1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD$
29 */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/module.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/pcpu.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/rwlock.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/systm.h>
48
49 #include <vm/vm.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_page.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_map.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_param.h>
56
57 #include <machine/cpu.h>
58 #include <machine/pcb.h>
59 #include <machine/smp.h>
60 #include <machine/md_var.h>
61 #include <x86/psl.h>
62 #include <x86/apicreg.h>
63
64 #include <machine/vmm.h>
65 #include <machine/vmm_dev.h>
66 #include <machine/vmm_instruction_emul.h>
67
68 #include "vmm_ioport.h"
69 #include "vmm_ktr.h"
70 #include "vmm_host.h"
71 #include "vmm_mem.h"
72 #include "vmm_util.h"
73 #include "vatpic.h"
74 #include "vatpit.h"
75 #include "vhpet.h"
76 #include "vioapic.h"
77 #include "vlapic.h"
78 #include "vpmtmr.h"
79 #include "vrtc.h"
80 #include "vmm_stat.h"
81 #include "vmm_lapic.h"
82
83 #include "io/ppt.h"
84 #include "io/iommu.h"
85
86 struct vlapic;
87
88 /*
89 * Initialization:
90 * (a) allocated when vcpu is created
91 * (i) initialized when vcpu is created and when it is reinitialized
92 * (o) initialized the first time the vcpu is created
93 * (x) initialized before use
94 */
95 struct vcpu {
96 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
97 enum vcpu_state state; /* (o) vcpu state */
98 int hostcpu; /* (o) vcpu's host cpu */
99 int reqidle; /* (i) request vcpu to idle */
100 struct vlapic *vlapic; /* (i) APIC device model */
101 enum x2apic_state x2apic_state; /* (i) APIC mode */
102 uint64_t exitintinfo; /* (i) events pending at VM exit */
103 int nmi_pending; /* (i) NMI pending */
104 int extint_pending; /* (i) INTR pending */
105 int exception_pending; /* (i) exception pending */
106 int exc_vector; /* (x) exception collateral */
107 int exc_errcode_valid;
108 uint32_t exc_errcode;
109 struct savefpu *guestfpu; /* (a,i) guest fpu state */
110 uint64_t guest_xcr0; /* (i) guest %xcr0 register */
111 void *stats; /* (a,i) statistics */
112 struct vm_exit exitinfo; /* (x) exit reason and collateral */
113 uint64_t nextrip; /* (x) next instruction to execute */
114 };
115
116 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
117 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
118 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
119 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
120 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
121
122 struct mem_seg {
123 size_t len;
124 bool sysmem;
125 struct vm_object *object;
126 };
127 #define VM_MAX_MEMSEGS 3
128
129 struct mem_map {
130 vm_paddr_t gpa;
131 size_t len;
132 vm_ooffset_t segoff;
133 int segid;
134 int prot;
135 int flags;
136 };
137 #define VM_MAX_MEMMAPS 4
138
139 /*
140 * Initialization:
141 * (o) initialized the first time the VM is created
142 * (i) initialized when VM is created and when it is reinitialized
143 * (x) initialized before use
144 */
145 struct vm {
146 void *cookie; /* (i) cpu-specific data */
147 void *iommu; /* (x) iommu-specific data */
148 struct vhpet *vhpet; /* (i) virtual HPET */
149 struct vioapic *vioapic; /* (i) virtual ioapic */
150 struct vatpic *vatpic; /* (i) virtual atpic */
151 struct vatpit *vatpit; /* (i) virtual atpit */
152 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
153 struct vrtc *vrtc; /* (o) virtual RTC */
154 volatile cpuset_t active_cpus; /* (i) active vcpus */
155 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
156 int suspend; /* (i) stop VM execution */
157 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
158 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
159 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */
160 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */
161 void *rendezvous_arg; /* (x) rendezvous func/arg */
162 vm_rendezvous_func_t rendezvous_func;
163 struct mtx rendezvous_mtx; /* (o) rendezvous lock */
164 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
165 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
166 struct vmspace *vmspace; /* (o) guest's address space */
167 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */
168 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */
169 /* The following describe the vm cpu topology */
170 uint16_t sockets; /* (o) num of sockets */
171 uint16_t cores; /* (o) num of cores/socket */
172 uint16_t threads; /* (o) num of threads/core */
173 uint16_t maxcpus; /* (o) max pluggable cpus */
174 };
175
176 static int vmm_initialized;
177
178 static struct vmm_ops *ops;
179 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0)
180 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0)
181 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0)
182
183 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
184 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \
185 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO)
186 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
187 #define VMSPACE_ALLOC(min, max) \
188 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
189 #define VMSPACE_FREE(vmspace) \
190 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
191 #define VMGETREG(vmi, vcpu, num, retval) \
192 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
193 #define VMSETREG(vmi, vcpu, num, val) \
194 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
195 #define VMGETDESC(vmi, vcpu, num, desc) \
196 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
197 #define VMSETDESC(vmi, vcpu, num, desc) \
198 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
199 #define VMGETCAP(vmi, vcpu, num, retval) \
200 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
201 #define VMSETCAP(vmi, vcpu, num, val) \
202 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
203 #define VLAPIC_INIT(vmi, vcpu) \
204 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
205 #define VLAPIC_CLEANUP(vmi, vlapic) \
206 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
207
208 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS)
209 #define fpu_stop_emulating() clts()
210
211 SDT_PROVIDER_DEFINE(vmm);
212
213 static MALLOC_DEFINE(M_VM, "vm", "vm");
214
215 /* statistics */
216 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
217
218 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
219
220 /*
221 * Halt the guest if all vcpus are executing a HLT instruction with
222 * interrupts disabled.
223 */
224 static int halt_detection_enabled = 1;
225 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
226 &halt_detection_enabled, 0,
227 "Halt VM if all vcpus execute HLT with interrupts disabled");
228
229 static int vmm_ipinum;
230 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
231 "IPI vector used for vcpu notifications");
232
233 static int trace_guest_exceptions;
234 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
235 &trace_guest_exceptions, 0,
236 "Trap into hypervisor on all guest exceptions and reflect them back");
237
238 static void vm_free_memmap(struct vm *vm, int ident);
239 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
240 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
241
242 #ifdef KTR
243 static const char *
vcpu_state2str(enum vcpu_state state)244 vcpu_state2str(enum vcpu_state state)
245 {
246
247 switch (state) {
248 case VCPU_IDLE:
249 return ("idle");
250 case VCPU_FROZEN:
251 return ("frozen");
252 case VCPU_RUNNING:
253 return ("running");
254 case VCPU_SLEEPING:
255 return ("sleeping");
256 default:
257 return ("unknown");
258 }
259 }
260 #endif
261
262 static void
vcpu_cleanup(struct vm * vm,int i,bool destroy)263 vcpu_cleanup(struct vm *vm, int i, bool destroy)
264 {
265 struct vcpu *vcpu = &vm->vcpu[i];
266
267 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
268 if (destroy) {
269 vmm_stat_free(vcpu->stats);
270 fpu_save_area_free(vcpu->guestfpu);
271 }
272 }
273
274 static void
vcpu_init(struct vm * vm,int vcpu_id,bool create)275 vcpu_init(struct vm *vm, int vcpu_id, bool create)
276 {
277 struct vcpu *vcpu;
278
279 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
280 ("vcpu_init: invalid vcpu %d", vcpu_id));
281
282 vcpu = &vm->vcpu[vcpu_id];
283
284 if (create) {
285 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
286 "initialized", vcpu_id));
287 vcpu_lock_init(vcpu);
288 vcpu->state = VCPU_IDLE;
289 vcpu->hostcpu = NOCPU;
290 vcpu->guestfpu = fpu_save_area_alloc();
291 vcpu->stats = vmm_stat_alloc();
292 }
293
294 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
295 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
296 vcpu->reqidle = 0;
297 vcpu->exitintinfo = 0;
298 vcpu->nmi_pending = 0;
299 vcpu->extint_pending = 0;
300 vcpu->exception_pending = 0;
301 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
302 fpu_save_area_reset(vcpu->guestfpu);
303 vmm_stat_init(vcpu->stats);
304 }
305
306 int
vcpu_trace_exceptions(struct vm * vm,int vcpuid)307 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
308 {
309
310 return (trace_guest_exceptions);
311 }
312
313 struct vm_exit *
vm_exitinfo(struct vm * vm,int cpuid)314 vm_exitinfo(struct vm *vm, int cpuid)
315 {
316 struct vcpu *vcpu;
317
318 if (cpuid < 0 || cpuid >= vm->maxcpus)
319 panic("vm_exitinfo: invalid cpuid %d", cpuid);
320
321 vcpu = &vm->vcpu[cpuid];
322
323 return (&vcpu->exitinfo);
324 }
325
326 static void
vmm_resume(void)327 vmm_resume(void)
328 {
329 VMM_RESUME();
330 }
331
332 static int
vmm_init(void)333 vmm_init(void)
334 {
335 int error;
336
337 vmm_host_state_init();
338
339 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
340 &IDTVEC(justreturn));
341 if (vmm_ipinum < 0)
342 vmm_ipinum = IPI_AST;
343
344 error = vmm_mem_init();
345 if (error)
346 return (error);
347
348 if (vmm_is_intel())
349 ops = &vmm_ops_intel;
350 else if (vmm_is_amd())
351 ops = &vmm_ops_amd;
352 else
353 return (ENXIO);
354
355 vmm_resume_p = vmm_resume;
356
357 return (VMM_INIT(vmm_ipinum));
358 }
359
360 static int
vmm_handler(module_t mod,int what,void * arg)361 vmm_handler(module_t mod, int what, void *arg)
362 {
363 int error;
364
365 switch (what) {
366 case MOD_LOAD:
367 vmmdev_init();
368 error = vmm_init();
369 if (error == 0)
370 vmm_initialized = 1;
371 break;
372 case MOD_UNLOAD:
373 error = vmmdev_cleanup();
374 if (error == 0) {
375 vmm_resume_p = NULL;
376 iommu_cleanup();
377 if (vmm_ipinum != IPI_AST)
378 lapic_ipi_free(vmm_ipinum);
379 error = VMM_CLEANUP();
380 /*
381 * Something bad happened - prevent new
382 * VMs from being created
383 */
384 if (error)
385 vmm_initialized = 0;
386 }
387 break;
388 default:
389 error = 0;
390 break;
391 }
392 return (error);
393 }
394
395 static moduledata_t vmm_kmod = {
396 "vmm",
397 vmm_handler,
398 NULL
399 };
400
401 /*
402 * vmm initialization has the following dependencies:
403 *
404 * - VT-x initialization requires smp_rendezvous() and therefore must happen
405 * after SMP is fully functional (after SI_SUB_SMP).
406 */
407 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
408 MODULE_VERSION(vmm, 1);
409
410 static void
vm_init(struct vm * vm,bool create)411 vm_init(struct vm *vm, bool create)
412 {
413 int i;
414
415 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
416 vm->iommu = NULL;
417 vm->vioapic = vioapic_init(vm);
418 vm->vhpet = vhpet_init(vm);
419 vm->vatpic = vatpic_init(vm);
420 vm->vatpit = vatpit_init(vm);
421 vm->vpmtmr = vpmtmr_init(vm);
422 if (create)
423 vm->vrtc = vrtc_init(vm);
424
425 CPU_ZERO(&vm->active_cpus);
426 CPU_ZERO(&vm->debug_cpus);
427
428 vm->suspend = 0;
429 CPU_ZERO(&vm->suspended_cpus);
430
431 for (i = 0; i < vm->maxcpus; i++)
432 vcpu_init(vm, i, create);
433 }
434
435 /*
436 * The default CPU topology is a single thread per package.
437 */
438 u_int cores_per_package = 1;
439 u_int threads_per_core = 1;
440
441 int
vm_create(const char * name,struct vm ** retvm)442 vm_create(const char *name, struct vm **retvm)
443 {
444 struct vm *vm;
445 struct vmspace *vmspace;
446
447 /*
448 * If vmm.ko could not be successfully initialized then don't attempt
449 * to create the virtual machine.
450 */
451 if (!vmm_initialized)
452 return (ENXIO);
453
454 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
455 return (EINVAL);
456
457 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
458 if (vmspace == NULL)
459 return (ENOMEM);
460
461 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
462 strcpy(vm->name, name);
463 vm->vmspace = vmspace;
464 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
465
466 vm->sockets = 1;
467 vm->cores = cores_per_package; /* XXX backwards compatibility */
468 vm->threads = threads_per_core; /* XXX backwards compatibility */
469 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */
470
471 vm_init(vm, true);
472
473 *retvm = vm;
474 return (0);
475 }
476
477 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)478 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
479 uint16_t *threads, uint16_t *maxcpus)
480 {
481 *sockets = vm->sockets;
482 *cores = vm->cores;
483 *threads = vm->threads;
484 *maxcpus = vm->maxcpus;
485 }
486
487 uint16_t
vm_get_maxcpus(struct vm * vm)488 vm_get_maxcpus(struct vm *vm)
489 {
490 return (vm->maxcpus);
491 }
492
493 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)494 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
495 uint16_t threads, uint16_t maxcpus)
496 {
497 if (maxcpus != 0)
498 return (EINVAL); /* XXX remove when supported */
499 if ((sockets * cores * threads) > vm->maxcpus)
500 return (EINVAL);
501 /* XXX need to check sockets * cores * threads == vCPU, how? */
502 vm->sockets = sockets;
503 vm->cores = cores;
504 vm->threads = threads;
505 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */
506 return(0);
507 }
508
509 static void
vm_cleanup(struct vm * vm,bool destroy)510 vm_cleanup(struct vm *vm, bool destroy)
511 {
512 struct mem_map *mm;
513 int i;
514
515 ppt_unassign_all(vm);
516
517 if (vm->iommu != NULL)
518 iommu_destroy_domain(vm->iommu);
519
520 if (destroy)
521 vrtc_cleanup(vm->vrtc);
522 else
523 vrtc_reset(vm->vrtc);
524 vpmtmr_cleanup(vm->vpmtmr);
525 vatpit_cleanup(vm->vatpit);
526 vhpet_cleanup(vm->vhpet);
527 vatpic_cleanup(vm->vatpic);
528 vioapic_cleanup(vm->vioapic);
529
530 for (i = 0; i < vm->maxcpus; i++)
531 vcpu_cleanup(vm, i, destroy);
532
533 VMCLEANUP(vm->cookie);
534
535 /*
536 * System memory is removed from the guest address space only when
537 * the VM is destroyed. This is because the mapping remains the same
538 * across VM reset.
539 *
540 * Device memory can be relocated by the guest (e.g. using PCI BARs)
541 * so those mappings are removed on a VM reset.
542 */
543 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
544 mm = &vm->mem_maps[i];
545 if (destroy || !sysmem_mapping(vm, mm))
546 vm_free_memmap(vm, i);
547 }
548
549 if (destroy) {
550 for (i = 0; i < VM_MAX_MEMSEGS; i++)
551 vm_free_memseg(vm, i);
552
553 VMSPACE_FREE(vm->vmspace);
554 vm->vmspace = NULL;
555 }
556 }
557
558 void
vm_destroy(struct vm * vm)559 vm_destroy(struct vm *vm)
560 {
561 vm_cleanup(vm, true);
562 free(vm, M_VM);
563 }
564
565 int
vm_reinit(struct vm * vm)566 vm_reinit(struct vm *vm)
567 {
568 int error;
569
570 /*
571 * A virtual machine can be reset only if all vcpus are suspended.
572 */
573 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
574 vm_cleanup(vm, false);
575 vm_init(vm, false);
576 error = 0;
577 } else {
578 error = EBUSY;
579 }
580
581 return (error);
582 }
583
584 const char *
vm_name(struct vm * vm)585 vm_name(struct vm *vm)
586 {
587 return (vm->name);
588 }
589
590 int
vm_map_mmio(struct vm * vm,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)591 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
592 {
593 vm_object_t obj;
594
595 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
596 return (ENOMEM);
597 else
598 return (0);
599 }
600
601 int
vm_unmap_mmio(struct vm * vm,vm_paddr_t gpa,size_t len)602 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
603 {
604
605 vmm_mmio_free(vm->vmspace, gpa, len);
606 return (0);
607 }
608
609 /*
610 * Return 'true' if 'gpa' is allocated in the guest address space.
611 *
612 * This function is called in the context of a running vcpu which acts as
613 * an implicit lock on 'vm->mem_maps[]'.
614 */
615 bool
vm_mem_allocated(struct vm * vm,int vcpuid,vm_paddr_t gpa)616 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
617 {
618 struct mem_map *mm;
619 int i;
620
621 #ifdef INVARIANTS
622 int hostcpu, state;
623 state = vcpu_get_state(vm, vcpuid, &hostcpu);
624 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
625 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
626 #endif
627
628 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
629 mm = &vm->mem_maps[i];
630 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
631 return (true); /* 'gpa' is sysmem or devmem */
632 }
633
634 if (ppt_is_mmio(vm, gpa))
635 return (true); /* 'gpa' is pci passthru mmio */
636
637 return (false);
638 }
639
640 int
vm_alloc_memseg(struct vm * vm,int ident,size_t len,bool sysmem)641 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
642 {
643 struct mem_seg *seg;
644 vm_object_t obj;
645
646 if (ident < 0 || ident >= VM_MAX_MEMSEGS)
647 return (EINVAL);
648
649 if (len == 0 || (len & PAGE_MASK))
650 return (EINVAL);
651
652 seg = &vm->mem_segs[ident];
653 if (seg->object != NULL) {
654 if (seg->len == len && seg->sysmem == sysmem)
655 return (EEXIST);
656 else
657 return (EINVAL);
658 }
659
660 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
661 if (obj == NULL)
662 return (ENOMEM);
663
664 seg->len = len;
665 seg->object = obj;
666 seg->sysmem = sysmem;
667 return (0);
668 }
669
670 int
vm_get_memseg(struct vm * vm,int ident,size_t * len,bool * sysmem,vm_object_t * objptr)671 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
672 vm_object_t *objptr)
673 {
674 struct mem_seg *seg;
675
676 if (ident < 0 || ident >= VM_MAX_MEMSEGS)
677 return (EINVAL);
678
679 seg = &vm->mem_segs[ident];
680 if (len)
681 *len = seg->len;
682 if (sysmem)
683 *sysmem = seg->sysmem;
684 if (objptr)
685 *objptr = seg->object;
686 return (0);
687 }
688
689 void
vm_free_memseg(struct vm * vm,int ident)690 vm_free_memseg(struct vm *vm, int ident)
691 {
692 struct mem_seg *seg;
693
694 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
695 ("%s: invalid memseg ident %d", __func__, ident));
696
697 seg = &vm->mem_segs[ident];
698 if (seg->object != NULL) {
699 vm_object_deallocate(seg->object);
700 bzero(seg, sizeof(struct mem_seg));
701 }
702 }
703
704 int
vm_mmap_memseg(struct vm * vm,vm_paddr_t gpa,int segid,vm_ooffset_t first,size_t len,int prot,int flags)705 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
706 size_t len, int prot, int flags)
707 {
708 struct mem_seg *seg;
709 struct mem_map *m, *map;
710 vm_ooffset_t last;
711 int i, error;
712
713 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
714 return (EINVAL);
715
716 if (flags & ~VM_MEMMAP_F_WIRED)
717 return (EINVAL);
718
719 if (segid < 0 || segid >= VM_MAX_MEMSEGS)
720 return (EINVAL);
721
722 seg = &vm->mem_segs[segid];
723 if (seg->object == NULL)
724 return (EINVAL);
725
726 last = first + len;
727 if (first < 0 || first >= last || last > seg->len)
728 return (EINVAL);
729
730 if ((gpa | first | last) & PAGE_MASK)
731 return (EINVAL);
732
733 map = NULL;
734 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
735 m = &vm->mem_maps[i];
736 if (m->len == 0) {
737 map = m;
738 break;
739 }
740 }
741
742 if (map == NULL)
743 return (ENOSPC);
744
745 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
746 len, 0, VMFS_NO_SPACE, prot, prot, 0);
747 if (error != KERN_SUCCESS)
748 return (EFAULT);
749
750 vm_object_reference(seg->object);
751
752 if (flags & VM_MEMMAP_F_WIRED) {
753 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
754 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
755 if (error != KERN_SUCCESS) {
756 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
757 return (EFAULT);
758 }
759 }
760
761 map->gpa = gpa;
762 map->len = len;
763 map->segoff = first;
764 map->segid = segid;
765 map->prot = prot;
766 map->flags = flags;
767 return (0);
768 }
769
770 int
vm_mmap_getnext(struct vm * vm,vm_paddr_t * gpa,int * segid,vm_ooffset_t * segoff,size_t * len,int * prot,int * flags)771 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
772 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
773 {
774 struct mem_map *mm, *mmnext;
775 int i;
776
777 mmnext = NULL;
778 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
779 mm = &vm->mem_maps[i];
780 if (mm->len == 0 || mm->gpa < *gpa)
781 continue;
782 if (mmnext == NULL || mm->gpa < mmnext->gpa)
783 mmnext = mm;
784 }
785
786 if (mmnext != NULL) {
787 *gpa = mmnext->gpa;
788 if (segid)
789 *segid = mmnext->segid;
790 if (segoff)
791 *segoff = mmnext->segoff;
792 if (len)
793 *len = mmnext->len;
794 if (prot)
795 *prot = mmnext->prot;
796 if (flags)
797 *flags = mmnext->flags;
798 return (0);
799 } else {
800 return (ENOENT);
801 }
802 }
803
804 static void
vm_free_memmap(struct vm * vm,int ident)805 vm_free_memmap(struct vm *vm, int ident)
806 {
807 struct mem_map *mm;
808 int error;
809
810 mm = &vm->mem_maps[ident];
811 if (mm->len) {
812 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
813 mm->gpa + mm->len);
814 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
815 __func__, error));
816 bzero(mm, sizeof(struct mem_map));
817 }
818 }
819
820 static __inline bool
sysmem_mapping(struct vm * vm,struct mem_map * mm)821 sysmem_mapping(struct vm *vm, struct mem_map *mm)
822 {
823
824 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
825 return (true);
826 else
827 return (false);
828 }
829
830 vm_paddr_t
vmm_sysmem_maxaddr(struct vm * vm)831 vmm_sysmem_maxaddr(struct vm *vm)
832 {
833 struct mem_map *mm;
834 vm_paddr_t maxaddr;
835 int i;
836
837 maxaddr = 0;
838 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
839 mm = &vm->mem_maps[i];
840 if (sysmem_mapping(vm, mm)) {
841 if (maxaddr < mm->gpa + mm->len)
842 maxaddr = mm->gpa + mm->len;
843 }
844 }
845 return (maxaddr);
846 }
847
848 static void
vm_iommu_modify(struct vm * vm,bool map)849 vm_iommu_modify(struct vm *vm, bool map)
850 {
851 int i, sz;
852 vm_paddr_t gpa, hpa;
853 struct mem_map *mm;
854 void *vp, *cookie, *host_domain;
855
856 sz = PAGE_SIZE;
857 host_domain = iommu_host_domain();
858
859 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
860 mm = &vm->mem_maps[i];
861 if (!sysmem_mapping(vm, mm))
862 continue;
863
864 if (map) {
865 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
866 ("iommu map found invalid memmap %#lx/%#lx/%#x",
867 mm->gpa, mm->len, mm->flags));
868 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
869 continue;
870 mm->flags |= VM_MEMMAP_F_IOMMU;
871 } else {
872 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
873 continue;
874 mm->flags &= ~VM_MEMMAP_F_IOMMU;
875 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
876 ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
877 mm->gpa, mm->len, mm->flags));
878 }
879
880 gpa = mm->gpa;
881 while (gpa < mm->gpa + mm->len) {
882 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE,
883 &cookie);
884 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
885 vm_name(vm), gpa));
886
887 vm_gpa_release(cookie);
888
889 hpa = DMAP_TO_PHYS((uintptr_t)vp);
890 if (map) {
891 iommu_create_mapping(vm->iommu, gpa, hpa, sz);
892 iommu_remove_mapping(host_domain, hpa, sz);
893 } else {
894 iommu_remove_mapping(vm->iommu, gpa, sz);
895 iommu_create_mapping(host_domain, hpa, hpa, sz);
896 }
897
898 gpa += PAGE_SIZE;
899 }
900 }
901
902 /*
903 * Invalidate the cached translations associated with the domain
904 * from which pages were removed.
905 */
906 if (map)
907 iommu_invalidate_tlb(host_domain);
908 else
909 iommu_invalidate_tlb(vm->iommu);
910 }
911
912 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false)
913 #define vm_iommu_map(vm) vm_iommu_modify((vm), true)
914
915 int
vm_unassign_pptdev(struct vm * vm,int bus,int slot,int func)916 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
917 {
918 int error;
919
920 error = ppt_unassign_device(vm, bus, slot, func);
921 if (error)
922 return (error);
923
924 if (ppt_assigned_devices(vm) == 0)
925 vm_iommu_unmap(vm);
926
927 return (0);
928 }
929
930 int
vm_assign_pptdev(struct vm * vm,int bus,int slot,int func)931 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
932 {
933 int error;
934 vm_paddr_t maxaddr;
935
936 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
937 if (ppt_assigned_devices(vm) == 0) {
938 KASSERT(vm->iommu == NULL,
939 ("vm_assign_pptdev: iommu must be NULL"));
940 maxaddr = vmm_sysmem_maxaddr(vm);
941 vm->iommu = iommu_create_domain(maxaddr);
942 if (vm->iommu == NULL)
943 return (ENXIO);
944 vm_iommu_map(vm);
945 }
946
947 error = ppt_assign_device(vm, bus, slot, func);
948 return (error);
949 }
950
951 void *
vm_gpa_hold(struct vm * vm,int vcpuid,vm_paddr_t gpa,size_t len,int reqprot,void ** cookie)952 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot,
953 void **cookie)
954 {
955 int i, count, pageoff;
956 struct mem_map *mm;
957 vm_page_t m;
958 #ifdef INVARIANTS
959 /*
960 * All vcpus are frozen by ioctls that modify the memory map
961 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is
962 * guaranteed if at least one vcpu is in the VCPU_FROZEN state.
963 */
964 int state;
965 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d",
966 __func__, vcpuid));
967 for (i = 0; i < vm->maxcpus; i++) {
968 if (vcpuid != -1 && vcpuid != i)
969 continue;
970 state = vcpu_get_state(vm, i, NULL);
971 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
972 __func__, state));
973 }
974 #endif
975 pageoff = gpa & PAGE_MASK;
976 if (len > PAGE_SIZE - pageoff)
977 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
978
979 count = 0;
980 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
981 mm = &vm->mem_maps[i];
982 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
983 gpa < mm->gpa + mm->len) {
984 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
985 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
986 break;
987 }
988 }
989
990 if (count == 1) {
991 *cookie = m;
992 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
993 } else {
994 *cookie = NULL;
995 return (NULL);
996 }
997 }
998
999 void
vm_gpa_release(void * cookie)1000 vm_gpa_release(void *cookie)
1001 {
1002 vm_page_t m = cookie;
1003
1004 vm_page_lock(m);
1005 vm_page_unhold(m);
1006 vm_page_unlock(m);
1007 }
1008
1009 int
vm_get_register(struct vm * vm,int vcpu,int reg,uint64_t * retval)1010 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
1011 {
1012
1013 if (vcpu < 0 || vcpu >= vm->maxcpus)
1014 return (EINVAL);
1015
1016 if (reg >= VM_REG_LAST)
1017 return (EINVAL);
1018
1019 return (VMGETREG(vm->cookie, vcpu, reg, retval));
1020 }
1021
1022 int
vm_set_register(struct vm * vm,int vcpuid,int reg,uint64_t val)1023 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
1024 {
1025 struct vcpu *vcpu;
1026 int error;
1027
1028 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1029 return (EINVAL);
1030
1031 if (reg >= VM_REG_LAST)
1032 return (EINVAL);
1033
1034 error = VMSETREG(vm->cookie, vcpuid, reg, val);
1035 if (error || reg != VM_REG_GUEST_RIP)
1036 return (error);
1037
1038 /* Set 'nextrip' to match the value of %rip */
1039 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
1040 vcpu = &vm->vcpu[vcpuid];
1041 vcpu->nextrip = val;
1042 return (0);
1043 }
1044
1045 static bool
is_descriptor_table(int reg)1046 is_descriptor_table(int reg)
1047 {
1048
1049 switch (reg) {
1050 case VM_REG_GUEST_IDTR:
1051 case VM_REG_GUEST_GDTR:
1052 return (true);
1053 default:
1054 return (false);
1055 }
1056 }
1057
1058 static bool
is_segment_register(int reg)1059 is_segment_register(int reg)
1060 {
1061
1062 switch (reg) {
1063 case VM_REG_GUEST_ES:
1064 case VM_REG_GUEST_CS:
1065 case VM_REG_GUEST_SS:
1066 case VM_REG_GUEST_DS:
1067 case VM_REG_GUEST_FS:
1068 case VM_REG_GUEST_GS:
1069 case VM_REG_GUEST_TR:
1070 case VM_REG_GUEST_LDTR:
1071 return (true);
1072 default:
1073 return (false);
1074 }
1075 }
1076
1077 int
vm_get_seg_desc(struct vm * vm,int vcpu,int reg,struct seg_desc * desc)1078 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
1079 struct seg_desc *desc)
1080 {
1081
1082 if (vcpu < 0 || vcpu >= vm->maxcpus)
1083 return (EINVAL);
1084
1085 if (!is_segment_register(reg) && !is_descriptor_table(reg))
1086 return (EINVAL);
1087
1088 return (VMGETDESC(vm->cookie, vcpu, reg, desc));
1089 }
1090
1091 int
vm_set_seg_desc(struct vm * vm,int vcpu,int reg,struct seg_desc * desc)1092 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
1093 struct seg_desc *desc)
1094 {
1095 if (vcpu < 0 || vcpu >= vm->maxcpus)
1096 return (EINVAL);
1097
1098 if (!is_segment_register(reg) && !is_descriptor_table(reg))
1099 return (EINVAL);
1100
1101 return (VMSETDESC(vm->cookie, vcpu, reg, desc));
1102 }
1103
1104 static void
restore_guest_fpustate(struct vcpu * vcpu)1105 restore_guest_fpustate(struct vcpu *vcpu)
1106 {
1107
1108 /* flush host state to the pcb */
1109 fpuexit(curthread);
1110
1111 /* restore guest FPU state */
1112 fpu_stop_emulating();
1113 fpurestore(vcpu->guestfpu);
1114
1115 /* restore guest XCR0 if XSAVE is enabled in the host */
1116 if (rcr4() & CR4_XSAVE)
1117 load_xcr(0, vcpu->guest_xcr0);
1118
1119 /*
1120 * The FPU is now "dirty" with the guest's state so turn on emulation
1121 * to trap any access to the FPU by the host.
1122 */
1123 fpu_start_emulating();
1124 }
1125
1126 static void
save_guest_fpustate(struct vcpu * vcpu)1127 save_guest_fpustate(struct vcpu *vcpu)
1128 {
1129
1130 if ((rcr0() & CR0_TS) == 0)
1131 panic("fpu emulation not enabled in host!");
1132
1133 /* save guest XCR0 and restore host XCR0 */
1134 if (rcr4() & CR4_XSAVE) {
1135 vcpu->guest_xcr0 = rxcr(0);
1136 load_xcr(0, vmm_get_host_xcr0());
1137 }
1138
1139 /* save guest FPU state */
1140 fpu_stop_emulating();
1141 fpusave(vcpu->guestfpu);
1142 fpu_start_emulating();
1143 }
1144
1145 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
1146
1147 static int
vcpu_set_state_locked(struct vm * vm,int vcpuid,enum vcpu_state newstate,bool from_idle)1148 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
1149 bool from_idle)
1150 {
1151 struct vcpu *vcpu;
1152 int error;
1153
1154 vcpu = &vm->vcpu[vcpuid];
1155 vcpu_assert_locked(vcpu);
1156
1157 /*
1158 * State transitions from the vmmdev_ioctl() must always begin from
1159 * the VCPU_IDLE state. This guarantees that there is only a single
1160 * ioctl() operating on a vcpu at any point.
1161 */
1162 if (from_idle) {
1163 while (vcpu->state != VCPU_IDLE) {
1164 vcpu->reqidle = 1;
1165 vcpu_notify_event_locked(vcpu, false);
1166 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to "
1167 "idle requested", vcpu_state2str(vcpu->state));
1168 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1169 }
1170 } else {
1171 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1172 "vcpu idle state"));
1173 }
1174
1175 if (vcpu->state == VCPU_RUNNING) {
1176 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1177 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1178 } else {
1179 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1180 "vcpu that is not running", vcpu->hostcpu));
1181 }
1182
1183 /*
1184 * The following state transitions are allowed:
1185 * IDLE -> FROZEN -> IDLE
1186 * FROZEN -> RUNNING -> FROZEN
1187 * FROZEN -> SLEEPING -> FROZEN
1188 */
1189 switch (vcpu->state) {
1190 case VCPU_IDLE:
1191 case VCPU_RUNNING:
1192 case VCPU_SLEEPING:
1193 error = (newstate != VCPU_FROZEN);
1194 break;
1195 case VCPU_FROZEN:
1196 error = (newstate == VCPU_FROZEN);
1197 break;
1198 default:
1199 error = 1;
1200 break;
1201 }
1202
1203 if (error)
1204 return (EBUSY);
1205
1206 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s",
1207 vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1208
1209 vcpu->state = newstate;
1210 if (newstate == VCPU_RUNNING)
1211 vcpu->hostcpu = curcpu;
1212 else
1213 vcpu->hostcpu = NOCPU;
1214
1215 if (newstate == VCPU_IDLE)
1216 wakeup(&vcpu->state);
1217
1218 return (0);
1219 }
1220
1221 static void
vcpu_require_state(struct vm * vm,int vcpuid,enum vcpu_state newstate)1222 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1223 {
1224 int error;
1225
1226 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
1227 panic("Error %d setting state to %d\n", error, newstate);
1228 }
1229
1230 static void
vcpu_require_state_locked(struct vm * vm,int vcpuid,enum vcpu_state newstate)1231 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1232 {
1233 int error;
1234
1235 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
1236 panic("Error %d setting state to %d", error, newstate);
1237 }
1238
1239 static void
vm_set_rendezvous_func(struct vm * vm,vm_rendezvous_func_t func)1240 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
1241 {
1242
1243 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
1244
1245 /*
1246 * Update 'rendezvous_func' and execute a write memory barrier to
1247 * ensure that it is visible across all host cpus. This is not needed
1248 * for correctness but it does ensure that all the vcpus will notice
1249 * that the rendezvous is requested immediately.
1250 */
1251 vm->rendezvous_func = func;
1252 wmb();
1253 }
1254
1255 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \
1256 do { \
1257 if (vcpuid >= 0) \
1258 VCPU_CTR0(vm, vcpuid, fmt); \
1259 else \
1260 VM_CTR0(vm, fmt); \
1261 } while (0)
1262
1263 static void
vm_handle_rendezvous(struct vm * vm,int vcpuid)1264 vm_handle_rendezvous(struct vm *vm, int vcpuid)
1265 {
1266
1267 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus),
1268 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
1269
1270 mtx_lock(&vm->rendezvous_mtx);
1271 while (vm->rendezvous_func != NULL) {
1272 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1273 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
1274
1275 if (vcpuid != -1 &&
1276 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1277 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1278 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
1279 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
1280 CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1281 }
1282 if (CPU_CMP(&vm->rendezvous_req_cpus,
1283 &vm->rendezvous_done_cpus) == 0) {
1284 VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
1285 vm_set_rendezvous_func(vm, NULL);
1286 wakeup(&vm->rendezvous_func);
1287 break;
1288 }
1289 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
1290 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1291 "vmrndv", 0);
1292 }
1293 mtx_unlock(&vm->rendezvous_mtx);
1294 }
1295
1296 /*
1297 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1298 */
1299 static int
vm_handle_hlt(struct vm * vm,int vcpuid,bool intr_disabled,bool * retu)1300 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
1301 {
1302 struct vcpu *vcpu;
1303 const char *wmesg;
1304 int t, vcpu_halted, vm_halted;
1305
1306 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1307
1308 vcpu = &vm->vcpu[vcpuid];
1309 vcpu_halted = 0;
1310 vm_halted = 0;
1311
1312 vcpu_lock(vcpu);
1313 while (1) {
1314 /*
1315 * Do a final check for pending NMI or interrupts before
1316 * really putting this thread to sleep. Also check for
1317 * software events that would cause this vcpu to wakeup.
1318 *
1319 * These interrupts/events could have happened after the
1320 * vcpu returned from VMRUN() and before it acquired the
1321 * vcpu lock above.
1322 */
1323 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1324 break;
1325 if (vm_nmi_pending(vm, vcpuid))
1326 break;
1327 if (!intr_disabled) {
1328 if (vm_extint_pending(vm, vcpuid) ||
1329 vlapic_pending_intr(vcpu->vlapic, NULL)) {
1330 break;
1331 }
1332 }
1333
1334 /* Don't go to sleep if the vcpu thread needs to yield */
1335 if (vcpu_should_yield(vm, vcpuid))
1336 break;
1337
1338 if (vcpu_debugged(vm, vcpuid))
1339 break;
1340
1341 /*
1342 * Some Linux guests implement "halt" by having all vcpus
1343 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1344 * track of the vcpus that have entered this state. When all
1345 * vcpus enter the halted state the virtual machine is halted.
1346 */
1347 if (intr_disabled) {
1348 wmesg = "vmhalt";
1349 VCPU_CTR0(vm, vcpuid, "Halted");
1350 if (!vcpu_halted && halt_detection_enabled) {
1351 vcpu_halted = 1;
1352 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1353 }
1354 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1355 vm_halted = 1;
1356 break;
1357 }
1358 } else {
1359 wmesg = "vmidle";
1360 }
1361
1362 t = ticks;
1363 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1364 /*
1365 * XXX msleep_spin() cannot be interrupted by signals so
1366 * wake up periodically to check pending signals.
1367 */
1368 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1369 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1370 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
1371 }
1372
1373 if (vcpu_halted)
1374 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1375
1376 vcpu_unlock(vcpu);
1377
1378 if (vm_halted)
1379 vm_suspend(vm, VM_SUSPEND_HALT);
1380
1381 return (0);
1382 }
1383
1384 static int
vm_handle_paging(struct vm * vm,int vcpuid,bool * retu)1385 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
1386 {
1387 int rv, ftype;
1388 struct vm_map *map;
1389 struct vcpu *vcpu;
1390 struct vm_exit *vme;
1391
1392 vcpu = &vm->vcpu[vcpuid];
1393 vme = &vcpu->exitinfo;
1394
1395 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1396 __func__, vme->inst_length));
1397
1398 ftype = vme->u.paging.fault_type;
1399 KASSERT(ftype == VM_PROT_READ ||
1400 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1401 ("vm_handle_paging: invalid fault_type %d", ftype));
1402
1403 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1404 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1405 vme->u.paging.gpa, ftype);
1406 if (rv == 0) {
1407 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
1408 ftype == VM_PROT_READ ? "accessed" : "dirty",
1409 vme->u.paging.gpa);
1410 goto done;
1411 }
1412 }
1413
1414 map = &vm->vmspace->vm_map;
1415 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
1416
1417 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
1418 "ftype = %d", rv, vme->u.paging.gpa, ftype);
1419
1420 if (rv != KERN_SUCCESS)
1421 return (EFAULT);
1422 done:
1423 return (0);
1424 }
1425
1426 static int
vm_handle_inst_emul(struct vm * vm,int vcpuid,bool * retu)1427 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
1428 {
1429 struct vie *vie;
1430 struct vcpu *vcpu;
1431 struct vm_exit *vme;
1432 uint64_t gla, gpa, cs_base;
1433 struct vm_guest_paging *paging;
1434 mem_region_read_t mread;
1435 mem_region_write_t mwrite;
1436 enum vm_cpu_mode cpu_mode;
1437 int cs_d, error, fault;
1438
1439 vcpu = &vm->vcpu[vcpuid];
1440 vme = &vcpu->exitinfo;
1441
1442 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1443 __func__, vme->inst_length));
1444
1445 gla = vme->u.inst_emul.gla;
1446 gpa = vme->u.inst_emul.gpa;
1447 cs_base = vme->u.inst_emul.cs_base;
1448 cs_d = vme->u.inst_emul.cs_d;
1449 vie = &vme->u.inst_emul.vie;
1450 paging = &vme->u.inst_emul.paging;
1451 cpu_mode = paging->cpu_mode;
1452
1453 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
1454
1455 /* Fetch, decode and emulate the faulting instruction */
1456 if (vie->num_valid == 0) {
1457 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
1458 cs_base, VIE_INST_SIZE, vie, &fault);
1459 } else {
1460 /*
1461 * The instruction bytes have already been copied into 'vie'
1462 */
1463 error = fault = 0;
1464 }
1465 if (error || fault)
1466 return (error);
1467
1468 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
1469 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
1470 vme->rip + cs_base);
1471 *retu = true; /* dump instruction bytes in userspace */
1472 return (0);
1473 }
1474
1475 /*
1476 * Update 'nextrip' based on the length of the emulated instruction.
1477 */
1478 vme->inst_length = vie->num_processed;
1479 vcpu->nextrip += vie->num_processed;
1480 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction "
1481 "decoding", vcpu->nextrip);
1482
1483 /* return to userland unless this is an in-kernel emulated device */
1484 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1485 mread = lapic_mmio_read;
1486 mwrite = lapic_mmio_write;
1487 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1488 mread = vioapic_mmio_read;
1489 mwrite = vioapic_mmio_write;
1490 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1491 mread = vhpet_mmio_read;
1492 mwrite = vhpet_mmio_write;
1493 } else {
1494 *retu = true;
1495 return (0);
1496 }
1497
1498 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
1499 mread, mwrite, retu);
1500
1501 return (error);
1502 }
1503
1504 static int
vm_handle_suspend(struct vm * vm,int vcpuid,bool * retu)1505 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
1506 {
1507 int i, done;
1508 struct vcpu *vcpu;
1509
1510 done = 0;
1511 vcpu = &vm->vcpu[vcpuid];
1512
1513 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
1514
1515 /*
1516 * Wait until all 'active_cpus' have suspended themselves.
1517 *
1518 * Since a VM may be suspended at any time including when one or
1519 * more vcpus are doing a rendezvous we need to call the rendezvous
1520 * handler while we are waiting to prevent a deadlock.
1521 */
1522 vcpu_lock(vcpu);
1523 while (1) {
1524 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1525 VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
1526 break;
1527 }
1528
1529 if (vm->rendezvous_func == NULL) {
1530 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
1531 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1532 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1533 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1534 } else {
1535 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
1536 vcpu_unlock(vcpu);
1537 vm_handle_rendezvous(vm, vcpuid);
1538 vcpu_lock(vcpu);
1539 }
1540 }
1541 vcpu_unlock(vcpu);
1542
1543 /*
1544 * Wakeup the other sleeping vcpus and return to userspace.
1545 */
1546 for (i = 0; i < vm->maxcpus; i++) {
1547 if (CPU_ISSET(i, &vm->suspended_cpus)) {
1548 vcpu_notify_event(vm, i, false);
1549 }
1550 }
1551
1552 *retu = true;
1553 return (0);
1554 }
1555
1556 static int
vm_handle_reqidle(struct vm * vm,int vcpuid,bool * retu)1557 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu)
1558 {
1559 struct vcpu *vcpu = &vm->vcpu[vcpuid];
1560
1561 vcpu_lock(vcpu);
1562 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1563 vcpu->reqidle = 0;
1564 vcpu_unlock(vcpu);
1565 *retu = true;
1566 return (0);
1567 }
1568
1569 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)1570 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1571 {
1572 int i;
1573
1574 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1575 return (EINVAL);
1576
1577 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1578 VM_CTR2(vm, "virtual machine already suspended %d/%d",
1579 vm->suspend, how);
1580 return (EALREADY);
1581 }
1582
1583 VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1584
1585 /*
1586 * Notify all active vcpus that they are now suspended.
1587 */
1588 for (i = 0; i < vm->maxcpus; i++) {
1589 if (CPU_ISSET(i, &vm->active_cpus))
1590 vcpu_notify_event(vm, i, false);
1591 }
1592
1593 return (0);
1594 }
1595
1596 void
vm_exit_suspended(struct vm * vm,int vcpuid,uint64_t rip)1597 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
1598 {
1599 struct vm_exit *vmexit;
1600
1601 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1602 ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1603
1604 vmexit = vm_exitinfo(vm, vcpuid);
1605 vmexit->rip = rip;
1606 vmexit->inst_length = 0;
1607 vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1608 vmexit->u.suspended.how = vm->suspend;
1609 }
1610
1611 void
vm_exit_debug(struct vm * vm,int vcpuid,uint64_t rip)1612 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip)
1613 {
1614 struct vm_exit *vmexit;
1615
1616 vmexit = vm_exitinfo(vm, vcpuid);
1617 vmexit->rip = rip;
1618 vmexit->inst_length = 0;
1619 vmexit->exitcode = VM_EXITCODE_DEBUG;
1620 }
1621
1622 void
vm_exit_rendezvous(struct vm * vm,int vcpuid,uint64_t rip)1623 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
1624 {
1625 struct vm_exit *vmexit;
1626
1627 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
1628
1629 vmexit = vm_exitinfo(vm, vcpuid);
1630 vmexit->rip = rip;
1631 vmexit->inst_length = 0;
1632 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1633 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
1634 }
1635
1636 void
vm_exit_reqidle(struct vm * vm,int vcpuid,uint64_t rip)1637 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip)
1638 {
1639 struct vm_exit *vmexit;
1640
1641 vmexit = vm_exitinfo(vm, vcpuid);
1642 vmexit->rip = rip;
1643 vmexit->inst_length = 0;
1644 vmexit->exitcode = VM_EXITCODE_REQIDLE;
1645 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
1646 }
1647
1648 void
vm_exit_astpending(struct vm * vm,int vcpuid,uint64_t rip)1649 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
1650 {
1651 struct vm_exit *vmexit;
1652
1653 vmexit = vm_exitinfo(vm, vcpuid);
1654 vmexit->rip = rip;
1655 vmexit->inst_length = 0;
1656 vmexit->exitcode = VM_EXITCODE_BOGUS;
1657 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
1658 }
1659
1660 int
vm_run(struct vm * vm,struct vm_run * vmrun)1661 vm_run(struct vm *vm, struct vm_run *vmrun)
1662 {
1663 struct vm_eventinfo evinfo;
1664 int error, vcpuid;
1665 struct vcpu *vcpu;
1666 struct pcb *pcb;
1667 uint64_t tscval;
1668 struct vm_exit *vme;
1669 bool retu, intr_disabled;
1670 pmap_t pmap;
1671
1672 vcpuid = vmrun->cpuid;
1673
1674 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1675 return (EINVAL);
1676
1677 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1678 return (EINVAL);
1679
1680 if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1681 return (EINVAL);
1682
1683 pmap = vmspace_pmap(vm->vmspace);
1684 vcpu = &vm->vcpu[vcpuid];
1685 vme = &vcpu->exitinfo;
1686 evinfo.rptr = &vm->rendezvous_func;
1687 evinfo.sptr = &vm->suspend;
1688 evinfo.iptr = &vcpu->reqidle;
1689 restart:
1690 critical_enter();
1691
1692 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1693 ("vm_run: absurd pm_active"));
1694
1695 tscval = rdtsc();
1696
1697 pcb = PCPU_GET(curpcb);
1698 set_pcb_flags(pcb, PCB_FULL_IRET);
1699
1700 restore_guest_fpustate(vcpu);
1701
1702 vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
1703 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo);
1704 vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
1705
1706 save_guest_fpustate(vcpu);
1707
1708 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1709
1710 critical_exit();
1711
1712 if (error == 0) {
1713 retu = false;
1714 vcpu->nextrip = vme->rip + vme->inst_length;
1715 switch (vme->exitcode) {
1716 case VM_EXITCODE_REQIDLE:
1717 error = vm_handle_reqidle(vm, vcpuid, &retu);
1718 break;
1719 case VM_EXITCODE_SUSPENDED:
1720 error = vm_handle_suspend(vm, vcpuid, &retu);
1721 break;
1722 case VM_EXITCODE_IOAPIC_EOI:
1723 vioapic_process_eoi(vm, vcpuid,
1724 vme->u.ioapic_eoi.vector);
1725 break;
1726 case VM_EXITCODE_RENDEZVOUS:
1727 vm_handle_rendezvous(vm, vcpuid);
1728 error = 0;
1729 break;
1730 case VM_EXITCODE_HLT:
1731 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1732 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
1733 break;
1734 case VM_EXITCODE_PAGING:
1735 error = vm_handle_paging(vm, vcpuid, &retu);
1736 break;
1737 case VM_EXITCODE_INST_EMUL:
1738 error = vm_handle_inst_emul(vm, vcpuid, &retu);
1739 break;
1740 case VM_EXITCODE_INOUT:
1741 case VM_EXITCODE_INOUT_STR:
1742 error = vm_handle_inout(vm, vcpuid, vme, &retu);
1743 break;
1744 case VM_EXITCODE_MONITOR:
1745 case VM_EXITCODE_MWAIT:
1746 case VM_EXITCODE_VMINSN:
1747 vm_inject_ud(vm, vcpuid);
1748 break;
1749 default:
1750 retu = true; /* handled in userland */
1751 break;
1752 }
1753 }
1754
1755 if (error == 0 && retu == false)
1756 goto restart;
1757
1758 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode);
1759
1760 /* copy the exit information */
1761 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
1762 return (error);
1763 }
1764
1765 int
vm_restart_instruction(void * arg,int vcpuid)1766 vm_restart_instruction(void *arg, int vcpuid)
1767 {
1768 struct vm *vm;
1769 struct vcpu *vcpu;
1770 enum vcpu_state state;
1771 uint64_t rip;
1772 int error;
1773
1774 vm = arg;
1775 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1776 return (EINVAL);
1777
1778 vcpu = &vm->vcpu[vcpuid];
1779 state = vcpu_get_state(vm, vcpuid, NULL);
1780 if (state == VCPU_RUNNING) {
1781 /*
1782 * When a vcpu is "running" the next instruction is determined
1783 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1784 * Thus setting 'inst_length' to zero will cause the current
1785 * instruction to be restarted.
1786 */
1787 vcpu->exitinfo.inst_length = 0;
1788 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
1789 "setting inst_length to zero", vcpu->exitinfo.rip);
1790 } else if (state == VCPU_FROZEN) {
1791 /*
1792 * When a vcpu is "frozen" it is outside the critical section
1793 * around VMRUN() and 'nextrip' points to the next instruction.
1794 * Thus instruction restart is achieved by setting 'nextrip'
1795 * to the vcpu's %rip.
1796 */
1797 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
1798 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1799 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
1800 "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1801 vcpu->nextrip = rip;
1802 } else {
1803 panic("%s: invalid state %d", __func__, state);
1804 }
1805 return (0);
1806 }
1807
1808 int
vm_exit_intinfo(struct vm * vm,int vcpuid,uint64_t info)1809 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
1810 {
1811 struct vcpu *vcpu;
1812 int type, vector;
1813
1814 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1815 return (EINVAL);
1816
1817 vcpu = &vm->vcpu[vcpuid];
1818
1819 if (info & VM_INTINFO_VALID) {
1820 type = info & VM_INTINFO_TYPE;
1821 vector = info & 0xff;
1822 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1823 return (EINVAL);
1824 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1825 return (EINVAL);
1826 if (info & VM_INTINFO_RSVD)
1827 return (EINVAL);
1828 } else {
1829 info = 0;
1830 }
1831 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
1832 vcpu->exitintinfo = info;
1833 return (0);
1834 }
1835
1836 enum exc_class {
1837 EXC_BENIGN,
1838 EXC_CONTRIBUTORY,
1839 EXC_PAGEFAULT
1840 };
1841
1842 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */
1843
1844 static enum exc_class
exception_class(uint64_t info)1845 exception_class(uint64_t info)
1846 {
1847 int type, vector;
1848
1849 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1850 type = info & VM_INTINFO_TYPE;
1851 vector = info & 0xff;
1852
1853 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1854 switch (type) {
1855 case VM_INTINFO_HWINTR:
1856 case VM_INTINFO_SWINTR:
1857 case VM_INTINFO_NMI:
1858 return (EXC_BENIGN);
1859 default:
1860 /*
1861 * Hardware exception.
1862 *
1863 * SVM and VT-x use identical type values to represent NMI,
1864 * hardware interrupt and software interrupt.
1865 *
1866 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1867 * for exceptions except #BP and #OF. #BP and #OF use a type
1868 * value of '5' or '6'. Therefore we don't check for explicit
1869 * values of 'type' to classify 'intinfo' into a hardware
1870 * exception.
1871 */
1872 break;
1873 }
1874
1875 switch (vector) {
1876 case IDT_PF:
1877 case IDT_VE:
1878 return (EXC_PAGEFAULT);
1879 case IDT_DE:
1880 case IDT_TS:
1881 case IDT_NP:
1882 case IDT_SS:
1883 case IDT_GP:
1884 return (EXC_CONTRIBUTORY);
1885 default:
1886 return (EXC_BENIGN);
1887 }
1888 }
1889
1890 static int
nested_fault(struct vm * vm,int vcpuid,uint64_t info1,uint64_t info2,uint64_t * retinfo)1891 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
1892 uint64_t *retinfo)
1893 {
1894 enum exc_class exc1, exc2;
1895 int type1, vector1;
1896
1897 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1898 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1899
1900 /*
1901 * If an exception occurs while attempting to call the double-fault
1902 * handler the processor enters shutdown mode (aka triple fault).
1903 */
1904 type1 = info1 & VM_INTINFO_TYPE;
1905 vector1 = info1 & 0xff;
1906 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1907 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
1908 info1, info2);
1909 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
1910 *retinfo = 0;
1911 return (0);
1912 }
1913
1914 /*
1915 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1916 */
1917 exc1 = exception_class(info1);
1918 exc2 = exception_class(info2);
1919 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1920 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1921 /* Convert nested fault into a double fault. */
1922 *retinfo = IDT_DF;
1923 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1924 *retinfo |= VM_INTINFO_DEL_ERRCODE;
1925 } else {
1926 /* Handle exceptions serially */
1927 *retinfo = info2;
1928 }
1929 return (1);
1930 }
1931
1932 static uint64_t
vcpu_exception_intinfo(struct vcpu * vcpu)1933 vcpu_exception_intinfo(struct vcpu *vcpu)
1934 {
1935 uint64_t info = 0;
1936
1937 if (vcpu->exception_pending) {
1938 info = vcpu->exc_vector & 0xff;
1939 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1940 if (vcpu->exc_errcode_valid) {
1941 info |= VM_INTINFO_DEL_ERRCODE;
1942 info |= (uint64_t)vcpu->exc_errcode << 32;
1943 }
1944 }
1945 return (info);
1946 }
1947
1948 int
vm_entry_intinfo(struct vm * vm,int vcpuid,uint64_t * retinfo)1949 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
1950 {
1951 struct vcpu *vcpu;
1952 uint64_t info1, info2;
1953 int valid;
1954
1955 KASSERT(vcpuid >= 0 &&
1956 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid));
1957
1958 vcpu = &vm->vcpu[vcpuid];
1959
1960 info1 = vcpu->exitintinfo;
1961 vcpu->exitintinfo = 0;
1962
1963 info2 = 0;
1964 if (vcpu->exception_pending) {
1965 info2 = vcpu_exception_intinfo(vcpu);
1966 vcpu->exception_pending = 0;
1967 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
1968 vcpu->exc_vector, info2);
1969 }
1970
1971 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1972 valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
1973 } else if (info1 & VM_INTINFO_VALID) {
1974 *retinfo = info1;
1975 valid = 1;
1976 } else if (info2 & VM_INTINFO_VALID) {
1977 *retinfo = info2;
1978 valid = 1;
1979 } else {
1980 valid = 0;
1981 }
1982
1983 if (valid) {
1984 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
1985 "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1986 }
1987
1988 return (valid);
1989 }
1990
1991 int
vm_get_intinfo(struct vm * vm,int vcpuid,uint64_t * info1,uint64_t * info2)1992 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
1993 {
1994 struct vcpu *vcpu;
1995
1996 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1997 return (EINVAL);
1998
1999 vcpu = &vm->vcpu[vcpuid];
2000 *info1 = vcpu->exitintinfo;
2001 *info2 = vcpu_exception_intinfo(vcpu);
2002 return (0);
2003 }
2004
2005 int
vm_inject_exception(struct vm * vm,int vcpuid,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)2006 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
2007 uint32_t errcode, int restart_instruction)
2008 {
2009 struct vcpu *vcpu;
2010 uint64_t regval;
2011 int error;
2012
2013 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2014 return (EINVAL);
2015
2016 if (vector < 0 || vector >= 32)
2017 return (EINVAL);
2018
2019 /*
2020 * A double fault exception should never be injected directly into
2021 * the guest. It is a derived exception that results from specific
2022 * combinations of nested faults.
2023 */
2024 if (vector == IDT_DF)
2025 return (EINVAL);
2026
2027 vcpu = &vm->vcpu[vcpuid];
2028
2029 if (vcpu->exception_pending) {
2030 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
2031 "pending exception %d", vector, vcpu->exc_vector);
2032 return (EBUSY);
2033 }
2034
2035 if (errcode_valid) {
2036 /*
2037 * Exceptions don't deliver an error code in real mode.
2038 */
2039 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val);
2040 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
2041 if (!(regval & CR0_PE))
2042 errcode_valid = 0;
2043 }
2044
2045 /*
2046 * From section 26.6.1 "Interruptibility State" in Intel SDM:
2047 *
2048 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
2049 * one instruction or incurs an exception.
2050 */
2051 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
2052 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
2053 __func__, error));
2054
2055 if (restart_instruction)
2056 vm_restart_instruction(vm, vcpuid);
2057
2058 vcpu->exception_pending = 1;
2059 vcpu->exc_vector = vector;
2060 vcpu->exc_errcode = errcode;
2061 vcpu->exc_errcode_valid = errcode_valid;
2062 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
2063 return (0);
2064 }
2065
2066 void
vm_inject_fault(void * vmarg,int vcpuid,int vector,int errcode_valid,int errcode)2067 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
2068 int errcode)
2069 {
2070 struct vm *vm;
2071 int error, restart_instruction;
2072
2073 vm = vmarg;
2074 restart_instruction = 1;
2075
2076 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
2077 errcode, restart_instruction);
2078 KASSERT(error == 0, ("vm_inject_exception error %d", error));
2079 }
2080
2081 void
vm_inject_pf(void * vmarg,int vcpuid,int error_code,uint64_t cr2)2082 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
2083 {
2084 struct vm *vm;
2085 int error;
2086
2087 vm = vmarg;
2088 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
2089 error_code, cr2);
2090
2091 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
2092 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
2093
2094 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
2095 }
2096
2097 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2098
2099 int
vm_inject_nmi(struct vm * vm,int vcpuid)2100 vm_inject_nmi(struct vm *vm, int vcpuid)
2101 {
2102 struct vcpu *vcpu;
2103
2104 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2105 return (EINVAL);
2106
2107 vcpu = &vm->vcpu[vcpuid];
2108
2109 vcpu->nmi_pending = 1;
2110 vcpu_notify_event(vm, vcpuid, false);
2111 return (0);
2112 }
2113
2114 int
vm_nmi_pending(struct vm * vm,int vcpuid)2115 vm_nmi_pending(struct vm *vm, int vcpuid)
2116 {
2117 struct vcpu *vcpu;
2118
2119 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2120 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2121
2122 vcpu = &vm->vcpu[vcpuid];
2123
2124 return (vcpu->nmi_pending);
2125 }
2126
2127 void
vm_nmi_clear(struct vm * vm,int vcpuid)2128 vm_nmi_clear(struct vm *vm, int vcpuid)
2129 {
2130 struct vcpu *vcpu;
2131
2132 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2133 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2134
2135 vcpu = &vm->vcpu[vcpuid];
2136
2137 if (vcpu->nmi_pending == 0)
2138 panic("vm_nmi_clear: inconsistent nmi_pending state");
2139
2140 vcpu->nmi_pending = 0;
2141 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
2142 }
2143
2144 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2145
2146 int
vm_inject_extint(struct vm * vm,int vcpuid)2147 vm_inject_extint(struct vm *vm, int vcpuid)
2148 {
2149 struct vcpu *vcpu;
2150
2151 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2152 return (EINVAL);
2153
2154 vcpu = &vm->vcpu[vcpuid];
2155
2156 vcpu->extint_pending = 1;
2157 vcpu_notify_event(vm, vcpuid, false);
2158 return (0);
2159 }
2160
2161 int
vm_extint_pending(struct vm * vm,int vcpuid)2162 vm_extint_pending(struct vm *vm, int vcpuid)
2163 {
2164 struct vcpu *vcpu;
2165
2166 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2167 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2168
2169 vcpu = &vm->vcpu[vcpuid];
2170
2171 return (vcpu->extint_pending);
2172 }
2173
2174 void
vm_extint_clear(struct vm * vm,int vcpuid)2175 vm_extint_clear(struct vm *vm, int vcpuid)
2176 {
2177 struct vcpu *vcpu;
2178
2179 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2180 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2181
2182 vcpu = &vm->vcpu[vcpuid];
2183
2184 if (vcpu->extint_pending == 0)
2185 panic("vm_extint_clear: inconsistent extint_pending state");
2186
2187 vcpu->extint_pending = 0;
2188 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
2189 }
2190
2191 int
vm_get_capability(struct vm * vm,int vcpu,int type,int * retval)2192 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
2193 {
2194 if (vcpu < 0 || vcpu >= vm->maxcpus)
2195 return (EINVAL);
2196
2197 if (type < 0 || type >= VM_CAP_MAX)
2198 return (EINVAL);
2199
2200 return (VMGETCAP(vm->cookie, vcpu, type, retval));
2201 }
2202
2203 int
vm_set_capability(struct vm * vm,int vcpu,int type,int val)2204 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
2205 {
2206 if (vcpu < 0 || vcpu >= vm->maxcpus)
2207 return (EINVAL);
2208
2209 if (type < 0 || type >= VM_CAP_MAX)
2210 return (EINVAL);
2211
2212 return (VMSETCAP(vm->cookie, vcpu, type, val));
2213 }
2214
2215 struct vlapic *
vm_lapic(struct vm * vm,int cpu)2216 vm_lapic(struct vm *vm, int cpu)
2217 {
2218 return (vm->vcpu[cpu].vlapic);
2219 }
2220
2221 struct vioapic *
vm_ioapic(struct vm * vm)2222 vm_ioapic(struct vm *vm)
2223 {
2224
2225 return (vm->vioapic);
2226 }
2227
2228 struct vhpet *
vm_hpet(struct vm * vm)2229 vm_hpet(struct vm *vm)
2230 {
2231
2232 return (vm->vhpet);
2233 }
2234
2235 bool
vmm_is_pptdev(int bus,int slot,int func)2236 vmm_is_pptdev(int bus, int slot, int func)
2237 {
2238 int b, f, i, n, s;
2239 char *val, *cp, *cp2;
2240 bool found;
2241
2242 /*
2243 * XXX
2244 * The length of an environment variable is limited to 128 bytes which
2245 * puts an upper limit on the number of passthru devices that may be
2246 * specified using a single environment variable.
2247 *
2248 * Work around this by scanning multiple environment variable
2249 * names instead of a single one - yuck!
2250 */
2251 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2252
2253 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2254 found = false;
2255 for (i = 0; names[i] != NULL && !found; i++) {
2256 cp = val = kern_getenv(names[i]);
2257 while (cp != NULL && *cp != '\0') {
2258 if ((cp2 = strchr(cp, ' ')) != NULL)
2259 *cp2 = '\0';
2260
2261 n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2262 if (n == 3 && bus == b && slot == s && func == f) {
2263 found = true;
2264 break;
2265 }
2266
2267 if (cp2 != NULL)
2268 *cp2++ = ' ';
2269
2270 cp = cp2;
2271 }
2272 freeenv(val);
2273 }
2274 return (found);
2275 }
2276
2277 void *
vm_iommu_domain(struct vm * vm)2278 vm_iommu_domain(struct vm *vm)
2279 {
2280
2281 return (vm->iommu);
2282 }
2283
2284 int
vcpu_set_state(struct vm * vm,int vcpuid,enum vcpu_state newstate,bool from_idle)2285 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
2286 bool from_idle)
2287 {
2288 int error;
2289 struct vcpu *vcpu;
2290
2291 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2292 panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
2293
2294 vcpu = &vm->vcpu[vcpuid];
2295
2296 vcpu_lock(vcpu);
2297 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
2298 vcpu_unlock(vcpu);
2299
2300 return (error);
2301 }
2302
2303 enum vcpu_state
vcpu_get_state(struct vm * vm,int vcpuid,int * hostcpu)2304 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
2305 {
2306 struct vcpu *vcpu;
2307 enum vcpu_state state;
2308
2309 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2310 panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
2311
2312 vcpu = &vm->vcpu[vcpuid];
2313
2314 vcpu_lock(vcpu);
2315 state = vcpu->state;
2316 if (hostcpu != NULL)
2317 *hostcpu = vcpu->hostcpu;
2318 vcpu_unlock(vcpu);
2319
2320 return (state);
2321 }
2322
2323 int
vm_activate_cpu(struct vm * vm,int vcpuid)2324 vm_activate_cpu(struct vm *vm, int vcpuid)
2325 {
2326
2327 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2328 return (EINVAL);
2329
2330 if (CPU_ISSET(vcpuid, &vm->active_cpus))
2331 return (EBUSY);
2332
2333 VCPU_CTR0(vm, vcpuid, "activated");
2334 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
2335 return (0);
2336 }
2337
2338 int
vm_suspend_cpu(struct vm * vm,int vcpuid)2339 vm_suspend_cpu(struct vm *vm, int vcpuid)
2340 {
2341 int i;
2342
2343 if (vcpuid < -1 || vcpuid >= vm->maxcpus)
2344 return (EINVAL);
2345
2346 if (vcpuid == -1) {
2347 vm->debug_cpus = vm->active_cpus;
2348 for (i = 0; i < vm->maxcpus; i++) {
2349 if (CPU_ISSET(i, &vm->active_cpus))
2350 vcpu_notify_event(vm, i, false);
2351 }
2352 } else {
2353 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
2354 return (EINVAL);
2355
2356 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus);
2357 vcpu_notify_event(vm, vcpuid, false);
2358 }
2359 return (0);
2360 }
2361
2362 int
vm_resume_cpu(struct vm * vm,int vcpuid)2363 vm_resume_cpu(struct vm *vm, int vcpuid)
2364 {
2365
2366 if (vcpuid < -1 || vcpuid >= vm->maxcpus)
2367 return (EINVAL);
2368
2369 if (vcpuid == -1) {
2370 CPU_ZERO(&vm->debug_cpus);
2371 } else {
2372 if (!CPU_ISSET(vcpuid, &vm->debug_cpus))
2373 return (EINVAL);
2374
2375 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus);
2376 }
2377 return (0);
2378 }
2379
2380 int
vcpu_debugged(struct vm * vm,int vcpuid)2381 vcpu_debugged(struct vm *vm, int vcpuid)
2382 {
2383
2384 return (CPU_ISSET(vcpuid, &vm->debug_cpus));
2385 }
2386
2387 cpuset_t
vm_active_cpus(struct vm * vm)2388 vm_active_cpus(struct vm *vm)
2389 {
2390
2391 return (vm->active_cpus);
2392 }
2393
2394 cpuset_t
vm_debug_cpus(struct vm * vm)2395 vm_debug_cpus(struct vm *vm)
2396 {
2397
2398 return (vm->debug_cpus);
2399 }
2400
2401 cpuset_t
vm_suspended_cpus(struct vm * vm)2402 vm_suspended_cpus(struct vm *vm)
2403 {
2404
2405 return (vm->suspended_cpus);
2406 }
2407
2408 void *
vcpu_stats(struct vm * vm,int vcpuid)2409 vcpu_stats(struct vm *vm, int vcpuid)
2410 {
2411
2412 return (vm->vcpu[vcpuid].stats);
2413 }
2414
2415 int
vm_get_x2apic_state(struct vm * vm,int vcpuid,enum x2apic_state * state)2416 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
2417 {
2418 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2419 return (EINVAL);
2420
2421 *state = vm->vcpu[vcpuid].x2apic_state;
2422
2423 return (0);
2424 }
2425
2426 int
vm_set_x2apic_state(struct vm * vm,int vcpuid,enum x2apic_state state)2427 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
2428 {
2429 if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2430 return (EINVAL);
2431
2432 if (state >= X2APIC_STATE_LAST)
2433 return (EINVAL);
2434
2435 vm->vcpu[vcpuid].x2apic_state = state;
2436
2437 vlapic_set_x2apic_state(vm, vcpuid, state);
2438
2439 return (0);
2440 }
2441
2442 /*
2443 * This function is called to ensure that a vcpu "sees" a pending event
2444 * as soon as possible:
2445 * - If the vcpu thread is sleeping then it is woken up.
2446 * - If the vcpu is running on a different host_cpu then an IPI will be directed
2447 * to the host_cpu to cause the vcpu to trap into the hypervisor.
2448 */
2449 static void
vcpu_notify_event_locked(struct vcpu * vcpu,bool lapic_intr)2450 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2451 {
2452 int hostcpu;
2453
2454 hostcpu = vcpu->hostcpu;
2455 if (vcpu->state == VCPU_RUNNING) {
2456 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2457 if (hostcpu != curcpu) {
2458 if (lapic_intr) {
2459 vlapic_post_intr(vcpu->vlapic, hostcpu,
2460 vmm_ipinum);
2461 } else {
2462 ipi_cpu(hostcpu, vmm_ipinum);
2463 }
2464 } else {
2465 /*
2466 * If the 'vcpu' is running on 'curcpu' then it must
2467 * be sending a notification to itself (e.g. SELF_IPI).
2468 * The pending event will be picked up when the vcpu
2469 * transitions back to guest context.
2470 */
2471 }
2472 } else {
2473 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2474 "with hostcpu %d", vcpu->state, hostcpu));
2475 if (vcpu->state == VCPU_SLEEPING)
2476 wakeup_one(vcpu);
2477 }
2478 }
2479
2480 void
vcpu_notify_event(struct vm * vm,int vcpuid,bool lapic_intr)2481 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
2482 {
2483 struct vcpu *vcpu = &vm->vcpu[vcpuid];
2484
2485 vcpu_lock(vcpu);
2486 vcpu_notify_event_locked(vcpu, lapic_intr);
2487 vcpu_unlock(vcpu);
2488 }
2489
2490 struct vmspace *
vm_get_vmspace(struct vm * vm)2491 vm_get_vmspace(struct vm *vm)
2492 {
2493
2494 return (vm->vmspace);
2495 }
2496
2497 int
vm_apicid2vcpuid(struct vm * vm,int apicid)2498 vm_apicid2vcpuid(struct vm *vm, int apicid)
2499 {
2500 /*
2501 * XXX apic id is assumed to be numerically identical to vcpu id
2502 */
2503 return (apicid);
2504 }
2505
2506 void
vm_smp_rendezvous(struct vm * vm,int vcpuid,cpuset_t dest,vm_rendezvous_func_t func,void * arg)2507 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
2508 vm_rendezvous_func_t func, void *arg)
2509 {
2510 int i;
2511
2512 /*
2513 * Enforce that this function is called without any locks
2514 */
2515 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2516 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus),
2517 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
2518
2519 restart:
2520 mtx_lock(&vm->rendezvous_mtx);
2521 if (vm->rendezvous_func != NULL) {
2522 /*
2523 * If a rendezvous is already in progress then we need to
2524 * call the rendezvous handler in case this 'vcpuid' is one
2525 * of the targets of the rendezvous.
2526 */
2527 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
2528 mtx_unlock(&vm->rendezvous_mtx);
2529 vm_handle_rendezvous(vm, vcpuid);
2530 goto restart;
2531 }
2532 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2533 "rendezvous is still in progress"));
2534
2535 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
2536 vm->rendezvous_req_cpus = dest;
2537 CPU_ZERO(&vm->rendezvous_done_cpus);
2538 vm->rendezvous_arg = arg;
2539 vm_set_rendezvous_func(vm, func);
2540 mtx_unlock(&vm->rendezvous_mtx);
2541
2542 /*
2543 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2544 * vcpus so they handle the rendezvous as soon as possible.
2545 */
2546 for (i = 0; i < vm->maxcpus; i++) {
2547 if (CPU_ISSET(i, &dest))
2548 vcpu_notify_event(vm, i, false);
2549 }
2550
2551 vm_handle_rendezvous(vm, vcpuid);
2552 }
2553
2554 struct vatpic *
vm_atpic(struct vm * vm)2555 vm_atpic(struct vm *vm)
2556 {
2557 return (vm->vatpic);
2558 }
2559
2560 struct vatpit *
vm_atpit(struct vm * vm)2561 vm_atpit(struct vm *vm)
2562 {
2563 return (vm->vatpit);
2564 }
2565
2566 struct vpmtmr *
vm_pmtmr(struct vm * vm)2567 vm_pmtmr(struct vm *vm)
2568 {
2569
2570 return (vm->vpmtmr);
2571 }
2572
2573 struct vrtc *
vm_rtc(struct vm * vm)2574 vm_rtc(struct vm *vm)
2575 {
2576
2577 return (vm->vrtc);
2578 }
2579
2580 enum vm_reg_name
vm_segment_name(int seg)2581 vm_segment_name(int seg)
2582 {
2583 static enum vm_reg_name seg_names[] = {
2584 VM_REG_GUEST_ES,
2585 VM_REG_GUEST_CS,
2586 VM_REG_GUEST_SS,
2587 VM_REG_GUEST_DS,
2588 VM_REG_GUEST_FS,
2589 VM_REG_GUEST_GS
2590 };
2591
2592 KASSERT(seg >= 0 && seg < nitems(seg_names),
2593 ("%s: invalid segment encoding %d", __func__, seg));
2594 return (seg_names[seg]);
2595 }
2596
2597 void
vm_copy_teardown(struct vm * vm,int vcpuid,struct vm_copyinfo * copyinfo,int num_copyinfo)2598 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
2599 int num_copyinfo)
2600 {
2601 int idx;
2602
2603 for (idx = 0; idx < num_copyinfo; idx++) {
2604 if (copyinfo[idx].cookie != NULL)
2605 vm_gpa_release(copyinfo[idx].cookie);
2606 }
2607 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2608 }
2609
2610 int
vm_copy_setup(struct vm * vm,int vcpuid,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct vm_copyinfo * copyinfo,int num_copyinfo,int * fault)2611 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
2612 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2613 int num_copyinfo, int *fault)
2614 {
2615 int error, idx, nused;
2616 size_t n, off, remaining;
2617 void *hva, *cookie;
2618 uint64_t gpa;
2619
2620 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2621
2622 nused = 0;
2623 remaining = len;
2624 while (remaining > 0) {
2625 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
2626 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
2627 if (error || *fault)
2628 return (error);
2629 off = gpa & PAGE_MASK;
2630 n = min(remaining, PAGE_SIZE - off);
2631 copyinfo[nused].gpa = gpa;
2632 copyinfo[nused].len = n;
2633 remaining -= n;
2634 gla += n;
2635 nused++;
2636 }
2637
2638 for (idx = 0; idx < nused; idx++) {
2639 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa,
2640 copyinfo[idx].len, prot, &cookie);
2641 if (hva == NULL)
2642 break;
2643 copyinfo[idx].hva = hva;
2644 copyinfo[idx].cookie = cookie;
2645 }
2646
2647 if (idx != nused) {
2648 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
2649 return (EFAULT);
2650 } else {
2651 *fault = 0;
2652 return (0);
2653 }
2654 }
2655
2656 void
vm_copyin(struct vm * vm,int vcpuid,struct vm_copyinfo * copyinfo,void * kaddr,size_t len)2657 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
2658 size_t len)
2659 {
2660 char *dst;
2661 int idx;
2662
2663 dst = kaddr;
2664 idx = 0;
2665 while (len > 0) {
2666 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2667 len -= copyinfo[idx].len;
2668 dst += copyinfo[idx].len;
2669 idx++;
2670 }
2671 }
2672
2673 void
vm_copyout(struct vm * vm,int vcpuid,const void * kaddr,struct vm_copyinfo * copyinfo,size_t len)2674 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
2675 struct vm_copyinfo *copyinfo, size_t len)
2676 {
2677 const char *src;
2678 int idx;
2679
2680 src = kaddr;
2681 idx = 0;
2682 while (len > 0) {
2683 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2684 len -= copyinfo[idx].len;
2685 src += copyinfo[idx].len;
2686 idx++;
2687 }
2688 }
2689
2690 /*
2691 * Return the amount of in-use and wired memory for the VM. Since
2692 * these are global stats, only return the values with for vCPU 0
2693 */
2694 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2695 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2696
2697 static void
vm_get_rescnt(struct vm * vm,int vcpu,struct vmm_stat_type * stat)2698 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2699 {
2700
2701 if (vcpu == 0) {
2702 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
2703 PAGE_SIZE * vmspace_resident_count(vm->vmspace));
2704 }
2705 }
2706
2707 static void
vm_get_wiredcnt(struct vm * vm,int vcpu,struct vmm_stat_type * stat)2708 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2709 {
2710
2711 if (vcpu == 0) {
2712 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
2713 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
2714 }
2715 }
2716
2717 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2718 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2719