternating passes
4385 * over the ARC releasing data buffers and then newly unheld meta data
4386 * buffers. This ensures forward progress is maintained and meta_used
4387 * will decrease. Normally this is sufficient, but if required the ARC
4388 * will call the registered prune callbacks causing dentry and inodes to
4389 * be dropped from the VFS cache. This will make dnode meta data buffers
4390 * available for reclaim.
4391 */
4392 static uint64_t
arc_evict_meta_balanced(uint64_t meta_used)4393 arc_evict_meta_balanced(uint64_t meta_used)
4394 {
4395 int64_t delta, prune = 0, adjustmnt;
4396 uint64_t total_evicted = 0;
4397 arc_buf_contents_t type = ARC_BUFC_DATA;
4398 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
4399
4400 restart:
4401 /*
4402 * This slightly differs than the way we evict from the mru in
4403 * arc_evict because we don't have a "target" value (i.e. no
4404 * "meta" arc_p). As a result, I think we can completely
4405 * cannibalize the metadata in the MRU before we evict the
4406 * metadata from the MFU. I think we probably need to implement a
4407 * "metadata arc_p" value to do this properly.
4408 */
4409 adjustmnt = meta_used - arc_meta_limit;
4410
4411 if (adjustmnt > 0 &&
4412 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4413 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]),
4414 adjustmnt);
4415 total_evicted += arc_evict_impl(arc_mru, 0, delta, type);
4416 adjustmnt -= delta;
4417 }
4418
4419 /*
4420 * We can't afford to recalculate adjustmnt here. If we do,
4421 * new metadata buffers can sneak into the MRU or ANON lists,
4422 * thus penalize the MFU metadata. Although the fudge factor is
4423 * small, it has been empirically shown to be significant for
4424 * certain workloads (e.g. creating many empty directories). As
4425 * such, we use the original calculation for adjustmnt, and
4426 * simply decrement the amount of data evicted from the MRU.
4427 */
4428
4429 if (adjustmnt > 0 &&
4430 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4431 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]),
4432 adjustmnt);
4433 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type);
4434 }
4435
4436 adjustmnt = meta_used - arc_meta_limit;
4437
4438 if (adjustmnt > 0 &&
4439 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
4440 delta = MIN(adjustmnt,
4441 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]));
4442 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type);
4443 adjustmnt -= delta;
4444 }
4445
4446 if (adjustmnt > 0 &&
4447 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
4448 delta = MIN(adjustmnt,
4449 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]));
4450 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type);
4451 }
4452
4453 /*
4454 * If after attempting to make the requested adjustment to the ARC
4455 * the meta limit is still being exceeded then request that the
4456 * higher layers drop some cached objects which have holds on ARC
4457 * meta buffers. Requests to the upper layers will be made with
4458 * increasingly large scan sizes until the ARC is below the limit.
4459 */
4460 if (meta_used > arc_meta_limit) {
4461 if (type == ARC_BUFC_DATA) {
4462 type = ARC_BUFC_METADATA;
4463 } else {
4464 type = ARC_BUFC_DATA;
4465
4466 if (zfs_arc_meta_prune) {
4467 prune += zfs_arc_meta_prune;
4468 arc_prune_async(prune);
4469 }
4470 }
4471
4472 if (restarts > 0) {
4473 restarts--;
4474 goto restart;
4475 }
4476 }
4477 return (total_evicted);
4478 }
4479
4480 /*
4481 * Evict metadata buffers from the cache, such that arcstat_meta_used is
4482 * capped by the arc_meta_limit tunable.
4483 */
4484 static uint64_t
arc_evict_meta_only(uint64_t meta_used)4485 arc_evict_meta_only(uint64_t meta_used)
4486 {
4487 uint64_t total_evicted = 0;
4488 int64_t target;
4489
4490 /*
4491 * If we're over the meta limit, we want to evict enough
4492 * metadata to get back under the meta limit. We don't want to
4493 * evict so much that we drop the MRU below arc_p, though. If
4494 * we're over the meta limit more than we're over arc_p, we
4495 * evict some from the MRU here, and some from the MFU below.
4496 */
4497 target = MIN((int64_t)(meta_used - arc_meta_limit),
4498 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4499 zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4500
4501 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4502
4503 /*
4504 * Similar to the above, we want to evict enough bytes to get us
4505 * below the meta limit, but not so much as to drop us below the
4506 * space allotted to the MFU (which is defined as arc_c - arc_p).
4507 */
4508 target = MIN((int64_t)(meta_used - arc_meta_limit),
4509 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4510 (arc_c - arc_p)));
4511
4512 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4513
4514 return (total_evicted);
4515 }
4516
4517 static uint64_t
arc_evict_meta(uint64_t meta_used)4518 arc_evict_meta(uint64_t meta_used)
4519 {
4520 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
4521 return (arc_evict_meta_only(meta_used));
4522 else
4523 return (arc_evict_meta_balanced(meta_used));
4524 }
4525
4526 /*
4527 * Return the type of the oldest buffer in the given arc state
4528 *
4529 * This function will select a random sublist of type ARC_BUFC_DATA and
4530 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4531 * is compared, and the type which contains the "older" buffer will be
4532 * returned.
4533 */
4534 static arc_buf_contents_t
arc_evict_type(arc_state_t * state)4535 arc_evict_type(arc_state_t *state)
4536 {
4537 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
4538 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
4539 int data_idx = multilist_get_random_index(data_ml);
4540 int meta_idx = multilist_get_random_index(meta_ml);
4541 multilist_sublist_t *data_mls;
4542 multilist_sublist_t *meta_mls;
4543 arc_buf_contents_t type;
4544 arc_buf_hdr_t *data_hdr;
4545 arc_buf_hdr_t *meta_hdr;
4546
4547 /*
4548 * We keep the sublist lock until we're finished, to prevent
4549 * the headers from being destroyed via arc_evict_state().
4550 */
4551 data_mls = multilist_sublist_lock(data_ml, data_idx);
4552 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4553
4554 /*
4555 * These two loops are to ensure we skip any markers that
4556 * might be at the tail of the lists due to arc_evict_state().
4557 */
4558
4559 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4560 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4561 if (data_hdr->b_spa != 0)
4562 break;
4563 }
4564
4565 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4566 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4567 if (meta_hdr->b_spa != 0)
4568 break;
4569 }
4570
4571 if (data_hdr == NULL && meta_hdr == NULL) {
4572 type = ARC_BUFC_DATA;
4573 } else if (data_hdr == NULL) {
4574 ASSERT3P(meta_hdr, !=, NULL);
4575 type = ARC_BUFC_METADATA;
4576 } else if (meta_hdr == NULL) {
4577 ASSERT3P(data_hdr, !=, NULL);
4578 type = ARC_BUFC_DATA;
4579 } else {
4580 ASSERT3P(data_hdr, !=, NULL);
4581 ASSERT3P(meta_hdr, !=, NULL);
4582
4583 /* The headers can't be on the sublist without an L1 header */
4584 ASSERT(HDR_HAS_L1HDR(data_hdr));
4585 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4586
4587 if (data_hdr->b_l1hdr.b_arc_access <
4588 meta_hdr->b_l1hdr.b_arc_access) {
4589 type = ARC_BUFC_DATA;
4590 } else {
4591 type = ARC_BUFC_METADATA;
4592 }
4593 }
4594
4595 multilist_sublist_unlock(meta_mls);
4596 multilist_sublist_unlock(data_mls);
4597
4598 return (type);
4599 }
4600
4601 /*
4602 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4603 */
4604 static uint64_t
arc_evict(void)4605 arc_evict(void)
4606 {
4607 uint64_t total_evicted = 0;
4608 uint64_t bytes;
4609 int64_t target;
4610 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4611 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used);
4612
4613 /*
4614 * If we're over arc_meta_limit, we want to correct that before
4615 * potentially evicting data buffers below.
4616 */
4617 total_evicted += arc_evict_meta(ameta);
4618
4619 /*
4620 * Adjust MRU size
4621 *
4622 * If we're over the target cache size, we want to evict enough
4623 * from the list to get back to our target size. We don't want
4624 * to evict too much from the MRU, such that it drops below
4625 * arc_p. So, if we're over our target cache size more than
4626 * the MRU is over arc_p, we'll evict enough to get back to
4627 * arc_p here, and then evict more from the MFU below.
4628 */
4629 target = MIN((int64_t)(asize - arc_c),
4630 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4631 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4632
4633 /*
4634 * If we're below arc_meta_min, always prefer to evict data.
4635 * Otherwise, try to satisfy the requested number of bytes to
4636 * evict from the type which contains older buffers; in an
4637 * effort to keep newer buffers in the cache regardless of their
4638 * type. If we cannot satisfy the number of bytes from this
4639 * type, spill over into the next type.
4640 */
4641 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA &&
4642 ameta > arc_meta_min) {
4643 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4644 total_evicted += bytes;
4645
4646 /*
4647 * If we couldn't evict our target number of bytes from
4648 * metadata, we try to get the rest from data.
4649 */
4650 target -= bytes;
4651
4652 total_evicted +=
4653 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4654 } else {
4655 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4656 total_evicted += bytes;
4657
4658 /*
4659 * If we couldn't evict our target number of bytes from
4660 * data, we try to get the rest from metadata.
4661 */
4662 target -= bytes;
4663
4664 total_evicted +=
4665 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4666 }
4667
4668 /*
4669 * Re-sum ARC stats after the first round of evictions.
4670 */
4671 asize = aggsum_value(&arc_sums.arcstat_size);
4672 ameta = aggsum_value(&arc_sums.arcstat_meta_used);
4673
4674
4675 /*
4676 * Adjust MFU size
4677 *
4678 * Now that we've tried to evict enough from the MRU to get its
4679 * size back to arc_p, if we're still above the target cache
4680 * size, we evict the rest from the MFU.
4681 */
4682 target = asize - arc_c;
4683
4684 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA &&
4685 ameta > arc_meta_min) {
4686 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4687 total_evicted += bytes;
4688
4689 /*
4690 * If we couldn't evict our target number of bytes from
4691 * metadata, we try to get the rest from data.
4692 */
4693 target -= bytes;
4694
4695 total_evicted +=
4696 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4697 } else {
4698 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4699 total_evicted += bytes;
4700
4701 /*
4702 * If we couldn't evict our target number of bytes from
4703 * data, we try to get the rest from data.
4704 */
4705 target -= bytes;
4706
4707 total_evicted +=
4708 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4709 }
4710
4711 /*
4712 * Adjust ghost lists
4713 *
4714 * In addition to the above, the ARC also defines target values
4715 * for the ghost lists. The sum of the mru list and mru ghost
4716 * list should never exceed the target size of the cache, and
4717 * the sum of the mru list, mfu list, mru ghost list, and mfu
4718 * ghost list should never exceed twice the target size of the
4719 * cache. The following logic enforces these limits on the ghost
4720 * caches, and evicts from them as needed.
4721 */
4722 target = zfs_refcount_count(&arc_mru->arcs_size) +
4723 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4724
4725 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4726 total_evicted += bytes;
4727
4728 target -= bytes;
4729
4730 total_evicted +=
4731 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4732
4733 /*
4734 * We assume the sum of the mru list and mfu list is less than
4735 * or equal to arc_c (we enforced this above), which means we
4736 * can use the simpler of the two equations below:
4737 *
4738 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4739 * mru ghost + mfu ghost <= arc_c
4740 */
4741 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4742 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4743
4744 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4745 total_evicted += bytes;
4746
4747 target -= bytes;
4748
4749 total_evicted +=
4750 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4751
4752 return (total_evicted);
4753 }
4754
4755 void
arc_flush(spa_t * spa,boolean_t retry)4756 arc_flush(spa_t *spa, boolean_t retry)
4757 {
4758 uint64_t guid = 0;
4759
4760 /*
4761 * If retry is B_TRUE, a spa must not be specified since we have
4762 * no good way to determine if all of a spa's buffers have been
4763 * evicted from an arc state.
4764 */
4765 ASSERT(!retry || spa == 0);
4766
4767 if (spa != NULL)
4768 guid = spa_load_guid(spa);
4769
4770 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4771 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4772
4773 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4774 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4775
4776 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4777 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4778
4779 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4780 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4781 }
4782
4783 void
arc_reduce_target_size(int64_t to_free)4784 arc_reduce_target_size(int64_t to_free)
4785 {
4786 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4787
4788 /*
4789 * All callers want the ARC to actually evict (at least) this much
4790 * memory. Therefore we reduce from the lower of the current size and
4791 * the target size. This way, even if arc_c is much higher than
4792 * arc_size (as can be the case after many calls to arc_freed(), we will
4793 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4794 * will evict.
4795 */
4796 uint64_t c = MIN(arc_c, asize);
4797
4798 if (c > to_free && c - to_free > arc_c_min) {
4799 arc_c = c - to_free;
4800 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4801 if (arc_p > arc_c)
4802 arc_p = (arc_c >> 1);
4803 ASSERT(arc_c >= arc_c_min);
4804 ASSERT((int64_t)arc_p >= 0);
4805 } else {
4806 arc_c = arc_c_min;
4807 }
4808
4809 if (asize > arc_c) {
4810 /* See comment in arc_evict_cb_check() on why lock+flag */
4811 mutex_enter(&arc_evict_lock);
4812 arc_evict_needed = B_TRUE;
4813 mutex_exit(&arc_evict_lock);
4814 zthr_wakeup(arc_evict_zthr);
4815 }
4816 }
4817
4818 /*
4819 * Determine if the system is under memory pressure and is asking
4820 * to reclaim memory. A return value of B_TRUE indicates that the system
4821 * is under memory pressure and that the arc should adjust accordingly.
4822 */
4823 boolean_t
arc_reclaim_needed(void)4824 arc_reclaim_needed(void)
4825 {
4826 return (arc_available_memory() < 0);
4827 }
4828
4829 void
arc_kmem_reap_soon(void)4830 arc_kmem_reap_soon(void)
4831 {
4832 size_t i;
4833 kmem_cache_t *prev_cache = NULL;
4834 kmem_cache_t *prev_data_cache = NULL;
4835 extern kmem_cache_t *zio_buf_cache[];
4836 extern kmem_cache_t *zio_data_buf_cache[];
4837
4838 #ifdef _KERNEL
4839 if ((aggsum_compare(&arc_sums.arcstat_meta_used,
4840 arc_meta_limit) >= 0) && zfs_arc_meta_prune) {
4841 /*
4842 * We are exceeding our meta-data cache limit.
4843 * Prune some entries to release holds on meta-data.
4844 */
4845 arc_prune_async(zfs_arc_meta_prune);
4846 }
4847 #if defined(_ILP32)
4848 /*
4849 * Reclaim unused memory from all kmem caches.
4850 */
4851 kmem_reap();
4852 #endif
4853 #endif
4854
4855 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4856 #if defined(_ILP32)
4857 /* reach upper limit of cache size on 32-bit */
4858 if (zio_buf_cache[i] == NULL)
4859 break;
4860 #endif
4861 if (zio_buf_cache[i] != prev_cache) {
4862 prev_cache = zio_buf_cache[i];
4863 kmem_cache_reap_now(zio_buf_cache[i]);
4864 }
4865 if (zio_data_buf_cache[i] != prev_data_cache) {
4866 prev_data_cache = zio_data_buf_cache[i];
4867 kmem_cache_reap_now(zio_data_buf_cache[i]);
4868 }
4869 }
4870 kmem_cache_reap_now(buf_cache);
4871 kmem_cache_reap_now(hdr_full_cache);
4872 kmem_cache_reap_now(hdr_l2only_cache);
4873 kmem_cache_reap_now(zfs_btree_leaf_cache);
4874 abd_cache_reap_now();
4875 }
4876
4877 static boolean_t
arc_evict_cb_check(void * arg,zthr_t * zthr)4878 arc_evict_cb_check(void *arg, zthr_t *zthr)
4879 {
4880 (void) arg, (void) zthr;
4881
4882 #ifdef ZFS_DEBUG
4883 /*
4884 * This is necessary in order to keep the kstat information
4885 * up to date for tools that display kstat data such as the
4886 * mdb ::arc dcmd and the Linux crash utility. These tools
4887 * typically do not call kstat's update function, but simply
4888 * dump out stats from the most recent update. Without
4889 * this call, these commands may show stale stats for the
4890 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4891 * with this call, the data might be out of date if the
4892 * evict thread hasn't been woken recently; but that should
4893 * suffice. The arc_state_t structures can be queried
4894 * directly if more accurate information is needed.
4895 */
4896 if (arc_ksp != NULL)
4897 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4898 #endif
4899
4900 /*
4901 * We have to rely on arc_wait_for_eviction() to tell us when to
4902 * evict, rather than checking if we are overflowing here, so that we
4903 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4904 * If we have become "not overflowing" since arc_wait_for_eviction()
4905 * checked, we need to wake it up. We could broadcast the CV here,
4906 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4907 * would need to use a mutex to ensure that this function doesn't
4908 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4909 * the arc_evict_lock). However, the lock ordering of such a lock
4910 * would necessarily be incorrect with respect to the zthr_lock,
4911 * which is held before this function is called, and is held by
4912 * arc_wait_for_eviction() when it calls zthr_wakeup().
4913 */
4914 return (arc_evict_needed);
4915 }
4916
4917 /*
4918 * Keep arc_size under arc_c by running arc_evict which evicts data
4919 * from the ARC.
4920 */
4921 static void
arc_evict_cb(void * arg,zthr_t * zthr)4922 arc_evict_cb(void *arg, zthr_t *zthr)
4923 {
4924 (void) arg, (void) zthr;
4925
4926 uint64_t evicted = 0;
4927 fstrans_cookie_t cookie = spl_fstrans_mark();
4928
4929 /* Evict from cache */
4930 evicted = arc_evict();
4931
4932 /*
4933 * If evicted is zero, we couldn't evict anything
4934 * via arc_evict(). This could be due to hash lock
4935 * collisions, but more likely due to the majority of
4936 * arc buffers being unevictable. Therefore, even if
4937 * arc_size is above arc_c, another pass is unlikely to
4938 * be helpful and could potentially cause us to enter an
4939 * infinite loop. Additionally, zthr_iscancelled() is
4940 * checked here so that if the arc is shutting down, the
4941 * broadcast will wake any remaining arc evict waiters.
4942 */
4943 mutex_enter(&arc_evict_lock);
4944 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) &&
4945 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4946 if (!arc_evict_needed) {
4947 /*
4948 * We're either no longer overflowing, or we
4949 * can't evict anything more, so we should wake
4950 * arc_get_data_impl() sooner.
4951 */
4952 arc_evict_waiter_t *aw;
4953 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4954 cv_broadcast(&aw->aew_cv);
4955 }
4956 arc_set_need_free();
4957 }
4958 mutex_exit(&arc_evict_lock);
4959 spl_fstrans_unmark(cookie);
4960 }
4961
4962 static boolean_t
arc_reap_cb_check(void * arg,zthr_t * zthr)4963 arc_reap_cb_check(void *arg, zthr_t *zthr)
4964 {
4965 (void) arg, (void) zthr;
4966
4967 int64_t free_memory = arc_available_memory();
4968 static int reap_cb_check_counter = 0;
4969
4970 /*
4971 * If a kmem reap is already active, don't schedule more. We must
4972 * check for this because kmem_cache_reap_soon() won't actually
4973 * block on the cache being reaped (this is to prevent callers from
4974 * becoming implicitly blocked by a system-wide kmem reap -- which,
4975 * on a system with many, many full magazines, can take minutes).
4976 */
4977 if (!kmem_cache_reap_active() && free_memory < 0) {
4978
4979 arc_no_grow = B_TRUE;
4980 arc_warm = B_TRUE;
4981 /*
4982 * Wait at least zfs_grow_retry (default 5) seconds
4983 * before considering growing.
4984 */
4985 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4986 return (B_TRUE);
4987 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4988 arc_no_grow = B_TRUE;
4989 } else if (gethrtime() >= arc_growtime) {
4990 arc_no_grow = B_FALSE;
4991 }
4992
4993 /*
4994 * Called unconditionally every 60 seconds to reclaim unused
4995 * zstd compression and decompression context. This is done
4996 * here to avoid the need for an independent thread.
4997 */
4998 if (!((reap_cb_check_counter++) % 60))
4999 zfs_zstd_cache_reap_now();
5000
5001 return (B_FALSE);
5002 }
5003
5004 /*
5005 * Keep enough free memory in the system by reaping the ARC's kmem
5006 * caches. To cause more slabs to be reapable, we may reduce the
5007 * target size of the cache (arc_c), causing the arc_evict_cb()
5008 * to free more buffers.
5009 */
5010 static void
arc_reap_cb(void * arg,zthr_t * zthr)5011 arc_reap_cb(void *arg, zthr_t *zthr)
5012 {
5013 (void) arg, (void) zthr;
5014
5015 int64_t free_memory;
5016 fstrans_cookie_t cookie = spl_fstrans_mark();
5017
5018 /*
5019 * Kick off asynchronous kmem_reap()'s of all our caches.
5020 */
5021 arc_kmem_reap_soon();
5022
5023 /*
5024 * Wait at least arc_kmem_cache_reap_retry_ms between
5025 * arc_kmem_reap_soon() calls. Without this check it is possible to
5026 * end up in a situation where we spend lots of time reaping
5027 * caches, while we're near arc_c_min. Waiting here also gives the
5028 * subsequent free memory check a chance of finding that the
5029 * asynchronous reap has already freed enough memory, and we don't
5030 * need to call arc_reduce_target_size().
5031 */
5032 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
5033
5034 /*
5035 * Reduce the target size as needed to maintain the amount of free
5036 * memory in the system at a fraction of the arc_size (1/128th by
5037 * default). If oversubscribed (free_memory < 0) then reduce the
5038 * target arc_size by the deficit amount plus the fractional
5039 * amount. If free memory is positive but less than the fractional
5040 * amount, reduce by what is needed to hit the fractional amount.
5041 */
5042 free_memory = arc_available_memory();
5043
5044 int64_t to_free =
5045 (arc_c >> arc_shrink_shift) - free_memory;
5046 if (to_free > 0) {
5047 arc_reduce_target_size(to_free);
5048 }
5049 spl_fstrans_unmark(cookie);
5050 }
5051
5052 #ifdef _KERNEL
5053 /*
5054 * Determine the amount of memory eligible for eviction contained in the
5055 * ARC. All clean data reported by the ghost lists can always be safely
5056 * evicted. Due to arc_c_min, the same does not hold for all clean data
5057 * contained by the regular mru and mfu lists.
5058 *
5059 * In the case of the regular mru and mfu lists, we need to report as
5060 * much clean data as possible, such that evicting that same reported
5061 * data will not bring arc_size below arc_c_min. Thus, in certain
5062 * circumstances, the total amount of clean data in the mru and mfu
5063 * lists might not actually be evictable.
5064 *
5065 * The following two distinct cases are accounted for:
5066 *
5067 * 1. The sum of the amount of dirty data contained by both the mru and
5068 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5069 * is greater than or equal to arc_c_min.
5070 * (i.e. amount of dirty data >= arc_c_min)
5071 *
5072 * This is the easy case; all clean data contained by the mru and mfu
5073 * lists is evictable. Evicting all clean data can only drop arc_size
5074 * to the amount of dirty data, which is greater than arc_c_min.
5075 *
5076 * 2. The sum of the amount of dirty data contained by both the mru and
5077 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5078 * is less than arc_c_min.
5079 * (i.e. arc_c_min > amount of dirty data)
5080 *
5081 * 2.1. arc_size is greater than or equal arc_c_min.
5082 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5083 *
5084 * In this case, not all clean data from the regular mru and mfu
5085 * lists is actually evictable; we must leave enough clean data
5086 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5087 * evictable data from the two lists combined, is exactly the
5088 * difference between arc_size and arc_c_min.
5089 *
5090 * 2.2. arc_size is less than arc_c_min
5091 * (i.e. arc_c_min > arc_size > amount of dirty data)
5092 *
5093 * In this case, none of the data contained in the mru and mfu
5094 * lists is evictable, even if it's clean. Since arc_size is
5095 * already below arc_c_min, evicting any more would only
5096 * increase this negative difference.
5097 */
5098
5099 #endif /* _KERNEL */
5100
5101 /*
5102 * Adapt arc info given the number of bytes we are trying to add and
5103 * the state that we are coming from. This function is only called
5104 * when we are adding new content to the cache.
5105 */
5106 static void
arc_adapt(int bytes,arc_state_t * state)5107 arc_adapt(int bytes, arc_state_t *state)
5108 {
5109 int mult;
5110 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
5111 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
5112 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
5113
5114 ASSERT(bytes > 0);
5115 /*
5116 * Adapt the target size of the MRU list:
5117 * - if we just hit in the MRU ghost list, then increase
5118 * the target size of the MRU list.
5119 * - if we just hit in the MFU ghost list, then increase
5120 * the target size of the MFU list by decreasing the
5121 * target size of the MRU list.
5122 */
5123 if (state == arc_mru_ghost) {
5124 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
5125 if (!zfs_arc_p_dampener_disable)
5126 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
5127
5128 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
5129 } else if (state == arc_mfu_ghost) {
5130 uint64_t delta;
5131
5132 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
5133 if (!zfs_arc_p_dampener_disable)
5134 mult = MIN(mult, 10);
5135
5136 delta = MIN(bytes * mult, arc_p);
5137 arc_p = MAX(arc_p_min, arc_p - delta);
5138 }
5139 ASSERT((int64_t)arc_p >= 0);
5140
5141 /*
5142 * Wake reap thread if we do not have any available memory
5143 */
5144 if (arc_reclaim_needed()) {
5145 zthr_wakeup(arc_reap_zthr);
5146 return;
5147 }
5148
5149 if (arc_no_grow)
5150 return;
5151
5152 if (arc_c >= arc_c_max)
5153 return;
5154
5155 /*
5156 * If we're within (2 * maxblocksize) bytes of the target
5157 * cache size, increment the target cache size
5158 */
5159 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
5160 if (aggsum_upper_bound(&arc_sums.arcstat_size) >=
5161 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
5162 atomic_add_64(&arc_c, (int64_t)bytes);
5163 if (arc_c > arc_c_max)
5164 arc_c = arc_c_max;
5165 else if (state == arc_anon)
5166 atomic_add_64(&arc_p, (int64_t)bytes);
5167 if (arc_p > arc_c)
5168 arc_p = arc_c;
5169 }
5170 ASSERT((int64_t)arc_p >= 0);
5171 }
5172
5173 /*
5174 * Check if arc_size has grown past our upper threshold, determined by
5175 * zfs_arc_overflow_shift.
5176 */
5177 static arc_ovf_level_t
arc_is_overflowing(boolean_t use_reserve)5178 arc_is_overflowing(boolean_t use_reserve)
5179 {
5180 /* Always allow at least one block of overflow */
5181 int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5182 arc_c >> zfs_arc_overflow_shift);
5183
5184 /*
5185 * We just compare the lower bound here for performance reasons. Our
5186 * primary goals are to make sure that the arc never grows without
5187 * bound, and that it can reach its maximum size. This check
5188 * accomplishes both goals. The maximum amount we could run over by is
5189 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5190 * in the ARC. In practice, that's in the tens of MB, which is low
5191 * enough to be safe.
5192 */
5193 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) -
5194 arc_c - overflow / 2;
5195 if (!use_reserve)
5196 overflow /= 2;
5197 return (over < 0 ? ARC_OVF_NONE :
5198 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
5199 }
5200
5201 static abd_t *
arc_get_data_abd(arc_buf_hdr_t * hdr,uint64_t size,void * tag,int alloc_flags)5202 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5203 int alloc_flags)
5204 {
5205 arc_buf_contents_t type = arc_buf_type(hdr);
5206
5207 arc_get_data_impl(hdr, size, tag, alloc_flags);
5208 if (type == ARC_BUFC_METADATA) {
5209 return (abd_alloc(size, B_TRUE));
5210 } else {
5211 ASSERT(type == ARC_BUFC_DATA);
5212 return (abd_alloc(size, B_FALSE));
5213 }
5214 }
5215
5216 static void *
arc_get_data_buf(arc_buf_hdr_t * hdr,uint64_t size,void * tag)5217 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5218 {
5219 arc_buf_contents_t type = arc_buf_type(hdr);
5220
5221 arc_get_data_impl(hdr, size, tag, ARC_HDR_DO_ADAPT);
5222 if (type == ARC_BUFC_METADATA) {
5223 return (zio_buf_alloc(size));
5224 } else {
5225 ASSERT(type == ARC_BUFC_DATA);
5226 return (zio_data_buf_alloc(size));
5227 }
5228 }
5229
5230 /*
5231 * Wait for the specified amount of data (in bytes) to be evicted from the
5232 * ARC, and for there to be sufficient free memory in the system. Waiting for
5233 * eviction ensures that the memory used by the ARC decreases. Waiting for
5234 * free memory ensures that the system won't run out of free pages, regardless
5235 * of ARC behavior and settings. See arc_lowmem_init().
5236 */
5237 void
arc_wait_for_eviction(uint64_t amount,boolean_t use_reserve)5238 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve)
5239 {
5240 switch (arc_is_overflowing(use_reserve)) {
5241 case ARC_OVF_NONE:
5242 return;
5243 case ARC_OVF_SOME:
5244 /*
5245 * This is a bit racy without taking arc_evict_lock, but the
5246 * worst that can happen is we either call zthr_wakeup() extra
5247 * time due to race with other thread here, or the set flag
5248 * get cleared by arc_evict_cb(), which is unlikely due to
5249 * big hysteresis, but also not important since at this level
5250 * of overflow the eviction is purely advisory. Same time
5251 * taking the global lock here every time without waiting for
5252 * the actual eviction creates a significant lock contention.
5253 */
5254 if (!arc_evict_needed) {
5255 arc_evict_needed = B_TRUE;
5256 zthr_wakeup(arc_evict_zthr);
5257 }
5258 return;
5259 case ARC_OVF_SEVERE:
5260 default:
5261 {
5262 arc_evict_waiter_t aw;
5263 list_link_init(&aw.aew_node);
5264 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
5265
5266 uint64_t last_count = 0;
5267 mutex_enter(&arc_evict_lock);
5268 if (!list_is_empty(&arc_evict_waiters)) {
5269 arc_evict_waiter_t *last =
5270 list_tail(&arc_evict_waiters);
5271 last_count = last->aew_count;
5272 } else if (!arc_evict_needed) {
5273 arc_evict_needed = B_TRUE;
5274 zthr_wakeup(arc_evict_zthr);
5275 }
5276 /*
5277 * Note, the last waiter's count may be less than
5278 * arc_evict_count if we are low on memory in which
5279 * case arc_evict_state_impl() may have deferred
5280 * wakeups (but still incremented arc_evict_count).
5281 */
5282 aw.aew_count = MAX(last_count, arc_evict_count) + amount;
5283
5284 list_insert_tail(&arc_evict_waiters, &aw);
5285
5286 arc_set_need_free();
5287
5288 DTRACE_PROBE3(arc__wait__for__eviction,
5289 uint64_t, amount,
5290 uint64_t, arc_evict_count,
5291 uint64_t, aw.aew_count);
5292
5293 /*
5294 * We will be woken up either when arc_evict_count reaches
5295 * aew_count, or when the ARC is no longer overflowing and
5296 * eviction completes.
5297 * In case of "false" wakeup, we will still be on the list.
5298 */
5299 do {
5300 cv_wait(&aw.aew_cv, &arc_evict_lock);
5301 } while (list_link_active(&aw.aew_node));
5302 mutex_exit(&arc_evict_lock);
5303
5304 cv_destroy(&aw.aew_cv);
5305 }
5306 }
5307 }
5308
5309 /*
5310 * Allocate a block and return it to the caller. If we are hitting the
5311 * hard limit for the cache size, we must sleep, waiting for the eviction
5312 * thread to catch up. If we're past the target size but below the hard
5313 * limit, we'll only signal the reclaim thread and continue on.
5314 */
5315 static void
arc_get_data_impl(arc_buf_hdr_t * hdr,uint64_t size,void * tag,int alloc_flags)5316 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5317 int alloc_flags)
5318 {
5319 arc_state_t *state = hdr->b_l1hdr.b_state;
5320 arc_buf_contents_t type = arc_buf_type(hdr);
5321
5322 if (alloc_flags & ARC_HDR_DO_ADAPT)
5323 arc_adapt(size, state);
5324
5325 /*
5326 * If arc_size is currently overflowing, we must be adding data
5327 * faster than we are evicting. To ensure we don't compound the
5328 * problem by adding more data and forcing arc_size to grow even
5329 * further past it's target size, we wait for the eviction thread to
5330 * make some progress. We also wait for there to be sufficient free
5331 * memory in the system, as measured by arc_free_memory().
5332 *
5333 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5334 * requested size to be evicted. This should be more than 100%, to
5335 * ensure that that progress is also made towards getting arc_size
5336 * under arc_c. See the comment above zfs_arc_eviction_pct.
5337 */
5338 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5339 alloc_flags & ARC_HDR_USE_RESERVE);
5340
5341 VERIFY3U(hdr->b_type, ==, type);
5342 if (type == ARC_BUFC_METADATA) {
5343 arc_space_consume(size, ARC_SPACE_META);
5344 } else {
5345 arc_space_consume(size, ARC_SPACE_DATA);
5346 }
5347
5348 /*
5349 * Update the state size. Note that ghost states have a
5350 * "ghost size" and so don't need to be updated.
5351 */
5352 if (!GHOST_STATE(state)) {
5353
5354 (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
5355
5356 /*
5357 * If this is reached via arc_read, the link is
5358 * protected by the hash lock. If reached via
5359 * arc_buf_alloc, the header should not be accessed by
5360 * any other thread. And, if reached via arc_read_done,
5361 * the hash lock will protect it if it's found in the
5362 * hash table; otherwise no other thread should be
5363 * trying to [add|remove]_reference it.
5364 */
5365 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5366 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5367 (void) zfs_refcount_add_many(&state->arcs_esize[type],
5368 size, tag);
5369 }
5370
5371 /*
5372 * If we are growing the cache, and we are adding anonymous
5373 * data, and we have outgrown arc_p, update arc_p
5374 */
5375 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c &&
5376 hdr->b_l1hdr.b_state == arc_anon &&
5377 (zfs_refcount_count(&arc_anon->arcs_size) +
5378 zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
5379 arc_p = MIN(arc_c, arc_p + size);
5380 }
5381 }
5382
5383 static void
arc_free_data_abd(arc_buf_hdr_t * hdr,abd_t * abd,uint64_t size,void * tag)5384 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5385 {
5386 arc_free_data_impl(hdr, size, tag);
5387 abd_free(abd);
5388 }
5389
5390 static void
arc_free_data_buf(arc_buf_hdr_t * hdr,void * buf,uint64_t size,void * tag)5391 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5392 {
5393 arc_buf_contents_t type = arc_buf_type(hdr);
5394
5395 arc_free_data_impl(hdr, size, tag);
5396 if (type == ARC_BUFC_METADATA) {
5397 zio_buf_free(buf, size);
5398 } else {
5399 ASSERT(type == ARC_BUFC_DATA);
5400 zio_data_buf_free(buf, size);
5401 }
5402 }
5403
5404 /*
5405 * Free the arc data buffer.
5406 */
5407 static void
arc_free_data_impl(arc_buf_hdr_t * hdr,uint64_t size,void * tag)5408 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5409 {
5410 arc_state_t *state = hdr->b_l1hdr.b_state;
5411 arc_buf_contents_t type = arc_buf_type(hdr);
5412
5413 /* protected by hash lock, if in the hash table */
5414 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5415 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5416 ASSERT(state != arc_anon && state != arc_l2c_only);
5417
5418 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5419 size, tag);
5420 }
5421 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5422
5423 VERIFY3U(hdr->b_type, ==, type);
5424 if (type == ARC_BUFC_METADATA) {
5425 arc_space_return(size, ARC_SPACE_META);
5426 } else {
5427 ASSERT(type == ARC_BUFC_DATA);
5428 arc_space_return(size, ARC_SPACE_DATA);
5429 }
5430 }
5431
5432 /*
5433 * This routine is called whenever a buffer is accessed.
5434 * NOTE: the hash lock is dropped in this function.
5435 */
5436 static void
arc_access(arc_buf_hdr_t * hdr,kmutex_t * hash_lock)5437 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5438 {
5439 clock_t now;
5440
5441 ASSERT(MUTEX_HELD(hash_lock));
5442 ASSERT(HDR_HAS_L1HDR(hdr));
5443
5444 if (hdr->b_l1hdr.b_state == arc_anon) {
5445 /*
5446 * This buffer is not in the cache, and does not
5447 * appear in our "ghost" list. Add the new buffer
5448 * to the MRU state.
5449 */
5450
5451 ASSERT0(hdr->b_l1hdr.b_arc_access);
5452 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5453 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5454 arc_change_state(arc_mru, hdr, hash_lock);
5455
5456 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5457 now = ddi_get_lbolt();
5458
5459 /*
5460 * If this buffer is here because of a prefetch, then either:
5461 * - clear the flag if this is a "referencing" read
5462 * (any subsequent access will bump this into the MFU state).
5463 * or
5464 * - move the buffer to the head of the list if this is
5465 * another prefetch (to make it less likely to be evicted).
5466 */
5467 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5468 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5469 /* link protected by hash lock */
5470 ASSERT(multilist_link_active(
5471 &hdr->b_l1hdr.b_arc_node));
5472 } else {
5473 if (HDR_HAS_L2HDR(hdr))
5474 l2arc_hdr_arcstats_decrement_state(hdr);
5475 arc_hdr_clear_flags(hdr,
5476 ARC_FLAG_PREFETCH |
5477 ARC_FLAG_PRESCIENT_PREFETCH);
5478 hdr->b_l1hdr.b_mru_hits++;
5479 ARCSTAT_BUMP(arcstat_mru_hits);
5480 if (HDR_HAS_L2HDR(hdr))
5481 l2arc_hdr_arcstats_increment_state(hdr);
5482 }
5483 hdr->b_l1hdr.b_arc_access = now;
5484 return;
5485 }
5486
5487 /*
5488 * This buffer has been "accessed" only once so far,
5489 * but it is still in the cache. Move it to the MFU
5490 * state.
5491 */
5492 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5493 ARC_MINTIME)) {
5494 /*
5495 * More than 125ms have passed since we
5496 * instantiated this buffer. Move it to the
5497 * most frequently used state.
5498 */
5499 hdr->b_l1hdr.b_arc_access = now;
5500 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5501 arc_change_state(arc_mfu, hdr, hash_lock);
5502 }
5503 hdr->b_l1hdr.b_mru_hits++;
5504 ARCSTAT_BUMP(arcstat_mru_hits);
5505 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5506 arc_state_t *new_state;
5507 /*
5508 * This buffer has been "accessed" recently, but
5509 * was evicted from the cache. Move it to the
5510 * MFU state.
5511 */
5512 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5513 new_state = arc_mru;
5514 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5515 if (HDR_HAS_L2HDR(hdr))
5516 l2arc_hdr_arcstats_decrement_state(hdr);
5517 arc_hdr_clear_flags(hdr,
5518 ARC_FLAG_PREFETCH |
5519 ARC_FLAG_PRESCIENT_PREFETCH);
5520 if (HDR_HAS_L2HDR(hdr))
5521 l2arc_hdr_arcstats_increment_state(hdr);
5522 }
5523 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5524 } else {
5525 new_state = arc_mfu;
5526 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5527 }
5528
5529 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5530 arc_change_state(new_state, hdr, hash_lock);
5531
5532 hdr->b_l1hdr.b_mru_ghost_hits++;
5533 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5534 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5535 /*
5536 * This buffer has been accessed more than once and is
5537 * still in the cache. Keep it in the MFU state.
5538 *
5539 * NOTE: an add_reference() that occurred when we did
5540 * the arc_read() will have kicked this off the list.
5541 * If it was a prefetch, we will explicitly move it to
5542 * the head of the list now.
5543 */
5544
5545 hdr->b_l1hdr.b_mfu_hits++;
5546 ARCSTAT_BUMP(arcstat_mfu_hits);
5547 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5548 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5549 arc_state_t *new_state = arc_mfu;
5550 /*
5551 * This buffer has been accessed more than once but has
5552 * been evicted from the cache. Move it back to the
5553 * MFU state.
5554 */
5555
5556 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5557 /*
5558 * This is a prefetch access...
5559 * move this block back to the MRU state.
5560 */
5561 new_state = arc_mru;
5562 }
5563
5564 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5565 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5566 arc_change_state(new_state, hdr, hash_lock);
5567
5568 hdr->b_l1hdr.b_mfu_ghost_hits++;
5569 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5570 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5571 /*
5572 * This buffer is on the 2nd Level ARC.
5573 */
5574
5575 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5576 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5577 arc_change_state(arc_mfu, hdr, hash_lock);
5578 } else {
5579 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5580 hdr->b_l1hdr.b_state);
5581 }
5582 }
5583
5584 /*
5585 * This routine is called by dbuf_hold() to update the arc_access() state
5586 * which otherwise would be skipped for entries in the dbuf cache.
5587 */
5588 void
arc_buf_access(arc_buf_t * buf)5589 arc_buf_access(arc_buf_t *buf)
5590 {
5591 mutex_enter(&buf->b_evict_lock);
5592 arc_buf_hdr_t *hdr = buf->b_hdr;
5593
5594 /*
5595 * Avoid taking the hash_lock when possible as an optimization.
5596 * The header must be checked again under the hash_lock in order
5597 * to handle the case where it is concurrently being released.
5598 */
5599 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5600 mutex_exit(&buf->b_evict_lock);
5601 return;
5602 }
5603
5604 kmutex_t *hash_lock = HDR_LOCK(hdr);
5605 mutex_enter(hash_lock);
5606
5607 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5608 mutex_exit(hash_lock);
5609 mutex_exit(&buf->b_evict_lock);
5610 ARCSTAT_BUMP(arcstat_access_skip);
5611 return;
5612 }
5613
5614 mutex_exit(&buf->b_evict_lock);
5615
5616 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5617 hdr->b_l1hdr.b_state == arc_mfu);
5618
5619 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5620 arc_access(hdr, hash_lock);
5621 mutex_exit(hash_lock);
5622
5623 ARCSTAT_BUMP(arcstat_hits);
5624 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr),
5625 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5626 }
5627
5628 /* a generic arc_read_done_func_t which you can use */
5629 void
arc_bcopy_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5630 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5631 arc_buf_t *buf, void *arg)
5632 {
5633 (void) zio, (void) zb, (void) bp;
5634
5635 if (buf == NULL)
5636 return;
5637
5638 bcopy(buf->b_data, arg, arc_buf_size(buf));
5639 arc_buf_destroy(buf, arg);
5640 }
5641
5642 /* a generic arc_read_done_func_t */
5643 void
arc_getbuf_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5644 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5645 arc_buf_t *buf, void *arg)
5646 {
5647 (void) zb, (void) bp;
5648 arc_buf_t **bufp = arg;
5649
5650 if (buf == NULL) {
5651 ASSERT(zio == NULL || zio->io_error != 0);
5652 *bufp = NULL;
5653 } else {
5654 ASSERT(zio == NULL || zio->io_error == 0);
5655 *bufp = buf;
5656 ASSERT(buf->b_data != NULL);
5657 }
5658 }
5659
5660 static void
arc_hdr_verify(arc_buf_hdr_t * hdr,blkptr_t * bp)5661 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5662 {
5663 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5664 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5665 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5666 } else {
5667 if (HDR_COMPRESSION_ENABLED(hdr)) {
5668 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5669 BP_GET_COMPRESS(bp));
5670 }
5671 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5672 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5673 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5674 }
5675 }
5676
5677 static void
arc_read_done(zio_t * zio)5678 arc_read_done(zio_t *zio)
5679 {
5680 blkptr_t *bp = zio->io_bp;
5681 arc_buf_hdr_t *hdr = zio->io_private;
5682 kmutex_t *hash_lock = NULL;
5683 arc_callback_t *callback_list;
5684 arc_callback_t *acb;
5685 boolean_t freeable = B_FALSE;
5686
5687 /*
5688 * The hdr was inserted into hash-table and removed from lists
5689 * prior to starting I/O. We should find this header, since
5690 * it's in the hash table, and it should be legit since it's
5691 * not possible to evict it during the I/O. The only possible
5692 * reason for it not to be found is if we were freed during the
5693 * read.
5694 */
5695 if (HDR_IN_HASH_TABLE(hdr)) {
5696 arc_buf_hdr_t *found;
5697
5698 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5699 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5700 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5701 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5702 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5703
5704 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5705
5706 ASSERT((found == hdr &&
5707 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5708 (found == hdr && HDR_L2_READING(hdr)));
5709 ASSERT3P(hash_lock, !=, NULL);
5710 }
5711
5712 if (BP_IS_PROTECTED(bp)) {
5713 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5714 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5715 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5716 hdr->b_crypt_hdr.b_iv);
5717
5718 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5719 void *tmpbuf;
5720
5721 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5722 sizeof (zil_chain_t));
5723 zio_crypt_decode_mac_zil(tmpbuf,
5724 hdr->b_crypt_hdr.b_mac);
5725 abd_return_buf(zio->io_abd, tmpbuf,
5726 sizeof (zil_chain_t));
5727 } else {
5728 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5729 }
5730 }
5731
5732 if (zio->io_error == 0) {
5733 /* byteswap if necessary */
5734 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5735 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5736 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5737 } else {
5738 hdr->b_l1hdr.b_byteswap =
5739 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5740 }
5741 } else {
5742 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5743 }
5744 if (!HDR_L2_READING(hdr)) {
5745 hdr->b_complevel = zio->io_prop.zp_complevel;
5746 }
5747 }
5748
5749 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5750 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5751 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5752
5753 callback_list = hdr->b_l1hdr.b_acb;
5754 ASSERT3P(callback_list, !=, NULL);
5755
5756 if (hash_lock && zio->io_error == 0 &&
5757 hdr->b_l1hdr.b_state == arc_anon) {
5758 /*
5759 * Only call arc_access on anonymous buffers. This is because
5760 * if we've issued an I/O for an evicted buffer, we've already
5761 * called arc_access (to prevent any simultaneous readers from
5762 * getting confused).
5763 */
5764 arc_access(hdr, hash_lock);
5765 }
5766
5767 /*
5768 * If a read request has a callback (i.e. acb_done is not NULL), then we
5769 * make a buf containing the data according to the parameters which were
5770 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5771 * aren't needlessly decompressing the data multiple times.
5772 */
5773 int callback_cnt = 0;
5774 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5775 if (!acb->acb_done || acb->acb_nobuf)
5776 continue;
5777
5778 callback_cnt++;
5779
5780 if (zio->io_error != 0)
5781 continue;
5782
5783 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5784 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5785 acb->acb_compressed, acb->acb_noauth, B_TRUE,
5786 &acb->acb_buf);
5787
5788 /*
5789 * Assert non-speculative zios didn't fail because an
5790 * encryption key wasn't loaded
5791 */
5792 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5793 error != EACCES);
5794
5795 /*
5796 * If we failed to decrypt, report an error now (as the zio
5797 * layer would have done if it had done the transforms).
5798 */
5799 if (error == ECKSUM) {
5800 ASSERT(BP_IS_PROTECTED(bp));
5801 error = SET_ERROR(EIO);
5802 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5803 spa_log_error(zio->io_spa, &acb->acb_zb);
5804 (void) zfs_ereport_post(
5805 FM_EREPORT_ZFS_AUTHENTICATION,
5806 zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5807 }
5808 }
5809
5810 if (error != 0) {
5811 /*
5812 * Decompression or decryption failed. Set
5813 * io_error so that when we call acb_done
5814 * (below), we will indicate that the read
5815 * failed. Note that in the unusual case
5816 * where one callback is compressed and another
5817 * uncompressed, we will mark all of them
5818 * as failed, even though the uncompressed
5819 * one can't actually fail. In this case,
5820 * the hdr will not be anonymous, because
5821 * if there are multiple callbacks, it's
5822 * because multiple threads found the same
5823 * arc buf in the hash table.
5824 */
5825 zio->io_error = error;
5826 }
5827 }
5828
5829 /*
5830 * If there are multiple callbacks, we must have the hash lock,
5831 * because the only way for multiple threads to find this hdr is
5832 * in the hash table. This ensures that if there are multiple
5833 * callbacks, the hdr is not anonymous. If it were anonymous,
5834 * we couldn't use arc_buf_destroy() in the error case below.
5835 */
5836 ASSERT(callback_cnt < 2 || hash_lock != NULL);
5837
5838 hdr->b_l1hdr.b_acb = NULL;
5839 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5840 if (callback_cnt == 0)
5841 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5842
5843 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5844 callback_list != NULL);
5845
5846 if (zio->io_error == 0) {
5847 arc_hdr_verify(hdr, zio->io_bp);
5848 } else {
5849 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5850 if (hdr->b_l1hdr.b_state != arc_anon)
5851 arc_change_state(arc_anon, hdr, hash_lock);
5852 if (HDR_IN_HASH_TABLE(hdr))
5853 buf_hash_remove(hdr);
5854 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5855 }
5856
5857 /*
5858 * Broadcast before we drop the hash_lock to avoid the possibility
5859 * that the hdr (and hence the cv) might be freed before we get to
5860 * the cv_broadcast().
5861 */
5862 cv_broadcast(&hdr->b_l1hdr.b_cv);
5863
5864 if (hash_lock != NULL) {
5865 mutex_exit(hash_lock);
5866 } else {
5867 /*
5868 * This block was freed while we waited for the read to
5869 * complete. It has been removed from the hash table and
5870 * moved to the anonymous state (so that it won't show up
5871 * in the cache).
5872 */
5873 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5874 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5875 }
5876
5877 /* execute each callback and free its structure */
5878 while ((acb = callback_list) != NULL) {
5879 if (acb->acb_done != NULL) {
5880 if (zio->io_error != 0 && acb->acb_buf != NULL) {
5881 /*
5882 * If arc_buf_alloc_impl() fails during
5883 * decompression, the buf will still be
5884 * allocated, and needs to be freed here.
5885 */
5886 arc_buf_destroy(acb->acb_buf,
5887 acb->acb_private);
5888 acb->acb_buf = NULL;
5889 }
5890 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5891 acb->acb_buf, acb->acb_private);
5892 }
5893
5894 if (acb->acb_zio_dummy != NULL) {
5895 acb->acb_zio_dummy->io_error = zio->io_error;
5896 zio_nowait(acb->acb_zio_dummy);
5897 }
5898
5899 callback_list = acb->acb_next;
5900 kmem_free(acb, sizeof (arc_callback_t));
5901 }
5902
5903 if (freeable)
5904 arc_hdr_destroy(hdr);
5905 }
5906
5907 /*
5908 * "Read" the block at the specified DVA (in bp) via the
5909 * cache. If the block is found in the cache, invoke the provided
5910 * callback immediately and return. Note that the `zio' parameter
5911 * in the callback will be NULL in this case, since no IO was
5912 * required. If the block is not in the cache pass the read request
5913 * on to the spa with a substitute callback function, so that the
5914 * requested block will be added to the cache.
5915 *
5916 * If a read request arrives for a block that has a read in-progress,
5917 * either wait for the in-progress read to complete (and return the
5918 * results); or, if this is a read with a "done" func, add a record
5919 * to the read to invoke the "done" func when the read completes,
5920 * and return; or just return.
5921 *
5922 * arc_read_done() will invoke all the requested "done" functions
5923 * for readers of this block.
5924 */
5925 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_read_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,arc_flags_t * arc_flags,const zbookmark_phys_t * zb)5926 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5927 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5928 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5929 {
5930 arc_buf_hdr_t *hdr = NULL;
5931 kmutex_t *hash_lock = NULL;
5932 zio_t *rzio;
5933 uint64_t guid = spa_load_guid(spa);
5934 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5935 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5936 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5937 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5938 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5939 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5940 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5941 int rc = 0;
5942
5943 ASSERT(!embedded_bp ||
5944 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5945 ASSERT(!BP_IS_HOLE(bp));
5946 ASSERT(!BP_IS_REDACTED(bp));
5947
5948 /*
5949 * Normally SPL_FSTRANS will already be set since kernel threads which
5950 * expect to call the DMU interfaces will set it when created. System
5951 * calls are similarly handled by setting/cleaning the bit in the
5952 * registered callback (module/os/.../zfs/zpl_*).
5953 *
5954 * External consumers such as Lustre which call the exported DMU
5955 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5956 * on the hash_lock always set and clear the bit.
5957 */
5958 fstrans_cookie_t cookie = spl_fstrans_mark();
5959 top:
5960 /*
5961 * Verify the block pointer contents are reasonable. This should
5962 * always be the case since the blkptr is protected by a checksum.
5963 * However, if there is damage it's desirable to detect this early
5964 * and treat it as a checksum error. This allows an alternate blkptr
5965 * to be tried when one is available (e.g. ditto blocks).
5966 */
5967 if (!zfs_blkptr_verify(spa, bp, zio_flags & ZIO_FLAG_CONFIG_WRITER,
5968 BLK_VERIFY_LOG)) {
5969 rc = SET_ERROR(ECKSUM);
5970 goto out;
5971 }
5972
5973 if (!embedded_bp) {
5974 /*
5975 * Embedded BP's have no DVA and require no I/O to "read".
5976 * Create an anonymous arc buf to back it.
5977 */
5978 hdr = buf_hash_find(guid, bp, &hash_lock);
5979 }
5980
5981 /*
5982 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5983 * we maintain encrypted data separately from compressed / uncompressed
5984 * data. If the user is requesting raw encrypted data and we don't have
5985 * that in the header we will read from disk to guarantee that we can
5986 * get it even if the encryption keys aren't loaded.
5987 */
5988 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5989 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5990 arc_buf_t *buf = NULL;
5991 *arc_flags |= ARC_FLAG_CACHED;
5992
5993 if (HDR_IO_IN_PROGRESS(hdr)) {
5994 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5995
5996 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5997 mutex_exit(hash_lock);
5998 ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5999 rc = SET_ERROR(ENOENT);
6000 goto out;
6001 }
6002
6003 ASSERT3P(head_zio, !=, NULL);
6004 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
6005 priority == ZIO_PRIORITY_SYNC_READ) {
6006 /*
6007 * This is a sync read that needs to wait for
6008 * an in-flight async read. Request that the
6009 * zio have its priority upgraded.
6010 */
6011 zio_change_priority(head_zio, priority);
6012 DTRACE_PROBE1(arc__async__upgrade__sync,
6013 arc_buf_hdr_t *, hdr);
6014 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
6015 }
6016 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6017 arc_hdr_clear_flags(hdr,
6018 ARC_FLAG_PREDICTIVE_PREFETCH);
6019 }
6020
6021 if (*arc_flags & ARC_FLAG_WAIT) {
6022 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6023 mutex_exit(hash_lock);
6024 goto top;
6025 }
6026 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6027
6028 if (done) {
6029 arc_callback_t *acb = NULL;
6030
6031 acb = kmem_zalloc(sizeof (arc_callback_t),
6032 KM_SLEEP);
6033 acb->acb_done = done;
6034 acb->acb_private = private;
6035 acb->acb_compressed = compressed_read;
6036 acb->acb_encrypted = encrypted_read;
6037 acb->acb_noauth = noauth_read;
6038 acb->acb_nobuf = no_buf;
6039 acb->acb_zb = *zb;
6040 if (pio != NULL)
6041 acb->acb_zio_dummy = zio_null(pio,
6042 spa, NULL, NULL, NULL, zio_flags);
6043
6044 ASSERT3P(acb->acb_done, !=, NULL);
6045 acb->acb_zio_head = head_zio;
6046 acb->acb_next = hdr->b_l1hdr.b_acb;
6047 hdr->b_l1hdr.b_acb = acb;
6048 }
6049 mutex_exit(hash_lock);
6050 goto out;
6051 }
6052
6053 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6054 hdr->b_l1hdr.b_state == arc_mfu);
6055
6056 if (done && !no_buf) {
6057 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6058 /*
6059 * This is a demand read which does not have to
6060 * wait for i/o because we did a predictive
6061 * prefetch i/o for it, which has completed.
6062 */
6063 DTRACE_PROBE1(
6064 arc__demand__hit__predictive__prefetch,
6065 arc_buf_hdr_t *, hdr);
6066 ARCSTAT_BUMP(
6067 arcstat_demand_hit_predictive_prefetch);
6068 arc_hdr_clear_flags(hdr,
6069 ARC_FLAG_PREDICTIVE_PREFETCH);
6070 }
6071
6072 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
6073 ARCSTAT_BUMP(
6074 arcstat_demand_hit_prescient_prefetch);
6075 arc_hdr_clear_flags(hdr,
6076 ARC_FLAG_PRESCIENT_PREFETCH);
6077 }
6078
6079 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
6080
6081 /* Get a buf with the desired data in it. */
6082 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6083 encrypted_read, compressed_read, noauth_read,
6084 B_TRUE, &buf);
6085 if (rc == ECKSUM) {
6086 /*
6087 * Convert authentication and decryption errors
6088 * to EIO (and generate an ereport if needed)
6089 * before leaving the ARC.
6090 */
6091 rc = SET_ERROR(EIO);
6092 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6093 spa_log_error(spa, zb);
6094 (void) zfs_ereport_post(
6095 FM_EREPORT_ZFS_AUTHENTICATION,
6096 spa, NULL, zb, NULL, 0);
6097 }
6098 }
6099 if (rc != 0) {
6100 (void) remove_reference(hdr, hash_lock,
6101 private);
6102 arc_buf_destroy_impl(buf);
6103 buf = NULL;
6104 }
6105
6106 /* assert any errors weren't due to unloaded keys */
6107 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
6108 rc != EACCES);
6109 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
6110 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6111 if (HDR_HAS_L2HDR(hdr))
6112 l2arc_hdr_arcstats_decrement_state(hdr);
6113 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6114 if (HDR_HAS_L2HDR(hdr))
6115 l2arc_hdr_arcstats_increment_state(hdr);
6116 }
6117 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6118 arc_access(hdr, hash_lock);
6119 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6120 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6121 if (*arc_flags & ARC_FLAG_L2CACHE)
6122 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6123 mutex_exit(hash_lock);
6124 ARCSTAT_BUMP(arcstat_hits);
6125 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6126 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6127 data, metadata, hits);
6128
6129 if (done)
6130 done(NULL, zb, bp, buf, private);
6131 } else {
6132 uint64_t lsize = BP_GET_LSIZE(bp);
6133 uint64_t psize = BP_GET_PSIZE(bp);
6134 arc_callback_t *acb;
6135 vdev_t *vd = NULL;
6136 uint64_t addr = 0;
6137 boolean_t devw = B_FALSE;
6138 uint64_t size;
6139 abd_t *hdr_abd;
6140 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
6141
6142 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6143 rc = SET_ERROR(ENOENT);
6144 if (hash_lock != NULL)
6145 mutex_exit(hash_lock);
6146 goto out;
6147 }
6148
6149 if (hdr == NULL) {
6150 /*
6151 * This block is not in the cache or it has
6152 * embedded data.
6153 */
6154 arc_buf_hdr_t *exists = NULL;
6155 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6156 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
6157 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
6158
6159 if (!embedded_bp) {
6160 hdr->b_dva = *BP_IDENTITY(bp);
6161 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
6162 exists = buf_hash_insert(hdr, &hash_lock);
6163 }
6164 if (exists != NULL) {
6165 /* somebody beat us to the hash insert */
6166 mutex_exit(hash_lock);
6167 buf_discard_identity(hdr);
6168 arc_hdr_destroy(hdr);
6169 goto top; /* restart the IO request */
6170 }
6171 alloc_flags |= ARC_HDR_DO_ADAPT;
6172 } else {
6173 /*
6174 * This block is in the ghost cache or encrypted data
6175 * was requested and we didn't have it. If it was
6176 * L2-only (and thus didn't have an L1 hdr),
6177 * we realloc the header to add an L1 hdr.
6178 */
6179 if (!HDR_HAS_L1HDR(hdr)) {
6180 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6181 hdr_full_cache);
6182 }
6183
6184 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6185 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6186 ASSERT(!HDR_HAS_RABD(hdr));
6187 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6188 ASSERT0(zfs_refcount_count(
6189 &hdr->b_l1hdr.b_refcnt));
6190 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6191 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6192 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6193 /*
6194 * If this header already had an IO in progress
6195 * and we are performing another IO to fetch
6196 * encrypted data we must wait until the first
6197 * IO completes so as not to confuse
6198 * arc_read_done(). This should be very rare
6199 * and so the performance impact shouldn't
6200 * matter.
6201 */
6202 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6203 mutex_exit(hash_lock);
6204 goto top;
6205 }
6206
6207 /*
6208 * This is a delicate dance that we play here.
6209 * This hdr might be in the ghost list so we access
6210 * it to move it out of the ghost list before we
6211 * initiate the read. If it's a prefetch then
6212 * it won't have a callback so we'll remove the
6213 * reference that arc_buf_alloc_impl() created. We
6214 * do this after we've called arc_access() to
6215 * avoid hitting an assert in remove_reference().
6216 */
6217 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
6218 arc_access(hdr, hash_lock);
6219 }
6220
6221 arc_hdr_alloc_abd(hdr, alloc_flags);
6222 if (encrypted_read) {
6223 ASSERT(HDR_HAS_RABD(hdr));
6224 size = HDR_GET_PSIZE(hdr);
6225 hdr_abd = hdr->b_crypt_hdr.b_rabd;
6226 zio_flags |= ZIO_FLAG_RAW;
6227 } else {
6228 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6229 size = arc_hdr_size(hdr);
6230 hdr_abd = hdr->b_l1hdr.b_pabd;
6231
6232 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6233 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6234 }
6235
6236 /*
6237 * For authenticated bp's, we do not ask the ZIO layer
6238 * to authenticate them since this will cause the entire
6239 * IO to fail if the key isn't loaded. Instead, we
6240 * defer authentication until arc_buf_fill(), which will
6241 * verify the data when the key is available.
6242 */
6243 if (BP_IS_AUTHENTICATED(bp))
6244 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6245 }
6246
6247 if (*arc_flags & ARC_FLAG_PREFETCH &&
6248 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6249 if (HDR_HAS_L2HDR(hdr))
6250 l2arc_hdr_arcstats_decrement_state(hdr);
6251 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6252 if (HDR_HAS_L2HDR(hdr))
6253 l2arc_hdr_arcstats_increment_state(hdr);
6254 }
6255 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6256 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6257 if (*arc_flags & ARC_FLAG_L2CACHE)
6258 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6259 if (BP_IS_AUTHENTICATED(bp))
6260 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6261 if (BP_GET_LEVEL(bp) > 0)
6262 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6263 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
6264 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
6265 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6266
6267 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6268 acb->acb_done = done;
6269 acb->acb_private = private;
6270 acb->acb_compressed = compressed_read;
6271 acb->acb_encrypted = encrypted_read;
6272 acb->acb_noauth = noauth_read;
6273 acb->acb_zb = *zb;
6274
6275 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6276 hdr->b_l1hdr.b_acb = acb;
6277 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6278
6279 if (HDR_HAS_L2HDR(hdr) &&
6280 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6281 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6282 addr = hdr->b_l2hdr.b_daddr;
6283 /*
6284 * Lock out L2ARC device removal.
6285 */
6286 if (vdev_is_dead(vd) ||
6287 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6288 vd = NULL;
6289 }
6290
6291 /*
6292 * We count both async reads and scrub IOs as asynchronous so
6293 * that both can be upgraded in the event of a cache hit while
6294 * the read IO is still in-flight.
6295 */
6296 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6297 priority == ZIO_PRIORITY_SCRUB)
6298 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6299 else
6300 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6301
6302 /*
6303 * At this point, we have a level 1 cache miss or a blkptr
6304 * with embedded data. Try again in L2ARC if possible.
6305 */
6306 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6307
6308 /*
6309 * Skip ARC stat bump for block pointers with embedded
6310 * data. The data are read from the blkptr itself via
6311 * decode_embedded_bp_compressed().
6312 */
6313 if (!embedded_bp) {
6314 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6315 blkptr_t *, bp, uint64_t, lsize,
6316 zbookmark_phys_t *, zb);
6317 ARCSTAT_BUMP(arcstat_misses);
6318 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6319 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6320 metadata, misses);
6321 zfs_racct_read(size, 1);
6322 }
6323
6324 /* Check if the spa even has l2 configured */
6325 const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6326 spa->spa_l2cache.sav_count > 0;
6327
6328 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
6329 /*
6330 * Read from the L2ARC if the following are true:
6331 * 1. The L2ARC vdev was previously cached.
6332 * 2. This buffer still has L2ARC metadata.
6333 * 3. This buffer isn't currently writing to the L2ARC.
6334 * 4. The L2ARC entry wasn't evicted, which may
6335 * also have invalidated the vdev.
6336 * 5. This isn't prefetch or l2arc_noprefetch is 0.
6337 */
6338 if (HDR_HAS_L2HDR(hdr) &&
6339 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6340 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6341 l2arc_read_callback_t *cb;
6342 abd_t *abd;
6343 uint64_t asize;
6344
6345 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6346 ARCSTAT_BUMP(arcstat_l2_hits);
6347 hdr->b_l2hdr.b_hits++;
6348
6349 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6350 KM_SLEEP);
6351 cb->l2rcb_hdr = hdr;
6352 cb->l2rcb_bp = *bp;
6353 cb->l2rcb_zb = *zb;
6354 cb->l2rcb_flags = zio_flags;
6355
6356 /*
6357 * When Compressed ARC is disabled, but the
6358 * L2ARC block is compressed, arc_hdr_size()
6359 * will have returned LSIZE rather than PSIZE.
6360 */
6361 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6362 !HDR_COMPRESSION_ENABLED(hdr) &&
6363 HDR_GET_PSIZE(hdr) != 0) {
6364 size = HDR_GET_PSIZE(hdr);
6365 }
6366
6367 asize = vdev_psize_to_asize(vd, size);
6368 if (asize != size) {
6369 abd = abd_alloc_for_io(asize,
6370 HDR_ISTYPE_METADATA(hdr));
6371 cb->l2rcb_abd = abd;
6372 } else {
6373 abd = hdr_abd;
6374 }
6375
6376 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6377 addr + asize <= vd->vdev_psize -
6378 VDEV_LABEL_END_SIZE);
6379
6380 /*
6381 * l2arc read. The SCL_L2ARC lock will be
6382 * released by l2arc_read_done().
6383 * Issue a null zio if the underlying buffer
6384 * was squashed to zero size by compression.
6385 */
6386 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6387 ZIO_COMPRESS_EMPTY);
6388 rzio = zio_read_phys(pio, vd, addr,
6389 asize, abd,
6390 ZIO_CHECKSUM_OFF,
6391 l2arc_read_done, cb, priority,
6392 zio_flags | ZIO_FLAG_DONT_CACHE |
6393 ZIO_FLAG_CANFAIL |
6394 ZIO_FLAG_DONT_PROPAGATE |
6395 ZIO_FLAG_DONT_RETRY, B_FALSE);
6396 acb->acb_zio_head = rzio;
6397
6398 if (hash_lock != NULL)
6399 mutex_exit(hash_lock);
6400
6401 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6402 zio_t *, rzio);
6403 ARCSTAT_INCR(arcstat_l2_read_bytes,
6404 HDR_GET_PSIZE(hdr));
6405
6406 if (*arc_flags & ARC_FLAG_NOWAIT) {
6407 zio_nowait(rzio);
6408 goto out;
6409 }
6410
6411 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6412 if (zio_wait(rzio) == 0)
6413 goto out;
6414
6415 /* l2arc read error; goto zio_read() */
6416 if (hash_lock != NULL)
6417 mutex_enter(hash_lock);
6418 } else {
6419 DTRACE_PROBE1(l2arc__miss,
6420 arc_buf_hdr_t *, hdr);
6421 ARCSTAT_BUMP(arcstat_l2_misses);
6422 if (HDR_L2_WRITING(hdr))
6423 ARCSTAT_BUMP(arcstat_l2_rw_clash);
6424 spa_config_exit(spa, SCL_L2ARC, vd);
6425 }
6426 } else {
6427 if (vd != NULL)
6428 spa_config_exit(spa, SCL_L2ARC, vd);
6429
6430 /*
6431 * Only a spa with l2 should contribute to l2
6432 * miss stats. (Including the case of having a
6433 * faulted cache device - that's also a miss.)
6434 */
6435 if (spa_has_l2) {
6436 /*
6437 * Skip ARC stat bump for block pointers with
6438 * embedded data. The data are read from the
6439 * blkptr itself via
6440 * decode_embedded_bp_compressed().
6441 */
6442 if (!embedded_bp) {
6443 DTRACE_PROBE1(l2arc__miss,
6444 arc_buf_hdr_t *, hdr);
6445 ARCSTAT_BUMP(arcstat_l2_misses);
6446 }
6447 }
6448 }
6449
6450 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6451 arc_read_done, hdr, priority, zio_flags, zb);
6452 acb->acb_zio_head = rzio;
6453
6454 if (hash_lock != NULL)
6455 mutex_exit(hash_lock);
6456
6457 if (*arc_flags & ARC_FLAG_WAIT) {
6458 rc = zio_wait(rzio);
6459 goto out;
6460 }
6461
6462 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6463 zio_nowait(rzio);
6464 }
6465
6466 out:
6467 /* embedded bps don't actually go to disk */
6468 if (!embedded_bp)
6469 spa_read_history_add(spa, zb, *arc_flags);
6470 spl_fstrans_unmark(cookie);
6471 return (rc);
6472 }
6473
6474 arc_prune_t *
arc_add_prune_callback(arc_prune_func_t * func,void * private)6475 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6476 {
6477 arc_prune_t *p;
6478
6479 p = kmem_alloc(sizeof (*p), KM_SLEEP);
6480 p->p_pfunc = func;
6481 p->p_private = private;
6482 list_link_init(&p->p_node);
6483 zfs_refcount_create(&p->p_refcnt);
6484
6485 mutex_enter(&arc_prune_mtx);
6486 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6487 list_insert_head(&arc_prune_list, p);
6488 mutex_exit(&arc_prune_mtx);
6489
6490 return (p);
6491 }
6492
6493 void
arc_remove_prune_callback(arc_prune_t * p)6494 arc_remove_prune_callback(arc_prune_t *p)
6495 {
6496 boolean_t wait = B_FALSE;
6497 mutex_enter(&arc_prune_mtx);
6498 list_remove(&arc_prune_list, p);
6499 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6500 wait = B_TRUE;
6501 mutex_exit(&arc_prune_mtx);
6502
6503 /* wait for arc_prune_task to finish */
6504 if (wait)
6505 taskq_wait_outstanding(arc_prune_taskq, 0);
6506 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6507 zfs_refcount_destroy(&p->p_refcnt);
6508 kmem_free(p, sizeof (*p));
6509 }
6510
6511 /*
6512 * Notify the arc that a block was freed, and thus will never be used again.
6513 */
6514 void
arc_freed(spa_t * spa,const blkptr_t * bp)6515 arc_freed(spa_t *spa, const blkptr_t *bp)
6516 {
6517 arc_buf_hdr_t *hdr;
6518 kmutex_t *hash_lock;
6519 uint64_t guid = spa_load_guid(spa);
6520
6521 ASSERT(!BP_IS_EMBEDDED(bp));
6522
6523 hdr = buf_hash_find(guid, bp, &hash_lock);
6524 if (hdr == NULL)
6525 return;
6526
6527 /*
6528 * We might be trying to free a block that is still doing I/O
6529 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6530 * dmu_sync-ed block). If this block is being prefetched, then it
6531 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6532 * until the I/O completes. A block may also have a reference if it is
6533 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6534 * have written the new block to its final resting place on disk but
6535 * without the dedup flag set. This would have left the hdr in the MRU
6536 * state and discoverable. When the txg finally syncs it detects that
6537 * the block was overridden in open context and issues an override I/O.
6538 * Since this is a dedup block, the override I/O will determine if the
6539 * block is already in the DDT. If so, then it will replace the io_bp
6540 * with the bp from the DDT and allow the I/O to finish. When the I/O
6541 * reaches the done callback, dbuf_write_override_done, it will
6542 * check to see if the io_bp and io_bp_override are identical.
6543 * If they are not, then it indicates that the bp was replaced with
6544 * the bp in the DDT and the override bp is freed. This allows
6545 * us to arrive here with a reference on a block that is being
6546 * freed. So if we have an I/O in progress, or a reference to
6547 * this hdr, then we don't destroy the hdr.
6548 */
6549 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6550 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6551 arc_change_state(arc_anon, hdr, hash_lock);
6552 arc_hdr_destroy(hdr);
6553 mutex_exit(hash_lock);
6554 } else {
6555 mutex_exit(hash_lock);
6556 }
6557
6558 }
6559
6560 /*
6561 * Release this buffer from the cache, making it an anonymous buffer. This
6562 * must be done after a read and prior to modifying the buffer contents.
6563 * If the buffer has more than one reference, we must make
6564 * a new hdr for the buffer.
6565 */
6566 void
arc_release(arc_buf_t * buf,void * tag)6567 arc_release(arc_buf_t *buf, void *tag)
6568 {
6569 arc_buf_hdr_t *hdr = buf->b_hdr;
6570
6571 /*
6572 * It would be nice to assert that if its DMU metadata (level >
6573 * 0 || it's the dnode file), then it must be syncing context.
6574 * But we don't know that information at this level.
6575 */
6576
6577 mutex_enter(&buf->b_evict_lock);
6578
6579 ASSERT(HDR_HAS_L1HDR(hdr));
6580
6581 /*
6582 * We don't grab the hash lock prior to this check, because if
6583 * the buffer's header is in the arc_anon state, it won't be
6584 * linked into the hash table.
6585 */
6586 if (hdr->b_l1hdr.b_state == arc_anon) {
6587 mutex_exit(&buf->b_evict_lock);
6588 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6589 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6590 ASSERT(!HDR_HAS_L2HDR(hdr));
6591
6592 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6593 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6594 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6595
6596 hdr->b_l1hdr.b_arc_access = 0;
6597
6598 /*
6599 * If the buf is being overridden then it may already
6600 * have a hdr that is not empty.
6601 */
6602 buf_discard_identity(hdr);
6603 arc_buf_thaw(buf);
6604
6605 return;
6606 }
6607
6608 kmutex_t *hash_lock = HDR_LOCK(hdr);
6609 mutex_enter(hash_lock);
6610
6611 /*
6612 * This assignment is only valid as long as the hash_lock is
6613 * held, we must be careful not to reference state or the
6614 * b_state field after dropping the lock.
6615 */
6616 arc_state_t *state = hdr->b_l1hdr.b_state;
6617 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6618 ASSERT3P(state, !=, arc_anon);
6619
6620 /* this buffer is not on any list */
6621 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6622
6623 if (HDR_HAS_L2HDR(hdr)) {
6624 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6625
6626 /*
6627 * We have to recheck this conditional again now that
6628 * we're holding the l2ad_mtx to prevent a race with
6629 * another thread which might be concurrently calling
6630 * l2arc_evict(). In that case, l2arc_evict() might have
6631 * destroyed the header's L2 portion as we were waiting
6632 * to acquire the l2ad_mtx.
6633 */
6634 if (HDR_HAS_L2HDR(hdr))
6635 arc_hdr_l2hdr_destroy(hdr);
6636
6637 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6638 }
6639
6640 /*
6641 * Do we have more than one buf?
6642 */
6643 if (hdr->b_l1hdr.b_bufcnt > 1) {
6644 arc_buf_hdr_t *nhdr;
6645 uint64_t spa = hdr->b_spa;
6646 uint64_t psize = HDR_GET_PSIZE(hdr);
6647 uint64_t lsize = HDR_GET_LSIZE(hdr);
6648 boolean_t protected = HDR_PROTECTED(hdr);
6649 enum zio_compress compress = arc_hdr_get_compress(hdr);
6650 arc_buf_contents_t type = arc_buf_type(hdr);
6651 VERIFY3U(hdr->b_type, ==, type);
6652
6653 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6654 (void) remove_reference(hdr, hash_lock, tag);
6655
6656 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6657 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6658 ASSERT(ARC_BUF_LAST(buf));
6659 }
6660
6661 /*
6662 * Pull the data off of this hdr and attach it to
6663 * a new anonymous hdr. Also find the last buffer
6664 * in the hdr's buffer list.
6665 */
6666 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6667 ASSERT3P(lastbuf, !=, NULL);
6668
6669 /*
6670 * If the current arc_buf_t and the hdr are sharing their data
6671 * buffer, then we must stop sharing that block.
6672 */
6673 if (arc_buf_is_shared(buf)) {
6674 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6675 VERIFY(!arc_buf_is_shared(lastbuf));
6676
6677 /*
6678 * First, sever the block sharing relationship between
6679 * buf and the arc_buf_hdr_t.
6680 */
6681 arc_unshare_buf(hdr, buf);
6682
6683 /*
6684 * Now we need to recreate the hdr's b_pabd. Since we
6685 * have lastbuf handy, we try to share with it, but if
6686 * we can't then we allocate a new b_pabd and copy the
6687 * data from buf into it.
6688 */
6689 if (arc_can_share(hdr, lastbuf)) {
6690 arc_share_buf(hdr, lastbuf);
6691 } else {
6692 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
6693 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6694 buf->b_data, psize);
6695 }
6696 VERIFY3P(lastbuf->b_data, !=, NULL);
6697 } else if (HDR_SHARED_DATA(hdr)) {
6698 /*
6699 * Uncompressed shared buffers are always at the end
6700 * of the list. Compressed buffers don't have the
6701 * same requirements. This makes it hard to
6702 * simply assert that the lastbuf is shared so
6703 * we rely on the hdr's compression flags to determine
6704 * if we have a compressed, shared buffer.
6705 */
6706 ASSERT(arc_buf_is_shared(lastbuf) ||
6707 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6708 ASSERT(!ARC_BUF_SHARED(buf));
6709 }
6710
6711 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6712 ASSERT3P(state, !=, arc_l2c_only);
6713
6714 (void) zfs_refcount_remove_many(&state->arcs_size,
6715 arc_buf_size(buf), buf);
6716
6717 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6718 ASSERT3P(state, !=, arc_l2c_only);
6719 (void) zfs_refcount_remove_many(
6720 &state->arcs_esize[type],
6721 arc_buf_size(buf), buf);
6722 }
6723
6724 hdr->b_l1hdr.b_bufcnt -= 1;
6725 if (ARC_BUF_ENCRYPTED(buf))
6726 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6727
6728 arc_cksum_verify(buf);
6729 arc_buf_unwatch(buf);
6730
6731 /* if this is the last uncompressed buf free the checksum */
6732 if (!arc_hdr_has_uncompressed_buf(hdr))
6733 arc_cksum_free(hdr);
6734
6735 mutex_exit(hash_lock);
6736
6737 /*
6738 * Allocate a new hdr. The new hdr will contain a b_pabd
6739 * buffer which will be freed in arc_write().
6740 */
6741 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6742 compress, hdr->b_complevel, type);
6743 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6744 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6745 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6746 VERIFY3U(nhdr->b_type, ==, type);
6747 ASSERT(!HDR_SHARED_DATA(nhdr));
6748
6749 nhdr->b_l1hdr.b_buf = buf;
6750 nhdr->b_l1hdr.b_bufcnt = 1;
6751 if (ARC_BUF_ENCRYPTED(buf))
6752 nhdr->b_crypt_hdr.b_ebufcnt = 1;
6753 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6754 buf->b_hdr = nhdr;
6755
6756 mutex_exit(&buf->b_evict_lock);
6757 (void) zfs_refcount_add_many(&arc_anon->arcs_size,
6758 arc_buf_size(buf), buf);
6759 } else {
6760 mutex_exit(&buf->b_evict_lock);
6761 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6762 /* protected by hash lock, or hdr is on arc_anon */
6763 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6764 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6765 hdr->b_l1hdr.b_mru_hits = 0;
6766 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6767 hdr->b_l1hdr.b_mfu_hits = 0;
6768 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6769 arc_change_state(arc_anon, hdr, hash_lock);
6770 hdr->b_l1hdr.b_arc_access = 0;
6771
6772 mutex_exit(hash_lock);
6773 buf_discard_identity(hdr);
6774 arc_buf_thaw(buf);
6775 }
6776 }
6777
6778 int
arc_released(arc_buf_t * buf)6779 arc_released(arc_buf_t *buf)
6780 {
6781 int released;
6782
6783 mutex_enter(&buf->b_evict_lock);
6784 released = (buf->b_data != NULL &&
6785 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6786 mutex_exit(&buf->b_evict_lock);
6787 return (released);
6788 }
6789
6790 #ifdef ZFS_DEBUG
6791 int
arc_referenced(arc_buf_t * buf)6792 arc_referenced(arc_buf_t *buf)
6793 {
6794 int referenced;
6795
6796 mutex_enter(&buf->b_evict_lock);
6797 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6798 mutex_exit(&buf->b_evict_lock);
6799 return (referenced);
6800 }
6801 #endif
6802
6803 static void
arc_write_ready(zio_t * zio)6804 arc_write_ready(zio_t *zio)
6805 {
6806 arc_write_callback_t *callback = zio->io_private;
6807 arc_buf_t *buf = callback->awcb_buf;
6808 arc_buf_hdr_t *hdr = buf->b_hdr;
6809 blkptr_t *bp = zio->io_bp;
6810 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6811 fstrans_cookie_t cookie = spl_fstrans_mark();
6812
6813 ASSERT(HDR_HAS_L1HDR(hdr));
6814 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6815 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6816
6817 /*
6818 * If we're reexecuting this zio because the pool suspended, then
6819 * cleanup any state that was previously set the first time the
6820 * callback was invoked.
6821 */
6822 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6823 arc_cksum_free(hdr);
6824 arc_buf_unwatch(buf);
6825 if (hdr->b_l1hdr.b_pabd != NULL) {
6826 if (arc_buf_is_shared(buf)) {
6827 arc_unshare_buf(hdr, buf);
6828 } else {
6829 arc_hdr_free_abd(hdr, B_FALSE);
6830 }
6831 }
6832
6833 if (HDR_HAS_RABD(hdr))
6834 arc_hdr_free_abd(hdr, B_TRUE);
6835 }
6836 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6837 ASSERT(!HDR_HAS_RABD(hdr));
6838 ASSERT(!HDR_SHARED_DATA(hdr));
6839 ASSERT(!arc_buf_is_shared(buf));
6840
6841 callback->awcb_ready(zio, buf, callback->awcb_private);
6842
6843 if (HDR_IO_IN_PROGRESS(hdr))
6844 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6845
6846 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6847
6848 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6849 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6850
6851 if (BP_IS_PROTECTED(bp)) {
6852 /* ZIL blocks are written through zio_rewrite */
6853 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6854 ASSERT(HDR_PROTECTED(hdr));
6855
6856 if (BP_SHOULD_BYTESWAP(bp)) {
6857 if (BP_GET_LEVEL(bp) > 0) {
6858 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6859 } else {
6860 hdr->b_l1hdr.b_byteswap =
6861 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6862 }
6863 } else {
6864 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6865 }
6866
6867 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6868 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6869 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6870 hdr->b_crypt_hdr.b_iv);
6871 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6872 }
6873
6874 /*
6875 * If this block was written for raw encryption but the zio layer
6876 * ended up only authenticating it, adjust the buffer flags now.
6877 */
6878 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6879 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6880 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6881 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6882 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6883 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6884 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6885 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6886 }
6887
6888 /* this must be done after the buffer flags are adjusted */
6889 arc_cksum_compute(buf);
6890
6891 enum zio_compress compress;
6892 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6893 compress = ZIO_COMPRESS_OFF;
6894 } else {
6895 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6896 compress = BP_GET_COMPRESS(bp);
6897 }
6898 HDR_SET_PSIZE(hdr, psize);
6899 arc_hdr_set_compress(hdr, compress);
6900 hdr->b_complevel = zio->io_prop.zp_complevel;
6901
6902 if (zio->io_error != 0 || psize == 0)
6903 goto out;
6904
6905 /*
6906 * Fill the hdr with data. If the buffer is encrypted we have no choice
6907 * but to copy the data into b_radb. If the hdr is compressed, the data
6908 * we want is available from the zio, otherwise we can take it from
6909 * the buf.
6910 *
6911 * We might be able to share the buf's data with the hdr here. However,
6912 * doing so would cause the ARC to be full of linear ABDs if we write a
6913 * lot of shareable data. As a compromise, we check whether scattered
6914 * ABDs are allowed, and assume that if they are then the user wants
6915 * the ARC to be primarily filled with them regardless of the data being
6916 * written. Therefore, if they're allowed then we allocate one and copy
6917 * the data into it; otherwise, we share the data directly if we can.
6918 */
6919 if (ARC_BUF_ENCRYPTED(buf)) {
6920 ASSERT3U(psize, >, 0);
6921 ASSERT(ARC_BUF_COMPRESSED(buf));
6922 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | ARC_HDR_ALLOC_RDATA |
6923 ARC_HDR_USE_RESERVE);
6924 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6925 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6926 /*
6927 * Ideally, we would always copy the io_abd into b_pabd, but the
6928 * user may have disabled compressed ARC, thus we must check the
6929 * hdr's compression setting rather than the io_bp's.
6930 */
6931 if (BP_IS_ENCRYPTED(bp)) {
6932 ASSERT3U(psize, >, 0);
6933 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6934 ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE);
6935 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6936 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6937 !ARC_BUF_COMPRESSED(buf)) {
6938 ASSERT3U(psize, >, 0);
6939 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6940 ARC_HDR_USE_RESERVE);
6941 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6942 } else {
6943 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6944 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6945 ARC_HDR_USE_RESERVE);
6946 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6947 arc_buf_size(buf));
6948 }
6949 } else {
6950 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6951 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6952 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6953
6954 arc_share_buf(hdr, buf);
6955 }
6956
6957 out:
6958 arc_hdr_verify(hdr, bp);
6959 spl_fstrans_unmark(cookie);
6960 }
6961
6962 static void
arc_write_children_ready(zio_t * zio)6963 arc_write_children_ready(zio_t *zio)
6964 {
6965 arc_write_callback_t *callback = zio->io_private;
6966 arc_buf_t *buf = callback->awcb_buf;
6967
6968 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6969 }
6970
6971 /*
6972 * The SPA calls this callback for each physical write that happens on behalf
6973 * of a logical write. See the comment in dbuf_write_physdone() for details.
6974 */
6975 static void
arc_write_physdone(zio_t * zio)6976 arc_write_physdone(zio_t *zio)
6977 {
6978 arc_write_callback_t *cb = zio->io_private;
6979 if (cb->awcb_physdone != NULL)
6980 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6981 }
6982
6983 static void
arc_write_done(zio_t * zio)6984 arc_write_done(zio_t *zio)
6985 {
6986 arc_write_callback_t *callback = zio->io_private;
6987 arc_buf_t *buf = callback->awcb_buf;
6988 arc_buf_hdr_t *hdr = buf->b_hdr;
6989
6990 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6991
6992 if (zio->io_error == 0) {
6993 arc_hdr_verify(hdr, zio->io_bp);
6994
6995 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6996 buf_discard_identity(hdr);
6997 } else {
6998 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6999 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
7000 }
7001 } else {
7002 ASSERT(HDR_EMPTY(hdr));
7003 }
7004
7005 /*
7006 * If the block to be written was all-zero or compressed enough to be
7007 * embedded in the BP, no write was performed so there will be no
7008 * dva/birth/checksum. The buffer must therefore remain anonymous
7009 * (and uncached).
7010 */
7011 if (!HDR_EMPTY(hdr)) {
7012 arc_buf_hdr_t *exists;
7013 kmutex_t *hash_lock;
7014
7015 ASSERT3U(zio->io_error, ==, 0);
7016
7017 arc_cksum_verify(buf);
7018
7019 exists = buf_hash_insert(hdr, &hash_lock);
7020 if (exists != NULL) {
7021 /*
7022 * This can only happen if we overwrite for
7023 * sync-to-convergence, because we remove
7024 * buffers from the hash table when we arc_free().
7025 */
7026 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
7027 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7028 panic("bad overwrite, hdr=%p exists=%p",
7029 (void *)hdr, (void *)exists);
7030 ASSERT(zfs_refcount_is_zero(
7031 &exists->b_l1hdr.b_refcnt));
7032 arc_change_state(arc_anon, exists, hash_lock);
7033 arc_hdr_destroy(exists);
7034 mutex_exit(hash_lock);
7035 exists = buf_hash_insert(hdr, &hash_lock);
7036 ASSERT3P(exists, ==, NULL);
7037 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
7038 /* nopwrite */
7039 ASSERT(zio->io_prop.zp_nopwrite);
7040 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7041 panic("bad nopwrite, hdr=%p exists=%p",
7042 (void *)hdr, (void *)exists);
7043 } else {
7044 /* Dedup */
7045 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
7046 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
7047 ASSERT(BP_GET_DEDUP(zio->io_bp));
7048 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
7049 }
7050 }
7051 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7052 /* if it's not anon, we are doing a scrub */
7053 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
7054 arc_access(hdr, hash_lock);
7055 mutex_exit(hash_lock);
7056 } else {
7057 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7058 }
7059
7060 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
7061 callback->awcb_done(zio, buf, callback->awcb_private);
7062
7063 abd_free(zio->io_abd);
7064 kmem_free(callback, sizeof (arc_write_callback_t));
7065 }
7066
7067 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t l2arc,const zio_prop_t * zp,arc_write_done_func_t * ready,arc_write_done_func_t * children_ready,arc_write_done_func_t * physdone,arc_write_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,const zbookmark_phys_t * zb)7068 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
7069 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
7070 const zio_prop_t *zp, arc_write_done_func_t *ready,
7071 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
7072 arc_write_done_func_t *done, void *private, zio_priority_t priority,
7073 int zio_flags, const zbookmark_phys_t *zb)
7074 {
7075 arc_buf_hdr_t *hdr = buf->b_hdr;
7076 arc_write_callback_t *callback;
7077 zio_t *zio;
7078 zio_prop_t localprop = *zp;
7079
7080 ASSERT3P(ready, !=, NULL);
7081 ASSERT3P(done, !=, NULL);
7082 ASSERT(!HDR_IO_ERROR(hdr));
7083 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
7084 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
7085 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
7086 if (l2arc)
7087 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
7088
7089 if (ARC_BUF_ENCRYPTED(buf)) {
7090 ASSERT(ARC_BUF_COMPRESSED(buf));
7091 localprop.zp_encrypt = B_TRUE;
7092 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7093 localprop.zp_complevel = hdr->b_complevel;
7094 localprop.zp_byteorder =
7095 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7096 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7097 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
7098 ZIO_DATA_SALT_LEN);
7099 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
7100 ZIO_DATA_IV_LEN);
7101 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
7102 ZIO_DATA_MAC_LEN);
7103 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7104 localprop.zp_nopwrite = B_FALSE;
7105 localprop.zp_copies =
7106 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7107 }
7108 zio_flags |= ZIO_FLAG_RAW;
7109 } else if (ARC_BUF_COMPRESSED(buf)) {
7110 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7111 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7112 localprop.zp_complevel = hdr->b_complevel;
7113 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
7114 }
7115 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
7116 callback->awcb_ready = ready;
7117 callback->awcb_children_ready = children_ready;
7118 callback->awcb_physdone = physdone;
7119 callback->awcb_done = done;
7120 callback->awcb_private = private;
7121 callback->awcb_buf = buf;
7122
7123 /*
7124 * The hdr's b_pabd is now stale, free it now. A new data block
7125 * will be allocated when the zio pipeline calls arc_write_ready().
7126 */
7127 if (hdr->b_l1hdr.b_pabd != NULL) {
7128 /*
7129 * If the buf is currently sharing the data block with
7130 * the hdr then we need to break that relationship here.
7131 * The hdr will remain with a NULL data pointer and the
7132 * buf will take sole ownership of the block.
7133 */
7134 if (arc_buf_is_shared(buf)) {
7135 arc_unshare_buf(hdr, buf);
7136 } else {
7137 arc_hdr_free_abd(hdr, B_FALSE);
7138 }
7139 VERIFY3P(buf->b_data, !=, NULL);
7140 }
7141
7142 if (HDR_HAS_RABD(hdr))
7143 arc_hdr_free_abd(hdr, B_TRUE);
7144
7145 if (!(zio_flags & ZIO_FLAG_RAW))
7146 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
7147
7148 ASSERT(!arc_buf_is_shared(buf));
7149 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
7150
7151 zio = zio_write(pio, spa, txg, bp,
7152 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
7153 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
7154 (children_ready != NULL) ? arc_write_children_ready : NULL,
7155 arc_write_physdone, arc_write_done, callback,
7156 priority, zio_flags, zb);
7157
7158 return (zio);
7159 }
7160
7161 void
arc_tempreserve_clear(uint64_t reserve)7162 arc_tempreserve_clear(uint64_t reserve)
7163 {
7164 atomic_add_64(&arc_tempreserve, -reserve);
7165 ASSERT((int64_t)arc_tempreserve >= 0);
7166 }
7167
7168 int
arc_tempreserve_space(spa_t * spa,uint64_t reserve,uint64_t txg)7169 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
7170 {
7171 int error;
7172 uint64_t anon_size;
7173
7174 if (!arc_no_grow &&
7175 reserve > arc_c/4 &&
7176 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7177 arc_c = MIN(arc_c_max, reserve * 4);
7178
7179 /*
7180 * Throttle when the calculated memory footprint for the TXG
7181 * exceeds the target ARC size.
7182 */
7183 if (reserve > arc_c) {
7184 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7185 return (SET_ERROR(ERESTART));
7186 }
7187
7188 /*
7189 * Don't count loaned bufs as in flight dirty data to prevent long
7190 * network delays from blocking transactions that are ready to be
7191 * assigned to a txg.
7192 */
7193
7194 /* assert that it has not wrapped around */
7195 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7196
7197 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
7198 arc_loaned_bytes), 0);
7199
7200 /*
7201 * Writes will, almost always, require additional memory allocations
7202 * in order to compress/encrypt/etc the data. We therefore need to
7203 * make sure that there is sufficient available memory for this.
7204 */
7205 error = arc_memory_throttle(spa, reserve, txg);
7206 if (error != 0)
7207 return (error);
7208
7209 /*
7210 * Throttle writes when the amount of dirty data in the cache
7211 * gets too large. We try to keep the cache less than half full
7212 * of dirty blocks so that our sync times don't grow too large.
7213 *
7214 * In the case of one pool being built on another pool, we want
7215 * to make sure we don't end up throttling the lower (backing)
7216 * pool when the upper pool is the majority contributor to dirty
7217 * data. To insure we make forward progress during throttling, we
7218 * also check the current pool's net dirty data and only throttle
7219 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7220 * data in the cache.
7221 *
7222 * Note: if two requests come in concurrently, we might let them
7223 * both succeed, when one of them should fail. Not a huge deal.
7224 */
7225 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7226 uint64_t spa_dirty_anon = spa_dirty_data(spa);
7227 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7228 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7229 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
7230 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7231 #ifdef ZFS_DEBUG
7232 uint64_t meta_esize = zfs_refcount_count(
7233 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7234 uint64_t data_esize =
7235 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7236 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7237 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7238 (u_longlong_t)arc_tempreserve >> 10,
7239 (u_longlong_t)meta_esize >> 10,
7240 (u_longlong_t)data_esize >> 10,
7241 (u_longlong_t)reserve >> 10,
7242 (u_longlong_t)rarc_c >> 10);
7243 #endif
7244 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7245 return (SET_ERROR(ERESTART));
7246 }
7247 atomic_add_64(&arc_tempreserve, reserve);
7248 return (0);
7249 }
7250
7251 static void
arc_kstat_update_state(arc_state_t * state,kstat_named_t * size,kstat_named_t * evict_data,kstat_named_t * evict_metadata)7252 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7253 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7254 {
7255 size->value.ui64 = zfs_refcount_count(&state->arcs_size);
7256 evict_data->value.ui64 =
7257 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7258 evict_metadata->value.ui64 =
7259 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7260 }
7261
7262 static int
arc_kstat_update(kstat_t * ksp,int rw)7263 arc_kstat_update(kstat_t *ksp, int rw)
7264 {
7265 arc_stats_t *as = ksp->ks_data;
7266
7267 if (rw == KSTAT_WRITE)
7268 return (SET_ERROR(EACCES));
7269
7270 as->arcstat_hits.value.ui64 =
7271 wmsum_value(&arc_sums.arcstat_hits);
7272 as->arcstat_misses.value.ui64 =
7273 wmsum_value(&arc_sums.arcstat_misses);
7274 as->arcstat_demand_data_hits.value.ui64 =
7275 wmsum_value(&arc_sums.arcstat_demand_data_hits);
7276 as->arcstat_demand_data_misses.value.ui64 =
7277 wmsum_value(&arc_sums.arcstat_demand_data_misses);
7278 as->arcstat_demand_metadata_hits.value.ui64 =
7279 wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7280 as->arcstat_demand_metadata_misses.value.ui64 =
7281 wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7282 as->arcstat_prefetch_data_hits.value.ui64 =
7283 wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7284 as->arcstat_prefetch_data_misses.value.ui64 =
7285 wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7286 as->arcstat_prefetch_metadata_hits.value.ui64 =
7287 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7288 as->arcstat_prefetch_metadata_misses.value.ui64 =
7289 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7290 as->arcstat_mru_hits.value.ui64 =
7291 wmsum_value(&arc_sums.arcstat_mru_hits);
7292 as->arcstat_mru_ghost_hits.value.ui64 =
7293 wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7294 as->arcstat_mfu_hits.value.ui64 =
7295 wmsum_value(&arc_sums.arcstat_mfu_hits);
7296 as->arcstat_mfu_ghost_hits.value.ui64 =
7297 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7298 as->arcstat_deleted.value.ui64 =
7299 wmsum_value(&arc_sums.arcstat_deleted);
7300 as->arcstat_mutex_miss.value.ui64 =
7301 wmsum_value(&arc_sums.arcstat_mutex_miss);
7302 as->arcstat_access_skip.value.ui64 =
7303 wmsum_value(&arc_sums.arcstat_access_skip);
7304 as->arcstat_evict_skip.value.ui64 =
7305 wmsum_value(&arc_sums.arcstat_evict_skip);
7306 as->arcstat_evict_not_enough.value.ui64 =
7307 wmsum_value(&arc_sums.arcstat_evict_not_enough);
7308 as->arcstat_evict_l2_cached.value.ui64 =
7309 wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7310 as->arcstat_evict_l2_eligible.value.ui64 =
7311 wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7312 as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7313 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7314 as->arcstat_evict_l2_eligible_mru.value.ui64 =
7315 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7316 as->arcstat_evict_l2_ineligible.value.ui64 =
7317 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7318 as->arcstat_evict_l2_skip.value.ui64 =
7319 wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7320 as->arcstat_hash_collisions.value.ui64 =
7321 wmsum_value(&arc_sums.arcstat_hash_collisions);
7322 as->arcstat_hash_chains.value.ui64 =
7323 wmsum_value(&arc_sums.arcstat_hash_chains);
7324 as->arcstat_size.value.ui64 =
7325 aggsum_value(&arc_sums.arcstat_size);
7326 as->arcstat_compressed_size.value.ui64 =
7327 wmsum_value(&arc_sums.arcstat_compressed_size);
7328 as->arcstat_uncompressed_size.value.ui64 =
7329 wmsum_value(&arc_sums.arcstat_uncompressed_size);
7330 as->arcstat_overhead_size.value.ui64 =
7331 wmsum_value(&arc_sums.arcstat_overhead_size);
7332 as->arcstat_hdr_size.value.ui64 =
7333 wmsum_value(&arc_sums.arcstat_hdr_size);
7334 as->arcstat_data_size.value.ui64 =
7335 wmsum_value(&arc_sums.arcstat_data_size);
7336 as->arcstat_metadata_size.value.ui64 =
7337 wmsum_value(&arc_sums.arcstat_metadata_size);
7338 as->arcstat_dbuf_size.value.ui64 =
7339 wmsum_value(&arc_sums.arcstat_dbuf_size);
7340 #if defined(COMPAT_FREEBSD11)
7341 as->arcstat_other_size.value.ui64 =
7342 wmsum_value(&arc_sums.arcstat_bonus_size) +
7343 aggsum_value(&arc_sums.arcstat_dnode_size) +
7344 wmsum_value(&arc_sums.arcstat_dbuf_size);
7345 #endif
7346
7347 arc_kstat_update_state(arc_anon,
7348 &as->arcstat_anon_size,
7349 &as->arcstat_anon_evictable_data,
7350 &as->arcstat_anon_evictable_metadata);
7351 arc_kstat_update_state(arc_mru,
7352 &as->arcstat_mru_size,
7353 &as->arcstat_mru_evictable_data,
7354 &as->arcstat_mru_evictable_metadata);
7355 arc_kstat_update_state(arc_mru_ghost,
7356 &as->arcstat_mru_ghost_size,
7357 &as->arcstat_mru_ghost_evictable_data,
7358 &as->arcstat_mru_ghost_evictable_metadata);
7359 arc_kstat_update_state(arc_mfu,
7360 &as->arcstat_mfu_size,
7361 &as->arcstat_mfu_evictable_data,
7362 &as->arcstat_mfu_evictable_metadata);
7363 arc_kstat_update_state(arc_mfu_ghost,
7364 &as->arcstat_mfu_ghost_size,
7365 &as->arcstat_mfu_ghost_evictable_data,
7366 &as->arcstat_mfu_ghost_evictable_metadata);
7367
7368 as->arcstat_dnode_size.value.ui64 =
7369 aggsum_value(&arc_sums.arcstat_dnode_size);
7370 as->arcstat_bonus_size.value.ui64 =
7371 wmsum_value(&arc_sums.arcstat_bonus_size);
7372 as->arcstat_l2_hits.value.ui64 =
7373 wmsum_value(&arc_sums.arcstat_l2_hits);
7374 as->arcstat_l2_misses.value.ui64 =
7375 wmsum_value(&arc_sums.arcstat_l2_misses);
7376 as->arcstat_l2_prefetch_asize.value.ui64 =
7377 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7378 as->arcstat_l2_mru_asize.value.ui64 =
7379 wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7380 as->arcstat_l2_mfu_asize.value.ui64 =
7381 wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7382 as->arcstat_l2_bufc_data_asize.value.ui64 =
7383 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7384 as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7385 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7386 as->arcstat_l2_feeds.value.ui64 =
7387 wmsum_value(&arc_sums.arcstat_l2_feeds);
7388 as->arcstat_l2_rw_clash.value.ui64 =
7389 wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7390 as->arcstat_l2_read_bytes.value.ui64 =
7391 wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7392 as->arcstat_l2_write_bytes.value.ui64 =
7393 wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7394 as->arcstat_l2_writes_sent.value.ui64 =
7395 wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7396 as->arcstat_l2_writes_done.value.ui64 =
7397 wmsum_value(&arc_sums.arcstat_l2_writes_done);
7398 as->arcstat_l2_writes_error.value.ui64 =
7399 wmsum_value(&arc_sums.arcstat_l2_writes_error);
7400 as->arcstat_l2_writes_lock_retry.value.ui64 =
7401 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7402 as->arcstat_l2_evict_lock_retry.value.ui64 =
7403 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7404 as->arcstat_l2_evict_reading.value.ui64 =
7405 wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7406 as->arcstat_l2_evict_l1cached.value.ui64 =
7407 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7408 as->arcstat_l2_free_on_write.value.ui64 =
7409 wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7410 as->arcstat_l2_abort_lowmem.value.ui64 =
7411 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7412 as->arcstat_l2_cksum_bad.value.ui64 =
7413 wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7414 as->arcstat_l2_io_error.value.ui64 =
7415 wmsum_value(&arc_sums.arcstat_l2_io_error);
7416 as->arcstat_l2_lsize.value.ui64 =
7417 wmsum_value(&arc_sums.arcstat_l2_lsize);
7418 as->arcstat_l2_psize.value.ui64 =
7419 wmsum_value(&arc_sums.arcstat_l2_psize);
7420 as->arcstat_l2_hdr_size.value.ui64 =
7421 aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7422 as->arcstat_l2_log_blk_writes.value.ui64 =
7423 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7424 as->arcstat_l2_log_blk_asize.value.ui64 =
7425 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7426 as->arcstat_l2_log_blk_count.value.ui64 =
7427 wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7428 as->arcstat_l2_rebuild_success.value.ui64 =
7429 wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7430 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7431 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7432 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7433 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7434 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7435 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7436 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7437 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7438 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7439 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7440 as->arcstat_l2_rebuild_size.value.ui64 =
7441 wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7442 as->arcstat_l2_rebuild_asize.value.ui64 =
7443 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7444 as->arcstat_l2_rebuild_bufs.value.ui64 =
7445 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7446 as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7447 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7448 as->arcstat_l2_rebuild_log_blks.value.ui64 =
7449 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7450 as->arcstat_memory_throttle_count.value.ui64 =
7451 wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7452 as->arcstat_memory_direct_count.value.ui64 =
7453 wmsum_value(&arc_sums.arcstat_memory_direct_count);
7454 as->arcstat_memory_indirect_count.value.ui64 =
7455 wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7456
7457 as->arcstat_memory_all_bytes.value.ui64 =
7458 arc_all_memory();
7459 as->arcstat_memory_free_bytes.value.ui64 =
7460 arc_free_memory();
7461 as->arcstat_memory_available_bytes.value.i64 =
7462 arc_available_memory();
7463
7464 as->arcstat_prune.value.ui64 =
7465 wmsum_value(&arc_sums.arcstat_prune);
7466 as->arcstat_meta_used.value.ui64 =
7467 aggsum_value(&arc_sums.arcstat_meta_used);
7468 as->arcstat_async_upgrade_sync.value.ui64 =
7469 wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7470 as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7471 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7472 as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7473 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7474 as->arcstat_raw_size.value.ui64 =
7475 wmsum_value(&arc_sums.arcstat_raw_size);
7476 as->arcstat_cached_only_in_progress.value.ui64 =
7477 wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7478 as->arcstat_abd_chunk_waste_size.value.ui64 =
7479 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7480
7481 return (0);
7482 }
7483
7484 /*
7485 * This function *must* return indices evenly distributed between all
7486 * sublists of the multilist. This is needed due to how the ARC eviction
7487 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7488 * distributed between all sublists and uses this assumption when
7489 * deciding which sublist to evict from and how much to evict from it.
7490 */
7491 static unsigned int
arc_state_multilist_index_func(multilist_t * ml,void * obj)7492 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7493 {
7494 arc_buf_hdr_t *hdr = obj;
7495
7496 /*
7497 * We rely on b_dva to generate evenly distributed index
7498 * numbers using buf_hash below. So, as an added precaution,
7499 * let's make sure we never add empty buffers to the arc lists.
7500 */
7501 ASSERT(!HDR_EMPTY(hdr));
7502
7503 /*
7504 * The assumption here, is the hash value for a given
7505 * arc_buf_hdr_t will remain constant throughout its lifetime
7506 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7507 * Thus, we don't need to store the header's sublist index
7508 * on insertion, as this index can be recalculated on removal.
7509 *
7510 * Also, the low order bits of the hash value are thought to be
7511 * distributed evenly. Otherwise, in the case that the multilist
7512 * has a power of two number of sublists, each sublists' usage
7513 * would not be evenly distributed. In this context full 64bit
7514 * division would be a waste of time, so limit it to 32 bits.
7515 */
7516 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7517 multilist_get_num_sublists(ml));
7518 }
7519
7520 static unsigned int
arc_state_l2c_multilist_index_func(multilist_t * ml,void * obj)7521 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7522 {
7523 panic("Header %p insert into arc_l2c_only %p", obj, ml);
7524 }
7525
7526 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7527 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7528 cmn_err(CE_WARN, \
7529 "ignoring tunable %s (using %llu instead)", \
7530 (#tuning), (value)); \
7531 } \
7532 } while (0)
7533
7534 /*
7535 * Called during module initialization and periodically thereafter to
7536 * apply reasonable changes to the exposed performance tunings. Can also be
7537 * called explicitly by param_set_arc_*() functions when ARC tunables are
7538 * updated manually. Non-zero zfs_* values which differ from the currently set
7539 * values will be applied.
7540 */
7541 void
arc_tuning_update(boolean_t verbose)7542 arc_tuning_update(boolean_t verbose)
7543 {
7544 uint64_t allmem = arc_all_memory();
7545 unsigned long limit;
7546
7547 /* Valid range: 32M - <arc_c_max> */
7548 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7549 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7550 (zfs_arc_min <= arc_c_max)) {
7551 arc_c_min = zfs_arc_min;
7552 arc_c = MAX(arc_c, arc_c_min);
7553 }
7554 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7555
7556 /* Valid range: 64M - <all physical memory> */
7557 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7558 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7559 (zfs_arc_max > arc_c_min)) {
7560 arc_c_max = zfs_arc_max;
7561 arc_c = MIN(arc_c, arc_c_max);
7562 arc_p = (arc_c >> 1);
7563 if (arc_meta_limit > arc_c_max)
7564 arc_meta_limit = arc_c_max;
7565 if (arc_dnode_size_limit > arc_meta_limit)
7566 arc_dnode_size_limit = arc_meta_limit;
7567 }
7568 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7569
7570 /* Valid range: 16M - <arc_c_max> */
7571 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7572 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7573 (zfs_arc_meta_min <= arc_c_max)) {
7574 arc_meta_min = zfs_arc_meta_min;
7575 if (arc_meta_limit < arc_meta_min)
7576 arc_meta_limit = arc_meta_min;
7577 if (arc_dnode_size_limit < arc_meta_min)
7578 arc_dnode_size_limit = arc_meta_min;
7579 }
7580 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose);
7581
7582 /* Valid range: <arc_meta_min> - <arc_c_max> */
7583 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7584 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7585 if ((limit != arc_meta_limit) &&
7586 (limit >= arc_meta_min) &&
7587 (limit <= arc_c_max))
7588 arc_meta_limit = limit;
7589 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose);
7590
7591 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7592 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7593 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
7594 if ((limit != arc_dnode_size_limit) &&
7595 (limit >= arc_meta_min) &&
7596 (limit <= arc_meta_limit))
7597 arc_dnode_size_limit = limit;
7598 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit,
7599 verbose);
7600
7601 /* Valid range: 1 - N */
7602 if (zfs_arc_grow_retry)
7603 arc_grow_retry = zfs_arc_grow_retry;
7604
7605 /* Valid range: 1 - N */
7606 if (zfs_arc_shrink_shift) {
7607 arc_shrink_shift = zfs_arc_shrink_shift;
7608 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7609 }
7610
7611 /* Valid range: 1 - N */
7612 if (zfs_arc_p_min_shift)
7613 arc_p_min_shift = zfs_arc_p_min_shift;
7614
7615 /* Valid range: 1 - N ms */
7616 if (zfs_arc_min_prefetch_ms)
7617 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7618
7619 /* Valid range: 1 - N ms */
7620 if (zfs_arc_min_prescient_prefetch_ms) {
7621 arc_min_prescient_prefetch_ms =
7622 zfs_arc_min_prescient_prefetch_ms;
7623 }
7624
7625 /* Valid range: 0 - 100 */
7626 if ((zfs_arc_lotsfree_percent >= 0) &&
7627 (zfs_arc_lotsfree_percent <= 100))
7628 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7629 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7630 verbose);
7631
7632 /* Valid range: 0 - <all physical memory> */
7633 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7634 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
7635 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7636 }
7637
7638 static void
arc_state_multilist_init(multilist_t * ml,multilist_sublist_index_func_t * index_func,int * maxcountp)7639 arc_state_multilist_init(multilist_t *ml,
7640 multilist_sublist_index_func_t *index_func, int *maxcountp)
7641 {
7642 multilist_create(ml, sizeof (arc_buf_hdr_t),
7643 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7644 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7645 }
7646
7647 static void
arc_state_init(void)7648 arc_state_init(void)
7649 {
7650 int num_sublists = 0;
7651
7652 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7653 arc_state_multilist_index_func, &num_sublists);
7654 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7655 arc_state_multilist_index_func, &num_sublists);
7656 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7657 arc_state_multilist_index_func, &num_sublists);
7658 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7659 arc_state_multilist_index_func, &num_sublists);
7660 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7661 arc_state_multilist_index_func, &num_sublists);
7662 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7663 arc_state_multilist_index_func, &num_sublists);
7664 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7665 arc_state_multilist_index_func, &num_sublists);
7666 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7667 arc_state_multilist_index_func, &num_sublists);
7668
7669 /*
7670 * L2 headers should never be on the L2 state list since they don't
7671 * have L1 headers allocated. Special index function asserts that.
7672 */
7673 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7674 arc_state_l2c_multilist_index_func, &num_sublists);
7675 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7676 arc_state_l2c_multilist_index_func, &num_sublists);
7677
7678 /*
7679 * Keep track of the number of markers needed to reclaim buffers from
7680 * any ARC state. The markers will be pre-allocated so as to minimize
7681 * the number of memory allocations performed by the eviction thread.
7682 */
7683 arc_state_evict_marker_count = num_sublists;
7684
7685 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7686 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7687 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7688 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7689 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7690 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7691 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7692 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7693 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7694 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7695 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7696 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7697
7698 zfs_refcount_create(&arc_anon->arcs_size);
7699 zfs_refcount_create(&arc_mru->arcs_size);
7700 zfs_refcount_create(&arc_mru_ghost->arcs_size);
7701 zfs_refcount_create(&arc_mfu->arcs_size);
7702 zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7703 zfs_refcount_create(&arc_l2c_only->arcs_size);
7704
7705 wmsum_init(&arc_sums.arcstat_hits, 0);
7706 wmsum_init(&arc_sums.arcstat_misses, 0);
7707 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7708 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7709 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7710 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7711 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7712 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7713 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7714 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7715 wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7716 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7717 wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7718 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7719 wmsum_init(&arc_sums.arcstat_deleted, 0);
7720 wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7721 wmsum_init(&arc_sums.arcstat_access_skip, 0);
7722 wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7723 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7724 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7725 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7726 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7727 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7728 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7729 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7730 wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7731 wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7732 aggsum_init(&arc_sums.arcstat_size, 0);
7733 wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7734 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7735 wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7736 wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7737 wmsum_init(&arc_sums.arcstat_data_size, 0);
7738 wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7739 wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7740 aggsum_init(&arc_sums.arcstat_dnode_size, 0);
7741 wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7742 wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7743 wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7744 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7745 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7746 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7747 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7748 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7749 wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7750 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7751 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7752 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7753 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7754 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7755 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7756 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7757 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7758 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7759 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7760 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7761 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7762 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7763 wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7764 wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7765 wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7766 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7767 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7768 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7769 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7770 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7771 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7772 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7773 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7774 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7775 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7776 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7777 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7778 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7779 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7780 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7781 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7782 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7783 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7784 wmsum_init(&arc_sums.arcstat_prune, 0);
7785 aggsum_init(&arc_sums.arcstat_meta_used, 0);
7786 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7787 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7788 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7789 wmsum_init(&arc_sums.arcstat_raw_size, 0);
7790 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7791 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7792
7793 arc_anon->arcs_state = ARC_STATE_ANON;
7794 arc_mru->arcs_state = ARC_STATE_MRU;
7795 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7796 arc_mfu->arcs_state = ARC_STATE_MFU;
7797 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7798 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7799 }
7800
7801 static void
arc_state_fini(void)7802 arc_state_fini(void)
7803 {
7804 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7805 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7806 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7807 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7808 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7809 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7810 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7811 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7812 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7813 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7814 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7815 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7816
7817 zfs_refcount_destroy(&arc_anon->arcs_size);
7818 zfs_refcount_destroy(&arc_mru->arcs_size);
7819 zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7820 zfs_refcount_destroy(&arc_mfu->arcs_size);
7821 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7822 zfs_refcount_destroy(&arc_l2c_only->arcs_size);
7823
7824 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7825 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7826 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7827 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7828 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7829 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7830 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7831 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7832 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7833 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7834
7835 wmsum_fini(&arc_sums.arcstat_hits);
7836 wmsum_fini(&arc_sums.arcstat_misses);
7837 wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7838 wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7839 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7840 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7841 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7842 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7843 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7844 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7845 wmsum_fini(&arc_sums.arcstat_mru_hits);
7846 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7847 wmsum_fini(&arc_sums.arcstat_mfu_hits);
7848 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7849 wmsum_fini(&arc_sums.arcstat_deleted);
7850 wmsum_fini(&arc_sums.arcstat_mutex_miss);
7851 wmsum_fini(&arc_sums.arcstat_access_skip);
7852 wmsum_fini(&arc_sums.arcstat_evict_skip);
7853 wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7854 wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7855 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7856 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7857 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7858 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7859 wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7860 wmsum_fini(&arc_sums.arcstat_hash_collisions);
7861 wmsum_fini(&arc_sums.arcstat_hash_chains);
7862 aggsum_fini(&arc_sums.arcstat_size);
7863 wmsum_fini(&arc_sums.arcstat_compressed_size);
7864 wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7865 wmsum_fini(&arc_sums.arcstat_overhead_size);
7866 wmsum_fini(&arc_sums.arcstat_hdr_size);
7867 wmsum_fini(&arc_sums.arcstat_data_size);
7868 wmsum_fini(&arc_sums.arcstat_metadata_size);
7869 wmsum_fini(&arc_sums.arcstat_dbuf_size);
7870 aggsum_fini(&arc_sums.arcstat_dnode_size);
7871 wmsum_fini(&arc_sums.arcstat_bonus_size);
7872 wmsum_fini(&arc_sums.arcstat_l2_hits);
7873 wmsum_fini(&arc_sums.arcstat_l2_misses);
7874 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7875 wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7876 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7877 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7878 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7879 wmsum_fini(&arc_sums.arcstat_l2_feeds);
7880 wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7881 wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7882 wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7883 wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7884 wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7885 wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7886 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7887 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7888 wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7889 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7890 wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7891 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7892 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7893 wmsum_fini(&arc_sums.arcstat_l2_io_error);
7894 wmsum_fini(&arc_sums.arcstat_l2_lsize);
7895 wmsum_fini(&arc_sums.arcstat_l2_psize);
7896 aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7897 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7898 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7899 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7900 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7901 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7902 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7903 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7904 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7905 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7906 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7907 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7908 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7909 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7910 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7911 wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7912 wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7913 wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7914 wmsum_fini(&arc_sums.arcstat_prune);
7915 aggsum_fini(&arc_sums.arcstat_meta_used);
7916 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7917 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7918 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7919 wmsum_fini(&arc_sums.arcstat_raw_size);
7920 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7921 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7922 }
7923
7924 uint64_t
arc_target_bytes(void)7925 arc_target_bytes(void)
7926 {
7927 return (arc_c);
7928 }
7929
7930 void
arc_set_limits(uint64_t allmem)7931 arc_set_limits(uint64_t allmem)
7932 {
7933 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7934 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7935
7936 /* How to set default max varies by platform. */
7937 arc_c_max = arc_default_max(arc_c_min, allmem);
7938 }
7939 void
arc_init(void)7940 arc_init(void)
7941 {
7942 uint64_t percent, allmem = arc_all_memory();
7943 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7944 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7945 offsetof(arc_evict_waiter_t, aew_node));
7946
7947 arc_min_prefetch_ms = 1000;
7948 arc_min_prescient_prefetch_ms = 6000;
7949
7950 #if defined(_KERNEL)
7951 arc_lowmem_init();
7952 #endif
7953
7954 arc_set_limits(allmem);
7955
7956 #ifdef _KERNEL
7957 /*
7958 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7959 * environment before the module was loaded, don't block setting the
7960 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7961 * to a lower value.
7962 * zfs_arc_min will be handled by arc_tuning_update().
7963 */
7964 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7965 zfs_arc_max < allmem) {
7966 arc_c_max = zfs_arc_max;
7967 if (arc_c_min >= arc_c_max) {
7968 arc_c_min = MAX(zfs_arc_max / 2,
7969 2ULL << SPA_MAXBLOCKSHIFT);
7970 }
7971 }
7972 #else
7973 /*
7974 * In userland, there's only the memory pressure that we artificially
7975 * create (see arc_available_memory()). Don't let arc_c get too
7976 * small, because it can cause transactions to be larger than
7977 * arc_c, causing arc_tempreserve_space() to fail.
7978 */
7979 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7980 #endif
7981
7982 arc_c = arc_c_min;
7983 arc_p = (arc_c >> 1);
7984
7985 /* Set min to 1/2 of arc_c_min */
7986 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
7987 /*
7988 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7989 * arc_meta_min, and a ceiling of arc_c_max.
7990 */
7991 percent = MIN(zfs_arc_meta_limit_percent, 100);
7992 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
7993 percent = MIN(zfs_arc_dnode_limit_percent, 100);
7994 arc_dnode_size_limit = (percent * arc_meta_limit) / 100;
7995
7996 /* Apply user specified tunings */
7997 arc_tuning_update(B_TRUE);
7998
7999 /* if kmem_flags are set, lets try to use less memory */
8000 if (kmem_debugging())
8001 arc_c = arc_c / 2;
8002 if (arc_c < arc_c_min)
8003 arc_c = arc_c_min;
8004
8005 arc_register_hotplug();
8006
8007 arc_state_init();
8008
8009 buf_init();
8010
8011 list_create(&arc_prune_list, sizeof (arc_prune_t),
8012 offsetof(arc_prune_t, p_node));
8013 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
8014
8015 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
8016 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
8017
8018 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
8019 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
8020
8021 if (arc_ksp != NULL) {
8022 arc_ksp->ks_data = &arc_stats;
8023 arc_ksp->ks_update = arc_kstat_update;
8024 kstat_install(arc_ksp);
8025 }
8026
8027 arc_state_evict_markers =
8028 arc_state_alloc_markers(arc_state_evict_marker_count);
8029 arc_evict_zthr = zthr_create("arc_evict",
8030 arc_evict_cb_check, arc_evict_cb, NULL, defclsyspri);
8031 arc_reap_zthr = zthr_create_timer("arc_reap",
8032 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
8033
8034 arc_warm = B_FALSE;
8035
8036 /*
8037 * Calculate maximum amount of dirty data per pool.
8038 *
8039 * If it has been set by a module parameter, take that.
8040 * Otherwise, use a percentage of physical memory defined by
8041 * zfs_dirty_data_max_percent (default 10%) with a cap at
8042 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
8043 */
8044 #ifdef __LP64__
8045 if (zfs_dirty_data_max_max == 0)
8046 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
8047 allmem * zfs_dirty_data_max_max_percent / 100);
8048 #else
8049 if (zfs_dirty_data_max_max == 0)
8050 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
8051 allmem * zfs_dirty_data_max_max_percent / 100);
8052 #endif
8053
8054 if (zfs_dirty_data_max == 0) {
8055 zfs_dirty_data_max = allmem *
8056 zfs_dirty_data_max_percent / 100;
8057 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
8058 zfs_dirty_data_max_max);
8059 }
8060 }
8061
8062 void
arc_fini(void)8063 arc_fini(void)
8064 {
8065 arc_prune_t *p;
8066
8067 #ifdef _KERNEL
8068 arc_lowmem_fini();
8069 #endif /* _KERNEL */
8070
8071 /* Use B_TRUE to ensure *all* buffers are evicted */
8072 arc_flush(NULL, B_TRUE);
8073
8074 if (arc_ksp != NULL) {
8075 kstat_delete(arc_ksp);
8076 arc_ksp = NULL;
8077 }
8078
8079 taskq_wait(arc_prune_taskq);
8080 taskq_destroy(arc_prune_taskq);
8081
8082 mutex_enter(&arc_prune_mtx);
8083 while ((p = list_head(&arc_prune_list)) != NULL) {
8084 list_remove(&arc_prune_list, p);
8085 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
8086 zfs_refcount_destroy(&p->p_refcnt);
8087 kmem_free(p, sizeof (*p));
8088 }
8089 mutex_exit(&arc_prune_mtx);
8090
8091 list_destroy(&arc_prune_list);
8092 mutex_destroy(&arc_prune_mtx);
8093
8094 (void) zthr_cancel(arc_evict_zthr);
8095 (void) zthr_cancel(arc_reap_zthr);
8096 arc_state_free_markers(arc_state_evict_markers,
8097 arc_state_evict_marker_count);
8098
8099 mutex_destroy(&arc_evict_lock);
8100 list_destroy(&arc_evict_waiters);
8101
8102 /*
8103 * Free any buffers that were tagged for destruction. This needs
8104 * to occur before arc_state_fini() runs and destroys the aggsum
8105 * values which are updated when freeing scatter ABDs.
8106 */
8107 l2arc_do_free_on_write();
8108
8109 /*
8110 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8111 * trigger the release of kmem magazines, which can callback to
8112 * arc_space_return() which accesses aggsums freed in act_state_fini().
8113 */
8114 buf_fini();
8115 arc_state_fini();
8116
8117 arc_unregister_hotplug();
8118
8119 /*
8120 * We destroy the zthrs after all the ARC state has been
8121 * torn down to avoid the case of them receiving any
8122 * wakeup() signals after they are destroyed.
8123 */
8124 zthr_destroy(arc_evict_zthr);
8125 zthr_destroy(arc_reap_zthr);
8126
8127 ASSERT0(arc_loaned_bytes);
8128 }
8129
8130 /*
8131 * Level 2 ARC
8132 *
8133 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8134 * It uses dedicated storage devices to hold cached data, which are populated
8135 * using large infrequent writes. The main role of this cache is to boost
8136 * the performance of random read workloads. The intended L2ARC devices
8137 * include short-stroked disks, solid state disks, and other media with
8138 * substantially faster read latency than disk.
8139 *
8140 * +-----------------------+
8141 * | ARC |
8142 * +-----------------------+
8143 * | ^ ^
8144 * | | |
8145 * l2arc_feed_thread() arc_read()
8146 * | | |
8147 * | l2arc read |
8148 * V | |
8149 * +---------------+ |
8150 * | L2ARC | |
8151 * +---------------+ |
8152 * | ^ |
8153 * l2arc_write() | |
8154 * | | |
8155 * V | |
8156 * +-------+ +-------+
8157 * | vdev | | vdev |
8158 * | cache | | cache |
8159 * +-------+ +-------+
8160 * +=========+ .-----.
8161 * : L2ARC : |-_____-|
8162 * : devices : | Disks |
8163 * +=========+ `-_____-'
8164 *
8165 * Read requests are satisfied from the following sources, in order:
8166 *
8167 * 1) ARC
8168 * 2) vdev cache of L2ARC devices
8169 * 3) L2ARC devices
8170 * 4) vdev cache of disks
8171 * 5) disks
8172 *
8173 * Some L2ARC device types exhibit extremely slow write performance.
8174 * To accommodate for this there are some significant differences between
8175 * the L2ARC and traditional cache design:
8176 *
8177 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8178 * the ARC behave as usual, freeing buffers and placing headers on ghost
8179 * lists. The ARC does not send buffers to the L2ARC during eviction as
8180 * this would add inflated write latencies for all ARC memory pressure.
8181 *
8182 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8183 * It does this by periodically scanning buffers from the eviction-end of
8184 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8185 * not already there. It scans until a headroom of buffers is satisfied,
8186 * which itself is a buffer for ARC eviction. If a compressible buffer is
8187 * found during scanning and selected for writing to an L2ARC device, we
8188 * temporarily boost scanning headroom during the next scan cycle to make
8189 * sure we adapt to compression effects (which might significantly reduce
8190 * the data volume we write to L2ARC). The thread that does this is
8191 * l2arc_feed_thread(), illustrated below; example sizes are included to
8192 * provide a better sense of ratio than this diagram:
8193 *
8194 * head --> tail
8195 * +---------------------+----------+
8196 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8197 * +---------------------+----------+ | o L2ARC eligible
8198 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8199 * +---------------------+----------+ |
8200 * 15.9 Gbytes ^ 32 Mbytes |
8201 * headroom |
8202 * l2arc_feed_thread()
8203 * |
8204 * l2arc write hand <--[oooo]--'
8205 * | 8 Mbyte
8206 * | write max
8207 * V
8208 * +==============================+
8209 * L2ARC dev |####|#|###|###| |####| ... |
8210 * +==============================+
8211 * 32 Gbytes
8212 *
8213 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8214 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8215 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8216 * safe to say that this is an uncommon case, since buffers at the end of
8217 * the ARC lists have moved there due to inactivity.
8218 *
8219 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8220 * then the L2ARC simply misses copying some buffers. This serves as a
8221 * pressure valve to prevent heavy read workloads from both stalling the ARC
8222 * with waits and clogging the L2ARC with writes. This also helps prevent
8223 * the potential for the L2ARC to churn if it attempts to cache content too
8224 * quickly, such as during backups of the entire pool.
8225 *
8226 * 5. After system boot and before the ARC has filled main memory, there are
8227 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8228 * lists can remain mostly static. Instead of searching from tail of these
8229 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8230 * for eligible buffers, greatly increasing its chance of finding them.
8231 *
8232 * The L2ARC device write speed is also boosted during this time so that
8233 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8234 * there are no L2ARC reads, and no fear of degrading read performance
8235 * through increased writes.
8236 *
8237 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8238 * the vdev queue can aggregate them into larger and fewer writes. Each
8239 * device is written to in a rotor fashion, sweeping writes through
8240 * available space then repeating.
8241 *
8242 * 7. The L2ARC does not store dirty content. It never needs to flush
8243 * write buffers back to disk based storage.
8244 *
8245 * 8. If an ARC buffer is written (and dirtied) which also exists in the
8246 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8247 *
8248 * The performance of the L2ARC can be tweaked by a number of tunables, which
8249 * may be necessary for different workloads:
8250 *
8251 * l2arc_write_max max write bytes per interval
8252 * l2arc_write_boost extra write bytes during device warmup
8253 * l2arc_noprefetch skip caching prefetched buffers
8254 * l2arc_headroom number of max device writes to precache
8255 * l2arc_headroom_boost when we find compressed buffers during ARC
8256 * scanning, we multiply headroom by this
8257 * percentage factor for the next scan cycle,
8258 * since more compressed buffers are likely to
8259 * be present
8260 * l2arc_feed_secs seconds between L2ARC writing
8261 *
8262 * Tunables may be removed or added as future performance improvements are
8263 * integrated, and also may become zpool properties.
8264 *
8265 * There are three key functions that control how the L2ARC warms up:
8266 *
8267 * l2arc_write_eligible() check if a buffer is eligible to cache
8268 * l2arc_write_size() calculate how much to write
8269 * l2arc_write_interval() calculate sleep delay between writes
8270 *
8271 * These three functions determine what to write, how much, and how quickly
8272 * to send writes.
8273 *
8274 * L2ARC persistence:
8275 *
8276 * When writing buffers to L2ARC, we periodically add some metadata to
8277 * make sure we can pick them up after reboot, thus dramatically reducing
8278 * the impact that any downtime has on the performance of storage systems
8279 * with large caches.
8280 *
8281 * The implementation works fairly simply by integrating the following two
8282 * modifications:
8283 *
8284 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8285 * which is an additional piece of metadata which describes what's been
8286 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8287 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8288 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8289 * time-wise and offset-wise interleaved, but that is an optimization rather
8290 * than for correctness. The log block also includes a pointer to the
8291 * previous block in its chain.
8292 *
8293 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8294 * for our header bookkeeping purposes. This contains a device header,
8295 * which contains our top-level reference structures. We update it each
8296 * time we write a new log block, so that we're able to locate it in the
8297 * L2ARC device. If this write results in an inconsistent device header
8298 * (e.g. due to power failure), we detect this by verifying the header's
8299 * checksum and simply fail to reconstruct the L2ARC after reboot.
8300 *
8301 * Implementation diagram:
8302 *
8303 * +=== L2ARC device (not to scale) ======================================+
8304 * | ___two newest log block pointers__.__________ |
8305 * | / \dh_start_lbps[1] |
8306 * | / \ \dh_start_lbps[0]|
8307 * |.___/__. V V |
8308 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8309 * || hdr| ^ /^ /^ / / |
8310 * |+------+ ...--\-------/ \-----/--\------/ / |
8311 * | \--------------/ \--------------/ |
8312 * +======================================================================+
8313 *
8314 * As can be seen on the diagram, rather than using a simple linked list,
8315 * we use a pair of linked lists with alternating elements. This is a
8316 * performance enhancement due to the fact that we only find out the
8317 * address of the next log block access once the current block has been
8318 * completely read in. Obviously, this hurts performance, because we'd be
8319 * keeping the device's I/O queue at only a 1 operation deep, thus
8320 * incurring a large amount of I/O round-trip latency. Having two lists
8321 * allows us to fetch two log blocks ahead of where we are currently
8322 * rebuilding L2ARC buffers.
8323 *
8324 * On-device data structures:
8325 *
8326 * L2ARC device header: l2arc_dev_hdr_phys_t
8327 * L2ARC log block: l2arc_log_blk_phys_t
8328 *
8329 * L2ARC reconstruction:
8330 *
8331 * When writing data, we simply write in the standard rotary fashion,
8332 * evicting buffers as we go and simply writing new data over them (writing
8333 * a new log block every now and then). This obviously means that once we
8334 * loop around the end of the device, we will start cutting into an already
8335 * committed log block (and its referenced data buffers), like so:
8336 *
8337 * current write head__ __old tail
8338 * \ /
8339 * V V
8340 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8341 * ^ ^^^^^^^^^___________________________________
8342 * | \
8343 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8344 *
8345 * When importing the pool, we detect this situation and use it to stop
8346 * our scanning process (see l2arc_rebuild).
8347 *
8348 * There is one significant caveat to consider when rebuilding ARC contents
8349 * from an L2ARC device: what about invalidated buffers? Given the above
8350 * construction, we cannot update blocks which we've already written to amend
8351 * them to remove buffers which were invalidated. Thus, during reconstruction,
8352 * we might be populating the cache with buffers for data that's not on the
8353 * main pool anymore, or may have been overwritten!
8354 *
8355 * As it turns out, this isn't a problem. Every arc_read request includes
8356 * both the DVA and, crucially, the birth TXG of the BP the caller is
8357 * looking for. So even if the cache were populated by completely rotten
8358 * blocks for data that had been long deleted and/or overwritten, we'll
8359 * never actually return bad data from the cache, since the DVA with the
8360 * birth TXG uniquely identify a block in space and time - once created,
8361 * a block is immutable on disk. The worst thing we have done is wasted
8362 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8363 * entries that will get dropped from the l2arc as it is being updated
8364 * with new blocks.
8365 *
8366 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8367 * hand are not restored. This is done by saving the offset (in bytes)
8368 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8369 * into account when restoring buffers.
8370 */
8371
8372 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,arc_buf_hdr_t * hdr)8373 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8374 {
8375 /*
8376 * A buffer is *not* eligible for the L2ARC if it:
8377 * 1. belongs to a different spa.
8378 * 2. is already cached on the L2ARC.
8379 * 3. has an I/O in progress (it may be an incomplete read).
8380 * 4. is flagged not eligible (zfs property).
8381 */
8382 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8383 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8384 return (B_FALSE);
8385
8386 return (B_TRUE);
8387 }
8388
8389 static uint64_t
l2arc_write_size(l2arc_dev_t * dev)8390 l2arc_write_size(l2arc_dev_t *dev)
8391 {
8392 uint64_t size, dev_size, tsize;
8393
8394 /*
8395 * Make sure our globals have meaningful values in case the user
8396 * altered them.
8397 */
8398 size = l2arc_write_max;
8399 if (size == 0) {
8400 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
8401 "be greater than zero, resetting it to the default (%d)",
8402 L2ARC_WRITE_SIZE);
8403 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8404 }
8405
8406 if (arc_warm == B_FALSE)
8407 size += l2arc_write_boost;
8408
8409 /*
8410 * Make sure the write size does not exceed the size of the cache
8411 * device. This is important in l2arc_evict(), otherwise infinite
8412 * iteration can occur.
8413 */
8414 dev_size = dev->l2ad_end - dev->l2ad_start;
8415 tsize = size + l2arc_log_blk_overhead(size, dev);
8416 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0)
8417 tsize += MAX(64 * 1024 * 1024,
8418 (tsize * l2arc_trim_ahead) / 100);
8419
8420 if (tsize >= dev_size) {
8421 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
8422 "plus the overhead of log blocks (persistent L2ARC, "
8423 "%llu bytes) exceeds the size of the cache device "
8424 "(guid %llu), resetting them to the default (%d)",
8425 l2arc_log_blk_overhead(size, dev),
8426 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
8427 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
8428
8429 if (arc_warm == B_FALSE)
8430 size += l2arc_write_boost;
8431 }
8432
8433 return (size);
8434
8435 }
8436
8437 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)8438 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8439 {
8440 clock_t interval, next, now;
8441
8442 /*
8443 * If the ARC lists are busy, increase our write rate; if the
8444 * lists are stale, idle back. This is achieved by checking
8445 * how much we previously wrote - if it was more than half of
8446 * what we wanted, schedule the next write much sooner.
8447 */
8448 if (l2arc_feed_again && wrote > (wanted / 2))
8449 interval = (hz * l2arc_feed_min_ms) / 1000;
8450 else
8451 interval = hz * l2arc_feed_secs;
8452
8453 now = ddi_get_lbolt();
8454 next = MAX(now, MIN(now + interval, began + interval));
8455
8456 return (next);
8457 }
8458
8459 /*
8460 * Cycle through L2ARC devices. This is how L2ARC load balances.
8461 * If a device is returned, this also returns holding the spa config lock.
8462 */
8463 static l2arc_dev_t *
l2arc_dev_get_next(void)8464 l2arc_dev_get_next(void)
8465 {
8466 l2arc_dev_t *first, *next = NULL;
8467
8468 /*
8469 * Lock out the removal of spas (spa_namespace_lock), then removal
8470 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8471 * both locks will be dropped and a spa config lock held instead.
8472 */
8473 mutex_enter(&spa_namespace_lock);
8474 mutex_enter(&l2arc_dev_mtx);
8475
8476 /* if there are no vdevs, there is nothing to do */
8477 if (l2arc_ndev == 0)
8478 goto out;
8479
8480 first = NULL;
8481 next = l2arc_dev_last;
8482 do {
8483 /* loop around the list looking for a non-faulted vdev */
8484 if (next == NULL) {
8485 next = list_head(l2arc_dev_list);
8486 } else {
8487 next = list_next(l2arc_dev_list, next);
8488 if (next == NULL)
8489 next = list_head(l2arc_dev_list);
8490 }
8491
8492 /* if we have come back to the start, bail out */
8493 if (first == NULL)
8494 first = next;
8495 else if (next == first)
8496 break;
8497
8498 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8499 next->l2ad_trim_all);
8500
8501 /* if we were unable to find any usable vdevs, return NULL */
8502 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8503 next->l2ad_trim_all)
8504 next = NULL;
8505
8506 l2arc_dev_last = next;
8507
8508 out:
8509 mutex_exit(&l2arc_dev_mtx);
8510
8511 /*
8512 * Grab the config lock to prevent the 'next' device from being
8513 * removed while we are writing to it.
8514 */
8515 if (next != NULL)
8516 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8517 mutex_exit(&spa_namespace_lock);
8518
8519 return (next);
8520 }
8521
8522 /*
8523 * Free buffers that were tagged for destruction.
8524 */
8525 static void
l2arc_do_free_on_write(void)8526 l2arc_do_free_on_write(void)
8527 {
8528 list_t *buflist;
8529 l2arc_data_free_t *df, *df_prev;
8530
8531 mutex_enter(&l2arc_free_on_write_mtx);
8532 buflist = l2arc_free_on_write;
8533
8534 for (df = list_tail(buflist); df; df = df_prev) {
8535 df_prev = list_prev(buflist, df);
8536 ASSERT3P(df->l2df_abd, !=, NULL);
8537 abd_free(df->l2df_abd);
8538 list_remove(buflist, df);
8539 kmem_free(df, sizeof (l2arc_data_free_t));
8540 }
8541
8542 mutex_exit(&l2arc_free_on_write_mtx);
8543 }
8544
8545 /*
8546 * A write to a cache device has completed. Update all headers to allow
8547 * reads from these buffers to begin.
8548 */
8549 static void
l2arc_write_done(zio_t * zio)8550 l2arc_write_done(zio_t *zio)
8551 {
8552 l2arc_write_callback_t *cb;
8553 l2arc_lb_abd_buf_t *abd_buf;
8554 l2arc_lb_ptr_buf_t *lb_ptr_buf;
8555 l2arc_dev_t *dev;
8556 l2arc_dev_hdr_phys_t *l2dhdr;
8557 list_t *buflist;
8558 arc_buf_hdr_t *head, *hdr, *hdr_prev;
8559 kmutex_t *hash_lock;
8560 int64_t bytes_dropped = 0;
8561
8562 cb = zio->io_private;
8563 ASSERT3P(cb, !=, NULL);
8564 dev = cb->l2wcb_dev;
8565 l2dhdr = dev->l2ad_dev_hdr;
8566 ASSERT3P(dev, !=, NULL);
8567 head = cb->l2wcb_head;
8568 ASSERT3P(head, !=, NULL);
8569 buflist = &dev->l2ad_buflist;
8570 ASSERT3P(buflist, !=, NULL);
8571 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8572 l2arc_write_callback_t *, cb);
8573
8574 /*
8575 * All writes completed, or an error was hit.
8576 */
8577 top:
8578 mutex_enter(&dev->l2ad_mtx);
8579 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8580 hdr_prev = list_prev(buflist, hdr);
8581
8582 hash_lock = HDR_LOCK(hdr);
8583
8584 /*
8585 * We cannot use mutex_enter or else we can deadlock
8586 * with l2arc_write_buffers (due to swapping the order
8587 * the hash lock and l2ad_mtx are taken).
8588 */
8589 if (!mutex_tryenter(hash_lock)) {
8590 /*
8591 * Missed the hash lock. We must retry so we
8592 * don't leave the ARC_FLAG_L2_WRITING bit set.
8593 */
8594 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8595
8596 /*
8597 * We don't want to rescan the headers we've
8598 * already marked as having been written out, so
8599 * we reinsert the head node so we can pick up
8600 * where we left off.
8601 */
8602 list_remove(buflist, head);
8603 list_insert_after(buflist, hdr, head);
8604
8605 mutex_exit(&dev->l2ad_mtx);
8606
8607 /*
8608 * We wait for the hash lock to become available
8609 * to try and prevent busy waiting, and increase
8610 * the chance we'll be able to acquire the lock
8611 * the next time around.
8612 */
8613 mutex_enter(hash_lock);
8614 mutex_exit(hash_lock);
8615 goto top;
8616 }
8617
8618 /*
8619 * We could not have been moved into the arc_l2c_only
8620 * state while in-flight due to our ARC_FLAG_L2_WRITING
8621 * bit being set. Let's just ensure that's being enforced.
8622 */
8623 ASSERT(HDR_HAS_L1HDR(hdr));
8624
8625 /*
8626 * Skipped - drop L2ARC entry and mark the header as no
8627 * longer L2 eligibile.
8628 */
8629 if (zio->io_error != 0) {
8630 /*
8631 * Error - drop L2ARC entry.
8632 */
8633 list_remove(buflist, hdr);
8634 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8635
8636 uint64_t psize = HDR_GET_PSIZE(hdr);
8637 l2arc_hdr_arcstats_decrement(hdr);
8638
8639 bytes_dropped +=
8640 vdev_psize_to_asize(dev->l2ad_vdev, psize);
8641 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8642 arc_hdr_size(hdr), hdr);
8643 }
8644
8645 /*
8646 * Allow ARC to begin reads and ghost list evictions to
8647 * this L2ARC entry.
8648 */
8649 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8650
8651 mutex_exit(hash_lock);
8652 }
8653
8654 /*
8655 * Free the allocated abd buffers for writing the log blocks.
8656 * If the zio failed reclaim the allocated space and remove the
8657 * pointers to these log blocks from the log block pointer list
8658 * of the L2ARC device.
8659 */
8660 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8661 abd_free(abd_buf->abd);
8662 zio_buf_free(abd_buf, sizeof (*abd_buf));
8663 if (zio->io_error != 0) {
8664 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8665 /*
8666 * L2BLK_GET_PSIZE returns aligned size for log
8667 * blocks.
8668 */
8669 uint64_t asize =
8670 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8671 bytes_dropped += asize;
8672 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8673 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8674 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8675 lb_ptr_buf);
8676 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8677 kmem_free(lb_ptr_buf->lb_ptr,
8678 sizeof (l2arc_log_blkptr_t));
8679 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8680 }
8681 }
8682 list_destroy(&cb->l2wcb_abd_list);
8683
8684 if (zio->io_error != 0) {
8685 ARCSTAT_BUMP(arcstat_l2_writes_error);
8686
8687 /*
8688 * Restore the lbps array in the header to its previous state.
8689 * If the list of log block pointers is empty, zero out the
8690 * log block pointers in the device header.
8691 */
8692 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8693 for (int i = 0; i < 2; i++) {
8694 if (lb_ptr_buf == NULL) {
8695 /*
8696 * If the list is empty zero out the device
8697 * header. Otherwise zero out the second log
8698 * block pointer in the header.
8699 */
8700 if (i == 0) {
8701 bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
8702 } else {
8703 bzero(&l2dhdr->dh_start_lbps[i],
8704 sizeof (l2arc_log_blkptr_t));
8705 }
8706 break;
8707 }
8708 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i],
8709 sizeof (l2arc_log_blkptr_t));
8710 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8711 lb_ptr_buf);
8712 }
8713 }
8714
8715 ARCSTAT_BUMP(arcstat_l2_writes_done);
8716 list_remove(buflist, head);
8717 ASSERT(!HDR_HAS_L1HDR(head));
8718 kmem_cache_free(hdr_l2only_cache, head);
8719 mutex_exit(&dev->l2ad_mtx);
8720
8721 ASSERT(dev->l2ad_vdev != NULL);
8722 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8723
8724 l2arc_do_free_on_write();
8725
8726 kmem_free(cb, sizeof (l2arc_write_callback_t));
8727 }
8728
8729 static int
l2arc_untransform(zio_t * zio,l2arc_read_callback_t * cb)8730 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8731 {
8732 int ret;
8733 spa_t *spa = zio->io_spa;
8734 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8735 blkptr_t *bp = zio->io_bp;
8736 uint8_t salt[ZIO_DATA_SALT_LEN];
8737 uint8_t iv[ZIO_DATA_IV_LEN];
8738 uint8_t mac[ZIO_DATA_MAC_LEN];
8739 boolean_t no_crypt = B_FALSE;
8740
8741 /*
8742 * ZIL data is never be written to the L2ARC, so we don't need
8743 * special handling for its unique MAC storage.
8744 */
8745 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8746 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8747 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8748
8749 /*
8750 * If the data was encrypted, decrypt it now. Note that
8751 * we must check the bp here and not the hdr, since the
8752 * hdr does not have its encryption parameters updated
8753 * until arc_read_done().
8754 */
8755 if (BP_IS_ENCRYPTED(bp)) {
8756 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8757 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE);
8758
8759 zio_crypt_decode_params_bp(bp, salt, iv);
8760 zio_crypt_decode_mac_bp(bp, mac);
8761
8762 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8763 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8764 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8765 hdr->b_l1hdr.b_pabd, &no_crypt);
8766 if (ret != 0) {
8767 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8768 goto error;
8769 }
8770
8771 /*
8772 * If we actually performed decryption, replace b_pabd
8773 * with the decrypted data. Otherwise we can just throw
8774 * our decryption buffer away.
8775 */
8776 if (!no_crypt) {
8777 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8778 arc_hdr_size(hdr), hdr);
8779 hdr->b_l1hdr.b_pabd = eabd;
8780 zio->io_abd = eabd;
8781 } else {
8782 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8783 }
8784 }
8785
8786 /*
8787 * If the L2ARC block was compressed, but ARC compression
8788 * is disabled we decompress the data into a new buffer and
8789 * replace the existing data.
8790 */
8791 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8792 !HDR_COMPRESSION_ENABLED(hdr)) {
8793 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8794 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE);
8795 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8796
8797 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8798 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8799 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8800 if (ret != 0) {
8801 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8802 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8803 goto error;
8804 }
8805
8806 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8807 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8808 arc_hdr_size(hdr), hdr);
8809 hdr->b_l1hdr.b_pabd = cabd;
8810 zio->io_abd = cabd;
8811 zio->io_size = HDR_GET_LSIZE(hdr);
8812 }
8813
8814 return (0);
8815
8816 error:
8817 return (ret);
8818 }
8819
8820
8821 /*
8822 * A read to a cache device completed. Validate buffer contents before
8823 * handing over to the regular ARC routines.
8824 */
8825 static void
l2arc_read_done(zio_t * zio)8826 l2arc_read_done(zio_t *zio)
8827 {
8828 int tfm_error = 0;
8829 l2arc_read_callback_t *cb = zio->io_private;
8830 arc_buf_hdr_t *hdr;
8831 kmutex_t *hash_lock;
8832 boolean_t valid_cksum;
8833 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8834 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8835
8836 ASSERT3P(zio->io_vd, !=, NULL);
8837 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8838
8839 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8840
8841 ASSERT3P(cb, !=, NULL);
8842 hdr = cb->l2rcb_hdr;
8843 ASSERT3P(hdr, !=, NULL);
8844
8845 hash_lock = HDR_LOCK(hdr);
8846 mutex_enter(hash_lock);
8847 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8848
8849 /*
8850 * If the data was read into a temporary buffer,
8851 * move it and free the buffer.
8852 */
8853 if (cb->l2rcb_abd != NULL) {
8854 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8855 if (zio->io_error == 0) {
8856 if (using_rdata) {
8857 abd_copy(hdr->b_crypt_hdr.b_rabd,
8858 cb->l2rcb_abd, arc_hdr_size(hdr));
8859 } else {
8860 abd_copy(hdr->b_l1hdr.b_pabd,
8861 cb->l2rcb_abd, arc_hdr_size(hdr));
8862 }
8863 }
8864
8865 /*
8866 * The following must be done regardless of whether
8867 * there was an error:
8868 * - free the temporary buffer
8869 * - point zio to the real ARC buffer
8870 * - set zio size accordingly
8871 * These are required because zio is either re-used for
8872 * an I/O of the block in the case of the error
8873 * or the zio is passed to arc_read_done() and it
8874 * needs real data.
8875 */
8876 abd_free(cb->l2rcb_abd);
8877 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8878
8879 if (using_rdata) {
8880 ASSERT(HDR_HAS_RABD(hdr));
8881 zio->io_abd = zio->io_orig_abd =
8882 hdr->b_crypt_hdr.b_rabd;
8883 } else {
8884 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8885 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8886 }
8887 }
8888
8889 ASSERT3P(zio->io_abd, !=, NULL);
8890
8891 /*
8892 * Check this survived the L2ARC journey.
8893 */
8894 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8895 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8896 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8897 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8898 zio->io_prop.zp_complevel = hdr->b_complevel;
8899
8900 valid_cksum = arc_cksum_is_equal(hdr, zio);
8901
8902 /*
8903 * b_rabd will always match the data as it exists on disk if it is
8904 * being used. Therefore if we are reading into b_rabd we do not
8905 * attempt to untransform the data.
8906 */
8907 if (valid_cksum && !using_rdata)
8908 tfm_error = l2arc_untransform(zio, cb);
8909
8910 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8911 !HDR_L2_EVICTED(hdr)) {
8912 mutex_exit(hash_lock);
8913 zio->io_private = hdr;
8914 arc_read_done(zio);
8915 } else {
8916 /*
8917 * Buffer didn't survive caching. Increment stats and
8918 * reissue to the original storage device.
8919 */
8920 if (zio->io_error != 0) {
8921 ARCSTAT_BUMP(arcstat_l2_io_error);
8922 } else {
8923 zio->io_error = SET_ERROR(EIO);
8924 }
8925 if (!valid_cksum || tfm_error != 0)
8926 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8927
8928 /*
8929 * If there's no waiter, issue an async i/o to the primary
8930 * storage now. If there *is* a waiter, the caller must
8931 * issue the i/o in a context where it's OK to block.
8932 */
8933 if (zio->io_waiter == NULL) {
8934 zio_t *pio = zio_unique_parent(zio);
8935 void *abd = (using_rdata) ?
8936 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8937
8938 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8939
8940 zio = zio_read(pio, zio->io_spa, zio->io_bp,
8941 abd, zio->io_size, arc_read_done,
8942 hdr, zio->io_priority, cb->l2rcb_flags,
8943 &cb->l2rcb_zb);
8944
8945 /*
8946 * Original ZIO will be freed, so we need to update
8947 * ARC header with the new ZIO pointer to be used
8948 * by zio_change_priority() in arc_read().
8949 */
8950 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8951 acb != NULL; acb = acb->acb_next)
8952 acb->acb_zio_head = zio;
8953
8954 mutex_exit(hash_lock);
8955 zio_nowait(zio);
8956 } else {
8957 mutex_exit(hash_lock);
8958 }
8959 }
8960
8961 kmem_free(cb, sizeof (l2arc_read_callback_t));
8962 }
8963
8964 /*
8965 * This is the list priority from which the L2ARC will search for pages to
8966 * cache. This is used within loops (0..3) to cycle through lists in the
8967 * desired order. This order can have a significant effect on cache
8968 * performance.
8969 *
8970 * Currently the metadata lists are hit first, MFU then MRU, followed by
8971 * the data lists. This function returns a locked list, and also returns
8972 * the lock pointer.
8973 */
8974 static multilist_sublist_t *
l2arc_sublist_lock(int list_num)8975 l2arc_sublist_lock(int list_num)
8976 {
8977 multilist_t *ml = NULL;
8978 unsigned int idx;
8979
8980 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8981
8982 switch (list_num) {
8983 case 0:
8984 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
8985 break;
8986 case 1:
8987 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
8988 break;
8989 case 2:
8990 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
8991 break;
8992 case 3:
8993 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
8994 break;
8995 default:
8996 return (NULL);
8997 }
8998
8999 /*
9000 * Return a randomly-selected sublist. This is acceptable
9001 * because the caller feeds only a little bit of data for each
9002 * call (8MB). Subsequent calls will result in different
9003 * sublists being selected.
9004 */
9005 idx = multilist_get_random_index(ml);
9006 return (multilist_sublist_lock(ml, idx));
9007 }
9008
9009 /*
9010 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
9011 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
9012 * overhead in processing to make sure there is enough headroom available
9013 * when writing buffers.
9014 */
9015 static inline uint64_t
l2arc_log_blk_overhead(uint64_t write_sz,l2arc_dev_t * dev)9016 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
9017 {
9018 if (dev->l2ad_log_entries == 0) {
9019 return (0);
9020 } else {
9021 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
9022
9023 uint64_t log_blocks = (log_entries +
9024 dev->l2ad_log_entries - 1) /
9025 dev->l2ad_log_entries;
9026
9027 return (vdev_psize_to_asize(dev->l2ad_vdev,
9028 sizeof (l2arc_log_blk_phys_t)) * log_blocks);
9029 }
9030 }
9031
9032 /*
9033 * Evict buffers from the device write hand to the distance specified in
9034 * bytes. This distance may span populated buffers, it may span nothing.
9035 * This is clearing a region on the L2ARC device ready for writing.
9036 * If the 'all' boolean is set, every buffer is evicted.
9037 */
9038 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)9039 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
9040 {
9041 list_t *buflist;
9042 arc_buf_hdr_t *hdr, *hdr_prev;
9043 kmutex_t *hash_lock;
9044 uint64_t taddr;
9045 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
9046 vdev_t *vd = dev->l2ad_vdev;
9047 boolean_t rerun;
9048
9049 buflist = &dev->l2ad_buflist;
9050
9051 /*
9052 * We need to add in the worst case scenario of log block overhead.
9053 */
9054 distance += l2arc_log_blk_overhead(distance, dev);
9055 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) {
9056 /*
9057 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
9058 * times the write size, whichever is greater.
9059 */
9060 distance += MAX(64 * 1024 * 1024,
9061 (distance * l2arc_trim_ahead) / 100);
9062 }
9063
9064 top:
9065 rerun = B_FALSE;
9066 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
9067 /*
9068 * When there is no space to accommodate upcoming writes,
9069 * evict to the end. Then bump the write and evict hands
9070 * to the start and iterate. This iteration does not
9071 * happen indefinitely as we make sure in
9072 * l2arc_write_size() that when the write hand is reset,
9073 * the write size does not exceed the end of the device.
9074 */
9075 rerun = B_TRUE;
9076 taddr = dev->l2ad_end;
9077 } else {
9078 taddr = dev->l2ad_hand + distance;
9079 }
9080 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
9081 uint64_t, taddr, boolean_t, all);
9082
9083 if (!all) {
9084 /*
9085 * This check has to be placed after deciding whether to
9086 * iterate (rerun).
9087 */
9088 if (dev->l2ad_first) {
9089 /*
9090 * This is the first sweep through the device. There is
9091 * nothing to evict. We have already trimmmed the
9092 * whole device.
9093 */
9094 goto out;
9095 } else {
9096 /*
9097 * Trim the space to be evicted.
9098 */
9099 if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
9100 l2arc_trim_ahead > 0) {
9101 /*
9102 * We have to drop the spa_config lock because
9103 * vdev_trim_range() will acquire it.
9104 * l2ad_evict already accounts for the label
9105 * size. To prevent vdev_trim_ranges() from
9106 * adding it again, we subtract it from
9107 * l2ad_evict.
9108 */
9109 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
9110 vdev_trim_simple(vd,
9111 dev->l2ad_evict - VDEV_LABEL_START_SIZE,
9112 taddr - dev->l2ad_evict);
9113 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
9114 RW_READER);
9115 }
9116
9117 /*
9118 * When rebuilding L2ARC we retrieve the evict hand
9119 * from the header of the device. Of note, l2arc_evict()
9120 * does not actually delete buffers from the cache
9121 * device, but trimming may do so depending on the
9122 * hardware implementation. Thus keeping track of the
9123 * evict hand is useful.
9124 */
9125 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
9126 }
9127 }
9128
9129 retry:
9130 mutex_enter(&dev->l2ad_mtx);
9131 /*
9132 * We have to account for evicted log blocks. Run vdev_space_update()
9133 * on log blocks whose offset (in bytes) is before the evicted offset
9134 * (in bytes) by searching in the list of pointers to log blocks
9135 * present in the L2ARC device.
9136 */
9137 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9138 lb_ptr_buf = lb_ptr_buf_prev) {
9139
9140 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9141
9142 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9143 uint64_t asize = L2BLK_GET_PSIZE(
9144 (lb_ptr_buf->lb_ptr)->lbp_prop);
9145
9146 /*
9147 * We don't worry about log blocks left behind (ie
9148 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9149 * will never write more than l2arc_evict() evicts.
9150 */
9151 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9152 break;
9153 } else {
9154 vdev_space_update(vd, -asize, 0, 0);
9155 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9156 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9157 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9158 lb_ptr_buf);
9159 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
9160 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9161 kmem_free(lb_ptr_buf->lb_ptr,
9162 sizeof (l2arc_log_blkptr_t));
9163 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9164 }
9165 }
9166
9167 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9168 hdr_prev = list_prev(buflist, hdr);
9169
9170 ASSERT(!HDR_EMPTY(hdr));
9171 hash_lock = HDR_LOCK(hdr);
9172
9173 /*
9174 * We cannot use mutex_enter or else we can deadlock
9175 * with l2arc_write_buffers (due to swapping the order
9176 * the hash lock and l2ad_mtx are taken).
9177 */
9178 if (!mutex_tryenter(hash_lock)) {
9179 /*
9180 * Missed the hash lock. Retry.
9181 */
9182 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
9183 mutex_exit(&dev->l2ad_mtx);
9184 mutex_enter(hash_lock);
9185 mutex_exit(hash_lock);
9186 goto retry;
9187 }
9188
9189 /*
9190 * A header can't be on this list if it doesn't have L2 header.
9191 */
9192 ASSERT(HDR_HAS_L2HDR(hdr));
9193
9194 /* Ensure this header has finished being written. */
9195 ASSERT(!HDR_L2_WRITING(hdr));
9196 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9197
9198 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
9199 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
9200 /*
9201 * We've evicted to the target address,
9202 * or the end of the device.
9203 */
9204 mutex_exit(hash_lock);
9205 break;
9206 }
9207
9208 if (!HDR_HAS_L1HDR(hdr)) {
9209 ASSERT(!HDR_L2_READING(hdr));
9210 /*
9211 * This doesn't exist in the ARC. Destroy.
9212 * arc_hdr_destroy() will call list_remove()
9213 * and decrement arcstat_l2_lsize.
9214 */
9215 arc_change_state(arc_anon, hdr, hash_lock);
9216 arc_hdr_destroy(hdr);
9217 } else {
9218 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9219 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
9220 /*
9221 * Invalidate issued or about to be issued
9222 * reads, since we may be about to write
9223 * over this location.
9224 */
9225 if (HDR_L2_READING(hdr)) {
9226 ARCSTAT_BUMP(arcstat_l2_evict_reading);
9227 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
9228 }
9229
9230 arc_hdr_l2hdr_destroy(hdr);
9231 }
9232 mutex_exit(hash_lock);
9233 }
9234 mutex_exit(&dev->l2ad_mtx);
9235
9236 out:
9237 /*
9238 * We need to check if we evict all buffers, otherwise we may iterate
9239 * unnecessarily.
9240 */
9241 if (!all && rerun) {
9242 /*
9243 * Bump device hand to the device start if it is approaching the
9244 * end. l2arc_evict() has already evicted ahead for this case.
9245 */
9246 dev->l2ad_hand = dev->l2ad_start;
9247 dev->l2ad_evict = dev->l2ad_start;
9248 dev->l2ad_first = B_FALSE;
9249 goto top;
9250 }
9251
9252 if (!all) {
9253 /*
9254 * In case of cache device removal (all) the following
9255 * assertions may be violated without functional consequences
9256 * as the device is about to be removed.
9257 */
9258 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
9259 if (!dev->l2ad_first)
9260 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
9261 }
9262 }
9263
9264 /*
9265 * Handle any abd transforms that might be required for writing to the L2ARC.
9266 * If successful, this function will always return an abd with the data
9267 * transformed as it is on disk in a new abd of asize bytes.
9268 */
9269 static int
l2arc_apply_transforms(spa_t * spa,arc_buf_hdr_t * hdr,uint64_t asize,abd_t ** abd_out)9270 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9271 abd_t **abd_out)
9272 {
9273 int ret;
9274 void *tmp = NULL;
9275 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9276 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9277 uint64_t psize = HDR_GET_PSIZE(hdr);
9278 uint64_t size = arc_hdr_size(hdr);
9279 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9280 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9281 dsl_crypto_key_t *dck = NULL;
9282 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9283 boolean_t no_crypt = B_FALSE;
9284
9285 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9286 !HDR_COMPRESSION_ENABLED(hdr)) ||
9287 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9288 ASSERT3U(psize, <=, asize);
9289
9290 /*
9291 * If this data simply needs its own buffer, we simply allocate it
9292 * and copy the data. This may be done to eliminate a dependency on a
9293 * shared buffer or to reallocate the buffer to match asize.
9294 */
9295 if (HDR_HAS_RABD(hdr) && asize != psize) {
9296 ASSERT3U(asize, >=, psize);
9297 to_write = abd_alloc_for_io(asize, ismd);
9298 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9299 if (psize != asize)
9300 abd_zero_off(to_write, psize, asize - psize);
9301 goto out;
9302 }
9303
9304 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9305 !HDR_ENCRYPTED(hdr)) {
9306 ASSERT3U(size, ==, psize);
9307 to_write = abd_alloc_for_io(asize, ismd);
9308 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9309 if (size != asize)
9310 abd_zero_off(to_write, size, asize - size);
9311 goto out;
9312 }
9313
9314 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9315 cabd = abd_alloc_for_io(asize, ismd);
9316 tmp = abd_borrow_buf(cabd, asize);
9317
9318 psize = zio_compress_data(compress, to_write, tmp, size,
9319 hdr->b_complevel);
9320
9321 if (psize >= size) {
9322 abd_return_buf(cabd, tmp, asize);
9323 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
9324 to_write = cabd;
9325 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9326 if (size != asize)
9327 abd_zero_off(to_write, size, asize - size);
9328 goto encrypt;
9329 }
9330 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
9331 if (psize < asize)
9332 bzero((char *)tmp + psize, asize - psize);
9333 psize = HDR_GET_PSIZE(hdr);
9334 abd_return_buf_copy(cabd, tmp, asize);
9335 to_write = cabd;
9336 }
9337
9338 encrypt:
9339 if (HDR_ENCRYPTED(hdr)) {
9340 eabd = abd_alloc_for_io(asize, ismd);
9341
9342 /*
9343 * If the dataset was disowned before the buffer
9344 * made it to this point, the key to re-encrypt
9345 * it won't be available. In this case we simply
9346 * won't write the buffer to the L2ARC.
9347 */
9348 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9349 FTAG, &dck);
9350 if (ret != 0)
9351 goto error;
9352
9353 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9354 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9355 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9356 &no_crypt);
9357 if (ret != 0)
9358 goto error;
9359
9360 if (no_crypt)
9361 abd_copy(eabd, to_write, psize);
9362
9363 if (psize != asize)
9364 abd_zero_off(eabd, psize, asize - psize);
9365
9366 /* assert that the MAC we got here matches the one we saved */
9367 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9368 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9369
9370 if (to_write == cabd)
9371 abd_free(cabd);
9372
9373 to_write = eabd;
9374 }
9375
9376 out:
9377 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9378 *abd_out = to_write;
9379 return (0);
9380
9381 error:
9382 if (dck != NULL)
9383 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9384 if (cabd != NULL)
9385 abd_free(cabd);
9386 if (eabd != NULL)
9387 abd_free(eabd);
9388
9389 *abd_out = NULL;
9390 return (ret);
9391 }
9392
9393 static void
l2arc_blk_fetch_done(zio_t * zio)9394 l2arc_blk_fetch_done(zio_t *zio)
9395 {
9396 l2arc_read_callback_t *cb;
9397
9398 cb = zio->io_private;
9399 if (cb->l2rcb_abd != NULL)
9400 abd_free(cb->l2rcb_abd);
9401 kmem_free(cb, sizeof (l2arc_read_callback_t));
9402 }
9403
9404 /*
9405 * Find and write ARC buffers to the L2ARC device.
9406 *
9407 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9408 * for reading until they have completed writing.
9409 * The headroom_boost is an in-out parameter used to maintain headroom boost
9410 * state between calls to this function.
9411 *
9412 * Returns the number of bytes actually written (which may be smaller than
9413 * the delta by which the device hand has changed due to alignment and the
9414 * writing of log blocks).
9415 */
9416 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz)9417 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9418 {
9419 arc_buf_hdr_t *hdr, *hdr_prev, *head;
9420 uint64_t write_asize, write_psize, write_lsize, headroom;
9421 boolean_t full;
9422 l2arc_write_callback_t *cb = NULL;
9423 zio_t *pio, *wzio;
9424 uint64_t guid = spa_load_guid(spa);
9425 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9426
9427 ASSERT3P(dev->l2ad_vdev, !=, NULL);
9428
9429 pio = NULL;
9430 write_lsize = write_asize = write_psize = 0;
9431 full = B_FALSE;
9432 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9433 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9434
9435 /*
9436 * Copy buffers for L2ARC writing.
9437 */
9438 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9439 /*
9440 * If pass == 1 or 3, we cache MRU metadata and data
9441 * respectively.
9442 */
9443 if (l2arc_mfuonly) {
9444 if (pass == 1 || pass == 3)
9445 continue;
9446 }
9447
9448 multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9449 uint64_t passed_sz = 0;
9450
9451 VERIFY3P(mls, !=, NULL);
9452
9453 /*
9454 * L2ARC fast warmup.
9455 *
9456 * Until the ARC is warm and starts to evict, read from the
9457 * head of the ARC lists rather than the tail.
9458 */
9459 if (arc_warm == B_FALSE)
9460 hdr = multilist_sublist_head(mls);
9461 else
9462 hdr = multilist_sublist_tail(mls);
9463
9464 headroom = target_sz * l2arc_headroom;
9465 if (zfs_compressed_arc_enabled)
9466 headroom = (headroom * l2arc_headroom_boost) / 100;
9467
9468 for (; hdr; hdr = hdr_prev) {
9469 kmutex_t *hash_lock;
9470 abd_t *to_write = NULL;
9471
9472 if (arc_warm == B_FALSE)
9473 hdr_prev = multilist_sublist_next(mls, hdr);
9474 else
9475 hdr_prev = multilist_sublist_prev(mls, hdr);
9476
9477 hash_lock = HDR_LOCK(hdr);
9478 if (!mutex_tryenter(hash_lock)) {
9479 /*
9480 * Skip this buffer rather than waiting.
9481 */
9482 continue;
9483 }
9484
9485 passed_sz += HDR_GET_LSIZE(hdr);
9486 if (l2arc_headroom != 0 && passed_sz > headroom) {
9487 /*
9488 * Searched too far.
9489 */
9490 mutex_exit(hash_lock);
9491 break;
9492 }
9493
9494 if (!l2arc_write_eligible(guid, hdr)) {
9495 mutex_exit(hash_lock);
9496 continue;
9497 }
9498
9499 /*
9500 * We rely on the L1 portion of the header below, so
9501 * it's invalid for this header to have been evicted out
9502 * of the ghost cache, prior to being written out. The
9503 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9504 */
9505 ASSERT(HDR_HAS_L1HDR(hdr));
9506
9507 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9508 ASSERT3U(arc_hdr_size(hdr), >, 0);
9509 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9510 HDR_HAS_RABD(hdr));
9511 uint64_t psize = HDR_GET_PSIZE(hdr);
9512 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9513 psize);
9514
9515 if ((write_asize + asize) > target_sz) {
9516 full = B_TRUE;
9517 mutex_exit(hash_lock);
9518 break;
9519 }
9520
9521 /*
9522 * We rely on the L1 portion of the header below, so
9523 * it's invalid for this header to have been evicted out
9524 * of the ghost cache, prior to being written out. The
9525 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9526 */
9527 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
9528 ASSERT(HDR_HAS_L1HDR(hdr));
9529
9530 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9531 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9532 HDR_HAS_RABD(hdr));
9533 ASSERT3U(arc_hdr_size(hdr), >, 0);
9534
9535 /*
9536 * If this header has b_rabd, we can use this since it
9537 * must always match the data exactly as it exists on
9538 * disk. Otherwise, the L2ARC can normally use the
9539 * hdr's data, but if we're sharing data between the
9540 * hdr and one of its bufs, L2ARC needs its own copy of
9541 * the data so that the ZIO below can't race with the
9542 * buf consumer. To ensure that this copy will be
9543 * available for the lifetime of the ZIO and be cleaned
9544 * up afterwards, we add it to the l2arc_free_on_write
9545 * queue. If we need to apply any transforms to the
9546 * data (compression, encryption) we will also need the
9547 * extra buffer.
9548 */
9549 if (HDR_HAS_RABD(hdr) && psize == asize) {
9550 to_write = hdr->b_crypt_hdr.b_rabd;
9551 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9552 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9553 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9554 psize == asize) {
9555 to_write = hdr->b_l1hdr.b_pabd;
9556 } else {
9557 int ret;
9558 arc_buf_contents_t type = arc_buf_type(hdr);
9559
9560 ret = l2arc_apply_transforms(spa, hdr, asize,
9561 &to_write);
9562 if (ret != 0) {
9563 arc_hdr_clear_flags(hdr,
9564 ARC_FLAG_L2_WRITING);
9565 mutex_exit(hash_lock);
9566 continue;
9567 }
9568
9569 l2arc_free_abd_on_write(to_write, asize, type);
9570 }
9571
9572 if (pio == NULL) {
9573 /*
9574 * Insert a dummy header on the buflist so
9575 * l2arc_write_done() can find where the
9576 * write buffers begin without searching.
9577 */
9578 mutex_enter(&dev->l2ad_mtx);
9579 list_insert_head(&dev->l2ad_buflist, head);
9580 mutex_exit(&dev->l2ad_mtx);
9581
9582 cb = kmem_alloc(
9583 sizeof (l2arc_write_callback_t), KM_SLEEP);
9584 cb->l2wcb_dev = dev;
9585 cb->l2wcb_head = head;
9586 /*
9587 * Create a list to save allocated abd buffers
9588 * for l2arc_log_blk_commit().
9589 */
9590 list_create(&cb->l2wcb_abd_list,
9591 sizeof (l2arc_lb_abd_buf_t),
9592 offsetof(l2arc_lb_abd_buf_t, node));
9593 pio = zio_root(spa, l2arc_write_done, cb,
9594 ZIO_FLAG_CANFAIL);
9595 }
9596
9597 hdr->b_l2hdr.b_dev = dev;
9598 hdr->b_l2hdr.b_hits = 0;
9599
9600 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9601 hdr->b_l2hdr.b_arcs_state =
9602 hdr->b_l1hdr.b_state->arcs_state;
9603 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
9604
9605 mutex_enter(&dev->l2ad_mtx);
9606 list_insert_head(&dev->l2ad_buflist, hdr);
9607 mutex_exit(&dev->l2ad_mtx);
9608
9609 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9610 arc_hdr_size(hdr), hdr);
9611
9612 wzio = zio_write_phys(pio, dev->l2ad_vdev,
9613 hdr->b_l2hdr.b_daddr, asize, to_write,
9614 ZIO_CHECKSUM_OFF, NULL, hdr,
9615 ZIO_PRIORITY_ASYNC_WRITE,
9616 ZIO_FLAG_CANFAIL, B_FALSE);
9617
9618 write_lsize += HDR_GET_LSIZE(hdr);
9619 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9620 zio_t *, wzio);
9621
9622 write_psize += psize;
9623 write_asize += asize;
9624 dev->l2ad_hand += asize;
9625 l2arc_hdr_arcstats_increment(hdr);
9626 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9627
9628 mutex_exit(hash_lock);
9629
9630 /*
9631 * Append buf info to current log and commit if full.
9632 * arcstat_l2_{size,asize} kstats are updated
9633 * internally.
9634 */
9635 if (l2arc_log_blk_insert(dev, hdr))
9636 l2arc_log_blk_commit(dev, pio, cb);
9637
9638 zio_nowait(wzio);
9639 }
9640
9641 multilist_sublist_unlock(mls);
9642
9643 if (full == B_TRUE)
9644 break;
9645 }
9646
9647 /* No buffers selected for writing? */
9648 if (pio == NULL) {
9649 ASSERT0(write_lsize);
9650 ASSERT(!HDR_HAS_L1HDR(head));
9651 kmem_cache_free(hdr_l2only_cache, head);
9652
9653 /*
9654 * Although we did not write any buffers l2ad_evict may
9655 * have advanced.
9656 */
9657 if (dev->l2ad_evict != l2dhdr->dh_evict)
9658 l2arc_dev_hdr_update(dev);
9659
9660 return (0);
9661 }
9662
9663 if (!dev->l2ad_first)
9664 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9665
9666 ASSERT3U(write_asize, <=, target_sz);
9667 ARCSTAT_BUMP(arcstat_l2_writes_sent);
9668 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9669
9670 dev->l2ad_writing = B_TRUE;
9671 (void) zio_wait(pio);
9672 dev->l2ad_writing = B_FALSE;
9673
9674 /*
9675 * Update the device header after the zio completes as
9676 * l2arc_write_done() may have updated the memory holding the log block
9677 * pointers in the device header.
9678 */
9679 l2arc_dev_hdr_update(dev);
9680
9681 return (write_asize);
9682 }
9683
9684 static boolean_t
l2arc_hdr_limit_reached(void)9685 l2arc_hdr_limit_reached(void)
9686 {
9687 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9688
9689 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) ||
9690 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9691 }
9692
9693 /*
9694 * This thread feeds the L2ARC at regular intervals. This is the beating
9695 * heart of the L2ARC.
9696 */
9697 static void
l2arc_feed_thread(void * unused)9698 l2arc_feed_thread(void *unused)
9699 {
9700 (void) unused;
9701 callb_cpr_t cpr;
9702 l2arc_dev_t *dev;
9703 spa_t *spa;
9704 uint64_t size, wrote;
9705 clock_t begin, next = ddi_get_lbolt();
9706 fstrans_cookie_t cookie;
9707
9708 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9709
9710 mutex_enter(&l2arc_feed_thr_lock);
9711
9712 cookie = spl_fstrans_mark();
9713 while (l2arc_thread_exit == 0) {
9714 CALLB_CPR_SAFE_BEGIN(&cpr);
9715 (void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9716 &l2arc_feed_thr_lock, next);
9717 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9718 next = ddi_get_lbolt() + hz;
9719
9720 /*
9721 * Quick check for L2ARC devices.
9722 */
9723 mutex_enter(&l2arc_dev_mtx);
9724 if (l2arc_ndev == 0) {
9725 mutex_exit(&l2arc_dev_mtx);
9726 continue;
9727 }
9728 mutex_exit(&l2arc_dev_mtx);
9729 begin = ddi_get_lbolt();
9730
9731 /*
9732 * This selects the next l2arc device to write to, and in
9733 * doing so the next spa to feed from: dev->l2ad_spa. This
9734 * will return NULL if there are now no l2arc devices or if
9735 * they are all faulted.
9736 *
9737 * If a device is returned, its spa's config lock is also
9738 * held to prevent device removal. l2arc_dev_get_next()
9739 * will grab and release l2arc_dev_mtx.
9740 */
9741 if ((dev = l2arc_dev_get_next()) == NULL)
9742 continue;
9743
9744 spa = dev->l2ad_spa;
9745 ASSERT3P(spa, !=, NULL);
9746
9747 /*
9748 * If the pool is read-only then force the feed thread to
9749 * sleep a little longer.
9750 */
9751 if (!spa_writeable(spa)) {
9752 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9753 spa_config_exit(spa, SCL_L2ARC, dev);
9754 continue;
9755 }
9756
9757 /*
9758 * Avoid contributing to memory pressure.
9759 */
9760 if (l2arc_hdr_limit_reached()) {
9761 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9762 spa_config_exit(spa, SCL_L2ARC, dev);
9763 continue;
9764 }
9765
9766 ARCSTAT_BUMP(arcstat_l2_feeds);
9767
9768 size = l2arc_write_size(dev);
9769
9770 /*
9771 * Evict L2ARC buffers that will be overwritten.
9772 */
9773 l2arc_evict(dev, size, B_FALSE);
9774
9775 /*
9776 * Write ARC buffers.
9777 */
9778 wrote = l2arc_write_buffers(spa, dev, size);
9779
9780 /*
9781 * Calculate interval between writes.
9782 */
9783 next = l2arc_write_interval(begin, size, wrote);
9784 spa_config_exit(spa, SCL_L2ARC, dev);
9785 }
9786 spl_fstrans_unmark(cookie);
9787
9788 l2arc_thread_exit = 0;
9789 cv_broadcast(&l2arc_feed_thr_cv);
9790 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9791 thread_exit();
9792 }
9793
9794 boolean_t
l2arc_vdev_present(vdev_t * vd)9795 l2arc_vdev_present(vdev_t *vd)
9796 {
9797 return (l2arc_vdev_get(vd) != NULL);
9798 }
9799
9800 /*
9801 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9802 * the vdev_t isn't an L2ARC device.
9803 */
9804 l2arc_dev_t *
l2arc_vdev_get(vdev_t * vd)9805 l2arc_vdev_get(vdev_t *vd)
9806 {
9807 l2arc_dev_t *dev;
9808
9809 mutex_enter(&l2arc_dev_mtx);
9810 for (dev = list_head(l2arc_dev_list); dev != NULL;
9811 dev = list_next(l2arc_dev_list, dev)) {
9812 if (dev->l2ad_vdev == vd)
9813 break;
9814 }
9815 mutex_exit(&l2arc_dev_mtx);
9816
9817 return (dev);
9818 }
9819
9820 static void
l2arc_rebuild_dev(l2arc_dev_t * dev,boolean_t reopen)9821 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9822 {
9823 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9824 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9825 spa_t *spa = dev->l2ad_spa;
9826
9827 /*
9828 * The L2ARC has to hold at least the payload of one log block for
9829 * them to be restored (persistent L2ARC). The payload of a log block
9830 * depends on the amount of its log entries. We always write log blocks
9831 * with 1022 entries. How many of them are committed or restored depends
9832 * on the size of the L2ARC device. Thus the maximum payload of
9833 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9834 * is less than that, we reduce the amount of committed and restored
9835 * log entries per block so as to enable persistence.
9836 */
9837 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9838 dev->l2ad_log_entries = 0;
9839 } else {
9840 dev->l2ad_log_entries = MIN((dev->l2ad_end -
9841 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9842 L2ARC_LOG_BLK_MAX_ENTRIES);
9843 }
9844
9845 /*
9846 * Read the device header, if an error is returned do not rebuild L2ARC.
9847 */
9848 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9849 /*
9850 * If we are onlining a cache device (vdev_reopen) that was
9851 * still present (l2arc_vdev_present()) and rebuild is enabled,
9852 * we should evict all ARC buffers and pointers to log blocks
9853 * and reclaim their space before restoring its contents to
9854 * L2ARC.
9855 */
9856 if (reopen) {
9857 if (!l2arc_rebuild_enabled) {
9858 return;
9859 } else {
9860 l2arc_evict(dev, 0, B_TRUE);
9861 /* start a new log block */
9862 dev->l2ad_log_ent_idx = 0;
9863 dev->l2ad_log_blk_payload_asize = 0;
9864 dev->l2ad_log_blk_payload_start = 0;
9865 }
9866 }
9867 /*
9868 * Just mark the device as pending for a rebuild. We won't
9869 * be starting a rebuild in line here as it would block pool
9870 * import. Instead spa_load_impl will hand that off to an
9871 * async task which will call l2arc_spa_rebuild_start.
9872 */
9873 dev->l2ad_rebuild = B_TRUE;
9874 } else if (spa_writeable(spa)) {
9875 /*
9876 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9877 * otherwise create a new header. We zero out the memory holding
9878 * the header to reset dh_start_lbps. If we TRIM the whole
9879 * device the new header will be written by
9880 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9881 * trim_state in the header too. When reading the header, if
9882 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9883 * we opt to TRIM the whole device again.
9884 */
9885 if (l2arc_trim_ahead > 0) {
9886 dev->l2ad_trim_all = B_TRUE;
9887 } else {
9888 bzero(l2dhdr, l2dhdr_asize);
9889 l2arc_dev_hdr_update(dev);
9890 }
9891 }
9892 }
9893
9894 /*
9895 * Add a vdev for use by the L2ARC. By this point the spa has already
9896 * validated the vdev and opened it.
9897 */
9898 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd)9899 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9900 {
9901 l2arc_dev_t *adddev;
9902 uint64_t l2dhdr_asize;
9903
9904 ASSERT(!l2arc_vdev_present(vd));
9905
9906 /*
9907 * Create a new l2arc device entry.
9908 */
9909 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9910 adddev->l2ad_spa = spa;
9911 adddev->l2ad_vdev = vd;
9912 /* leave extra size for an l2arc device header */
9913 l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9914 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9915 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9916 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9917 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9918 adddev->l2ad_hand = adddev->l2ad_start;
9919 adddev->l2ad_evict = adddev->l2ad_start;
9920 adddev->l2ad_first = B_TRUE;
9921 adddev->l2ad_writing = B_FALSE;
9922 adddev->l2ad_trim_all = B_FALSE;
9923 list_link_init(&adddev->l2ad_node);
9924 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9925
9926 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9927 /*
9928 * This is a list of all ARC buffers that are still valid on the
9929 * device.
9930 */
9931 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9932 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9933
9934 /*
9935 * This is a list of pointers to log blocks that are still present
9936 * on the device.
9937 */
9938 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9939 offsetof(l2arc_lb_ptr_buf_t, node));
9940
9941 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9942 zfs_refcount_create(&adddev->l2ad_alloc);
9943 zfs_refcount_create(&adddev->l2ad_lb_asize);
9944 zfs_refcount_create(&adddev->l2ad_lb_count);
9945
9946 /*
9947 * Decide if dev is eligible for L2ARC rebuild or whole device
9948 * trimming. This has to happen before the device is added in the
9949 * cache device list and l2arc_dev_mtx is released. Otherwise
9950 * l2arc_feed_thread() might already start writing on the
9951 * device.
9952 */
9953 l2arc_rebuild_dev(adddev, B_FALSE);
9954
9955 /*
9956 * Add device to global list
9957 */
9958 mutex_enter(&l2arc_dev_mtx);
9959 list_insert_head(l2arc_dev_list, adddev);
9960 atomic_inc_64(&l2arc_ndev);
9961 mutex_exit(&l2arc_dev_mtx);
9962 }
9963
9964 /*
9965 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9966 * in case of onlining a cache device.
9967 */
9968 void
l2arc_rebuild_vdev(vdev_t * vd,boolean_t reopen)9969 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9970 {
9971 l2arc_dev_t *dev = NULL;
9972
9973 dev = l2arc_vdev_get(vd);
9974 ASSERT3P(dev, !=, NULL);
9975
9976 /*
9977 * In contrast to l2arc_add_vdev() we do not have to worry about
9978 * l2arc_feed_thread() invalidating previous content when onlining a
9979 * cache device. The device parameters (l2ad*) are not cleared when
9980 * offlining the device and writing new buffers will not invalidate
9981 * all previous content. In worst case only buffers that have not had
9982 * their log block written to the device will be lost.
9983 * When onlining the cache device (ie offline->online without exporting
9984 * the pool in between) this happens:
9985 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9986 * | |
9987 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
9988 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9989 * is set to B_TRUE we might write additional buffers to the device.
9990 */
9991 l2arc_rebuild_dev(dev, reopen);
9992 }
9993
9994 /*
9995 * Remove a vdev from the L2ARC.
9996 */
9997 void
l2arc_remove_vdev(vdev_t * vd)9998 l2arc_remove_vdev(vdev_t *vd)
9999 {
10000 l2arc_dev_t *remdev = NULL;
10001
10002 /*
10003 * Find the device by vdev
10004 */
10005 remdev = l2arc_vdev_get(vd);
10006 ASSERT3P(remdev, !=, NULL);
10007
10008 /*
10009 * Cancel any ongoing or scheduled rebuild.
10010 */
10011 mutex_enter(&l2arc_rebuild_thr_lock);
10012 if (remdev->l2ad_rebuild_began == B_TRUE) {
10013 remdev->l2ad_rebuild_cancel = B_TRUE;
10014 while (remdev->l2ad_rebuild == B_TRUE)
10015 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
10016 }
10017 mutex_exit(&l2arc_rebuild_thr_lock);
10018
10019 /*
10020 * Remove device from global list
10021 */
10022 mutex_enter(&l2arc_dev_mtx);
10023 list_remove(l2arc_dev_list, remdev);
10024 l2arc_dev_last = NULL; /* may have been invalidated */
10025 atomic_dec_64(&l2arc_ndev);
10026 mutex_exit(&l2arc_dev_mtx);
10027
10028 /*
10029 * Clear all buflists and ARC references. L2ARC device flush.
10030 */
10031 l2arc_evict(remdev, 0, B_TRUE);
10032 list_destroy(&remdev->l2ad_buflist);
10033 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
10034 list_destroy(&remdev->l2ad_lbptr_list);
10035 mutex_destroy(&remdev->l2ad_mtx);
10036 zfs_refcount_destroy(&remdev->l2ad_alloc);
10037 zfs_refcount_destroy(&remdev->l2ad_lb_asize);
10038 zfs_refcount_destroy(&remdev->l2ad_lb_count);
10039 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
10040 vmem_free(remdev, sizeof (l2arc_dev_t));
10041 }
10042
10043 void
l2arc_init(void)10044 l2arc_init(void)
10045 {
10046 l2arc_thread_exit = 0;
10047 l2arc_ndev = 0;
10048
10049 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10050 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
10051 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10052 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
10053 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
10054 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
10055
10056 l2arc_dev_list = &L2ARC_dev_list;
10057 l2arc_free_on_write = &L2ARC_free_on_write;
10058 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
10059 offsetof(l2arc_dev_t, l2ad_node));
10060 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
10061 offsetof(l2arc_data_free_t, l2df_list_node));
10062 }
10063
10064 void
l2arc_fini(void)10065 l2arc_fini(void)
10066 {
10067 mutex_destroy(&l2arc_feed_thr_lock);
10068 cv_destroy(&l2arc_feed_thr_cv);
10069 mutex_destroy(&l2arc_rebuild_thr_lock);
10070 cv_destroy(&l2arc_rebuild_thr_cv);
10071 mutex_destroy(&l2arc_dev_mtx);
10072 mutex_destroy(&l2arc_free_on_write_mtx);
10073
10074 list_destroy(l2arc_dev_list);
10075 list_destroy(l2arc_free_on_write);
10076 }
10077
10078 void
l2arc_start(void)10079 l2arc_start(void)
10080 {
10081 if (!(spa_mode_global & SPA_MODE_WRITE))
10082 return;
10083
10084 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
10085 TS_RUN, defclsyspri);
10086 }
10087
10088 void
l2arc_stop(void)10089 l2arc_stop(void)
10090 {
10091 if (!(spa_mode_global & SPA_MODE_WRITE))
10092 return;
10093
10094 mutex_enter(&l2arc_feed_thr_lock);
10095 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
10096 l2arc_thread_exit = 1;
10097 while (l2arc_thread_exit != 0)
10098 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10099 mutex_exit(&l2arc_feed_thr_lock);
10100 }
10101
10102 /*
10103 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10104 * be called after pool import from the spa async thread, since starting
10105 * these threads directly from spa_import() will make them part of the
10106 * "zpool import" context and delay process exit (and thus pool import).
10107 */
10108 void
l2arc_spa_rebuild_start(spa_t * spa)10109 l2arc_spa_rebuild_start(spa_t *spa)
10110 {
10111 ASSERT(MUTEX_HELD(&spa_namespace_lock));
10112
10113 /*
10114 * Locate the spa's l2arc devices and kick off rebuild threads.
10115 */
10116 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10117 l2arc_dev_t *dev =
10118 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10119 if (dev == NULL) {
10120 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10121 continue;
10122 }
10123 mutex_enter(&l2arc_rebuild_thr_lock);
10124 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10125 dev->l2ad_rebuild_began = B_TRUE;
10126 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
10127 dev, 0, &p0, TS_RUN, minclsyspri);
10128 }
10129 mutex_exit(&l2arc_rebuild_thr_lock);
10130 }
10131 }
10132
10133 /*
10134 * Main entry point for L2ARC rebuilding.
10135 */
10136 static void
l2arc_dev_rebuild_thread(void * arg)10137 l2arc_dev_rebuild_thread(void *arg)
10138 {
10139 l2arc_dev_t *dev = arg;
10140
10141 VERIFY(!dev->l2ad_rebuild_cancel);
10142 VERIFY(dev->l2ad_rebuild);
10143 (void) l2arc_rebuild(dev);
10144 mutex_enter(&l2arc_rebuild_thr_lock);
10145 dev->l2ad_rebuild_began = B_FALSE;
10146 dev->l2ad_rebuild = B_FALSE;
10147 mutex_exit(&l2arc_rebuild_thr_lock);
10148
10149 thread_exit();
10150 }
10151
10152 /*
10153 * This function implements the actual L2ARC metadata rebuild. It:
10154 * starts reading the log block chain and restores each block's contents
10155 * to memory (reconstructing arc_buf_hdr_t's).
10156 *
10157 * Operation stops under any of the following conditions:
10158 *
10159 * 1) We reach the end of the log block chain.
10160 * 2) We encounter *any* error condition (cksum errors, io errors)
10161 */
10162 static int
l2arc_rebuild(l2arc_dev_t * dev)10163 l2arc_rebuild(l2arc_dev_t *dev)
10164 {
10165 vdev_t *vd = dev->l2ad_vdev;
10166 spa_t *spa = vd->vdev_spa;
10167 int err = 0;
10168 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10169 l2arc_log_blk_phys_t *this_lb, *next_lb;
10170 zio_t *this_io = NULL, *next_io = NULL;
10171 l2arc_log_blkptr_t lbps[2];
10172 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10173 boolean_t lock_held;
10174
10175 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10176 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10177
10178 /*
10179 * We prevent device removal while issuing reads to the device,
10180 * then during the rebuilding phases we drop this lock again so
10181 * that a spa_unload or device remove can be initiated - this is
10182 * safe, because the spa will signal us to stop before removing
10183 * our device and wait for us to stop.
10184 */
10185 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10186 lock_held = B_TRUE;
10187
10188 /*
10189 * Retrieve the persistent L2ARC device state.
10190 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10191 */
10192 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10193 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10194 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10195 dev->l2ad_start);
10196 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10197
10198 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10199 vd->vdev_trim_state = l2dhdr->dh_trim_state;
10200
10201 /*
10202 * In case the zfs module parameter l2arc_rebuild_enabled is false
10203 * we do not start the rebuild process.
10204 */
10205 if (!l2arc_rebuild_enabled)
10206 goto out;
10207
10208 /* Prepare the rebuild process */
10209 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps));
10210
10211 /* Start the rebuild process */
10212 for (;;) {
10213 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10214 break;
10215
10216 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10217 this_lb, next_lb, this_io, &next_io)) != 0)
10218 goto out;
10219
10220 /*
10221 * Our memory pressure valve. If the system is running low
10222 * on memory, rather than swamping memory with new ARC buf
10223 * hdrs, we opt not to rebuild the L2ARC. At this point,
10224 * however, we have already set up our L2ARC dev to chain in
10225 * new metadata log blocks, so the user may choose to offline/
10226 * online the L2ARC dev at a later time (or re-import the pool)
10227 * to reconstruct it (when there's less memory pressure).
10228 */
10229 if (l2arc_hdr_limit_reached()) {
10230 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10231 cmn_err(CE_NOTE, "System running low on memory, "
10232 "aborting L2ARC rebuild.");
10233 err = SET_ERROR(ENOMEM);
10234 goto out;
10235 }
10236
10237 spa_config_exit(spa, SCL_L2ARC, vd);
10238 lock_held = B_FALSE;
10239
10240 /*
10241 * Now that we know that the next_lb checks out alright, we
10242 * can start reconstruction from this log block.
10243 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10244 */
10245 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
10246 l2arc_log_blk_restore(dev, this_lb, asize);
10247
10248 /*
10249 * log block restored, include its pointer in the list of
10250 * pointers to log blocks present in the L2ARC device.
10251 */
10252 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10253 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10254 KM_SLEEP);
10255 bcopy(&lbps[0], lb_ptr_buf->lb_ptr,
10256 sizeof (l2arc_log_blkptr_t));
10257 mutex_enter(&dev->l2ad_mtx);
10258 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10259 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10260 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10261 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10262 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10263 mutex_exit(&dev->l2ad_mtx);
10264 vdev_space_update(vd, asize, 0, 0);
10265
10266 /*
10267 * Protection against loops of log blocks:
10268 *
10269 * l2ad_hand l2ad_evict
10270 * V V
10271 * l2ad_start |=======================================| l2ad_end
10272 * -----|||----|||---|||----|||
10273 * (3) (2) (1) (0)
10274 * ---|||---|||----|||---|||
10275 * (7) (6) (5) (4)
10276 *
10277 * In this situation the pointer of log block (4) passes
10278 * l2arc_log_blkptr_valid() but the log block should not be
10279 * restored as it is overwritten by the payload of log block
10280 * (0). Only log blocks (0)-(3) should be restored. We check
10281 * whether l2ad_evict lies in between the payload starting
10282 * offset of the next log block (lbps[1].lbp_payload_start)
10283 * and the payload starting offset of the present log block
10284 * (lbps[0].lbp_payload_start). If true and this isn't the
10285 * first pass, we are looping from the beginning and we should
10286 * stop.
10287 */
10288 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10289 lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10290 !dev->l2ad_first)
10291 goto out;
10292
10293 cond_resched();
10294 for (;;) {
10295 mutex_enter(&l2arc_rebuild_thr_lock);
10296 if (dev->l2ad_rebuild_cancel) {
10297 dev->l2ad_rebuild = B_FALSE;
10298 cv_signal(&l2arc_rebuild_thr_cv);
10299 mutex_exit(&l2arc_rebuild_thr_lock);
10300 err = SET_ERROR(ECANCELED);
10301 goto out;
10302 }
10303 mutex_exit(&l2arc_rebuild_thr_lock);
10304 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10305 RW_READER)) {
10306 lock_held = B_TRUE;
10307 break;
10308 }
10309 /*
10310 * L2ARC config lock held by somebody in writer,
10311 * possibly due to them trying to remove us. They'll
10312 * likely to want us to shut down, so after a little
10313 * delay, we check l2ad_rebuild_cancel and retry
10314 * the lock again.
10315 */
10316 delay(1);
10317 }
10318
10319 /*
10320 * Continue with the next log block.
10321 */
10322 lbps[0] = lbps[1];
10323 lbps[1] = this_lb->lb_prev_lbp;
10324 PTR_SWAP(this_lb, next_lb);
10325 this_io = next_io;
10326 next_io = NULL;
10327 }
10328
10329 if (this_io != NULL)
10330 l2arc_log_blk_fetch_abort(this_io);
10331 out:
10332 if (next_io != NULL)
10333 l2arc_log_blk_fetch_abort(next_io);
10334 vmem_free(this_lb, sizeof (*this_lb));
10335 vmem_free(next_lb, sizeof (*next_lb));
10336
10337 if (!l2arc_rebuild_enabled) {
10338 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10339 "disabled");
10340 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10341 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10342 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10343 "successful, restored %llu blocks",
10344 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10345 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10346 /*
10347 * No error but also nothing restored, meaning the lbps array
10348 * in the device header points to invalid/non-present log
10349 * blocks. Reset the header.
10350 */
10351 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10352 "no valid log blocks");
10353 bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
10354 l2arc_dev_hdr_update(dev);
10355 } else if (err == ECANCELED) {
10356 /*
10357 * In case the rebuild was canceled do not log to spa history
10358 * log as the pool may be in the process of being removed.
10359 */
10360 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10361 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10362 } else if (err != 0) {
10363 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10364 "aborted, restored %llu blocks",
10365 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10366 }
10367
10368 if (lock_held)
10369 spa_config_exit(spa, SCL_L2ARC, vd);
10370
10371 return (err);
10372 }
10373
10374 /*
10375 * Attempts to read the device header on the provided L2ARC device and writes
10376 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10377 * error code is returned.
10378 */
10379 static int
l2arc_dev_hdr_read(l2arc_dev_t * dev)10380 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10381 {
10382 int err;
10383 uint64_t guid;
10384 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10385 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10386 abd_t *abd;
10387
10388 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10389
10390 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10391
10392 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10393 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10394 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10395 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10396 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10397 ZIO_FLAG_SPECULATIVE, B_FALSE));
10398
10399 abd_free(abd);
10400
10401 if (err != 0) {
10402 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10403 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10404 "vdev guid: %llu", err,
10405 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10406 return (err);
10407 }
10408
10409 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10410 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10411
10412 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10413 l2dhdr->dh_spa_guid != guid ||
10414 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10415 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10416 l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10417 l2dhdr->dh_end != dev->l2ad_end ||
10418 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10419 l2dhdr->dh_evict) ||
10420 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10421 l2arc_trim_ahead > 0)) {
10422 /*
10423 * Attempt to rebuild a device containing no actual dev hdr
10424 * or containing a header from some other pool or from another
10425 * version of persistent L2ARC.
10426 */
10427 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10428 return (SET_ERROR(ENOTSUP));
10429 }
10430
10431 return (0);
10432 }
10433
10434 /*
10435 * Reads L2ARC log blocks from storage and validates their contents.
10436 *
10437 * This function implements a simple fetcher to make sure that while
10438 * we're processing one buffer the L2ARC is already fetching the next
10439 * one in the chain.
10440 *
10441 * The arguments this_lp and next_lp point to the current and next log block
10442 * address in the block chain. Similarly, this_lb and next_lb hold the
10443 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10444 *
10445 * The `this_io' and `next_io' arguments are used for block fetching.
10446 * When issuing the first blk IO during rebuild, you should pass NULL for
10447 * `this_io'. This function will then issue a sync IO to read the block and
10448 * also issue an async IO to fetch the next block in the block chain. The
10449 * fetched IO is returned in `next_io'. On subsequent calls to this
10450 * function, pass the value returned in `next_io' from the previous call
10451 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10452 * Prior to the call, you should initialize your `next_io' pointer to be
10453 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10454 *
10455 * On success, this function returns 0, otherwise it returns an appropriate
10456 * error code. On error the fetching IO is aborted and cleared before
10457 * returning from this function. Therefore, if we return `success', the
10458 * caller can assume that we have taken care of cleanup of fetch IOs.
10459 */
10460 static int
l2arc_log_blk_read(l2arc_dev_t * dev,const l2arc_log_blkptr_t * this_lbp,const l2arc_log_blkptr_t * next_lbp,l2arc_log_blk_phys_t * this_lb,l2arc_log_blk_phys_t * next_lb,zio_t * this_io,zio_t ** next_io)10461 l2arc_log_blk_read(l2arc_dev_t *dev,
10462 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10463 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10464 zio_t *this_io, zio_t **next_io)
10465 {
10466 int err = 0;
10467 zio_cksum_t cksum;
10468 abd_t *abd = NULL;
10469 uint64_t asize;
10470
10471 ASSERT(this_lbp != NULL && next_lbp != NULL);
10472 ASSERT(this_lb != NULL && next_lb != NULL);
10473 ASSERT(next_io != NULL && *next_io == NULL);
10474 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10475
10476 /*
10477 * Check to see if we have issued the IO for this log block in a
10478 * previous run. If not, this is the first call, so issue it now.
10479 */
10480 if (this_io == NULL) {
10481 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10482 this_lb);
10483 }
10484
10485 /*
10486 * Peek to see if we can start issuing the next IO immediately.
10487 */
10488 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10489 /*
10490 * Start issuing IO for the next log block early - this
10491 * should help keep the L2ARC device busy while we
10492 * decompress and restore this log block.
10493 */
10494 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10495 next_lb);
10496 }
10497
10498 /* Wait for the IO to read this log block to complete */
10499 if ((err = zio_wait(this_io)) != 0) {
10500 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10501 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10502 "offset: %llu, vdev guid: %llu", err,
10503 (u_longlong_t)this_lbp->lbp_daddr,
10504 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10505 goto cleanup;
10506 }
10507
10508 /*
10509 * Make sure the buffer checks out.
10510 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10511 */
10512 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10513 fletcher_4_native(this_lb, asize, NULL, &cksum);
10514 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10515 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10516 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10517 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10518 (u_longlong_t)this_lbp->lbp_daddr,
10519 (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10520 (u_longlong_t)dev->l2ad_hand,
10521 (u_longlong_t)dev->l2ad_evict);
10522 err = SET_ERROR(ECKSUM);
10523 goto cleanup;
10524 }
10525
10526 /* Now we can take our time decoding this buffer */
10527 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10528 case ZIO_COMPRESS_OFF:
10529 break;
10530 case ZIO_COMPRESS_LZ4:
10531 abd = abd_alloc_for_io(asize, B_TRUE);
10532 abd_copy_from_buf_off(abd, this_lb, 0, asize);
10533 if ((err = zio_decompress_data(
10534 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10535 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) {
10536 err = SET_ERROR(EINVAL);
10537 goto cleanup;
10538 }
10539 break;
10540 default:
10541 err = SET_ERROR(EINVAL);
10542 goto cleanup;
10543 }
10544 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10545 byteswap_uint64_array(this_lb, sizeof (*this_lb));
10546 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10547 err = SET_ERROR(EINVAL);
10548 goto cleanup;
10549 }
10550 cleanup:
10551 /* Abort an in-flight fetch I/O in case of error */
10552 if (err != 0 && *next_io != NULL) {
10553 l2arc_log_blk_fetch_abort(*next_io);
10554 *next_io = NULL;
10555 }
10556 if (abd != NULL)
10557 abd_free(abd);
10558 return (err);
10559 }
10560
10561 /*
10562 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10563 * entries which only contain an l2arc hdr, essentially restoring the
10564 * buffers to their L2ARC evicted state. This function also updates space
10565 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10566 */
10567 static void
l2arc_log_blk_restore(l2arc_dev_t * dev,const l2arc_log_blk_phys_t * lb,uint64_t lb_asize)10568 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10569 uint64_t lb_asize)
10570 {
10571 uint64_t size = 0, asize = 0;
10572 uint64_t log_entries = dev->l2ad_log_entries;
10573
10574 /*
10575 * Usually arc_adapt() is called only for data, not headers, but
10576 * since we may allocate significant amount of memory here, let ARC
10577 * grow its arc_c.
10578 */
10579 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only);
10580
10581 for (int i = log_entries - 1; i >= 0; i--) {
10582 /*
10583 * Restore goes in the reverse temporal direction to preserve
10584 * correct temporal ordering of buffers in the l2ad_buflist.
10585 * l2arc_hdr_restore also does a list_insert_tail instead of
10586 * list_insert_head on the l2ad_buflist:
10587 *
10588 * LIST l2ad_buflist LIST
10589 * HEAD <------ (time) ------ TAIL
10590 * direction +-----+-----+-----+-----+-----+ direction
10591 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10592 * fill +-----+-----+-----+-----+-----+
10593 * ^ ^
10594 * | |
10595 * | |
10596 * l2arc_feed_thread l2arc_rebuild
10597 * will place new bufs here restores bufs here
10598 *
10599 * During l2arc_rebuild() the device is not used by
10600 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10601 */
10602 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10603 asize += vdev_psize_to_asize(dev->l2ad_vdev,
10604 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10605 l2arc_hdr_restore(&lb->lb_entries[i], dev);
10606 }
10607
10608 /*
10609 * Record rebuild stats:
10610 * size Logical size of restored buffers in the L2ARC
10611 * asize Aligned size of restored buffers in the L2ARC
10612 */
10613 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10614 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10615 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10616 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10617 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10618 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10619 }
10620
10621 /*
10622 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10623 * into a state indicating that it has been evicted to L2ARC.
10624 */
10625 static void
l2arc_hdr_restore(const l2arc_log_ent_phys_t * le,l2arc_dev_t * dev)10626 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10627 {
10628 arc_buf_hdr_t *hdr, *exists;
10629 kmutex_t *hash_lock;
10630 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop);
10631 uint64_t asize;
10632
10633 /*
10634 * Do all the allocation before grabbing any locks, this lets us
10635 * sleep if memory is full and we don't have to deal with failed
10636 * allocations.
10637 */
10638 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10639 dev, le->le_dva, le->le_daddr,
10640 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10641 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10642 L2BLK_GET_PROTECTED((le)->le_prop),
10643 L2BLK_GET_PREFETCH((le)->le_prop),
10644 L2BLK_GET_STATE((le)->le_prop));
10645 asize = vdev_psize_to_asize(dev->l2ad_vdev,
10646 L2BLK_GET_PSIZE((le)->le_prop));
10647
10648 /*
10649 * vdev_space_update() has to be called before arc_hdr_destroy() to
10650 * avoid underflow since the latter also calls vdev_space_update().
10651 */
10652 l2arc_hdr_arcstats_increment(hdr);
10653 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10654
10655 mutex_enter(&dev->l2ad_mtx);
10656 list_insert_tail(&dev->l2ad_buflist, hdr);
10657 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10658 mutex_exit(&dev->l2ad_mtx);
10659
10660 exists = buf_hash_insert(hdr, &hash_lock);
10661 if (exists) {
10662 /* Buffer was already cached, no need to restore it. */
10663 arc_hdr_destroy(hdr);
10664 /*
10665 * If the buffer is already cached, check whether it has
10666 * L2ARC metadata. If not, enter them and update the flag.
10667 * This is important is case of onlining a cache device, since
10668 * we previously evicted all L2ARC metadata from ARC.
10669 */
10670 if (!HDR_HAS_L2HDR(exists)) {
10671 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10672 exists->b_l2hdr.b_dev = dev;
10673 exists->b_l2hdr.b_daddr = le->le_daddr;
10674 exists->b_l2hdr.b_arcs_state =
10675 L2BLK_GET_STATE((le)->le_prop);
10676 mutex_enter(&dev->l2ad_mtx);
10677 list_insert_tail(&dev->l2ad_buflist, exists);
10678 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
10679 arc_hdr_size(exists), exists);
10680 mutex_exit(&dev->l2ad_mtx);
10681 l2arc_hdr_arcstats_increment(exists);
10682 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10683 }
10684 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10685 }
10686
10687 mutex_exit(hash_lock);
10688 }
10689
10690 /*
10691 * Starts an asynchronous read IO to read a log block. This is used in log
10692 * block reconstruction to start reading the next block before we are done
10693 * decoding and reconstructing the current block, to keep the l2arc device
10694 * nice and hot with read IO to process.
10695 * The returned zio will contain a newly allocated memory buffers for the IO
10696 * data which should then be freed by the caller once the zio is no longer
10697 * needed (i.e. due to it having completed). If you wish to abort this
10698 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10699 * care of disposing of the allocated buffers correctly.
10700 */
10701 static zio_t *
l2arc_log_blk_fetch(vdev_t * vd,const l2arc_log_blkptr_t * lbp,l2arc_log_blk_phys_t * lb)10702 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10703 l2arc_log_blk_phys_t *lb)
10704 {
10705 uint32_t asize;
10706 zio_t *pio;
10707 l2arc_read_callback_t *cb;
10708
10709 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10710 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10711 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10712
10713 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10714 cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10715 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10716 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
10717 ZIO_FLAG_DONT_RETRY);
10718 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10719 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10720 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10721 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10722
10723 return (pio);
10724 }
10725
10726 /*
10727 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10728 * buffers allocated for it.
10729 */
10730 static void
l2arc_log_blk_fetch_abort(zio_t * zio)10731 l2arc_log_blk_fetch_abort(zio_t *zio)
10732 {
10733 (void) zio_wait(zio);
10734 }
10735
10736 /*
10737 * Creates a zio to update the device header on an l2arc device.
10738 */
10739 void
l2arc_dev_hdr_update(l2arc_dev_t * dev)10740 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10741 {
10742 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10743 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10744 abd_t *abd;
10745 int err;
10746
10747 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10748
10749 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10750 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10751 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10752 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10753 l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10754 l2dhdr->dh_evict = dev->l2ad_evict;
10755 l2dhdr->dh_start = dev->l2ad_start;
10756 l2dhdr->dh_end = dev->l2ad_end;
10757 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10758 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10759 l2dhdr->dh_flags = 0;
10760 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10761 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10762 if (dev->l2ad_first)
10763 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10764
10765 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10766
10767 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10768 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10769 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10770
10771 abd_free(abd);
10772
10773 if (err != 0) {
10774 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10775 "vdev guid: %llu", err,
10776 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10777 }
10778 }
10779
10780 /*
10781 * Commits a log block to the L2ARC device. This routine is invoked from
10782 * l2arc_write_buffers when the log block fills up.
10783 * This function allocates some memory to temporarily hold the serialized
10784 * buffer to be written. This is then released in l2arc_write_done.
10785 */
10786 static void
l2arc_log_blk_commit(l2arc_dev_t * dev,zio_t * pio,l2arc_write_callback_t * cb)10787 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10788 {
10789 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10790 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10791 uint64_t psize, asize;
10792 zio_t *wzio;
10793 l2arc_lb_abd_buf_t *abd_buf;
10794 uint8_t *tmpbuf;
10795 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10796
10797 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10798
10799 tmpbuf = zio_buf_alloc(sizeof (*lb));
10800 abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10801 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10802 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10803 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10804
10805 /* link the buffer into the block chain */
10806 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10807 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10808
10809 /*
10810 * l2arc_log_blk_commit() may be called multiple times during a single
10811 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10812 * so we can free them in l2arc_write_done() later on.
10813 */
10814 list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10815
10816 /* try to compress the buffer */
10817 psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10818 abd_buf->abd, tmpbuf, sizeof (*lb), 0);
10819
10820 /* a log block is never entirely zero */
10821 ASSERT(psize != 0);
10822 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10823 ASSERT(asize <= sizeof (*lb));
10824
10825 /*
10826 * Update the start log block pointer in the device header to point
10827 * to the log block we're about to write.
10828 */
10829 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10830 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10831 l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10832 dev->l2ad_log_blk_payload_asize;
10833 l2dhdr->dh_start_lbps[0].lbp_payload_start =
10834 dev->l2ad_log_blk_payload_start;
10835 _NOTE(CONSTCOND)
10836 L2BLK_SET_LSIZE(
10837 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10838 L2BLK_SET_PSIZE(
10839 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10840 L2BLK_SET_CHECKSUM(
10841 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10842 ZIO_CHECKSUM_FLETCHER_4);
10843 if (asize < sizeof (*lb)) {
10844 /* compression succeeded */
10845 bzero(tmpbuf + psize, asize - psize);
10846 L2BLK_SET_COMPRESS(
10847 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10848 ZIO_COMPRESS_LZ4);
10849 } else {
10850 /* compression failed */
10851 bcopy(lb, tmpbuf, sizeof (*lb));
10852 L2BLK_SET_COMPRESS(
10853 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10854 ZIO_COMPRESS_OFF);
10855 }
10856
10857 /* checksum what we're about to write */
10858 fletcher_4_native(tmpbuf, asize, NULL,
10859 &l2dhdr->dh_start_lbps[0].lbp_cksum);
10860
10861 abd_free(abd_buf->abd);
10862
10863 /* perform the write itself */
10864 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
10865 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
10866 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10867 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10868 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10869 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10870 (void) zio_nowait(wzio);
10871
10872 dev->l2ad_hand += asize;
10873 /*
10874 * Include the committed log block's pointer in the list of pointers
10875 * to log blocks present in the L2ARC device.
10876 */
10877 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr,
10878 sizeof (l2arc_log_blkptr_t));
10879 mutex_enter(&dev->l2ad_mtx);
10880 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10881 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10882 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10883 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10884 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10885 mutex_exit(&dev->l2ad_mtx);
10886 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10887
10888 /* bump the kstats */
10889 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10890 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10891 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10892 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10893 dev->l2ad_log_blk_payload_asize / asize);
10894
10895 /* start a new log block */
10896 dev->l2ad_log_ent_idx = 0;
10897 dev->l2ad_log_blk_payload_asize = 0;
10898 dev->l2ad_log_blk_payload_start = 0;
10899 }
10900
10901 /*
10902 * Validates an L2ARC log block address to make sure that it can be read
10903 * from the provided L2ARC device.
10904 */
10905 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t * dev,const l2arc_log_blkptr_t * lbp)10906 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10907 {
10908 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10909 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10910 uint64_t end = lbp->lbp_daddr + asize - 1;
10911 uint64_t start = lbp->lbp_payload_start;
10912 boolean_t evicted = B_FALSE;
10913
10914 /*
10915 * A log block is valid if all of the following conditions are true:
10916 * - it fits entirely (including its payload) between l2ad_start and
10917 * l2ad_end
10918 * - it has a valid size
10919 * - neither the log block itself nor part of its payload was evicted
10920 * by l2arc_evict():
10921 *
10922 * l2ad_hand l2ad_evict
10923 * | | lbp_daddr
10924 * | start | | end
10925 * | | | | |
10926 * V V V V V
10927 * l2ad_start ============================================ l2ad_end
10928 * --------------------------||||
10929 * ^ ^
10930 * | log block
10931 * payload
10932 */
10933
10934 evicted =
10935 l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10936 l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10937 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10938 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10939
10940 return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10941 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10942 (!evicted || dev->l2ad_first));
10943 }
10944
10945 /*
10946 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10947 * the device. The buffer being inserted must be present in L2ARC.
10948 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10949 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10950 */
10951 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t * dev,const arc_buf_hdr_t * hdr)10952 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10953 {
10954 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10955 l2arc_log_ent_phys_t *le;
10956
10957 if (dev->l2ad_log_entries == 0)
10958 return (B_FALSE);
10959
10960 int index = dev->l2ad_log_ent_idx++;
10961
10962 ASSERT3S(index, <, dev->l2ad_log_entries);
10963 ASSERT(HDR_HAS_L2HDR(hdr));
10964
10965 le = &lb->lb_entries[index];
10966 bzero(le, sizeof (*le));
10967 le->le_dva = hdr->b_dva;
10968 le->le_birth = hdr->b_birth;
10969 le->le_daddr = hdr->b_l2hdr.b_daddr;
10970 if (index == 0)
10971 dev->l2ad_log_blk_payload_start = le->le_daddr;
10972 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10973 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10974 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10975 le->le_complevel = hdr->b_complevel;
10976 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10977 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10978 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10979 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state);
10980
10981 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10982 HDR_GET_PSIZE(hdr));
10983
10984 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10985 }
10986
10987 /*
10988 * Checks whether a given L2ARC device address sits in a time-sequential
10989 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10990 * just do a range comparison, we need to handle the situation in which the
10991 * range wraps around the end of the L2ARC device. Arguments:
10992 * bottom -- Lower end of the range to check (written to earlier).
10993 * top -- Upper end of the range to check (written to later).
10994 * check -- The address for which we want to determine if it sits in
10995 * between the top and bottom.
10996 *
10997 * The 3-way conditional below represents the following cases:
10998 *
10999 * bottom < top : Sequentially ordered case:
11000 * <check>--------+-------------------+
11001 * | (overlap here?) |
11002 * L2ARC dev V V
11003 * |---------------<bottom>============<top>--------------|
11004 *
11005 * bottom > top: Looped-around case:
11006 * <check>--------+------------------+
11007 * | (overlap here?) |
11008 * L2ARC dev V V
11009 * |===============<top>---------------<bottom>===========|
11010 * ^ ^
11011 * | (or here?) |
11012 * +---------------+---------<check>
11013 *
11014 * top == bottom : Just a single address comparison.
11015 */
11016 boolean_t
l2arc_range_check_overlap(uint64_t bottom,uint64_t top,uint64_t check)11017 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
11018 {
11019 if (bottom < top)
11020 return (bottom <= check && check <= top);
11021 else if (bottom > top)
11022 return (check <= top || bottom <= check);
11023 else
11024 return (check == top);
11025 }
11026
11027 EXPORT_SYMBOL(arc_buf_size);
11028 EXPORT_SYMBOL(arc_write);
11029 EXPORT_SYMBOL(arc_read);
11030 EXPORT_SYMBOL(arc_buf_info);
11031 EXPORT_SYMBOL(arc_getbuf_func);
11032 EXPORT_SYMBOL(arc_add_prune_callback);
11033 EXPORT_SYMBOL(arc_remove_prune_callback);
11034
11035 /* BEGIN CSTYLED */
11036 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
11037 param_get_long, ZMOD_RW, "Min arc size");
11038
11039 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
11040 param_get_long, ZMOD_RW, "Max arc size");
11041
11042 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long,
11043 param_get_long, ZMOD_RW, "Metadata limit for arc size");
11044
11045 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent,
11046 param_set_arc_long, param_get_long, ZMOD_RW,
11047 "Percent of arc size for arc meta limit");
11048
11049 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long,
11050 param_get_long, ZMOD_RW, "Min arc metadata");
11051
11052 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW,
11053 "Meta objects to scan for prune");
11054
11055 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW,
11056 "Limit number of restarts in arc_evict_meta");
11057
11058 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW,
11059 "Meta reclaim strategy");
11060
11061 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11062 param_get_int, ZMOD_RW, "Seconds before growing arc size");
11063
11064 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW,
11065 "Disable arc_p adapt dampener");
11066
11067 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11068 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)");
11069
11070 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
11071 "Percent of pagecache to reclaim arc to");
11072
11073 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int,
11074 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p");
11075
11076 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD,
11077 "Target average block size");
11078
11079 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11080 "Disable compressed arc buffers");
11081
11082 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11083 param_get_int, ZMOD_RW, "Min life of prefetch block in ms");
11084
11085 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11086 param_set_arc_int, param_get_int, ZMOD_RW,
11087 "Min life of prescient prefetched block in ms");
11088
11089 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW,
11090 "Max write bytes per interval");
11091
11092 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW,
11093 "Extra write bytes during device warmup");
11094
11095 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW,
11096 "Number of max device writes to precache");
11097
11098 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW,
11099 "Compressed l2arc_headroom multiplier");
11100
11101 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW,
11102 "TRIM ahead L2ARC write size multiplier");
11103
11104 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW,
11105 "Seconds between L2ARC writing");
11106
11107 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW,
11108 "Min feed interval in milliseconds");
11109
11110 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11111 "Skip caching prefetched buffers");
11112
11113 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11114 "Turbo L2ARC warmup");
11115
11116 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11117 "No reads during writes");
11118
11119 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW,
11120 "Percent of ARC size allowed for L2ARC-only headers");
11121
11122 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11123 "Rebuild the L2ARC when importing a pool");
11124
11125 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW,
11126 "Min size in bytes to write rebuild log blocks in L2ARC");
11127
11128 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11129 "Cache only MFU data from ARC into L2ARC");
11130
11131 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11132 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes");
11133
11134 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long,
11135 param_get_long, ZMOD_RW, "System free memory target size in bytes");
11136
11137 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long,
11138 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc");
11139
11140 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11141 param_set_arc_long, param_get_long, ZMOD_RW,
11142 "Percent of ARC meta buffers for dnodes");
11143
11144 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW,
11145 "Percentage of excess dnodes to try to unpin");
11146
11147 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW,
11148 "When full, ARC allocation waits for eviction of this % of alloc size");
11149
11150 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW,
11151 "The number of headers to evict per sublist before moving to the next");
11152
11153 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
11154 "Number of arc_prune threads");
11155 /* END CSTYLED */
11156