1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Copyright (c) 2012 Konstantin Belousov <[email protected]>
13 * Copyright (c) 2013, 2014 The FreeBSD Foundation
14 *
15 * Portions of this software were developed by Konstantin Belousov
16 * under sponsorship from the FreeBSD Foundation.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
43 */
44
45 #include <sys/cdefs.h>
46 #include "opt_hwpmc_hooks.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/disk.h>
51 #include <sys/fail.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/kdb.h>
55 #include <sys/ktr.h>
56 #include <sys/stat.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/mman.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/vnode.h>
66 #include <sys/dirent.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/filio.h>
70 #include <sys/resourcevar.h>
71 #include <sys/rwlock.h>
72 #include <sys/prng.h>
73 #include <sys/sx.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/sysctl.h>
76 #include <sys/ttycom.h>
77 #include <sys/conf.h>
78 #include <sys/syslog.h>
79 #include <sys/unistd.h>
80 #include <sys/user.h>
81 #include <sys/ktrace.h>
82
83 #include <security/audit/audit.h>
84 #include <security/mac/mac_framework.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vnode_pager.h>
94
95 #ifdef HWPMC_HOOKS
96 #include <sys/pmckern.h>
97 #endif
98
99 static fo_rdwr_t vn_read;
100 static fo_rdwr_t vn_write;
101 static fo_rdwr_t vn_io_fault;
102 static fo_truncate_t vn_truncate;
103 static fo_ioctl_t vn_ioctl;
104 static fo_poll_t vn_poll;
105 static fo_kqfilter_t vn_kqfilter;
106 static fo_close_t vn_closefile;
107 static fo_mmap_t vn_mmap;
108 static fo_fallocate_t vn_fallocate;
109 static fo_fspacectl_t vn_fspacectl;
110
111 struct fileops vnops = {
112 .fo_read = vn_io_fault,
113 .fo_write = vn_io_fault,
114 .fo_truncate = vn_truncate,
115 .fo_ioctl = vn_ioctl,
116 .fo_poll = vn_poll,
117 .fo_kqfilter = vn_kqfilter,
118 .fo_stat = vn_statfile,
119 .fo_close = vn_closefile,
120 .fo_chmod = vn_chmod,
121 .fo_chown = vn_chown,
122 .fo_sendfile = vn_sendfile,
123 .fo_seek = vn_seek,
124 .fo_fill_kinfo = vn_fill_kinfo,
125 .fo_mmap = vn_mmap,
126 .fo_fallocate = vn_fallocate,
127 .fo_fspacectl = vn_fspacectl,
128 .fo_cmp = vn_cmp,
129 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
130 };
131
132 const u_int io_hold_cnt = 16;
133 static int vn_io_fault_enable = 1;
134 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
135 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
136 static int vn_io_fault_prefault = 0;
137 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
138 &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
139 static int vn_io_pgcache_read_enable = 1;
140 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
141 &vn_io_pgcache_read_enable, 0,
142 "Enable copying from page cache for reads, avoiding fs");
143 static u_long vn_io_faults_cnt;
144 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
145 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
146
147 static int vfs_allow_read_dir = 0;
148 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
149 &vfs_allow_read_dir, 0,
150 "Enable read(2) of directory by root for filesystems that support it");
151
152 /*
153 * Returns true if vn_io_fault mode of handling the i/o request should
154 * be used.
155 */
156 static bool
do_vn_io_fault(struct vnode * vp,struct uio * uio)157 do_vn_io_fault(struct vnode *vp, struct uio *uio)
158 {
159 struct mount *mp;
160
161 return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
162 (mp = vp->v_mount) != NULL &&
163 (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
164 }
165
166 /*
167 * Structure used to pass arguments to vn_io_fault1(), to do either
168 * file- or vnode-based I/O calls.
169 */
170 struct vn_io_fault_args {
171 enum {
172 VN_IO_FAULT_FOP,
173 VN_IO_FAULT_VOP
174 } kind;
175 struct ucred *cred;
176 int flags;
177 union {
178 struct fop_args_tag {
179 struct file *fp;
180 fo_rdwr_t *doio;
181 } fop_args;
182 struct vop_args_tag {
183 struct vnode *vp;
184 } vop_args;
185 } args;
186 };
187
188 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
189 struct vn_io_fault_args *args, struct thread *td);
190
191 int
vn_open(struct nameidata * ndp,int * flagp,int cmode,struct file * fp)192 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
193 {
194 struct thread *td = curthread;
195
196 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
197 }
198
199 static uint64_t
open2nameif(int fmode,u_int vn_open_flags)200 open2nameif(int fmode, u_int vn_open_flags)
201 {
202 uint64_t res;
203
204 res = ISOPEN | LOCKLEAF;
205 if ((fmode & O_RESOLVE_BENEATH) != 0)
206 res |= RBENEATH;
207 if ((fmode & O_EMPTY_PATH) != 0)
208 res |= EMPTYPATH;
209 if ((fmode & FREAD) != 0)
210 res |= OPENREAD;
211 if ((fmode & FWRITE) != 0)
212 res |= OPENWRITE;
213 if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
214 res |= AUDITVNODE1;
215 if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
216 res |= NOCAPCHECK;
217 if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0)
218 res |= WANTIOCTLCAPS;
219 return (res);
220 }
221
222 /*
223 * Common code for vnode open operations via a name lookup.
224 * Lookup the vnode and invoke VOP_CREATE if needed.
225 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
226 *
227 * Note that this does NOT free nameidata for the successful case,
228 * due to the NDINIT being done elsewhere.
229 */
230 int
vn_open_cred(struct nameidata * ndp,int * flagp,int cmode,u_int vn_open_flags,struct ucred * cred,struct file * fp)231 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
232 struct ucred *cred, struct file *fp)
233 {
234 struct vnode *vp;
235 struct mount *mp;
236 struct vattr vat;
237 struct vattr *vap = &vat;
238 int fmode, error;
239 bool first_open;
240
241 restart:
242 first_open = false;
243 fmode = *flagp;
244 if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
245 O_EXCL | O_DIRECTORY) ||
246 (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
247 return (EINVAL);
248 else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
249 ndp->ni_cnd.cn_nameiop = CREATE;
250 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
251 /*
252 * Set NOCACHE to avoid flushing the cache when
253 * rolling in many files at once.
254 *
255 * Set NC_KEEPPOSENTRY to keep positive entries if they already
256 * exist despite NOCACHE.
257 */
258 ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
259 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
260 ndp->ni_cnd.cn_flags |= FOLLOW;
261 if ((vn_open_flags & VN_OPEN_INVFS) == 0)
262 bwillwrite();
263 if ((error = namei(ndp)) != 0)
264 return (error);
265 if (ndp->ni_vp == NULL) {
266 VATTR_NULL(vap);
267 vap->va_type = VREG;
268 vap->va_mode = cmode;
269 if (fmode & O_EXCL)
270 vap->va_vaflags |= VA_EXCLUSIVE;
271 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
272 NDFREE_PNBUF(ndp);
273 vput(ndp->ni_dvp);
274 if ((error = vn_start_write(NULL, &mp,
275 V_XSLEEP | V_PCATCH)) != 0)
276 return (error);
277 NDREINIT(ndp);
278 goto restart;
279 }
280 if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
281 ndp->ni_cnd.cn_flags |= MAKEENTRY;
282 #ifdef MAC
283 error = mac_vnode_check_create(cred, ndp->ni_dvp,
284 &ndp->ni_cnd, vap);
285 if (error == 0)
286 #endif
287 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
288 &ndp->ni_cnd, vap);
289 vp = ndp->ni_vp;
290 if (error == 0 && (fmode & O_EXCL) != 0 &&
291 (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
292 VI_LOCK(vp);
293 vp->v_iflag |= VI_FOPENING;
294 VI_UNLOCK(vp);
295 first_open = true;
296 }
297 VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
298 false);
299 vn_finished_write(mp);
300 if (error) {
301 NDFREE_PNBUF(ndp);
302 if (error == ERELOOKUP) {
303 NDREINIT(ndp);
304 goto restart;
305 }
306 return (error);
307 }
308 fmode &= ~O_TRUNC;
309 } else {
310 if (ndp->ni_dvp == ndp->ni_vp)
311 vrele(ndp->ni_dvp);
312 else
313 vput(ndp->ni_dvp);
314 ndp->ni_dvp = NULL;
315 vp = ndp->ni_vp;
316 if (fmode & O_EXCL) {
317 error = EEXIST;
318 goto bad;
319 }
320 if (vp->v_type == VDIR) {
321 error = EISDIR;
322 goto bad;
323 }
324 fmode &= ~O_CREAT;
325 }
326 } else {
327 ndp->ni_cnd.cn_nameiop = LOOKUP;
328 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
329 ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
330 FOLLOW;
331 if ((fmode & FWRITE) == 0)
332 ndp->ni_cnd.cn_flags |= LOCKSHARED;
333 if ((error = namei(ndp)) != 0)
334 return (error);
335 vp = ndp->ni_vp;
336 }
337 error = vn_open_vnode(vp, fmode, cred, curthread, fp);
338 if (first_open) {
339 VI_LOCK(vp);
340 vp->v_iflag &= ~VI_FOPENING;
341 wakeup(vp);
342 VI_UNLOCK(vp);
343 }
344 if (error)
345 goto bad;
346 *flagp = fmode;
347 return (0);
348 bad:
349 NDFREE_PNBUF(ndp);
350 vput(vp);
351 *flagp = fmode;
352 ndp->ni_vp = NULL;
353 return (error);
354 }
355
356 static int
vn_open_vnode_advlock(struct vnode * vp,int fmode,struct file * fp)357 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
358 {
359 struct flock lf;
360 int error, lock_flags, type;
361
362 ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
363 if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
364 return (0);
365 KASSERT(fp != NULL, ("open with flock requires fp"));
366 if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
367 return (EOPNOTSUPP);
368
369 lock_flags = VOP_ISLOCKED(vp);
370 VOP_UNLOCK(vp);
371
372 lf.l_whence = SEEK_SET;
373 lf.l_start = 0;
374 lf.l_len = 0;
375 lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
376 type = F_FLOCK;
377 if ((fmode & FNONBLOCK) == 0)
378 type |= F_WAIT;
379 if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
380 type |= F_FIRSTOPEN;
381 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
382 if (error == 0)
383 fp->f_flag |= FHASLOCK;
384
385 vn_lock(vp, lock_flags | LK_RETRY);
386 return (error);
387 }
388
389 /*
390 * Common code for vnode open operations once a vnode is located.
391 * Check permissions, and call the VOP_OPEN routine.
392 */
393 int
vn_open_vnode(struct vnode * vp,int fmode,struct ucred * cred,struct thread * td,struct file * fp)394 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
395 struct thread *td, struct file *fp)
396 {
397 accmode_t accmode;
398 int error;
399
400 if (vp->v_type == VLNK) {
401 if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
402 return (EMLINK);
403 }
404 if (vp->v_type != VDIR && fmode & O_DIRECTORY)
405 return (ENOTDIR);
406
407 accmode = 0;
408 if ((fmode & O_PATH) == 0) {
409 if (vp->v_type == VSOCK)
410 return (EOPNOTSUPP);
411 if ((fmode & (FWRITE | O_TRUNC)) != 0) {
412 if (vp->v_type == VDIR)
413 return (EISDIR);
414 accmode |= VWRITE;
415 }
416 if ((fmode & FREAD) != 0)
417 accmode |= VREAD;
418 if ((fmode & O_APPEND) && (fmode & FWRITE))
419 accmode |= VAPPEND;
420 #ifdef MAC
421 if ((fmode & O_CREAT) != 0)
422 accmode |= VCREAT;
423 #endif
424 }
425 if ((fmode & FEXEC) != 0)
426 accmode |= VEXEC;
427 #ifdef MAC
428 if ((fmode & O_VERIFY) != 0)
429 accmode |= VVERIFY;
430 error = mac_vnode_check_open(cred, vp, accmode);
431 if (error != 0)
432 return (error);
433
434 accmode &= ~(VCREAT | VVERIFY);
435 #endif
436 if ((fmode & O_CREAT) == 0 && accmode != 0) {
437 error = VOP_ACCESS(vp, accmode, cred, td);
438 if (error != 0)
439 return (error);
440 }
441 if ((fmode & O_PATH) != 0) {
442 if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
443 VOP_ACCESS(vp, VREAD, cred, td) == 0)
444 fp->f_flag |= FKQALLOWED;
445 return (0);
446 }
447
448 if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
449 vn_lock(vp, LK_UPGRADE | LK_RETRY);
450 error = VOP_OPEN(vp, fmode, cred, td, fp);
451 if (error != 0)
452 return (error);
453
454 error = vn_open_vnode_advlock(vp, fmode, fp);
455 if (error == 0 && (fmode & FWRITE) != 0) {
456 error = VOP_ADD_WRITECOUNT(vp, 1);
457 if (error == 0) {
458 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
459 __func__, vp, vp->v_writecount);
460 }
461 }
462
463 /*
464 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
465 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
466 */
467 if (error != 0) {
468 if (fp != NULL) {
469 /*
470 * Arrange the call by having fdrop() to use
471 * vn_closefile(). This is to satisfy
472 * filesystems like devfs or tmpfs, which
473 * override fo_close().
474 */
475 fp->f_flag |= FOPENFAILED;
476 fp->f_vnode = vp;
477 if (fp->f_ops == &badfileops) {
478 fp->f_type = DTYPE_VNODE;
479 fp->f_ops = &vnops;
480 }
481 vref(vp);
482 } else {
483 /*
484 * If there is no fp, due to kernel-mode open,
485 * we can call VOP_CLOSE() now.
486 */
487 if ((vp->v_type == VFIFO ||
488 !MNT_EXTENDED_SHARED(vp->v_mount)) &&
489 VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
490 vn_lock(vp, LK_UPGRADE | LK_RETRY);
491 (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
492 cred, td);
493 }
494 }
495
496 ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
497 return (error);
498
499 }
500
501 /*
502 * Check for write permissions on the specified vnode.
503 * Prototype text segments cannot be written.
504 * It is racy.
505 */
506 int
vn_writechk(struct vnode * vp)507 vn_writechk(struct vnode *vp)
508 {
509
510 ASSERT_VOP_LOCKED(vp, "vn_writechk");
511 /*
512 * If there's shared text associated with
513 * the vnode, try to free it up once. If
514 * we fail, we can't allow writing.
515 */
516 if (VOP_IS_TEXT(vp))
517 return (ETXTBSY);
518
519 return (0);
520 }
521
522 /*
523 * Vnode close call
524 */
525 static int
vn_close1(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td,bool keep_ref)526 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
527 struct thread *td, bool keep_ref)
528 {
529 struct mount *mp;
530 int error, lock_flags;
531
532 lock_flags = vp->v_type != VFIFO && MNT_EXTENDED_SHARED(vp->v_mount) ?
533 LK_SHARED : LK_EXCLUSIVE;
534
535 vn_start_write(vp, &mp, V_WAIT);
536 vn_lock(vp, lock_flags | LK_RETRY);
537 AUDIT_ARG_VNODE1(vp);
538 if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
539 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
540 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
541 __func__, vp, vp->v_writecount);
542 }
543 error = VOP_CLOSE(vp, flags, file_cred, td);
544 if (keep_ref)
545 VOP_UNLOCK(vp);
546 else
547 vput(vp);
548 vn_finished_write(mp);
549 return (error);
550 }
551
552 int
vn_close(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td)553 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
554 struct thread *td)
555 {
556
557 return (vn_close1(vp, flags, file_cred, td, false));
558 }
559
560 /*
561 * Heuristic to detect sequential operation.
562 */
563 static int
sequential_heuristic(struct uio * uio,struct file * fp)564 sequential_heuristic(struct uio *uio, struct file *fp)
565 {
566 enum uio_rw rw;
567
568 ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
569
570 rw = uio->uio_rw;
571 if (fp->f_flag & FRDAHEAD)
572 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
573
574 /*
575 * Offset 0 is handled specially. open() sets f_seqcount to 1 so
576 * that the first I/O is normally considered to be slightly
577 * sequential. Seeking to offset 0 doesn't change sequentiality
578 * unless previous seeks have reduced f_seqcount to 0, in which
579 * case offset 0 is not special.
580 */
581 if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
582 uio->uio_offset == fp->f_nextoff[rw]) {
583 /*
584 * f_seqcount is in units of fixed-size blocks so that it
585 * depends mainly on the amount of sequential I/O and not
586 * much on the number of sequential I/O's. The fixed size
587 * of 16384 is hard-coded here since it is (not quite) just
588 * a magic size that works well here. This size is more
589 * closely related to the best I/O size for real disks than
590 * to any block size used by software.
591 */
592 if (uio->uio_resid >= IO_SEQMAX * 16384)
593 fp->f_seqcount[rw] = IO_SEQMAX;
594 else {
595 fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
596 if (fp->f_seqcount[rw] > IO_SEQMAX)
597 fp->f_seqcount[rw] = IO_SEQMAX;
598 }
599 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
600 }
601
602 /* Not sequential. Quickly draw-down sequentiality. */
603 if (fp->f_seqcount[rw] > 1)
604 fp->f_seqcount[rw] = 1;
605 else
606 fp->f_seqcount[rw] = 0;
607 return (0);
608 }
609
610 /*
611 * Package up an I/O request on a vnode into a uio and do it.
612 */
613 int
vn_rdwr(enum uio_rw rw,struct vnode * vp,void * base,int len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,ssize_t * aresid,struct thread * td)614 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
615 enum uio_seg segflg, int ioflg, struct ucred *active_cred,
616 struct ucred *file_cred, ssize_t *aresid, struct thread *td)
617 {
618 struct uio auio;
619 struct iovec aiov;
620 struct mount *mp;
621 struct ucred *cred;
622 void *rl_cookie;
623 struct vn_io_fault_args args;
624 int error, lock_flags;
625
626 if (offset < 0 && vp->v_type != VCHR)
627 return (EINVAL);
628 auio.uio_iov = &aiov;
629 auio.uio_iovcnt = 1;
630 aiov.iov_base = base;
631 aiov.iov_len = len;
632 auio.uio_resid = len;
633 auio.uio_offset = offset;
634 auio.uio_segflg = segflg;
635 auio.uio_rw = rw;
636 auio.uio_td = td;
637 error = 0;
638
639 if ((ioflg & IO_NODELOCKED) == 0) {
640 if ((ioflg & IO_RANGELOCKED) == 0) {
641 if (rw == UIO_READ) {
642 rl_cookie = vn_rangelock_rlock(vp, offset,
643 offset + len);
644 } else if ((ioflg & IO_APPEND) != 0) {
645 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
646 } else {
647 rl_cookie = vn_rangelock_wlock(vp, offset,
648 offset + len);
649 }
650 } else
651 rl_cookie = NULL;
652 mp = NULL;
653 if (rw == UIO_WRITE) {
654 if (vp->v_type != VCHR &&
655 (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH))
656 != 0)
657 goto out;
658 lock_flags = vn_lktype_write(mp, vp);
659 } else
660 lock_flags = LK_SHARED;
661 vn_lock(vp, lock_flags | LK_RETRY);
662 } else
663 rl_cookie = NULL;
664
665 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
666 #ifdef MAC
667 if ((ioflg & IO_NOMACCHECK) == 0) {
668 if (rw == UIO_READ)
669 error = mac_vnode_check_read(active_cred, file_cred,
670 vp);
671 else
672 error = mac_vnode_check_write(active_cred, file_cred,
673 vp);
674 }
675 #endif
676 if (error == 0) {
677 if (file_cred != NULL)
678 cred = file_cred;
679 else
680 cred = active_cred;
681 if (do_vn_io_fault(vp, &auio)) {
682 args.kind = VN_IO_FAULT_VOP;
683 args.cred = cred;
684 args.flags = ioflg;
685 args.args.vop_args.vp = vp;
686 error = vn_io_fault1(vp, &auio, &args, td);
687 } else if (rw == UIO_READ) {
688 error = VOP_READ(vp, &auio, ioflg, cred);
689 } else /* if (rw == UIO_WRITE) */ {
690 error = VOP_WRITE(vp, &auio, ioflg, cred);
691 }
692 }
693 if (aresid)
694 *aresid = auio.uio_resid;
695 else
696 if (auio.uio_resid && error == 0)
697 error = EIO;
698 if ((ioflg & IO_NODELOCKED) == 0) {
699 VOP_UNLOCK(vp);
700 if (mp != NULL)
701 vn_finished_write(mp);
702 }
703 out:
704 if (rl_cookie != NULL)
705 vn_rangelock_unlock(vp, rl_cookie);
706 return (error);
707 }
708
709 /*
710 * Package up an I/O request on a vnode into a uio and do it. The I/O
711 * request is split up into smaller chunks and we try to avoid saturating
712 * the buffer cache while potentially holding a vnode locked, so we
713 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield()
714 * to give other processes a chance to lock the vnode (either other processes
715 * core'ing the same binary, or unrelated processes scanning the directory).
716 */
717 int
vn_rdwr_inchunks(enum uio_rw rw,struct vnode * vp,void * base,size_t len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,size_t * aresid,struct thread * td)718 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
719 off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
720 struct ucred *file_cred, size_t *aresid, struct thread *td)
721 {
722 int error = 0;
723 ssize_t iaresid;
724
725 do {
726 int chunk;
727
728 /*
729 * Force `offset' to a multiple of MAXBSIZE except possibly
730 * for the first chunk, so that filesystems only need to
731 * write full blocks except possibly for the first and last
732 * chunks.
733 */
734 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
735
736 if (chunk > len)
737 chunk = len;
738 if (rw != UIO_READ && vp->v_type == VREG)
739 bwillwrite();
740 iaresid = 0;
741 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
742 ioflg, active_cred, file_cred, &iaresid, td);
743 len -= chunk; /* aresid calc already includes length */
744 if (error)
745 break;
746 offset += chunk;
747 base = (char *)base + chunk;
748 kern_yield(PRI_USER);
749 } while (len);
750 if (aresid)
751 *aresid = len + iaresid;
752 return (error);
753 }
754
755 #if OFF_MAX <= LONG_MAX
756 off_t
foffset_lock(struct file * fp,int flags)757 foffset_lock(struct file *fp, int flags)
758 {
759 volatile short *flagsp;
760 off_t res;
761 short state;
762
763 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
764
765 if ((flags & FOF_NOLOCK) != 0)
766 return (atomic_load_long(&fp->f_offset));
767
768 /*
769 * According to McKusick the vn lock was protecting f_offset here.
770 * It is now protected by the FOFFSET_LOCKED flag.
771 */
772 flagsp = &fp->f_vnread_flags;
773 if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
774 return (atomic_load_long(&fp->f_offset));
775
776 sleepq_lock(&fp->f_vnread_flags);
777 state = atomic_load_16(flagsp);
778 for (;;) {
779 if ((state & FOFFSET_LOCKED) == 0) {
780 if (!atomic_fcmpset_acq_16(flagsp, &state,
781 FOFFSET_LOCKED))
782 continue;
783 break;
784 }
785 if ((state & FOFFSET_LOCK_WAITING) == 0) {
786 if (!atomic_fcmpset_acq_16(flagsp, &state,
787 state | FOFFSET_LOCK_WAITING))
788 continue;
789 }
790 DROP_GIANT();
791 sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
792 sleepq_wait(&fp->f_vnread_flags, PUSER -1);
793 PICKUP_GIANT();
794 sleepq_lock(&fp->f_vnread_flags);
795 state = atomic_load_16(flagsp);
796 }
797 res = atomic_load_long(&fp->f_offset);
798 sleepq_release(&fp->f_vnread_flags);
799 return (res);
800 }
801
802 void
foffset_unlock(struct file * fp,off_t val,int flags)803 foffset_unlock(struct file *fp, off_t val, int flags)
804 {
805 volatile short *flagsp;
806 short state;
807
808 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
809
810 if ((flags & FOF_NOUPDATE) == 0)
811 atomic_store_long(&fp->f_offset, val);
812 if ((flags & FOF_NEXTOFF_R) != 0)
813 fp->f_nextoff[UIO_READ] = val;
814 if ((flags & FOF_NEXTOFF_W) != 0)
815 fp->f_nextoff[UIO_WRITE] = val;
816
817 if ((flags & FOF_NOLOCK) != 0)
818 return;
819
820 flagsp = &fp->f_vnread_flags;
821 state = atomic_load_16(flagsp);
822 if ((state & FOFFSET_LOCK_WAITING) == 0 &&
823 atomic_cmpset_rel_16(flagsp, state, 0))
824 return;
825
826 sleepq_lock(&fp->f_vnread_flags);
827 MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
828 MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
829 fp->f_vnread_flags = 0;
830 sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
831 sleepq_release(&fp->f_vnread_flags);
832 }
833
834 static off_t
foffset_read(struct file * fp)835 foffset_read(struct file *fp)
836 {
837
838 return (atomic_load_long(&fp->f_offset));
839 }
840 #else
841 off_t
foffset_lock(struct file * fp,int flags)842 foffset_lock(struct file *fp, int flags)
843 {
844 struct mtx *mtxp;
845 off_t res;
846
847 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
848
849 mtxp = mtx_pool_find(mtxpool_sleep, fp);
850 mtx_lock(mtxp);
851 if ((flags & FOF_NOLOCK) == 0) {
852 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
853 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
854 msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
855 "vofflock", 0);
856 }
857 fp->f_vnread_flags |= FOFFSET_LOCKED;
858 }
859 res = fp->f_offset;
860 mtx_unlock(mtxp);
861 return (res);
862 }
863
864 void
foffset_unlock(struct file * fp,off_t val,int flags)865 foffset_unlock(struct file *fp, off_t val, int flags)
866 {
867 struct mtx *mtxp;
868
869 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
870
871 mtxp = mtx_pool_find(mtxpool_sleep, fp);
872 mtx_lock(mtxp);
873 if ((flags & FOF_NOUPDATE) == 0)
874 fp->f_offset = val;
875 if ((flags & FOF_NEXTOFF_R) != 0)
876 fp->f_nextoff[UIO_READ] = val;
877 if ((flags & FOF_NEXTOFF_W) != 0)
878 fp->f_nextoff[UIO_WRITE] = val;
879 if ((flags & FOF_NOLOCK) == 0) {
880 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
881 ("Lost FOFFSET_LOCKED"));
882 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
883 wakeup(&fp->f_vnread_flags);
884 fp->f_vnread_flags = 0;
885 }
886 mtx_unlock(mtxp);
887 }
888
889 static off_t
foffset_read(struct file * fp)890 foffset_read(struct file *fp)
891 {
892
893 return (foffset_lock(fp, FOF_NOLOCK));
894 }
895 #endif
896
897 void
foffset_lock_uio(struct file * fp,struct uio * uio,int flags)898 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
899 {
900
901 if ((flags & FOF_OFFSET) == 0)
902 uio->uio_offset = foffset_lock(fp, flags);
903 }
904
905 void
foffset_unlock_uio(struct file * fp,struct uio * uio,int flags)906 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
907 {
908
909 if ((flags & FOF_OFFSET) == 0)
910 foffset_unlock(fp, uio->uio_offset, flags);
911 }
912
913 static int
get_advice(struct file * fp,struct uio * uio)914 get_advice(struct file *fp, struct uio *uio)
915 {
916 struct mtx *mtxp;
917 int ret;
918
919 ret = POSIX_FADV_NORMAL;
920 if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
921 return (ret);
922
923 mtxp = mtx_pool_find(mtxpool_sleep, fp);
924 mtx_lock(mtxp);
925 if (fp->f_advice != NULL &&
926 uio->uio_offset >= fp->f_advice->fa_start &&
927 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
928 ret = fp->f_advice->fa_advice;
929 mtx_unlock(mtxp);
930 return (ret);
931 }
932
933 static int
get_write_ioflag(struct file * fp)934 get_write_ioflag(struct file *fp)
935 {
936 int ioflag;
937 struct mount *mp;
938 struct vnode *vp;
939
940 ioflag = 0;
941 vp = fp->f_vnode;
942 mp = atomic_load_ptr(&vp->v_mount);
943
944 if ((fp->f_flag & O_DIRECT) != 0)
945 ioflag |= IO_DIRECT;
946
947 if ((fp->f_flag & O_FSYNC) != 0 ||
948 (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
949 ioflag |= IO_SYNC;
950
951 /*
952 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
953 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
954 * fall back to full O_SYNC behavior.
955 */
956 if ((fp->f_flag & O_DSYNC) != 0)
957 ioflag |= IO_SYNC | IO_DATASYNC;
958
959 return (ioflag);
960 }
961
962 int
vn_read_from_obj(struct vnode * vp,struct uio * uio)963 vn_read_from_obj(struct vnode *vp, struct uio *uio)
964 {
965 vm_object_t obj;
966 vm_page_t ma[io_hold_cnt + 2];
967 off_t off, vsz;
968 ssize_t resid;
969 int error, i, j;
970
971 MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
972 obj = atomic_load_ptr(&vp->v_object);
973 if (obj == NULL)
974 return (EJUSTRETURN);
975
976 /*
977 * Depends on type stability of vm_objects.
978 */
979 vm_object_pip_add(obj, 1);
980 if ((obj->flags & OBJ_DEAD) != 0) {
981 /*
982 * Note that object might be already reused from the
983 * vnode, and the OBJ_DEAD flag cleared. This is fine,
984 * we recheck for DOOMED vnode state after all pages
985 * are busied, and retract then.
986 *
987 * But we check for OBJ_DEAD to ensure that we do not
988 * busy pages while vm_object_terminate_pages()
989 * processes the queue.
990 */
991 error = EJUSTRETURN;
992 goto out_pip;
993 }
994
995 resid = uio->uio_resid;
996 off = uio->uio_offset;
997 for (i = 0; resid > 0; i++) {
998 MPASS(i < io_hold_cnt + 2);
999 ma[i] = vm_page_grab_unlocked(obj, atop(off),
1000 VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
1001 VM_ALLOC_NOWAIT);
1002 if (ma[i] == NULL)
1003 break;
1004
1005 /*
1006 * Skip invalid pages. Valid mask can be partial only
1007 * at EOF, and we clip later.
1008 */
1009 if (vm_page_none_valid(ma[i])) {
1010 vm_page_sunbusy(ma[i]);
1011 break;
1012 }
1013
1014 resid -= PAGE_SIZE;
1015 off += PAGE_SIZE;
1016 }
1017 if (i == 0) {
1018 error = EJUSTRETURN;
1019 goto out_pip;
1020 }
1021
1022 /*
1023 * Check VIRF_DOOMED after we busied our pages. Since
1024 * vgonel() terminates the vnode' vm_object, it cannot
1025 * process past pages busied by us.
1026 */
1027 if (VN_IS_DOOMED(vp)) {
1028 error = EJUSTRETURN;
1029 goto out;
1030 }
1031
1032 resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
1033 if (resid > uio->uio_resid)
1034 resid = uio->uio_resid;
1035
1036 /*
1037 * Unlocked read of vnp_size is safe because truncation cannot
1038 * pass busied page. But we load vnp_size into a local
1039 * variable so that possible concurrent extension does not
1040 * break calculation.
1041 */
1042 #if defined(__powerpc__) && !defined(__powerpc64__)
1043 vsz = obj->un_pager.vnp.vnp_size;
1044 #else
1045 vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1046 #endif
1047 if (uio->uio_offset >= vsz) {
1048 error = EJUSTRETURN;
1049 goto out;
1050 }
1051 if (uio->uio_offset + resid > vsz)
1052 resid = vsz - uio->uio_offset;
1053
1054 error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1055
1056 out:
1057 for (j = 0; j < i; j++) {
1058 if (error == 0)
1059 vm_page_reference(ma[j]);
1060 vm_page_sunbusy(ma[j]);
1061 }
1062 out_pip:
1063 vm_object_pip_wakeup(obj);
1064 if (error != 0)
1065 return (error);
1066 return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1067 }
1068
1069 /*
1070 * File table vnode read routine.
1071 */
1072 static int
vn_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1073 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1074 struct thread *td)
1075 {
1076 struct vnode *vp;
1077 off_t orig_offset;
1078 int error, ioflag;
1079 int advice;
1080
1081 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1082 uio->uio_td, td));
1083 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1084 vp = fp->f_vnode;
1085 ioflag = 0;
1086 if (fp->f_flag & FNONBLOCK)
1087 ioflag |= IO_NDELAY;
1088 if (fp->f_flag & O_DIRECT)
1089 ioflag |= IO_DIRECT;
1090
1091 /*
1092 * Try to read from page cache. VIRF_DOOMED check is racy but
1093 * allows us to avoid unneeded work outright.
1094 */
1095 if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1096 (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1097 error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1098 if (error == 0) {
1099 fp->f_nextoff[UIO_READ] = uio->uio_offset;
1100 return (0);
1101 }
1102 if (error != EJUSTRETURN)
1103 return (error);
1104 }
1105
1106 advice = get_advice(fp, uio);
1107 vn_lock(vp, LK_SHARED | LK_RETRY);
1108
1109 switch (advice) {
1110 case POSIX_FADV_NORMAL:
1111 case POSIX_FADV_SEQUENTIAL:
1112 case POSIX_FADV_NOREUSE:
1113 ioflag |= sequential_heuristic(uio, fp);
1114 break;
1115 case POSIX_FADV_RANDOM:
1116 /* Disable read-ahead for random I/O. */
1117 break;
1118 }
1119 orig_offset = uio->uio_offset;
1120
1121 #ifdef MAC
1122 error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1123 if (error == 0)
1124 #endif
1125 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1126 fp->f_nextoff[UIO_READ] = uio->uio_offset;
1127 VOP_UNLOCK(vp);
1128 if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1129 orig_offset != uio->uio_offset)
1130 /*
1131 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1132 * for the backing file after a POSIX_FADV_NOREUSE
1133 * read(2).
1134 */
1135 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1136 POSIX_FADV_DONTNEED);
1137 return (error);
1138 }
1139
1140 /*
1141 * File table vnode write routine.
1142 */
1143 static int
vn_write(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1144 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1145 struct thread *td)
1146 {
1147 struct vnode *vp;
1148 struct mount *mp;
1149 off_t orig_offset;
1150 int error, ioflag;
1151 int advice;
1152 bool need_finished_write;
1153
1154 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1155 uio->uio_td, td));
1156 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1157 vp = fp->f_vnode;
1158 if (vp->v_type == VREG)
1159 bwillwrite();
1160 ioflag = IO_UNIT;
1161 if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
1162 ioflag |= IO_APPEND;
1163 if ((fp->f_flag & FNONBLOCK) != 0)
1164 ioflag |= IO_NDELAY;
1165 ioflag |= get_write_ioflag(fp);
1166
1167 mp = NULL;
1168 need_finished_write = false;
1169 if (vp->v_type != VCHR) {
1170 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1171 if (error != 0)
1172 goto unlock;
1173 need_finished_write = true;
1174 }
1175
1176 advice = get_advice(fp, uio);
1177
1178 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
1179 switch (advice) {
1180 case POSIX_FADV_NORMAL:
1181 case POSIX_FADV_SEQUENTIAL:
1182 case POSIX_FADV_NOREUSE:
1183 ioflag |= sequential_heuristic(uio, fp);
1184 break;
1185 case POSIX_FADV_RANDOM:
1186 /* XXX: Is this correct? */
1187 break;
1188 }
1189 orig_offset = uio->uio_offset;
1190
1191 #ifdef MAC
1192 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1193 if (error == 0)
1194 #endif
1195 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1196 fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1197 VOP_UNLOCK(vp);
1198 if (need_finished_write)
1199 vn_finished_write(mp);
1200 if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1201 orig_offset != uio->uio_offset)
1202 /*
1203 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1204 * for the backing file after a POSIX_FADV_NOREUSE
1205 * write(2).
1206 */
1207 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1208 POSIX_FADV_DONTNEED);
1209 unlock:
1210 return (error);
1211 }
1212
1213 /*
1214 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1215 * prevent the following deadlock:
1216 *
1217 * Assume that the thread A reads from the vnode vp1 into userspace
1218 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is
1219 * currently not resident, then system ends up with the call chain
1220 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1221 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1222 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1223 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1224 * backed by the pages of vnode vp1, and some page in buf2 is not
1225 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1226 *
1227 * To prevent the lock order reversal and deadlock, vn_io_fault() does
1228 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1229 * Instead, it first tries to do the whole range i/o with pagefaults
1230 * disabled. If all pages in the i/o buffer are resident and mapped,
1231 * VOP will succeed (ignoring the genuine filesystem errors).
1232 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1233 * i/o in chunks, with all pages in the chunk prefaulted and held
1234 * using vm_fault_quick_hold_pages().
1235 *
1236 * Filesystems using this deadlock avoidance scheme should use the
1237 * array of the held pages from uio, saved in the curthread->td_ma,
1238 * instead of doing uiomove(). A helper function
1239 * vn_io_fault_uiomove() converts uiomove request into
1240 * uiomove_fromphys() over td_ma array.
1241 *
1242 * Since vnode locks do not cover the whole i/o anymore, rangelocks
1243 * make the current i/o request atomic with respect to other i/os and
1244 * truncations.
1245 */
1246
1247 /*
1248 * Decode vn_io_fault_args and perform the corresponding i/o.
1249 */
1250 static int
vn_io_fault_doio(struct vn_io_fault_args * args,struct uio * uio,struct thread * td)1251 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1252 struct thread *td)
1253 {
1254 int error, save;
1255
1256 error = 0;
1257 save = vm_fault_disable_pagefaults();
1258 switch (args->kind) {
1259 case VN_IO_FAULT_FOP:
1260 error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1261 uio, args->cred, args->flags, td);
1262 break;
1263 case VN_IO_FAULT_VOP:
1264 if (uio->uio_rw == UIO_READ) {
1265 error = VOP_READ(args->args.vop_args.vp, uio,
1266 args->flags, args->cred);
1267 } else if (uio->uio_rw == UIO_WRITE) {
1268 error = VOP_WRITE(args->args.vop_args.vp, uio,
1269 args->flags, args->cred);
1270 }
1271 break;
1272 default:
1273 panic("vn_io_fault_doio: unknown kind of io %d %d",
1274 args->kind, uio->uio_rw);
1275 }
1276 vm_fault_enable_pagefaults(save);
1277 return (error);
1278 }
1279
1280 static int
vn_io_fault_touch(char * base,const struct uio * uio)1281 vn_io_fault_touch(char *base, const struct uio *uio)
1282 {
1283 int r;
1284
1285 r = fubyte(base);
1286 if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1287 return (EFAULT);
1288 return (0);
1289 }
1290
1291 static int
vn_io_fault_prefault_user(const struct uio * uio)1292 vn_io_fault_prefault_user(const struct uio *uio)
1293 {
1294 char *base;
1295 const struct iovec *iov;
1296 size_t len;
1297 ssize_t resid;
1298 int error, i;
1299
1300 KASSERT(uio->uio_segflg == UIO_USERSPACE,
1301 ("vn_io_fault_prefault userspace"));
1302
1303 error = i = 0;
1304 iov = uio->uio_iov;
1305 resid = uio->uio_resid;
1306 base = iov->iov_base;
1307 len = iov->iov_len;
1308 while (resid > 0) {
1309 error = vn_io_fault_touch(base, uio);
1310 if (error != 0)
1311 break;
1312 if (len < PAGE_SIZE) {
1313 if (len != 0) {
1314 error = vn_io_fault_touch(base + len - 1, uio);
1315 if (error != 0)
1316 break;
1317 resid -= len;
1318 }
1319 if (++i >= uio->uio_iovcnt)
1320 break;
1321 iov = uio->uio_iov + i;
1322 base = iov->iov_base;
1323 len = iov->iov_len;
1324 } else {
1325 len -= PAGE_SIZE;
1326 base += PAGE_SIZE;
1327 resid -= PAGE_SIZE;
1328 }
1329 }
1330 return (error);
1331 }
1332
1333 /*
1334 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1335 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1336 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1337 * into args and call vn_io_fault1() to handle faults during the user
1338 * mode buffer accesses.
1339 */
1340 static int
vn_io_fault1(struct vnode * vp,struct uio * uio,struct vn_io_fault_args * args,struct thread * td)1341 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1342 struct thread *td)
1343 {
1344 vm_page_t ma[io_hold_cnt + 2];
1345 struct uio *uio_clone, short_uio;
1346 struct iovec short_iovec[1];
1347 vm_page_t *prev_td_ma;
1348 vm_prot_t prot;
1349 vm_offset_t addr, end;
1350 size_t len, resid;
1351 ssize_t adv;
1352 int error, cnt, saveheld, prev_td_ma_cnt;
1353
1354 if (vn_io_fault_prefault) {
1355 error = vn_io_fault_prefault_user(uio);
1356 if (error != 0)
1357 return (error); /* Or ignore ? */
1358 }
1359
1360 prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1361
1362 /*
1363 * The UFS follows IO_UNIT directive and replays back both
1364 * uio_offset and uio_resid if an error is encountered during the
1365 * operation. But, since the iovec may be already advanced,
1366 * uio is still in an inconsistent state.
1367 *
1368 * Cache a copy of the original uio, which is advanced to the redo
1369 * point using UIO_NOCOPY below.
1370 */
1371 uio_clone = cloneuio(uio);
1372 resid = uio->uio_resid;
1373
1374 short_uio.uio_segflg = UIO_USERSPACE;
1375 short_uio.uio_rw = uio->uio_rw;
1376 short_uio.uio_td = uio->uio_td;
1377
1378 error = vn_io_fault_doio(args, uio, td);
1379 if (error != EFAULT)
1380 goto out;
1381
1382 atomic_add_long(&vn_io_faults_cnt, 1);
1383 uio_clone->uio_segflg = UIO_NOCOPY;
1384 uiomove(NULL, resid - uio->uio_resid, uio_clone);
1385 uio_clone->uio_segflg = uio->uio_segflg;
1386
1387 saveheld = curthread_pflags_set(TDP_UIOHELD);
1388 prev_td_ma = td->td_ma;
1389 prev_td_ma_cnt = td->td_ma_cnt;
1390
1391 while (uio_clone->uio_resid != 0) {
1392 len = uio_clone->uio_iov->iov_len;
1393 if (len == 0) {
1394 KASSERT(uio_clone->uio_iovcnt >= 1,
1395 ("iovcnt underflow"));
1396 uio_clone->uio_iov++;
1397 uio_clone->uio_iovcnt--;
1398 continue;
1399 }
1400 if (len > ptoa(io_hold_cnt))
1401 len = ptoa(io_hold_cnt);
1402 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1403 end = round_page(addr + len);
1404 if (end < addr) {
1405 error = EFAULT;
1406 break;
1407 }
1408 /*
1409 * A perfectly misaligned address and length could cause
1410 * both the start and the end of the chunk to use partial
1411 * page. +2 accounts for such a situation.
1412 */
1413 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1414 addr, len, prot, ma, io_hold_cnt + 2);
1415 if (cnt == -1) {
1416 error = EFAULT;
1417 break;
1418 }
1419 short_uio.uio_iov = &short_iovec[0];
1420 short_iovec[0].iov_base = (void *)addr;
1421 short_uio.uio_iovcnt = 1;
1422 short_uio.uio_resid = short_iovec[0].iov_len = len;
1423 short_uio.uio_offset = uio_clone->uio_offset;
1424 td->td_ma = ma;
1425 td->td_ma_cnt = cnt;
1426
1427 error = vn_io_fault_doio(args, &short_uio, td);
1428 vm_page_unhold_pages(ma, cnt);
1429 adv = len - short_uio.uio_resid;
1430
1431 uio_clone->uio_iov->iov_base =
1432 (char *)uio_clone->uio_iov->iov_base + adv;
1433 uio_clone->uio_iov->iov_len -= adv;
1434 uio_clone->uio_resid -= adv;
1435 uio_clone->uio_offset += adv;
1436
1437 uio->uio_resid -= adv;
1438 uio->uio_offset += adv;
1439
1440 if (error != 0 || adv == 0)
1441 break;
1442 }
1443 td->td_ma = prev_td_ma;
1444 td->td_ma_cnt = prev_td_ma_cnt;
1445 curthread_pflags_restore(saveheld);
1446 out:
1447 freeuio(uio_clone);
1448 return (error);
1449 }
1450
1451 static int
vn_io_fault(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1452 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1453 int flags, struct thread *td)
1454 {
1455 fo_rdwr_t *doio;
1456 struct vnode *vp;
1457 void *rl_cookie;
1458 struct vn_io_fault_args args;
1459 int error;
1460 bool do_io_fault, do_rangelock;
1461
1462 doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1463 vp = fp->f_vnode;
1464
1465 /*
1466 * The ability to read(2) on a directory has historically been
1467 * allowed for all users, but this can and has been the source of
1468 * at least one security issue in the past. As such, it is now hidden
1469 * away behind a sysctl for those that actually need it to use it, and
1470 * restricted to root when it's turned on to make it relatively safe to
1471 * leave on for longer sessions of need.
1472 */
1473 if (vp->v_type == VDIR) {
1474 KASSERT(uio->uio_rw == UIO_READ,
1475 ("illegal write attempted on a directory"));
1476 if (!vfs_allow_read_dir)
1477 return (EISDIR);
1478 if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1479 return (EISDIR);
1480 }
1481
1482 do_io_fault = do_vn_io_fault(vp, uio);
1483 do_rangelock = do_io_fault || (vn_irflag_read(vp) & VIRF_PGREAD) != 0;
1484 foffset_lock_uio(fp, uio, flags);
1485 if (do_rangelock) {
1486 if (uio->uio_rw == UIO_READ) {
1487 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1488 uio->uio_offset + uio->uio_resid);
1489 } else if ((fp->f_flag & O_APPEND) != 0 ||
1490 (flags & FOF_OFFSET) == 0) {
1491 /* For appenders, punt and lock the whole range. */
1492 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1493 } else {
1494 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1495 uio->uio_offset + uio->uio_resid);
1496 }
1497 }
1498 if (do_io_fault) {
1499 args.kind = VN_IO_FAULT_FOP;
1500 args.args.fop_args.fp = fp;
1501 args.args.fop_args.doio = doio;
1502 args.cred = active_cred;
1503 args.flags = flags | FOF_OFFSET;
1504 error = vn_io_fault1(vp, uio, &args, td);
1505 } else {
1506 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1507 }
1508 if (do_rangelock)
1509 vn_rangelock_unlock(vp, rl_cookie);
1510 foffset_unlock_uio(fp, uio, flags);
1511 return (error);
1512 }
1513
1514 /*
1515 * Helper function to perform the requested uiomove operation using
1516 * the held pages for io->uio_iov[0].iov_base buffer instead of
1517 * copyin/copyout. Access to the pages with uiomove_fromphys()
1518 * instead of iov_base prevents page faults that could occur due to
1519 * pmap_collect() invalidating the mapping created by
1520 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1521 * object cleanup revoking the write access from page mappings.
1522 *
1523 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1524 * instead of plain uiomove().
1525 */
1526 int
vn_io_fault_uiomove(char * data,int xfersize,struct uio * uio)1527 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1528 {
1529 struct uio transp_uio;
1530 struct iovec transp_iov[1];
1531 struct thread *td;
1532 size_t adv;
1533 int error, pgadv;
1534
1535 td = curthread;
1536 if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1537 uio->uio_segflg != UIO_USERSPACE)
1538 return (uiomove(data, xfersize, uio));
1539
1540 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1541 transp_iov[0].iov_base = data;
1542 transp_uio.uio_iov = &transp_iov[0];
1543 transp_uio.uio_iovcnt = 1;
1544 if (xfersize > uio->uio_resid)
1545 xfersize = uio->uio_resid;
1546 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1547 transp_uio.uio_offset = 0;
1548 transp_uio.uio_segflg = UIO_SYSSPACE;
1549 /*
1550 * Since transp_iov points to data, and td_ma page array
1551 * corresponds to original uio->uio_iov, we need to invert the
1552 * direction of the i/o operation as passed to
1553 * uiomove_fromphys().
1554 */
1555 switch (uio->uio_rw) {
1556 case UIO_WRITE:
1557 transp_uio.uio_rw = UIO_READ;
1558 break;
1559 case UIO_READ:
1560 transp_uio.uio_rw = UIO_WRITE;
1561 break;
1562 }
1563 transp_uio.uio_td = uio->uio_td;
1564 error = uiomove_fromphys(td->td_ma,
1565 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1566 xfersize, &transp_uio);
1567 adv = xfersize - transp_uio.uio_resid;
1568 pgadv =
1569 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1570 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1571 td->td_ma += pgadv;
1572 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1573 pgadv));
1574 td->td_ma_cnt -= pgadv;
1575 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1576 uio->uio_iov->iov_len -= adv;
1577 uio->uio_resid -= adv;
1578 uio->uio_offset += adv;
1579 return (error);
1580 }
1581
1582 int
vn_io_fault_pgmove(vm_page_t ma[],vm_offset_t offset,int xfersize,struct uio * uio)1583 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1584 struct uio *uio)
1585 {
1586 struct thread *td;
1587 vm_offset_t iov_base;
1588 int cnt, pgadv;
1589
1590 td = curthread;
1591 if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1592 uio->uio_segflg != UIO_USERSPACE)
1593 return (uiomove_fromphys(ma, offset, xfersize, uio));
1594
1595 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1596 cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1597 iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1598 switch (uio->uio_rw) {
1599 case UIO_WRITE:
1600 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1601 offset, cnt);
1602 break;
1603 case UIO_READ:
1604 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1605 cnt);
1606 break;
1607 }
1608 pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1609 td->td_ma += pgadv;
1610 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1611 pgadv));
1612 td->td_ma_cnt -= pgadv;
1613 uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1614 uio->uio_iov->iov_len -= cnt;
1615 uio->uio_resid -= cnt;
1616 uio->uio_offset += cnt;
1617 return (0);
1618 }
1619
1620 /*
1621 * File table truncate routine.
1622 */
1623 static int
vn_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)1624 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1625 struct thread *td)
1626 {
1627 struct mount *mp;
1628 struct vnode *vp;
1629 void *rl_cookie;
1630 int error;
1631
1632 vp = fp->f_vnode;
1633
1634 retry:
1635 /*
1636 * Lock the whole range for truncation. Otherwise split i/o
1637 * might happen partly before and partly after the truncation.
1638 */
1639 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1640 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1641 if (error)
1642 goto out1;
1643 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1644 AUDIT_ARG_VNODE1(vp);
1645 if (vp->v_type == VDIR) {
1646 error = EISDIR;
1647 goto out;
1648 }
1649 #ifdef MAC
1650 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1651 if (error)
1652 goto out;
1653 #endif
1654 error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1655 fp->f_cred);
1656 out:
1657 VOP_UNLOCK(vp);
1658 vn_finished_write(mp);
1659 out1:
1660 vn_rangelock_unlock(vp, rl_cookie);
1661 if (error == ERELOOKUP)
1662 goto retry;
1663 return (error);
1664 }
1665
1666 /*
1667 * Truncate a file that is already locked.
1668 */
1669 int
vn_truncate_locked(struct vnode * vp,off_t length,bool sync,struct ucred * cred)1670 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1671 struct ucred *cred)
1672 {
1673 struct vattr vattr;
1674 int error;
1675
1676 error = VOP_ADD_WRITECOUNT(vp, 1);
1677 if (error == 0) {
1678 VATTR_NULL(&vattr);
1679 vattr.va_size = length;
1680 if (sync)
1681 vattr.va_vaflags |= VA_SYNC;
1682 error = VOP_SETATTR(vp, &vattr, cred);
1683 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1684 }
1685 return (error);
1686 }
1687
1688 /*
1689 * File table vnode stat routine.
1690 */
1691 int
vn_statfile(struct file * fp,struct stat * sb,struct ucred * active_cred)1692 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred)
1693 {
1694 struct vnode *vp = fp->f_vnode;
1695 int error;
1696
1697 vn_lock(vp, LK_SHARED | LK_RETRY);
1698 error = VOP_STAT(vp, sb, active_cred, fp->f_cred);
1699 VOP_UNLOCK(vp);
1700
1701 return (error);
1702 }
1703
1704 /*
1705 * File table vnode ioctl routine.
1706 */
1707 static int
vn_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)1708 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1709 struct thread *td)
1710 {
1711 struct vnode *vp;
1712 struct fiobmap2_arg *bmarg;
1713 off_t size;
1714 int error;
1715
1716 vp = fp->f_vnode;
1717 switch (vp->v_type) {
1718 case VDIR:
1719 case VREG:
1720 switch (com) {
1721 case FIONREAD:
1722 error = vn_getsize(vp, &size, active_cred);
1723 if (error == 0)
1724 *(int *)data = size - fp->f_offset;
1725 return (error);
1726 case FIOBMAP2:
1727 bmarg = (struct fiobmap2_arg *)data;
1728 vn_lock(vp, LK_SHARED | LK_RETRY);
1729 #ifdef MAC
1730 error = mac_vnode_check_read(active_cred, fp->f_cred,
1731 vp);
1732 if (error == 0)
1733 #endif
1734 error = VOP_BMAP(vp, bmarg->bn, NULL,
1735 &bmarg->bn, &bmarg->runp, &bmarg->runb);
1736 VOP_UNLOCK(vp);
1737 return (error);
1738 case FIONBIO:
1739 case FIOASYNC:
1740 return (0);
1741 default:
1742 return (VOP_IOCTL(vp, com, data, fp->f_flag,
1743 active_cred, td));
1744 }
1745 break;
1746 case VCHR:
1747 return (VOP_IOCTL(vp, com, data, fp->f_flag,
1748 active_cred, td));
1749 default:
1750 return (ENOTTY);
1751 }
1752 }
1753
1754 /*
1755 * File table vnode poll routine.
1756 */
1757 static int
vn_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)1758 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1759 struct thread *td)
1760 {
1761 struct vnode *vp;
1762 int error;
1763
1764 vp = fp->f_vnode;
1765 #if defined(MAC) || defined(AUDIT)
1766 if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1767 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1768 AUDIT_ARG_VNODE1(vp);
1769 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1770 VOP_UNLOCK(vp);
1771 if (error != 0)
1772 return (error);
1773 }
1774 #endif
1775 error = VOP_POLL(vp, events, fp->f_cred, td);
1776 return (error);
1777 }
1778
1779 /*
1780 * Acquire the requested lock and then check for validity. LK_RETRY
1781 * permits vn_lock to return doomed vnodes.
1782 */
1783 static int __noinline
_vn_lock_fallback(struct vnode * vp,int flags,const char * file,int line,int error)1784 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1785 int error)
1786 {
1787
1788 KASSERT((flags & LK_RETRY) == 0 || error == 0,
1789 ("vn_lock: error %d incompatible with flags %#x", error, flags));
1790
1791 if (error == 0)
1792 VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1793
1794 if ((flags & LK_RETRY) == 0) {
1795 if (error == 0) {
1796 VOP_UNLOCK(vp);
1797 error = ENOENT;
1798 }
1799 return (error);
1800 }
1801
1802 /*
1803 * LK_RETRY case.
1804 *
1805 * Nothing to do if we got the lock.
1806 */
1807 if (error == 0)
1808 return (0);
1809
1810 /*
1811 * Interlock was dropped by the call in _vn_lock.
1812 */
1813 flags &= ~LK_INTERLOCK;
1814 do {
1815 error = VOP_LOCK1(vp, flags, file, line);
1816 } while (error != 0);
1817 return (0);
1818 }
1819
1820 int
_vn_lock(struct vnode * vp,int flags,const char * file,int line)1821 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1822 {
1823 int error;
1824
1825 VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1826 ("vn_lock: no locktype (%d passed)", flags));
1827 VNPASS(vp->v_holdcnt > 0, vp);
1828 error = VOP_LOCK1(vp, flags, file, line);
1829 if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1830 return (_vn_lock_fallback(vp, flags, file, line, error));
1831 return (0);
1832 }
1833
1834 /*
1835 * File table vnode close routine.
1836 */
1837 static int
vn_closefile(struct file * fp,struct thread * td)1838 vn_closefile(struct file *fp, struct thread *td)
1839 {
1840 struct vnode *vp;
1841 struct flock lf;
1842 int error;
1843 bool ref;
1844
1845 vp = fp->f_vnode;
1846 fp->f_ops = &badfileops;
1847 ref = (fp->f_flag & FHASLOCK) != 0;
1848
1849 error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1850
1851 if (__predict_false(ref)) {
1852 lf.l_whence = SEEK_SET;
1853 lf.l_start = 0;
1854 lf.l_len = 0;
1855 lf.l_type = F_UNLCK;
1856 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1857 vrele(vp);
1858 }
1859 return (error);
1860 }
1861
1862 /*
1863 * Preparing to start a filesystem write operation. If the operation is
1864 * permitted, then we bump the count of operations in progress and
1865 * proceed. If a suspend request is in progress, we wait until the
1866 * suspension is over, and then proceed.
1867 */
1868 static int
vn_start_write_refed(struct mount * mp,int flags,bool mplocked)1869 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1870 {
1871 struct mount_pcpu *mpcpu;
1872 int error, mflags;
1873
1874 if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1875 vfs_op_thread_enter(mp, mpcpu)) {
1876 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1877 vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1878 vfs_op_thread_exit(mp, mpcpu);
1879 return (0);
1880 }
1881
1882 if (mplocked)
1883 mtx_assert(MNT_MTX(mp), MA_OWNED);
1884 else
1885 MNT_ILOCK(mp);
1886
1887 error = 0;
1888
1889 /*
1890 * Check on status of suspension.
1891 */
1892 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1893 mp->mnt_susp_owner != curthread) {
1894 mflags = 0;
1895 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
1896 if (flags & V_PCATCH)
1897 mflags |= PCATCH;
1898 }
1899 mflags |= (PUSER - 1);
1900 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1901 if ((flags & V_NOWAIT) != 0) {
1902 error = EWOULDBLOCK;
1903 goto unlock;
1904 }
1905 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1906 "suspfs", 0);
1907 if (error != 0)
1908 goto unlock;
1909 }
1910 }
1911 if ((flags & V_XSLEEP) != 0)
1912 goto unlock;
1913 mp->mnt_writeopcount++;
1914 unlock:
1915 if (error != 0 || (flags & V_XSLEEP) != 0)
1916 MNT_REL(mp);
1917 MNT_IUNLOCK(mp);
1918 return (error);
1919 }
1920
1921 int
vn_start_write(struct vnode * vp,struct mount ** mpp,int flags)1922 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1923 {
1924 struct mount *mp;
1925 int error;
1926
1927 KASSERT((flags & ~V_VALID_FLAGS) == 0,
1928 ("%s: invalid flags passed %d\n", __func__, flags));
1929
1930 error = 0;
1931 /*
1932 * If a vnode is provided, get and return the mount point that
1933 * to which it will write.
1934 */
1935 if (vp != NULL) {
1936 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1937 *mpp = NULL;
1938 if (error != EOPNOTSUPP)
1939 return (error);
1940 return (0);
1941 }
1942 }
1943 if ((mp = *mpp) == NULL)
1944 return (0);
1945
1946 /*
1947 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1948 * a vfs_ref().
1949 * As long as a vnode is not provided we need to acquire a
1950 * refcount for the provided mountpoint too, in order to
1951 * emulate a vfs_ref().
1952 */
1953 if (vp == NULL)
1954 vfs_ref(mp);
1955
1956 error = vn_start_write_refed(mp, flags, false);
1957 if (error != 0 && (flags & V_NOWAIT) == 0)
1958 *mpp = NULL;
1959 return (error);
1960 }
1961
1962 /*
1963 * Secondary suspension. Used by operations such as vop_inactive
1964 * routines that are needed by the higher level functions. These
1965 * are allowed to proceed until all the higher level functions have
1966 * completed (indicated by mnt_writeopcount dropping to zero). At that
1967 * time, these operations are halted until the suspension is over.
1968 */
1969 int
vn_start_secondary_write(struct vnode * vp,struct mount ** mpp,int flags)1970 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1971 {
1972 struct mount *mp;
1973 int error, mflags;
1974
1975 KASSERT((flags & (~V_VALID_FLAGS | V_XSLEEP)) == 0,
1976 ("%s: invalid flags passed %d\n", __func__, flags));
1977
1978 retry:
1979 if (vp != NULL) {
1980 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1981 *mpp = NULL;
1982 if (error != EOPNOTSUPP)
1983 return (error);
1984 return (0);
1985 }
1986 }
1987 /*
1988 * If we are not suspended or have not yet reached suspended
1989 * mode, then let the operation proceed.
1990 */
1991 if ((mp = *mpp) == NULL)
1992 return (0);
1993
1994 /*
1995 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1996 * a vfs_ref().
1997 * As long as a vnode is not provided we need to acquire a
1998 * refcount for the provided mountpoint too, in order to
1999 * emulate a vfs_ref().
2000 */
2001 MNT_ILOCK(mp);
2002 if (vp == NULL)
2003 MNT_REF(mp);
2004 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
2005 mp->mnt_secondary_writes++;
2006 mp->mnt_secondary_accwrites++;
2007 MNT_IUNLOCK(mp);
2008 return (0);
2009 }
2010 if ((flags & V_NOWAIT) != 0) {
2011 MNT_REL(mp);
2012 MNT_IUNLOCK(mp);
2013 *mpp = NULL;
2014 return (EWOULDBLOCK);
2015 }
2016 /*
2017 * Wait for the suspension to finish.
2018 */
2019 mflags = 0;
2020 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
2021 if ((flags & V_PCATCH) != 0)
2022 mflags |= PCATCH;
2023 }
2024 mflags |= (PUSER - 1) | PDROP;
2025 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0);
2026 vfs_rel(mp);
2027 if (error == 0)
2028 goto retry;
2029 *mpp = NULL;
2030 return (error);
2031 }
2032
2033 /*
2034 * Filesystem write operation has completed. If we are suspending and this
2035 * operation is the last one, notify the suspender that the suspension is
2036 * now in effect.
2037 */
2038 void
vn_finished_write(struct mount * mp)2039 vn_finished_write(struct mount *mp)
2040 {
2041 struct mount_pcpu *mpcpu;
2042 int c;
2043
2044 if (mp == NULL)
2045 return;
2046
2047 if (vfs_op_thread_enter(mp, mpcpu)) {
2048 vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2049 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2050 vfs_op_thread_exit(mp, mpcpu);
2051 return;
2052 }
2053
2054 MNT_ILOCK(mp);
2055 vfs_assert_mount_counters(mp);
2056 MNT_REL(mp);
2057 c = --mp->mnt_writeopcount;
2058 if (mp->mnt_vfs_ops == 0) {
2059 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2060 MNT_IUNLOCK(mp);
2061 return;
2062 }
2063 if (c < 0)
2064 vfs_dump_mount_counters(mp);
2065 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2066 wakeup(&mp->mnt_writeopcount);
2067 MNT_IUNLOCK(mp);
2068 }
2069
2070 /*
2071 * Filesystem secondary write operation has completed. If we are
2072 * suspending and this operation is the last one, notify the suspender
2073 * that the suspension is now in effect.
2074 */
2075 void
vn_finished_secondary_write(struct mount * mp)2076 vn_finished_secondary_write(struct mount *mp)
2077 {
2078 if (mp == NULL)
2079 return;
2080 MNT_ILOCK(mp);
2081 MNT_REL(mp);
2082 mp->mnt_secondary_writes--;
2083 if (mp->mnt_secondary_writes < 0)
2084 panic("vn_finished_secondary_write: neg cnt");
2085 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2086 mp->mnt_secondary_writes <= 0)
2087 wakeup(&mp->mnt_secondary_writes);
2088 MNT_IUNLOCK(mp);
2089 }
2090
2091 /*
2092 * Request a filesystem to suspend write operations.
2093 */
2094 int
vfs_write_suspend(struct mount * mp,int flags)2095 vfs_write_suspend(struct mount *mp, int flags)
2096 {
2097 int error;
2098
2099 vfs_op_enter(mp);
2100
2101 MNT_ILOCK(mp);
2102 vfs_assert_mount_counters(mp);
2103 if (mp->mnt_susp_owner == curthread) {
2104 vfs_op_exit_locked(mp);
2105 MNT_IUNLOCK(mp);
2106 return (EALREADY);
2107 }
2108 while (mp->mnt_kern_flag & MNTK_SUSPEND)
2109 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
2110
2111 /*
2112 * Unmount holds a write reference on the mount point. If we
2113 * own busy reference and drain for writers, we deadlock with
2114 * the reference draining in the unmount path. Callers of
2115 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2116 * vfs_busy() reference is owned and caller is not in the
2117 * unmount context.
2118 */
2119 if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2120 (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2121 vfs_op_exit_locked(mp);
2122 MNT_IUNLOCK(mp);
2123 return (EBUSY);
2124 }
2125
2126 mp->mnt_kern_flag |= MNTK_SUSPEND;
2127 mp->mnt_susp_owner = curthread;
2128 if (mp->mnt_writeopcount > 0)
2129 (void) msleep(&mp->mnt_writeopcount,
2130 MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
2131 else
2132 MNT_IUNLOCK(mp);
2133 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2134 vfs_write_resume(mp, 0);
2135 /* vfs_write_resume does vfs_op_exit() for us */
2136 }
2137 return (error);
2138 }
2139
2140 /*
2141 * Request a filesystem to resume write operations.
2142 */
2143 void
vfs_write_resume(struct mount * mp,int flags)2144 vfs_write_resume(struct mount *mp, int flags)
2145 {
2146
2147 MNT_ILOCK(mp);
2148 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2149 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2150 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2151 MNTK_SUSPENDED);
2152 mp->mnt_susp_owner = NULL;
2153 wakeup(&mp->mnt_writeopcount);
2154 wakeup(&mp->mnt_flag);
2155 curthread->td_pflags &= ~TDP_IGNSUSP;
2156 if ((flags & VR_START_WRITE) != 0) {
2157 MNT_REF(mp);
2158 mp->mnt_writeopcount++;
2159 }
2160 MNT_IUNLOCK(mp);
2161 if ((flags & VR_NO_SUSPCLR) == 0)
2162 VFS_SUSP_CLEAN(mp);
2163 vfs_op_exit(mp);
2164 } else if ((flags & VR_START_WRITE) != 0) {
2165 MNT_REF(mp);
2166 vn_start_write_refed(mp, 0, true);
2167 } else {
2168 MNT_IUNLOCK(mp);
2169 }
2170 }
2171
2172 /*
2173 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2174 * methods.
2175 */
2176 int
vfs_write_suspend_umnt(struct mount * mp)2177 vfs_write_suspend_umnt(struct mount *mp)
2178 {
2179 int error;
2180
2181 KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2182 ("vfs_write_suspend_umnt: recursed"));
2183
2184 /* dounmount() already called vn_start_write(). */
2185 for (;;) {
2186 vn_finished_write(mp);
2187 error = vfs_write_suspend(mp, 0);
2188 if (error != 0) {
2189 vn_start_write(NULL, &mp, V_WAIT);
2190 return (error);
2191 }
2192 MNT_ILOCK(mp);
2193 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2194 break;
2195 MNT_IUNLOCK(mp);
2196 vn_start_write(NULL, &mp, V_WAIT);
2197 }
2198 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2199 wakeup(&mp->mnt_flag);
2200 MNT_IUNLOCK(mp);
2201 curthread->td_pflags |= TDP_IGNSUSP;
2202 return (0);
2203 }
2204
2205 /*
2206 * Implement kqueues for files by translating it to vnode operation.
2207 */
2208 static int
vn_kqfilter(struct file * fp,struct knote * kn)2209 vn_kqfilter(struct file *fp, struct knote *kn)
2210 {
2211
2212 return (VOP_KQFILTER(fp->f_vnode, kn));
2213 }
2214
2215 int
vn_kqfilter_opath(struct file * fp,struct knote * kn)2216 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2217 {
2218 if ((fp->f_flag & FKQALLOWED) == 0)
2219 return (EBADF);
2220 return (vn_kqfilter(fp, kn));
2221 }
2222
2223 /*
2224 * Simplified in-kernel wrapper calls for extended attribute access.
2225 * Both calls pass in a NULL credential, authorizing as "kernel" access.
2226 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2227 */
2228 int
vn_extattr_get(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int * buflen,char * buf,struct thread * td)2229 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2230 const char *attrname, int *buflen, char *buf, struct thread *td)
2231 {
2232 struct uio auio;
2233 struct iovec iov;
2234 int error;
2235
2236 iov.iov_len = *buflen;
2237 iov.iov_base = buf;
2238
2239 auio.uio_iov = &iov;
2240 auio.uio_iovcnt = 1;
2241 auio.uio_rw = UIO_READ;
2242 auio.uio_segflg = UIO_SYSSPACE;
2243 auio.uio_td = td;
2244 auio.uio_offset = 0;
2245 auio.uio_resid = *buflen;
2246
2247 if ((ioflg & IO_NODELOCKED) == 0)
2248 vn_lock(vp, LK_SHARED | LK_RETRY);
2249
2250 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2251
2252 /* authorize attribute retrieval as kernel */
2253 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2254 td);
2255
2256 if ((ioflg & IO_NODELOCKED) == 0)
2257 VOP_UNLOCK(vp);
2258
2259 if (error == 0) {
2260 *buflen = *buflen - auio.uio_resid;
2261 }
2262
2263 return (error);
2264 }
2265
2266 /*
2267 * XXX failure mode if partially written?
2268 */
2269 int
vn_extattr_set(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int buflen,char * buf,struct thread * td)2270 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2271 const char *attrname, int buflen, char *buf, struct thread *td)
2272 {
2273 struct uio auio;
2274 struct iovec iov;
2275 struct mount *mp;
2276 int error;
2277
2278 iov.iov_len = buflen;
2279 iov.iov_base = buf;
2280
2281 auio.uio_iov = &iov;
2282 auio.uio_iovcnt = 1;
2283 auio.uio_rw = UIO_WRITE;
2284 auio.uio_segflg = UIO_SYSSPACE;
2285 auio.uio_td = td;
2286 auio.uio_offset = 0;
2287 auio.uio_resid = buflen;
2288
2289 if ((ioflg & IO_NODELOCKED) == 0) {
2290 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2291 return (error);
2292 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2293 }
2294
2295 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2296
2297 /* authorize attribute setting as kernel */
2298 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2299
2300 if ((ioflg & IO_NODELOCKED) == 0) {
2301 vn_finished_write(mp);
2302 VOP_UNLOCK(vp);
2303 }
2304
2305 return (error);
2306 }
2307
2308 int
vn_extattr_rm(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,struct thread * td)2309 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2310 const char *attrname, struct thread *td)
2311 {
2312 struct mount *mp;
2313 int error;
2314
2315 if ((ioflg & IO_NODELOCKED) == 0) {
2316 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2317 return (error);
2318 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2319 }
2320
2321 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2322
2323 /* authorize attribute removal as kernel */
2324 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2325 if (error == EOPNOTSUPP)
2326 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2327 NULL, td);
2328
2329 if ((ioflg & IO_NODELOCKED) == 0) {
2330 vn_finished_write(mp);
2331 VOP_UNLOCK(vp);
2332 }
2333
2334 return (error);
2335 }
2336
2337 static int
vn_get_ino_alloc_vget(struct mount * mp,void * arg,int lkflags,struct vnode ** rvp)2338 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2339 struct vnode **rvp)
2340 {
2341
2342 return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2343 }
2344
2345 int
vn_vget_ino(struct vnode * vp,ino_t ino,int lkflags,struct vnode ** rvp)2346 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2347 {
2348
2349 return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2350 lkflags, rvp));
2351 }
2352
2353 int
vn_vget_ino_gen(struct vnode * vp,vn_get_ino_t alloc,void * alloc_arg,int lkflags,struct vnode ** rvp)2354 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2355 int lkflags, struct vnode **rvp)
2356 {
2357 struct mount *mp;
2358 int ltype, error;
2359
2360 ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2361 mp = vp->v_mount;
2362 ltype = VOP_ISLOCKED(vp);
2363 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2364 ("vn_vget_ino: vp not locked"));
2365 error = vfs_busy(mp, MBF_NOWAIT);
2366 if (error != 0) {
2367 vfs_ref(mp);
2368 VOP_UNLOCK(vp);
2369 error = vfs_busy(mp, 0);
2370 vn_lock(vp, ltype | LK_RETRY);
2371 vfs_rel(mp);
2372 if (error != 0)
2373 return (ENOENT);
2374 if (VN_IS_DOOMED(vp)) {
2375 vfs_unbusy(mp);
2376 return (ENOENT);
2377 }
2378 }
2379 VOP_UNLOCK(vp);
2380 error = alloc(mp, alloc_arg, lkflags, rvp);
2381 vfs_unbusy(mp);
2382 if (error != 0 || *rvp != vp)
2383 vn_lock(vp, ltype | LK_RETRY);
2384 if (VN_IS_DOOMED(vp)) {
2385 if (error == 0) {
2386 if (*rvp == vp)
2387 vunref(vp);
2388 else
2389 vput(*rvp);
2390 }
2391 error = ENOENT;
2392 }
2393 return (error);
2394 }
2395
2396 static void
vn_send_sigxfsz(struct proc * p)2397 vn_send_sigxfsz(struct proc *p)
2398 {
2399 PROC_LOCK(p);
2400 kern_psignal(p, SIGXFSZ);
2401 PROC_UNLOCK(p);
2402 }
2403
2404 int
vn_rlimit_trunc(u_quad_t size,struct thread * td)2405 vn_rlimit_trunc(u_quad_t size, struct thread *td)
2406 {
2407 if (size <= lim_cur(td, RLIMIT_FSIZE))
2408 return (0);
2409 vn_send_sigxfsz(td->td_proc);
2410 return (EFBIG);
2411 }
2412
2413 static int
vn_rlimit_fsizex1(const struct vnode * vp,struct uio * uio,off_t maxfsz,bool adj,struct thread * td)2414 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2415 bool adj, struct thread *td)
2416 {
2417 off_t lim;
2418 bool ktr_write;
2419
2420 if (vp->v_type != VREG)
2421 return (0);
2422
2423 /*
2424 * Handle file system maximum file size.
2425 */
2426 if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) {
2427 if (!adj || uio->uio_offset >= maxfsz)
2428 return (EFBIG);
2429 uio->uio_resid = maxfsz - uio->uio_offset;
2430 }
2431
2432 /*
2433 * This is kernel write (e.g. vnode_pager) or accounting
2434 * write, ignore limit.
2435 */
2436 if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0)
2437 return (0);
2438
2439 /*
2440 * Calculate file size limit.
2441 */
2442 ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
2443 lim = __predict_false(ktr_write) ? td->td_ktr_io_lim :
2444 lim_cur(td, RLIMIT_FSIZE);
2445
2446 /*
2447 * Is the limit reached?
2448 */
2449 if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
2450 return (0);
2451
2452 /*
2453 * Prepared filesystems can handle writes truncated to the
2454 * file size limit.
2455 */
2456 if (adj && (uoff_t)uio->uio_offset < lim) {
2457 uio->uio_resid = lim - (uoff_t)uio->uio_offset;
2458 return (0);
2459 }
2460
2461 if (!ktr_write || ktr_filesize_limit_signal)
2462 vn_send_sigxfsz(td->td_proc);
2463 return (EFBIG);
2464 }
2465
2466 /*
2467 * Helper for VOP_WRITE() implementations, the common code to
2468 * handle maximum supported file size on the filesystem, and
2469 * RLIMIT_FSIZE, except for special writes from accounting subsystem
2470 * and ktrace.
2471 *
2472 * For maximum file size (maxfsz argument):
2473 * - return EFBIG if uio_offset is beyond it
2474 * - otherwise, clamp uio_resid if write would extend file beyond maxfsz.
2475 *
2476 * For RLIMIT_FSIZE:
2477 * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit
2478 * - otherwise, clamp uio_resid if write would extend file beyond limit.
2479 *
2480 * If clamping occured, the adjustment for uio_resid is stored in
2481 * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return
2482 * from the VOP.
2483 */
2484 int
vn_rlimit_fsizex(const struct vnode * vp,struct uio * uio,off_t maxfsz,ssize_t * resid_adj,struct thread * td)2485 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2486 ssize_t *resid_adj, struct thread *td)
2487 {
2488 ssize_t resid_orig;
2489 int error;
2490 bool adj;
2491
2492 resid_orig = uio->uio_resid;
2493 adj = resid_adj != NULL;
2494 error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td);
2495 if (adj)
2496 *resid_adj = resid_orig - uio->uio_resid;
2497 return (error);
2498 }
2499
2500 void
vn_rlimit_fsizex_res(struct uio * uio,ssize_t resid_adj)2501 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj)
2502 {
2503 uio->uio_resid += resid_adj;
2504 }
2505
2506 int
vn_rlimit_fsize(const struct vnode * vp,const struct uio * uio,struct thread * td)2507 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2508 struct thread *td)
2509 {
2510 return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL,
2511 td));
2512 }
2513
2514 int
vn_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)2515 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2516 struct thread *td)
2517 {
2518 struct vnode *vp;
2519
2520 vp = fp->f_vnode;
2521 #ifdef AUDIT
2522 vn_lock(vp, LK_SHARED | LK_RETRY);
2523 AUDIT_ARG_VNODE1(vp);
2524 VOP_UNLOCK(vp);
2525 #endif
2526 return (setfmode(td, active_cred, vp, mode));
2527 }
2528
2529 int
vn_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)2530 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2531 struct thread *td)
2532 {
2533 struct vnode *vp;
2534
2535 vp = fp->f_vnode;
2536 #ifdef AUDIT
2537 vn_lock(vp, LK_SHARED | LK_RETRY);
2538 AUDIT_ARG_VNODE1(vp);
2539 VOP_UNLOCK(vp);
2540 #endif
2541 return (setfown(td, active_cred, vp, uid, gid));
2542 }
2543
2544 /*
2545 * Remove pages in the range ["start", "end") from the vnode's VM object. If
2546 * "end" is 0, then the range extends to the end of the object.
2547 */
2548 void
vn_pages_remove(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2549 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2550 {
2551 vm_object_t object;
2552
2553 if ((object = vp->v_object) == NULL)
2554 return;
2555 VM_OBJECT_WLOCK(object);
2556 vm_object_page_remove(object, start, end, 0);
2557 VM_OBJECT_WUNLOCK(object);
2558 }
2559
2560 /*
2561 * Like vn_pages_remove(), but skips invalid pages, which by definition are not
2562 * mapped into any process' address space. Filesystems may use this in
2563 * preference to vn_pages_remove() to avoid blocking on pages busied in
2564 * preparation for a VOP_GETPAGES.
2565 */
2566 void
vn_pages_remove_valid(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2567 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2568 {
2569 vm_object_t object;
2570
2571 if ((object = vp->v_object) == NULL)
2572 return;
2573 VM_OBJECT_WLOCK(object);
2574 vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
2575 VM_OBJECT_WUNLOCK(object);
2576 }
2577
2578 int
vn_bmap_seekhole_locked(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2579 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
2580 struct ucred *cred)
2581 {
2582 off_t size;
2583 daddr_t bn, bnp;
2584 uint64_t bsize;
2585 off_t noff;
2586 int error;
2587
2588 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2589 ("%s: Wrong command %lu", __func__, cmd));
2590 ASSERT_VOP_ELOCKED(vp, "vn_bmap_seekhole_locked");
2591
2592 if (vp->v_type != VREG) {
2593 error = ENOTTY;
2594 goto out;
2595 }
2596 error = vn_getsize_locked(vp, &size, cred);
2597 if (error != 0)
2598 goto out;
2599 noff = *off;
2600 if (noff < 0 || noff >= size) {
2601 error = ENXIO;
2602 goto out;
2603 }
2604
2605 /* See the comment in ufs_bmap_seekdata(). */
2606 vnode_pager_clean_sync(vp);
2607
2608 bsize = vp->v_mount->mnt_stat.f_iosize;
2609 for (bn = noff / bsize; noff < size; bn++, noff += bsize -
2610 noff % bsize) {
2611 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2612 if (error == EOPNOTSUPP) {
2613 error = ENOTTY;
2614 goto out;
2615 }
2616 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2617 (bnp != -1 && cmd == FIOSEEKDATA)) {
2618 noff = bn * bsize;
2619 if (noff < *off)
2620 noff = *off;
2621 goto out;
2622 }
2623 }
2624 if (noff > size)
2625 noff = size;
2626 /* noff == size. There is an implicit hole at the end of file. */
2627 if (cmd == FIOSEEKDATA)
2628 error = ENXIO;
2629 out:
2630 if (error == 0)
2631 *off = noff;
2632 return (error);
2633 }
2634
2635 int
vn_bmap_seekhole(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2636 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2637 {
2638 int error;
2639
2640 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2641 ("%s: Wrong command %lu", __func__, cmd));
2642
2643 if (vn_lock(vp, LK_EXCLUSIVE) != 0)
2644 return (EBADF);
2645 error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
2646 VOP_UNLOCK(vp);
2647 return (error);
2648 }
2649
2650 int
vn_seek(struct file * fp,off_t offset,int whence,struct thread * td)2651 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2652 {
2653 struct ucred *cred;
2654 struct vnode *vp;
2655 off_t foffset, fsize, size;
2656 int error, noneg;
2657
2658 cred = td->td_ucred;
2659 vp = fp->f_vnode;
2660 noneg = (vp->v_type != VCHR);
2661 /*
2662 * Try to dodge locking for common case of querying the offset.
2663 */
2664 if (whence == L_INCR && offset == 0) {
2665 foffset = foffset_read(fp);
2666 if (__predict_false(foffset < 0 && noneg)) {
2667 return (EOVERFLOW);
2668 }
2669 td->td_uretoff.tdu_off = foffset;
2670 return (0);
2671 }
2672 foffset = foffset_lock(fp, 0);
2673 error = 0;
2674 switch (whence) {
2675 case L_INCR:
2676 if (noneg &&
2677 (foffset < 0 ||
2678 (offset > 0 && foffset > OFF_MAX - offset))) {
2679 error = EOVERFLOW;
2680 break;
2681 }
2682 offset += foffset;
2683 break;
2684 case L_XTND:
2685 error = vn_getsize(vp, &fsize, cred);
2686 if (error != 0)
2687 break;
2688
2689 /*
2690 * If the file references a disk device, then fetch
2691 * the media size and use that to determine the ending
2692 * offset.
2693 */
2694 if (fsize == 0 && vp->v_type == VCHR &&
2695 fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2696 fsize = size;
2697 if (noneg && offset > 0 && fsize > OFF_MAX - offset) {
2698 error = EOVERFLOW;
2699 break;
2700 }
2701 offset += fsize;
2702 break;
2703 case L_SET:
2704 break;
2705 case SEEK_DATA:
2706 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2707 if (error == ENOTTY)
2708 error = EINVAL;
2709 break;
2710 case SEEK_HOLE:
2711 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2712 if (error == ENOTTY)
2713 error = EINVAL;
2714 break;
2715 default:
2716 error = EINVAL;
2717 }
2718 if (error == 0 && noneg && offset < 0)
2719 error = EINVAL;
2720 if (error != 0)
2721 goto drop;
2722 VFS_KNOTE_UNLOCKED(vp, 0);
2723 td->td_uretoff.tdu_off = offset;
2724 drop:
2725 foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2726 return (error);
2727 }
2728
2729 int
vn_utimes_perm(struct vnode * vp,struct vattr * vap,struct ucred * cred,struct thread * td)2730 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2731 struct thread *td)
2732 {
2733 int error;
2734
2735 /*
2736 * Grant permission if the caller is the owner of the file, or
2737 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2738 * on the file. If the time pointer is null, then write
2739 * permission on the file is also sufficient.
2740 *
2741 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2742 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2743 * will be allowed to set the times [..] to the current
2744 * server time.
2745 */
2746 error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2747 if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2748 error = VOP_ACCESS(vp, VWRITE, cred, td);
2749 return (error);
2750 }
2751
2752 int
vn_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)2753 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2754 {
2755 struct vnode *vp;
2756 int error;
2757
2758 if (fp->f_type == DTYPE_FIFO)
2759 kif->kf_type = KF_TYPE_FIFO;
2760 else
2761 kif->kf_type = KF_TYPE_VNODE;
2762 vp = fp->f_vnode;
2763 vref(vp);
2764 FILEDESC_SUNLOCK(fdp);
2765 error = vn_fill_kinfo_vnode(vp, kif);
2766 vrele(vp);
2767 FILEDESC_SLOCK(fdp);
2768 return (error);
2769 }
2770
2771 static inline void
vn_fill_junk(struct kinfo_file * kif)2772 vn_fill_junk(struct kinfo_file *kif)
2773 {
2774 size_t len, olen;
2775
2776 /*
2777 * Simulate vn_fullpath returning changing values for a given
2778 * vp during e.g. coredump.
2779 */
2780 len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2781 olen = strlen(kif->kf_path);
2782 if (len < olen)
2783 strcpy(&kif->kf_path[len - 1], "$");
2784 else
2785 for (; olen < len; olen++)
2786 strcpy(&kif->kf_path[olen], "A");
2787 }
2788
2789 int
vn_fill_kinfo_vnode(struct vnode * vp,struct kinfo_file * kif)2790 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2791 {
2792 struct vattr va;
2793 char *fullpath, *freepath;
2794 int error;
2795
2796 kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2797 freepath = NULL;
2798 fullpath = "-";
2799 error = vn_fullpath(vp, &fullpath, &freepath);
2800 if (error == 0) {
2801 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2802 }
2803 if (freepath != NULL)
2804 free(freepath, M_TEMP);
2805
2806 KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2807 vn_fill_junk(kif);
2808 );
2809
2810 /*
2811 * Retrieve vnode attributes.
2812 */
2813 va.va_fsid = VNOVAL;
2814 va.va_rdev = NODEV;
2815 vn_lock(vp, LK_SHARED | LK_RETRY);
2816 error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2817 VOP_UNLOCK(vp);
2818 if (error != 0)
2819 return (error);
2820 if (va.va_fsid != VNOVAL)
2821 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2822 else
2823 kif->kf_un.kf_file.kf_file_fsid =
2824 vp->v_mount->mnt_stat.f_fsid.val[0];
2825 kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2826 kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2827 kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2828 kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2829 kif->kf_un.kf_file.kf_file_size = va.va_size;
2830 kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2831 kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2832 kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2833 kif->kf_un.kf_file.kf_file_nlink = va.va_nlink;
2834 return (0);
2835 }
2836
2837 int
vn_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)2838 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2839 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2840 struct thread *td)
2841 {
2842 #ifdef HWPMC_HOOKS
2843 struct pmckern_map_in pkm;
2844 #endif
2845 struct mount *mp;
2846 struct vnode *vp;
2847 vm_object_t object;
2848 vm_prot_t maxprot;
2849 boolean_t writecounted;
2850 int error;
2851
2852 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2853 defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2854 /*
2855 * POSIX shared-memory objects are defined to have
2856 * kernel persistence, and are not defined to support
2857 * read(2)/write(2) -- or even open(2). Thus, we can
2858 * use MAP_ASYNC to trade on-disk coherence for speed.
2859 * The shm_open(3) library routine turns on the FPOSIXSHM
2860 * flag to request this behavior.
2861 */
2862 if ((fp->f_flag & FPOSIXSHM) != 0)
2863 flags |= MAP_NOSYNC;
2864 #endif
2865 vp = fp->f_vnode;
2866
2867 /*
2868 * Ensure that file and memory protections are
2869 * compatible. Note that we only worry about
2870 * writability if mapping is shared; in this case,
2871 * current and max prot are dictated by the open file.
2872 * XXX use the vnode instead? Problem is: what
2873 * credentials do we use for determination? What if
2874 * proc does a setuid?
2875 */
2876 mp = vp->v_mount;
2877 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2878 maxprot = VM_PROT_NONE;
2879 if ((prot & VM_PROT_EXECUTE) != 0)
2880 return (EACCES);
2881 } else
2882 maxprot = VM_PROT_EXECUTE;
2883 if ((fp->f_flag & FREAD) != 0)
2884 maxprot |= VM_PROT_READ;
2885 else if ((prot & VM_PROT_READ) != 0)
2886 return (EACCES);
2887
2888 /*
2889 * If we are sharing potential changes via MAP_SHARED and we
2890 * are trying to get write permission although we opened it
2891 * without asking for it, bail out.
2892 */
2893 if ((flags & MAP_SHARED) != 0) {
2894 if ((fp->f_flag & FWRITE) != 0)
2895 maxprot |= VM_PROT_WRITE;
2896 else if ((prot & VM_PROT_WRITE) != 0)
2897 return (EACCES);
2898 } else {
2899 maxprot |= VM_PROT_WRITE;
2900 cap_maxprot |= VM_PROT_WRITE;
2901 }
2902 maxprot &= cap_maxprot;
2903
2904 /*
2905 * For regular files and shared memory, POSIX requires that
2906 * the value of foff be a legitimate offset within the data
2907 * object. In particular, negative offsets are invalid.
2908 * Blocking negative offsets and overflows here avoids
2909 * possible wraparound or user-level access into reserved
2910 * ranges of the data object later. In contrast, POSIX does
2911 * not dictate how offsets are used by device drivers, so in
2912 * the case of a device mapping a negative offset is passed
2913 * on.
2914 */
2915 if (
2916 #ifdef _LP64
2917 size > OFF_MAX ||
2918 #endif
2919 foff > OFF_MAX - size)
2920 return (EINVAL);
2921
2922 writecounted = FALSE;
2923 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2924 &foff, &object, &writecounted);
2925 if (error != 0)
2926 return (error);
2927 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2928 foff, writecounted, td);
2929 if (error != 0) {
2930 /*
2931 * If this mapping was accounted for in the vnode's
2932 * writecount, then undo that now.
2933 */
2934 if (writecounted)
2935 vm_pager_release_writecount(object, 0, size);
2936 vm_object_deallocate(object);
2937 }
2938 #ifdef HWPMC_HOOKS
2939 /* Inform hwpmc(4) if an executable is being mapped. */
2940 if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2941 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2942 pkm.pm_file = vp;
2943 pkm.pm_address = (uintptr_t) *addr;
2944 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2945 }
2946 }
2947 #endif
2948 return (error);
2949 }
2950
2951 void
vn_fsid(struct vnode * vp,struct vattr * va)2952 vn_fsid(struct vnode *vp, struct vattr *va)
2953 {
2954 fsid_t *f;
2955
2956 f = &vp->v_mount->mnt_stat.f_fsid;
2957 va->va_fsid = (uint32_t)f->val[1];
2958 va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2959 va->va_fsid += (uint32_t)f->val[0];
2960 }
2961
2962 int
vn_fsync_buf(struct vnode * vp,int waitfor)2963 vn_fsync_buf(struct vnode *vp, int waitfor)
2964 {
2965 struct buf *bp, *nbp;
2966 struct bufobj *bo;
2967 struct mount *mp;
2968 int error, maxretry;
2969
2970 error = 0;
2971 maxretry = 10000; /* large, arbitrarily chosen */
2972 mp = NULL;
2973 if (vp->v_type == VCHR) {
2974 VI_LOCK(vp);
2975 mp = vp->v_rdev->si_mountpt;
2976 VI_UNLOCK(vp);
2977 }
2978 bo = &vp->v_bufobj;
2979 BO_LOCK(bo);
2980 loop1:
2981 /*
2982 * MARK/SCAN initialization to avoid infinite loops.
2983 */
2984 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2985 bp->b_vflags &= ~BV_SCANNED;
2986 bp->b_error = 0;
2987 }
2988
2989 /*
2990 * Flush all dirty buffers associated with a vnode.
2991 */
2992 loop2:
2993 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2994 if ((bp->b_vflags & BV_SCANNED) != 0)
2995 continue;
2996 bp->b_vflags |= BV_SCANNED;
2997 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2998 if (waitfor != MNT_WAIT)
2999 continue;
3000 if (BUF_LOCK(bp,
3001 LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
3002 BO_LOCKPTR(bo)) != 0) {
3003 BO_LOCK(bo);
3004 goto loop1;
3005 }
3006 BO_LOCK(bo);
3007 }
3008 BO_UNLOCK(bo);
3009 KASSERT(bp->b_bufobj == bo,
3010 ("bp %p wrong b_bufobj %p should be %p",
3011 bp, bp->b_bufobj, bo));
3012 if ((bp->b_flags & B_DELWRI) == 0)
3013 panic("fsync: not dirty");
3014 if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
3015 vfs_bio_awrite(bp);
3016 } else {
3017 bremfree(bp);
3018 bawrite(bp);
3019 }
3020 if (maxretry < 1000)
3021 pause("dirty", hz < 1000 ? 1 : hz / 1000);
3022 BO_LOCK(bo);
3023 goto loop2;
3024 }
3025
3026 /*
3027 * If synchronous the caller expects us to completely resolve all
3028 * dirty buffers in the system. Wait for in-progress I/O to
3029 * complete (which could include background bitmap writes), then
3030 * retry if dirty blocks still exist.
3031 */
3032 if (waitfor == MNT_WAIT) {
3033 bufobj_wwait(bo, 0, 0);
3034 if (bo->bo_dirty.bv_cnt > 0) {
3035 /*
3036 * If we are unable to write any of these buffers
3037 * then we fail now rather than trying endlessly
3038 * to write them out.
3039 */
3040 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
3041 if ((error = bp->b_error) != 0)
3042 break;
3043 if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
3044 (error == 0 && --maxretry >= 0))
3045 goto loop1;
3046 if (error == 0)
3047 error = EAGAIN;
3048 }
3049 }
3050 BO_UNLOCK(bo);
3051 if (error != 0)
3052 vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
3053
3054 return (error);
3055 }
3056
3057 /*
3058 * Copies a byte range from invp to outvp. Calls VOP_COPY_FILE_RANGE()
3059 * or vn_generic_copy_file_range() after rangelocking the byte ranges,
3060 * to do the actual copy.
3061 * vn_generic_copy_file_range() is factored out, so it can be called
3062 * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
3063 * different file systems.
3064 */
3065 int
vn_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3066 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
3067 off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
3068 struct ucred *outcred, struct thread *fsize_td)
3069 {
3070 struct mount *inmp, *outmp;
3071 struct vnode *invpl, *outvpl;
3072 int error;
3073 size_t len;
3074 uint64_t uval;
3075
3076 invpl = outvpl = NULL;
3077 len = *lenp;
3078 *lenp = 0; /* For error returns. */
3079 error = 0;
3080
3081 /* Do some sanity checks on the arguments. */
3082 if (invp->v_type == VDIR || outvp->v_type == VDIR)
3083 error = EISDIR;
3084 else if (*inoffp < 0 || *outoffp < 0 ||
3085 invp->v_type != VREG || outvp->v_type != VREG)
3086 error = EINVAL;
3087 if (error != 0)
3088 goto out;
3089
3090 /* Ensure offset + len does not wrap around. */
3091 uval = *inoffp;
3092 uval += len;
3093 if (uval > INT64_MAX)
3094 len = INT64_MAX - *inoffp;
3095 uval = *outoffp;
3096 uval += len;
3097 if (uval > INT64_MAX)
3098 len = INT64_MAX - *outoffp;
3099 if (len == 0)
3100 goto out;
3101
3102 error = VOP_GETLOWVNODE(invp, &invpl, FREAD);
3103 if (error != 0)
3104 goto out;
3105 error = VOP_GETLOWVNODE(outvp, &outvpl, FWRITE);
3106 if (error != 0)
3107 goto out1;
3108
3109 inmp = invpl->v_mount;
3110 outmp = outvpl->v_mount;
3111 if (inmp == NULL || outmp == NULL)
3112 goto out2;
3113
3114 for (;;) {
3115 error = vfs_busy(inmp, 0);
3116 if (error != 0)
3117 goto out2;
3118 if (inmp == outmp)
3119 break;
3120 error = vfs_busy(outmp, MBF_NOWAIT);
3121 if (error != 0) {
3122 vfs_unbusy(inmp);
3123 error = vfs_busy(outmp, 0);
3124 if (error == 0) {
3125 vfs_unbusy(outmp);
3126 continue;
3127 }
3128 goto out2;
3129 }
3130 break;
3131 }
3132
3133 /*
3134 * If the two vnodes are for the same file system type, call
3135 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
3136 * which can handle copies across multiple file system types.
3137 */
3138 *lenp = len;
3139 if (inmp == outmp || inmp->mnt_vfc == outmp->mnt_vfc)
3140 error = VOP_COPY_FILE_RANGE(invpl, inoffp, outvpl, outoffp,
3141 lenp, flags, incred, outcred, fsize_td);
3142 else
3143 error = ENOSYS;
3144 if (error == ENOSYS)
3145 error = vn_generic_copy_file_range(invpl, inoffp, outvpl,
3146 outoffp, lenp, flags, incred, outcred, fsize_td);
3147 vfs_unbusy(outmp);
3148 if (inmp != outmp)
3149 vfs_unbusy(inmp);
3150 out2:
3151 if (outvpl != NULL)
3152 vrele(outvpl);
3153 out1:
3154 if (invpl != NULL)
3155 vrele(invpl);
3156 out:
3157 return (error);
3158 }
3159
3160 /*
3161 * Test len bytes of data starting at dat for all bytes == 0.
3162 * Return true if all bytes are zero, false otherwise.
3163 * Expects dat to be well aligned.
3164 */
3165 static bool
mem_iszero(void * dat,int len)3166 mem_iszero(void *dat, int len)
3167 {
3168 int i;
3169 const u_int *p;
3170 const char *cp;
3171
3172 for (p = dat; len > 0; len -= sizeof(*p), p++) {
3173 if (len >= sizeof(*p)) {
3174 if (*p != 0)
3175 return (false);
3176 } else {
3177 cp = (const char *)p;
3178 for (i = 0; i < len; i++, cp++)
3179 if (*cp != '\0')
3180 return (false);
3181 }
3182 }
3183 return (true);
3184 }
3185
3186 /*
3187 * Look for a hole in the output file and, if found, adjust *outoffp
3188 * and *xferp to skip past the hole.
3189 * *xferp is the entire hole length to be written and xfer2 is how many bytes
3190 * to be written as 0's upon return.
3191 */
3192 static off_t
vn_skip_hole(struct vnode * outvp,off_t xfer2,off_t * outoffp,off_t * xferp,off_t * dataoffp,off_t * holeoffp,struct ucred * cred)3193 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
3194 off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
3195 {
3196 int error;
3197 off_t delta;
3198
3199 if (*holeoffp == 0 || *holeoffp <= *outoffp) {
3200 *dataoffp = *outoffp;
3201 error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
3202 curthread);
3203 if (error == 0) {
3204 *holeoffp = *dataoffp;
3205 error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
3206 curthread);
3207 }
3208 if (error != 0 || *holeoffp == *dataoffp) {
3209 /*
3210 * Since outvp is unlocked, it may be possible for
3211 * another thread to do a truncate(), lseek(), write()
3212 * creating a hole at startoff between the above
3213 * VOP_IOCTL() calls, if the other thread does not do
3214 * rangelocking.
3215 * If that happens, *holeoffp == *dataoffp and finding
3216 * the hole has failed, so disable vn_skip_hole().
3217 */
3218 *holeoffp = -1; /* Disable use of vn_skip_hole(). */
3219 return (xfer2);
3220 }
3221 KASSERT(*dataoffp >= *outoffp,
3222 ("vn_skip_hole: dataoff=%jd < outoff=%jd",
3223 (intmax_t)*dataoffp, (intmax_t)*outoffp));
3224 KASSERT(*holeoffp > *dataoffp,
3225 ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
3226 (intmax_t)*holeoffp, (intmax_t)*dataoffp));
3227 }
3228
3229 /*
3230 * If there is a hole before the data starts, advance *outoffp and
3231 * *xferp past the hole.
3232 */
3233 if (*dataoffp > *outoffp) {
3234 delta = *dataoffp - *outoffp;
3235 if (delta >= *xferp) {
3236 /* Entire *xferp is a hole. */
3237 *outoffp += *xferp;
3238 *xferp = 0;
3239 return (0);
3240 }
3241 *xferp -= delta;
3242 *outoffp += delta;
3243 xfer2 = MIN(xfer2, *xferp);
3244 }
3245
3246 /*
3247 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3248 * that the write ends at the start of the hole.
3249 * *holeoffp should always be greater than *outoffp, but for the
3250 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3251 * value.
3252 */
3253 if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3254 xfer2 = *holeoffp - *outoffp;
3255 return (xfer2);
3256 }
3257
3258 /*
3259 * Write an xfer sized chunk to outvp in blksize blocks from dat.
3260 * dat is a maximum of blksize in length and can be written repeatedly in
3261 * the chunk.
3262 * If growfile == true, just grow the file via vn_truncate_locked() instead
3263 * of doing actual writes.
3264 * If checkhole == true, a hole is being punched, so skip over any hole
3265 * already in the output file.
3266 */
3267 static int
vn_write_outvp(struct vnode * outvp,char * dat,off_t outoff,off_t xfer,u_long blksize,bool growfile,bool checkhole,struct ucred * cred)3268 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3269 u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3270 {
3271 struct mount *mp;
3272 off_t dataoff, holeoff, xfer2;
3273 int error;
3274
3275 /*
3276 * Loop around doing writes of blksize until write has been completed.
3277 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3278 * done for each iteration, since the xfer argument can be very
3279 * large if there is a large hole to punch in the output file.
3280 */
3281 error = 0;
3282 holeoff = 0;
3283 do {
3284 xfer2 = MIN(xfer, blksize);
3285 if (checkhole) {
3286 /*
3287 * Punching a hole. Skip writing if there is
3288 * already a hole in the output file.
3289 */
3290 xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3291 &dataoff, &holeoff, cred);
3292 if (xfer == 0)
3293 break;
3294 if (holeoff < 0)
3295 checkhole = false;
3296 KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3297 (intmax_t)xfer2));
3298 }
3299 bwillwrite();
3300 mp = NULL;
3301 error = vn_start_write(outvp, &mp, V_WAIT);
3302 if (error != 0)
3303 break;
3304 if (growfile) {
3305 error = vn_lock(outvp, LK_EXCLUSIVE);
3306 if (error == 0) {
3307 error = vn_truncate_locked(outvp, outoff + xfer,
3308 false, cred);
3309 VOP_UNLOCK(outvp);
3310 }
3311 } else {
3312 error = vn_lock(outvp, vn_lktype_write(mp, outvp));
3313 if (error == 0) {
3314 error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3315 outoff, UIO_SYSSPACE, IO_NODELOCKED,
3316 curthread->td_ucred, cred, NULL, curthread);
3317 outoff += xfer2;
3318 xfer -= xfer2;
3319 VOP_UNLOCK(outvp);
3320 }
3321 }
3322 if (mp != NULL)
3323 vn_finished_write(mp);
3324 } while (!growfile && xfer > 0 && error == 0);
3325 return (error);
3326 }
3327
3328 /*
3329 * Copy a byte range of one file to another. This function can handle the
3330 * case where invp and outvp are on different file systems.
3331 * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3332 * is no better file system specific way to do it.
3333 */
3334 int
vn_generic_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3335 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3336 struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3337 struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3338 {
3339 struct vattr inva;
3340 struct mount *mp;
3341 off_t startoff, endoff, xfer, xfer2;
3342 u_long blksize;
3343 int error, interrupted;
3344 bool cantseek, readzeros, eof, first, lastblock, holetoeof, sparse;
3345 ssize_t aresid, r = 0;
3346 size_t copylen, len, savlen;
3347 off_t outsize;
3348 char *dat;
3349 long holein, holeout;
3350 struct timespec curts, endts;
3351
3352 holein = holeout = 0;
3353 savlen = len = *lenp;
3354 error = 0;
3355 interrupted = 0;
3356 dat = NULL;
3357
3358 error = vn_lock(invp, LK_SHARED);
3359 if (error != 0)
3360 goto out;
3361 if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3362 holein = 0;
3363 error = VOP_GETATTR(invp, &inva, incred);
3364 if (error == 0 && inva.va_size > OFF_MAX)
3365 error = EFBIG;
3366 VOP_UNLOCK(invp);
3367 if (error != 0)
3368 goto out;
3369
3370 /*
3371 * Use va_bytes >= va_size as a hint that the file does not have
3372 * sufficient holes to justify the overhead of doing FIOSEEKHOLE.
3373 * This hint does not work well for file systems doing compression
3374 * and may fail when allocations for extended attributes increases
3375 * the value of va_bytes to >= va_size.
3376 */
3377 sparse = true;
3378 if (holein != 0 && inva.va_bytes >= inva.va_size) {
3379 holein = 0;
3380 sparse = false;
3381 }
3382
3383 mp = NULL;
3384 error = vn_start_write(outvp, &mp, V_WAIT);
3385 if (error == 0)
3386 error = vn_lock(outvp, LK_EXCLUSIVE);
3387 if (error == 0) {
3388 /*
3389 * If fsize_td != NULL, do a vn_rlimit_fsizex() call,
3390 * now that outvp is locked.
3391 */
3392 if (fsize_td != NULL) {
3393 struct uio io;
3394
3395 io.uio_offset = *outoffp;
3396 io.uio_resid = len;
3397 error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td);
3398 len = savlen = io.uio_resid;
3399 /*
3400 * No need to call vn_rlimit_fsizex_res before return,
3401 * since the uio is local.
3402 */
3403 }
3404 if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3405 holeout = 0;
3406 /*
3407 * Holes that are past EOF do not need to be written as a block
3408 * of zero bytes. So, truncate the output file as far as
3409 * possible and then use size to decide if writing 0
3410 * bytes is necessary in the loop below.
3411 */
3412 if (error == 0)
3413 error = vn_getsize_locked(outvp, &outsize, outcred);
3414 if (error == 0 && outsize > *outoffp &&
3415 *outoffp <= OFF_MAX - len && outsize <= *outoffp + len &&
3416 *inoffp < inva.va_size &&
3417 *outoffp <= OFF_MAX - (inva.va_size - *inoffp) &&
3418 outsize <= *outoffp + (inva.va_size - *inoffp)) {
3419 #ifdef MAC
3420 error = mac_vnode_check_write(curthread->td_ucred,
3421 outcred, outvp);
3422 if (error == 0)
3423 #endif
3424 error = vn_truncate_locked(outvp, *outoffp,
3425 false, outcred);
3426 if (error == 0)
3427 outsize = *outoffp;
3428 }
3429 VOP_UNLOCK(outvp);
3430 }
3431 if (mp != NULL)
3432 vn_finished_write(mp);
3433 if (error != 0)
3434 goto out;
3435
3436 if (sparse && holein == 0 && holeout > 0) {
3437 /*
3438 * For this special case, the input data will be scanned
3439 * for blocks of all 0 bytes. For these blocks, the
3440 * write can be skipped for the output file to create
3441 * an unallocated region.
3442 * Therefore, use the appropriate size for the output file.
3443 */
3444 blksize = holeout;
3445 if (blksize <= 512) {
3446 /*
3447 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE
3448 * of 512, although it actually only creates
3449 * unallocated regions for blocks >= f_iosize.
3450 */
3451 blksize = outvp->v_mount->mnt_stat.f_iosize;
3452 }
3453 } else {
3454 /*
3455 * Use the larger of the two f_iosize values. If they are
3456 * not the same size, one will normally be an exact multiple of
3457 * the other, since they are both likely to be a power of 2.
3458 */
3459 blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3460 outvp->v_mount->mnt_stat.f_iosize);
3461 }
3462
3463 /* Clip to sane limits. */
3464 if (blksize < 4096)
3465 blksize = 4096;
3466 else if (blksize > maxphys)
3467 blksize = maxphys;
3468 dat = malloc(blksize, M_TEMP, M_WAITOK);
3469
3470 /*
3471 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3472 * to find holes. Otherwise, just scan the read block for all 0s
3473 * in the inner loop where the data copying is done.
3474 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3475 * support holes on the server, but do not support FIOSEEKHOLE.
3476 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
3477 * that this function should return after 1second with a partial
3478 * completion.
3479 */
3480 if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
3481 getnanouptime(&endts);
3482 endts.tv_sec++;
3483 } else
3484 timespecclear(&endts);
3485 first = true;
3486 holetoeof = eof = false;
3487 while (len > 0 && error == 0 && !eof && interrupted == 0) {
3488 endoff = 0; /* To shut up compilers. */
3489 cantseek = true;
3490 startoff = *inoffp;
3491 copylen = len;
3492
3493 /*
3494 * Find the next data area. If there is just a hole to EOF,
3495 * FIOSEEKDATA should fail with ENXIO.
3496 * (I do not know if any file system will report a hole to
3497 * EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3498 * will fail for those file systems.)
3499 *
3500 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3501 * the code just falls through to the inner copy loop.
3502 */
3503 error = EINVAL;
3504 if (holein > 0) {
3505 error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3506 incred, curthread);
3507 if (error == ENXIO) {
3508 startoff = endoff = inva.va_size;
3509 eof = holetoeof = true;
3510 error = 0;
3511 }
3512 }
3513 if (error == 0 && !holetoeof) {
3514 endoff = startoff;
3515 error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3516 incred, curthread);
3517 /*
3518 * Since invp is unlocked, it may be possible for
3519 * another thread to do a truncate(), lseek(), write()
3520 * creating a hole at startoff between the above
3521 * VOP_IOCTL() calls, if the other thread does not do
3522 * rangelocking.
3523 * If that happens, startoff == endoff and finding
3524 * the hole has failed, so set an error.
3525 */
3526 if (error == 0 && startoff == endoff)
3527 error = EINVAL; /* Any error. Reset to 0. */
3528 }
3529 if (error == 0) {
3530 if (startoff > *inoffp) {
3531 /* Found hole before data block. */
3532 xfer = MIN(startoff - *inoffp, len);
3533 if (*outoffp < outsize) {
3534 /* Must write 0s to punch hole. */
3535 xfer2 = MIN(outsize - *outoffp,
3536 xfer);
3537 memset(dat, 0, MIN(xfer2, blksize));
3538 error = vn_write_outvp(outvp, dat,
3539 *outoffp, xfer2, blksize, false,
3540 holeout > 0, outcred);
3541 }
3542
3543 if (error == 0 && *outoffp + xfer >
3544 outsize && (xfer == len || holetoeof)) {
3545 /* Grow output file (hole at end). */
3546 error = vn_write_outvp(outvp, dat,
3547 *outoffp, xfer, blksize, true,
3548 false, outcred);
3549 }
3550 if (error == 0) {
3551 *inoffp += xfer;
3552 *outoffp += xfer;
3553 len -= xfer;
3554 if (len < savlen) {
3555 interrupted = sig_intr();
3556 if (timespecisset(&endts) &&
3557 interrupted == 0) {
3558 getnanouptime(&curts);
3559 if (timespeccmp(&curts,
3560 &endts, >=))
3561 interrupted =
3562 EINTR;
3563 }
3564 }
3565 }
3566 }
3567 copylen = MIN(len, endoff - startoff);
3568 cantseek = false;
3569 } else {
3570 cantseek = true;
3571 if (!sparse)
3572 cantseek = false;
3573 startoff = *inoffp;
3574 copylen = len;
3575 error = 0;
3576 }
3577
3578 xfer = blksize;
3579 if (cantseek) {
3580 /*
3581 * Set first xfer to end at a block boundary, so that
3582 * holes are more likely detected in the loop below via
3583 * the for all bytes 0 method.
3584 */
3585 xfer -= (*inoffp % blksize);
3586 }
3587
3588 /*
3589 * Loop copying the data block. If this was our first attempt
3590 * to copy anything, allow a zero-length block so that the VOPs
3591 * get a chance to update metadata, specifically the atime.
3592 */
3593 while (error == 0 && ((copylen > 0 && !eof) || first) &&
3594 interrupted == 0) {
3595 if (copylen < xfer)
3596 xfer = copylen;
3597 first = false;
3598 error = vn_lock(invp, LK_SHARED);
3599 if (error != 0)
3600 goto out;
3601 error = vn_rdwr(UIO_READ, invp, dat, xfer,
3602 startoff, UIO_SYSSPACE, IO_NODELOCKED,
3603 curthread->td_ucred, incred, &aresid,
3604 curthread);
3605 VOP_UNLOCK(invp);
3606 lastblock = false;
3607 if (error == 0 && (xfer == 0 || aresid > 0)) {
3608 /* Stop the copy at EOF on the input file. */
3609 xfer -= aresid;
3610 eof = true;
3611 lastblock = true;
3612 }
3613 if (error == 0) {
3614 /*
3615 * Skip the write for holes past the initial EOF
3616 * of the output file, unless this is the last
3617 * write of the output file at EOF.
3618 */
3619 readzeros = cantseek ? mem_iszero(dat, xfer) :
3620 false;
3621 if (xfer == len)
3622 lastblock = true;
3623 if (!cantseek || *outoffp < outsize ||
3624 lastblock || !readzeros)
3625 error = vn_write_outvp(outvp, dat,
3626 *outoffp, xfer, blksize,
3627 readzeros && lastblock &&
3628 *outoffp >= outsize, false,
3629 outcred);
3630 if (error == 0) {
3631 *inoffp += xfer;
3632 startoff += xfer;
3633 *outoffp += xfer;
3634 copylen -= xfer;
3635 len -= xfer;
3636 if (len < savlen) {
3637 interrupted = sig_intr();
3638 if (timespecisset(&endts) &&
3639 interrupted == 0) {
3640 getnanouptime(&curts);
3641 if (timespeccmp(&curts,
3642 &endts, >=))
3643 interrupted =
3644 EINTR;
3645 }
3646 }
3647 }
3648 }
3649 xfer = blksize;
3650 }
3651 }
3652 out:
3653 *lenp = savlen - len;
3654 free(dat, M_TEMP);
3655 return (error);
3656 }
3657
3658 static int
vn_fallocate(struct file * fp,off_t offset,off_t len,struct thread * td)3659 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3660 {
3661 struct mount *mp;
3662 struct vnode *vp;
3663 off_t olen, ooffset;
3664 int error;
3665 #ifdef AUDIT
3666 int audited_vnode1 = 0;
3667 #endif
3668
3669 vp = fp->f_vnode;
3670 if (vp->v_type != VREG)
3671 return (ENODEV);
3672
3673 /* Allocating blocks may take a long time, so iterate. */
3674 for (;;) {
3675 olen = len;
3676 ooffset = offset;
3677
3678 bwillwrite();
3679 mp = NULL;
3680 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
3681 if (error != 0)
3682 break;
3683 error = vn_lock(vp, LK_EXCLUSIVE);
3684 if (error != 0) {
3685 vn_finished_write(mp);
3686 break;
3687 }
3688 #ifdef AUDIT
3689 if (!audited_vnode1) {
3690 AUDIT_ARG_VNODE1(vp);
3691 audited_vnode1 = 1;
3692 }
3693 #endif
3694 #ifdef MAC
3695 error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3696 if (error == 0)
3697 #endif
3698 error = VOP_ALLOCATE(vp, &offset, &len, 0,
3699 td->td_ucred);
3700 VOP_UNLOCK(vp);
3701 vn_finished_write(mp);
3702
3703 if (olen + ooffset != offset + len) {
3704 panic("offset + len changed from %jx/%jx to %jx/%jx",
3705 ooffset, olen, offset, len);
3706 }
3707 if (error != 0 || len == 0)
3708 break;
3709 KASSERT(olen > len, ("Iteration did not make progress?"));
3710 maybe_yield();
3711 }
3712
3713 return (error);
3714 }
3715
3716 static int
vn_deallocate_impl(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * cred,struct ucred * active_cred,struct ucred * file_cred)3717 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
3718 int ioflag, struct ucred *cred, struct ucred *active_cred,
3719 struct ucred *file_cred)
3720 {
3721 struct mount *mp;
3722 void *rl_cookie;
3723 off_t off, len;
3724 int error;
3725 #ifdef AUDIT
3726 bool audited_vnode1 = false;
3727 #endif
3728
3729 rl_cookie = NULL;
3730 error = 0;
3731 mp = NULL;
3732 off = *offset;
3733 len = *length;
3734
3735 if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
3736 rl_cookie = vn_rangelock_wlock(vp, off, off + len);
3737 while (len > 0 && error == 0) {
3738 /*
3739 * Try to deallocate the longest range in one pass.
3740 * In case a pass takes too long to be executed, it returns
3741 * partial result. The residue will be proceeded in the next
3742 * pass.
3743 */
3744
3745 if ((ioflag & IO_NODELOCKED) == 0) {
3746 bwillwrite();
3747 if ((error = vn_start_write(vp, &mp,
3748 V_WAIT | V_PCATCH)) != 0)
3749 goto out;
3750 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
3751 }
3752 #ifdef AUDIT
3753 if (!audited_vnode1) {
3754 AUDIT_ARG_VNODE1(vp);
3755 audited_vnode1 = true;
3756 }
3757 #endif
3758
3759 #ifdef MAC
3760 if ((ioflag & IO_NOMACCHECK) == 0)
3761 error = mac_vnode_check_write(active_cred, file_cred,
3762 vp);
3763 #endif
3764 if (error == 0)
3765 error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
3766 cred);
3767
3768 if ((ioflag & IO_NODELOCKED) == 0) {
3769 VOP_UNLOCK(vp);
3770 if (mp != NULL) {
3771 vn_finished_write(mp);
3772 mp = NULL;
3773 }
3774 }
3775 if (error == 0 && len != 0)
3776 maybe_yield();
3777 }
3778 out:
3779 if (rl_cookie != NULL)
3780 vn_rangelock_unlock(vp, rl_cookie);
3781 *offset = off;
3782 *length = len;
3783 return (error);
3784 }
3785
3786 /*
3787 * This function is supposed to be used in the situations where the deallocation
3788 * is not triggered by a user request.
3789 */
3790 int
vn_deallocate(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * active_cred,struct ucred * file_cred)3791 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
3792 int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3793 {
3794 struct ucred *cred;
3795
3796 if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
3797 flags != 0)
3798 return (EINVAL);
3799 if (vp->v_type != VREG)
3800 return (ENODEV);
3801
3802 cred = file_cred != NOCRED ? file_cred : active_cred;
3803 return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred,
3804 active_cred, file_cred));
3805 }
3806
3807 static int
vn_fspacectl(struct file * fp,int cmd,off_t * offset,off_t * length,int flags,struct ucred * active_cred,struct thread * td)3808 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
3809 struct ucred *active_cred, struct thread *td)
3810 {
3811 int error;
3812 struct vnode *vp;
3813 int ioflag;
3814
3815 KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd"));
3816 KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
3817 ("vn_fspacectl: non-zero flags"));
3818 KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
3819 ("vn_fspacectl: offset/length overflow or underflow"));
3820 vp = fp->f_vnode;
3821
3822 if (vp->v_type != VREG)
3823 return (ENODEV);
3824
3825 ioflag = get_write_ioflag(fp);
3826
3827 switch (cmd) {
3828 case SPACECTL_DEALLOC:
3829 error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
3830 active_cred, active_cred, fp->f_cred);
3831 break;
3832 default:
3833 panic("vn_fspacectl: unknown cmd %d", cmd);
3834 }
3835
3836 return (error);
3837 }
3838
3839 /*
3840 * Keep this assert as long as sizeof(struct dirent) is used as the maximum
3841 * entry size.
3842 */
3843 _Static_assert(_GENERIC_MAXDIRSIZ == sizeof(struct dirent),
3844 "'struct dirent' size must be a multiple of its alignment "
3845 "(see _GENERIC_DIRLEN())");
3846
3847 /*
3848 * Returns successive directory entries through some caller's provided buffer.
3849 *
3850 * This function automatically refills the provided buffer with calls to
3851 * VOP_READDIR() (after MAC permission checks).
3852 *
3853 * 'td' is used for credentials and passed to uiomove(). 'dirbuf' is the
3854 * caller's buffer to fill and 'dirbuflen' its allocated size. 'dirbuf' must
3855 * be properly aligned to access 'struct dirent' structures and 'dirbuflen'
3856 * must be greater than GENERIC_MAXDIRSIZ to avoid VOP_READDIR() returning
3857 * EINVAL (the latter is not a strong guarantee (yet); but EINVAL will always
3858 * be returned if this requirement is not verified). '*dpp' points to the
3859 * current directory entry in the buffer and '*len' contains the remaining
3860 * valid bytes in 'dirbuf' after 'dpp' (including the pointed entry).
3861 *
3862 * At first call (or when restarting the read), '*len' must have been set to 0,
3863 * '*off' to 0 (or any valid start offset) and '*eofflag' to 0. There are no
3864 * more entries as soon as '*len' is 0 after a call that returned 0. Calling
3865 * again this function after such a condition is considered an error and EINVAL
3866 * will be returned. Other possible error codes are those of VOP_READDIR(),
3867 * EINTEGRITY if the returned entries do not pass coherency tests, or EINVAL
3868 * (bad call). All errors are unrecoverable, i.e., the state ('*len', '*off'
3869 * and '*eofflag') must be re-initialized before a subsequent call. On error
3870 * or at end of directory, '*dpp' is reset to NULL.
3871 *
3872 * '*len', '*off' and '*eofflag' are internal state the caller should not
3873 * tamper with except as explained above. '*off' is the next directory offset
3874 * to read from to refill the buffer. '*eofflag' is set to 0 or 1 by the last
3875 * internal call to VOP_READDIR() that returned without error, indicating
3876 * whether it reached the end of the directory, and to 2 by this function after
3877 * all entries have been read.
3878 */
3879 int
vn_dir_next_dirent(struct vnode * vp,struct thread * td,char * dirbuf,size_t dirbuflen,struct dirent ** dpp,size_t * len,off_t * off,int * eofflag)3880 vn_dir_next_dirent(struct vnode *vp, struct thread *td,
3881 char *dirbuf, size_t dirbuflen,
3882 struct dirent **dpp, size_t *len, off_t *off, int *eofflag)
3883 {
3884 struct dirent *dp = NULL;
3885 int reclen;
3886 int error;
3887 struct uio uio;
3888 struct iovec iov;
3889
3890 ASSERT_VOP_LOCKED(vp, "vnode not locked");
3891 VNASSERT(vp->v_type == VDIR, vp, ("vnode is not a directory"));
3892 MPASS2((uintptr_t)dirbuf < (uintptr_t)dirbuf + dirbuflen,
3893 "Address space overflow");
3894
3895 if (__predict_false(dirbuflen < GENERIC_MAXDIRSIZ)) {
3896 /* Don't take any chances in this case */
3897 error = EINVAL;
3898 goto out;
3899 }
3900
3901 if (*len != 0) {
3902 dp = *dpp;
3903
3904 /*
3905 * The caller continued to call us after an error (we set dp to
3906 * NULL in a previous iteration). Bail out right now.
3907 */
3908 if (__predict_false(dp == NULL))
3909 return (EINVAL);
3910
3911 MPASS(*len <= dirbuflen);
3912 MPASS2((uintptr_t)dirbuf <= (uintptr_t)dp &&
3913 (uintptr_t)dp + *len <= (uintptr_t)dirbuf + dirbuflen,
3914 "Filled range not inside buffer");
3915
3916 reclen = dp->d_reclen;
3917 if (reclen >= *len) {
3918 /* End of buffer reached */
3919 *len = 0;
3920 } else {
3921 dp = (struct dirent *)((char *)dp + reclen);
3922 *len -= reclen;
3923 }
3924 }
3925
3926 if (*len == 0) {
3927 dp = NULL;
3928
3929 /* Have to refill. */
3930 switch (*eofflag) {
3931 case 0:
3932 break;
3933
3934 case 1:
3935 /* Nothing more to read. */
3936 *eofflag = 2; /* Remember the caller reached EOF. */
3937 goto success;
3938
3939 default:
3940 /* The caller didn't test for EOF. */
3941 error = EINVAL;
3942 goto out;
3943 }
3944
3945 iov.iov_base = dirbuf;
3946 iov.iov_len = dirbuflen;
3947
3948 uio.uio_iov = &iov;
3949 uio.uio_iovcnt = 1;
3950 uio.uio_offset = *off;
3951 uio.uio_resid = dirbuflen;
3952 uio.uio_segflg = UIO_SYSSPACE;
3953 uio.uio_rw = UIO_READ;
3954 uio.uio_td = td;
3955
3956 #ifdef MAC
3957 error = mac_vnode_check_readdir(td->td_ucred, vp);
3958 if (error == 0)
3959 #endif
3960 error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag,
3961 NULL, NULL);
3962 if (error != 0)
3963 goto out;
3964
3965 *len = dirbuflen - uio.uio_resid;
3966 *off = uio.uio_offset;
3967
3968 if (*len == 0) {
3969 /* Sanity check on INVARIANTS. */
3970 MPASS(*eofflag != 0);
3971 *eofflag = 1;
3972 goto success;
3973 }
3974
3975 /*
3976 * Normalize the flag returned by VOP_READDIR(), since we use 2
3977 * as a sentinel value.
3978 */
3979 if (*eofflag != 0)
3980 *eofflag = 1;
3981
3982 dp = (struct dirent *)dirbuf;
3983 }
3984
3985 if (__predict_false(*len < GENERIC_MINDIRSIZ ||
3986 dp->d_reclen < GENERIC_MINDIRSIZ)) {
3987 error = EINTEGRITY;
3988 dp = NULL;
3989 goto out;
3990 }
3991
3992 success:
3993 error = 0;
3994 out:
3995 *dpp = dp;
3996 return (error);
3997 }
3998
3999 /*
4000 * Checks whether a directory is empty or not.
4001 *
4002 * If the directory is empty, returns 0, and if it is not, ENOTEMPTY. Other
4003 * values are genuine errors preventing the check.
4004 */
4005 int
vn_dir_check_empty(struct vnode * vp)4006 vn_dir_check_empty(struct vnode *vp)
4007 {
4008 struct thread *const td = curthread;
4009 char *dirbuf;
4010 size_t dirbuflen, len;
4011 off_t off;
4012 int eofflag, error;
4013 struct dirent *dp;
4014 struct vattr va;
4015
4016 ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
4017 VNPASS(vp->v_type == VDIR, vp);
4018
4019 error = VOP_GETATTR(vp, &va, td->td_ucred);
4020 if (error != 0)
4021 return (error);
4022
4023 dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ);
4024 if (dirbuflen < va.va_blocksize)
4025 dirbuflen = va.va_blocksize;
4026 dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK);
4027
4028 len = 0;
4029 off = 0;
4030 eofflag = 0;
4031
4032 for (;;) {
4033 error = vn_dir_next_dirent(vp, td, dirbuf, dirbuflen,
4034 &dp, &len, &off, &eofflag);
4035 if (error != 0)
4036 goto end;
4037
4038 if (len == 0) {
4039 /* EOF */
4040 error = 0;
4041 goto end;
4042 }
4043
4044 /*
4045 * Skip whiteouts. Unionfs operates on filesystems only and
4046 * not on hierarchies, so these whiteouts would be shadowed on
4047 * the system hierarchy but not for a union using the
4048 * filesystem of their directories as the upper layer.
4049 * Additionally, unionfs currently transparently exposes
4050 * union-specific metadata of its upper layer, meaning that
4051 * whiteouts can be seen through the union view in empty
4052 * directories. Taking into account these whiteouts would then
4053 * prevent mounting another filesystem on such effectively
4054 * empty directories.
4055 */
4056 if (dp->d_type == DT_WHT)
4057 continue;
4058
4059 /*
4060 * Any file in the directory which is not '.' or '..' indicates
4061 * the directory is not empty.
4062 */
4063 switch (dp->d_namlen) {
4064 case 2:
4065 if (dp->d_name[1] != '.') {
4066 /* Can't be '..' (nor '.') */
4067 error = ENOTEMPTY;
4068 goto end;
4069 }
4070 /* FALLTHROUGH */
4071 case 1:
4072 if (dp->d_name[0] != '.') {
4073 /* Can't be '..' nor '.' */
4074 error = ENOTEMPTY;
4075 goto end;
4076 }
4077 break;
4078
4079 default:
4080 error = ENOTEMPTY;
4081 goto end;
4082 }
4083 }
4084
4085 end:
4086 free(dirbuf, M_TEMP);
4087 return (error);
4088 }
4089
4090
4091 static u_long vn_lock_pair_pause_cnt;
4092 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
4093 &vn_lock_pair_pause_cnt, 0,
4094 "Count of vn_lock_pair deadlocks");
4095
4096 u_int vn_lock_pair_pause_max;
4097 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
4098 &vn_lock_pair_pause_max, 0,
4099 "Max ticks for vn_lock_pair deadlock avoidance sleep");
4100
4101 static void
vn_lock_pair_pause(const char * wmesg)4102 vn_lock_pair_pause(const char *wmesg)
4103 {
4104 atomic_add_long(&vn_lock_pair_pause_cnt, 1);
4105 pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
4106 }
4107
4108 /*
4109 * Lock pair of (possibly same) vnodes vp1, vp2, avoiding lock order
4110 * reversal. vp1_locked indicates whether vp1 is locked; if not, vp1
4111 * must be unlocked. Same for vp2 and vp2_locked. One of the vnodes
4112 * can be NULL.
4113 *
4114 * The function returns with both vnodes exclusively or shared locked,
4115 * according to corresponding lkflags, and guarantees that it does not
4116 * create lock order reversal with other threads during its execution.
4117 * Both vnodes could be unlocked temporary (and reclaimed).
4118 *
4119 * If requesting shared locking, locked vnode lock must not be recursed.
4120 *
4121 * Only one of LK_SHARED and LK_EXCLUSIVE must be specified.
4122 * LK_NODDLKTREAT can be optionally passed.
4123 *
4124 * If vp1 == vp2, only one, most exclusive, lock is obtained on it.
4125 */
4126 void
vn_lock_pair(struct vnode * vp1,bool vp1_locked,int lkflags1,struct vnode * vp2,bool vp2_locked,int lkflags2)4127 vn_lock_pair(struct vnode *vp1, bool vp1_locked, int lkflags1,
4128 struct vnode *vp2, bool vp2_locked, int lkflags2)
4129 {
4130 int error, locked1;
4131
4132 MPASS((((lkflags1 & LK_SHARED) != 0) ^ ((lkflags1 & LK_EXCLUSIVE) != 0)) ||
4133 (vp1 == NULL && lkflags1 == 0));
4134 MPASS((lkflags1 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4135 MPASS((((lkflags2 & LK_SHARED) != 0) ^ ((lkflags2 & LK_EXCLUSIVE) != 0)) ||
4136 (vp2 == NULL && lkflags2 == 0));
4137 MPASS((lkflags2 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4138
4139 if (vp1 == NULL && vp2 == NULL)
4140 return;
4141
4142 if (vp1 == vp2) {
4143 MPASS(vp1_locked == vp2_locked);
4144
4145 /* Select the most exclusive mode for lock. */
4146 if ((lkflags1 & LK_TYPE_MASK) != (lkflags2 & LK_TYPE_MASK))
4147 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4148
4149 if (vp1_locked) {
4150 ASSERT_VOP_LOCKED(vp1, "vp1");
4151
4152 /* No need to relock if any lock is exclusive. */
4153 if ((vp1->v_vnlock->lock_object.lo_flags &
4154 LK_NOSHARE) != 0)
4155 return;
4156
4157 locked1 = VOP_ISLOCKED(vp1);
4158 if (((lkflags1 & LK_SHARED) != 0 &&
4159 locked1 != LK_EXCLUSIVE) ||
4160 ((lkflags1 & LK_EXCLUSIVE) != 0 &&
4161 locked1 == LK_EXCLUSIVE))
4162 return;
4163 VOP_UNLOCK(vp1);
4164 }
4165
4166 ASSERT_VOP_UNLOCKED(vp1, "vp1");
4167 vn_lock(vp1, lkflags1 | LK_RETRY);
4168 return;
4169 }
4170
4171 if (vp1 != NULL) {
4172 if ((lkflags1 & LK_SHARED) != 0 &&
4173 (vp1->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4174 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4175 if (vp1_locked && VOP_ISLOCKED(vp1) != LK_EXCLUSIVE) {
4176 ASSERT_VOP_LOCKED(vp1, "vp1");
4177 if ((lkflags1 & LK_EXCLUSIVE) != 0) {
4178 VOP_UNLOCK(vp1);
4179 ASSERT_VOP_UNLOCKED(vp1,
4180 "vp1 shared recursed");
4181 vp1_locked = false;
4182 }
4183 } else if (!vp1_locked)
4184 ASSERT_VOP_UNLOCKED(vp1, "vp1");
4185 } else {
4186 vp1_locked = true;
4187 }
4188
4189 if (vp2 != NULL) {
4190 if ((lkflags2 & LK_SHARED) != 0 &&
4191 (vp2->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4192 lkflags2 = (lkflags2 & ~LK_SHARED) | LK_EXCLUSIVE;
4193 if (vp2_locked && VOP_ISLOCKED(vp2) != LK_EXCLUSIVE) {
4194 ASSERT_VOP_LOCKED(vp2, "vp2");
4195 if ((lkflags2 & LK_EXCLUSIVE) != 0) {
4196 VOP_UNLOCK(vp2);
4197 ASSERT_VOP_UNLOCKED(vp2,
4198 "vp2 shared recursed");
4199 vp2_locked = false;
4200 }
4201 } else if (!vp2_locked)
4202 ASSERT_VOP_UNLOCKED(vp2, "vp2");
4203 } else {
4204 vp2_locked = true;
4205 }
4206
4207 if (!vp1_locked && !vp2_locked) {
4208 vn_lock(vp1, lkflags1 | LK_RETRY);
4209 vp1_locked = true;
4210 }
4211
4212 while (!vp1_locked || !vp2_locked) {
4213 if (vp1_locked && vp2 != NULL) {
4214 if (vp1 != NULL) {
4215 error = VOP_LOCK1(vp2, lkflags2 | LK_NOWAIT,
4216 __FILE__, __LINE__);
4217 if (error == 0)
4218 break;
4219 VOP_UNLOCK(vp1);
4220 vp1_locked = false;
4221 vn_lock_pair_pause("vlp1");
4222 }
4223 vn_lock(vp2, lkflags2 | LK_RETRY);
4224 vp2_locked = true;
4225 }
4226 if (vp2_locked && vp1 != NULL) {
4227 if (vp2 != NULL) {
4228 error = VOP_LOCK1(vp1, lkflags1 | LK_NOWAIT,
4229 __FILE__, __LINE__);
4230 if (error == 0)
4231 break;
4232 VOP_UNLOCK(vp2);
4233 vp2_locked = false;
4234 vn_lock_pair_pause("vlp2");
4235 }
4236 vn_lock(vp1, lkflags1 | LK_RETRY);
4237 vp1_locked = true;
4238 }
4239 }
4240 if (vp1 != NULL) {
4241 if (lkflags1 == LK_EXCLUSIVE)
4242 ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
4243 else
4244 ASSERT_VOP_LOCKED(vp1, "vp1 ret");
4245 }
4246 if (vp2 != NULL) {
4247 if (lkflags2 == LK_EXCLUSIVE)
4248 ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
4249 else
4250 ASSERT_VOP_LOCKED(vp2, "vp2 ret");
4251 }
4252 }
4253
4254 int
vn_lktype_write(struct mount * mp,struct vnode * vp)4255 vn_lktype_write(struct mount *mp, struct vnode *vp)
4256 {
4257 if (MNT_SHARED_WRITES(mp) ||
4258 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
4259 return (LK_SHARED);
4260 return (LK_EXCLUSIVE);
4261 }
4262
4263 int
vn_cmp(struct file * fp1,struct file * fp2,struct thread * td)4264 vn_cmp(struct file *fp1, struct file *fp2, struct thread *td)
4265 {
4266 if (fp2->f_type != DTYPE_VNODE)
4267 return (3);
4268 return (kcmp_cmp((uintptr_t)fp1->f_vnode, (uintptr_t)fp2->f_vnode));
4269 }
4270