xref: /freebsd-14.2/sys/kern/vfs_vnops.c (revision e3b27cc3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <[email protected]>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 #include "opt_hwpmc_hooks.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/disk.h>
51 #include <sys/fail.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/kdb.h>
55 #include <sys/ktr.h>
56 #include <sys/stat.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/mman.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/vnode.h>
66 #include <sys/dirent.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/filio.h>
70 #include <sys/resourcevar.h>
71 #include <sys/rwlock.h>
72 #include <sys/prng.h>
73 #include <sys/sx.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/sysctl.h>
76 #include <sys/ttycom.h>
77 #include <sys/conf.h>
78 #include <sys/syslog.h>
79 #include <sys/unistd.h>
80 #include <sys/user.h>
81 #include <sys/ktrace.h>
82 
83 #include <security/audit/audit.h>
84 #include <security/mac/mac_framework.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vnode_pager.h>
94 
95 #ifdef HWPMC_HOOKS
96 #include <sys/pmckern.h>
97 #endif
98 
99 static fo_rdwr_t	vn_read;
100 static fo_rdwr_t	vn_write;
101 static fo_rdwr_t	vn_io_fault;
102 static fo_truncate_t	vn_truncate;
103 static fo_ioctl_t	vn_ioctl;
104 static fo_poll_t	vn_poll;
105 static fo_kqfilter_t	vn_kqfilter;
106 static fo_close_t	vn_closefile;
107 static fo_mmap_t	vn_mmap;
108 static fo_fallocate_t	vn_fallocate;
109 static fo_fspacectl_t	vn_fspacectl;
110 
111 struct 	fileops vnops = {
112 	.fo_read = vn_io_fault,
113 	.fo_write = vn_io_fault,
114 	.fo_truncate = vn_truncate,
115 	.fo_ioctl = vn_ioctl,
116 	.fo_poll = vn_poll,
117 	.fo_kqfilter = vn_kqfilter,
118 	.fo_stat = vn_statfile,
119 	.fo_close = vn_closefile,
120 	.fo_chmod = vn_chmod,
121 	.fo_chown = vn_chown,
122 	.fo_sendfile = vn_sendfile,
123 	.fo_seek = vn_seek,
124 	.fo_fill_kinfo = vn_fill_kinfo,
125 	.fo_mmap = vn_mmap,
126 	.fo_fallocate = vn_fallocate,
127 	.fo_fspacectl = vn_fspacectl,
128 	.fo_cmp = vn_cmp,
129 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
130 };
131 
132 const u_int io_hold_cnt = 16;
133 static int vn_io_fault_enable = 1;
134 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
135     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
136 static int vn_io_fault_prefault = 0;
137 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
138     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
139 static int vn_io_pgcache_read_enable = 1;
140 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
141     &vn_io_pgcache_read_enable, 0,
142     "Enable copying from page cache for reads, avoiding fs");
143 static u_long vn_io_faults_cnt;
144 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
145     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
146 
147 static int vfs_allow_read_dir = 0;
148 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
149     &vfs_allow_read_dir, 0,
150     "Enable read(2) of directory by root for filesystems that support it");
151 
152 /*
153  * Returns true if vn_io_fault mode of handling the i/o request should
154  * be used.
155  */
156 static bool
do_vn_io_fault(struct vnode * vp,struct uio * uio)157 do_vn_io_fault(struct vnode *vp, struct uio *uio)
158 {
159 	struct mount *mp;
160 
161 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
162 	    (mp = vp->v_mount) != NULL &&
163 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
164 }
165 
166 /*
167  * Structure used to pass arguments to vn_io_fault1(), to do either
168  * file- or vnode-based I/O calls.
169  */
170 struct vn_io_fault_args {
171 	enum {
172 		VN_IO_FAULT_FOP,
173 		VN_IO_FAULT_VOP
174 	} kind;
175 	struct ucred *cred;
176 	int flags;
177 	union {
178 		struct fop_args_tag {
179 			struct file *fp;
180 			fo_rdwr_t *doio;
181 		} fop_args;
182 		struct vop_args_tag {
183 			struct vnode *vp;
184 		} vop_args;
185 	} args;
186 };
187 
188 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
189     struct vn_io_fault_args *args, struct thread *td);
190 
191 int
vn_open(struct nameidata * ndp,int * flagp,int cmode,struct file * fp)192 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
193 {
194 	struct thread *td = curthread;
195 
196 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
197 }
198 
199 static uint64_t
open2nameif(int fmode,u_int vn_open_flags)200 open2nameif(int fmode, u_int vn_open_flags)
201 {
202 	uint64_t res;
203 
204 	res = ISOPEN | LOCKLEAF;
205 	if ((fmode & O_RESOLVE_BENEATH) != 0)
206 		res |= RBENEATH;
207 	if ((fmode & O_EMPTY_PATH) != 0)
208 		res |= EMPTYPATH;
209 	if ((fmode & FREAD) != 0)
210 		res |= OPENREAD;
211 	if ((fmode & FWRITE) != 0)
212 		res |= OPENWRITE;
213 	if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
214 		res |= AUDITVNODE1;
215 	if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
216 		res |= NOCAPCHECK;
217 	if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0)
218 		res |= WANTIOCTLCAPS;
219 	return (res);
220 }
221 
222 /*
223  * Common code for vnode open operations via a name lookup.
224  * Lookup the vnode and invoke VOP_CREATE if needed.
225  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
226  *
227  * Note that this does NOT free nameidata for the successful case,
228  * due to the NDINIT being done elsewhere.
229  */
230 int
vn_open_cred(struct nameidata * ndp,int * flagp,int cmode,u_int vn_open_flags,struct ucred * cred,struct file * fp)231 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
232     struct ucred *cred, struct file *fp)
233 {
234 	struct vnode *vp;
235 	struct mount *mp;
236 	struct vattr vat;
237 	struct vattr *vap = &vat;
238 	int fmode, error;
239 	bool first_open;
240 
241 restart:
242 	first_open = false;
243 	fmode = *flagp;
244 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
245 	    O_EXCL | O_DIRECTORY) ||
246 	    (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
247 		return (EINVAL);
248 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
249 		ndp->ni_cnd.cn_nameiop = CREATE;
250 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
251 		/*
252 		 * Set NOCACHE to avoid flushing the cache when
253 		 * rolling in many files at once.
254 		 *
255 		 * Set NC_KEEPPOSENTRY to keep positive entries if they already
256 		 * exist despite NOCACHE.
257 		 */
258 		ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
259 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
260 			ndp->ni_cnd.cn_flags |= FOLLOW;
261 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
262 			bwillwrite();
263 		if ((error = namei(ndp)) != 0)
264 			return (error);
265 		if (ndp->ni_vp == NULL) {
266 			VATTR_NULL(vap);
267 			vap->va_type = VREG;
268 			vap->va_mode = cmode;
269 			if (fmode & O_EXCL)
270 				vap->va_vaflags |= VA_EXCLUSIVE;
271 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
272 				NDFREE_PNBUF(ndp);
273 				vput(ndp->ni_dvp);
274 				if ((error = vn_start_write(NULL, &mp,
275 				    V_XSLEEP | V_PCATCH)) != 0)
276 					return (error);
277 				NDREINIT(ndp);
278 				goto restart;
279 			}
280 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
281 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
282 #ifdef MAC
283 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
284 			    &ndp->ni_cnd, vap);
285 			if (error == 0)
286 #endif
287 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
288 				    &ndp->ni_cnd, vap);
289 			vp = ndp->ni_vp;
290 			if (error == 0 && (fmode & O_EXCL) != 0 &&
291 			    (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
292 				VI_LOCK(vp);
293 				vp->v_iflag |= VI_FOPENING;
294 				VI_UNLOCK(vp);
295 				first_open = true;
296 			}
297 			VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
298 			    false);
299 			vn_finished_write(mp);
300 			if (error) {
301 				NDFREE_PNBUF(ndp);
302 				if (error == ERELOOKUP) {
303 					NDREINIT(ndp);
304 					goto restart;
305 				}
306 				return (error);
307 			}
308 			fmode &= ~O_TRUNC;
309 		} else {
310 			if (ndp->ni_dvp == ndp->ni_vp)
311 				vrele(ndp->ni_dvp);
312 			else
313 				vput(ndp->ni_dvp);
314 			ndp->ni_dvp = NULL;
315 			vp = ndp->ni_vp;
316 			if (fmode & O_EXCL) {
317 				error = EEXIST;
318 				goto bad;
319 			}
320 			if (vp->v_type == VDIR) {
321 				error = EISDIR;
322 				goto bad;
323 			}
324 			fmode &= ~O_CREAT;
325 		}
326 	} else {
327 		ndp->ni_cnd.cn_nameiop = LOOKUP;
328 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
329 		ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
330 		    FOLLOW;
331 		if ((fmode & FWRITE) == 0)
332 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
333 		if ((error = namei(ndp)) != 0)
334 			return (error);
335 		vp = ndp->ni_vp;
336 	}
337 	error = vn_open_vnode(vp, fmode, cred, curthread, fp);
338 	if (first_open) {
339 		VI_LOCK(vp);
340 		vp->v_iflag &= ~VI_FOPENING;
341 		wakeup(vp);
342 		VI_UNLOCK(vp);
343 	}
344 	if (error)
345 		goto bad;
346 	*flagp = fmode;
347 	return (0);
348 bad:
349 	NDFREE_PNBUF(ndp);
350 	vput(vp);
351 	*flagp = fmode;
352 	ndp->ni_vp = NULL;
353 	return (error);
354 }
355 
356 static int
vn_open_vnode_advlock(struct vnode * vp,int fmode,struct file * fp)357 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
358 {
359 	struct flock lf;
360 	int error, lock_flags, type;
361 
362 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
363 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
364 		return (0);
365 	KASSERT(fp != NULL, ("open with flock requires fp"));
366 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
367 		return (EOPNOTSUPP);
368 
369 	lock_flags = VOP_ISLOCKED(vp);
370 	VOP_UNLOCK(vp);
371 
372 	lf.l_whence = SEEK_SET;
373 	lf.l_start = 0;
374 	lf.l_len = 0;
375 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
376 	type = F_FLOCK;
377 	if ((fmode & FNONBLOCK) == 0)
378 		type |= F_WAIT;
379 	if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
380 		type |= F_FIRSTOPEN;
381 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
382 	if (error == 0)
383 		fp->f_flag |= FHASLOCK;
384 
385 	vn_lock(vp, lock_flags | LK_RETRY);
386 	return (error);
387 }
388 
389 /*
390  * Common code for vnode open operations once a vnode is located.
391  * Check permissions, and call the VOP_OPEN routine.
392  */
393 int
vn_open_vnode(struct vnode * vp,int fmode,struct ucred * cred,struct thread * td,struct file * fp)394 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
395     struct thread *td, struct file *fp)
396 {
397 	accmode_t accmode;
398 	int error;
399 
400 	if (vp->v_type == VLNK) {
401 		if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
402 			return (EMLINK);
403 	}
404 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
405 		return (ENOTDIR);
406 
407 	accmode = 0;
408 	if ((fmode & O_PATH) == 0) {
409 		if (vp->v_type == VSOCK)
410 			return (EOPNOTSUPP);
411 		if ((fmode & (FWRITE | O_TRUNC)) != 0) {
412 			if (vp->v_type == VDIR)
413 				return (EISDIR);
414 			accmode |= VWRITE;
415 		}
416 		if ((fmode & FREAD) != 0)
417 			accmode |= VREAD;
418 		if ((fmode & O_APPEND) && (fmode & FWRITE))
419 			accmode |= VAPPEND;
420 #ifdef MAC
421 		if ((fmode & O_CREAT) != 0)
422 			accmode |= VCREAT;
423 #endif
424 	}
425 	if ((fmode & FEXEC) != 0)
426 		accmode |= VEXEC;
427 #ifdef MAC
428 	if ((fmode & O_VERIFY) != 0)
429 		accmode |= VVERIFY;
430 	error = mac_vnode_check_open(cred, vp, accmode);
431 	if (error != 0)
432 		return (error);
433 
434 	accmode &= ~(VCREAT | VVERIFY);
435 #endif
436 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
437 		error = VOP_ACCESS(vp, accmode, cred, td);
438 		if (error != 0)
439 			return (error);
440 	}
441 	if ((fmode & O_PATH) != 0) {
442 		if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
443 		    VOP_ACCESS(vp, VREAD, cred, td) == 0)
444 			fp->f_flag |= FKQALLOWED;
445 		return (0);
446 	}
447 
448 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
449 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
450 	error = VOP_OPEN(vp, fmode, cred, td, fp);
451 	if (error != 0)
452 		return (error);
453 
454 	error = vn_open_vnode_advlock(vp, fmode, fp);
455 	if (error == 0 && (fmode & FWRITE) != 0) {
456 		error = VOP_ADD_WRITECOUNT(vp, 1);
457 		if (error == 0) {
458 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
459 			     __func__, vp, vp->v_writecount);
460 		}
461 	}
462 
463 	/*
464 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
465 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
466 	 */
467 	if (error != 0) {
468 		if (fp != NULL) {
469 			/*
470 			 * Arrange the call by having fdrop() to use
471 			 * vn_closefile().  This is to satisfy
472 			 * filesystems like devfs or tmpfs, which
473 			 * override fo_close().
474 			 */
475 			fp->f_flag |= FOPENFAILED;
476 			fp->f_vnode = vp;
477 			if (fp->f_ops == &badfileops) {
478 				fp->f_type = DTYPE_VNODE;
479 				fp->f_ops = &vnops;
480 			}
481 			vref(vp);
482 		} else {
483 			/*
484 			 * If there is no fp, due to kernel-mode open,
485 			 * we can call VOP_CLOSE() now.
486 			 */
487 			if ((vp->v_type == VFIFO ||
488 			    !MNT_EXTENDED_SHARED(vp->v_mount)) &&
489 			    VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
490 				vn_lock(vp, LK_UPGRADE | LK_RETRY);
491 			(void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
492 			    cred, td);
493 		}
494 	}
495 
496 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
497 	return (error);
498 
499 }
500 
501 /*
502  * Check for write permissions on the specified vnode.
503  * Prototype text segments cannot be written.
504  * It is racy.
505  */
506 int
vn_writechk(struct vnode * vp)507 vn_writechk(struct vnode *vp)
508 {
509 
510 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
511 	/*
512 	 * If there's shared text associated with
513 	 * the vnode, try to free it up once.  If
514 	 * we fail, we can't allow writing.
515 	 */
516 	if (VOP_IS_TEXT(vp))
517 		return (ETXTBSY);
518 
519 	return (0);
520 }
521 
522 /*
523  * Vnode close call
524  */
525 static int
vn_close1(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td,bool keep_ref)526 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
527     struct thread *td, bool keep_ref)
528 {
529 	struct mount *mp;
530 	int error, lock_flags;
531 
532 	lock_flags = vp->v_type != VFIFO && MNT_EXTENDED_SHARED(vp->v_mount) ?
533 	    LK_SHARED : LK_EXCLUSIVE;
534 
535 	vn_start_write(vp, &mp, V_WAIT);
536 	vn_lock(vp, lock_flags | LK_RETRY);
537 	AUDIT_ARG_VNODE1(vp);
538 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
539 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
540 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
541 		    __func__, vp, vp->v_writecount);
542 	}
543 	error = VOP_CLOSE(vp, flags, file_cred, td);
544 	if (keep_ref)
545 		VOP_UNLOCK(vp);
546 	else
547 		vput(vp);
548 	vn_finished_write(mp);
549 	return (error);
550 }
551 
552 int
vn_close(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td)553 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
554     struct thread *td)
555 {
556 
557 	return (vn_close1(vp, flags, file_cred, td, false));
558 }
559 
560 /*
561  * Heuristic to detect sequential operation.
562  */
563 static int
sequential_heuristic(struct uio * uio,struct file * fp)564 sequential_heuristic(struct uio *uio, struct file *fp)
565 {
566 	enum uio_rw rw;
567 
568 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
569 
570 	rw = uio->uio_rw;
571 	if (fp->f_flag & FRDAHEAD)
572 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
573 
574 	/*
575 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
576 	 * that the first I/O is normally considered to be slightly
577 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
578 	 * unless previous seeks have reduced f_seqcount to 0, in which
579 	 * case offset 0 is not special.
580 	 */
581 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
582 	    uio->uio_offset == fp->f_nextoff[rw]) {
583 		/*
584 		 * f_seqcount is in units of fixed-size blocks so that it
585 		 * depends mainly on the amount of sequential I/O and not
586 		 * much on the number of sequential I/O's.  The fixed size
587 		 * of 16384 is hard-coded here since it is (not quite) just
588 		 * a magic size that works well here.  This size is more
589 		 * closely related to the best I/O size for real disks than
590 		 * to any block size used by software.
591 		 */
592 		if (uio->uio_resid >= IO_SEQMAX * 16384)
593 			fp->f_seqcount[rw] = IO_SEQMAX;
594 		else {
595 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
596 			if (fp->f_seqcount[rw] > IO_SEQMAX)
597 				fp->f_seqcount[rw] = IO_SEQMAX;
598 		}
599 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
600 	}
601 
602 	/* Not sequential.  Quickly draw-down sequentiality. */
603 	if (fp->f_seqcount[rw] > 1)
604 		fp->f_seqcount[rw] = 1;
605 	else
606 		fp->f_seqcount[rw] = 0;
607 	return (0);
608 }
609 
610 /*
611  * Package up an I/O request on a vnode into a uio and do it.
612  */
613 int
vn_rdwr(enum uio_rw rw,struct vnode * vp,void * base,int len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,ssize_t * aresid,struct thread * td)614 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
615     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
616     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
617 {
618 	struct uio auio;
619 	struct iovec aiov;
620 	struct mount *mp;
621 	struct ucred *cred;
622 	void *rl_cookie;
623 	struct vn_io_fault_args args;
624 	int error, lock_flags;
625 
626 	if (offset < 0 && vp->v_type != VCHR)
627 		return (EINVAL);
628 	auio.uio_iov = &aiov;
629 	auio.uio_iovcnt = 1;
630 	aiov.iov_base = base;
631 	aiov.iov_len = len;
632 	auio.uio_resid = len;
633 	auio.uio_offset = offset;
634 	auio.uio_segflg = segflg;
635 	auio.uio_rw = rw;
636 	auio.uio_td = td;
637 	error = 0;
638 
639 	if ((ioflg & IO_NODELOCKED) == 0) {
640 		if ((ioflg & IO_RANGELOCKED) == 0) {
641 			if (rw == UIO_READ) {
642 				rl_cookie = vn_rangelock_rlock(vp, offset,
643 				    offset + len);
644 			} else if ((ioflg & IO_APPEND) != 0) {
645 				rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
646 			} else {
647 				rl_cookie = vn_rangelock_wlock(vp, offset,
648 				    offset + len);
649 			}
650 		} else
651 			rl_cookie = NULL;
652 		mp = NULL;
653 		if (rw == UIO_WRITE) {
654 			if (vp->v_type != VCHR &&
655 			    (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH))
656 			    != 0)
657 				goto out;
658 			lock_flags = vn_lktype_write(mp, vp);
659 		} else
660 			lock_flags = LK_SHARED;
661 		vn_lock(vp, lock_flags | LK_RETRY);
662 	} else
663 		rl_cookie = NULL;
664 
665 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
666 #ifdef MAC
667 	if ((ioflg & IO_NOMACCHECK) == 0) {
668 		if (rw == UIO_READ)
669 			error = mac_vnode_check_read(active_cred, file_cred,
670 			    vp);
671 		else
672 			error = mac_vnode_check_write(active_cred, file_cred,
673 			    vp);
674 	}
675 #endif
676 	if (error == 0) {
677 		if (file_cred != NULL)
678 			cred = file_cred;
679 		else
680 			cred = active_cred;
681 		if (do_vn_io_fault(vp, &auio)) {
682 			args.kind = VN_IO_FAULT_VOP;
683 			args.cred = cred;
684 			args.flags = ioflg;
685 			args.args.vop_args.vp = vp;
686 			error = vn_io_fault1(vp, &auio, &args, td);
687 		} else if (rw == UIO_READ) {
688 			error = VOP_READ(vp, &auio, ioflg, cred);
689 		} else /* if (rw == UIO_WRITE) */ {
690 			error = VOP_WRITE(vp, &auio, ioflg, cred);
691 		}
692 	}
693 	if (aresid)
694 		*aresid = auio.uio_resid;
695 	else
696 		if (auio.uio_resid && error == 0)
697 			error = EIO;
698 	if ((ioflg & IO_NODELOCKED) == 0) {
699 		VOP_UNLOCK(vp);
700 		if (mp != NULL)
701 			vn_finished_write(mp);
702 	}
703  out:
704 	if (rl_cookie != NULL)
705 		vn_rangelock_unlock(vp, rl_cookie);
706 	return (error);
707 }
708 
709 /*
710  * Package up an I/O request on a vnode into a uio and do it.  The I/O
711  * request is split up into smaller chunks and we try to avoid saturating
712  * the buffer cache while potentially holding a vnode locked, so we
713  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
714  * to give other processes a chance to lock the vnode (either other processes
715  * core'ing the same binary, or unrelated processes scanning the directory).
716  */
717 int
vn_rdwr_inchunks(enum uio_rw rw,struct vnode * vp,void * base,size_t len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,size_t * aresid,struct thread * td)718 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
719     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
720     struct ucred *file_cred, size_t *aresid, struct thread *td)
721 {
722 	int error = 0;
723 	ssize_t iaresid;
724 
725 	do {
726 		int chunk;
727 
728 		/*
729 		 * Force `offset' to a multiple of MAXBSIZE except possibly
730 		 * for the first chunk, so that filesystems only need to
731 		 * write full blocks except possibly for the first and last
732 		 * chunks.
733 		 */
734 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
735 
736 		if (chunk > len)
737 			chunk = len;
738 		if (rw != UIO_READ && vp->v_type == VREG)
739 			bwillwrite();
740 		iaresid = 0;
741 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
742 		    ioflg, active_cred, file_cred, &iaresid, td);
743 		len -= chunk;	/* aresid calc already includes length */
744 		if (error)
745 			break;
746 		offset += chunk;
747 		base = (char *)base + chunk;
748 		kern_yield(PRI_USER);
749 	} while (len);
750 	if (aresid)
751 		*aresid = len + iaresid;
752 	return (error);
753 }
754 
755 #if OFF_MAX <= LONG_MAX
756 off_t
foffset_lock(struct file * fp,int flags)757 foffset_lock(struct file *fp, int flags)
758 {
759 	volatile short *flagsp;
760 	off_t res;
761 	short state;
762 
763 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
764 
765 	if ((flags & FOF_NOLOCK) != 0)
766 		return (atomic_load_long(&fp->f_offset));
767 
768 	/*
769 	 * According to McKusick the vn lock was protecting f_offset here.
770 	 * It is now protected by the FOFFSET_LOCKED flag.
771 	 */
772 	flagsp = &fp->f_vnread_flags;
773 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
774 		return (atomic_load_long(&fp->f_offset));
775 
776 	sleepq_lock(&fp->f_vnread_flags);
777 	state = atomic_load_16(flagsp);
778 	for (;;) {
779 		if ((state & FOFFSET_LOCKED) == 0) {
780 			if (!atomic_fcmpset_acq_16(flagsp, &state,
781 			    FOFFSET_LOCKED))
782 				continue;
783 			break;
784 		}
785 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
786 			if (!atomic_fcmpset_acq_16(flagsp, &state,
787 			    state | FOFFSET_LOCK_WAITING))
788 				continue;
789 		}
790 		DROP_GIANT();
791 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
792 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
793 		PICKUP_GIANT();
794 		sleepq_lock(&fp->f_vnread_flags);
795 		state = atomic_load_16(flagsp);
796 	}
797 	res = atomic_load_long(&fp->f_offset);
798 	sleepq_release(&fp->f_vnread_flags);
799 	return (res);
800 }
801 
802 void
foffset_unlock(struct file * fp,off_t val,int flags)803 foffset_unlock(struct file *fp, off_t val, int flags)
804 {
805 	volatile short *flagsp;
806 	short state;
807 
808 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
809 
810 	if ((flags & FOF_NOUPDATE) == 0)
811 		atomic_store_long(&fp->f_offset, val);
812 	if ((flags & FOF_NEXTOFF_R) != 0)
813 		fp->f_nextoff[UIO_READ] = val;
814 	if ((flags & FOF_NEXTOFF_W) != 0)
815 		fp->f_nextoff[UIO_WRITE] = val;
816 
817 	if ((flags & FOF_NOLOCK) != 0)
818 		return;
819 
820 	flagsp = &fp->f_vnread_flags;
821 	state = atomic_load_16(flagsp);
822 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
823 	    atomic_cmpset_rel_16(flagsp, state, 0))
824 		return;
825 
826 	sleepq_lock(&fp->f_vnread_flags);
827 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
828 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
829 	fp->f_vnread_flags = 0;
830 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
831 	sleepq_release(&fp->f_vnread_flags);
832 }
833 
834 static off_t
foffset_read(struct file * fp)835 foffset_read(struct file *fp)
836 {
837 
838 	return (atomic_load_long(&fp->f_offset));
839 }
840 #else
841 off_t
foffset_lock(struct file * fp,int flags)842 foffset_lock(struct file *fp, int flags)
843 {
844 	struct mtx *mtxp;
845 	off_t res;
846 
847 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
848 
849 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
850 	mtx_lock(mtxp);
851 	if ((flags & FOF_NOLOCK) == 0) {
852 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
853 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
854 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
855 			    "vofflock", 0);
856 		}
857 		fp->f_vnread_flags |= FOFFSET_LOCKED;
858 	}
859 	res = fp->f_offset;
860 	mtx_unlock(mtxp);
861 	return (res);
862 }
863 
864 void
foffset_unlock(struct file * fp,off_t val,int flags)865 foffset_unlock(struct file *fp, off_t val, int flags)
866 {
867 	struct mtx *mtxp;
868 
869 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
870 
871 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
872 	mtx_lock(mtxp);
873 	if ((flags & FOF_NOUPDATE) == 0)
874 		fp->f_offset = val;
875 	if ((flags & FOF_NEXTOFF_R) != 0)
876 		fp->f_nextoff[UIO_READ] = val;
877 	if ((flags & FOF_NEXTOFF_W) != 0)
878 		fp->f_nextoff[UIO_WRITE] = val;
879 	if ((flags & FOF_NOLOCK) == 0) {
880 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
881 		    ("Lost FOFFSET_LOCKED"));
882 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
883 			wakeup(&fp->f_vnread_flags);
884 		fp->f_vnread_flags = 0;
885 	}
886 	mtx_unlock(mtxp);
887 }
888 
889 static off_t
foffset_read(struct file * fp)890 foffset_read(struct file *fp)
891 {
892 
893 	return (foffset_lock(fp, FOF_NOLOCK));
894 }
895 #endif
896 
897 void
foffset_lock_uio(struct file * fp,struct uio * uio,int flags)898 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
899 {
900 
901 	if ((flags & FOF_OFFSET) == 0)
902 		uio->uio_offset = foffset_lock(fp, flags);
903 }
904 
905 void
foffset_unlock_uio(struct file * fp,struct uio * uio,int flags)906 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
907 {
908 
909 	if ((flags & FOF_OFFSET) == 0)
910 		foffset_unlock(fp, uio->uio_offset, flags);
911 }
912 
913 static int
get_advice(struct file * fp,struct uio * uio)914 get_advice(struct file *fp, struct uio *uio)
915 {
916 	struct mtx *mtxp;
917 	int ret;
918 
919 	ret = POSIX_FADV_NORMAL;
920 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
921 		return (ret);
922 
923 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
924 	mtx_lock(mtxp);
925 	if (fp->f_advice != NULL &&
926 	    uio->uio_offset >= fp->f_advice->fa_start &&
927 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
928 		ret = fp->f_advice->fa_advice;
929 	mtx_unlock(mtxp);
930 	return (ret);
931 }
932 
933 static int
get_write_ioflag(struct file * fp)934 get_write_ioflag(struct file *fp)
935 {
936 	int ioflag;
937 	struct mount *mp;
938 	struct vnode *vp;
939 
940 	ioflag = 0;
941 	vp = fp->f_vnode;
942 	mp = atomic_load_ptr(&vp->v_mount);
943 
944 	if ((fp->f_flag & O_DIRECT) != 0)
945 		ioflag |= IO_DIRECT;
946 
947 	if ((fp->f_flag & O_FSYNC) != 0 ||
948 	    (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
949 		ioflag |= IO_SYNC;
950 
951 	/*
952 	 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
953 	 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
954 	 * fall back to full O_SYNC behavior.
955 	 */
956 	if ((fp->f_flag & O_DSYNC) != 0)
957 		ioflag |= IO_SYNC | IO_DATASYNC;
958 
959 	return (ioflag);
960 }
961 
962 int
vn_read_from_obj(struct vnode * vp,struct uio * uio)963 vn_read_from_obj(struct vnode *vp, struct uio *uio)
964 {
965 	vm_object_t obj;
966 	vm_page_t ma[io_hold_cnt + 2];
967 	off_t off, vsz;
968 	ssize_t resid;
969 	int error, i, j;
970 
971 	MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
972 	obj = atomic_load_ptr(&vp->v_object);
973 	if (obj == NULL)
974 		return (EJUSTRETURN);
975 
976 	/*
977 	 * Depends on type stability of vm_objects.
978 	 */
979 	vm_object_pip_add(obj, 1);
980 	if ((obj->flags & OBJ_DEAD) != 0) {
981 		/*
982 		 * Note that object might be already reused from the
983 		 * vnode, and the OBJ_DEAD flag cleared.  This is fine,
984 		 * we recheck for DOOMED vnode state after all pages
985 		 * are busied, and retract then.
986 		 *
987 		 * But we check for OBJ_DEAD to ensure that we do not
988 		 * busy pages while vm_object_terminate_pages()
989 		 * processes the queue.
990 		 */
991 		error = EJUSTRETURN;
992 		goto out_pip;
993 	}
994 
995 	resid = uio->uio_resid;
996 	off = uio->uio_offset;
997 	for (i = 0; resid > 0; i++) {
998 		MPASS(i < io_hold_cnt + 2);
999 		ma[i] = vm_page_grab_unlocked(obj, atop(off),
1000 		    VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
1001 		    VM_ALLOC_NOWAIT);
1002 		if (ma[i] == NULL)
1003 			break;
1004 
1005 		/*
1006 		 * Skip invalid pages.  Valid mask can be partial only
1007 		 * at EOF, and we clip later.
1008 		 */
1009 		if (vm_page_none_valid(ma[i])) {
1010 			vm_page_sunbusy(ma[i]);
1011 			break;
1012 		}
1013 
1014 		resid -= PAGE_SIZE;
1015 		off += PAGE_SIZE;
1016 	}
1017 	if (i == 0) {
1018 		error = EJUSTRETURN;
1019 		goto out_pip;
1020 	}
1021 
1022 	/*
1023 	 * Check VIRF_DOOMED after we busied our pages.  Since
1024 	 * vgonel() terminates the vnode' vm_object, it cannot
1025 	 * process past pages busied by us.
1026 	 */
1027 	if (VN_IS_DOOMED(vp)) {
1028 		error = EJUSTRETURN;
1029 		goto out;
1030 	}
1031 
1032 	resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
1033 	if (resid > uio->uio_resid)
1034 		resid = uio->uio_resid;
1035 
1036 	/*
1037 	 * Unlocked read of vnp_size is safe because truncation cannot
1038 	 * pass busied page.  But we load vnp_size into a local
1039 	 * variable so that possible concurrent extension does not
1040 	 * break calculation.
1041 	 */
1042 #if defined(__powerpc__) && !defined(__powerpc64__)
1043 	vsz = obj->un_pager.vnp.vnp_size;
1044 #else
1045 	vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1046 #endif
1047 	if (uio->uio_offset >= vsz) {
1048 		error = EJUSTRETURN;
1049 		goto out;
1050 	}
1051 	if (uio->uio_offset + resid > vsz)
1052 		resid = vsz - uio->uio_offset;
1053 
1054 	error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1055 
1056 out:
1057 	for (j = 0; j < i; j++) {
1058 		if (error == 0)
1059 			vm_page_reference(ma[j]);
1060 		vm_page_sunbusy(ma[j]);
1061 	}
1062 out_pip:
1063 	vm_object_pip_wakeup(obj);
1064 	if (error != 0)
1065 		return (error);
1066 	return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1067 }
1068 
1069 /*
1070  * File table vnode read routine.
1071  */
1072 static int
vn_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1073 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1074     struct thread *td)
1075 {
1076 	struct vnode *vp;
1077 	off_t orig_offset;
1078 	int error, ioflag;
1079 	int advice;
1080 
1081 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1082 	    uio->uio_td, td));
1083 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1084 	vp = fp->f_vnode;
1085 	ioflag = 0;
1086 	if (fp->f_flag & FNONBLOCK)
1087 		ioflag |= IO_NDELAY;
1088 	if (fp->f_flag & O_DIRECT)
1089 		ioflag |= IO_DIRECT;
1090 
1091 	/*
1092 	 * Try to read from page cache.  VIRF_DOOMED check is racy but
1093 	 * allows us to avoid unneeded work outright.
1094 	 */
1095 	if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1096 	    (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1097 		error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1098 		if (error == 0) {
1099 			fp->f_nextoff[UIO_READ] = uio->uio_offset;
1100 			return (0);
1101 		}
1102 		if (error != EJUSTRETURN)
1103 			return (error);
1104 	}
1105 
1106 	advice = get_advice(fp, uio);
1107 	vn_lock(vp, LK_SHARED | LK_RETRY);
1108 
1109 	switch (advice) {
1110 	case POSIX_FADV_NORMAL:
1111 	case POSIX_FADV_SEQUENTIAL:
1112 	case POSIX_FADV_NOREUSE:
1113 		ioflag |= sequential_heuristic(uio, fp);
1114 		break;
1115 	case POSIX_FADV_RANDOM:
1116 		/* Disable read-ahead for random I/O. */
1117 		break;
1118 	}
1119 	orig_offset = uio->uio_offset;
1120 
1121 #ifdef MAC
1122 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1123 	if (error == 0)
1124 #endif
1125 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1126 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
1127 	VOP_UNLOCK(vp);
1128 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1129 	    orig_offset != uio->uio_offset)
1130 		/*
1131 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1132 		 * for the backing file after a POSIX_FADV_NOREUSE
1133 		 * read(2).
1134 		 */
1135 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1136 		    POSIX_FADV_DONTNEED);
1137 	return (error);
1138 }
1139 
1140 /*
1141  * File table vnode write routine.
1142  */
1143 static int
vn_write(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1144 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1145     struct thread *td)
1146 {
1147 	struct vnode *vp;
1148 	struct mount *mp;
1149 	off_t orig_offset;
1150 	int error, ioflag;
1151 	int advice;
1152 	bool need_finished_write;
1153 
1154 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1155 	    uio->uio_td, td));
1156 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1157 	vp = fp->f_vnode;
1158 	if (vp->v_type == VREG)
1159 		bwillwrite();
1160 	ioflag = IO_UNIT;
1161 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
1162 		ioflag |= IO_APPEND;
1163 	if ((fp->f_flag & FNONBLOCK) != 0)
1164 		ioflag |= IO_NDELAY;
1165 	ioflag |= get_write_ioflag(fp);
1166 
1167 	mp = NULL;
1168 	need_finished_write = false;
1169 	if (vp->v_type != VCHR) {
1170 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1171 		if (error != 0)
1172 			goto unlock;
1173 		need_finished_write = true;
1174 	}
1175 
1176 	advice = get_advice(fp, uio);
1177 
1178 	vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
1179 	switch (advice) {
1180 	case POSIX_FADV_NORMAL:
1181 	case POSIX_FADV_SEQUENTIAL:
1182 	case POSIX_FADV_NOREUSE:
1183 		ioflag |= sequential_heuristic(uio, fp);
1184 		break;
1185 	case POSIX_FADV_RANDOM:
1186 		/* XXX: Is this correct? */
1187 		break;
1188 	}
1189 	orig_offset = uio->uio_offset;
1190 
1191 #ifdef MAC
1192 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1193 	if (error == 0)
1194 #endif
1195 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1196 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1197 	VOP_UNLOCK(vp);
1198 	if (need_finished_write)
1199 		vn_finished_write(mp);
1200 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1201 	    orig_offset != uio->uio_offset)
1202 		/*
1203 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1204 		 * for the backing file after a POSIX_FADV_NOREUSE
1205 		 * write(2).
1206 		 */
1207 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1208 		    POSIX_FADV_DONTNEED);
1209 unlock:
1210 	return (error);
1211 }
1212 
1213 /*
1214  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1215  * prevent the following deadlock:
1216  *
1217  * Assume that the thread A reads from the vnode vp1 into userspace
1218  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
1219  * currently not resident, then system ends up with the call chain
1220  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1221  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1222  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1223  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1224  * backed by the pages of vnode vp1, and some page in buf2 is not
1225  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1226  *
1227  * To prevent the lock order reversal and deadlock, vn_io_fault() does
1228  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1229  * Instead, it first tries to do the whole range i/o with pagefaults
1230  * disabled. If all pages in the i/o buffer are resident and mapped,
1231  * VOP will succeed (ignoring the genuine filesystem errors).
1232  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1233  * i/o in chunks, with all pages in the chunk prefaulted and held
1234  * using vm_fault_quick_hold_pages().
1235  *
1236  * Filesystems using this deadlock avoidance scheme should use the
1237  * array of the held pages from uio, saved in the curthread->td_ma,
1238  * instead of doing uiomove().  A helper function
1239  * vn_io_fault_uiomove() converts uiomove request into
1240  * uiomove_fromphys() over td_ma array.
1241  *
1242  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1243  * make the current i/o request atomic with respect to other i/os and
1244  * truncations.
1245  */
1246 
1247 /*
1248  * Decode vn_io_fault_args and perform the corresponding i/o.
1249  */
1250 static int
vn_io_fault_doio(struct vn_io_fault_args * args,struct uio * uio,struct thread * td)1251 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1252     struct thread *td)
1253 {
1254 	int error, save;
1255 
1256 	error = 0;
1257 	save = vm_fault_disable_pagefaults();
1258 	switch (args->kind) {
1259 	case VN_IO_FAULT_FOP:
1260 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1261 		    uio, args->cred, args->flags, td);
1262 		break;
1263 	case VN_IO_FAULT_VOP:
1264 		if (uio->uio_rw == UIO_READ) {
1265 			error = VOP_READ(args->args.vop_args.vp, uio,
1266 			    args->flags, args->cred);
1267 		} else if (uio->uio_rw == UIO_WRITE) {
1268 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1269 			    args->flags, args->cred);
1270 		}
1271 		break;
1272 	default:
1273 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1274 		    args->kind, uio->uio_rw);
1275 	}
1276 	vm_fault_enable_pagefaults(save);
1277 	return (error);
1278 }
1279 
1280 static int
vn_io_fault_touch(char * base,const struct uio * uio)1281 vn_io_fault_touch(char *base, const struct uio *uio)
1282 {
1283 	int r;
1284 
1285 	r = fubyte(base);
1286 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1287 		return (EFAULT);
1288 	return (0);
1289 }
1290 
1291 static int
vn_io_fault_prefault_user(const struct uio * uio)1292 vn_io_fault_prefault_user(const struct uio *uio)
1293 {
1294 	char *base;
1295 	const struct iovec *iov;
1296 	size_t len;
1297 	ssize_t resid;
1298 	int error, i;
1299 
1300 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1301 	    ("vn_io_fault_prefault userspace"));
1302 
1303 	error = i = 0;
1304 	iov = uio->uio_iov;
1305 	resid = uio->uio_resid;
1306 	base = iov->iov_base;
1307 	len = iov->iov_len;
1308 	while (resid > 0) {
1309 		error = vn_io_fault_touch(base, uio);
1310 		if (error != 0)
1311 			break;
1312 		if (len < PAGE_SIZE) {
1313 			if (len != 0) {
1314 				error = vn_io_fault_touch(base + len - 1, uio);
1315 				if (error != 0)
1316 					break;
1317 				resid -= len;
1318 			}
1319 			if (++i >= uio->uio_iovcnt)
1320 				break;
1321 			iov = uio->uio_iov + i;
1322 			base = iov->iov_base;
1323 			len = iov->iov_len;
1324 		} else {
1325 			len -= PAGE_SIZE;
1326 			base += PAGE_SIZE;
1327 			resid -= PAGE_SIZE;
1328 		}
1329 	}
1330 	return (error);
1331 }
1332 
1333 /*
1334  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1335  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1336  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1337  * into args and call vn_io_fault1() to handle faults during the user
1338  * mode buffer accesses.
1339  */
1340 static int
vn_io_fault1(struct vnode * vp,struct uio * uio,struct vn_io_fault_args * args,struct thread * td)1341 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1342     struct thread *td)
1343 {
1344 	vm_page_t ma[io_hold_cnt + 2];
1345 	struct uio *uio_clone, short_uio;
1346 	struct iovec short_iovec[1];
1347 	vm_page_t *prev_td_ma;
1348 	vm_prot_t prot;
1349 	vm_offset_t addr, end;
1350 	size_t len, resid;
1351 	ssize_t adv;
1352 	int error, cnt, saveheld, prev_td_ma_cnt;
1353 
1354 	if (vn_io_fault_prefault) {
1355 		error = vn_io_fault_prefault_user(uio);
1356 		if (error != 0)
1357 			return (error); /* Or ignore ? */
1358 	}
1359 
1360 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1361 
1362 	/*
1363 	 * The UFS follows IO_UNIT directive and replays back both
1364 	 * uio_offset and uio_resid if an error is encountered during the
1365 	 * operation.  But, since the iovec may be already advanced,
1366 	 * uio is still in an inconsistent state.
1367 	 *
1368 	 * Cache a copy of the original uio, which is advanced to the redo
1369 	 * point using UIO_NOCOPY below.
1370 	 */
1371 	uio_clone = cloneuio(uio);
1372 	resid = uio->uio_resid;
1373 
1374 	short_uio.uio_segflg = UIO_USERSPACE;
1375 	short_uio.uio_rw = uio->uio_rw;
1376 	short_uio.uio_td = uio->uio_td;
1377 
1378 	error = vn_io_fault_doio(args, uio, td);
1379 	if (error != EFAULT)
1380 		goto out;
1381 
1382 	atomic_add_long(&vn_io_faults_cnt, 1);
1383 	uio_clone->uio_segflg = UIO_NOCOPY;
1384 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1385 	uio_clone->uio_segflg = uio->uio_segflg;
1386 
1387 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1388 	prev_td_ma = td->td_ma;
1389 	prev_td_ma_cnt = td->td_ma_cnt;
1390 
1391 	while (uio_clone->uio_resid != 0) {
1392 		len = uio_clone->uio_iov->iov_len;
1393 		if (len == 0) {
1394 			KASSERT(uio_clone->uio_iovcnt >= 1,
1395 			    ("iovcnt underflow"));
1396 			uio_clone->uio_iov++;
1397 			uio_clone->uio_iovcnt--;
1398 			continue;
1399 		}
1400 		if (len > ptoa(io_hold_cnt))
1401 			len = ptoa(io_hold_cnt);
1402 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1403 		end = round_page(addr + len);
1404 		if (end < addr) {
1405 			error = EFAULT;
1406 			break;
1407 		}
1408 		/*
1409 		 * A perfectly misaligned address and length could cause
1410 		 * both the start and the end of the chunk to use partial
1411 		 * page.  +2 accounts for such a situation.
1412 		 */
1413 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1414 		    addr, len, prot, ma, io_hold_cnt + 2);
1415 		if (cnt == -1) {
1416 			error = EFAULT;
1417 			break;
1418 		}
1419 		short_uio.uio_iov = &short_iovec[0];
1420 		short_iovec[0].iov_base = (void *)addr;
1421 		short_uio.uio_iovcnt = 1;
1422 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1423 		short_uio.uio_offset = uio_clone->uio_offset;
1424 		td->td_ma = ma;
1425 		td->td_ma_cnt = cnt;
1426 
1427 		error = vn_io_fault_doio(args, &short_uio, td);
1428 		vm_page_unhold_pages(ma, cnt);
1429 		adv = len - short_uio.uio_resid;
1430 
1431 		uio_clone->uio_iov->iov_base =
1432 		    (char *)uio_clone->uio_iov->iov_base + adv;
1433 		uio_clone->uio_iov->iov_len -= adv;
1434 		uio_clone->uio_resid -= adv;
1435 		uio_clone->uio_offset += adv;
1436 
1437 		uio->uio_resid -= adv;
1438 		uio->uio_offset += adv;
1439 
1440 		if (error != 0 || adv == 0)
1441 			break;
1442 	}
1443 	td->td_ma = prev_td_ma;
1444 	td->td_ma_cnt = prev_td_ma_cnt;
1445 	curthread_pflags_restore(saveheld);
1446 out:
1447 	freeuio(uio_clone);
1448 	return (error);
1449 }
1450 
1451 static int
vn_io_fault(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1452 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1453     int flags, struct thread *td)
1454 {
1455 	fo_rdwr_t *doio;
1456 	struct vnode *vp;
1457 	void *rl_cookie;
1458 	struct vn_io_fault_args args;
1459 	int error;
1460 	bool do_io_fault, do_rangelock;
1461 
1462 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1463 	vp = fp->f_vnode;
1464 
1465 	/*
1466 	 * The ability to read(2) on a directory has historically been
1467 	 * allowed for all users, but this can and has been the source of
1468 	 * at least one security issue in the past.  As such, it is now hidden
1469 	 * away behind a sysctl for those that actually need it to use it, and
1470 	 * restricted to root when it's turned on to make it relatively safe to
1471 	 * leave on for longer sessions of need.
1472 	 */
1473 	if (vp->v_type == VDIR) {
1474 		KASSERT(uio->uio_rw == UIO_READ,
1475 		    ("illegal write attempted on a directory"));
1476 		if (!vfs_allow_read_dir)
1477 			return (EISDIR);
1478 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1479 			return (EISDIR);
1480 	}
1481 
1482 	do_io_fault = do_vn_io_fault(vp, uio);
1483 	do_rangelock = do_io_fault || (vn_irflag_read(vp) & VIRF_PGREAD) != 0;
1484 	foffset_lock_uio(fp, uio, flags);
1485 	if (do_rangelock) {
1486 		if (uio->uio_rw == UIO_READ) {
1487 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1488 			    uio->uio_offset + uio->uio_resid);
1489 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1490 		    (flags & FOF_OFFSET) == 0) {
1491 			/* For appenders, punt and lock the whole range. */
1492 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1493 		} else {
1494 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1495 			    uio->uio_offset + uio->uio_resid);
1496 		}
1497 	}
1498 	if (do_io_fault) {
1499 		args.kind = VN_IO_FAULT_FOP;
1500 		args.args.fop_args.fp = fp;
1501 		args.args.fop_args.doio = doio;
1502 		args.cred = active_cred;
1503 		args.flags = flags | FOF_OFFSET;
1504 		error = vn_io_fault1(vp, uio, &args, td);
1505 	} else {
1506 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1507 	}
1508 	if (do_rangelock)
1509 		vn_rangelock_unlock(vp, rl_cookie);
1510 	foffset_unlock_uio(fp, uio, flags);
1511 	return (error);
1512 }
1513 
1514 /*
1515  * Helper function to perform the requested uiomove operation using
1516  * the held pages for io->uio_iov[0].iov_base buffer instead of
1517  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1518  * instead of iov_base prevents page faults that could occur due to
1519  * pmap_collect() invalidating the mapping created by
1520  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1521  * object cleanup revoking the write access from page mappings.
1522  *
1523  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1524  * instead of plain uiomove().
1525  */
1526 int
vn_io_fault_uiomove(char * data,int xfersize,struct uio * uio)1527 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1528 {
1529 	struct uio transp_uio;
1530 	struct iovec transp_iov[1];
1531 	struct thread *td;
1532 	size_t adv;
1533 	int error, pgadv;
1534 
1535 	td = curthread;
1536 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1537 	    uio->uio_segflg != UIO_USERSPACE)
1538 		return (uiomove(data, xfersize, uio));
1539 
1540 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1541 	transp_iov[0].iov_base = data;
1542 	transp_uio.uio_iov = &transp_iov[0];
1543 	transp_uio.uio_iovcnt = 1;
1544 	if (xfersize > uio->uio_resid)
1545 		xfersize = uio->uio_resid;
1546 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1547 	transp_uio.uio_offset = 0;
1548 	transp_uio.uio_segflg = UIO_SYSSPACE;
1549 	/*
1550 	 * Since transp_iov points to data, and td_ma page array
1551 	 * corresponds to original uio->uio_iov, we need to invert the
1552 	 * direction of the i/o operation as passed to
1553 	 * uiomove_fromphys().
1554 	 */
1555 	switch (uio->uio_rw) {
1556 	case UIO_WRITE:
1557 		transp_uio.uio_rw = UIO_READ;
1558 		break;
1559 	case UIO_READ:
1560 		transp_uio.uio_rw = UIO_WRITE;
1561 		break;
1562 	}
1563 	transp_uio.uio_td = uio->uio_td;
1564 	error = uiomove_fromphys(td->td_ma,
1565 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1566 	    xfersize, &transp_uio);
1567 	adv = xfersize - transp_uio.uio_resid;
1568 	pgadv =
1569 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1570 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1571 	td->td_ma += pgadv;
1572 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1573 	    pgadv));
1574 	td->td_ma_cnt -= pgadv;
1575 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1576 	uio->uio_iov->iov_len -= adv;
1577 	uio->uio_resid -= adv;
1578 	uio->uio_offset += adv;
1579 	return (error);
1580 }
1581 
1582 int
vn_io_fault_pgmove(vm_page_t ma[],vm_offset_t offset,int xfersize,struct uio * uio)1583 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1584     struct uio *uio)
1585 {
1586 	struct thread *td;
1587 	vm_offset_t iov_base;
1588 	int cnt, pgadv;
1589 
1590 	td = curthread;
1591 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1592 	    uio->uio_segflg != UIO_USERSPACE)
1593 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1594 
1595 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1596 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1597 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1598 	switch (uio->uio_rw) {
1599 	case UIO_WRITE:
1600 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1601 		    offset, cnt);
1602 		break;
1603 	case UIO_READ:
1604 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1605 		    cnt);
1606 		break;
1607 	}
1608 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1609 	td->td_ma += pgadv;
1610 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1611 	    pgadv));
1612 	td->td_ma_cnt -= pgadv;
1613 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1614 	uio->uio_iov->iov_len -= cnt;
1615 	uio->uio_resid -= cnt;
1616 	uio->uio_offset += cnt;
1617 	return (0);
1618 }
1619 
1620 /*
1621  * File table truncate routine.
1622  */
1623 static int
vn_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)1624 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1625     struct thread *td)
1626 {
1627 	struct mount *mp;
1628 	struct vnode *vp;
1629 	void *rl_cookie;
1630 	int error;
1631 
1632 	vp = fp->f_vnode;
1633 
1634 retry:
1635 	/*
1636 	 * Lock the whole range for truncation.  Otherwise split i/o
1637 	 * might happen partly before and partly after the truncation.
1638 	 */
1639 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1640 	error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1641 	if (error)
1642 		goto out1;
1643 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1644 	AUDIT_ARG_VNODE1(vp);
1645 	if (vp->v_type == VDIR) {
1646 		error = EISDIR;
1647 		goto out;
1648 	}
1649 #ifdef MAC
1650 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1651 	if (error)
1652 		goto out;
1653 #endif
1654 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1655 	    fp->f_cred);
1656 out:
1657 	VOP_UNLOCK(vp);
1658 	vn_finished_write(mp);
1659 out1:
1660 	vn_rangelock_unlock(vp, rl_cookie);
1661 	if (error == ERELOOKUP)
1662 		goto retry;
1663 	return (error);
1664 }
1665 
1666 /*
1667  * Truncate a file that is already locked.
1668  */
1669 int
vn_truncate_locked(struct vnode * vp,off_t length,bool sync,struct ucred * cred)1670 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1671     struct ucred *cred)
1672 {
1673 	struct vattr vattr;
1674 	int error;
1675 
1676 	error = VOP_ADD_WRITECOUNT(vp, 1);
1677 	if (error == 0) {
1678 		VATTR_NULL(&vattr);
1679 		vattr.va_size = length;
1680 		if (sync)
1681 			vattr.va_vaflags |= VA_SYNC;
1682 		error = VOP_SETATTR(vp, &vattr, cred);
1683 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1684 	}
1685 	return (error);
1686 }
1687 
1688 /*
1689  * File table vnode stat routine.
1690  */
1691 int
vn_statfile(struct file * fp,struct stat * sb,struct ucred * active_cred)1692 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred)
1693 {
1694 	struct vnode *vp = fp->f_vnode;
1695 	int error;
1696 
1697 	vn_lock(vp, LK_SHARED | LK_RETRY);
1698 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred);
1699 	VOP_UNLOCK(vp);
1700 
1701 	return (error);
1702 }
1703 
1704 /*
1705  * File table vnode ioctl routine.
1706  */
1707 static int
vn_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)1708 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1709     struct thread *td)
1710 {
1711 	struct vnode *vp;
1712 	struct fiobmap2_arg *bmarg;
1713 	off_t size;
1714 	int error;
1715 
1716 	vp = fp->f_vnode;
1717 	switch (vp->v_type) {
1718 	case VDIR:
1719 	case VREG:
1720 		switch (com) {
1721 		case FIONREAD:
1722 			error = vn_getsize(vp, &size, active_cred);
1723 			if (error == 0)
1724 				*(int *)data = size - fp->f_offset;
1725 			return (error);
1726 		case FIOBMAP2:
1727 			bmarg = (struct fiobmap2_arg *)data;
1728 			vn_lock(vp, LK_SHARED | LK_RETRY);
1729 #ifdef MAC
1730 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1731 			    vp);
1732 			if (error == 0)
1733 #endif
1734 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1735 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1736 			VOP_UNLOCK(vp);
1737 			return (error);
1738 		case FIONBIO:
1739 		case FIOASYNC:
1740 			return (0);
1741 		default:
1742 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1743 			    active_cred, td));
1744 		}
1745 		break;
1746 	case VCHR:
1747 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1748 		    active_cred, td));
1749 	default:
1750 		return (ENOTTY);
1751 	}
1752 }
1753 
1754 /*
1755  * File table vnode poll routine.
1756  */
1757 static int
vn_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)1758 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1759     struct thread *td)
1760 {
1761 	struct vnode *vp;
1762 	int error;
1763 
1764 	vp = fp->f_vnode;
1765 #if defined(MAC) || defined(AUDIT)
1766 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1767 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1768 		AUDIT_ARG_VNODE1(vp);
1769 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1770 		VOP_UNLOCK(vp);
1771 		if (error != 0)
1772 			return (error);
1773 	}
1774 #endif
1775 	error = VOP_POLL(vp, events, fp->f_cred, td);
1776 	return (error);
1777 }
1778 
1779 /*
1780  * Acquire the requested lock and then check for validity.  LK_RETRY
1781  * permits vn_lock to return doomed vnodes.
1782  */
1783 static int __noinline
_vn_lock_fallback(struct vnode * vp,int flags,const char * file,int line,int error)1784 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1785     int error)
1786 {
1787 
1788 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1789 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1790 
1791 	if (error == 0)
1792 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1793 
1794 	if ((flags & LK_RETRY) == 0) {
1795 		if (error == 0) {
1796 			VOP_UNLOCK(vp);
1797 			error = ENOENT;
1798 		}
1799 		return (error);
1800 	}
1801 
1802 	/*
1803 	 * LK_RETRY case.
1804 	 *
1805 	 * Nothing to do if we got the lock.
1806 	 */
1807 	if (error == 0)
1808 		return (0);
1809 
1810 	/*
1811 	 * Interlock was dropped by the call in _vn_lock.
1812 	 */
1813 	flags &= ~LK_INTERLOCK;
1814 	do {
1815 		error = VOP_LOCK1(vp, flags, file, line);
1816 	} while (error != 0);
1817 	return (0);
1818 }
1819 
1820 int
_vn_lock(struct vnode * vp,int flags,const char * file,int line)1821 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1822 {
1823 	int error;
1824 
1825 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1826 	    ("vn_lock: no locktype (%d passed)", flags));
1827 	VNPASS(vp->v_holdcnt > 0, vp);
1828 	error = VOP_LOCK1(vp, flags, file, line);
1829 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1830 		return (_vn_lock_fallback(vp, flags, file, line, error));
1831 	return (0);
1832 }
1833 
1834 /*
1835  * File table vnode close routine.
1836  */
1837 static int
vn_closefile(struct file * fp,struct thread * td)1838 vn_closefile(struct file *fp, struct thread *td)
1839 {
1840 	struct vnode *vp;
1841 	struct flock lf;
1842 	int error;
1843 	bool ref;
1844 
1845 	vp = fp->f_vnode;
1846 	fp->f_ops = &badfileops;
1847 	ref = (fp->f_flag & FHASLOCK) != 0;
1848 
1849 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1850 
1851 	if (__predict_false(ref)) {
1852 		lf.l_whence = SEEK_SET;
1853 		lf.l_start = 0;
1854 		lf.l_len = 0;
1855 		lf.l_type = F_UNLCK;
1856 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1857 		vrele(vp);
1858 	}
1859 	return (error);
1860 }
1861 
1862 /*
1863  * Preparing to start a filesystem write operation. If the operation is
1864  * permitted, then we bump the count of operations in progress and
1865  * proceed. If a suspend request is in progress, we wait until the
1866  * suspension is over, and then proceed.
1867  */
1868 static int
vn_start_write_refed(struct mount * mp,int flags,bool mplocked)1869 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1870 {
1871 	struct mount_pcpu *mpcpu;
1872 	int error, mflags;
1873 
1874 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1875 	    vfs_op_thread_enter(mp, mpcpu)) {
1876 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1877 		vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1878 		vfs_op_thread_exit(mp, mpcpu);
1879 		return (0);
1880 	}
1881 
1882 	if (mplocked)
1883 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1884 	else
1885 		MNT_ILOCK(mp);
1886 
1887 	error = 0;
1888 
1889 	/*
1890 	 * Check on status of suspension.
1891 	 */
1892 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1893 	    mp->mnt_susp_owner != curthread) {
1894 		mflags = 0;
1895 		if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
1896 			if (flags & V_PCATCH)
1897 				mflags |= PCATCH;
1898 		}
1899 		mflags |= (PUSER - 1);
1900 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1901 			if ((flags & V_NOWAIT) != 0) {
1902 				error = EWOULDBLOCK;
1903 				goto unlock;
1904 			}
1905 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1906 			    "suspfs", 0);
1907 			if (error != 0)
1908 				goto unlock;
1909 		}
1910 	}
1911 	if ((flags & V_XSLEEP) != 0)
1912 		goto unlock;
1913 	mp->mnt_writeopcount++;
1914 unlock:
1915 	if (error != 0 || (flags & V_XSLEEP) != 0)
1916 		MNT_REL(mp);
1917 	MNT_IUNLOCK(mp);
1918 	return (error);
1919 }
1920 
1921 int
vn_start_write(struct vnode * vp,struct mount ** mpp,int flags)1922 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1923 {
1924 	struct mount *mp;
1925 	int error;
1926 
1927 	KASSERT((flags & ~V_VALID_FLAGS) == 0,
1928 	    ("%s: invalid flags passed %d\n", __func__, flags));
1929 
1930 	error = 0;
1931 	/*
1932 	 * If a vnode is provided, get and return the mount point that
1933 	 * to which it will write.
1934 	 */
1935 	if (vp != NULL) {
1936 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1937 			*mpp = NULL;
1938 			if (error != EOPNOTSUPP)
1939 				return (error);
1940 			return (0);
1941 		}
1942 	}
1943 	if ((mp = *mpp) == NULL)
1944 		return (0);
1945 
1946 	/*
1947 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1948 	 * a vfs_ref().
1949 	 * As long as a vnode is not provided we need to acquire a
1950 	 * refcount for the provided mountpoint too, in order to
1951 	 * emulate a vfs_ref().
1952 	 */
1953 	if (vp == NULL)
1954 		vfs_ref(mp);
1955 
1956 	error = vn_start_write_refed(mp, flags, false);
1957 	if (error != 0 && (flags & V_NOWAIT) == 0)
1958 		*mpp = NULL;
1959 	return (error);
1960 }
1961 
1962 /*
1963  * Secondary suspension. Used by operations such as vop_inactive
1964  * routines that are needed by the higher level functions. These
1965  * are allowed to proceed until all the higher level functions have
1966  * completed (indicated by mnt_writeopcount dropping to zero). At that
1967  * time, these operations are halted until the suspension is over.
1968  */
1969 int
vn_start_secondary_write(struct vnode * vp,struct mount ** mpp,int flags)1970 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1971 {
1972 	struct mount *mp;
1973 	int error, mflags;
1974 
1975 	KASSERT((flags & (~V_VALID_FLAGS | V_XSLEEP)) == 0,
1976 	    ("%s: invalid flags passed %d\n", __func__, flags));
1977 
1978  retry:
1979 	if (vp != NULL) {
1980 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1981 			*mpp = NULL;
1982 			if (error != EOPNOTSUPP)
1983 				return (error);
1984 			return (0);
1985 		}
1986 	}
1987 	/*
1988 	 * If we are not suspended or have not yet reached suspended
1989 	 * mode, then let the operation proceed.
1990 	 */
1991 	if ((mp = *mpp) == NULL)
1992 		return (0);
1993 
1994 	/*
1995 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1996 	 * a vfs_ref().
1997 	 * As long as a vnode is not provided we need to acquire a
1998 	 * refcount for the provided mountpoint too, in order to
1999 	 * emulate a vfs_ref().
2000 	 */
2001 	MNT_ILOCK(mp);
2002 	if (vp == NULL)
2003 		MNT_REF(mp);
2004 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
2005 		mp->mnt_secondary_writes++;
2006 		mp->mnt_secondary_accwrites++;
2007 		MNT_IUNLOCK(mp);
2008 		return (0);
2009 	}
2010 	if ((flags & V_NOWAIT) != 0) {
2011 		MNT_REL(mp);
2012 		MNT_IUNLOCK(mp);
2013 		*mpp = NULL;
2014 		return (EWOULDBLOCK);
2015 	}
2016 	/*
2017 	 * Wait for the suspension to finish.
2018 	 */
2019 	mflags = 0;
2020 	if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
2021 		if ((flags & V_PCATCH) != 0)
2022 			mflags |= PCATCH;
2023 	}
2024 	mflags |= (PUSER - 1) | PDROP;
2025 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0);
2026 	vfs_rel(mp);
2027 	if (error == 0)
2028 		goto retry;
2029 	*mpp = NULL;
2030 	return (error);
2031 }
2032 
2033 /*
2034  * Filesystem write operation has completed. If we are suspending and this
2035  * operation is the last one, notify the suspender that the suspension is
2036  * now in effect.
2037  */
2038 void
vn_finished_write(struct mount * mp)2039 vn_finished_write(struct mount *mp)
2040 {
2041 	struct mount_pcpu *mpcpu;
2042 	int c;
2043 
2044 	if (mp == NULL)
2045 		return;
2046 
2047 	if (vfs_op_thread_enter(mp, mpcpu)) {
2048 		vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2049 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2050 		vfs_op_thread_exit(mp, mpcpu);
2051 		return;
2052 	}
2053 
2054 	MNT_ILOCK(mp);
2055 	vfs_assert_mount_counters(mp);
2056 	MNT_REL(mp);
2057 	c = --mp->mnt_writeopcount;
2058 	if (mp->mnt_vfs_ops == 0) {
2059 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2060 		MNT_IUNLOCK(mp);
2061 		return;
2062 	}
2063 	if (c < 0)
2064 		vfs_dump_mount_counters(mp);
2065 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2066 		wakeup(&mp->mnt_writeopcount);
2067 	MNT_IUNLOCK(mp);
2068 }
2069 
2070 /*
2071  * Filesystem secondary write operation has completed. If we are
2072  * suspending and this operation is the last one, notify the suspender
2073  * that the suspension is now in effect.
2074  */
2075 void
vn_finished_secondary_write(struct mount * mp)2076 vn_finished_secondary_write(struct mount *mp)
2077 {
2078 	if (mp == NULL)
2079 		return;
2080 	MNT_ILOCK(mp);
2081 	MNT_REL(mp);
2082 	mp->mnt_secondary_writes--;
2083 	if (mp->mnt_secondary_writes < 0)
2084 		panic("vn_finished_secondary_write: neg cnt");
2085 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2086 	    mp->mnt_secondary_writes <= 0)
2087 		wakeup(&mp->mnt_secondary_writes);
2088 	MNT_IUNLOCK(mp);
2089 }
2090 
2091 /*
2092  * Request a filesystem to suspend write operations.
2093  */
2094 int
vfs_write_suspend(struct mount * mp,int flags)2095 vfs_write_suspend(struct mount *mp, int flags)
2096 {
2097 	int error;
2098 
2099 	vfs_op_enter(mp);
2100 
2101 	MNT_ILOCK(mp);
2102 	vfs_assert_mount_counters(mp);
2103 	if (mp->mnt_susp_owner == curthread) {
2104 		vfs_op_exit_locked(mp);
2105 		MNT_IUNLOCK(mp);
2106 		return (EALREADY);
2107 	}
2108 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
2109 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
2110 
2111 	/*
2112 	 * Unmount holds a write reference on the mount point.  If we
2113 	 * own busy reference and drain for writers, we deadlock with
2114 	 * the reference draining in the unmount path.  Callers of
2115 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2116 	 * vfs_busy() reference is owned and caller is not in the
2117 	 * unmount context.
2118 	 */
2119 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2120 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2121 		vfs_op_exit_locked(mp);
2122 		MNT_IUNLOCK(mp);
2123 		return (EBUSY);
2124 	}
2125 
2126 	mp->mnt_kern_flag |= MNTK_SUSPEND;
2127 	mp->mnt_susp_owner = curthread;
2128 	if (mp->mnt_writeopcount > 0)
2129 		(void) msleep(&mp->mnt_writeopcount,
2130 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
2131 	else
2132 		MNT_IUNLOCK(mp);
2133 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2134 		vfs_write_resume(mp, 0);
2135 		/* vfs_write_resume does vfs_op_exit() for us */
2136 	}
2137 	return (error);
2138 }
2139 
2140 /*
2141  * Request a filesystem to resume write operations.
2142  */
2143 void
vfs_write_resume(struct mount * mp,int flags)2144 vfs_write_resume(struct mount *mp, int flags)
2145 {
2146 
2147 	MNT_ILOCK(mp);
2148 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2149 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2150 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2151 				       MNTK_SUSPENDED);
2152 		mp->mnt_susp_owner = NULL;
2153 		wakeup(&mp->mnt_writeopcount);
2154 		wakeup(&mp->mnt_flag);
2155 		curthread->td_pflags &= ~TDP_IGNSUSP;
2156 		if ((flags & VR_START_WRITE) != 0) {
2157 			MNT_REF(mp);
2158 			mp->mnt_writeopcount++;
2159 		}
2160 		MNT_IUNLOCK(mp);
2161 		if ((flags & VR_NO_SUSPCLR) == 0)
2162 			VFS_SUSP_CLEAN(mp);
2163 		vfs_op_exit(mp);
2164 	} else if ((flags & VR_START_WRITE) != 0) {
2165 		MNT_REF(mp);
2166 		vn_start_write_refed(mp, 0, true);
2167 	} else {
2168 		MNT_IUNLOCK(mp);
2169 	}
2170 }
2171 
2172 /*
2173  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2174  * methods.
2175  */
2176 int
vfs_write_suspend_umnt(struct mount * mp)2177 vfs_write_suspend_umnt(struct mount *mp)
2178 {
2179 	int error;
2180 
2181 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2182 	    ("vfs_write_suspend_umnt: recursed"));
2183 
2184 	/* dounmount() already called vn_start_write(). */
2185 	for (;;) {
2186 		vn_finished_write(mp);
2187 		error = vfs_write_suspend(mp, 0);
2188 		if (error != 0) {
2189 			vn_start_write(NULL, &mp, V_WAIT);
2190 			return (error);
2191 		}
2192 		MNT_ILOCK(mp);
2193 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2194 			break;
2195 		MNT_IUNLOCK(mp);
2196 		vn_start_write(NULL, &mp, V_WAIT);
2197 	}
2198 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2199 	wakeup(&mp->mnt_flag);
2200 	MNT_IUNLOCK(mp);
2201 	curthread->td_pflags |= TDP_IGNSUSP;
2202 	return (0);
2203 }
2204 
2205 /*
2206  * Implement kqueues for files by translating it to vnode operation.
2207  */
2208 static int
vn_kqfilter(struct file * fp,struct knote * kn)2209 vn_kqfilter(struct file *fp, struct knote *kn)
2210 {
2211 
2212 	return (VOP_KQFILTER(fp->f_vnode, kn));
2213 }
2214 
2215 int
vn_kqfilter_opath(struct file * fp,struct knote * kn)2216 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2217 {
2218 	if ((fp->f_flag & FKQALLOWED) == 0)
2219 		return (EBADF);
2220 	return (vn_kqfilter(fp, kn));
2221 }
2222 
2223 /*
2224  * Simplified in-kernel wrapper calls for extended attribute access.
2225  * Both calls pass in a NULL credential, authorizing as "kernel" access.
2226  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2227  */
2228 int
vn_extattr_get(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int * buflen,char * buf,struct thread * td)2229 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2230     const char *attrname, int *buflen, char *buf, struct thread *td)
2231 {
2232 	struct uio	auio;
2233 	struct iovec	iov;
2234 	int	error;
2235 
2236 	iov.iov_len = *buflen;
2237 	iov.iov_base = buf;
2238 
2239 	auio.uio_iov = &iov;
2240 	auio.uio_iovcnt = 1;
2241 	auio.uio_rw = UIO_READ;
2242 	auio.uio_segflg = UIO_SYSSPACE;
2243 	auio.uio_td = td;
2244 	auio.uio_offset = 0;
2245 	auio.uio_resid = *buflen;
2246 
2247 	if ((ioflg & IO_NODELOCKED) == 0)
2248 		vn_lock(vp, LK_SHARED | LK_RETRY);
2249 
2250 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2251 
2252 	/* authorize attribute retrieval as kernel */
2253 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2254 	    td);
2255 
2256 	if ((ioflg & IO_NODELOCKED) == 0)
2257 		VOP_UNLOCK(vp);
2258 
2259 	if (error == 0) {
2260 		*buflen = *buflen - auio.uio_resid;
2261 	}
2262 
2263 	return (error);
2264 }
2265 
2266 /*
2267  * XXX failure mode if partially written?
2268  */
2269 int
vn_extattr_set(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int buflen,char * buf,struct thread * td)2270 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2271     const char *attrname, int buflen, char *buf, struct thread *td)
2272 {
2273 	struct uio	auio;
2274 	struct iovec	iov;
2275 	struct mount	*mp;
2276 	int	error;
2277 
2278 	iov.iov_len = buflen;
2279 	iov.iov_base = buf;
2280 
2281 	auio.uio_iov = &iov;
2282 	auio.uio_iovcnt = 1;
2283 	auio.uio_rw = UIO_WRITE;
2284 	auio.uio_segflg = UIO_SYSSPACE;
2285 	auio.uio_td = td;
2286 	auio.uio_offset = 0;
2287 	auio.uio_resid = buflen;
2288 
2289 	if ((ioflg & IO_NODELOCKED) == 0) {
2290 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2291 			return (error);
2292 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2293 	}
2294 
2295 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2296 
2297 	/* authorize attribute setting as kernel */
2298 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2299 
2300 	if ((ioflg & IO_NODELOCKED) == 0) {
2301 		vn_finished_write(mp);
2302 		VOP_UNLOCK(vp);
2303 	}
2304 
2305 	return (error);
2306 }
2307 
2308 int
vn_extattr_rm(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,struct thread * td)2309 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2310     const char *attrname, struct thread *td)
2311 {
2312 	struct mount	*mp;
2313 	int	error;
2314 
2315 	if ((ioflg & IO_NODELOCKED) == 0) {
2316 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2317 			return (error);
2318 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2319 	}
2320 
2321 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2322 
2323 	/* authorize attribute removal as kernel */
2324 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2325 	if (error == EOPNOTSUPP)
2326 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2327 		    NULL, td);
2328 
2329 	if ((ioflg & IO_NODELOCKED) == 0) {
2330 		vn_finished_write(mp);
2331 		VOP_UNLOCK(vp);
2332 	}
2333 
2334 	return (error);
2335 }
2336 
2337 static int
vn_get_ino_alloc_vget(struct mount * mp,void * arg,int lkflags,struct vnode ** rvp)2338 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2339     struct vnode **rvp)
2340 {
2341 
2342 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2343 }
2344 
2345 int
vn_vget_ino(struct vnode * vp,ino_t ino,int lkflags,struct vnode ** rvp)2346 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2347 {
2348 
2349 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2350 	    lkflags, rvp));
2351 }
2352 
2353 int
vn_vget_ino_gen(struct vnode * vp,vn_get_ino_t alloc,void * alloc_arg,int lkflags,struct vnode ** rvp)2354 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2355     int lkflags, struct vnode **rvp)
2356 {
2357 	struct mount *mp;
2358 	int ltype, error;
2359 
2360 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2361 	mp = vp->v_mount;
2362 	ltype = VOP_ISLOCKED(vp);
2363 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2364 	    ("vn_vget_ino: vp not locked"));
2365 	error = vfs_busy(mp, MBF_NOWAIT);
2366 	if (error != 0) {
2367 		vfs_ref(mp);
2368 		VOP_UNLOCK(vp);
2369 		error = vfs_busy(mp, 0);
2370 		vn_lock(vp, ltype | LK_RETRY);
2371 		vfs_rel(mp);
2372 		if (error != 0)
2373 			return (ENOENT);
2374 		if (VN_IS_DOOMED(vp)) {
2375 			vfs_unbusy(mp);
2376 			return (ENOENT);
2377 		}
2378 	}
2379 	VOP_UNLOCK(vp);
2380 	error = alloc(mp, alloc_arg, lkflags, rvp);
2381 	vfs_unbusy(mp);
2382 	if (error != 0 || *rvp != vp)
2383 		vn_lock(vp, ltype | LK_RETRY);
2384 	if (VN_IS_DOOMED(vp)) {
2385 		if (error == 0) {
2386 			if (*rvp == vp)
2387 				vunref(vp);
2388 			else
2389 				vput(*rvp);
2390 		}
2391 		error = ENOENT;
2392 	}
2393 	return (error);
2394 }
2395 
2396 static void
vn_send_sigxfsz(struct proc * p)2397 vn_send_sigxfsz(struct proc *p)
2398 {
2399 	PROC_LOCK(p);
2400 	kern_psignal(p, SIGXFSZ);
2401 	PROC_UNLOCK(p);
2402 }
2403 
2404 int
vn_rlimit_trunc(u_quad_t size,struct thread * td)2405 vn_rlimit_trunc(u_quad_t size, struct thread *td)
2406 {
2407 	if (size <= lim_cur(td, RLIMIT_FSIZE))
2408 		return (0);
2409 	vn_send_sigxfsz(td->td_proc);
2410 	return (EFBIG);
2411 }
2412 
2413 static int
vn_rlimit_fsizex1(const struct vnode * vp,struct uio * uio,off_t maxfsz,bool adj,struct thread * td)2414 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2415     bool adj, struct thread *td)
2416 {
2417 	off_t lim;
2418 	bool ktr_write;
2419 
2420 	if (vp->v_type != VREG)
2421 		return (0);
2422 
2423 	/*
2424 	 * Handle file system maximum file size.
2425 	 */
2426 	if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) {
2427 		if (!adj || uio->uio_offset >= maxfsz)
2428 			return (EFBIG);
2429 		uio->uio_resid = maxfsz - uio->uio_offset;
2430 	}
2431 
2432 	/*
2433 	 * This is kernel write (e.g. vnode_pager) or accounting
2434 	 * write, ignore limit.
2435 	 */
2436 	if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0)
2437 		return (0);
2438 
2439 	/*
2440 	 * Calculate file size limit.
2441 	 */
2442 	ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
2443 	lim = __predict_false(ktr_write) ? td->td_ktr_io_lim :
2444 	    lim_cur(td, RLIMIT_FSIZE);
2445 
2446 	/*
2447 	 * Is the limit reached?
2448 	 */
2449 	if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
2450 		return (0);
2451 
2452 	/*
2453 	 * Prepared filesystems can handle writes truncated to the
2454 	 * file size limit.
2455 	 */
2456 	if (adj && (uoff_t)uio->uio_offset < lim) {
2457 		uio->uio_resid = lim - (uoff_t)uio->uio_offset;
2458 		return (0);
2459 	}
2460 
2461 	if (!ktr_write || ktr_filesize_limit_signal)
2462 		vn_send_sigxfsz(td->td_proc);
2463 	return (EFBIG);
2464 }
2465 
2466 /*
2467  * Helper for VOP_WRITE() implementations, the common code to
2468  * handle maximum supported file size on the filesystem, and
2469  * RLIMIT_FSIZE, except for special writes from accounting subsystem
2470  * and ktrace.
2471  *
2472  * For maximum file size (maxfsz argument):
2473  * - return EFBIG if uio_offset is beyond it
2474  * - otherwise, clamp uio_resid if write would extend file beyond maxfsz.
2475  *
2476  * For RLIMIT_FSIZE:
2477  * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit
2478  * - otherwise, clamp uio_resid if write would extend file beyond limit.
2479  *
2480  * If clamping occured, the adjustment for uio_resid is stored in
2481  * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return
2482  * from the VOP.
2483  */
2484 int
vn_rlimit_fsizex(const struct vnode * vp,struct uio * uio,off_t maxfsz,ssize_t * resid_adj,struct thread * td)2485 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2486     ssize_t *resid_adj, struct thread *td)
2487 {
2488 	ssize_t resid_orig;
2489 	int error;
2490 	bool adj;
2491 
2492 	resid_orig = uio->uio_resid;
2493 	adj = resid_adj != NULL;
2494 	error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td);
2495 	if (adj)
2496 		*resid_adj = resid_orig - uio->uio_resid;
2497 	return (error);
2498 }
2499 
2500 void
vn_rlimit_fsizex_res(struct uio * uio,ssize_t resid_adj)2501 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj)
2502 {
2503 	uio->uio_resid += resid_adj;
2504 }
2505 
2506 int
vn_rlimit_fsize(const struct vnode * vp,const struct uio * uio,struct thread * td)2507 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2508     struct thread *td)
2509 {
2510 	return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL,
2511 	    td));
2512 }
2513 
2514 int
vn_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)2515 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2516     struct thread *td)
2517 {
2518 	struct vnode *vp;
2519 
2520 	vp = fp->f_vnode;
2521 #ifdef AUDIT
2522 	vn_lock(vp, LK_SHARED | LK_RETRY);
2523 	AUDIT_ARG_VNODE1(vp);
2524 	VOP_UNLOCK(vp);
2525 #endif
2526 	return (setfmode(td, active_cred, vp, mode));
2527 }
2528 
2529 int
vn_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)2530 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2531     struct thread *td)
2532 {
2533 	struct vnode *vp;
2534 
2535 	vp = fp->f_vnode;
2536 #ifdef AUDIT
2537 	vn_lock(vp, LK_SHARED | LK_RETRY);
2538 	AUDIT_ARG_VNODE1(vp);
2539 	VOP_UNLOCK(vp);
2540 #endif
2541 	return (setfown(td, active_cred, vp, uid, gid));
2542 }
2543 
2544 /*
2545  * Remove pages in the range ["start", "end") from the vnode's VM object.  If
2546  * "end" is 0, then the range extends to the end of the object.
2547  */
2548 void
vn_pages_remove(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2549 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2550 {
2551 	vm_object_t object;
2552 
2553 	if ((object = vp->v_object) == NULL)
2554 		return;
2555 	VM_OBJECT_WLOCK(object);
2556 	vm_object_page_remove(object, start, end, 0);
2557 	VM_OBJECT_WUNLOCK(object);
2558 }
2559 
2560 /*
2561  * Like vn_pages_remove(), but skips invalid pages, which by definition are not
2562  * mapped into any process' address space.  Filesystems may use this in
2563  * preference to vn_pages_remove() to avoid blocking on pages busied in
2564  * preparation for a VOP_GETPAGES.
2565  */
2566 void
vn_pages_remove_valid(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2567 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2568 {
2569 	vm_object_t object;
2570 
2571 	if ((object = vp->v_object) == NULL)
2572 		return;
2573 	VM_OBJECT_WLOCK(object);
2574 	vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
2575 	VM_OBJECT_WUNLOCK(object);
2576 }
2577 
2578 int
vn_bmap_seekhole_locked(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2579 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
2580     struct ucred *cred)
2581 {
2582 	off_t size;
2583 	daddr_t bn, bnp;
2584 	uint64_t bsize;
2585 	off_t noff;
2586 	int error;
2587 
2588 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2589 	    ("%s: Wrong command %lu", __func__, cmd));
2590 	ASSERT_VOP_ELOCKED(vp, "vn_bmap_seekhole_locked");
2591 
2592 	if (vp->v_type != VREG) {
2593 		error = ENOTTY;
2594 		goto out;
2595 	}
2596 	error = vn_getsize_locked(vp, &size, cred);
2597 	if (error != 0)
2598 		goto out;
2599 	noff = *off;
2600 	if (noff < 0 || noff >= size) {
2601 		error = ENXIO;
2602 		goto out;
2603 	}
2604 
2605 	/* See the comment in ufs_bmap_seekdata(). */
2606 	vnode_pager_clean_sync(vp);
2607 
2608 	bsize = vp->v_mount->mnt_stat.f_iosize;
2609 	for (bn = noff / bsize; noff < size; bn++, noff += bsize -
2610 	    noff % bsize) {
2611 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2612 		if (error == EOPNOTSUPP) {
2613 			error = ENOTTY;
2614 			goto out;
2615 		}
2616 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2617 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2618 			noff = bn * bsize;
2619 			if (noff < *off)
2620 				noff = *off;
2621 			goto out;
2622 		}
2623 	}
2624 	if (noff > size)
2625 		noff = size;
2626 	/* noff == size. There is an implicit hole at the end of file. */
2627 	if (cmd == FIOSEEKDATA)
2628 		error = ENXIO;
2629 out:
2630 	if (error == 0)
2631 		*off = noff;
2632 	return (error);
2633 }
2634 
2635 int
vn_bmap_seekhole(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2636 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2637 {
2638 	int error;
2639 
2640 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2641 	    ("%s: Wrong command %lu", __func__, cmd));
2642 
2643 	if (vn_lock(vp, LK_EXCLUSIVE) != 0)
2644 		return (EBADF);
2645 	error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
2646 	VOP_UNLOCK(vp);
2647 	return (error);
2648 }
2649 
2650 int
vn_seek(struct file * fp,off_t offset,int whence,struct thread * td)2651 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2652 {
2653 	struct ucred *cred;
2654 	struct vnode *vp;
2655 	off_t foffset, fsize, size;
2656 	int error, noneg;
2657 
2658 	cred = td->td_ucred;
2659 	vp = fp->f_vnode;
2660 	noneg = (vp->v_type != VCHR);
2661 	/*
2662 	 * Try to dodge locking for common case of querying the offset.
2663 	 */
2664 	if (whence == L_INCR && offset == 0) {
2665 		foffset = foffset_read(fp);
2666 		if (__predict_false(foffset < 0 && noneg)) {
2667 			return (EOVERFLOW);
2668 		}
2669 		td->td_uretoff.tdu_off = foffset;
2670 		return (0);
2671 	}
2672 	foffset = foffset_lock(fp, 0);
2673 	error = 0;
2674 	switch (whence) {
2675 	case L_INCR:
2676 		if (noneg &&
2677 		    (foffset < 0 ||
2678 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2679 			error = EOVERFLOW;
2680 			break;
2681 		}
2682 		offset += foffset;
2683 		break;
2684 	case L_XTND:
2685 		error = vn_getsize(vp, &fsize, cred);
2686 		if (error != 0)
2687 			break;
2688 
2689 		/*
2690 		 * If the file references a disk device, then fetch
2691 		 * the media size and use that to determine the ending
2692 		 * offset.
2693 		 */
2694 		if (fsize == 0 && vp->v_type == VCHR &&
2695 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2696 			fsize = size;
2697 		if (noneg && offset > 0 && fsize > OFF_MAX - offset) {
2698 			error = EOVERFLOW;
2699 			break;
2700 		}
2701 		offset += fsize;
2702 		break;
2703 	case L_SET:
2704 		break;
2705 	case SEEK_DATA:
2706 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2707 		if (error == ENOTTY)
2708 			error = EINVAL;
2709 		break;
2710 	case SEEK_HOLE:
2711 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2712 		if (error == ENOTTY)
2713 			error = EINVAL;
2714 		break;
2715 	default:
2716 		error = EINVAL;
2717 	}
2718 	if (error == 0 && noneg && offset < 0)
2719 		error = EINVAL;
2720 	if (error != 0)
2721 		goto drop;
2722 	VFS_KNOTE_UNLOCKED(vp, 0);
2723 	td->td_uretoff.tdu_off = offset;
2724 drop:
2725 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2726 	return (error);
2727 }
2728 
2729 int
vn_utimes_perm(struct vnode * vp,struct vattr * vap,struct ucred * cred,struct thread * td)2730 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2731     struct thread *td)
2732 {
2733 	int error;
2734 
2735 	/*
2736 	 * Grant permission if the caller is the owner of the file, or
2737 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2738 	 * on the file.  If the time pointer is null, then write
2739 	 * permission on the file is also sufficient.
2740 	 *
2741 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2742 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2743 	 * will be allowed to set the times [..] to the current
2744 	 * server time.
2745 	 */
2746 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2747 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2748 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2749 	return (error);
2750 }
2751 
2752 int
vn_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)2753 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2754 {
2755 	struct vnode *vp;
2756 	int error;
2757 
2758 	if (fp->f_type == DTYPE_FIFO)
2759 		kif->kf_type = KF_TYPE_FIFO;
2760 	else
2761 		kif->kf_type = KF_TYPE_VNODE;
2762 	vp = fp->f_vnode;
2763 	vref(vp);
2764 	FILEDESC_SUNLOCK(fdp);
2765 	error = vn_fill_kinfo_vnode(vp, kif);
2766 	vrele(vp);
2767 	FILEDESC_SLOCK(fdp);
2768 	return (error);
2769 }
2770 
2771 static inline void
vn_fill_junk(struct kinfo_file * kif)2772 vn_fill_junk(struct kinfo_file *kif)
2773 {
2774 	size_t len, olen;
2775 
2776 	/*
2777 	 * Simulate vn_fullpath returning changing values for a given
2778 	 * vp during e.g. coredump.
2779 	 */
2780 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2781 	olen = strlen(kif->kf_path);
2782 	if (len < olen)
2783 		strcpy(&kif->kf_path[len - 1], "$");
2784 	else
2785 		for (; olen < len; olen++)
2786 			strcpy(&kif->kf_path[olen], "A");
2787 }
2788 
2789 int
vn_fill_kinfo_vnode(struct vnode * vp,struct kinfo_file * kif)2790 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2791 {
2792 	struct vattr va;
2793 	char *fullpath, *freepath;
2794 	int error;
2795 
2796 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2797 	freepath = NULL;
2798 	fullpath = "-";
2799 	error = vn_fullpath(vp, &fullpath, &freepath);
2800 	if (error == 0) {
2801 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2802 	}
2803 	if (freepath != NULL)
2804 		free(freepath, M_TEMP);
2805 
2806 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2807 		vn_fill_junk(kif);
2808 	);
2809 
2810 	/*
2811 	 * Retrieve vnode attributes.
2812 	 */
2813 	va.va_fsid = VNOVAL;
2814 	va.va_rdev = NODEV;
2815 	vn_lock(vp, LK_SHARED | LK_RETRY);
2816 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2817 	VOP_UNLOCK(vp);
2818 	if (error != 0)
2819 		return (error);
2820 	if (va.va_fsid != VNOVAL)
2821 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2822 	else
2823 		kif->kf_un.kf_file.kf_file_fsid =
2824 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2825 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2826 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2827 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2828 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2829 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2830 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2831 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2832 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2833 	kif->kf_un.kf_file.kf_file_nlink = va.va_nlink;
2834 	return (0);
2835 }
2836 
2837 int
vn_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)2838 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2839     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2840     struct thread *td)
2841 {
2842 #ifdef HWPMC_HOOKS
2843 	struct pmckern_map_in pkm;
2844 #endif
2845 	struct mount *mp;
2846 	struct vnode *vp;
2847 	vm_object_t object;
2848 	vm_prot_t maxprot;
2849 	boolean_t writecounted;
2850 	int error;
2851 
2852 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2853     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2854 	/*
2855 	 * POSIX shared-memory objects are defined to have
2856 	 * kernel persistence, and are not defined to support
2857 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2858 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2859 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2860 	 * flag to request this behavior.
2861 	 */
2862 	if ((fp->f_flag & FPOSIXSHM) != 0)
2863 		flags |= MAP_NOSYNC;
2864 #endif
2865 	vp = fp->f_vnode;
2866 
2867 	/*
2868 	 * Ensure that file and memory protections are
2869 	 * compatible.  Note that we only worry about
2870 	 * writability if mapping is shared; in this case,
2871 	 * current and max prot are dictated by the open file.
2872 	 * XXX use the vnode instead?  Problem is: what
2873 	 * credentials do we use for determination? What if
2874 	 * proc does a setuid?
2875 	 */
2876 	mp = vp->v_mount;
2877 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2878 		maxprot = VM_PROT_NONE;
2879 		if ((prot & VM_PROT_EXECUTE) != 0)
2880 			return (EACCES);
2881 	} else
2882 		maxprot = VM_PROT_EXECUTE;
2883 	if ((fp->f_flag & FREAD) != 0)
2884 		maxprot |= VM_PROT_READ;
2885 	else if ((prot & VM_PROT_READ) != 0)
2886 		return (EACCES);
2887 
2888 	/*
2889 	 * If we are sharing potential changes via MAP_SHARED and we
2890 	 * are trying to get write permission although we opened it
2891 	 * without asking for it, bail out.
2892 	 */
2893 	if ((flags & MAP_SHARED) != 0) {
2894 		if ((fp->f_flag & FWRITE) != 0)
2895 			maxprot |= VM_PROT_WRITE;
2896 		else if ((prot & VM_PROT_WRITE) != 0)
2897 			return (EACCES);
2898 	} else {
2899 		maxprot |= VM_PROT_WRITE;
2900 		cap_maxprot |= VM_PROT_WRITE;
2901 	}
2902 	maxprot &= cap_maxprot;
2903 
2904 	/*
2905 	 * For regular files and shared memory, POSIX requires that
2906 	 * the value of foff be a legitimate offset within the data
2907 	 * object.  In particular, negative offsets are invalid.
2908 	 * Blocking negative offsets and overflows here avoids
2909 	 * possible wraparound or user-level access into reserved
2910 	 * ranges of the data object later.  In contrast, POSIX does
2911 	 * not dictate how offsets are used by device drivers, so in
2912 	 * the case of a device mapping a negative offset is passed
2913 	 * on.
2914 	 */
2915 	if (
2916 #ifdef _LP64
2917 	    size > OFF_MAX ||
2918 #endif
2919 	    foff > OFF_MAX - size)
2920 		return (EINVAL);
2921 
2922 	writecounted = FALSE;
2923 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2924 	    &foff, &object, &writecounted);
2925 	if (error != 0)
2926 		return (error);
2927 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2928 	    foff, writecounted, td);
2929 	if (error != 0) {
2930 		/*
2931 		 * If this mapping was accounted for in the vnode's
2932 		 * writecount, then undo that now.
2933 		 */
2934 		if (writecounted)
2935 			vm_pager_release_writecount(object, 0, size);
2936 		vm_object_deallocate(object);
2937 	}
2938 #ifdef HWPMC_HOOKS
2939 	/* Inform hwpmc(4) if an executable is being mapped. */
2940 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2941 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2942 			pkm.pm_file = vp;
2943 			pkm.pm_address = (uintptr_t) *addr;
2944 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2945 		}
2946 	}
2947 #endif
2948 	return (error);
2949 }
2950 
2951 void
vn_fsid(struct vnode * vp,struct vattr * va)2952 vn_fsid(struct vnode *vp, struct vattr *va)
2953 {
2954 	fsid_t *f;
2955 
2956 	f = &vp->v_mount->mnt_stat.f_fsid;
2957 	va->va_fsid = (uint32_t)f->val[1];
2958 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2959 	va->va_fsid += (uint32_t)f->val[0];
2960 }
2961 
2962 int
vn_fsync_buf(struct vnode * vp,int waitfor)2963 vn_fsync_buf(struct vnode *vp, int waitfor)
2964 {
2965 	struct buf *bp, *nbp;
2966 	struct bufobj *bo;
2967 	struct mount *mp;
2968 	int error, maxretry;
2969 
2970 	error = 0;
2971 	maxretry = 10000;     /* large, arbitrarily chosen */
2972 	mp = NULL;
2973 	if (vp->v_type == VCHR) {
2974 		VI_LOCK(vp);
2975 		mp = vp->v_rdev->si_mountpt;
2976 		VI_UNLOCK(vp);
2977 	}
2978 	bo = &vp->v_bufobj;
2979 	BO_LOCK(bo);
2980 loop1:
2981 	/*
2982 	 * MARK/SCAN initialization to avoid infinite loops.
2983 	 */
2984         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2985 		bp->b_vflags &= ~BV_SCANNED;
2986 		bp->b_error = 0;
2987 	}
2988 
2989 	/*
2990 	 * Flush all dirty buffers associated with a vnode.
2991 	 */
2992 loop2:
2993 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2994 		if ((bp->b_vflags & BV_SCANNED) != 0)
2995 			continue;
2996 		bp->b_vflags |= BV_SCANNED;
2997 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2998 			if (waitfor != MNT_WAIT)
2999 				continue;
3000 			if (BUF_LOCK(bp,
3001 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
3002 			    BO_LOCKPTR(bo)) != 0) {
3003 				BO_LOCK(bo);
3004 				goto loop1;
3005 			}
3006 			BO_LOCK(bo);
3007 		}
3008 		BO_UNLOCK(bo);
3009 		KASSERT(bp->b_bufobj == bo,
3010 		    ("bp %p wrong b_bufobj %p should be %p",
3011 		    bp, bp->b_bufobj, bo));
3012 		if ((bp->b_flags & B_DELWRI) == 0)
3013 			panic("fsync: not dirty");
3014 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
3015 			vfs_bio_awrite(bp);
3016 		} else {
3017 			bremfree(bp);
3018 			bawrite(bp);
3019 		}
3020 		if (maxretry < 1000)
3021 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
3022 		BO_LOCK(bo);
3023 		goto loop2;
3024 	}
3025 
3026 	/*
3027 	 * If synchronous the caller expects us to completely resolve all
3028 	 * dirty buffers in the system.  Wait for in-progress I/O to
3029 	 * complete (which could include background bitmap writes), then
3030 	 * retry if dirty blocks still exist.
3031 	 */
3032 	if (waitfor == MNT_WAIT) {
3033 		bufobj_wwait(bo, 0, 0);
3034 		if (bo->bo_dirty.bv_cnt > 0) {
3035 			/*
3036 			 * If we are unable to write any of these buffers
3037 			 * then we fail now rather than trying endlessly
3038 			 * to write them out.
3039 			 */
3040 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
3041 				if ((error = bp->b_error) != 0)
3042 					break;
3043 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
3044 			    (error == 0 && --maxretry >= 0))
3045 				goto loop1;
3046 			if (error == 0)
3047 				error = EAGAIN;
3048 		}
3049 	}
3050 	BO_UNLOCK(bo);
3051 	if (error != 0)
3052 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
3053 
3054 	return (error);
3055 }
3056 
3057 /*
3058  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
3059  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
3060  * to do the actual copy.
3061  * vn_generic_copy_file_range() is factored out, so it can be called
3062  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
3063  * different file systems.
3064  */
3065 int
vn_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3066 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
3067     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
3068     struct ucred *outcred, struct thread *fsize_td)
3069 {
3070 	struct mount *inmp, *outmp;
3071 	struct vnode *invpl, *outvpl;
3072 	int error;
3073 	size_t len;
3074 	uint64_t uval;
3075 
3076 	invpl = outvpl = NULL;
3077 	len = *lenp;
3078 	*lenp = 0;		/* For error returns. */
3079 	error = 0;
3080 
3081 	/* Do some sanity checks on the arguments. */
3082 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
3083 		error = EISDIR;
3084 	else if (*inoffp < 0 || *outoffp < 0 ||
3085 	    invp->v_type != VREG || outvp->v_type != VREG)
3086 		error = EINVAL;
3087 	if (error != 0)
3088 		goto out;
3089 
3090 	/* Ensure offset + len does not wrap around. */
3091 	uval = *inoffp;
3092 	uval += len;
3093 	if (uval > INT64_MAX)
3094 		len = INT64_MAX - *inoffp;
3095 	uval = *outoffp;
3096 	uval += len;
3097 	if (uval > INT64_MAX)
3098 		len = INT64_MAX - *outoffp;
3099 	if (len == 0)
3100 		goto out;
3101 
3102 	error = VOP_GETLOWVNODE(invp, &invpl, FREAD);
3103 	if (error != 0)
3104 		goto out;
3105 	error = VOP_GETLOWVNODE(outvp, &outvpl, FWRITE);
3106 	if (error != 0)
3107 		goto out1;
3108 
3109 	inmp = invpl->v_mount;
3110 	outmp = outvpl->v_mount;
3111 	if (inmp == NULL || outmp == NULL)
3112 		goto out2;
3113 
3114 	for (;;) {
3115 		error = vfs_busy(inmp, 0);
3116 		if (error != 0)
3117 			goto out2;
3118 		if (inmp == outmp)
3119 			break;
3120 		error = vfs_busy(outmp, MBF_NOWAIT);
3121 		if (error != 0) {
3122 			vfs_unbusy(inmp);
3123 			error = vfs_busy(outmp, 0);
3124 			if (error == 0) {
3125 				vfs_unbusy(outmp);
3126 				continue;
3127 			}
3128 			goto out2;
3129 		}
3130 		break;
3131 	}
3132 
3133 	/*
3134 	 * If the two vnodes are for the same file system type, call
3135 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
3136 	 * which can handle copies across multiple file system types.
3137 	 */
3138 	*lenp = len;
3139 	if (inmp == outmp || inmp->mnt_vfc == outmp->mnt_vfc)
3140 		error = VOP_COPY_FILE_RANGE(invpl, inoffp, outvpl, outoffp,
3141 		    lenp, flags, incred, outcred, fsize_td);
3142 	else
3143 		error = ENOSYS;
3144 	if (error == ENOSYS)
3145 		error = vn_generic_copy_file_range(invpl, inoffp, outvpl,
3146 		    outoffp, lenp, flags, incred, outcred, fsize_td);
3147 	vfs_unbusy(outmp);
3148 	if (inmp != outmp)
3149 		vfs_unbusy(inmp);
3150 out2:
3151 	if (outvpl != NULL)
3152 		vrele(outvpl);
3153 out1:
3154 	if (invpl != NULL)
3155 		vrele(invpl);
3156 out:
3157 	return (error);
3158 }
3159 
3160 /*
3161  * Test len bytes of data starting at dat for all bytes == 0.
3162  * Return true if all bytes are zero, false otherwise.
3163  * Expects dat to be well aligned.
3164  */
3165 static bool
mem_iszero(void * dat,int len)3166 mem_iszero(void *dat, int len)
3167 {
3168 	int i;
3169 	const u_int *p;
3170 	const char *cp;
3171 
3172 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
3173 		if (len >= sizeof(*p)) {
3174 			if (*p != 0)
3175 				return (false);
3176 		} else {
3177 			cp = (const char *)p;
3178 			for (i = 0; i < len; i++, cp++)
3179 				if (*cp != '\0')
3180 					return (false);
3181 		}
3182 	}
3183 	return (true);
3184 }
3185 
3186 /*
3187  * Look for a hole in the output file and, if found, adjust *outoffp
3188  * and *xferp to skip past the hole.
3189  * *xferp is the entire hole length to be written and xfer2 is how many bytes
3190  * to be written as 0's upon return.
3191  */
3192 static off_t
vn_skip_hole(struct vnode * outvp,off_t xfer2,off_t * outoffp,off_t * xferp,off_t * dataoffp,off_t * holeoffp,struct ucred * cred)3193 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
3194     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
3195 {
3196 	int error;
3197 	off_t delta;
3198 
3199 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
3200 		*dataoffp = *outoffp;
3201 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
3202 		    curthread);
3203 		if (error == 0) {
3204 			*holeoffp = *dataoffp;
3205 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
3206 			    curthread);
3207 		}
3208 		if (error != 0 || *holeoffp == *dataoffp) {
3209 			/*
3210 			 * Since outvp is unlocked, it may be possible for
3211 			 * another thread to do a truncate(), lseek(), write()
3212 			 * creating a hole at startoff between the above
3213 			 * VOP_IOCTL() calls, if the other thread does not do
3214 			 * rangelocking.
3215 			 * If that happens, *holeoffp == *dataoffp and finding
3216 			 * the hole has failed, so disable vn_skip_hole().
3217 			 */
3218 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
3219 			return (xfer2);
3220 		}
3221 		KASSERT(*dataoffp >= *outoffp,
3222 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
3223 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
3224 		KASSERT(*holeoffp > *dataoffp,
3225 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
3226 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
3227 	}
3228 
3229 	/*
3230 	 * If there is a hole before the data starts, advance *outoffp and
3231 	 * *xferp past the hole.
3232 	 */
3233 	if (*dataoffp > *outoffp) {
3234 		delta = *dataoffp - *outoffp;
3235 		if (delta >= *xferp) {
3236 			/* Entire *xferp is a hole. */
3237 			*outoffp += *xferp;
3238 			*xferp = 0;
3239 			return (0);
3240 		}
3241 		*xferp -= delta;
3242 		*outoffp += delta;
3243 		xfer2 = MIN(xfer2, *xferp);
3244 	}
3245 
3246 	/*
3247 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3248 	 * that the write ends at the start of the hole.
3249 	 * *holeoffp should always be greater than *outoffp, but for the
3250 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3251 	 * value.
3252 	 */
3253 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3254 		xfer2 = *holeoffp - *outoffp;
3255 	return (xfer2);
3256 }
3257 
3258 /*
3259  * Write an xfer sized chunk to outvp in blksize blocks from dat.
3260  * dat is a maximum of blksize in length and can be written repeatedly in
3261  * the chunk.
3262  * If growfile == true, just grow the file via vn_truncate_locked() instead
3263  * of doing actual writes.
3264  * If checkhole == true, a hole is being punched, so skip over any hole
3265  * already in the output file.
3266  */
3267 static int
vn_write_outvp(struct vnode * outvp,char * dat,off_t outoff,off_t xfer,u_long blksize,bool growfile,bool checkhole,struct ucred * cred)3268 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3269     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3270 {
3271 	struct mount *mp;
3272 	off_t dataoff, holeoff, xfer2;
3273 	int error;
3274 
3275 	/*
3276 	 * Loop around doing writes of blksize until write has been completed.
3277 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3278 	 * done for each iteration, since the xfer argument can be very
3279 	 * large if there is a large hole to punch in the output file.
3280 	 */
3281 	error = 0;
3282 	holeoff = 0;
3283 	do {
3284 		xfer2 = MIN(xfer, blksize);
3285 		if (checkhole) {
3286 			/*
3287 			 * Punching a hole.  Skip writing if there is
3288 			 * already a hole in the output file.
3289 			 */
3290 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3291 			    &dataoff, &holeoff, cred);
3292 			if (xfer == 0)
3293 				break;
3294 			if (holeoff < 0)
3295 				checkhole = false;
3296 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3297 			    (intmax_t)xfer2));
3298 		}
3299 		bwillwrite();
3300 		mp = NULL;
3301 		error = vn_start_write(outvp, &mp, V_WAIT);
3302 		if (error != 0)
3303 			break;
3304 		if (growfile) {
3305 			error = vn_lock(outvp, LK_EXCLUSIVE);
3306 			if (error == 0) {
3307 				error = vn_truncate_locked(outvp, outoff + xfer,
3308 				    false, cred);
3309 				VOP_UNLOCK(outvp);
3310 			}
3311 		} else {
3312 			error = vn_lock(outvp, vn_lktype_write(mp, outvp));
3313 			if (error == 0) {
3314 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3315 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
3316 				    curthread->td_ucred, cred, NULL, curthread);
3317 				outoff += xfer2;
3318 				xfer -= xfer2;
3319 				VOP_UNLOCK(outvp);
3320 			}
3321 		}
3322 		if (mp != NULL)
3323 			vn_finished_write(mp);
3324 	} while (!growfile && xfer > 0 && error == 0);
3325 	return (error);
3326 }
3327 
3328 /*
3329  * Copy a byte range of one file to another.  This function can handle the
3330  * case where invp and outvp are on different file systems.
3331  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3332  * is no better file system specific way to do it.
3333  */
3334 int
vn_generic_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3335 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3336     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3337     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3338 {
3339 	struct vattr inva;
3340 	struct mount *mp;
3341 	off_t startoff, endoff, xfer, xfer2;
3342 	u_long blksize;
3343 	int error, interrupted;
3344 	bool cantseek, readzeros, eof, first, lastblock, holetoeof, sparse;
3345 	ssize_t aresid, r = 0;
3346 	size_t copylen, len, savlen;
3347 	off_t outsize;
3348 	char *dat;
3349 	long holein, holeout;
3350 	struct timespec curts, endts;
3351 
3352 	holein = holeout = 0;
3353 	savlen = len = *lenp;
3354 	error = 0;
3355 	interrupted = 0;
3356 	dat = NULL;
3357 
3358 	error = vn_lock(invp, LK_SHARED);
3359 	if (error != 0)
3360 		goto out;
3361 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3362 		holein = 0;
3363 	error = VOP_GETATTR(invp, &inva, incred);
3364 	if (error == 0 && inva.va_size > OFF_MAX)
3365 		error = EFBIG;
3366 	VOP_UNLOCK(invp);
3367 	if (error != 0)
3368 		goto out;
3369 
3370 	/*
3371 	 * Use va_bytes >= va_size as a hint that the file does not have
3372 	 * sufficient holes to justify the overhead of doing FIOSEEKHOLE.
3373 	 * This hint does not work well for file systems doing compression
3374 	 * and may fail when allocations for extended attributes increases
3375 	 * the value of va_bytes to >= va_size.
3376 	 */
3377 	sparse = true;
3378 	if (holein != 0 && inva.va_bytes >= inva.va_size) {
3379 		holein = 0;
3380 		sparse = false;
3381 	}
3382 
3383 	mp = NULL;
3384 	error = vn_start_write(outvp, &mp, V_WAIT);
3385 	if (error == 0)
3386 		error = vn_lock(outvp, LK_EXCLUSIVE);
3387 	if (error == 0) {
3388 		/*
3389 		 * If fsize_td != NULL, do a vn_rlimit_fsizex() call,
3390 		 * now that outvp is locked.
3391 		 */
3392 		if (fsize_td != NULL) {
3393 			struct uio io;
3394 
3395 			io.uio_offset = *outoffp;
3396 			io.uio_resid = len;
3397 			error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td);
3398 			len = savlen = io.uio_resid;
3399 			/*
3400 			 * No need to call vn_rlimit_fsizex_res before return,
3401 			 * since the uio is local.
3402 			 */
3403 		}
3404 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3405 			holeout = 0;
3406 		/*
3407 		 * Holes that are past EOF do not need to be written as a block
3408 		 * of zero bytes.  So, truncate the output file as far as
3409 		 * possible and then use size to decide if writing 0
3410 		 * bytes is necessary in the loop below.
3411 		 */
3412 		if (error == 0)
3413 			error = vn_getsize_locked(outvp, &outsize, outcred);
3414 		if (error == 0 && outsize > *outoffp &&
3415 		    *outoffp <= OFF_MAX - len && outsize <= *outoffp + len &&
3416 		    *inoffp < inva.va_size &&
3417 		    *outoffp <= OFF_MAX - (inva.va_size - *inoffp) &&
3418 		    outsize <= *outoffp + (inva.va_size - *inoffp)) {
3419 #ifdef MAC
3420 			error = mac_vnode_check_write(curthread->td_ucred,
3421 			    outcred, outvp);
3422 			if (error == 0)
3423 #endif
3424 				error = vn_truncate_locked(outvp, *outoffp,
3425 				    false, outcred);
3426 			if (error == 0)
3427 				outsize = *outoffp;
3428 		}
3429 		VOP_UNLOCK(outvp);
3430 	}
3431 	if (mp != NULL)
3432 		vn_finished_write(mp);
3433 	if (error != 0)
3434 		goto out;
3435 
3436 	if (sparse && holein == 0 && holeout > 0) {
3437 		/*
3438 		 * For this special case, the input data will be scanned
3439 		 * for blocks of all 0 bytes.  For these blocks, the
3440 		 * write can be skipped for the output file to create
3441 		 * an unallocated region.
3442 		 * Therefore, use the appropriate size for the output file.
3443 		 */
3444 		blksize = holeout;
3445 		if (blksize <= 512) {
3446 			/*
3447 			 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE
3448 			 * of 512, although it actually only creates
3449 			 * unallocated regions for blocks >= f_iosize.
3450 			 */
3451 			blksize = outvp->v_mount->mnt_stat.f_iosize;
3452 		}
3453 	} else {
3454 		/*
3455 		 * Use the larger of the two f_iosize values.  If they are
3456 		 * not the same size, one will normally be an exact multiple of
3457 		 * the other, since they are both likely to be a power of 2.
3458 		 */
3459 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3460 		    outvp->v_mount->mnt_stat.f_iosize);
3461 	}
3462 
3463 	/* Clip to sane limits. */
3464 	if (blksize < 4096)
3465 		blksize = 4096;
3466 	else if (blksize > maxphys)
3467 		blksize = maxphys;
3468 	dat = malloc(blksize, M_TEMP, M_WAITOK);
3469 
3470 	/*
3471 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3472 	 * to find holes.  Otherwise, just scan the read block for all 0s
3473 	 * in the inner loop where the data copying is done.
3474 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3475 	 * support holes on the server, but do not support FIOSEEKHOLE.
3476 	 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
3477 	 * that this function should return after 1second with a partial
3478 	 * completion.
3479 	 */
3480 	if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
3481 		getnanouptime(&endts);
3482 		endts.tv_sec++;
3483 	} else
3484 		timespecclear(&endts);
3485 	first = true;
3486 	holetoeof = eof = false;
3487 	while (len > 0 && error == 0 && !eof && interrupted == 0) {
3488 		endoff = 0;			/* To shut up compilers. */
3489 		cantseek = true;
3490 		startoff = *inoffp;
3491 		copylen = len;
3492 
3493 		/*
3494 		 * Find the next data area.  If there is just a hole to EOF,
3495 		 * FIOSEEKDATA should fail with ENXIO.
3496 		 * (I do not know if any file system will report a hole to
3497 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3498 		 *  will fail for those file systems.)
3499 		 *
3500 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3501 		 * the code just falls through to the inner copy loop.
3502 		 */
3503 		error = EINVAL;
3504 		if (holein > 0) {
3505 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3506 			    incred, curthread);
3507 			if (error == ENXIO) {
3508 				startoff = endoff = inva.va_size;
3509 				eof = holetoeof = true;
3510 				error = 0;
3511 			}
3512 		}
3513 		if (error == 0 && !holetoeof) {
3514 			endoff = startoff;
3515 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3516 			    incred, curthread);
3517 			/*
3518 			 * Since invp is unlocked, it may be possible for
3519 			 * another thread to do a truncate(), lseek(), write()
3520 			 * creating a hole at startoff between the above
3521 			 * VOP_IOCTL() calls, if the other thread does not do
3522 			 * rangelocking.
3523 			 * If that happens, startoff == endoff and finding
3524 			 * the hole has failed, so set an error.
3525 			 */
3526 			if (error == 0 && startoff == endoff)
3527 				error = EINVAL; /* Any error. Reset to 0. */
3528 		}
3529 		if (error == 0) {
3530 			if (startoff > *inoffp) {
3531 				/* Found hole before data block. */
3532 				xfer = MIN(startoff - *inoffp, len);
3533 				if (*outoffp < outsize) {
3534 					/* Must write 0s to punch hole. */
3535 					xfer2 = MIN(outsize - *outoffp,
3536 					    xfer);
3537 					memset(dat, 0, MIN(xfer2, blksize));
3538 					error = vn_write_outvp(outvp, dat,
3539 					    *outoffp, xfer2, blksize, false,
3540 					    holeout > 0, outcred);
3541 				}
3542 
3543 				if (error == 0 && *outoffp + xfer >
3544 				    outsize && (xfer == len || holetoeof)) {
3545 					/* Grow output file (hole at end). */
3546 					error = vn_write_outvp(outvp, dat,
3547 					    *outoffp, xfer, blksize, true,
3548 					    false, outcred);
3549 				}
3550 				if (error == 0) {
3551 					*inoffp += xfer;
3552 					*outoffp += xfer;
3553 					len -= xfer;
3554 					if (len < savlen) {
3555 						interrupted = sig_intr();
3556 						if (timespecisset(&endts) &&
3557 						    interrupted == 0) {
3558 							getnanouptime(&curts);
3559 							if (timespeccmp(&curts,
3560 							    &endts, >=))
3561 								interrupted =
3562 								    EINTR;
3563 						}
3564 					}
3565 				}
3566 			}
3567 			copylen = MIN(len, endoff - startoff);
3568 			cantseek = false;
3569 		} else {
3570 			cantseek = true;
3571 			if (!sparse)
3572 				cantseek = false;
3573 			startoff = *inoffp;
3574 			copylen = len;
3575 			error = 0;
3576 		}
3577 
3578 		xfer = blksize;
3579 		if (cantseek) {
3580 			/*
3581 			 * Set first xfer to end at a block boundary, so that
3582 			 * holes are more likely detected in the loop below via
3583 			 * the for all bytes 0 method.
3584 			 */
3585 			xfer -= (*inoffp % blksize);
3586 		}
3587 
3588 		/*
3589 		 * Loop copying the data block.  If this was our first attempt
3590 		 * to copy anything, allow a zero-length block so that the VOPs
3591 		 * get a chance to update metadata, specifically the atime.
3592 		 */
3593 		while (error == 0 && ((copylen > 0 && !eof) || first) &&
3594 		    interrupted == 0) {
3595 			if (copylen < xfer)
3596 				xfer = copylen;
3597 			first = false;
3598 			error = vn_lock(invp, LK_SHARED);
3599 			if (error != 0)
3600 				goto out;
3601 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3602 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3603 			    curthread->td_ucred, incred, &aresid,
3604 			    curthread);
3605 			VOP_UNLOCK(invp);
3606 			lastblock = false;
3607 			if (error == 0 && (xfer == 0 || aresid > 0)) {
3608 				/* Stop the copy at EOF on the input file. */
3609 				xfer -= aresid;
3610 				eof = true;
3611 				lastblock = true;
3612 			}
3613 			if (error == 0) {
3614 				/*
3615 				 * Skip the write for holes past the initial EOF
3616 				 * of the output file, unless this is the last
3617 				 * write of the output file at EOF.
3618 				 */
3619 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3620 				    false;
3621 				if (xfer == len)
3622 					lastblock = true;
3623 				if (!cantseek || *outoffp < outsize ||
3624 				    lastblock || !readzeros)
3625 					error = vn_write_outvp(outvp, dat,
3626 					    *outoffp, xfer, blksize,
3627 					    readzeros && lastblock &&
3628 					    *outoffp >= outsize, false,
3629 					    outcred);
3630 				if (error == 0) {
3631 					*inoffp += xfer;
3632 					startoff += xfer;
3633 					*outoffp += xfer;
3634 					copylen -= xfer;
3635 					len -= xfer;
3636 					if (len < savlen) {
3637 						interrupted = sig_intr();
3638 						if (timespecisset(&endts) &&
3639 						    interrupted == 0) {
3640 							getnanouptime(&curts);
3641 							if (timespeccmp(&curts,
3642 							    &endts, >=))
3643 								interrupted =
3644 								    EINTR;
3645 						}
3646 					}
3647 				}
3648 			}
3649 			xfer = blksize;
3650 		}
3651 	}
3652 out:
3653 	*lenp = savlen - len;
3654 	free(dat, M_TEMP);
3655 	return (error);
3656 }
3657 
3658 static int
vn_fallocate(struct file * fp,off_t offset,off_t len,struct thread * td)3659 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3660 {
3661 	struct mount *mp;
3662 	struct vnode *vp;
3663 	off_t olen, ooffset;
3664 	int error;
3665 #ifdef AUDIT
3666 	int audited_vnode1 = 0;
3667 #endif
3668 
3669 	vp = fp->f_vnode;
3670 	if (vp->v_type != VREG)
3671 		return (ENODEV);
3672 
3673 	/* Allocating blocks may take a long time, so iterate. */
3674 	for (;;) {
3675 		olen = len;
3676 		ooffset = offset;
3677 
3678 		bwillwrite();
3679 		mp = NULL;
3680 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
3681 		if (error != 0)
3682 			break;
3683 		error = vn_lock(vp, LK_EXCLUSIVE);
3684 		if (error != 0) {
3685 			vn_finished_write(mp);
3686 			break;
3687 		}
3688 #ifdef AUDIT
3689 		if (!audited_vnode1) {
3690 			AUDIT_ARG_VNODE1(vp);
3691 			audited_vnode1 = 1;
3692 		}
3693 #endif
3694 #ifdef MAC
3695 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3696 		if (error == 0)
3697 #endif
3698 			error = VOP_ALLOCATE(vp, &offset, &len, 0,
3699 			    td->td_ucred);
3700 		VOP_UNLOCK(vp);
3701 		vn_finished_write(mp);
3702 
3703 		if (olen + ooffset != offset + len) {
3704 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3705 			    ooffset, olen, offset, len);
3706 		}
3707 		if (error != 0 || len == 0)
3708 			break;
3709 		KASSERT(olen > len, ("Iteration did not make progress?"));
3710 		maybe_yield();
3711 	}
3712 
3713 	return (error);
3714 }
3715 
3716 static int
vn_deallocate_impl(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * cred,struct ucred * active_cred,struct ucred * file_cred)3717 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
3718     int ioflag, struct ucred *cred, struct ucred *active_cred,
3719     struct ucred *file_cred)
3720 {
3721 	struct mount *mp;
3722 	void *rl_cookie;
3723 	off_t off, len;
3724 	int error;
3725 #ifdef AUDIT
3726 	bool audited_vnode1 = false;
3727 #endif
3728 
3729 	rl_cookie = NULL;
3730 	error = 0;
3731 	mp = NULL;
3732 	off = *offset;
3733 	len = *length;
3734 
3735 	if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
3736 		rl_cookie = vn_rangelock_wlock(vp, off, off + len);
3737 	while (len > 0 && error == 0) {
3738 		/*
3739 		 * Try to deallocate the longest range in one pass.
3740 		 * In case a pass takes too long to be executed, it returns
3741 		 * partial result. The residue will be proceeded in the next
3742 		 * pass.
3743 		 */
3744 
3745 		if ((ioflag & IO_NODELOCKED) == 0) {
3746 			bwillwrite();
3747 			if ((error = vn_start_write(vp, &mp,
3748 			    V_WAIT | V_PCATCH)) != 0)
3749 				goto out;
3750 			vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
3751 		}
3752 #ifdef AUDIT
3753 		if (!audited_vnode1) {
3754 			AUDIT_ARG_VNODE1(vp);
3755 			audited_vnode1 = true;
3756 		}
3757 #endif
3758 
3759 #ifdef MAC
3760 		if ((ioflag & IO_NOMACCHECK) == 0)
3761 			error = mac_vnode_check_write(active_cred, file_cred,
3762 			    vp);
3763 #endif
3764 		if (error == 0)
3765 			error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
3766 			    cred);
3767 
3768 		if ((ioflag & IO_NODELOCKED) == 0) {
3769 			VOP_UNLOCK(vp);
3770 			if (mp != NULL) {
3771 				vn_finished_write(mp);
3772 				mp = NULL;
3773 			}
3774 		}
3775 		if (error == 0 && len != 0)
3776 			maybe_yield();
3777 	}
3778 out:
3779 	if (rl_cookie != NULL)
3780 		vn_rangelock_unlock(vp, rl_cookie);
3781 	*offset = off;
3782 	*length = len;
3783 	return (error);
3784 }
3785 
3786 /*
3787  * This function is supposed to be used in the situations where the deallocation
3788  * is not triggered by a user request.
3789  */
3790 int
vn_deallocate(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * active_cred,struct ucred * file_cred)3791 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
3792     int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3793 {
3794 	struct ucred *cred;
3795 
3796 	if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
3797 	    flags != 0)
3798 		return (EINVAL);
3799 	if (vp->v_type != VREG)
3800 		return (ENODEV);
3801 
3802 	cred = file_cred != NOCRED ? file_cred : active_cred;
3803 	return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred,
3804 	    active_cred, file_cred));
3805 }
3806 
3807 static int
vn_fspacectl(struct file * fp,int cmd,off_t * offset,off_t * length,int flags,struct ucred * active_cred,struct thread * td)3808 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
3809     struct ucred *active_cred, struct thread *td)
3810 {
3811 	int error;
3812 	struct vnode *vp;
3813 	int ioflag;
3814 
3815 	KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd"));
3816 	KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
3817 	    ("vn_fspacectl: non-zero flags"));
3818 	KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
3819 	    ("vn_fspacectl: offset/length overflow or underflow"));
3820 	vp = fp->f_vnode;
3821 
3822 	if (vp->v_type != VREG)
3823 		return (ENODEV);
3824 
3825 	ioflag = get_write_ioflag(fp);
3826 
3827 	switch (cmd) {
3828 	case SPACECTL_DEALLOC:
3829 		error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
3830 		    active_cred, active_cred, fp->f_cred);
3831 		break;
3832 	default:
3833 		panic("vn_fspacectl: unknown cmd %d", cmd);
3834 	}
3835 
3836 	return (error);
3837 }
3838 
3839 /*
3840  * Keep this assert as long as sizeof(struct dirent) is used as the maximum
3841  * entry size.
3842  */
3843 _Static_assert(_GENERIC_MAXDIRSIZ == sizeof(struct dirent),
3844     "'struct dirent' size must be a multiple of its alignment "
3845     "(see _GENERIC_DIRLEN())");
3846 
3847 /*
3848  * Returns successive directory entries through some caller's provided buffer.
3849  *
3850  * This function automatically refills the provided buffer with calls to
3851  * VOP_READDIR() (after MAC permission checks).
3852  *
3853  * 'td' is used for credentials and passed to uiomove().  'dirbuf' is the
3854  * caller's buffer to fill and 'dirbuflen' its allocated size.  'dirbuf' must
3855  * be properly aligned to access 'struct dirent' structures and 'dirbuflen'
3856  * must be greater than GENERIC_MAXDIRSIZ to avoid VOP_READDIR() returning
3857  * EINVAL (the latter is not a strong guarantee (yet); but EINVAL will always
3858  * be returned if this requirement is not verified).  '*dpp' points to the
3859  * current directory entry in the buffer and '*len' contains the remaining
3860  * valid bytes in 'dirbuf' after 'dpp' (including the pointed entry).
3861  *
3862  * At first call (or when restarting the read), '*len' must have been set to 0,
3863  * '*off' to 0 (or any valid start offset) and '*eofflag' to 0.  There are no
3864  * more entries as soon as '*len' is 0 after a call that returned 0.  Calling
3865  * again this function after such a condition is considered an error and EINVAL
3866  * will be returned.  Other possible error codes are those of VOP_READDIR(),
3867  * EINTEGRITY if the returned entries do not pass coherency tests, or EINVAL
3868  * (bad call).  All errors are unrecoverable, i.e., the state ('*len', '*off'
3869  * and '*eofflag') must be re-initialized before a subsequent call.  On error
3870  * or at end of directory, '*dpp' is reset to NULL.
3871  *
3872  * '*len', '*off' and '*eofflag' are internal state the caller should not
3873  * tamper with except as explained above.  '*off' is the next directory offset
3874  * to read from to refill the buffer.  '*eofflag' is set to 0 or 1 by the last
3875  * internal call to VOP_READDIR() that returned without error, indicating
3876  * whether it reached the end of the directory, and to 2 by this function after
3877  * all entries have been read.
3878  */
3879 int
vn_dir_next_dirent(struct vnode * vp,struct thread * td,char * dirbuf,size_t dirbuflen,struct dirent ** dpp,size_t * len,off_t * off,int * eofflag)3880 vn_dir_next_dirent(struct vnode *vp, struct thread *td,
3881     char *dirbuf, size_t dirbuflen,
3882     struct dirent **dpp, size_t *len, off_t *off, int *eofflag)
3883 {
3884 	struct dirent *dp = NULL;
3885 	int reclen;
3886 	int error;
3887 	struct uio uio;
3888 	struct iovec iov;
3889 
3890 	ASSERT_VOP_LOCKED(vp, "vnode not locked");
3891 	VNASSERT(vp->v_type == VDIR, vp, ("vnode is not a directory"));
3892 	MPASS2((uintptr_t)dirbuf < (uintptr_t)dirbuf + dirbuflen,
3893 	    "Address space overflow");
3894 
3895 	if (__predict_false(dirbuflen < GENERIC_MAXDIRSIZ)) {
3896 		/* Don't take any chances in this case */
3897 		error = EINVAL;
3898 		goto out;
3899 	}
3900 
3901 	if (*len != 0) {
3902 		dp = *dpp;
3903 
3904 		/*
3905 		 * The caller continued to call us after an error (we set dp to
3906 		 * NULL in a previous iteration).  Bail out right now.
3907 		 */
3908 		if (__predict_false(dp == NULL))
3909 			return (EINVAL);
3910 
3911 		MPASS(*len <= dirbuflen);
3912 		MPASS2((uintptr_t)dirbuf <= (uintptr_t)dp &&
3913 		    (uintptr_t)dp + *len <= (uintptr_t)dirbuf + dirbuflen,
3914 		    "Filled range not inside buffer");
3915 
3916 		reclen = dp->d_reclen;
3917 		if (reclen >= *len) {
3918 			/* End of buffer reached */
3919 			*len = 0;
3920 		} else {
3921 			dp = (struct dirent *)((char *)dp + reclen);
3922 			*len -= reclen;
3923 		}
3924 	}
3925 
3926 	if (*len == 0) {
3927 		dp = NULL;
3928 
3929 		/* Have to refill. */
3930 		switch (*eofflag) {
3931 		case 0:
3932 			break;
3933 
3934 		case 1:
3935 			/* Nothing more to read. */
3936 			*eofflag = 2; /* Remember the caller reached EOF. */
3937 			goto success;
3938 
3939 		default:
3940 			/* The caller didn't test for EOF. */
3941 			error = EINVAL;
3942 			goto out;
3943 		}
3944 
3945 		iov.iov_base = dirbuf;
3946 		iov.iov_len = dirbuflen;
3947 
3948 		uio.uio_iov = &iov;
3949 		uio.uio_iovcnt = 1;
3950 		uio.uio_offset = *off;
3951 		uio.uio_resid = dirbuflen;
3952 		uio.uio_segflg = UIO_SYSSPACE;
3953 		uio.uio_rw = UIO_READ;
3954 		uio.uio_td = td;
3955 
3956 #ifdef MAC
3957 		error = mac_vnode_check_readdir(td->td_ucred, vp);
3958 		if (error == 0)
3959 #endif
3960 			error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag,
3961 			    NULL, NULL);
3962 		if (error != 0)
3963 			goto out;
3964 
3965 		*len = dirbuflen - uio.uio_resid;
3966 		*off = uio.uio_offset;
3967 
3968 		if (*len == 0) {
3969 			/* Sanity check on INVARIANTS. */
3970 			MPASS(*eofflag != 0);
3971 			*eofflag = 1;
3972 			goto success;
3973 		}
3974 
3975 		/*
3976 		 * Normalize the flag returned by VOP_READDIR(), since we use 2
3977 		 * as a sentinel value.
3978 		 */
3979 		if (*eofflag != 0)
3980 			*eofflag = 1;
3981 
3982 		dp = (struct dirent *)dirbuf;
3983 	}
3984 
3985 	if (__predict_false(*len < GENERIC_MINDIRSIZ ||
3986 	    dp->d_reclen < GENERIC_MINDIRSIZ)) {
3987 		error = EINTEGRITY;
3988 		dp = NULL;
3989 		goto out;
3990 	}
3991 
3992 success:
3993 	error = 0;
3994 out:
3995 	*dpp = dp;
3996 	return (error);
3997 }
3998 
3999 /*
4000  * Checks whether a directory is empty or not.
4001  *
4002  * If the directory is empty, returns 0, and if it is not, ENOTEMPTY.  Other
4003  * values are genuine errors preventing the check.
4004  */
4005 int
vn_dir_check_empty(struct vnode * vp)4006 vn_dir_check_empty(struct vnode *vp)
4007 {
4008 	struct thread *const td = curthread;
4009 	char *dirbuf;
4010 	size_t dirbuflen, len;
4011 	off_t off;
4012 	int eofflag, error;
4013 	struct dirent *dp;
4014 	struct vattr va;
4015 
4016 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
4017 	VNPASS(vp->v_type == VDIR, vp);
4018 
4019 	error = VOP_GETATTR(vp, &va, td->td_ucred);
4020 	if (error != 0)
4021 		return (error);
4022 
4023 	dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ);
4024 	if (dirbuflen < va.va_blocksize)
4025 		dirbuflen = va.va_blocksize;
4026 	dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK);
4027 
4028 	len = 0;
4029 	off = 0;
4030 	eofflag = 0;
4031 
4032 	for (;;) {
4033 		error = vn_dir_next_dirent(vp, td, dirbuf, dirbuflen,
4034 		    &dp, &len, &off, &eofflag);
4035 		if (error != 0)
4036 			goto end;
4037 
4038 		if (len == 0) {
4039 			/* EOF */
4040 			error = 0;
4041 			goto end;
4042 		}
4043 
4044 		/*
4045 		 * Skip whiteouts.  Unionfs operates on filesystems only and
4046 		 * not on hierarchies, so these whiteouts would be shadowed on
4047 		 * the system hierarchy but not for a union using the
4048 		 * filesystem of their directories as the upper layer.
4049 		 * Additionally, unionfs currently transparently exposes
4050 		 * union-specific metadata of its upper layer, meaning that
4051 		 * whiteouts can be seen through the union view in empty
4052 		 * directories.  Taking into account these whiteouts would then
4053 		 * prevent mounting another filesystem on such effectively
4054 		 * empty directories.
4055 		 */
4056 		if (dp->d_type == DT_WHT)
4057 			continue;
4058 
4059 		/*
4060 		 * Any file in the directory which is not '.' or '..' indicates
4061 		 * the directory is not empty.
4062 		 */
4063 		switch (dp->d_namlen) {
4064 		case 2:
4065 			if (dp->d_name[1] != '.') {
4066 				/* Can't be '..' (nor '.') */
4067 				error = ENOTEMPTY;
4068 				goto end;
4069 			}
4070 			/* FALLTHROUGH */
4071 		case 1:
4072 			if (dp->d_name[0] != '.') {
4073 				/* Can't be '..' nor '.' */
4074 				error = ENOTEMPTY;
4075 				goto end;
4076 			}
4077 			break;
4078 
4079 		default:
4080 			error = ENOTEMPTY;
4081 			goto end;
4082 		}
4083 	}
4084 
4085 end:
4086 	free(dirbuf, M_TEMP);
4087 	return (error);
4088 }
4089 
4090 
4091 static u_long vn_lock_pair_pause_cnt;
4092 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
4093     &vn_lock_pair_pause_cnt, 0,
4094     "Count of vn_lock_pair deadlocks");
4095 
4096 u_int vn_lock_pair_pause_max;
4097 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
4098     &vn_lock_pair_pause_max, 0,
4099     "Max ticks for vn_lock_pair deadlock avoidance sleep");
4100 
4101 static void
vn_lock_pair_pause(const char * wmesg)4102 vn_lock_pair_pause(const char *wmesg)
4103 {
4104 	atomic_add_long(&vn_lock_pair_pause_cnt, 1);
4105 	pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
4106 }
4107 
4108 /*
4109  * Lock pair of (possibly same) vnodes vp1, vp2, avoiding lock order
4110  * reversal.  vp1_locked indicates whether vp1 is locked; if not, vp1
4111  * must be unlocked.  Same for vp2 and vp2_locked.  One of the vnodes
4112  * can be NULL.
4113  *
4114  * The function returns with both vnodes exclusively or shared locked,
4115  * according to corresponding lkflags, and guarantees that it does not
4116  * create lock order reversal with other threads during its execution.
4117  * Both vnodes could be unlocked temporary (and reclaimed).
4118  *
4119  * If requesting shared locking, locked vnode lock must not be recursed.
4120  *
4121  * Only one of LK_SHARED and LK_EXCLUSIVE must be specified.
4122  * LK_NODDLKTREAT can be optionally passed.
4123  *
4124  * If vp1 == vp2, only one, most exclusive, lock is obtained on it.
4125  */
4126 void
vn_lock_pair(struct vnode * vp1,bool vp1_locked,int lkflags1,struct vnode * vp2,bool vp2_locked,int lkflags2)4127 vn_lock_pair(struct vnode *vp1, bool vp1_locked, int lkflags1,
4128     struct vnode *vp2, bool vp2_locked, int lkflags2)
4129 {
4130 	int error, locked1;
4131 
4132 	MPASS((((lkflags1 & LK_SHARED) != 0) ^ ((lkflags1 & LK_EXCLUSIVE) != 0)) ||
4133 	    (vp1 == NULL && lkflags1 == 0));
4134 	MPASS((lkflags1 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4135 	MPASS((((lkflags2 & LK_SHARED) != 0) ^ ((lkflags2 & LK_EXCLUSIVE) != 0)) ||
4136 	    (vp2 == NULL && lkflags2 == 0));
4137 	MPASS((lkflags2 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4138 
4139 	if (vp1 == NULL && vp2 == NULL)
4140 		return;
4141 
4142 	if (vp1 == vp2) {
4143 		MPASS(vp1_locked == vp2_locked);
4144 
4145 		/* Select the most exclusive mode for lock. */
4146 		if ((lkflags1 & LK_TYPE_MASK) != (lkflags2 & LK_TYPE_MASK))
4147 			lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4148 
4149 		if (vp1_locked) {
4150 			ASSERT_VOP_LOCKED(vp1, "vp1");
4151 
4152 			/* No need to relock if any lock is exclusive. */
4153 			if ((vp1->v_vnlock->lock_object.lo_flags &
4154 			    LK_NOSHARE) != 0)
4155 				return;
4156 
4157 			locked1 = VOP_ISLOCKED(vp1);
4158 			if (((lkflags1 & LK_SHARED) != 0 &&
4159 			    locked1 != LK_EXCLUSIVE) ||
4160 			    ((lkflags1 & LK_EXCLUSIVE) != 0 &&
4161 			    locked1 == LK_EXCLUSIVE))
4162 				return;
4163 			VOP_UNLOCK(vp1);
4164 		}
4165 
4166 		ASSERT_VOP_UNLOCKED(vp1, "vp1");
4167 		vn_lock(vp1, lkflags1 | LK_RETRY);
4168 		return;
4169 	}
4170 
4171 	if (vp1 != NULL) {
4172 		if ((lkflags1 & LK_SHARED) != 0 &&
4173 		    (vp1->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4174 			lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4175 		if (vp1_locked && VOP_ISLOCKED(vp1) != LK_EXCLUSIVE) {
4176 			ASSERT_VOP_LOCKED(vp1, "vp1");
4177 			if ((lkflags1 & LK_EXCLUSIVE) != 0) {
4178 				VOP_UNLOCK(vp1);
4179 				ASSERT_VOP_UNLOCKED(vp1,
4180 				    "vp1 shared recursed");
4181 				vp1_locked = false;
4182 			}
4183 		} else if (!vp1_locked)
4184 			ASSERT_VOP_UNLOCKED(vp1, "vp1");
4185 	} else {
4186 		vp1_locked = true;
4187 	}
4188 
4189 	if (vp2 != NULL) {
4190 		if ((lkflags2 & LK_SHARED) != 0 &&
4191 		    (vp2->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4192 			lkflags2 = (lkflags2 & ~LK_SHARED) | LK_EXCLUSIVE;
4193 		if (vp2_locked && VOP_ISLOCKED(vp2) != LK_EXCLUSIVE) {
4194 			ASSERT_VOP_LOCKED(vp2, "vp2");
4195 			if ((lkflags2 & LK_EXCLUSIVE) != 0) {
4196 				VOP_UNLOCK(vp2);
4197 				ASSERT_VOP_UNLOCKED(vp2,
4198 				    "vp2 shared recursed");
4199 				vp2_locked = false;
4200 			}
4201 		} else if (!vp2_locked)
4202 			ASSERT_VOP_UNLOCKED(vp2, "vp2");
4203 	} else {
4204 		vp2_locked = true;
4205 	}
4206 
4207 	if (!vp1_locked && !vp2_locked) {
4208 		vn_lock(vp1, lkflags1 | LK_RETRY);
4209 		vp1_locked = true;
4210 	}
4211 
4212 	while (!vp1_locked || !vp2_locked) {
4213 		if (vp1_locked && vp2 != NULL) {
4214 			if (vp1 != NULL) {
4215 				error = VOP_LOCK1(vp2, lkflags2 | LK_NOWAIT,
4216 				    __FILE__, __LINE__);
4217 				if (error == 0)
4218 					break;
4219 				VOP_UNLOCK(vp1);
4220 				vp1_locked = false;
4221 				vn_lock_pair_pause("vlp1");
4222 			}
4223 			vn_lock(vp2, lkflags2 | LK_RETRY);
4224 			vp2_locked = true;
4225 		}
4226 		if (vp2_locked && vp1 != NULL) {
4227 			if (vp2 != NULL) {
4228 				error = VOP_LOCK1(vp1, lkflags1 | LK_NOWAIT,
4229 				    __FILE__, __LINE__);
4230 				if (error == 0)
4231 					break;
4232 				VOP_UNLOCK(vp2);
4233 				vp2_locked = false;
4234 				vn_lock_pair_pause("vlp2");
4235 			}
4236 			vn_lock(vp1, lkflags1 | LK_RETRY);
4237 			vp1_locked = true;
4238 		}
4239 	}
4240 	if (vp1 != NULL) {
4241 		if (lkflags1 == LK_EXCLUSIVE)
4242 			ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
4243 		else
4244 			ASSERT_VOP_LOCKED(vp1, "vp1 ret");
4245 	}
4246 	if (vp2 != NULL) {
4247 		if (lkflags2 == LK_EXCLUSIVE)
4248 			ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
4249 		else
4250 			ASSERT_VOP_LOCKED(vp2, "vp2 ret");
4251 	}
4252 }
4253 
4254 int
vn_lktype_write(struct mount * mp,struct vnode * vp)4255 vn_lktype_write(struct mount *mp, struct vnode *vp)
4256 {
4257 	if (MNT_SHARED_WRITES(mp) ||
4258 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
4259 		return (LK_SHARED);
4260 	return (LK_EXCLUSIVE);
4261 }
4262 
4263 int
vn_cmp(struct file * fp1,struct file * fp2,struct thread * td)4264 vn_cmp(struct file *fp1, struct file *fp2, struct thread *td)
4265 {
4266 	if (fp2->f_type != DTYPE_VNODE)
4267 		return (3);
4268 	return (kcmp_cmp((uintptr_t)fp1->f_vnode, (uintptr_t)fp2->f_vnode));
4269 }
4270