1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 */
30
31 /*
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
34 *
35 * The overall design of the ztest program is as follows:
36 *
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
41 *
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
45 *
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
48 *
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
52 *
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
61 *
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
67 *
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
70 *
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
74 *
75 * To turn this into an overnight stress test, use -T to specify run time.
76 *
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
79 *
80 * Use the -k option to set the desired frequency of kills.
81 *
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
89 */
90
91 #include <sys/zfs_context.h>
92 #include <sys/spa.h>
93 #include <sys/dmu.h>
94 #include <sys/txg.h>
95 #include <sys/dbuf.h>
96 #include <sys/zap.h>
97 #include <sys/dmu_objset.h>
98 #include <sys/poll.h>
99 #include <sys/stat.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
104 #include <sys/zio.h>
105 #include <sys/zil.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
123 #include <sys/abd.h>
124 #include <stdio.h>
125 #include <stdlib.h>
126 #include <unistd.h>
127 #include <getopt.h>
128 #include <signal.h>
129 #include <umem.h>
130 #include <ctype.h>
131 #include <math.h>
132 #include <sys/fs/zfs.h>
133 #include <zfs_fletcher.h>
134 #include <libnvpair.h>
135 #include <libzutil.h>
136 #include <sys/crypto/icp.h>
137 #if (__GLIBC__ && !__UCLIBC__)
138 #include <execinfo.h> /* for backtrace() */
139 #endif
140
141 static int ztest_fd_data = -1;
142 static int ztest_fd_rand = -1;
143
144 typedef struct ztest_shared_hdr {
145 uint64_t zh_hdr_size;
146 uint64_t zh_opts_size;
147 uint64_t zh_size;
148 uint64_t zh_stats_size;
149 uint64_t zh_stats_count;
150 uint64_t zh_ds_size;
151 uint64_t zh_ds_count;
152 } ztest_shared_hdr_t;
153
154 static ztest_shared_hdr_t *ztest_shared_hdr;
155
156 enum ztest_class_state {
157 ZTEST_VDEV_CLASS_OFF,
158 ZTEST_VDEV_CLASS_ON,
159 ZTEST_VDEV_CLASS_RND
160 };
161
162 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
163 #define ZO_GVARS_MAX_COUNT ((size_t)10)
164
165 typedef struct ztest_shared_opts {
166 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
167 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
168 char zo_alt_ztest[MAXNAMELEN];
169 char zo_alt_libpath[MAXNAMELEN];
170 uint64_t zo_vdevs;
171 uint64_t zo_vdevtime;
172 size_t zo_vdev_size;
173 int zo_ashift;
174 int zo_mirrors;
175 int zo_raid_children;
176 int zo_raid_parity;
177 char zo_raid_type[8];
178 int zo_draid_data;
179 int zo_draid_spares;
180 int zo_datasets;
181 int zo_threads;
182 uint64_t zo_passtime;
183 uint64_t zo_killrate;
184 int zo_verbose;
185 int zo_init;
186 uint64_t zo_time;
187 uint64_t zo_maxloops;
188 uint64_t zo_metaslab_force_ganging;
189 int zo_mmp_test;
190 int zo_special_vdevs;
191 int zo_dump_dbgmsg;
192 int zo_gvars_count;
193 char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
194 } ztest_shared_opts_t;
195
196 /* Default values for command line options. */
197 #define DEFAULT_POOL "ztest"
198 #define DEFAULT_VDEV_DIR "/tmp"
199 #define DEFAULT_VDEV_COUNT 5
200 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
201 #define DEFAULT_VDEV_SIZE_STR "256M"
202 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
203 #define DEFAULT_MIRRORS 2
204 #define DEFAULT_RAID_CHILDREN 4
205 #define DEFAULT_RAID_PARITY 1
206 #define DEFAULT_DRAID_DATA 4
207 #define DEFAULT_DRAID_SPARES 1
208 #define DEFAULT_DATASETS_COUNT 7
209 #define DEFAULT_THREADS 23
210 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
211 #define DEFAULT_RUN_TIME_STR "300 sec"
212 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
213 #define DEFAULT_PASS_TIME_STR "60 sec"
214 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
215 #define DEFAULT_KILLRATE_STR "70%"
216 #define DEFAULT_INITS 1
217 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
218 #define DEFAULT_FORCE_GANGING (64 << 10)
219 #define DEFAULT_FORCE_GANGING_STR "64K"
220
221 /* Simplifying assumption: -1 is not a valid default. */
222 #define NO_DEFAULT -1
223
224 static const ztest_shared_opts_t ztest_opts_defaults = {
225 .zo_pool = DEFAULT_POOL,
226 .zo_dir = DEFAULT_VDEV_DIR,
227 .zo_alt_ztest = { '\0' },
228 .zo_alt_libpath = { '\0' },
229 .zo_vdevs = DEFAULT_VDEV_COUNT,
230 .zo_ashift = DEFAULT_ASHIFT,
231 .zo_mirrors = DEFAULT_MIRRORS,
232 .zo_raid_children = DEFAULT_RAID_CHILDREN,
233 .zo_raid_parity = DEFAULT_RAID_PARITY,
234 .zo_raid_type = VDEV_TYPE_RAIDZ,
235 .zo_vdev_size = DEFAULT_VDEV_SIZE,
236 .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */
237 .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
238 .zo_datasets = DEFAULT_DATASETS_COUNT,
239 .zo_threads = DEFAULT_THREADS,
240 .zo_passtime = DEFAULT_PASS_TIME,
241 .zo_killrate = DEFAULT_KILL_RATE,
242 .zo_verbose = 0,
243 .zo_mmp_test = 0,
244 .zo_init = DEFAULT_INITS,
245 .zo_time = DEFAULT_RUN_TIME,
246 .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
247 .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
248 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
249 .zo_gvars_count = 0,
250 };
251
252 extern uint64_t metaslab_force_ganging;
253 extern uint64_t metaslab_df_alloc_threshold;
254 extern unsigned long zfs_deadman_synctime_ms;
255 extern int metaslab_preload_limit;
256 extern boolean_t zfs_compressed_arc_enabled;
257 extern int zfs_abd_scatter_enabled;
258 extern int dmu_object_alloc_chunk_shift;
259 extern boolean_t zfs_force_some_double_word_sm_entries;
260 extern unsigned long zio_decompress_fail_fraction;
261 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
262
263
264 static ztest_shared_opts_t *ztest_shared_opts;
265 static ztest_shared_opts_t ztest_opts;
266 static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
267
268 typedef struct ztest_shared_ds {
269 uint64_t zd_seq;
270 } ztest_shared_ds_t;
271
272 static ztest_shared_ds_t *ztest_shared_ds;
273 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
274
275 #define BT_MAGIC 0x123456789abcdefULL
276 #define MAXFAULTS(zs) \
277 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
278
279 enum ztest_io_type {
280 ZTEST_IO_WRITE_TAG,
281 ZTEST_IO_WRITE_PATTERN,
282 ZTEST_IO_WRITE_ZEROES,
283 ZTEST_IO_TRUNCATE,
284 ZTEST_IO_SETATTR,
285 ZTEST_IO_REWRITE,
286 ZTEST_IO_TYPES
287 };
288
289 typedef struct ztest_block_tag {
290 uint64_t bt_magic;
291 uint64_t bt_objset;
292 uint64_t bt_object;
293 uint64_t bt_dnodesize;
294 uint64_t bt_offset;
295 uint64_t bt_gen;
296 uint64_t bt_txg;
297 uint64_t bt_crtxg;
298 } ztest_block_tag_t;
299
300 typedef struct bufwad {
301 uint64_t bw_index;
302 uint64_t bw_txg;
303 uint64_t bw_data;
304 } bufwad_t;
305
306 /*
307 * It would be better to use a rangelock_t per object. Unfortunately
308 * the rangelock_t is not a drop-in replacement for rl_t, because we
309 * still need to map from object ID to rangelock_t.
310 */
311 typedef enum {
312 RL_READER,
313 RL_WRITER,
314 RL_APPEND
315 } rl_type_t;
316
317 typedef struct rll {
318 void *rll_writer;
319 int rll_readers;
320 kmutex_t rll_lock;
321 kcondvar_t rll_cv;
322 } rll_t;
323
324 typedef struct rl {
325 uint64_t rl_object;
326 uint64_t rl_offset;
327 uint64_t rl_size;
328 rll_t *rl_lock;
329 } rl_t;
330
331 #define ZTEST_RANGE_LOCKS 64
332 #define ZTEST_OBJECT_LOCKS 64
333
334 /*
335 * Object descriptor. Used as a template for object lookup/create/remove.
336 */
337 typedef struct ztest_od {
338 uint64_t od_dir;
339 uint64_t od_object;
340 dmu_object_type_t od_type;
341 dmu_object_type_t od_crtype;
342 uint64_t od_blocksize;
343 uint64_t od_crblocksize;
344 uint64_t od_crdnodesize;
345 uint64_t od_gen;
346 uint64_t od_crgen;
347 char od_name[ZFS_MAX_DATASET_NAME_LEN];
348 } ztest_od_t;
349
350 /*
351 * Per-dataset state.
352 */
353 typedef struct ztest_ds {
354 ztest_shared_ds_t *zd_shared;
355 objset_t *zd_os;
356 pthread_rwlock_t zd_zilog_lock;
357 zilog_t *zd_zilog;
358 ztest_od_t *zd_od; /* debugging aid */
359 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
360 kmutex_t zd_dirobj_lock;
361 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
362 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
363 } ztest_ds_t;
364
365 /*
366 * Per-iteration state.
367 */
368 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
369
370 typedef struct ztest_info {
371 ztest_func_t *zi_func; /* test function */
372 uint64_t zi_iters; /* iterations per execution */
373 uint64_t *zi_interval; /* execute every <interval> seconds */
374 const char *zi_funcname; /* name of test function */
375 } ztest_info_t;
376
377 typedef struct ztest_shared_callstate {
378 uint64_t zc_count; /* per-pass count */
379 uint64_t zc_time; /* per-pass time */
380 uint64_t zc_next; /* next time to call this function */
381 } ztest_shared_callstate_t;
382
383 static ztest_shared_callstate_t *ztest_shared_callstate;
384 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
385
386 ztest_func_t ztest_dmu_read_write;
387 ztest_func_t ztest_dmu_write_parallel;
388 ztest_func_t ztest_dmu_object_alloc_free;
389 ztest_func_t ztest_dmu_object_next_chunk;
390 ztest_func_t ztest_dmu_commit_callbacks;
391 ztest_func_t ztest_zap;
392 ztest_func_t ztest_zap_parallel;
393 ztest_func_t ztest_zil_commit;
394 ztest_func_t ztest_zil_remount;
395 ztest_func_t ztest_dmu_read_write_zcopy;
396 ztest_func_t ztest_dmu_objset_create_destroy;
397 ztest_func_t ztest_dmu_prealloc;
398 ztest_func_t ztest_fzap;
399 ztest_func_t ztest_dmu_snapshot_create_destroy;
400 ztest_func_t ztest_dsl_prop_get_set;
401 ztest_func_t ztest_spa_prop_get_set;
402 ztest_func_t ztest_spa_create_destroy;
403 ztest_func_t ztest_fault_inject;
404 ztest_func_t ztest_dmu_snapshot_hold;
405 ztest_func_t ztest_mmp_enable_disable;
406 ztest_func_t ztest_scrub;
407 ztest_func_t ztest_dsl_dataset_promote_busy;
408 ztest_func_t ztest_vdev_attach_detach;
409 ztest_func_t ztest_vdev_LUN_growth;
410 ztest_func_t ztest_vdev_add_remove;
411 ztest_func_t ztest_vdev_class_add;
412 ztest_func_t ztest_vdev_aux_add_remove;
413 ztest_func_t ztest_split_pool;
414 ztest_func_t ztest_reguid;
415 ztest_func_t ztest_spa_upgrade;
416 ztest_func_t ztest_device_removal;
417 ztest_func_t ztest_spa_checkpoint_create_discard;
418 ztest_func_t ztest_initialize;
419 ztest_func_t ztest_trim;
420 ztest_func_t ztest_fletcher;
421 ztest_func_t ztest_fletcher_incr;
422 ztest_func_t ztest_verify_dnode_bt;
423
424 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
425 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
426 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
427 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
428 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
429
430 #define ZTI_INIT(func, iters, interval) \
431 { .zi_func = (func), \
432 .zi_iters = (iters), \
433 .zi_interval = (interval), \
434 .zi_funcname = # func }
435
436 ztest_info_t ztest_info[] = {
437 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
438 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
439 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
440 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
441 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
442 ZTI_INIT(ztest_zap, 30, &zopt_always),
443 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
444 ZTI_INIT(ztest_split_pool, 1, &zopt_always),
445 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
446 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
447 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
448 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
449 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
450 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
451 #if 0
452 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
453 #endif
454 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
455 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
456 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
457 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
458 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
459 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
460 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
461 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
462 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
463 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
464 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
465 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
466 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
467 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
468 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
469 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
470 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
471 ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
472 ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
473 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
474 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
475 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
476 };
477
478 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
479
480 /*
481 * The following struct is used to hold a list of uncalled commit callbacks.
482 * The callbacks are ordered by txg number.
483 */
484 typedef struct ztest_cb_list {
485 kmutex_t zcl_callbacks_lock;
486 list_t zcl_callbacks;
487 } ztest_cb_list_t;
488
489 /*
490 * Stuff we need to share writably between parent and child.
491 */
492 typedef struct ztest_shared {
493 boolean_t zs_do_init;
494 hrtime_t zs_proc_start;
495 hrtime_t zs_proc_stop;
496 hrtime_t zs_thread_start;
497 hrtime_t zs_thread_stop;
498 hrtime_t zs_thread_kill;
499 uint64_t zs_enospc_count;
500 uint64_t zs_vdev_next_leaf;
501 uint64_t zs_vdev_aux;
502 uint64_t zs_alloc;
503 uint64_t zs_space;
504 uint64_t zs_splits;
505 uint64_t zs_mirrors;
506 uint64_t zs_metaslab_sz;
507 uint64_t zs_metaslab_df_alloc_threshold;
508 uint64_t zs_guid;
509 } ztest_shared_t;
510
511 #define ID_PARALLEL -1ULL
512
513 static char ztest_dev_template[] = "%s/%s.%llua";
514 static char ztest_aux_template[] = "%s/%s.%s.%llu";
515 ztest_shared_t *ztest_shared;
516
517 static spa_t *ztest_spa = NULL;
518 static ztest_ds_t *ztest_ds;
519
520 static kmutex_t ztest_vdev_lock;
521 static boolean_t ztest_device_removal_active = B_FALSE;
522 static boolean_t ztest_pool_scrubbed = B_FALSE;
523 static kmutex_t ztest_checkpoint_lock;
524
525 /*
526 * The ztest_name_lock protects the pool and dataset namespace used by
527 * the individual tests. To modify the namespace, consumers must grab
528 * this lock as writer. Grabbing the lock as reader will ensure that the
529 * namespace does not change while the lock is held.
530 */
531 static pthread_rwlock_t ztest_name_lock;
532
533 static boolean_t ztest_dump_core = B_TRUE;
534 static boolean_t ztest_exiting;
535
536 /* Global commit callback list */
537 static ztest_cb_list_t zcl;
538 /* Commit cb delay */
539 static uint64_t zc_min_txg_delay = UINT64_MAX;
540 static int zc_cb_counter = 0;
541
542 /*
543 * Minimum number of commit callbacks that need to be registered for us to check
544 * whether the minimum txg delay is acceptable.
545 */
546 #define ZTEST_COMMIT_CB_MIN_REG 100
547
548 /*
549 * If a number of txgs equal to this threshold have been created after a commit
550 * callback has been registered but not called, then we assume there is an
551 * implementation bug.
552 */
553 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
554
555 enum ztest_object {
556 ZTEST_META_DNODE = 0,
557 ZTEST_DIROBJ,
558 ZTEST_OBJECTS
559 };
560
561 static void usage(boolean_t) __NORETURN;
562 static int ztest_scrub_impl(spa_t *spa);
563
564 /*
565 * These libumem hooks provide a reasonable set of defaults for the allocator's
566 * debugging facilities.
567 */
568 const char *
_umem_debug_init(void)569 _umem_debug_init(void)
570 {
571 return ("default,verbose"); /* $UMEM_DEBUG setting */
572 }
573
574 const char *
_umem_logging_init(void)575 _umem_logging_init(void)
576 {
577 return ("fail,contents"); /* $UMEM_LOGGING setting */
578 }
579
580 static void
dump_debug_buffer(void)581 dump_debug_buffer(void)
582 {
583 ssize_t ret __attribute__((unused));
584
585 if (!ztest_opts.zo_dump_dbgmsg)
586 return;
587
588 /*
589 * We use write() instead of printf() so that this function
590 * is safe to call from a signal handler.
591 */
592 ret = write(STDOUT_FILENO, "\n", 1);
593 zfs_dbgmsg_print("ztest");
594 }
595
596 #define BACKTRACE_SZ 100
597
sig_handler(int signo)598 static void sig_handler(int signo)
599 {
600 struct sigaction action;
601 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
602 int nptrs;
603 void *buffer[BACKTRACE_SZ];
604
605 nptrs = backtrace(buffer, BACKTRACE_SZ);
606 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
607 #endif
608 dump_debug_buffer();
609
610 /*
611 * Restore default action and re-raise signal so SIGSEGV and
612 * SIGABRT can trigger a core dump.
613 */
614 action.sa_handler = SIG_DFL;
615 sigemptyset(&action.sa_mask);
616 action.sa_flags = 0;
617 (void) sigaction(signo, &action, NULL);
618 raise(signo);
619 }
620
621 #define FATAL_MSG_SZ 1024
622
623 char *fatal_msg;
624
625 static void
fatal(int do_perror,char * message,...)626 fatal(int do_perror, char *message, ...)
627 {
628 va_list args;
629 int save_errno = errno;
630 char *buf;
631
632 (void) fflush(stdout);
633 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
634
635 va_start(args, message);
636 (void) sprintf(buf, "ztest: ");
637 /* LINTED */
638 (void) vsprintf(buf + strlen(buf), message, args);
639 va_end(args);
640 if (do_perror) {
641 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
642 ": %s", strerror(save_errno));
643 }
644 (void) fprintf(stderr, "%s\n", buf);
645 fatal_msg = buf; /* to ease debugging */
646
647 if (ztest_dump_core)
648 abort();
649 else
650 dump_debug_buffer();
651
652 exit(3);
653 }
654
655 static int
str2shift(const char * buf)656 str2shift(const char *buf)
657 {
658 const char *ends = "BKMGTPEZ";
659 int i;
660
661 if (buf[0] == '\0')
662 return (0);
663 for (i = 0; i < strlen(ends); i++) {
664 if (toupper(buf[0]) == ends[i])
665 break;
666 }
667 if (i == strlen(ends)) {
668 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
669 buf);
670 usage(B_FALSE);
671 }
672 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
673 return (10*i);
674 }
675 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
676 usage(B_FALSE);
677 /* NOTREACHED */
678 }
679
680 static uint64_t
nicenumtoull(const char * buf)681 nicenumtoull(const char *buf)
682 {
683 char *end;
684 uint64_t val;
685
686 val = strtoull(buf, &end, 0);
687 if (end == buf) {
688 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
689 usage(B_FALSE);
690 } else if (end[0] == '.') {
691 double fval = strtod(buf, &end);
692 fval *= pow(2, str2shift(end));
693 /*
694 * UINT64_MAX is not exactly representable as a double.
695 * The closest representation is UINT64_MAX + 1, so we
696 * use a >= comparison instead of > for the bounds check.
697 */
698 if (fval >= (double)UINT64_MAX) {
699 (void) fprintf(stderr, "ztest: value too large: %s\n",
700 buf);
701 usage(B_FALSE);
702 }
703 val = (uint64_t)fval;
704 } else {
705 int shift = str2shift(end);
706 if (shift >= 64 || (val << shift) >> shift != val) {
707 (void) fprintf(stderr, "ztest: value too large: %s\n",
708 buf);
709 usage(B_FALSE);
710 }
711 val <<= shift;
712 }
713 return (val);
714 }
715
716 typedef struct ztest_option {
717 const char short_opt;
718 const char *long_opt;
719 const char *long_opt_param;
720 const char *comment;
721 unsigned int default_int;
722 char *default_str;
723 } ztest_option_t;
724
725 /*
726 * The following option_table is used for generating the usage info as well as
727 * the long and short option information for calling getopt_long().
728 */
729 static ztest_option_t option_table[] = {
730 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
731 NULL},
732 { 's', "vdev-size", "INTEGER", "Size of each vdev",
733 NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
734 { 'a', "alignment-shift", "INTEGER",
735 "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
736 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
737 DEFAULT_MIRRORS, NULL},
738 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
739 DEFAULT_RAID_CHILDREN, NULL},
740 { 'R', "raid-parity", "INTEGER", "Raid parity",
741 DEFAULT_RAID_PARITY, NULL},
742 { 'K', "raid-kind", "raidz|draid|random", "Raid kind",
743 NO_DEFAULT, "random"},
744 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
745 DEFAULT_DRAID_DATA, NULL},
746 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
747 DEFAULT_DRAID_SPARES, NULL},
748 { 'd', "datasets", "INTEGER", "Number of datasets",
749 DEFAULT_DATASETS_COUNT, NULL},
750 { 't', "threads", "INTEGER", "Number of ztest threads",
751 DEFAULT_THREADS, NULL},
752 { 'g', "gang-block-threshold", "INTEGER",
753 "Metaslab gang block threshold",
754 NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
755 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
756 DEFAULT_INITS, NULL},
757 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
758 NO_DEFAULT, DEFAULT_KILLRATE_STR},
759 { 'p', "pool-name", "STRING", "Pool name",
760 NO_DEFAULT, DEFAULT_POOL},
761 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
762 NO_DEFAULT, DEFAULT_VDEV_DIR},
763 { 'M', "multi-host", NULL,
764 "Multi-host; simulate pool imported on remote host",
765 NO_DEFAULT, NULL},
766 { 'E', "use-existing-pool", NULL,
767 "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
768 { 'T', "run-time", "INTEGER", "Total run time",
769 NO_DEFAULT, DEFAULT_RUN_TIME_STR},
770 { 'P', "pass-time", "INTEGER", "Time per pass",
771 NO_DEFAULT, DEFAULT_PASS_TIME_STR},
772 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
773 DEFAULT_MAX_LOOPS, NULL},
774 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
775 NO_DEFAULT, NULL},
776 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
777 NO_DEFAULT, "random"},
778 { 'o', "option", "\"OPTION=INTEGER\"",
779 "Set global variable to an unsigned 32-bit integer value",
780 NO_DEFAULT, NULL},
781 { 'G', "dump-debug-msg", NULL,
782 "Dump zfs_dbgmsg buffer before exiting due to an error",
783 NO_DEFAULT, NULL},
784 { 'V', "verbose", NULL,
785 "Verbose (use multiple times for ever more verbosity)",
786 NO_DEFAULT, NULL},
787 { 'h', "help", NULL, "Show this help",
788 NO_DEFAULT, NULL},
789 {0, 0, 0, 0, 0, 0}
790 };
791
792 static struct option *long_opts = NULL;
793 static char *short_opts = NULL;
794
795 static void
init_options(void)796 init_options(void)
797 {
798 ASSERT3P(long_opts, ==, NULL);
799 ASSERT3P(short_opts, ==, NULL);
800
801 int count = sizeof (option_table) / sizeof (option_table[0]);
802 long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
803
804 short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
805 int short_opt_index = 0;
806
807 for (int i = 0; i < count; i++) {
808 long_opts[i].val = option_table[i].short_opt;
809 long_opts[i].name = option_table[i].long_opt;
810 long_opts[i].has_arg = option_table[i].long_opt_param != NULL
811 ? required_argument : no_argument;
812 long_opts[i].flag = NULL;
813 short_opts[short_opt_index++] = option_table[i].short_opt;
814 if (option_table[i].long_opt_param != NULL) {
815 short_opts[short_opt_index++] = ':';
816 }
817 }
818 }
819
820 static void
fini_options(void)821 fini_options(void)
822 {
823 int count = sizeof (option_table) / sizeof (option_table[0]);
824
825 umem_free(long_opts, sizeof (struct option) * count);
826 umem_free(short_opts, sizeof (char) * 2 * count);
827
828 long_opts = NULL;
829 short_opts = NULL;
830 }
831
832 static void
usage(boolean_t requested)833 usage(boolean_t requested)
834 {
835 char option[80];
836 FILE *fp = requested ? stdout : stderr;
837
838 (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
839 for (int i = 0; option_table[i].short_opt != 0; i++) {
840 if (option_table[i].long_opt_param != NULL) {
841 (void) sprintf(option, " -%c --%s=%s",
842 option_table[i].short_opt,
843 option_table[i].long_opt,
844 option_table[i].long_opt_param);
845 } else {
846 (void) sprintf(option, " -%c --%s",
847 option_table[i].short_opt,
848 option_table[i].long_opt);
849 }
850 (void) fprintf(fp, " %-40s%s", option,
851 option_table[i].comment);
852
853 if (option_table[i].long_opt_param != NULL) {
854 if (option_table[i].default_str != NULL) {
855 (void) fprintf(fp, " (default: %s)",
856 option_table[i].default_str);
857 } else if (option_table[i].default_int != NO_DEFAULT) {
858 (void) fprintf(fp, " (default: %u)",
859 option_table[i].default_int);
860 }
861 }
862 (void) fprintf(fp, "\n");
863 }
864 exit(requested ? 0 : 1);
865 }
866
867 static uint64_t
ztest_random(uint64_t range)868 ztest_random(uint64_t range)
869 {
870 uint64_t r;
871
872 ASSERT3S(ztest_fd_rand, >=, 0);
873
874 if (range == 0)
875 return (0);
876
877 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
878 fatal(1, "short read from /dev/urandom");
879
880 return (r % range);
881 }
882
883 static void
ztest_parse_name_value(const char * input,ztest_shared_opts_t * zo)884 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
885 {
886 char name[32];
887 char *value;
888 int state = ZTEST_VDEV_CLASS_RND;
889
890 (void) strlcpy(name, input, sizeof (name));
891
892 value = strchr(name, '=');
893 if (value == NULL) {
894 (void) fprintf(stderr, "missing value in property=value "
895 "'-C' argument (%s)\n", input);
896 usage(B_FALSE);
897 }
898 *(value) = '\0';
899 value++;
900
901 if (strcmp(value, "on") == 0) {
902 state = ZTEST_VDEV_CLASS_ON;
903 } else if (strcmp(value, "off") == 0) {
904 state = ZTEST_VDEV_CLASS_OFF;
905 } else if (strcmp(value, "random") == 0) {
906 state = ZTEST_VDEV_CLASS_RND;
907 } else {
908 (void) fprintf(stderr, "invalid property value '%s'\n", value);
909 usage(B_FALSE);
910 }
911
912 if (strcmp(name, "special") == 0) {
913 zo->zo_special_vdevs = state;
914 } else {
915 (void) fprintf(stderr, "invalid property name '%s'\n", name);
916 usage(B_FALSE);
917 }
918 if (zo->zo_verbose >= 3)
919 (void) printf("%s vdev state is '%s'\n", name, value);
920 }
921
922 static void
process_options(int argc,char ** argv)923 process_options(int argc, char **argv)
924 {
925 char *path;
926 ztest_shared_opts_t *zo = &ztest_opts;
927
928 int opt;
929 uint64_t value;
930 char altdir[MAXNAMELEN] = { 0 };
931 char raid_kind[8] = { "random" };
932
933 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
934
935 init_options();
936
937 while ((opt = getopt_long(argc, argv, short_opts, long_opts,
938 NULL)) != EOF) {
939 value = 0;
940 switch (opt) {
941 case 'v':
942 case 's':
943 case 'a':
944 case 'm':
945 case 'r':
946 case 'R':
947 case 'D':
948 case 'S':
949 case 'd':
950 case 't':
951 case 'g':
952 case 'i':
953 case 'k':
954 case 'T':
955 case 'P':
956 case 'F':
957 value = nicenumtoull(optarg);
958 }
959 switch (opt) {
960 case 'v':
961 zo->zo_vdevs = value;
962 break;
963 case 's':
964 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
965 break;
966 case 'a':
967 zo->zo_ashift = value;
968 break;
969 case 'm':
970 zo->zo_mirrors = value;
971 break;
972 case 'r':
973 zo->zo_raid_children = MAX(1, value);
974 break;
975 case 'R':
976 zo->zo_raid_parity = MIN(MAX(value, 1), 3);
977 break;
978 case 'K':
979 (void) strlcpy(raid_kind, optarg, sizeof (raid_kind));
980 break;
981 case 'D':
982 zo->zo_draid_data = MAX(1, value);
983 break;
984 case 'S':
985 zo->zo_draid_spares = MAX(1, value);
986 break;
987 case 'd':
988 zo->zo_datasets = MAX(1, value);
989 break;
990 case 't':
991 zo->zo_threads = MAX(1, value);
992 break;
993 case 'g':
994 zo->zo_metaslab_force_ganging =
995 MAX(SPA_MINBLOCKSIZE << 1, value);
996 break;
997 case 'i':
998 zo->zo_init = value;
999 break;
1000 case 'k':
1001 zo->zo_killrate = value;
1002 break;
1003 case 'p':
1004 (void) strlcpy(zo->zo_pool, optarg,
1005 sizeof (zo->zo_pool));
1006 break;
1007 case 'f':
1008 path = realpath(optarg, NULL);
1009 if (path == NULL) {
1010 (void) fprintf(stderr, "error: %s: %s\n",
1011 optarg, strerror(errno));
1012 usage(B_FALSE);
1013 } else {
1014 (void) strlcpy(zo->zo_dir, path,
1015 sizeof (zo->zo_dir));
1016 free(path);
1017 }
1018 break;
1019 case 'M':
1020 zo->zo_mmp_test = 1;
1021 break;
1022 case 'V':
1023 zo->zo_verbose++;
1024 break;
1025 case 'E':
1026 zo->zo_init = 0;
1027 break;
1028 case 'T':
1029 zo->zo_time = value;
1030 break;
1031 case 'P':
1032 zo->zo_passtime = MAX(1, value);
1033 break;
1034 case 'F':
1035 zo->zo_maxloops = MAX(1, value);
1036 break;
1037 case 'B':
1038 (void) strlcpy(altdir, optarg, sizeof (altdir));
1039 break;
1040 case 'C':
1041 ztest_parse_name_value(optarg, zo);
1042 break;
1043 case 'o':
1044 if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1045 (void) fprintf(stderr,
1046 "max global var count (%zu) exceeded\n",
1047 ZO_GVARS_MAX_COUNT);
1048 usage(B_FALSE);
1049 }
1050 char *v = zo->zo_gvars[zo->zo_gvars_count];
1051 if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1052 ZO_GVARS_MAX_ARGLEN) {
1053 (void) fprintf(stderr,
1054 "global var option '%s' is too long\n",
1055 optarg);
1056 usage(B_FALSE);
1057 }
1058 zo->zo_gvars_count++;
1059 break;
1060 case 'G':
1061 zo->zo_dump_dbgmsg = 1;
1062 break;
1063 case 'h':
1064 usage(B_TRUE);
1065 break;
1066 case '?':
1067 default:
1068 usage(B_FALSE);
1069 break;
1070 }
1071 }
1072
1073 fini_options();
1074
1075 /* When raid choice is 'random' add a draid pool 50% of the time */
1076 if (strcmp(raid_kind, "random") == 0) {
1077 (void) strlcpy(raid_kind, (ztest_random(2) == 0) ?
1078 "draid" : "raidz", sizeof (raid_kind));
1079
1080 if (ztest_opts.zo_verbose >= 3)
1081 (void) printf("choosing RAID type '%s'\n", raid_kind);
1082 }
1083
1084 if (strcmp(raid_kind, "draid") == 0) {
1085 uint64_t min_devsize;
1086
1087 /* With fewer disk use 256M, otherwise 128M is OK */
1088 min_devsize = (ztest_opts.zo_raid_children < 16) ?
1089 (256ULL << 20) : (128ULL << 20);
1090
1091 /* No top-level mirrors with dRAID for now */
1092 zo->zo_mirrors = 0;
1093
1094 /* Use more appropriate defaults for dRAID */
1095 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1096 zo->zo_vdevs = 1;
1097 if (zo->zo_raid_children ==
1098 ztest_opts_defaults.zo_raid_children)
1099 zo->zo_raid_children = 16;
1100 if (zo->zo_ashift < 12)
1101 zo->zo_ashift = 12;
1102 if (zo->zo_vdev_size < min_devsize)
1103 zo->zo_vdev_size = min_devsize;
1104
1105 if (zo->zo_draid_data + zo->zo_raid_parity >
1106 zo->zo_raid_children - zo->zo_draid_spares) {
1107 (void) fprintf(stderr, "error: too few draid "
1108 "children (%d) for stripe width (%d)\n",
1109 zo->zo_raid_children,
1110 zo->zo_draid_data + zo->zo_raid_parity);
1111 usage(B_FALSE);
1112 }
1113
1114 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1115 sizeof (zo->zo_raid_type));
1116
1117 } else /* using raidz */ {
1118 ASSERT0(strcmp(raid_kind, "raidz"));
1119
1120 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1121 zo->zo_raid_children - 1);
1122 }
1123
1124 zo->zo_vdevtime =
1125 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1126 UINT64_MAX >> 2);
1127
1128 if (strlen(altdir) > 0) {
1129 char *cmd;
1130 char *realaltdir;
1131 char *bin;
1132 char *ztest;
1133 char *isa;
1134 int isalen;
1135
1136 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1137 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1138
1139 VERIFY3P(NULL, !=, realpath(getexecname(), cmd));
1140 if (0 != access(altdir, F_OK)) {
1141 ztest_dump_core = B_FALSE;
1142 fatal(B_TRUE, "invalid alternate ztest path: %s",
1143 altdir);
1144 }
1145 VERIFY3P(NULL, !=, realpath(altdir, realaltdir));
1146
1147 /*
1148 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
1149 * We want to extract <isa> to determine if we should use
1150 * 32 or 64 bit binaries.
1151 */
1152 bin = strstr(cmd, "/usr/bin/");
1153 ztest = strstr(bin, "/ztest");
1154 isa = bin + 9;
1155 isalen = ztest - isa;
1156 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
1157 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
1158 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
1159 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
1160
1161 if (0 != access(zo->zo_alt_ztest, X_OK)) {
1162 ztest_dump_core = B_FALSE;
1163 fatal(B_TRUE, "invalid alternate ztest: %s",
1164 zo->zo_alt_ztest);
1165 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
1166 ztest_dump_core = B_FALSE;
1167 fatal(B_TRUE, "invalid alternate lib directory %s",
1168 zo->zo_alt_libpath);
1169 }
1170
1171 umem_free(cmd, MAXPATHLEN);
1172 umem_free(realaltdir, MAXPATHLEN);
1173 }
1174 }
1175
1176 static void
ztest_kill(ztest_shared_t * zs)1177 ztest_kill(ztest_shared_t *zs)
1178 {
1179 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1180 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1181
1182 /*
1183 * Before we kill off ztest, make sure that the config is updated.
1184 * See comment above spa_write_cachefile().
1185 */
1186 mutex_enter(&spa_namespace_lock);
1187 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
1188 mutex_exit(&spa_namespace_lock);
1189
1190 (void) kill(getpid(), SIGKILL);
1191 }
1192
1193 /* ARGSUSED */
1194 static void
ztest_record_enospc(const char * s)1195 ztest_record_enospc(const char *s)
1196 {
1197 ztest_shared->zs_enospc_count++;
1198 }
1199
1200 static uint64_t
ztest_get_ashift(void)1201 ztest_get_ashift(void)
1202 {
1203 if (ztest_opts.zo_ashift == 0)
1204 return (SPA_MINBLOCKSHIFT + ztest_random(5));
1205 return (ztest_opts.zo_ashift);
1206 }
1207
1208 static boolean_t
ztest_is_draid_spare(const char * name)1209 ztest_is_draid_spare(const char *name)
1210 {
1211 uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1212
1213 if (sscanf(name, VDEV_TYPE_DRAID "%llu-%llu-%llu",
1214 (u_longlong_t *)&parity, (u_longlong_t *)&vdev_id,
1215 (u_longlong_t *)&spare_id) == 3) {
1216 return (B_TRUE);
1217 }
1218
1219 return (B_FALSE);
1220 }
1221
1222 static nvlist_t *
make_vdev_file(char * path,char * aux,char * pool,size_t size,uint64_t ashift)1223 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
1224 {
1225 char *pathbuf;
1226 uint64_t vdev;
1227 nvlist_t *file;
1228 boolean_t draid_spare = B_FALSE;
1229
1230 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1231
1232 if (ashift == 0)
1233 ashift = ztest_get_ashift();
1234
1235 if (path == NULL) {
1236 path = pathbuf;
1237
1238 if (aux != NULL) {
1239 vdev = ztest_shared->zs_vdev_aux;
1240 (void) snprintf(path, MAXPATHLEN,
1241 ztest_aux_template, ztest_opts.zo_dir,
1242 pool == NULL ? ztest_opts.zo_pool : pool,
1243 aux, vdev);
1244 } else {
1245 vdev = ztest_shared->zs_vdev_next_leaf++;
1246 (void) snprintf(path, MAXPATHLEN,
1247 ztest_dev_template, ztest_opts.zo_dir,
1248 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1249 }
1250 } else {
1251 draid_spare = ztest_is_draid_spare(path);
1252 }
1253
1254 if (size != 0 && !draid_spare) {
1255 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1256 if (fd == -1)
1257 fatal(1, "can't open %s", path);
1258 if (ftruncate(fd, size) != 0)
1259 fatal(1, "can't ftruncate %s", path);
1260 (void) close(fd);
1261 }
1262
1263 file = fnvlist_alloc();
1264 fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1265 draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1266 fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1267 fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1268 umem_free(pathbuf, MAXPATHLEN);
1269
1270 return (file);
1271 }
1272
1273 static nvlist_t *
make_vdev_raid(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r)1274 make_vdev_raid(char *path, char *aux, char *pool, size_t size,
1275 uint64_t ashift, int r)
1276 {
1277 nvlist_t *raid, **child;
1278 int c;
1279
1280 if (r < 2)
1281 return (make_vdev_file(path, aux, pool, size, ashift));
1282 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1283
1284 for (c = 0; c < r; c++)
1285 child[c] = make_vdev_file(path, aux, pool, size, ashift);
1286
1287 raid = fnvlist_alloc();
1288 fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1289 ztest_opts.zo_raid_type);
1290 fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1291 ztest_opts.zo_raid_parity);
1292 fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN, child, r);
1293
1294 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1295 uint64_t ndata = ztest_opts.zo_draid_data;
1296 uint64_t nparity = ztest_opts.zo_raid_parity;
1297 uint64_t nspares = ztest_opts.zo_draid_spares;
1298 uint64_t children = ztest_opts.zo_raid_children;
1299 uint64_t ngroups = 1;
1300
1301 /*
1302 * Calculate the minimum number of groups required to fill a
1303 * slice. This is the LCM of the stripe width (data + parity)
1304 * and the number of data drives (children - spares).
1305 */
1306 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1307 ngroups++;
1308
1309 /* Store the basic dRAID configuration. */
1310 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1311 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1312 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1313 }
1314
1315 for (c = 0; c < r; c++)
1316 fnvlist_free(child[c]);
1317
1318 umem_free(child, r * sizeof (nvlist_t *));
1319
1320 return (raid);
1321 }
1322
1323 static nvlist_t *
make_vdev_mirror(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r,int m)1324 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
1325 uint64_t ashift, int r, int m)
1326 {
1327 nvlist_t *mirror, **child;
1328 int c;
1329
1330 if (m < 1)
1331 return (make_vdev_raid(path, aux, pool, size, ashift, r));
1332
1333 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1334
1335 for (c = 0; c < m; c++)
1336 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1337
1338 mirror = fnvlist_alloc();
1339 fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1340 fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, child, m);
1341
1342 for (c = 0; c < m; c++)
1343 fnvlist_free(child[c]);
1344
1345 umem_free(child, m * sizeof (nvlist_t *));
1346
1347 return (mirror);
1348 }
1349
1350 static nvlist_t *
make_vdev_root(char * path,char * aux,char * pool,size_t size,uint64_t ashift,const char * class,int r,int m,int t)1351 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
1352 const char *class, int r, int m, int t)
1353 {
1354 nvlist_t *root, **child;
1355 int c;
1356 boolean_t log;
1357
1358 ASSERT3S(t, >, 0);
1359
1360 log = (class != NULL && strcmp(class, "log") == 0);
1361
1362 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1363
1364 for (c = 0; c < t; c++) {
1365 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1366 r, m);
1367 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1368
1369 if (class != NULL && class[0] != '\0') {
1370 ASSERT(m > 1 || log); /* expecting a mirror */
1371 fnvlist_add_string(child[c],
1372 ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1373 }
1374 }
1375
1376 root = fnvlist_alloc();
1377 fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1378 fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1379 child, t);
1380
1381 for (c = 0; c < t; c++)
1382 fnvlist_free(child[c]);
1383
1384 umem_free(child, t * sizeof (nvlist_t *));
1385
1386 return (root);
1387 }
1388
1389 /*
1390 * Find a random spa version. Returns back a random spa version in the
1391 * range [initial_version, SPA_VERSION_FEATURES].
1392 */
1393 static uint64_t
ztest_random_spa_version(uint64_t initial_version)1394 ztest_random_spa_version(uint64_t initial_version)
1395 {
1396 uint64_t version = initial_version;
1397
1398 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1399 version = version +
1400 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1401 }
1402
1403 if (version > SPA_VERSION_BEFORE_FEATURES)
1404 version = SPA_VERSION_FEATURES;
1405
1406 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1407 return (version);
1408 }
1409
1410 static int
ztest_random_blocksize(void)1411 ztest_random_blocksize(void)
1412 {
1413 ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1414
1415 /*
1416 * Choose a block size >= the ashift.
1417 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1418 */
1419 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1420 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1421 maxbs = 20;
1422 uint64_t block_shift =
1423 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1424 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1425 }
1426
1427 static int
ztest_random_dnodesize(void)1428 ztest_random_dnodesize(void)
1429 {
1430 int slots;
1431 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1432
1433 if (max_slots == DNODE_MIN_SLOTS)
1434 return (DNODE_MIN_SIZE);
1435
1436 /*
1437 * Weight the random distribution more heavily toward smaller
1438 * dnode sizes since that is more likely to reflect real-world
1439 * usage.
1440 */
1441 ASSERT3U(max_slots, >, 4);
1442 switch (ztest_random(10)) {
1443 case 0:
1444 slots = 5 + ztest_random(max_slots - 4);
1445 break;
1446 case 1 ... 4:
1447 slots = 2 + ztest_random(3);
1448 break;
1449 default:
1450 slots = 1;
1451 break;
1452 }
1453
1454 return (slots << DNODE_SHIFT);
1455 }
1456
1457 static int
ztest_random_ibshift(void)1458 ztest_random_ibshift(void)
1459 {
1460 return (DN_MIN_INDBLKSHIFT +
1461 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1462 }
1463
1464 static uint64_t
ztest_random_vdev_top(spa_t * spa,boolean_t log_ok)1465 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1466 {
1467 uint64_t top;
1468 vdev_t *rvd = spa->spa_root_vdev;
1469 vdev_t *tvd;
1470
1471 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1472
1473 do {
1474 top = ztest_random(rvd->vdev_children);
1475 tvd = rvd->vdev_child[top];
1476 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1477 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1478
1479 return (top);
1480 }
1481
1482 static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)1483 ztest_random_dsl_prop(zfs_prop_t prop)
1484 {
1485 uint64_t value;
1486
1487 do {
1488 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1489 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1490
1491 return (value);
1492 }
1493
1494 static int
ztest_dsl_prop_set_uint64(char * osname,zfs_prop_t prop,uint64_t value,boolean_t inherit)1495 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1496 boolean_t inherit)
1497 {
1498 const char *propname = zfs_prop_to_name(prop);
1499 const char *valname;
1500 char *setpoint;
1501 uint64_t curval;
1502 int error;
1503
1504 error = dsl_prop_set_int(osname, propname,
1505 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1506
1507 if (error == ENOSPC) {
1508 ztest_record_enospc(FTAG);
1509 return (error);
1510 }
1511 ASSERT0(error);
1512
1513 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1514 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1515
1516 if (ztest_opts.zo_verbose >= 6) {
1517 int err;
1518
1519 err = zfs_prop_index_to_string(prop, curval, &valname);
1520 if (err)
1521 (void) printf("%s %s = %llu at '%s'\n", osname,
1522 propname, (unsigned long long)curval, setpoint);
1523 else
1524 (void) printf("%s %s = %s at '%s'\n",
1525 osname, propname, valname, setpoint);
1526 }
1527 umem_free(setpoint, MAXPATHLEN);
1528
1529 return (error);
1530 }
1531
1532 static int
ztest_spa_prop_set_uint64(zpool_prop_t prop,uint64_t value)1533 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1534 {
1535 spa_t *spa = ztest_spa;
1536 nvlist_t *props = NULL;
1537 int error;
1538
1539 props = fnvlist_alloc();
1540 fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1541
1542 error = spa_prop_set(spa, props);
1543
1544 fnvlist_free(props);
1545
1546 if (error == ENOSPC) {
1547 ztest_record_enospc(FTAG);
1548 return (error);
1549 }
1550 ASSERT0(error);
1551
1552 return (error);
1553 }
1554
1555 static int
ztest_dmu_objset_own(const char * name,dmu_objset_type_t type,boolean_t readonly,boolean_t decrypt,void * tag,objset_t ** osp)1556 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1557 boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
1558 {
1559 int err;
1560 char *cp = NULL;
1561 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1562
1563 strcpy(ddname, name);
1564 cp = strchr(ddname, '@');
1565 if (cp != NULL)
1566 *cp = '\0';
1567
1568 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1569 while (decrypt && err == EACCES) {
1570 dsl_crypto_params_t *dcp;
1571 nvlist_t *crypto_args = fnvlist_alloc();
1572
1573 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1574 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1575 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1576 crypto_args, &dcp));
1577 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1578 /*
1579 * Note: if there was an error loading, the wkey was not
1580 * consumed, and needs to be freed.
1581 */
1582 dsl_crypto_params_free(dcp, (err != 0));
1583 fnvlist_free(crypto_args);
1584
1585 if (err == EINVAL) {
1586 /*
1587 * We couldn't load a key for this dataset so try
1588 * the parent. This loop will eventually hit the
1589 * encryption root since ztest only makes clones
1590 * as children of their origin datasets.
1591 */
1592 cp = strrchr(ddname, '/');
1593 if (cp == NULL)
1594 return (err);
1595
1596 *cp = '\0';
1597 err = EACCES;
1598 continue;
1599 } else if (err != 0) {
1600 break;
1601 }
1602
1603 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1604 break;
1605 }
1606
1607 return (err);
1608 }
1609
1610 static void
ztest_rll_init(rll_t * rll)1611 ztest_rll_init(rll_t *rll)
1612 {
1613 rll->rll_writer = NULL;
1614 rll->rll_readers = 0;
1615 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1616 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1617 }
1618
1619 static void
ztest_rll_destroy(rll_t * rll)1620 ztest_rll_destroy(rll_t *rll)
1621 {
1622 ASSERT3P(rll->rll_writer, ==, NULL);
1623 ASSERT0(rll->rll_readers);
1624 mutex_destroy(&rll->rll_lock);
1625 cv_destroy(&rll->rll_cv);
1626 }
1627
1628 static void
ztest_rll_lock(rll_t * rll,rl_type_t type)1629 ztest_rll_lock(rll_t *rll, rl_type_t type)
1630 {
1631 mutex_enter(&rll->rll_lock);
1632
1633 if (type == RL_READER) {
1634 while (rll->rll_writer != NULL)
1635 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1636 rll->rll_readers++;
1637 } else {
1638 while (rll->rll_writer != NULL || rll->rll_readers)
1639 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1640 rll->rll_writer = curthread;
1641 }
1642
1643 mutex_exit(&rll->rll_lock);
1644 }
1645
1646 static void
ztest_rll_unlock(rll_t * rll)1647 ztest_rll_unlock(rll_t *rll)
1648 {
1649 mutex_enter(&rll->rll_lock);
1650
1651 if (rll->rll_writer) {
1652 ASSERT0(rll->rll_readers);
1653 rll->rll_writer = NULL;
1654 } else {
1655 ASSERT3S(rll->rll_readers, >, 0);
1656 ASSERT3P(rll->rll_writer, ==, NULL);
1657 rll->rll_readers--;
1658 }
1659
1660 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1661 cv_broadcast(&rll->rll_cv);
1662
1663 mutex_exit(&rll->rll_lock);
1664 }
1665
1666 static void
ztest_object_lock(ztest_ds_t * zd,uint64_t object,rl_type_t type)1667 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1668 {
1669 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1670
1671 ztest_rll_lock(rll, type);
1672 }
1673
1674 static void
ztest_object_unlock(ztest_ds_t * zd,uint64_t object)1675 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1676 {
1677 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1678
1679 ztest_rll_unlock(rll);
1680 }
1681
1682 static rl_t *
ztest_range_lock(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,rl_type_t type)1683 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1684 uint64_t size, rl_type_t type)
1685 {
1686 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1687 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1688 rl_t *rl;
1689
1690 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1691 rl->rl_object = object;
1692 rl->rl_offset = offset;
1693 rl->rl_size = size;
1694 rl->rl_lock = rll;
1695
1696 ztest_rll_lock(rll, type);
1697
1698 return (rl);
1699 }
1700
1701 static void
ztest_range_unlock(rl_t * rl)1702 ztest_range_unlock(rl_t *rl)
1703 {
1704 rll_t *rll = rl->rl_lock;
1705
1706 ztest_rll_unlock(rll);
1707
1708 umem_free(rl, sizeof (*rl));
1709 }
1710
1711 static void
ztest_zd_init(ztest_ds_t * zd,ztest_shared_ds_t * szd,objset_t * os)1712 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1713 {
1714 zd->zd_os = os;
1715 zd->zd_zilog = dmu_objset_zil(os);
1716 zd->zd_shared = szd;
1717 dmu_objset_name(os, zd->zd_name);
1718 int l;
1719
1720 if (zd->zd_shared != NULL)
1721 zd->zd_shared->zd_seq = 0;
1722
1723 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1724 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1725
1726 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1727 ztest_rll_init(&zd->zd_object_lock[l]);
1728
1729 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1730 ztest_rll_init(&zd->zd_range_lock[l]);
1731 }
1732
1733 static void
ztest_zd_fini(ztest_ds_t * zd)1734 ztest_zd_fini(ztest_ds_t *zd)
1735 {
1736 int l;
1737
1738 mutex_destroy(&zd->zd_dirobj_lock);
1739 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1740
1741 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1742 ztest_rll_destroy(&zd->zd_object_lock[l]);
1743
1744 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1745 ztest_rll_destroy(&zd->zd_range_lock[l]);
1746 }
1747
1748 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1749
1750 static uint64_t
ztest_tx_assign(dmu_tx_t * tx,uint64_t txg_how,const char * tag)1751 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1752 {
1753 uint64_t txg;
1754 int error;
1755
1756 /*
1757 * Attempt to assign tx to some transaction group.
1758 */
1759 error = dmu_tx_assign(tx, txg_how);
1760 if (error) {
1761 if (error == ERESTART) {
1762 ASSERT3U(txg_how, ==, TXG_NOWAIT);
1763 dmu_tx_wait(tx);
1764 } else {
1765 ASSERT3U(error, ==, ENOSPC);
1766 ztest_record_enospc(tag);
1767 }
1768 dmu_tx_abort(tx);
1769 return (0);
1770 }
1771 txg = dmu_tx_get_txg(tx);
1772 ASSERT3U(txg, !=, 0);
1773 return (txg);
1774 }
1775
1776 static void
ztest_bt_generate(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1777 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1778 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1779 uint64_t crtxg)
1780 {
1781 bt->bt_magic = BT_MAGIC;
1782 bt->bt_objset = dmu_objset_id(os);
1783 bt->bt_object = object;
1784 bt->bt_dnodesize = dnodesize;
1785 bt->bt_offset = offset;
1786 bt->bt_gen = gen;
1787 bt->bt_txg = txg;
1788 bt->bt_crtxg = crtxg;
1789 }
1790
1791 static void
ztest_bt_verify(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1792 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1793 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1794 uint64_t crtxg)
1795 {
1796 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1797 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1798 ASSERT3U(bt->bt_object, ==, object);
1799 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1800 ASSERT3U(bt->bt_offset, ==, offset);
1801 ASSERT3U(bt->bt_gen, <=, gen);
1802 ASSERT3U(bt->bt_txg, <=, txg);
1803 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1804 }
1805
1806 static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t * db)1807 ztest_bt_bonus(dmu_buf_t *db)
1808 {
1809 dmu_object_info_t doi;
1810 ztest_block_tag_t *bt;
1811
1812 dmu_object_info_from_db(db, &doi);
1813 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1814 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1815 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1816
1817 return (bt);
1818 }
1819
1820 /*
1821 * Generate a token to fill up unused bonus buffer space. Try to make
1822 * it unique to the object, generation, and offset to verify that data
1823 * is not getting overwritten by data from other dnodes.
1824 */
1825 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1826 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1827
1828 /*
1829 * Fill up the unused bonus buffer region before the block tag with a
1830 * verifiable pattern. Filling the whole bonus area with non-zero data
1831 * helps ensure that all dnode traversal code properly skips the
1832 * interior regions of large dnodes.
1833 */
1834 static void
ztest_fill_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1835 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1836 objset_t *os, uint64_t gen)
1837 {
1838 uint64_t *bonusp;
1839
1840 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1841
1842 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1843 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1844 gen, bonusp - (uint64_t *)db->db_data);
1845 *bonusp = token;
1846 }
1847 }
1848
1849 /*
1850 * Verify that the unused area of a bonus buffer is filled with the
1851 * expected tokens.
1852 */
1853 static void
ztest_verify_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1854 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1855 objset_t *os, uint64_t gen)
1856 {
1857 uint64_t *bonusp;
1858
1859 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1860 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1861 gen, bonusp - (uint64_t *)db->db_data);
1862 VERIFY3U(*bonusp, ==, token);
1863 }
1864 }
1865
1866 /*
1867 * ZIL logging ops
1868 */
1869
1870 #define lrz_type lr_mode
1871 #define lrz_blocksize lr_uid
1872 #define lrz_ibshift lr_gid
1873 #define lrz_bonustype lr_rdev
1874 #define lrz_dnodesize lr_crtime[1]
1875
1876 static void
ztest_log_create(ztest_ds_t * zd,dmu_tx_t * tx,lr_create_t * lr)1877 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1878 {
1879 char *name = (void *)(lr + 1); /* name follows lr */
1880 size_t namesize = strlen(name) + 1;
1881 itx_t *itx;
1882
1883 if (zil_replaying(zd->zd_zilog, tx))
1884 return;
1885
1886 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1887 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1888 sizeof (*lr) + namesize - sizeof (lr_t));
1889
1890 zil_itx_assign(zd->zd_zilog, itx, tx);
1891 }
1892
1893 static void
ztest_log_remove(ztest_ds_t * zd,dmu_tx_t * tx,lr_remove_t * lr,uint64_t object)1894 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1895 {
1896 char *name = (void *)(lr + 1); /* name follows lr */
1897 size_t namesize = strlen(name) + 1;
1898 itx_t *itx;
1899
1900 if (zil_replaying(zd->zd_zilog, tx))
1901 return;
1902
1903 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1904 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1905 sizeof (*lr) + namesize - sizeof (lr_t));
1906
1907 itx->itx_oid = object;
1908 zil_itx_assign(zd->zd_zilog, itx, tx);
1909 }
1910
1911 static void
ztest_log_write(ztest_ds_t * zd,dmu_tx_t * tx,lr_write_t * lr)1912 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1913 {
1914 itx_t *itx;
1915 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1916
1917 if (zil_replaying(zd->zd_zilog, tx))
1918 return;
1919
1920 if (lr->lr_length > zil_max_log_data(zd->zd_zilog))
1921 write_state = WR_INDIRECT;
1922
1923 itx = zil_itx_create(TX_WRITE,
1924 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1925
1926 if (write_state == WR_COPIED &&
1927 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1928 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1929 zil_itx_destroy(itx);
1930 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1931 write_state = WR_NEED_COPY;
1932 }
1933 itx->itx_private = zd;
1934 itx->itx_wr_state = write_state;
1935 itx->itx_sync = (ztest_random(8) == 0);
1936
1937 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1938 sizeof (*lr) - sizeof (lr_t));
1939
1940 zil_itx_assign(zd->zd_zilog, itx, tx);
1941 }
1942
1943 static void
ztest_log_truncate(ztest_ds_t * zd,dmu_tx_t * tx,lr_truncate_t * lr)1944 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1945 {
1946 itx_t *itx;
1947
1948 if (zil_replaying(zd->zd_zilog, tx))
1949 return;
1950
1951 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1952 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1953 sizeof (*lr) - sizeof (lr_t));
1954
1955 itx->itx_sync = B_FALSE;
1956 zil_itx_assign(zd->zd_zilog, itx, tx);
1957 }
1958
1959 static void
ztest_log_setattr(ztest_ds_t * zd,dmu_tx_t * tx,lr_setattr_t * lr)1960 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1961 {
1962 itx_t *itx;
1963
1964 if (zil_replaying(zd->zd_zilog, tx))
1965 return;
1966
1967 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1968 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1969 sizeof (*lr) - sizeof (lr_t));
1970
1971 itx->itx_sync = B_FALSE;
1972 zil_itx_assign(zd->zd_zilog, itx, tx);
1973 }
1974
1975 /*
1976 * ZIL replay ops
1977 */
1978 static int
ztest_replay_create(void * arg1,void * arg2,boolean_t byteswap)1979 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1980 {
1981 ztest_ds_t *zd = arg1;
1982 lr_create_t *lr = arg2;
1983 char *name = (void *)(lr + 1); /* name follows lr */
1984 objset_t *os = zd->zd_os;
1985 ztest_block_tag_t *bbt;
1986 dmu_buf_t *db;
1987 dmu_tx_t *tx;
1988 uint64_t txg;
1989 int error = 0;
1990 int bonuslen;
1991
1992 if (byteswap)
1993 byteswap_uint64_array(lr, sizeof (*lr));
1994
1995 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
1996 ASSERT3S(name[0], !=, '\0');
1997
1998 tx = dmu_tx_create(os);
1999
2000 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2001
2002 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2003 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2004 } else {
2005 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2006 }
2007
2008 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2009 if (txg == 0)
2010 return (ENOSPC);
2011
2012 ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2013 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2014
2015 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2016 if (lr->lr_foid == 0) {
2017 lr->lr_foid = zap_create_dnsize(os,
2018 lr->lrz_type, lr->lrz_bonustype,
2019 bonuslen, lr->lrz_dnodesize, tx);
2020 } else {
2021 error = zap_create_claim_dnsize(os, lr->lr_foid,
2022 lr->lrz_type, lr->lrz_bonustype,
2023 bonuslen, lr->lrz_dnodesize, tx);
2024 }
2025 } else {
2026 if (lr->lr_foid == 0) {
2027 lr->lr_foid = dmu_object_alloc_dnsize(os,
2028 lr->lrz_type, 0, lr->lrz_bonustype,
2029 bonuslen, lr->lrz_dnodesize, tx);
2030 } else {
2031 error = dmu_object_claim_dnsize(os, lr->lr_foid,
2032 lr->lrz_type, 0, lr->lrz_bonustype,
2033 bonuslen, lr->lrz_dnodesize, tx);
2034 }
2035 }
2036
2037 if (error) {
2038 ASSERT3U(error, ==, EEXIST);
2039 ASSERT(zd->zd_zilog->zl_replay);
2040 dmu_tx_commit(tx);
2041 return (error);
2042 }
2043
2044 ASSERT3U(lr->lr_foid, !=, 0);
2045
2046 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2047 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2048 lr->lrz_blocksize, lr->lrz_ibshift, tx));
2049
2050 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2051 bbt = ztest_bt_bonus(db);
2052 dmu_buf_will_dirty(db, tx);
2053 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2054 lr->lr_gen, txg, txg);
2055 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2056 dmu_buf_rele(db, FTAG);
2057
2058 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2059 &lr->lr_foid, tx));
2060
2061 (void) ztest_log_create(zd, tx, lr);
2062
2063 dmu_tx_commit(tx);
2064
2065 return (0);
2066 }
2067
2068 static int
ztest_replay_remove(void * arg1,void * arg2,boolean_t byteswap)2069 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2070 {
2071 ztest_ds_t *zd = arg1;
2072 lr_remove_t *lr = arg2;
2073 char *name = (void *)(lr + 1); /* name follows lr */
2074 objset_t *os = zd->zd_os;
2075 dmu_object_info_t doi;
2076 dmu_tx_t *tx;
2077 uint64_t object, txg;
2078
2079 if (byteswap)
2080 byteswap_uint64_array(lr, sizeof (*lr));
2081
2082 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2083 ASSERT3S(name[0], !=, '\0');
2084
2085 VERIFY0(
2086 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2087 ASSERT3U(object, !=, 0);
2088
2089 ztest_object_lock(zd, object, RL_WRITER);
2090
2091 VERIFY0(dmu_object_info(os, object, &doi));
2092
2093 tx = dmu_tx_create(os);
2094
2095 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2096 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2097
2098 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2099 if (txg == 0) {
2100 ztest_object_unlock(zd, object);
2101 return (ENOSPC);
2102 }
2103
2104 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2105 VERIFY0(zap_destroy(os, object, tx));
2106 } else {
2107 VERIFY0(dmu_object_free(os, object, tx));
2108 }
2109
2110 VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2111
2112 (void) ztest_log_remove(zd, tx, lr, object);
2113
2114 dmu_tx_commit(tx);
2115
2116 ztest_object_unlock(zd, object);
2117
2118 return (0);
2119 }
2120
2121 static int
ztest_replay_write(void * arg1,void * arg2,boolean_t byteswap)2122 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2123 {
2124 ztest_ds_t *zd = arg1;
2125 lr_write_t *lr = arg2;
2126 objset_t *os = zd->zd_os;
2127 void *data = lr + 1; /* data follows lr */
2128 uint64_t offset, length;
2129 ztest_block_tag_t *bt = data;
2130 ztest_block_tag_t *bbt;
2131 uint64_t gen, txg, lrtxg, crtxg;
2132 dmu_object_info_t doi;
2133 dmu_tx_t *tx;
2134 dmu_buf_t *db;
2135 arc_buf_t *abuf = NULL;
2136 rl_t *rl;
2137
2138 if (byteswap)
2139 byteswap_uint64_array(lr, sizeof (*lr));
2140
2141 offset = lr->lr_offset;
2142 length = lr->lr_length;
2143
2144 /* If it's a dmu_sync() block, write the whole block */
2145 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2146 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2147 if (length < blocksize) {
2148 offset -= offset % blocksize;
2149 length = blocksize;
2150 }
2151 }
2152
2153 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2154 byteswap_uint64_array(bt, sizeof (*bt));
2155
2156 if (bt->bt_magic != BT_MAGIC)
2157 bt = NULL;
2158
2159 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2160 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
2161
2162 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2163
2164 dmu_object_info_from_db(db, &doi);
2165
2166 bbt = ztest_bt_bonus(db);
2167 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2168 gen = bbt->bt_gen;
2169 crtxg = bbt->bt_crtxg;
2170 lrtxg = lr->lr_common.lrc_txg;
2171
2172 tx = dmu_tx_create(os);
2173
2174 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2175
2176 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2177 P2PHASE(offset, length) == 0)
2178 abuf = dmu_request_arcbuf(db, length);
2179
2180 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2181 if (txg == 0) {
2182 if (abuf != NULL)
2183 dmu_return_arcbuf(abuf);
2184 dmu_buf_rele(db, FTAG);
2185 ztest_range_unlock(rl);
2186 ztest_object_unlock(zd, lr->lr_foid);
2187 return (ENOSPC);
2188 }
2189
2190 if (bt != NULL) {
2191 /*
2192 * Usually, verify the old data before writing new data --
2193 * but not always, because we also want to verify correct
2194 * behavior when the data was not recently read into cache.
2195 */
2196 ASSERT0(offset % doi.doi_data_block_size);
2197 if (ztest_random(4) != 0) {
2198 int prefetch = ztest_random(2) ?
2199 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2200 ztest_block_tag_t rbt;
2201
2202 VERIFY(dmu_read(os, lr->lr_foid, offset,
2203 sizeof (rbt), &rbt, prefetch) == 0);
2204 if (rbt.bt_magic == BT_MAGIC) {
2205 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2206 offset, gen, txg, crtxg);
2207 }
2208 }
2209
2210 /*
2211 * Writes can appear to be newer than the bonus buffer because
2212 * the ztest_get_data() callback does a dmu_read() of the
2213 * open-context data, which may be different than the data
2214 * as it was when the write was generated.
2215 */
2216 if (zd->zd_zilog->zl_replay) {
2217 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2218 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2219 bt->bt_crtxg);
2220 }
2221
2222 /*
2223 * Set the bt's gen/txg to the bonus buffer's gen/txg
2224 * so that all of the usual ASSERTs will work.
2225 */
2226 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2227 crtxg);
2228 }
2229
2230 if (abuf == NULL) {
2231 dmu_write(os, lr->lr_foid, offset, length, data, tx);
2232 } else {
2233 bcopy(data, abuf->b_data, length);
2234 dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
2235 }
2236
2237 (void) ztest_log_write(zd, tx, lr);
2238
2239 dmu_buf_rele(db, FTAG);
2240
2241 dmu_tx_commit(tx);
2242
2243 ztest_range_unlock(rl);
2244 ztest_object_unlock(zd, lr->lr_foid);
2245
2246 return (0);
2247 }
2248
2249 static int
ztest_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)2250 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2251 {
2252 ztest_ds_t *zd = arg1;
2253 lr_truncate_t *lr = arg2;
2254 objset_t *os = zd->zd_os;
2255 dmu_tx_t *tx;
2256 uint64_t txg;
2257 rl_t *rl;
2258
2259 if (byteswap)
2260 byteswap_uint64_array(lr, sizeof (*lr));
2261
2262 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2263 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2264 RL_WRITER);
2265
2266 tx = dmu_tx_create(os);
2267
2268 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2269
2270 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2271 if (txg == 0) {
2272 ztest_range_unlock(rl);
2273 ztest_object_unlock(zd, lr->lr_foid);
2274 return (ENOSPC);
2275 }
2276
2277 VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2278 lr->lr_length, tx));
2279
2280 (void) ztest_log_truncate(zd, tx, lr);
2281
2282 dmu_tx_commit(tx);
2283
2284 ztest_range_unlock(rl);
2285 ztest_object_unlock(zd, lr->lr_foid);
2286
2287 return (0);
2288 }
2289
2290 static int
ztest_replay_setattr(void * arg1,void * arg2,boolean_t byteswap)2291 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2292 {
2293 ztest_ds_t *zd = arg1;
2294 lr_setattr_t *lr = arg2;
2295 objset_t *os = zd->zd_os;
2296 dmu_tx_t *tx;
2297 dmu_buf_t *db;
2298 ztest_block_tag_t *bbt;
2299 uint64_t txg, lrtxg, crtxg, dnodesize;
2300
2301 if (byteswap)
2302 byteswap_uint64_array(lr, sizeof (*lr));
2303
2304 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2305
2306 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2307
2308 tx = dmu_tx_create(os);
2309 dmu_tx_hold_bonus(tx, lr->lr_foid);
2310
2311 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2312 if (txg == 0) {
2313 dmu_buf_rele(db, FTAG);
2314 ztest_object_unlock(zd, lr->lr_foid);
2315 return (ENOSPC);
2316 }
2317
2318 bbt = ztest_bt_bonus(db);
2319 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2320 crtxg = bbt->bt_crtxg;
2321 lrtxg = lr->lr_common.lrc_txg;
2322 dnodesize = bbt->bt_dnodesize;
2323
2324 if (zd->zd_zilog->zl_replay) {
2325 ASSERT3U(lr->lr_size, !=, 0);
2326 ASSERT3U(lr->lr_mode, !=, 0);
2327 ASSERT3U(lrtxg, !=, 0);
2328 } else {
2329 /*
2330 * Randomly change the size and increment the generation.
2331 */
2332 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2333 sizeof (*bbt);
2334 lr->lr_mode = bbt->bt_gen + 1;
2335 ASSERT0(lrtxg);
2336 }
2337
2338 /*
2339 * Verify that the current bonus buffer is not newer than our txg.
2340 */
2341 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2342 MAX(txg, lrtxg), crtxg);
2343
2344 dmu_buf_will_dirty(db, tx);
2345
2346 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2347 ASSERT3U(lr->lr_size, <=, db->db_size);
2348 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2349 bbt = ztest_bt_bonus(db);
2350
2351 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2352 txg, crtxg);
2353 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2354 dmu_buf_rele(db, FTAG);
2355
2356 (void) ztest_log_setattr(zd, tx, lr);
2357
2358 dmu_tx_commit(tx);
2359
2360 ztest_object_unlock(zd, lr->lr_foid);
2361
2362 return (0);
2363 }
2364
2365 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2366 NULL, /* 0 no such transaction type */
2367 ztest_replay_create, /* TX_CREATE */
2368 NULL, /* TX_MKDIR */
2369 NULL, /* TX_MKXATTR */
2370 NULL, /* TX_SYMLINK */
2371 ztest_replay_remove, /* TX_REMOVE */
2372 NULL, /* TX_RMDIR */
2373 NULL, /* TX_LINK */
2374 NULL, /* TX_RENAME */
2375 ztest_replay_write, /* TX_WRITE */
2376 ztest_replay_truncate, /* TX_TRUNCATE */
2377 ztest_replay_setattr, /* TX_SETATTR */
2378 NULL, /* TX_ACL */
2379 NULL, /* TX_CREATE_ACL */
2380 NULL, /* TX_CREATE_ATTR */
2381 NULL, /* TX_CREATE_ACL_ATTR */
2382 NULL, /* TX_MKDIR_ACL */
2383 NULL, /* TX_MKDIR_ATTR */
2384 NULL, /* TX_MKDIR_ACL_ATTR */
2385 NULL, /* TX_WRITE2 */
2386 };
2387
2388 /*
2389 * ZIL get_data callbacks
2390 */
2391
2392 /* ARGSUSED */
2393 static void
ztest_get_done(zgd_t * zgd,int error)2394 ztest_get_done(zgd_t *zgd, int error)
2395 {
2396 ztest_ds_t *zd = zgd->zgd_private;
2397 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2398
2399 if (zgd->zgd_db)
2400 dmu_buf_rele(zgd->zgd_db, zgd);
2401
2402 ztest_range_unlock((rl_t *)zgd->zgd_lr);
2403 ztest_object_unlock(zd, object);
2404
2405 umem_free(zgd, sizeof (*zgd));
2406 }
2407
2408 static int
ztest_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)2409 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2410 struct lwb *lwb, zio_t *zio)
2411 {
2412 ztest_ds_t *zd = arg;
2413 objset_t *os = zd->zd_os;
2414 uint64_t object = lr->lr_foid;
2415 uint64_t offset = lr->lr_offset;
2416 uint64_t size = lr->lr_length;
2417 uint64_t txg = lr->lr_common.lrc_txg;
2418 uint64_t crtxg;
2419 dmu_object_info_t doi;
2420 dmu_buf_t *db;
2421 zgd_t *zgd;
2422 int error;
2423
2424 ASSERT3P(lwb, !=, NULL);
2425 ASSERT3P(zio, !=, NULL);
2426 ASSERT3U(size, !=, 0);
2427
2428 ztest_object_lock(zd, object, RL_READER);
2429 error = dmu_bonus_hold(os, object, FTAG, &db);
2430 if (error) {
2431 ztest_object_unlock(zd, object);
2432 return (error);
2433 }
2434
2435 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2436
2437 if (crtxg == 0 || crtxg > txg) {
2438 dmu_buf_rele(db, FTAG);
2439 ztest_object_unlock(zd, object);
2440 return (ENOENT);
2441 }
2442
2443 dmu_object_info_from_db(db, &doi);
2444 dmu_buf_rele(db, FTAG);
2445 db = NULL;
2446
2447 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2448 zgd->zgd_lwb = lwb;
2449 zgd->zgd_private = zd;
2450
2451 if (buf != NULL) { /* immediate write */
2452 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2453 object, offset, size, RL_READER);
2454
2455 error = dmu_read(os, object, offset, size, buf,
2456 DMU_READ_NO_PREFETCH);
2457 ASSERT0(error);
2458 } else {
2459 size = doi.doi_data_block_size;
2460 if (ISP2(size)) {
2461 offset = P2ALIGN(offset, size);
2462 } else {
2463 ASSERT3U(offset, <, size);
2464 offset = 0;
2465 }
2466
2467 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2468 object, offset, size, RL_READER);
2469
2470 error = dmu_buf_hold(os, object, offset, zgd, &db,
2471 DMU_READ_NO_PREFETCH);
2472
2473 if (error == 0) {
2474 blkptr_t *bp = &lr->lr_blkptr;
2475
2476 zgd->zgd_db = db;
2477 zgd->zgd_bp = bp;
2478
2479 ASSERT3U(db->db_offset, ==, offset);
2480 ASSERT3U(db->db_size, ==, size);
2481
2482 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2483 ztest_get_done, zgd);
2484
2485 if (error == 0)
2486 return (0);
2487 }
2488 }
2489
2490 ztest_get_done(zgd, error);
2491
2492 return (error);
2493 }
2494
2495 static void *
ztest_lr_alloc(size_t lrsize,char * name)2496 ztest_lr_alloc(size_t lrsize, char *name)
2497 {
2498 char *lr;
2499 size_t namesize = name ? strlen(name) + 1 : 0;
2500
2501 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2502
2503 if (name)
2504 bcopy(name, lr + lrsize, namesize);
2505
2506 return (lr);
2507 }
2508
2509 static void
ztest_lr_free(void * lr,size_t lrsize,char * name)2510 ztest_lr_free(void *lr, size_t lrsize, char *name)
2511 {
2512 size_t namesize = name ? strlen(name) + 1 : 0;
2513
2514 umem_free(lr, lrsize + namesize);
2515 }
2516
2517 /*
2518 * Lookup a bunch of objects. Returns the number of objects not found.
2519 */
2520 static int
ztest_lookup(ztest_ds_t * zd,ztest_od_t * od,int count)2521 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2522 {
2523 int missing = 0;
2524 int error;
2525 int i;
2526
2527 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2528
2529 for (i = 0; i < count; i++, od++) {
2530 od->od_object = 0;
2531 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2532 sizeof (uint64_t), 1, &od->od_object);
2533 if (error) {
2534 ASSERT3S(error, ==, ENOENT);
2535 ASSERT0(od->od_object);
2536 missing++;
2537 } else {
2538 dmu_buf_t *db;
2539 ztest_block_tag_t *bbt;
2540 dmu_object_info_t doi;
2541
2542 ASSERT3U(od->od_object, !=, 0);
2543 ASSERT0(missing); /* there should be no gaps */
2544
2545 ztest_object_lock(zd, od->od_object, RL_READER);
2546 VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2547 FTAG, &db));
2548 dmu_object_info_from_db(db, &doi);
2549 bbt = ztest_bt_bonus(db);
2550 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2551 od->od_type = doi.doi_type;
2552 od->od_blocksize = doi.doi_data_block_size;
2553 od->od_gen = bbt->bt_gen;
2554 dmu_buf_rele(db, FTAG);
2555 ztest_object_unlock(zd, od->od_object);
2556 }
2557 }
2558
2559 return (missing);
2560 }
2561
2562 static int
ztest_create(ztest_ds_t * zd,ztest_od_t * od,int count)2563 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2564 {
2565 int missing = 0;
2566 int i;
2567
2568 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2569
2570 for (i = 0; i < count; i++, od++) {
2571 if (missing) {
2572 od->od_object = 0;
2573 missing++;
2574 continue;
2575 }
2576
2577 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2578
2579 lr->lr_doid = od->od_dir;
2580 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2581 lr->lrz_type = od->od_crtype;
2582 lr->lrz_blocksize = od->od_crblocksize;
2583 lr->lrz_ibshift = ztest_random_ibshift();
2584 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2585 lr->lrz_dnodesize = od->od_crdnodesize;
2586 lr->lr_gen = od->od_crgen;
2587 lr->lr_crtime[0] = time(NULL);
2588
2589 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2590 ASSERT0(missing);
2591 od->od_object = 0;
2592 missing++;
2593 } else {
2594 od->od_object = lr->lr_foid;
2595 od->od_type = od->od_crtype;
2596 od->od_blocksize = od->od_crblocksize;
2597 od->od_gen = od->od_crgen;
2598 ASSERT3U(od->od_object, !=, 0);
2599 }
2600
2601 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2602 }
2603
2604 return (missing);
2605 }
2606
2607 static int
ztest_remove(ztest_ds_t * zd,ztest_od_t * od,int count)2608 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2609 {
2610 int missing = 0;
2611 int error;
2612 int i;
2613
2614 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2615
2616 od += count - 1;
2617
2618 for (i = count - 1; i >= 0; i--, od--) {
2619 if (missing) {
2620 missing++;
2621 continue;
2622 }
2623
2624 /*
2625 * No object was found.
2626 */
2627 if (od->od_object == 0)
2628 continue;
2629
2630 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2631
2632 lr->lr_doid = od->od_dir;
2633
2634 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2635 ASSERT3U(error, ==, ENOSPC);
2636 missing++;
2637 } else {
2638 od->od_object = 0;
2639 }
2640 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2641 }
2642
2643 return (missing);
2644 }
2645
2646 static int
ztest_write(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,void * data)2647 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2648 void *data)
2649 {
2650 lr_write_t *lr;
2651 int error;
2652
2653 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2654
2655 lr->lr_foid = object;
2656 lr->lr_offset = offset;
2657 lr->lr_length = size;
2658 lr->lr_blkoff = 0;
2659 BP_ZERO(&lr->lr_blkptr);
2660
2661 bcopy(data, lr + 1, size);
2662
2663 error = ztest_replay_write(zd, lr, B_FALSE);
2664
2665 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2666
2667 return (error);
2668 }
2669
2670 static int
ztest_truncate(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2671 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2672 {
2673 lr_truncate_t *lr;
2674 int error;
2675
2676 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2677
2678 lr->lr_foid = object;
2679 lr->lr_offset = offset;
2680 lr->lr_length = size;
2681
2682 error = ztest_replay_truncate(zd, lr, B_FALSE);
2683
2684 ztest_lr_free(lr, sizeof (*lr), NULL);
2685
2686 return (error);
2687 }
2688
2689 static int
ztest_setattr(ztest_ds_t * zd,uint64_t object)2690 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2691 {
2692 lr_setattr_t *lr;
2693 int error;
2694
2695 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2696
2697 lr->lr_foid = object;
2698 lr->lr_size = 0;
2699 lr->lr_mode = 0;
2700
2701 error = ztest_replay_setattr(zd, lr, B_FALSE);
2702
2703 ztest_lr_free(lr, sizeof (*lr), NULL);
2704
2705 return (error);
2706 }
2707
2708 static void
ztest_prealloc(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2709 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2710 {
2711 objset_t *os = zd->zd_os;
2712 dmu_tx_t *tx;
2713 uint64_t txg;
2714 rl_t *rl;
2715
2716 txg_wait_synced(dmu_objset_pool(os), 0);
2717
2718 ztest_object_lock(zd, object, RL_READER);
2719 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2720
2721 tx = dmu_tx_create(os);
2722
2723 dmu_tx_hold_write(tx, object, offset, size);
2724
2725 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2726
2727 if (txg != 0) {
2728 dmu_prealloc(os, object, offset, size, tx);
2729 dmu_tx_commit(tx);
2730 txg_wait_synced(dmu_objset_pool(os), txg);
2731 } else {
2732 (void) dmu_free_long_range(os, object, offset, size);
2733 }
2734
2735 ztest_range_unlock(rl);
2736 ztest_object_unlock(zd, object);
2737 }
2738
2739 static void
ztest_io(ztest_ds_t * zd,uint64_t object,uint64_t offset)2740 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2741 {
2742 int err;
2743 ztest_block_tag_t wbt;
2744 dmu_object_info_t doi;
2745 enum ztest_io_type io_type;
2746 uint64_t blocksize;
2747 void *data;
2748
2749 VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2750 blocksize = doi.doi_data_block_size;
2751 data = umem_alloc(blocksize, UMEM_NOFAIL);
2752
2753 /*
2754 * Pick an i/o type at random, biased toward writing block tags.
2755 */
2756 io_type = ztest_random(ZTEST_IO_TYPES);
2757 if (ztest_random(2) == 0)
2758 io_type = ZTEST_IO_WRITE_TAG;
2759
2760 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2761
2762 switch (io_type) {
2763
2764 case ZTEST_IO_WRITE_TAG:
2765 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2766 offset, 0, 0, 0);
2767 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2768 break;
2769
2770 case ZTEST_IO_WRITE_PATTERN:
2771 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2772 if (ztest_random(2) == 0) {
2773 /*
2774 * Induce fletcher2 collisions to ensure that
2775 * zio_ddt_collision() detects and resolves them
2776 * when using fletcher2-verify for deduplication.
2777 */
2778 ((uint64_t *)data)[0] ^= 1ULL << 63;
2779 ((uint64_t *)data)[4] ^= 1ULL << 63;
2780 }
2781 (void) ztest_write(zd, object, offset, blocksize, data);
2782 break;
2783
2784 case ZTEST_IO_WRITE_ZEROES:
2785 bzero(data, blocksize);
2786 (void) ztest_write(zd, object, offset, blocksize, data);
2787 break;
2788
2789 case ZTEST_IO_TRUNCATE:
2790 (void) ztest_truncate(zd, object, offset, blocksize);
2791 break;
2792
2793 case ZTEST_IO_SETATTR:
2794 (void) ztest_setattr(zd, object);
2795 break;
2796 default:
2797 break;
2798
2799 case ZTEST_IO_REWRITE:
2800 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2801 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2802 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2803 B_FALSE);
2804 VERIFY(err == 0 || err == ENOSPC);
2805 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2806 ZFS_PROP_COMPRESSION,
2807 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2808 B_FALSE);
2809 VERIFY(err == 0 || err == ENOSPC);
2810 (void) pthread_rwlock_unlock(&ztest_name_lock);
2811
2812 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2813 DMU_READ_NO_PREFETCH));
2814
2815 (void) ztest_write(zd, object, offset, blocksize, data);
2816 break;
2817 }
2818
2819 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2820
2821 umem_free(data, blocksize);
2822 }
2823
2824 /*
2825 * Initialize an object description template.
2826 */
2827 static void
ztest_od_init(ztest_od_t * od,uint64_t id,char * tag,uint64_t index,dmu_object_type_t type,uint64_t blocksize,uint64_t dnodesize,uint64_t gen)2828 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2829 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2830 uint64_t gen)
2831 {
2832 od->od_dir = ZTEST_DIROBJ;
2833 od->od_object = 0;
2834
2835 od->od_crtype = type;
2836 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2837 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2838 od->od_crgen = gen;
2839
2840 od->od_type = DMU_OT_NONE;
2841 od->od_blocksize = 0;
2842 od->od_gen = 0;
2843
2844 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2845 tag, (longlong_t)id, (u_longlong_t)index);
2846 }
2847
2848 /*
2849 * Lookup or create the objects for a test using the od template.
2850 * If the objects do not all exist, or if 'remove' is specified,
2851 * remove any existing objects and create new ones. Otherwise,
2852 * use the existing objects.
2853 */
2854 static int
ztest_object_init(ztest_ds_t * zd,ztest_od_t * od,size_t size,boolean_t remove)2855 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2856 {
2857 int count = size / sizeof (*od);
2858 int rv = 0;
2859
2860 mutex_enter(&zd->zd_dirobj_lock);
2861 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2862 (ztest_remove(zd, od, count) != 0 ||
2863 ztest_create(zd, od, count) != 0))
2864 rv = -1;
2865 zd->zd_od = od;
2866 mutex_exit(&zd->zd_dirobj_lock);
2867
2868 return (rv);
2869 }
2870
2871 /* ARGSUSED */
2872 void
ztest_zil_commit(ztest_ds_t * zd,uint64_t id)2873 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2874 {
2875 zilog_t *zilog = zd->zd_zilog;
2876
2877 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2878
2879 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2880
2881 /*
2882 * Remember the committed values in zd, which is in parent/child
2883 * shared memory. If we die, the next iteration of ztest_run()
2884 * will verify that the log really does contain this record.
2885 */
2886 mutex_enter(&zilog->zl_lock);
2887 ASSERT3P(zd->zd_shared, !=, NULL);
2888 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2889 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2890 mutex_exit(&zilog->zl_lock);
2891
2892 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2893 }
2894
2895 /*
2896 * This function is designed to simulate the operations that occur during a
2897 * mount/unmount operation. We hold the dataset across these operations in an
2898 * attempt to expose any implicit assumptions about ZIL management.
2899 */
2900 /* ARGSUSED */
2901 void
ztest_zil_remount(ztest_ds_t * zd,uint64_t id)2902 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2903 {
2904 objset_t *os = zd->zd_os;
2905
2906 /*
2907 * We hold the ztest_vdev_lock so we don't cause problems with
2908 * other threads that wish to remove a log device, such as
2909 * ztest_device_removal().
2910 */
2911 mutex_enter(&ztest_vdev_lock);
2912
2913 /*
2914 * We grab the zd_dirobj_lock to ensure that no other thread is
2915 * updating the zil (i.e. adding in-memory log records) and the
2916 * zd_zilog_lock to block any I/O.
2917 */
2918 mutex_enter(&zd->zd_dirobj_lock);
2919 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2920
2921 /* zfsvfs_teardown() */
2922 zil_close(zd->zd_zilog);
2923
2924 /* zfsvfs_setup() */
2925 VERIFY3P(zil_open(os, ztest_get_data), ==, zd->zd_zilog);
2926 zil_replay(os, zd, ztest_replay_vector);
2927
2928 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2929 mutex_exit(&zd->zd_dirobj_lock);
2930 mutex_exit(&ztest_vdev_lock);
2931 }
2932
2933 /*
2934 * Verify that we can't destroy an active pool, create an existing pool,
2935 * or create a pool with a bad vdev spec.
2936 */
2937 /* ARGSUSED */
2938 void
ztest_spa_create_destroy(ztest_ds_t * zd,uint64_t id)2939 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2940 {
2941 ztest_shared_opts_t *zo = &ztest_opts;
2942 spa_t *spa;
2943 nvlist_t *nvroot;
2944
2945 if (zo->zo_mmp_test)
2946 return;
2947
2948 /*
2949 * Attempt to create using a bad file.
2950 */
2951 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2952 VERIFY3U(ENOENT, ==,
2953 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2954 fnvlist_free(nvroot);
2955
2956 /*
2957 * Attempt to create using a bad mirror.
2958 */
2959 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2960 VERIFY3U(ENOENT, ==,
2961 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2962 fnvlist_free(nvroot);
2963
2964 /*
2965 * Attempt to create an existing pool. It shouldn't matter
2966 * what's in the nvroot; we should fail with EEXIST.
2967 */
2968 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2969 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2970 VERIFY3U(EEXIST, ==,
2971 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2972 fnvlist_free(nvroot);
2973
2974 /*
2975 * We open a reference to the spa and then we try to export it
2976 * expecting one of the following errors:
2977 *
2978 * EBUSY
2979 * Because of the reference we just opened.
2980 *
2981 * ZFS_ERR_EXPORT_IN_PROGRESS
2982 * For the case that there is another ztest thread doing
2983 * an export concurrently.
2984 */
2985 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
2986 int error = spa_destroy(zo->zo_pool);
2987 if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
2988 fatal(0, "spa_destroy(%s) returned unexpected value %d",
2989 spa->spa_name, error);
2990 }
2991 spa_close(spa, FTAG);
2992
2993 (void) pthread_rwlock_unlock(&ztest_name_lock);
2994 }
2995
2996 /*
2997 * Start and then stop the MMP threads to ensure the startup and shutdown code
2998 * works properly. Actual protection and property-related code tested via ZTS.
2999 */
3000 /* ARGSUSED */
3001 void
ztest_mmp_enable_disable(ztest_ds_t * zd,uint64_t id)3002 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3003 {
3004 ztest_shared_opts_t *zo = &ztest_opts;
3005 spa_t *spa = ztest_spa;
3006
3007 if (zo->zo_mmp_test)
3008 return;
3009
3010 /*
3011 * Since enabling MMP involves setting a property, it could not be done
3012 * while the pool is suspended.
3013 */
3014 if (spa_suspended(spa))
3015 return;
3016
3017 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3018 mutex_enter(&spa->spa_props_lock);
3019
3020 zfs_multihost_fail_intervals = 0;
3021
3022 if (!spa_multihost(spa)) {
3023 spa->spa_multihost = B_TRUE;
3024 mmp_thread_start(spa);
3025 }
3026
3027 mutex_exit(&spa->spa_props_lock);
3028 spa_config_exit(spa, SCL_CONFIG, FTAG);
3029
3030 txg_wait_synced(spa_get_dsl(spa), 0);
3031 mmp_signal_all_threads();
3032 txg_wait_synced(spa_get_dsl(spa), 0);
3033
3034 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3035 mutex_enter(&spa->spa_props_lock);
3036
3037 if (spa_multihost(spa)) {
3038 mmp_thread_stop(spa);
3039 spa->spa_multihost = B_FALSE;
3040 }
3041
3042 mutex_exit(&spa->spa_props_lock);
3043 spa_config_exit(spa, SCL_CONFIG, FTAG);
3044 }
3045
3046 /* ARGSUSED */
3047 void
ztest_spa_upgrade(ztest_ds_t * zd,uint64_t id)3048 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3049 {
3050 spa_t *spa;
3051 uint64_t initial_version = SPA_VERSION_INITIAL;
3052 uint64_t version, newversion;
3053 nvlist_t *nvroot, *props;
3054 char *name;
3055
3056 if (ztest_opts.zo_mmp_test)
3057 return;
3058
3059 /* dRAID added after feature flags, skip upgrade test. */
3060 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3061 return;
3062
3063 mutex_enter(&ztest_vdev_lock);
3064 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3065
3066 /*
3067 * Clean up from previous runs.
3068 */
3069 (void) spa_destroy(name);
3070
3071 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3072 NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
3073
3074 /*
3075 * If we're configuring a RAIDZ device then make sure that the
3076 * initial version is capable of supporting that feature.
3077 */
3078 switch (ztest_opts.zo_raid_parity) {
3079 case 0:
3080 case 1:
3081 initial_version = SPA_VERSION_INITIAL;
3082 break;
3083 case 2:
3084 initial_version = SPA_VERSION_RAIDZ2;
3085 break;
3086 case 3:
3087 initial_version = SPA_VERSION_RAIDZ3;
3088 break;
3089 }
3090
3091 /*
3092 * Create a pool with a spa version that can be upgraded. Pick
3093 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3094 */
3095 do {
3096 version = ztest_random_spa_version(initial_version);
3097 } while (version > SPA_VERSION_BEFORE_FEATURES);
3098
3099 props = fnvlist_alloc();
3100 fnvlist_add_uint64(props,
3101 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3102 VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3103 fnvlist_free(nvroot);
3104 fnvlist_free(props);
3105
3106 VERIFY0(spa_open(name, &spa, FTAG));
3107 VERIFY3U(spa_version(spa), ==, version);
3108 newversion = ztest_random_spa_version(version + 1);
3109
3110 if (ztest_opts.zo_verbose >= 4) {
3111 (void) printf("upgrading spa version from %llu to %llu\n",
3112 (u_longlong_t)version, (u_longlong_t)newversion);
3113 }
3114
3115 spa_upgrade(spa, newversion);
3116 VERIFY3U(spa_version(spa), >, version);
3117 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3118 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3119 spa_close(spa, FTAG);
3120
3121 kmem_strfree(name);
3122 mutex_exit(&ztest_vdev_lock);
3123 }
3124
3125 static void
ztest_spa_checkpoint(spa_t * spa)3126 ztest_spa_checkpoint(spa_t *spa)
3127 {
3128 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3129
3130 int error = spa_checkpoint(spa->spa_name);
3131
3132 switch (error) {
3133 case 0:
3134 case ZFS_ERR_DEVRM_IN_PROGRESS:
3135 case ZFS_ERR_DISCARDING_CHECKPOINT:
3136 case ZFS_ERR_CHECKPOINT_EXISTS:
3137 break;
3138 case ENOSPC:
3139 ztest_record_enospc(FTAG);
3140 break;
3141 default:
3142 fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3143 }
3144 }
3145
3146 static void
ztest_spa_discard_checkpoint(spa_t * spa)3147 ztest_spa_discard_checkpoint(spa_t *spa)
3148 {
3149 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3150
3151 int error = spa_checkpoint_discard(spa->spa_name);
3152
3153 switch (error) {
3154 case 0:
3155 case ZFS_ERR_DISCARDING_CHECKPOINT:
3156 case ZFS_ERR_NO_CHECKPOINT:
3157 break;
3158 default:
3159 fatal(0, "spa_discard_checkpoint(%s) = %d",
3160 spa->spa_name, error);
3161 }
3162
3163 }
3164
3165 /* ARGSUSED */
3166 void
ztest_spa_checkpoint_create_discard(ztest_ds_t * zd,uint64_t id)3167 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3168 {
3169 spa_t *spa = ztest_spa;
3170
3171 mutex_enter(&ztest_checkpoint_lock);
3172 if (ztest_random(2) == 0) {
3173 ztest_spa_checkpoint(spa);
3174 } else {
3175 ztest_spa_discard_checkpoint(spa);
3176 }
3177 mutex_exit(&ztest_checkpoint_lock);
3178 }
3179
3180
3181 static vdev_t *
vdev_lookup_by_path(vdev_t * vd,const char * path)3182 vdev_lookup_by_path(vdev_t *vd, const char *path)
3183 {
3184 vdev_t *mvd;
3185 int c;
3186
3187 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3188 return (vd);
3189
3190 for (c = 0; c < vd->vdev_children; c++)
3191 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3192 NULL)
3193 return (mvd);
3194
3195 return (NULL);
3196 }
3197
3198 static int
spa_num_top_vdevs(spa_t * spa)3199 spa_num_top_vdevs(spa_t *spa)
3200 {
3201 vdev_t *rvd = spa->spa_root_vdev;
3202 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3203 return (rvd->vdev_children);
3204 }
3205
3206 /*
3207 * Verify that vdev_add() works as expected.
3208 */
3209 /* ARGSUSED */
3210 void
ztest_vdev_add_remove(ztest_ds_t * zd,uint64_t id)3211 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3212 {
3213 ztest_shared_t *zs = ztest_shared;
3214 spa_t *spa = ztest_spa;
3215 uint64_t leaves;
3216 uint64_t guid;
3217 nvlist_t *nvroot;
3218 int error;
3219
3220 if (ztest_opts.zo_mmp_test)
3221 return;
3222
3223 mutex_enter(&ztest_vdev_lock);
3224 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3225 ztest_opts.zo_raid_children;
3226
3227 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3228
3229 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3230
3231 /*
3232 * If we have slogs then remove them 1/4 of the time.
3233 */
3234 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3235 metaslab_group_t *mg;
3236
3237 /*
3238 * find the first real slog in log allocation class
3239 */
3240 mg = spa_log_class(spa)->mc_allocator[0].mca_rotor;
3241 while (!mg->mg_vd->vdev_islog)
3242 mg = mg->mg_next;
3243
3244 guid = mg->mg_vd->vdev_guid;
3245
3246 spa_config_exit(spa, SCL_VDEV, FTAG);
3247
3248 /*
3249 * We have to grab the zs_name_lock as writer to
3250 * prevent a race between removing a slog (dmu_objset_find)
3251 * and destroying a dataset. Removing the slog will
3252 * grab a reference on the dataset which may cause
3253 * dsl_destroy_head() to fail with EBUSY thus
3254 * leaving the dataset in an inconsistent state.
3255 */
3256 pthread_rwlock_wrlock(&ztest_name_lock);
3257 error = spa_vdev_remove(spa, guid, B_FALSE);
3258 pthread_rwlock_unlock(&ztest_name_lock);
3259
3260 switch (error) {
3261 case 0:
3262 case EEXIST: /* Generic zil_reset() error */
3263 case EBUSY: /* Replay required */
3264 case EACCES: /* Crypto key not loaded */
3265 case ZFS_ERR_CHECKPOINT_EXISTS:
3266 case ZFS_ERR_DISCARDING_CHECKPOINT:
3267 break;
3268 default:
3269 fatal(0, "spa_vdev_remove() = %d", error);
3270 }
3271 } else {
3272 spa_config_exit(spa, SCL_VDEV, FTAG);
3273
3274 /*
3275 * Make 1/4 of the devices be log devices
3276 */
3277 nvroot = make_vdev_root(NULL, NULL, NULL,
3278 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3279 "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
3280 1);
3281
3282 error = spa_vdev_add(spa, nvroot);
3283 fnvlist_free(nvroot);
3284
3285 switch (error) {
3286 case 0:
3287 break;
3288 case ENOSPC:
3289 ztest_record_enospc("spa_vdev_add");
3290 break;
3291 default:
3292 fatal(0, "spa_vdev_add() = %d", error);
3293 }
3294 }
3295
3296 mutex_exit(&ztest_vdev_lock);
3297 }
3298
3299 /* ARGSUSED */
3300 void
ztest_vdev_class_add(ztest_ds_t * zd,uint64_t id)3301 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3302 {
3303 ztest_shared_t *zs = ztest_shared;
3304 spa_t *spa = ztest_spa;
3305 uint64_t leaves;
3306 nvlist_t *nvroot;
3307 const char *class = (ztest_random(2) == 0) ?
3308 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3309 int error;
3310
3311 /*
3312 * By default add a special vdev 50% of the time
3313 */
3314 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3315 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3316 ztest_random(2) == 0)) {
3317 return;
3318 }
3319
3320 mutex_enter(&ztest_vdev_lock);
3321
3322 /* Only test with mirrors */
3323 if (zs->zs_mirrors < 2) {
3324 mutex_exit(&ztest_vdev_lock);
3325 return;
3326 }
3327
3328 /* requires feature@allocation_classes */
3329 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3330 mutex_exit(&ztest_vdev_lock);
3331 return;
3332 }
3333
3334 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3335 ztest_opts.zo_raid_children;
3336
3337 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3338 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3339 spa_config_exit(spa, SCL_VDEV, FTAG);
3340
3341 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3342 class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
3343
3344 error = spa_vdev_add(spa, nvroot);
3345 fnvlist_free(nvroot);
3346
3347 if (error == ENOSPC)
3348 ztest_record_enospc("spa_vdev_add");
3349 else if (error != 0)
3350 fatal(0, "spa_vdev_add() = %d", error);
3351
3352 /*
3353 * 50% of the time allow small blocks in the special class
3354 */
3355 if (error == 0 &&
3356 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3357 if (ztest_opts.zo_verbose >= 3)
3358 (void) printf("Enabling special VDEV small blocks\n");
3359 (void) ztest_dsl_prop_set_uint64(zd->zd_name,
3360 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3361 }
3362
3363 mutex_exit(&ztest_vdev_lock);
3364
3365 if (ztest_opts.zo_verbose >= 3) {
3366 metaslab_class_t *mc;
3367
3368 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3369 mc = spa_special_class(spa);
3370 else
3371 mc = spa_dedup_class(spa);
3372 (void) printf("Added a %s mirrored vdev (of %d)\n",
3373 class, (int)mc->mc_groups);
3374 }
3375 }
3376
3377 /*
3378 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3379 */
3380 /* ARGSUSED */
3381 void
ztest_vdev_aux_add_remove(ztest_ds_t * zd,uint64_t id)3382 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3383 {
3384 ztest_shared_t *zs = ztest_shared;
3385 spa_t *spa = ztest_spa;
3386 vdev_t *rvd = spa->spa_root_vdev;
3387 spa_aux_vdev_t *sav;
3388 char *aux;
3389 char *path;
3390 uint64_t guid = 0;
3391 int error, ignore_err = 0;
3392
3393 if (ztest_opts.zo_mmp_test)
3394 return;
3395
3396 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3397
3398 if (ztest_random(2) == 0) {
3399 sav = &spa->spa_spares;
3400 aux = ZPOOL_CONFIG_SPARES;
3401 } else {
3402 sav = &spa->spa_l2cache;
3403 aux = ZPOOL_CONFIG_L2CACHE;
3404 }
3405
3406 mutex_enter(&ztest_vdev_lock);
3407
3408 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3409
3410 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3411 /*
3412 * Pick a random device to remove.
3413 */
3414 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3415
3416 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3417 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3418 ignore_err = ENOTSUP;
3419
3420 guid = svd->vdev_guid;
3421 } else {
3422 /*
3423 * Find an unused device we can add.
3424 */
3425 zs->zs_vdev_aux = 0;
3426 for (;;) {
3427 int c;
3428 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3429 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3430 zs->zs_vdev_aux);
3431 for (c = 0; c < sav->sav_count; c++)
3432 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3433 path) == 0)
3434 break;
3435 if (c == sav->sav_count &&
3436 vdev_lookup_by_path(rvd, path) == NULL)
3437 break;
3438 zs->zs_vdev_aux++;
3439 }
3440 }
3441
3442 spa_config_exit(spa, SCL_VDEV, FTAG);
3443
3444 if (guid == 0) {
3445 /*
3446 * Add a new device.
3447 */
3448 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3449 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3450 error = spa_vdev_add(spa, nvroot);
3451
3452 switch (error) {
3453 case 0:
3454 break;
3455 default:
3456 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
3457 }
3458 fnvlist_free(nvroot);
3459 } else {
3460 /*
3461 * Remove an existing device. Sometimes, dirty its
3462 * vdev state first to make sure we handle removal
3463 * of devices that have pending state changes.
3464 */
3465 if (ztest_random(2) == 0)
3466 (void) vdev_online(spa, guid, 0, NULL);
3467
3468 error = spa_vdev_remove(spa, guid, B_FALSE);
3469
3470 switch (error) {
3471 case 0:
3472 case EBUSY:
3473 case ZFS_ERR_CHECKPOINT_EXISTS:
3474 case ZFS_ERR_DISCARDING_CHECKPOINT:
3475 break;
3476 default:
3477 if (error != ignore_err)
3478 fatal(0, "spa_vdev_remove(%llu) = %d", guid,
3479 error);
3480 }
3481 }
3482
3483 mutex_exit(&ztest_vdev_lock);
3484
3485 umem_free(path, MAXPATHLEN);
3486 }
3487
3488 /*
3489 * split a pool if it has mirror tlvdevs
3490 */
3491 /* ARGSUSED */
3492 void
ztest_split_pool(ztest_ds_t * zd,uint64_t id)3493 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3494 {
3495 ztest_shared_t *zs = ztest_shared;
3496 spa_t *spa = ztest_spa;
3497 vdev_t *rvd = spa->spa_root_vdev;
3498 nvlist_t *tree, **child, *config, *split, **schild;
3499 uint_t c, children, schildren = 0, lastlogid = 0;
3500 int error = 0;
3501
3502 if (ztest_opts.zo_mmp_test)
3503 return;
3504
3505 mutex_enter(&ztest_vdev_lock);
3506
3507 /* ensure we have a usable config; mirrors of raidz aren't supported */
3508 if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3509 mutex_exit(&ztest_vdev_lock);
3510 return;
3511 }
3512
3513 /* clean up the old pool, if any */
3514 (void) spa_destroy("splitp");
3515
3516 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3517
3518 /* generate a config from the existing config */
3519 mutex_enter(&spa->spa_props_lock);
3520 tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3521 mutex_exit(&spa->spa_props_lock);
3522
3523 VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3524 &child, &children));
3525
3526 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3527 for (c = 0; c < children; c++) {
3528 vdev_t *tvd = rvd->vdev_child[c];
3529 nvlist_t **mchild;
3530 uint_t mchildren;
3531
3532 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3533 schild[schildren] = fnvlist_alloc();
3534 fnvlist_add_string(schild[schildren],
3535 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3536 fnvlist_add_uint64(schild[schildren],
3537 ZPOOL_CONFIG_IS_HOLE, 1);
3538 if (lastlogid == 0)
3539 lastlogid = schildren;
3540 ++schildren;
3541 continue;
3542 }
3543 lastlogid = 0;
3544 VERIFY0(nvlist_lookup_nvlist_array(child[c],
3545 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3546 schild[schildren++] = fnvlist_dup(mchild[0]);
3547 }
3548
3549 /* OK, create a config that can be used to split */
3550 split = fnvlist_alloc();
3551 fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3552 fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
3553 lastlogid != 0 ? lastlogid : schildren);
3554
3555 config = fnvlist_alloc();
3556 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3557
3558 for (c = 0; c < schildren; c++)
3559 fnvlist_free(schild[c]);
3560 free(schild);
3561 fnvlist_free(split);
3562
3563 spa_config_exit(spa, SCL_VDEV, FTAG);
3564
3565 (void) pthread_rwlock_wrlock(&ztest_name_lock);
3566 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3567 (void) pthread_rwlock_unlock(&ztest_name_lock);
3568
3569 fnvlist_free(config);
3570
3571 if (error == 0) {
3572 (void) printf("successful split - results:\n");
3573 mutex_enter(&spa_namespace_lock);
3574 show_pool_stats(spa);
3575 show_pool_stats(spa_lookup("splitp"));
3576 mutex_exit(&spa_namespace_lock);
3577 ++zs->zs_splits;
3578 --zs->zs_mirrors;
3579 }
3580 mutex_exit(&ztest_vdev_lock);
3581 }
3582
3583 /*
3584 * Verify that we can attach and detach devices.
3585 */
3586 /* ARGSUSED */
3587 void
ztest_vdev_attach_detach(ztest_ds_t * zd,uint64_t id)3588 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3589 {
3590 ztest_shared_t *zs = ztest_shared;
3591 spa_t *spa = ztest_spa;
3592 spa_aux_vdev_t *sav = &spa->spa_spares;
3593 vdev_t *rvd = spa->spa_root_vdev;
3594 vdev_t *oldvd, *newvd, *pvd;
3595 nvlist_t *root;
3596 uint64_t leaves;
3597 uint64_t leaf, top;
3598 uint64_t ashift = ztest_get_ashift();
3599 uint64_t oldguid, pguid;
3600 uint64_t oldsize, newsize;
3601 char *oldpath, *newpath;
3602 int replacing;
3603 int oldvd_has_siblings = B_FALSE;
3604 int newvd_is_spare = B_FALSE;
3605 int newvd_is_dspare = B_FALSE;
3606 int oldvd_is_log;
3607 int error, expected_error;
3608
3609 if (ztest_opts.zo_mmp_test)
3610 return;
3611
3612 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3613 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3614
3615 mutex_enter(&ztest_vdev_lock);
3616 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
3617
3618 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3619
3620 /*
3621 * If a vdev is in the process of being removed, its removal may
3622 * finish while we are in progress, leading to an unexpected error
3623 * value. Don't bother trying to attach while we are in the middle
3624 * of removal.
3625 */
3626 if (ztest_device_removal_active) {
3627 spa_config_exit(spa, SCL_ALL, FTAG);
3628 goto out;
3629 }
3630
3631 /*
3632 * Decide whether to do an attach or a replace.
3633 */
3634 replacing = ztest_random(2);
3635
3636 /*
3637 * Pick a random top-level vdev.
3638 */
3639 top = ztest_random_vdev_top(spa, B_TRUE);
3640
3641 /*
3642 * Pick a random leaf within it.
3643 */
3644 leaf = ztest_random(leaves);
3645
3646 /*
3647 * Locate this vdev.
3648 */
3649 oldvd = rvd->vdev_child[top];
3650
3651 /* pick a child from the mirror */
3652 if (zs->zs_mirrors >= 1) {
3653 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3654 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3655 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
3656 }
3657
3658 /* pick a child out of the raidz group */
3659 if (ztest_opts.zo_raid_children > 1) {
3660 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3661 ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3662 else
3663 ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3664 ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children);
3665 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
3666 }
3667
3668 /*
3669 * If we're already doing an attach or replace, oldvd may be a
3670 * mirror vdev -- in which case, pick a random child.
3671 */
3672 while (oldvd->vdev_children != 0) {
3673 oldvd_has_siblings = B_TRUE;
3674 ASSERT3U(oldvd->vdev_children, >=, 2);
3675 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3676 }
3677
3678 oldguid = oldvd->vdev_guid;
3679 oldsize = vdev_get_min_asize(oldvd);
3680 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3681 (void) strcpy(oldpath, oldvd->vdev_path);
3682 pvd = oldvd->vdev_parent;
3683 pguid = pvd->vdev_guid;
3684
3685 /*
3686 * If oldvd has siblings, then half of the time, detach it. Prior
3687 * to the detach the pool is scrubbed in order to prevent creating
3688 * unrepairable blocks as a result of the data corruption injection.
3689 */
3690 if (oldvd_has_siblings && ztest_random(2) == 0) {
3691 spa_config_exit(spa, SCL_ALL, FTAG);
3692
3693 error = ztest_scrub_impl(spa);
3694 if (error)
3695 goto out;
3696
3697 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3698 if (error != 0 && error != ENODEV && error != EBUSY &&
3699 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3700 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3701 fatal(0, "detach (%s) returned %d", oldpath, error);
3702 goto out;
3703 }
3704
3705 /*
3706 * For the new vdev, choose with equal probability between the two
3707 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3708 */
3709 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3710 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3711 newvd_is_spare = B_TRUE;
3712
3713 if (newvd->vdev_ops == &vdev_draid_spare_ops)
3714 newvd_is_dspare = B_TRUE;
3715
3716 (void) strcpy(newpath, newvd->vdev_path);
3717 } else {
3718 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3719 ztest_opts.zo_dir, ztest_opts.zo_pool,
3720 top * leaves + leaf);
3721 if (ztest_random(2) == 0)
3722 newpath[strlen(newpath) - 1] = 'b';
3723 newvd = vdev_lookup_by_path(rvd, newpath);
3724 }
3725
3726 if (newvd) {
3727 /*
3728 * Reopen to ensure the vdev's asize field isn't stale.
3729 */
3730 vdev_reopen(newvd);
3731 newsize = vdev_get_min_asize(newvd);
3732 } else {
3733 /*
3734 * Make newsize a little bigger or smaller than oldsize.
3735 * If it's smaller, the attach should fail.
3736 * If it's larger, and we're doing a replace,
3737 * we should get dynamic LUN growth when we're done.
3738 */
3739 newsize = 10 * oldsize / (9 + ztest_random(3));
3740 }
3741
3742 /*
3743 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3744 * unless it's a replace; in that case any non-replacing parent is OK.
3745 *
3746 * If newvd is already part of the pool, it should fail with EBUSY.
3747 *
3748 * If newvd is too small, it should fail with EOVERFLOW.
3749 *
3750 * If newvd is a distributed spare and it's being attached to a
3751 * dRAID which is not its parent it should fail with EINVAL.
3752 */
3753 if (pvd->vdev_ops != &vdev_mirror_ops &&
3754 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3755 pvd->vdev_ops == &vdev_replacing_ops ||
3756 pvd->vdev_ops == &vdev_spare_ops))
3757 expected_error = ENOTSUP;
3758 else if (newvd_is_spare && (!replacing || oldvd_is_log))
3759 expected_error = ENOTSUP;
3760 else if (newvd == oldvd)
3761 expected_error = replacing ? 0 : EBUSY;
3762 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3763 expected_error = EBUSY;
3764 else if (!newvd_is_dspare && newsize < oldsize)
3765 expected_error = EOVERFLOW;
3766 else if (ashift > oldvd->vdev_top->vdev_ashift)
3767 expected_error = EDOM;
3768 else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3769 expected_error = ENOTSUP;
3770 else
3771 expected_error = 0;
3772
3773 spa_config_exit(spa, SCL_ALL, FTAG);
3774
3775 /*
3776 * Build the nvlist describing newpath.
3777 */
3778 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3779 ashift, NULL, 0, 0, 1);
3780
3781 /*
3782 * When supported select either a healing or sequential resilver.
3783 */
3784 boolean_t rebuilding = B_FALSE;
3785 if (pvd->vdev_ops == &vdev_mirror_ops ||
3786 pvd->vdev_ops == &vdev_root_ops) {
3787 rebuilding = !!ztest_random(2);
3788 }
3789
3790 error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3791
3792 fnvlist_free(root);
3793
3794 /*
3795 * If our parent was the replacing vdev, but the replace completed,
3796 * then instead of failing with ENOTSUP we may either succeed,
3797 * fail with ENODEV, or fail with EOVERFLOW.
3798 */
3799 if (expected_error == ENOTSUP &&
3800 (error == 0 || error == ENODEV || error == EOVERFLOW))
3801 expected_error = error;
3802
3803 /*
3804 * If someone grew the LUN, the replacement may be too small.
3805 */
3806 if (error == EOVERFLOW || error == EBUSY)
3807 expected_error = error;
3808
3809 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3810 error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3811 error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3812 error == ZFS_ERR_REBUILD_IN_PROGRESS)
3813 expected_error = error;
3814
3815 if (error != expected_error && expected_error != EBUSY) {
3816 fatal(0, "attach (%s %llu, %s %llu, %d) "
3817 "returned %d, expected %d",
3818 oldpath, oldsize, newpath,
3819 newsize, replacing, error, expected_error);
3820 }
3821 out:
3822 mutex_exit(&ztest_vdev_lock);
3823
3824 umem_free(oldpath, MAXPATHLEN);
3825 umem_free(newpath, MAXPATHLEN);
3826 }
3827
3828 /* ARGSUSED */
3829 void
ztest_device_removal(ztest_ds_t * zd,uint64_t id)3830 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3831 {
3832 spa_t *spa = ztest_spa;
3833 vdev_t *vd;
3834 uint64_t guid;
3835 int error;
3836
3837 mutex_enter(&ztest_vdev_lock);
3838
3839 if (ztest_device_removal_active) {
3840 mutex_exit(&ztest_vdev_lock);
3841 return;
3842 }
3843
3844 /*
3845 * Remove a random top-level vdev and wait for removal to finish.
3846 */
3847 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3848 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3849 guid = vd->vdev_guid;
3850 spa_config_exit(spa, SCL_VDEV, FTAG);
3851
3852 error = spa_vdev_remove(spa, guid, B_FALSE);
3853 if (error == 0) {
3854 ztest_device_removal_active = B_TRUE;
3855 mutex_exit(&ztest_vdev_lock);
3856
3857 /*
3858 * spa->spa_vdev_removal is created in a sync task that
3859 * is initiated via dsl_sync_task_nowait(). Since the
3860 * task may not run before spa_vdev_remove() returns, we
3861 * must wait at least 1 txg to ensure that the removal
3862 * struct has been created.
3863 */
3864 txg_wait_synced(spa_get_dsl(spa), 0);
3865
3866 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
3867 txg_wait_synced(spa_get_dsl(spa), 0);
3868 } else {
3869 mutex_exit(&ztest_vdev_lock);
3870 return;
3871 }
3872
3873 /*
3874 * The pool needs to be scrubbed after completing device removal.
3875 * Failure to do so may result in checksum errors due to the
3876 * strategy employed by ztest_fault_inject() when selecting which
3877 * offset are redundant and can be damaged.
3878 */
3879 error = spa_scan(spa, POOL_SCAN_SCRUB);
3880 if (error == 0) {
3881 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3882 txg_wait_synced(spa_get_dsl(spa), 0);
3883 }
3884
3885 mutex_enter(&ztest_vdev_lock);
3886 ztest_device_removal_active = B_FALSE;
3887 mutex_exit(&ztest_vdev_lock);
3888 }
3889
3890 /*
3891 * Callback function which expands the physical size of the vdev.
3892 */
3893 static vdev_t *
grow_vdev(vdev_t * vd,void * arg)3894 grow_vdev(vdev_t *vd, void *arg)
3895 {
3896 spa_t *spa __maybe_unused = vd->vdev_spa;
3897 size_t *newsize = arg;
3898 size_t fsize;
3899 int fd;
3900
3901 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3902 ASSERT(vd->vdev_ops->vdev_op_leaf);
3903
3904 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3905 return (vd);
3906
3907 fsize = lseek(fd, 0, SEEK_END);
3908 VERIFY0(ftruncate(fd, *newsize));
3909
3910 if (ztest_opts.zo_verbose >= 6) {
3911 (void) printf("%s grew from %lu to %lu bytes\n",
3912 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3913 }
3914 (void) close(fd);
3915 return (NULL);
3916 }
3917
3918 /*
3919 * Callback function which expands a given vdev by calling vdev_online().
3920 */
3921 /* ARGSUSED */
3922 static vdev_t *
online_vdev(vdev_t * vd,void * arg)3923 online_vdev(vdev_t *vd, void *arg)
3924 {
3925 spa_t *spa = vd->vdev_spa;
3926 vdev_t *tvd = vd->vdev_top;
3927 uint64_t guid = vd->vdev_guid;
3928 uint64_t generation = spa->spa_config_generation + 1;
3929 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3930 int error;
3931
3932 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3933 ASSERT(vd->vdev_ops->vdev_op_leaf);
3934
3935 /* Calling vdev_online will initialize the new metaslabs */
3936 spa_config_exit(spa, SCL_STATE, spa);
3937 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3938 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3939
3940 /*
3941 * If vdev_online returned an error or the underlying vdev_open
3942 * failed then we abort the expand. The only way to know that
3943 * vdev_open fails is by checking the returned newstate.
3944 */
3945 if (error || newstate != VDEV_STATE_HEALTHY) {
3946 if (ztest_opts.zo_verbose >= 5) {
3947 (void) printf("Unable to expand vdev, state %llu, "
3948 "error %d\n", (u_longlong_t)newstate, error);
3949 }
3950 return (vd);
3951 }
3952 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3953
3954 /*
3955 * Since we dropped the lock we need to ensure that we're
3956 * still talking to the original vdev. It's possible this
3957 * vdev may have been detached/replaced while we were
3958 * trying to online it.
3959 */
3960 if (generation != spa->spa_config_generation) {
3961 if (ztest_opts.zo_verbose >= 5) {
3962 (void) printf("vdev configuration has changed, "
3963 "guid %llu, state %llu, expected gen %llu, "
3964 "got gen %llu\n",
3965 (u_longlong_t)guid,
3966 (u_longlong_t)tvd->vdev_state,
3967 (u_longlong_t)generation,
3968 (u_longlong_t)spa->spa_config_generation);
3969 }
3970 return (vd);
3971 }
3972 return (NULL);
3973 }
3974
3975 /*
3976 * Traverse the vdev tree calling the supplied function.
3977 * We continue to walk the tree until we either have walked all
3978 * children or we receive a non-NULL return from the callback.
3979 * If a NULL callback is passed, then we just return back the first
3980 * leaf vdev we encounter.
3981 */
3982 static vdev_t *
vdev_walk_tree(vdev_t * vd,vdev_t * (* func)(vdev_t *,void *),void * arg)3983 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3984 {
3985 uint_t c;
3986
3987 if (vd->vdev_ops->vdev_op_leaf) {
3988 if (func == NULL)
3989 return (vd);
3990 else
3991 return (func(vd, arg));
3992 }
3993
3994 for (c = 0; c < vd->vdev_children; c++) {
3995 vdev_t *cvd = vd->vdev_child[c];
3996 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3997 return (cvd);
3998 }
3999 return (NULL);
4000 }
4001
4002 /*
4003 * Verify that dynamic LUN growth works as expected.
4004 */
4005 /* ARGSUSED */
4006 void
ztest_vdev_LUN_growth(ztest_ds_t * zd,uint64_t id)4007 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4008 {
4009 spa_t *spa = ztest_spa;
4010 vdev_t *vd, *tvd;
4011 metaslab_class_t *mc;
4012 metaslab_group_t *mg;
4013 size_t psize, newsize;
4014 uint64_t top;
4015 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4016
4017 mutex_enter(&ztest_checkpoint_lock);
4018 mutex_enter(&ztest_vdev_lock);
4019 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4020
4021 /*
4022 * If there is a vdev removal in progress, it could complete while
4023 * we are running, in which case we would not be able to verify
4024 * that the metaslab_class space increased (because it decreases
4025 * when the device removal completes).
4026 */
4027 if (ztest_device_removal_active) {
4028 spa_config_exit(spa, SCL_STATE, spa);
4029 mutex_exit(&ztest_vdev_lock);
4030 mutex_exit(&ztest_checkpoint_lock);
4031 return;
4032 }
4033
4034 top = ztest_random_vdev_top(spa, B_TRUE);
4035
4036 tvd = spa->spa_root_vdev->vdev_child[top];
4037 mg = tvd->vdev_mg;
4038 mc = mg->mg_class;
4039 old_ms_count = tvd->vdev_ms_count;
4040 old_class_space = metaslab_class_get_space(mc);
4041
4042 /*
4043 * Determine the size of the first leaf vdev associated with
4044 * our top-level device.
4045 */
4046 vd = vdev_walk_tree(tvd, NULL, NULL);
4047 ASSERT3P(vd, !=, NULL);
4048 ASSERT(vd->vdev_ops->vdev_op_leaf);
4049
4050 psize = vd->vdev_psize;
4051
4052 /*
4053 * We only try to expand the vdev if it's healthy, less than 4x its
4054 * original size, and it has a valid psize.
4055 */
4056 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4057 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4058 spa_config_exit(spa, SCL_STATE, spa);
4059 mutex_exit(&ztest_vdev_lock);
4060 mutex_exit(&ztest_checkpoint_lock);
4061 return;
4062 }
4063 ASSERT3U(psize, >, 0);
4064 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4065 ASSERT3U(newsize, >, psize);
4066
4067 if (ztest_opts.zo_verbose >= 6) {
4068 (void) printf("Expanding LUN %s from %lu to %lu\n",
4069 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4070 }
4071
4072 /*
4073 * Growing the vdev is a two step process:
4074 * 1). expand the physical size (i.e. relabel)
4075 * 2). online the vdev to create the new metaslabs
4076 */
4077 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4078 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4079 tvd->vdev_state != VDEV_STATE_HEALTHY) {
4080 if (ztest_opts.zo_verbose >= 5) {
4081 (void) printf("Could not expand LUN because "
4082 "the vdev configuration changed.\n");
4083 }
4084 spa_config_exit(spa, SCL_STATE, spa);
4085 mutex_exit(&ztest_vdev_lock);
4086 mutex_exit(&ztest_checkpoint_lock);
4087 return;
4088 }
4089
4090 spa_config_exit(spa, SCL_STATE, spa);
4091
4092 /*
4093 * Expanding the LUN will update the config asynchronously,
4094 * thus we must wait for the async thread to complete any
4095 * pending tasks before proceeding.
4096 */
4097 for (;;) {
4098 boolean_t done;
4099 mutex_enter(&spa->spa_async_lock);
4100 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4101 mutex_exit(&spa->spa_async_lock);
4102 if (done)
4103 break;
4104 txg_wait_synced(spa_get_dsl(spa), 0);
4105 (void) poll(NULL, 0, 100);
4106 }
4107
4108 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4109
4110 tvd = spa->spa_root_vdev->vdev_child[top];
4111 new_ms_count = tvd->vdev_ms_count;
4112 new_class_space = metaslab_class_get_space(mc);
4113
4114 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4115 if (ztest_opts.zo_verbose >= 5) {
4116 (void) printf("Could not verify LUN expansion due to "
4117 "intervening vdev offline or remove.\n");
4118 }
4119 spa_config_exit(spa, SCL_STATE, spa);
4120 mutex_exit(&ztest_vdev_lock);
4121 mutex_exit(&ztest_checkpoint_lock);
4122 return;
4123 }
4124
4125 /*
4126 * Make sure we were able to grow the vdev.
4127 */
4128 if (new_ms_count <= old_ms_count) {
4129 fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
4130 old_ms_count, new_ms_count);
4131 }
4132
4133 /*
4134 * Make sure we were able to grow the pool.
4135 */
4136 if (new_class_space <= old_class_space) {
4137 fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
4138 old_class_space, new_class_space);
4139 }
4140
4141 if (ztest_opts.zo_verbose >= 5) {
4142 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4143
4144 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4145 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4146 (void) printf("%s grew from %s to %s\n",
4147 spa->spa_name, oldnumbuf, newnumbuf);
4148 }
4149
4150 spa_config_exit(spa, SCL_STATE, spa);
4151 mutex_exit(&ztest_vdev_lock);
4152 mutex_exit(&ztest_checkpoint_lock);
4153 }
4154
4155 /*
4156 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4157 */
4158 /* ARGSUSED */
4159 static void
ztest_objset_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)4160 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4161 {
4162 /*
4163 * Create the objects common to all ztest datasets.
4164 */
4165 VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4166 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4167 }
4168
4169 static int
ztest_dataset_create(char * dsname)4170 ztest_dataset_create(char *dsname)
4171 {
4172 int err;
4173 uint64_t rand;
4174 dsl_crypto_params_t *dcp = NULL;
4175
4176 /*
4177 * 50% of the time, we create encrypted datasets
4178 * using a random cipher suite and a hard-coded
4179 * wrapping key.
4180 */
4181 rand = ztest_random(2);
4182 if (rand != 0) {
4183 nvlist_t *crypto_args = fnvlist_alloc();
4184 nvlist_t *props = fnvlist_alloc();
4185
4186 /* slight bias towards the default cipher suite */
4187 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4188 if (rand < ZIO_CRYPT_AES_128_CCM)
4189 rand = ZIO_CRYPT_ON;
4190
4191 fnvlist_add_uint64(props,
4192 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4193 fnvlist_add_uint8_array(crypto_args, "wkeydata",
4194 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4195
4196 /*
4197 * These parameters aren't really used by the kernel. They
4198 * are simply stored so that userspace knows how to load
4199 * the wrapping key.
4200 */
4201 fnvlist_add_uint64(props,
4202 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4203 fnvlist_add_string(props,
4204 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4205 fnvlist_add_uint64(props,
4206 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4207 fnvlist_add_uint64(props,
4208 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4209
4210 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4211 crypto_args, &dcp));
4212
4213 /*
4214 * Cycle through all available encryption implementations
4215 * to verify interoperability.
4216 */
4217 VERIFY0(gcm_impl_set("cycle"));
4218 VERIFY0(aes_impl_set("cycle"));
4219
4220 fnvlist_free(crypto_args);
4221 fnvlist_free(props);
4222 }
4223
4224 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4225 ztest_objset_create_cb, NULL);
4226 dsl_crypto_params_free(dcp, !!err);
4227
4228 rand = ztest_random(100);
4229 if (err || rand < 80)
4230 return (err);
4231
4232 if (ztest_opts.zo_verbose >= 5)
4233 (void) printf("Setting dataset %s to sync always\n", dsname);
4234 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4235 ZFS_SYNC_ALWAYS, B_FALSE));
4236 }
4237
4238 /* ARGSUSED */
4239 static int
ztest_objset_destroy_cb(const char * name,void * arg)4240 ztest_objset_destroy_cb(const char *name, void *arg)
4241 {
4242 objset_t *os;
4243 dmu_object_info_t doi;
4244 int error;
4245
4246 /*
4247 * Verify that the dataset contains a directory object.
4248 */
4249 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4250 B_TRUE, FTAG, &os));
4251 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4252 if (error != ENOENT) {
4253 /* We could have crashed in the middle of destroying it */
4254 ASSERT0(error);
4255 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4256 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4257 }
4258 dmu_objset_disown(os, B_TRUE, FTAG);
4259
4260 /*
4261 * Destroy the dataset.
4262 */
4263 if (strchr(name, '@') != NULL) {
4264 VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
4265 } else {
4266 error = dsl_destroy_head(name);
4267 if (error == ENOSPC) {
4268 /* There could be checkpoint or insufficient slop */
4269 ztest_record_enospc(FTAG);
4270 } else if (error != EBUSY) {
4271 /* There could be a hold on this dataset */
4272 ASSERT0(error);
4273 }
4274 }
4275 return (0);
4276 }
4277
4278 static boolean_t
ztest_snapshot_create(char * osname,uint64_t id)4279 ztest_snapshot_create(char *osname, uint64_t id)
4280 {
4281 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4282 int error;
4283
4284 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
4285
4286 error = dmu_objset_snapshot_one(osname, snapname);
4287 if (error == ENOSPC) {
4288 ztest_record_enospc(FTAG);
4289 return (B_FALSE);
4290 }
4291 if (error != 0 && error != EEXIST) {
4292 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
4293 snapname, error);
4294 }
4295 return (B_TRUE);
4296 }
4297
4298 static boolean_t
ztest_snapshot_destroy(char * osname,uint64_t id)4299 ztest_snapshot_destroy(char *osname, uint64_t id)
4300 {
4301 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4302 int error;
4303
4304 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
4305 (u_longlong_t)id);
4306
4307 error = dsl_destroy_snapshot(snapname, B_FALSE);
4308 if (error != 0 && error != ENOENT)
4309 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
4310 return (B_TRUE);
4311 }
4312
4313 /* ARGSUSED */
4314 void
ztest_dmu_objset_create_destroy(ztest_ds_t * zd,uint64_t id)4315 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4316 {
4317 ztest_ds_t *zdtmp;
4318 int iters;
4319 int error;
4320 objset_t *os, *os2;
4321 char name[ZFS_MAX_DATASET_NAME_LEN];
4322 zilog_t *zilog;
4323 int i;
4324
4325 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4326
4327 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4328
4329 (void) snprintf(name, sizeof (name), "%s/temp_%llu",
4330 ztest_opts.zo_pool, (u_longlong_t)id);
4331
4332 /*
4333 * If this dataset exists from a previous run, process its replay log
4334 * half of the time. If we don't replay it, then dsl_destroy_head()
4335 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4336 */
4337 if (ztest_random(2) == 0 &&
4338 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4339 B_TRUE, FTAG, &os) == 0) {
4340 ztest_zd_init(zdtmp, NULL, os);
4341 zil_replay(os, zdtmp, ztest_replay_vector);
4342 ztest_zd_fini(zdtmp);
4343 dmu_objset_disown(os, B_TRUE, FTAG);
4344 }
4345
4346 /*
4347 * There may be an old instance of the dataset we're about to
4348 * create lying around from a previous run. If so, destroy it
4349 * and all of its snapshots.
4350 */
4351 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4352 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4353
4354 /*
4355 * Verify that the destroyed dataset is no longer in the namespace.
4356 */
4357 VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4358 B_TRUE, FTAG, &os));
4359
4360 /*
4361 * Verify that we can create a new dataset.
4362 */
4363 error = ztest_dataset_create(name);
4364 if (error) {
4365 if (error == ENOSPC) {
4366 ztest_record_enospc(FTAG);
4367 goto out;
4368 }
4369 fatal(0, "dmu_objset_create(%s) = %d", name, error);
4370 }
4371
4372 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4373 FTAG, &os));
4374
4375 ztest_zd_init(zdtmp, NULL, os);
4376
4377 /*
4378 * Open the intent log for it.
4379 */
4380 zilog = zil_open(os, ztest_get_data);
4381
4382 /*
4383 * Put some objects in there, do a little I/O to them,
4384 * and randomly take a couple of snapshots along the way.
4385 */
4386 iters = ztest_random(5);
4387 for (i = 0; i < iters; i++) {
4388 ztest_dmu_object_alloc_free(zdtmp, id);
4389 if (ztest_random(iters) == 0)
4390 (void) ztest_snapshot_create(name, i);
4391 }
4392
4393 /*
4394 * Verify that we cannot create an existing dataset.
4395 */
4396 VERIFY3U(EEXIST, ==,
4397 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4398
4399 /*
4400 * Verify that we can hold an objset that is also owned.
4401 */
4402 VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4403 dmu_objset_rele(os2, FTAG);
4404
4405 /*
4406 * Verify that we cannot own an objset that is already owned.
4407 */
4408 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4409 B_FALSE, B_TRUE, FTAG, &os2));
4410
4411 zil_close(zilog);
4412 dmu_objset_disown(os, B_TRUE, FTAG);
4413 ztest_zd_fini(zdtmp);
4414 out:
4415 (void) pthread_rwlock_unlock(&ztest_name_lock);
4416
4417 umem_free(zdtmp, sizeof (ztest_ds_t));
4418 }
4419
4420 /*
4421 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4422 */
4423 void
ztest_dmu_snapshot_create_destroy(ztest_ds_t * zd,uint64_t id)4424 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4425 {
4426 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4427 (void) ztest_snapshot_destroy(zd->zd_name, id);
4428 (void) ztest_snapshot_create(zd->zd_name, id);
4429 (void) pthread_rwlock_unlock(&ztest_name_lock);
4430 }
4431
4432 /*
4433 * Cleanup non-standard snapshots and clones.
4434 */
4435 static void
ztest_dsl_dataset_cleanup(char * osname,uint64_t id)4436 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4437 {
4438 char *snap1name;
4439 char *clone1name;
4440 char *snap2name;
4441 char *clone2name;
4442 char *snap3name;
4443 int error;
4444
4445 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4446 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4447 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4448 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4449 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4450
4451 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4452 "%s@s1_%llu", osname, (u_longlong_t)id);
4453 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4454 "%s/c1_%llu", osname, (u_longlong_t)id);
4455 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4456 "%s@s2_%llu", clone1name, (u_longlong_t)id);
4457 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4458 "%s/c2_%llu", osname, (u_longlong_t)id);
4459 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4460 "%s@s3_%llu", clone1name, (u_longlong_t)id);
4461
4462 error = dsl_destroy_head(clone2name);
4463 if (error && error != ENOENT)
4464 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
4465 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4466 if (error && error != ENOENT)
4467 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
4468 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4469 if (error && error != ENOENT)
4470 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
4471 error = dsl_destroy_head(clone1name);
4472 if (error && error != ENOENT)
4473 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
4474 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4475 if (error && error != ENOENT)
4476 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
4477
4478 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4479 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4480 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4481 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4482 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4483 }
4484
4485 /*
4486 * Verify dsl_dataset_promote handles EBUSY
4487 */
4488 void
ztest_dsl_dataset_promote_busy(ztest_ds_t * zd,uint64_t id)4489 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4490 {
4491 objset_t *os;
4492 char *snap1name;
4493 char *clone1name;
4494 char *snap2name;
4495 char *clone2name;
4496 char *snap3name;
4497 char *osname = zd->zd_name;
4498 int error;
4499
4500 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4501 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4502 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4503 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4504 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4505
4506 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4507
4508 ztest_dsl_dataset_cleanup(osname, id);
4509
4510 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4511 "%s@s1_%llu", osname, (u_longlong_t)id);
4512 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4513 "%s/c1_%llu", osname, (u_longlong_t)id);
4514 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4515 "%s@s2_%llu", clone1name, (u_longlong_t)id);
4516 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4517 "%s/c2_%llu", osname, (u_longlong_t)id);
4518 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4519 "%s@s3_%llu", clone1name, (u_longlong_t)id);
4520
4521 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4522 if (error && error != EEXIST) {
4523 if (error == ENOSPC) {
4524 ztest_record_enospc(FTAG);
4525 goto out;
4526 }
4527 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
4528 }
4529
4530 error = dmu_objset_clone(clone1name, snap1name);
4531 if (error) {
4532 if (error == ENOSPC) {
4533 ztest_record_enospc(FTAG);
4534 goto out;
4535 }
4536 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
4537 }
4538
4539 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4540 if (error && error != EEXIST) {
4541 if (error == ENOSPC) {
4542 ztest_record_enospc(FTAG);
4543 goto out;
4544 }
4545 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
4546 }
4547
4548 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4549 if (error && error != EEXIST) {
4550 if (error == ENOSPC) {
4551 ztest_record_enospc(FTAG);
4552 goto out;
4553 }
4554 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
4555 }
4556
4557 error = dmu_objset_clone(clone2name, snap3name);
4558 if (error) {
4559 if (error == ENOSPC) {
4560 ztest_record_enospc(FTAG);
4561 goto out;
4562 }
4563 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
4564 }
4565
4566 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4567 FTAG, &os);
4568 if (error)
4569 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
4570 error = dsl_dataset_promote(clone2name, NULL);
4571 if (error == ENOSPC) {
4572 dmu_objset_disown(os, B_TRUE, FTAG);
4573 ztest_record_enospc(FTAG);
4574 goto out;
4575 }
4576 if (error != EBUSY)
4577 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
4578 error);
4579 dmu_objset_disown(os, B_TRUE, FTAG);
4580
4581 out:
4582 ztest_dsl_dataset_cleanup(osname, id);
4583
4584 (void) pthread_rwlock_unlock(&ztest_name_lock);
4585
4586 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4587 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4588 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4589 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4590 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4591 }
4592
4593 #undef OD_ARRAY_SIZE
4594 #define OD_ARRAY_SIZE 4
4595
4596 /*
4597 * Verify that dmu_object_{alloc,free} work as expected.
4598 */
4599 void
ztest_dmu_object_alloc_free(ztest_ds_t * zd,uint64_t id)4600 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4601 {
4602 ztest_od_t *od;
4603 int batchsize;
4604 int size;
4605 int b;
4606
4607 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4608 od = umem_alloc(size, UMEM_NOFAIL);
4609 batchsize = OD_ARRAY_SIZE;
4610
4611 for (b = 0; b < batchsize; b++)
4612 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4613 0, 0, 0);
4614
4615 /*
4616 * Destroy the previous batch of objects, create a new batch,
4617 * and do some I/O on the new objects.
4618 */
4619 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
4620 return;
4621
4622 while (ztest_random(4 * batchsize) != 0)
4623 ztest_io(zd, od[ztest_random(batchsize)].od_object,
4624 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4625
4626 umem_free(od, size);
4627 }
4628
4629 /*
4630 * Rewind the global allocator to verify object allocation backfilling.
4631 */
4632 void
ztest_dmu_object_next_chunk(ztest_ds_t * zd,uint64_t id)4633 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4634 {
4635 objset_t *os = zd->zd_os;
4636 int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4637 uint64_t object;
4638
4639 /*
4640 * Rewind the global allocator randomly back to a lower object number
4641 * to force backfilling and reclamation of recently freed dnodes.
4642 */
4643 mutex_enter(&os->os_obj_lock);
4644 object = ztest_random(os->os_obj_next_chunk);
4645 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4646 mutex_exit(&os->os_obj_lock);
4647 }
4648
4649 #undef OD_ARRAY_SIZE
4650 #define OD_ARRAY_SIZE 2
4651
4652 /*
4653 * Verify that dmu_{read,write} work as expected.
4654 */
4655 void
ztest_dmu_read_write(ztest_ds_t * zd,uint64_t id)4656 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4657 {
4658 int size;
4659 ztest_od_t *od;
4660
4661 objset_t *os = zd->zd_os;
4662 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4663 od = umem_alloc(size, UMEM_NOFAIL);
4664 dmu_tx_t *tx;
4665 int i, freeit, error;
4666 uint64_t n, s, txg;
4667 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4668 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4669 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4670 uint64_t regions = 997;
4671 uint64_t stride = 123456789ULL;
4672 uint64_t width = 40;
4673 int free_percent = 5;
4674
4675 /*
4676 * This test uses two objects, packobj and bigobj, that are always
4677 * updated together (i.e. in the same tx) so that their contents are
4678 * in sync and can be compared. Their contents relate to each other
4679 * in a simple way: packobj is a dense array of 'bufwad' structures,
4680 * while bigobj is a sparse array of the same bufwads. Specifically,
4681 * for any index n, there are three bufwads that should be identical:
4682 *
4683 * packobj, at offset n * sizeof (bufwad_t)
4684 * bigobj, at the head of the nth chunk
4685 * bigobj, at the tail of the nth chunk
4686 *
4687 * The chunk size is arbitrary. It doesn't have to be a power of two,
4688 * and it doesn't have any relation to the object blocksize.
4689 * The only requirement is that it can hold at least two bufwads.
4690 *
4691 * Normally, we write the bufwad to each of these locations.
4692 * However, free_percent of the time we instead write zeroes to
4693 * packobj and perform a dmu_free_range() on bigobj. By comparing
4694 * bigobj to packobj, we can verify that the DMU is correctly
4695 * tracking which parts of an object are allocated and free,
4696 * and that the contents of the allocated blocks are correct.
4697 */
4698
4699 /*
4700 * Read the directory info. If it's the first time, set things up.
4701 */
4702 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4703 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4704 chunksize);
4705
4706 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4707 umem_free(od, size);
4708 return;
4709 }
4710
4711 bigobj = od[0].od_object;
4712 packobj = od[1].od_object;
4713 chunksize = od[0].od_gen;
4714 ASSERT3U(chunksize, ==, od[1].od_gen);
4715
4716 /*
4717 * Prefetch a random chunk of the big object.
4718 * Our aim here is to get some async reads in flight
4719 * for blocks that we may free below; the DMU should
4720 * handle this race correctly.
4721 */
4722 n = ztest_random(regions) * stride + ztest_random(width);
4723 s = 1 + ztest_random(2 * width - 1);
4724 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4725 ZIO_PRIORITY_SYNC_READ);
4726
4727 /*
4728 * Pick a random index and compute the offsets into packobj and bigobj.
4729 */
4730 n = ztest_random(regions) * stride + ztest_random(width);
4731 s = 1 + ztest_random(width - 1);
4732
4733 packoff = n * sizeof (bufwad_t);
4734 packsize = s * sizeof (bufwad_t);
4735
4736 bigoff = n * chunksize;
4737 bigsize = s * chunksize;
4738
4739 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4740 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4741
4742 /*
4743 * free_percent of the time, free a range of bigobj rather than
4744 * overwriting it.
4745 */
4746 freeit = (ztest_random(100) < free_percent);
4747
4748 /*
4749 * Read the current contents of our objects.
4750 */
4751 error = dmu_read(os, packobj, packoff, packsize, packbuf,
4752 DMU_READ_PREFETCH);
4753 ASSERT0(error);
4754 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4755 DMU_READ_PREFETCH);
4756 ASSERT0(error);
4757
4758 /*
4759 * Get a tx for the mods to both packobj and bigobj.
4760 */
4761 tx = dmu_tx_create(os);
4762
4763 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4764
4765 if (freeit)
4766 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4767 else
4768 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4769
4770 /* This accounts for setting the checksum/compression. */
4771 dmu_tx_hold_bonus(tx, bigobj);
4772
4773 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4774 if (txg == 0) {
4775 umem_free(packbuf, packsize);
4776 umem_free(bigbuf, bigsize);
4777 umem_free(od, size);
4778 return;
4779 }
4780
4781 enum zio_checksum cksum;
4782 do {
4783 cksum = (enum zio_checksum)
4784 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4785 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4786 dmu_object_set_checksum(os, bigobj, cksum, tx);
4787
4788 enum zio_compress comp;
4789 do {
4790 comp = (enum zio_compress)
4791 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4792 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4793 dmu_object_set_compress(os, bigobj, comp, tx);
4794
4795 /*
4796 * For each index from n to n + s, verify that the existing bufwad
4797 * in packobj matches the bufwads at the head and tail of the
4798 * corresponding chunk in bigobj. Then update all three bufwads
4799 * with the new values we want to write out.
4800 */
4801 for (i = 0; i < s; i++) {
4802 /* LINTED */
4803 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4804 /* LINTED */
4805 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4806 /* LINTED */
4807 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4808
4809 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4810 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4811
4812 if (pack->bw_txg > txg)
4813 fatal(0, "future leak: got %llx, open txg is %llx",
4814 pack->bw_txg, txg);
4815
4816 if (pack->bw_data != 0 && pack->bw_index != n + i)
4817 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4818 pack->bw_index, n, i);
4819
4820 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4821 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4822
4823 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4824 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4825
4826 if (freeit) {
4827 bzero(pack, sizeof (bufwad_t));
4828 } else {
4829 pack->bw_index = n + i;
4830 pack->bw_txg = txg;
4831 pack->bw_data = 1 + ztest_random(-2ULL);
4832 }
4833 *bigH = *pack;
4834 *bigT = *pack;
4835 }
4836
4837 /*
4838 * We've verified all the old bufwads, and made new ones.
4839 * Now write them out.
4840 */
4841 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4842
4843 if (freeit) {
4844 if (ztest_opts.zo_verbose >= 7) {
4845 (void) printf("freeing offset %llx size %llx"
4846 " txg %llx\n",
4847 (u_longlong_t)bigoff,
4848 (u_longlong_t)bigsize,
4849 (u_longlong_t)txg);
4850 }
4851 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4852 } else {
4853 if (ztest_opts.zo_verbose >= 7) {
4854 (void) printf("writing offset %llx size %llx"
4855 " txg %llx\n",
4856 (u_longlong_t)bigoff,
4857 (u_longlong_t)bigsize,
4858 (u_longlong_t)txg);
4859 }
4860 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4861 }
4862
4863 dmu_tx_commit(tx);
4864
4865 /*
4866 * Sanity check the stuff we just wrote.
4867 */
4868 {
4869 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4870 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4871
4872 VERIFY0(dmu_read(os, packobj, packoff,
4873 packsize, packcheck, DMU_READ_PREFETCH));
4874 VERIFY0(dmu_read(os, bigobj, bigoff,
4875 bigsize, bigcheck, DMU_READ_PREFETCH));
4876
4877 ASSERT0(bcmp(packbuf, packcheck, packsize));
4878 ASSERT0(bcmp(bigbuf, bigcheck, bigsize));
4879
4880 umem_free(packcheck, packsize);
4881 umem_free(bigcheck, bigsize);
4882 }
4883
4884 umem_free(packbuf, packsize);
4885 umem_free(bigbuf, bigsize);
4886 umem_free(od, size);
4887 }
4888
4889 static void
compare_and_update_pbbufs(uint64_t s,bufwad_t * packbuf,bufwad_t * bigbuf,uint64_t bigsize,uint64_t n,uint64_t chunksize,uint64_t txg)4890 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4891 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4892 {
4893 uint64_t i;
4894 bufwad_t *pack;
4895 bufwad_t *bigH;
4896 bufwad_t *bigT;
4897
4898 /*
4899 * For each index from n to n + s, verify that the existing bufwad
4900 * in packobj matches the bufwads at the head and tail of the
4901 * corresponding chunk in bigobj. Then update all three bufwads
4902 * with the new values we want to write out.
4903 */
4904 for (i = 0; i < s; i++) {
4905 /* LINTED */
4906 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4907 /* LINTED */
4908 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4909 /* LINTED */
4910 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4911
4912 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4913 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4914
4915 if (pack->bw_txg > txg)
4916 fatal(0, "future leak: got %llx, open txg is %llx",
4917 pack->bw_txg, txg);
4918
4919 if (pack->bw_data != 0 && pack->bw_index != n + i)
4920 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4921 pack->bw_index, n, i);
4922
4923 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4924 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4925
4926 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4927 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4928
4929 pack->bw_index = n + i;
4930 pack->bw_txg = txg;
4931 pack->bw_data = 1 + ztest_random(-2ULL);
4932
4933 *bigH = *pack;
4934 *bigT = *pack;
4935 }
4936 }
4937
4938 #undef OD_ARRAY_SIZE
4939 #define OD_ARRAY_SIZE 2
4940
4941 void
ztest_dmu_read_write_zcopy(ztest_ds_t * zd,uint64_t id)4942 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4943 {
4944 objset_t *os = zd->zd_os;
4945 ztest_od_t *od;
4946 dmu_tx_t *tx;
4947 uint64_t i;
4948 int error;
4949 int size;
4950 uint64_t n, s, txg;
4951 bufwad_t *packbuf, *bigbuf;
4952 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4953 uint64_t blocksize = ztest_random_blocksize();
4954 uint64_t chunksize = blocksize;
4955 uint64_t regions = 997;
4956 uint64_t stride = 123456789ULL;
4957 uint64_t width = 9;
4958 dmu_buf_t *bonus_db;
4959 arc_buf_t **bigbuf_arcbufs;
4960 dmu_object_info_t doi;
4961
4962 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4963 od = umem_alloc(size, UMEM_NOFAIL);
4964
4965 /*
4966 * This test uses two objects, packobj and bigobj, that are always
4967 * updated together (i.e. in the same tx) so that their contents are
4968 * in sync and can be compared. Their contents relate to each other
4969 * in a simple way: packobj is a dense array of 'bufwad' structures,
4970 * while bigobj is a sparse array of the same bufwads. Specifically,
4971 * for any index n, there are three bufwads that should be identical:
4972 *
4973 * packobj, at offset n * sizeof (bufwad_t)
4974 * bigobj, at the head of the nth chunk
4975 * bigobj, at the tail of the nth chunk
4976 *
4977 * The chunk size is set equal to bigobj block size so that
4978 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4979 */
4980
4981 /*
4982 * Read the directory info. If it's the first time, set things up.
4983 */
4984 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4985 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4986 chunksize);
4987
4988
4989 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4990 umem_free(od, size);
4991 return;
4992 }
4993
4994 bigobj = od[0].od_object;
4995 packobj = od[1].od_object;
4996 blocksize = od[0].od_blocksize;
4997 chunksize = blocksize;
4998 ASSERT3U(chunksize, ==, od[1].od_gen);
4999
5000 VERIFY0(dmu_object_info(os, bigobj, &doi));
5001 VERIFY(ISP2(doi.doi_data_block_size));
5002 VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5003 VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5004
5005 /*
5006 * Pick a random index and compute the offsets into packobj and bigobj.
5007 */
5008 n = ztest_random(regions) * stride + ztest_random(width);
5009 s = 1 + ztest_random(width - 1);
5010
5011 packoff = n * sizeof (bufwad_t);
5012 packsize = s * sizeof (bufwad_t);
5013
5014 bigoff = n * chunksize;
5015 bigsize = s * chunksize;
5016
5017 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5018 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5019
5020 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5021
5022 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5023
5024 /*
5025 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5026 * Iteration 1 test zcopy to already referenced dbufs.
5027 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5028 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5029 * Iteration 4 test zcopy when dbuf is no longer dirty.
5030 * Iteration 5 test zcopy when it can't be done.
5031 * Iteration 6 one more zcopy write.
5032 */
5033 for (i = 0; i < 7; i++) {
5034 uint64_t j;
5035 uint64_t off;
5036
5037 /*
5038 * In iteration 5 (i == 5) use arcbufs
5039 * that don't match bigobj blksz to test
5040 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5041 * assign an arcbuf to a dbuf.
5042 */
5043 for (j = 0; j < s; j++) {
5044 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5045 bigbuf_arcbufs[j] =
5046 dmu_request_arcbuf(bonus_db, chunksize);
5047 } else {
5048 bigbuf_arcbufs[2 * j] =
5049 dmu_request_arcbuf(bonus_db, chunksize / 2);
5050 bigbuf_arcbufs[2 * j + 1] =
5051 dmu_request_arcbuf(bonus_db, chunksize / 2);
5052 }
5053 }
5054
5055 /*
5056 * Get a tx for the mods to both packobj and bigobj.
5057 */
5058 tx = dmu_tx_create(os);
5059
5060 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5061 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5062
5063 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5064 if (txg == 0) {
5065 umem_free(packbuf, packsize);
5066 umem_free(bigbuf, bigsize);
5067 for (j = 0; j < s; j++) {
5068 if (i != 5 ||
5069 chunksize < (SPA_MINBLOCKSIZE * 2)) {
5070 dmu_return_arcbuf(bigbuf_arcbufs[j]);
5071 } else {
5072 dmu_return_arcbuf(
5073 bigbuf_arcbufs[2 * j]);
5074 dmu_return_arcbuf(
5075 bigbuf_arcbufs[2 * j + 1]);
5076 }
5077 }
5078 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5079 umem_free(od, size);
5080 dmu_buf_rele(bonus_db, FTAG);
5081 return;
5082 }
5083
5084 /*
5085 * 50% of the time don't read objects in the 1st iteration to
5086 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5087 * no existing dbufs for the specified offsets.
5088 */
5089 if (i != 0 || ztest_random(2) != 0) {
5090 error = dmu_read(os, packobj, packoff,
5091 packsize, packbuf, DMU_READ_PREFETCH);
5092 ASSERT0(error);
5093 error = dmu_read(os, bigobj, bigoff, bigsize,
5094 bigbuf, DMU_READ_PREFETCH);
5095 ASSERT0(error);
5096 }
5097 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5098 n, chunksize, txg);
5099
5100 /*
5101 * We've verified all the old bufwads, and made new ones.
5102 * Now write them out.
5103 */
5104 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5105 if (ztest_opts.zo_verbose >= 7) {
5106 (void) printf("writing offset %llx size %llx"
5107 " txg %llx\n",
5108 (u_longlong_t)bigoff,
5109 (u_longlong_t)bigsize,
5110 (u_longlong_t)txg);
5111 }
5112 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5113 dmu_buf_t *dbt;
5114 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5115 bcopy((caddr_t)bigbuf + (off - bigoff),
5116 bigbuf_arcbufs[j]->b_data, chunksize);
5117 } else {
5118 bcopy((caddr_t)bigbuf + (off - bigoff),
5119 bigbuf_arcbufs[2 * j]->b_data,
5120 chunksize / 2);
5121 bcopy((caddr_t)bigbuf + (off - bigoff) +
5122 chunksize / 2,
5123 bigbuf_arcbufs[2 * j + 1]->b_data,
5124 chunksize / 2);
5125 }
5126
5127 if (i == 1) {
5128 VERIFY(dmu_buf_hold(os, bigobj, off,
5129 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5130 }
5131 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5132 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5133 off, bigbuf_arcbufs[j], tx));
5134 } else {
5135 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5136 off, bigbuf_arcbufs[2 * j], tx));
5137 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5138 off + chunksize / 2,
5139 bigbuf_arcbufs[2 * j + 1], tx));
5140 }
5141 if (i == 1) {
5142 dmu_buf_rele(dbt, FTAG);
5143 }
5144 }
5145 dmu_tx_commit(tx);
5146
5147 /*
5148 * Sanity check the stuff we just wrote.
5149 */
5150 {
5151 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5152 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5153
5154 VERIFY0(dmu_read(os, packobj, packoff,
5155 packsize, packcheck, DMU_READ_PREFETCH));
5156 VERIFY0(dmu_read(os, bigobj, bigoff,
5157 bigsize, bigcheck, DMU_READ_PREFETCH));
5158
5159 ASSERT0(bcmp(packbuf, packcheck, packsize));
5160 ASSERT0(bcmp(bigbuf, bigcheck, bigsize));
5161
5162 umem_free(packcheck, packsize);
5163 umem_free(bigcheck, bigsize);
5164 }
5165 if (i == 2) {
5166 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5167 } else if (i == 3) {
5168 txg_wait_synced(dmu_objset_pool(os), 0);
5169 }
5170 }
5171
5172 dmu_buf_rele(bonus_db, FTAG);
5173 umem_free(packbuf, packsize);
5174 umem_free(bigbuf, bigsize);
5175 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5176 umem_free(od, size);
5177 }
5178
5179 /* ARGSUSED */
5180 void
ztest_dmu_write_parallel(ztest_ds_t * zd,uint64_t id)5181 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5182 {
5183 ztest_od_t *od;
5184
5185 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5186 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5187 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5188
5189 /*
5190 * Have multiple threads write to large offsets in an object
5191 * to verify that parallel writes to an object -- even to the
5192 * same blocks within the object -- doesn't cause any trouble.
5193 */
5194 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5195
5196 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5197 return;
5198
5199 while (ztest_random(10) != 0)
5200 ztest_io(zd, od->od_object, offset);
5201
5202 umem_free(od, sizeof (ztest_od_t));
5203 }
5204
5205 void
ztest_dmu_prealloc(ztest_ds_t * zd,uint64_t id)5206 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5207 {
5208 ztest_od_t *od;
5209 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5210 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5211 uint64_t count = ztest_random(20) + 1;
5212 uint64_t blocksize = ztest_random_blocksize();
5213 void *data;
5214
5215 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5216
5217 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5218
5219 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5220 !ztest_random(2)) != 0) {
5221 umem_free(od, sizeof (ztest_od_t));
5222 return;
5223 }
5224
5225 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5226 umem_free(od, sizeof (ztest_od_t));
5227 return;
5228 }
5229
5230 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5231
5232 data = umem_zalloc(blocksize, UMEM_NOFAIL);
5233
5234 while (ztest_random(count) != 0) {
5235 uint64_t randoff = offset + (ztest_random(count) * blocksize);
5236 if (ztest_write(zd, od->od_object, randoff, blocksize,
5237 data) != 0)
5238 break;
5239 while (ztest_random(4) != 0)
5240 ztest_io(zd, od->od_object, randoff);
5241 }
5242
5243 umem_free(data, blocksize);
5244 umem_free(od, sizeof (ztest_od_t));
5245 }
5246
5247 /*
5248 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5249 */
5250 #define ZTEST_ZAP_MIN_INTS 1
5251 #define ZTEST_ZAP_MAX_INTS 4
5252 #define ZTEST_ZAP_MAX_PROPS 1000
5253
5254 void
ztest_zap(ztest_ds_t * zd,uint64_t id)5255 ztest_zap(ztest_ds_t *zd, uint64_t id)
5256 {
5257 objset_t *os = zd->zd_os;
5258 ztest_od_t *od;
5259 uint64_t object;
5260 uint64_t txg, last_txg;
5261 uint64_t value[ZTEST_ZAP_MAX_INTS];
5262 uint64_t zl_ints, zl_intsize, prop;
5263 int i, ints;
5264 dmu_tx_t *tx;
5265 char propname[100], txgname[100];
5266 int error;
5267 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5268
5269 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5270 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5271
5272 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5273 !ztest_random(2)) != 0)
5274 goto out;
5275
5276 object = od->od_object;
5277
5278 /*
5279 * Generate a known hash collision, and verify that
5280 * we can lookup and remove both entries.
5281 */
5282 tx = dmu_tx_create(os);
5283 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5284 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5285 if (txg == 0)
5286 goto out;
5287 for (i = 0; i < 2; i++) {
5288 value[i] = i;
5289 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5290 1, &value[i], tx));
5291 }
5292 for (i = 0; i < 2; i++) {
5293 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5294 sizeof (uint64_t), 1, &value[i], tx));
5295 VERIFY0(
5296 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5297 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5298 ASSERT3U(zl_ints, ==, 1);
5299 }
5300 for (i = 0; i < 2; i++) {
5301 VERIFY0(zap_remove(os, object, hc[i], tx));
5302 }
5303 dmu_tx_commit(tx);
5304
5305 /*
5306 * Generate a bunch of random entries.
5307 */
5308 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5309
5310 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5311 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
5312 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
5313 bzero(value, sizeof (value));
5314 last_txg = 0;
5315
5316 /*
5317 * If these zap entries already exist, validate their contents.
5318 */
5319 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5320 if (error == 0) {
5321 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5322 ASSERT3U(zl_ints, ==, 1);
5323
5324 VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5325 zl_ints, &last_txg));
5326
5327 VERIFY0(zap_length(os, object, propname, &zl_intsize,
5328 &zl_ints));
5329
5330 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5331 ASSERT3U(zl_ints, ==, ints);
5332
5333 VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5334 zl_ints, value));
5335
5336 for (i = 0; i < ints; i++) {
5337 ASSERT3U(value[i], ==, last_txg + object + i);
5338 }
5339 } else {
5340 ASSERT3U(error, ==, ENOENT);
5341 }
5342
5343 /*
5344 * Atomically update two entries in our zap object.
5345 * The first is named txg_%llu, and contains the txg
5346 * in which the property was last updated. The second
5347 * is named prop_%llu, and the nth element of its value
5348 * should be txg + object + n.
5349 */
5350 tx = dmu_tx_create(os);
5351 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5352 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5353 if (txg == 0)
5354 goto out;
5355
5356 if (last_txg > txg)
5357 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
5358
5359 for (i = 0; i < ints; i++)
5360 value[i] = txg + object + i;
5361
5362 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5363 1, &txg, tx));
5364 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5365 ints, value, tx));
5366
5367 dmu_tx_commit(tx);
5368
5369 /*
5370 * Remove a random pair of entries.
5371 */
5372 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5373 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
5374 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
5375
5376 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5377
5378 if (error == ENOENT)
5379 goto out;
5380
5381 ASSERT0(error);
5382
5383 tx = dmu_tx_create(os);
5384 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5385 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5386 if (txg == 0)
5387 goto out;
5388 VERIFY0(zap_remove(os, object, txgname, tx));
5389 VERIFY0(zap_remove(os, object, propname, tx));
5390 dmu_tx_commit(tx);
5391 out:
5392 umem_free(od, sizeof (ztest_od_t));
5393 }
5394
5395 /*
5396 * Test case to test the upgrading of a microzap to fatzap.
5397 */
5398 void
ztest_fzap(ztest_ds_t * zd,uint64_t id)5399 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5400 {
5401 objset_t *os = zd->zd_os;
5402 ztest_od_t *od;
5403 uint64_t object, txg;
5404 int i;
5405
5406 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5407 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5408
5409 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5410 !ztest_random(2)) != 0)
5411 goto out;
5412 object = od->od_object;
5413
5414 /*
5415 * Add entries to this ZAP and make sure it spills over
5416 * and gets upgraded to a fatzap. Also, since we are adding
5417 * 2050 entries we should see ptrtbl growth and leaf-block split.
5418 */
5419 for (i = 0; i < 2050; i++) {
5420 char name[ZFS_MAX_DATASET_NAME_LEN];
5421 uint64_t value = i;
5422 dmu_tx_t *tx;
5423 int error;
5424
5425 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
5426 (u_longlong_t)id, (u_longlong_t)value);
5427
5428 tx = dmu_tx_create(os);
5429 dmu_tx_hold_zap(tx, object, B_TRUE, name);
5430 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5431 if (txg == 0)
5432 goto out;
5433 error = zap_add(os, object, name, sizeof (uint64_t), 1,
5434 &value, tx);
5435 ASSERT(error == 0 || error == EEXIST);
5436 dmu_tx_commit(tx);
5437 }
5438 out:
5439 umem_free(od, sizeof (ztest_od_t));
5440 }
5441
5442 /* ARGSUSED */
5443 void
ztest_zap_parallel(ztest_ds_t * zd,uint64_t id)5444 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5445 {
5446 objset_t *os = zd->zd_os;
5447 ztest_od_t *od;
5448 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5449 dmu_tx_t *tx;
5450 int i, namelen, error;
5451 int micro = ztest_random(2);
5452 char name[20], string_value[20];
5453 void *data;
5454
5455 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5456 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5457
5458 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5459 umem_free(od, sizeof (ztest_od_t));
5460 return;
5461 }
5462
5463 object = od->od_object;
5464
5465 /*
5466 * Generate a random name of the form 'xxx.....' where each
5467 * x is a random printable character and the dots are dots.
5468 * There are 94 such characters, and the name length goes from
5469 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5470 */
5471 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5472
5473 for (i = 0; i < 3; i++)
5474 name[i] = '!' + ztest_random('~' - '!' + 1);
5475 for (; i < namelen - 1; i++)
5476 name[i] = '.';
5477 name[i] = '\0';
5478
5479 if ((namelen & 1) || micro) {
5480 wsize = sizeof (txg);
5481 wc = 1;
5482 data = &txg;
5483 } else {
5484 wsize = 1;
5485 wc = namelen;
5486 data = string_value;
5487 }
5488
5489 count = -1ULL;
5490 VERIFY0(zap_count(os, object, &count));
5491 ASSERT3S(count, !=, -1ULL);
5492
5493 /*
5494 * Select an operation: length, lookup, add, update, remove.
5495 */
5496 i = ztest_random(5);
5497
5498 if (i >= 2) {
5499 tx = dmu_tx_create(os);
5500 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5501 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5502 if (txg == 0) {
5503 umem_free(od, sizeof (ztest_od_t));
5504 return;
5505 }
5506 bcopy(name, string_value, namelen);
5507 } else {
5508 tx = NULL;
5509 txg = 0;
5510 bzero(string_value, namelen);
5511 }
5512
5513 switch (i) {
5514
5515 case 0:
5516 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5517 if (error == 0) {
5518 ASSERT3U(wsize, ==, zl_wsize);
5519 ASSERT3U(wc, ==, zl_wc);
5520 } else {
5521 ASSERT3U(error, ==, ENOENT);
5522 }
5523 break;
5524
5525 case 1:
5526 error = zap_lookup(os, object, name, wsize, wc, data);
5527 if (error == 0) {
5528 if (data == string_value &&
5529 bcmp(name, data, namelen) != 0)
5530 fatal(0, "name '%s' != val '%s' len %d",
5531 name, data, namelen);
5532 } else {
5533 ASSERT3U(error, ==, ENOENT);
5534 }
5535 break;
5536
5537 case 2:
5538 error = zap_add(os, object, name, wsize, wc, data, tx);
5539 ASSERT(error == 0 || error == EEXIST);
5540 break;
5541
5542 case 3:
5543 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5544 break;
5545
5546 case 4:
5547 error = zap_remove(os, object, name, tx);
5548 ASSERT(error == 0 || error == ENOENT);
5549 break;
5550 }
5551
5552 if (tx != NULL)
5553 dmu_tx_commit(tx);
5554
5555 umem_free(od, sizeof (ztest_od_t));
5556 }
5557
5558 /*
5559 * Commit callback data.
5560 */
5561 typedef struct ztest_cb_data {
5562 list_node_t zcd_node;
5563 uint64_t zcd_txg;
5564 int zcd_expected_err;
5565 boolean_t zcd_added;
5566 boolean_t zcd_called;
5567 spa_t *zcd_spa;
5568 } ztest_cb_data_t;
5569
5570 /* This is the actual commit callback function */
5571 static void
ztest_commit_callback(void * arg,int error)5572 ztest_commit_callback(void *arg, int error)
5573 {
5574 ztest_cb_data_t *data = arg;
5575 uint64_t synced_txg;
5576
5577 VERIFY3P(data, !=, NULL);
5578 VERIFY3S(data->zcd_expected_err, ==, error);
5579 VERIFY(!data->zcd_called);
5580
5581 synced_txg = spa_last_synced_txg(data->zcd_spa);
5582 if (data->zcd_txg > synced_txg)
5583 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
5584 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
5585 synced_txg);
5586
5587 data->zcd_called = B_TRUE;
5588
5589 if (error == ECANCELED) {
5590 ASSERT0(data->zcd_txg);
5591 ASSERT(!data->zcd_added);
5592
5593 /*
5594 * The private callback data should be destroyed here, but
5595 * since we are going to check the zcd_called field after
5596 * dmu_tx_abort(), we will destroy it there.
5597 */
5598 return;
5599 }
5600
5601 ASSERT(data->zcd_added);
5602 ASSERT3U(data->zcd_txg, !=, 0);
5603
5604 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5605
5606 /* See if this cb was called more quickly */
5607 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5608 zc_min_txg_delay = synced_txg - data->zcd_txg;
5609
5610 /* Remove our callback from the list */
5611 list_remove(&zcl.zcl_callbacks, data);
5612
5613 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5614
5615 umem_free(data, sizeof (ztest_cb_data_t));
5616 }
5617
5618 /* Allocate and initialize callback data structure */
5619 static ztest_cb_data_t *
ztest_create_cb_data(objset_t * os,uint64_t txg)5620 ztest_create_cb_data(objset_t *os, uint64_t txg)
5621 {
5622 ztest_cb_data_t *cb_data;
5623
5624 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5625
5626 cb_data->zcd_txg = txg;
5627 cb_data->zcd_spa = dmu_objset_spa(os);
5628 list_link_init(&cb_data->zcd_node);
5629
5630 return (cb_data);
5631 }
5632
5633 /*
5634 * Commit callback test.
5635 */
5636 void
ztest_dmu_commit_callbacks(ztest_ds_t * zd,uint64_t id)5637 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5638 {
5639 objset_t *os = zd->zd_os;
5640 ztest_od_t *od;
5641 dmu_tx_t *tx;
5642 ztest_cb_data_t *cb_data[3], *tmp_cb;
5643 uint64_t old_txg, txg;
5644 int i, error = 0;
5645
5646 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5647 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5648
5649 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5650 umem_free(od, sizeof (ztest_od_t));
5651 return;
5652 }
5653
5654 tx = dmu_tx_create(os);
5655
5656 cb_data[0] = ztest_create_cb_data(os, 0);
5657 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5658
5659 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5660
5661 /* Every once in a while, abort the transaction on purpose */
5662 if (ztest_random(100) == 0)
5663 error = -1;
5664
5665 if (!error)
5666 error = dmu_tx_assign(tx, TXG_NOWAIT);
5667
5668 txg = error ? 0 : dmu_tx_get_txg(tx);
5669
5670 cb_data[0]->zcd_txg = txg;
5671 cb_data[1] = ztest_create_cb_data(os, txg);
5672 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5673
5674 if (error) {
5675 /*
5676 * It's not a strict requirement to call the registered
5677 * callbacks from inside dmu_tx_abort(), but that's what
5678 * it's supposed to happen in the current implementation
5679 * so we will check for that.
5680 */
5681 for (i = 0; i < 2; i++) {
5682 cb_data[i]->zcd_expected_err = ECANCELED;
5683 VERIFY(!cb_data[i]->zcd_called);
5684 }
5685
5686 dmu_tx_abort(tx);
5687
5688 for (i = 0; i < 2; i++) {
5689 VERIFY(cb_data[i]->zcd_called);
5690 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5691 }
5692
5693 umem_free(od, sizeof (ztest_od_t));
5694 return;
5695 }
5696
5697 cb_data[2] = ztest_create_cb_data(os, txg);
5698 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5699
5700 /*
5701 * Read existing data to make sure there isn't a future leak.
5702 */
5703 VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5704 &old_txg, DMU_READ_PREFETCH));
5705
5706 if (old_txg > txg)
5707 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
5708 old_txg, txg);
5709
5710 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5711
5712 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5713
5714 /*
5715 * Since commit callbacks don't have any ordering requirement and since
5716 * it is theoretically possible for a commit callback to be called
5717 * after an arbitrary amount of time has elapsed since its txg has been
5718 * synced, it is difficult to reliably determine whether a commit
5719 * callback hasn't been called due to high load or due to a flawed
5720 * implementation.
5721 *
5722 * In practice, we will assume that if after a certain number of txgs a
5723 * commit callback hasn't been called, then most likely there's an
5724 * implementation bug..
5725 */
5726 tmp_cb = list_head(&zcl.zcl_callbacks);
5727 if (tmp_cb != NULL &&
5728 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5729 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
5730 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
5731 }
5732
5733 /*
5734 * Let's find the place to insert our callbacks.
5735 *
5736 * Even though the list is ordered by txg, it is possible for the
5737 * insertion point to not be the end because our txg may already be
5738 * quiescing at this point and other callbacks in the open txg
5739 * (from other objsets) may have sneaked in.
5740 */
5741 tmp_cb = list_tail(&zcl.zcl_callbacks);
5742 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5743 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5744
5745 /* Add the 3 callbacks to the list */
5746 for (i = 0; i < 3; i++) {
5747 if (tmp_cb == NULL)
5748 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5749 else
5750 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5751 cb_data[i]);
5752
5753 cb_data[i]->zcd_added = B_TRUE;
5754 VERIFY(!cb_data[i]->zcd_called);
5755
5756 tmp_cb = cb_data[i];
5757 }
5758
5759 zc_cb_counter += 3;
5760
5761 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5762
5763 dmu_tx_commit(tx);
5764
5765 umem_free(od, sizeof (ztest_od_t));
5766 }
5767
5768 /*
5769 * Visit each object in the dataset. Verify that its properties
5770 * are consistent what was stored in the block tag when it was created,
5771 * and that its unused bonus buffer space has not been overwritten.
5772 */
5773 /* ARGSUSED */
5774 void
ztest_verify_dnode_bt(ztest_ds_t * zd,uint64_t id)5775 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5776 {
5777 objset_t *os = zd->zd_os;
5778 uint64_t obj;
5779 int err = 0;
5780
5781 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5782 ztest_block_tag_t *bt = NULL;
5783 dmu_object_info_t doi;
5784 dmu_buf_t *db;
5785
5786 ztest_object_lock(zd, obj, RL_READER);
5787 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5788 ztest_object_unlock(zd, obj);
5789 continue;
5790 }
5791
5792 dmu_object_info_from_db(db, &doi);
5793 if (doi.doi_bonus_size >= sizeof (*bt))
5794 bt = ztest_bt_bonus(db);
5795
5796 if (bt && bt->bt_magic == BT_MAGIC) {
5797 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5798 bt->bt_offset, bt->bt_gen, bt->bt_txg,
5799 bt->bt_crtxg);
5800 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5801 }
5802
5803 dmu_buf_rele(db, FTAG);
5804 ztest_object_unlock(zd, obj);
5805 }
5806 }
5807
5808 /* ARGSUSED */
5809 void
ztest_dsl_prop_get_set(ztest_ds_t * zd,uint64_t id)5810 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5811 {
5812 zfs_prop_t proplist[] = {
5813 ZFS_PROP_CHECKSUM,
5814 ZFS_PROP_COMPRESSION,
5815 ZFS_PROP_COPIES,
5816 ZFS_PROP_DEDUP
5817 };
5818 int p;
5819
5820 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5821
5822 for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5823 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5824 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5825
5826 VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5827 ztest_random_blocksize(), (int)ztest_random(2)));
5828
5829 (void) pthread_rwlock_unlock(&ztest_name_lock);
5830 }
5831
5832 /* ARGSUSED */
5833 void
ztest_spa_prop_get_set(ztest_ds_t * zd,uint64_t id)5834 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5835 {
5836 nvlist_t *props = NULL;
5837
5838 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5839
5840 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
5841
5842 VERIFY0(spa_prop_get(ztest_spa, &props));
5843
5844 if (ztest_opts.zo_verbose >= 6)
5845 dump_nvlist(props, 4);
5846
5847 fnvlist_free(props);
5848
5849 (void) pthread_rwlock_unlock(&ztest_name_lock);
5850 }
5851
5852 static int
user_release_one(const char * snapname,const char * holdname)5853 user_release_one(const char *snapname, const char *holdname)
5854 {
5855 nvlist_t *snaps, *holds;
5856 int error;
5857
5858 snaps = fnvlist_alloc();
5859 holds = fnvlist_alloc();
5860 fnvlist_add_boolean(holds, holdname);
5861 fnvlist_add_nvlist(snaps, snapname, holds);
5862 fnvlist_free(holds);
5863 error = dsl_dataset_user_release(snaps, NULL);
5864 fnvlist_free(snaps);
5865 return (error);
5866 }
5867
5868 /*
5869 * Test snapshot hold/release and deferred destroy.
5870 */
5871 void
ztest_dmu_snapshot_hold(ztest_ds_t * zd,uint64_t id)5872 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5873 {
5874 int error;
5875 objset_t *os = zd->zd_os;
5876 objset_t *origin;
5877 char snapname[100];
5878 char fullname[100];
5879 char clonename[100];
5880 char tag[100];
5881 char osname[ZFS_MAX_DATASET_NAME_LEN];
5882 nvlist_t *holds;
5883
5884 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5885
5886 dmu_objset_name(os, osname);
5887
5888 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
5889 (u_longlong_t)id);
5890 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5891 (void) snprintf(clonename, sizeof (clonename),
5892 "%s/ch1_%llu", osname, (u_longlong_t)id);
5893 (void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
5894
5895 /*
5896 * Clean up from any previous run.
5897 */
5898 error = dsl_destroy_head(clonename);
5899 if (error != ENOENT)
5900 ASSERT0(error);
5901 error = user_release_one(fullname, tag);
5902 if (error != ESRCH && error != ENOENT)
5903 ASSERT0(error);
5904 error = dsl_destroy_snapshot(fullname, B_FALSE);
5905 if (error != ENOENT)
5906 ASSERT0(error);
5907
5908 /*
5909 * Create snapshot, clone it, mark snap for deferred destroy,
5910 * destroy clone, verify snap was also destroyed.
5911 */
5912 error = dmu_objset_snapshot_one(osname, snapname);
5913 if (error) {
5914 if (error == ENOSPC) {
5915 ztest_record_enospc("dmu_objset_snapshot");
5916 goto out;
5917 }
5918 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5919 }
5920
5921 error = dmu_objset_clone(clonename, fullname);
5922 if (error) {
5923 if (error == ENOSPC) {
5924 ztest_record_enospc("dmu_objset_clone");
5925 goto out;
5926 }
5927 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5928 }
5929
5930 error = dsl_destroy_snapshot(fullname, B_TRUE);
5931 if (error) {
5932 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5933 fullname, error);
5934 }
5935
5936 error = dsl_destroy_head(clonename);
5937 if (error)
5938 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5939
5940 error = dmu_objset_hold(fullname, FTAG, &origin);
5941 if (error != ENOENT)
5942 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5943
5944 /*
5945 * Create snapshot, add temporary hold, verify that we can't
5946 * destroy a held snapshot, mark for deferred destroy,
5947 * release hold, verify snapshot was destroyed.
5948 */
5949 error = dmu_objset_snapshot_one(osname, snapname);
5950 if (error) {
5951 if (error == ENOSPC) {
5952 ztest_record_enospc("dmu_objset_snapshot");
5953 goto out;
5954 }
5955 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5956 }
5957
5958 holds = fnvlist_alloc();
5959 fnvlist_add_string(holds, fullname, tag);
5960 error = dsl_dataset_user_hold(holds, 0, NULL);
5961 fnvlist_free(holds);
5962
5963 if (error == ENOSPC) {
5964 ztest_record_enospc("dsl_dataset_user_hold");
5965 goto out;
5966 } else if (error) {
5967 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5968 fullname, tag, error);
5969 }
5970
5971 error = dsl_destroy_snapshot(fullname, B_FALSE);
5972 if (error != EBUSY) {
5973 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5974 fullname, error);
5975 }
5976
5977 error = dsl_destroy_snapshot(fullname, B_TRUE);
5978 if (error) {
5979 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5980 fullname, error);
5981 }
5982
5983 error = user_release_one(fullname, tag);
5984 if (error)
5985 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5986
5987 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5988
5989 out:
5990 (void) pthread_rwlock_unlock(&ztest_name_lock);
5991 }
5992
5993 /*
5994 * Inject random faults into the on-disk data.
5995 */
5996 /* ARGSUSED */
5997 void
ztest_fault_inject(ztest_ds_t * zd,uint64_t id)5998 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5999 {
6000 ztest_shared_t *zs = ztest_shared;
6001 spa_t *spa = ztest_spa;
6002 int fd;
6003 uint64_t offset;
6004 uint64_t leaves;
6005 uint64_t bad = 0x1990c0ffeedecadeull;
6006 uint64_t top, leaf;
6007 char *path0;
6008 char *pathrand;
6009 size_t fsize;
6010 int bshift = SPA_MAXBLOCKSHIFT + 2;
6011 int iters = 1000;
6012 int maxfaults;
6013 int mirror_save;
6014 vdev_t *vd0 = NULL;
6015 uint64_t guid0 = 0;
6016 boolean_t islog = B_FALSE;
6017
6018 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6019 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6020
6021 mutex_enter(&ztest_vdev_lock);
6022
6023 /*
6024 * Device removal is in progress, fault injection must be disabled
6025 * until it completes and the pool is scrubbed. The fault injection
6026 * strategy for damaging blocks does not take in to account evacuated
6027 * blocks which may have already been damaged.
6028 */
6029 if (ztest_device_removal_active) {
6030 mutex_exit(&ztest_vdev_lock);
6031 goto out;
6032 }
6033
6034 maxfaults = MAXFAULTS(zs);
6035 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
6036 mirror_save = zs->zs_mirrors;
6037 mutex_exit(&ztest_vdev_lock);
6038
6039 ASSERT3U(leaves, >=, 1);
6040
6041 /*
6042 * While ztest is running the number of leaves will not change. This
6043 * is critical for the fault injection logic as it determines where
6044 * errors can be safely injected such that they are always repairable.
6045 *
6046 * When restarting ztest a different number of leaves may be requested
6047 * which will shift the regions to be damaged. This is fine as long
6048 * as the pool has been scrubbed prior to using the new mapping.
6049 * Failure to do can result in non-repairable damage being injected.
6050 */
6051 if (ztest_pool_scrubbed == B_FALSE)
6052 goto out;
6053
6054 /*
6055 * Grab the name lock as reader. There are some operations
6056 * which don't like to have their vdevs changed while
6057 * they are in progress (i.e. spa_change_guid). Those
6058 * operations will have grabbed the name lock as writer.
6059 */
6060 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6061
6062 /*
6063 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6064 */
6065 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6066
6067 if (ztest_random(2) == 0) {
6068 /*
6069 * Inject errors on a normal data device or slog device.
6070 */
6071 top = ztest_random_vdev_top(spa, B_TRUE);
6072 leaf = ztest_random(leaves) + zs->zs_splits;
6073
6074 /*
6075 * Generate paths to the first leaf in this top-level vdev,
6076 * and to the random leaf we selected. We'll induce transient
6077 * write failures and random online/offline activity on leaf 0,
6078 * and we'll write random garbage to the randomly chosen leaf.
6079 */
6080 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6081 ztest_opts.zo_dir, ztest_opts.zo_pool,
6082 top * leaves + zs->zs_splits);
6083 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6084 ztest_opts.zo_dir, ztest_opts.zo_pool,
6085 top * leaves + leaf);
6086
6087 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6088 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6089 islog = B_TRUE;
6090
6091 /*
6092 * If the top-level vdev needs to be resilvered
6093 * then we only allow faults on the device that is
6094 * resilvering.
6095 */
6096 if (vd0 != NULL && maxfaults != 1 &&
6097 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6098 vd0->vdev_resilver_txg != 0)) {
6099 /*
6100 * Make vd0 explicitly claim to be unreadable,
6101 * or unwritable, or reach behind its back
6102 * and close the underlying fd. We can do this if
6103 * maxfaults == 0 because we'll fail and reexecute,
6104 * and we can do it if maxfaults >= 2 because we'll
6105 * have enough redundancy. If maxfaults == 1, the
6106 * combination of this with injection of random data
6107 * corruption below exceeds the pool's fault tolerance.
6108 */
6109 vdev_file_t *vf = vd0->vdev_tsd;
6110
6111 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6112 (long long)vd0->vdev_id, (int)maxfaults);
6113
6114 if (vf != NULL && ztest_random(3) == 0) {
6115 (void) close(vf->vf_file->f_fd);
6116 vf->vf_file->f_fd = -1;
6117 } else if (ztest_random(2) == 0) {
6118 vd0->vdev_cant_read = B_TRUE;
6119 } else {
6120 vd0->vdev_cant_write = B_TRUE;
6121 }
6122 guid0 = vd0->vdev_guid;
6123 }
6124 } else {
6125 /*
6126 * Inject errors on an l2cache device.
6127 */
6128 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6129
6130 if (sav->sav_count == 0) {
6131 spa_config_exit(spa, SCL_STATE, FTAG);
6132 (void) pthread_rwlock_unlock(&ztest_name_lock);
6133 goto out;
6134 }
6135 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6136 guid0 = vd0->vdev_guid;
6137 (void) strcpy(path0, vd0->vdev_path);
6138 (void) strcpy(pathrand, vd0->vdev_path);
6139
6140 leaf = 0;
6141 leaves = 1;
6142 maxfaults = INT_MAX; /* no limit on cache devices */
6143 }
6144
6145 spa_config_exit(spa, SCL_STATE, FTAG);
6146 (void) pthread_rwlock_unlock(&ztest_name_lock);
6147
6148 /*
6149 * If we can tolerate two or more faults, or we're dealing
6150 * with a slog, randomly online/offline vd0.
6151 */
6152 if ((maxfaults >= 2 || islog) && guid0 != 0) {
6153 if (ztest_random(10) < 6) {
6154 int flags = (ztest_random(2) == 0 ?
6155 ZFS_OFFLINE_TEMPORARY : 0);
6156
6157 /*
6158 * We have to grab the zs_name_lock as writer to
6159 * prevent a race between offlining a slog and
6160 * destroying a dataset. Offlining the slog will
6161 * grab a reference on the dataset which may cause
6162 * dsl_destroy_head() to fail with EBUSY thus
6163 * leaving the dataset in an inconsistent state.
6164 */
6165 if (islog)
6166 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6167
6168 VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6169
6170 if (islog)
6171 (void) pthread_rwlock_unlock(&ztest_name_lock);
6172 } else {
6173 /*
6174 * Ideally we would like to be able to randomly
6175 * call vdev_[on|off]line without holding locks
6176 * to force unpredictable failures but the side
6177 * effects of vdev_[on|off]line prevent us from
6178 * doing so. We grab the ztest_vdev_lock here to
6179 * prevent a race between injection testing and
6180 * aux_vdev removal.
6181 */
6182 mutex_enter(&ztest_vdev_lock);
6183 (void) vdev_online(spa, guid0, 0, NULL);
6184 mutex_exit(&ztest_vdev_lock);
6185 }
6186 }
6187
6188 if (maxfaults == 0)
6189 goto out;
6190
6191 /*
6192 * We have at least single-fault tolerance, so inject data corruption.
6193 */
6194 fd = open(pathrand, O_RDWR);
6195
6196 if (fd == -1) /* we hit a gap in the device namespace */
6197 goto out;
6198
6199 fsize = lseek(fd, 0, SEEK_END);
6200
6201 while (--iters != 0) {
6202 /*
6203 * The offset must be chosen carefully to ensure that
6204 * we do not inject a given logical block with errors
6205 * on two different leaf devices, because ZFS can not
6206 * tolerate that (if maxfaults==1).
6207 *
6208 * To achieve this we divide each leaf device into
6209 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6210 * Each chunk is further divided into error-injection
6211 * ranges (can accept errors) and clear ranges (we do
6212 * not inject errors in those). Each error-injection
6213 * range can accept errors only for a single leaf vdev.
6214 * Error-injection ranges are separated by clear ranges.
6215 *
6216 * For example, with 3 leaves, each chunk looks like:
6217 * 0 to 32M: injection range for leaf 0
6218 * 32M to 64M: clear range - no injection allowed
6219 * 64M to 96M: injection range for leaf 1
6220 * 96M to 128M: clear range - no injection allowed
6221 * 128M to 160M: injection range for leaf 2
6222 * 160M to 192M: clear range - no injection allowed
6223 *
6224 * Each clear range must be large enough such that a
6225 * single block cannot straddle it. This way a block
6226 * can't be a target in two different injection ranges
6227 * (on different leaf vdevs).
6228 */
6229 offset = ztest_random(fsize / (leaves << bshift)) *
6230 (leaves << bshift) + (leaf << bshift) +
6231 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6232
6233 /*
6234 * Only allow damage to the labels at one end of the vdev.
6235 *
6236 * If all labels are damaged, the device will be totally
6237 * inaccessible, which will result in loss of data,
6238 * because we also damage (parts of) the other side of
6239 * the mirror/raidz.
6240 *
6241 * Additionally, we will always have both an even and an
6242 * odd label, so that we can handle crashes in the
6243 * middle of vdev_config_sync().
6244 */
6245 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6246 continue;
6247
6248 /*
6249 * The two end labels are stored at the "end" of the disk, but
6250 * the end of the disk (vdev_psize) is aligned to
6251 * sizeof (vdev_label_t).
6252 */
6253 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
6254 if ((leaf & 1) == 1 &&
6255 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6256 continue;
6257
6258 mutex_enter(&ztest_vdev_lock);
6259 if (mirror_save != zs->zs_mirrors) {
6260 mutex_exit(&ztest_vdev_lock);
6261 (void) close(fd);
6262 goto out;
6263 }
6264
6265 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6266 fatal(1, "can't inject bad word at 0x%llx in %s",
6267 offset, pathrand);
6268
6269 mutex_exit(&ztest_vdev_lock);
6270
6271 if (ztest_opts.zo_verbose >= 7)
6272 (void) printf("injected bad word into %s,"
6273 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
6274 }
6275
6276 (void) close(fd);
6277 out:
6278 umem_free(path0, MAXPATHLEN);
6279 umem_free(pathrand, MAXPATHLEN);
6280 }
6281
6282 /*
6283 * By design ztest will never inject uncorrectable damage in to the pool.
6284 * Issue a scrub, wait for it to complete, and verify there is never any
6285 * persistent damage.
6286 *
6287 * Only after a full scrub has been completed is it safe to start injecting
6288 * data corruption. See the comment in zfs_fault_inject().
6289 */
6290 static int
ztest_scrub_impl(spa_t * spa)6291 ztest_scrub_impl(spa_t *spa)
6292 {
6293 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6294 if (error)
6295 return (error);
6296
6297 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6298 txg_wait_synced(spa_get_dsl(spa), 0);
6299
6300 if (spa_get_errlog_size(spa) > 0)
6301 return (ECKSUM);
6302
6303 ztest_pool_scrubbed = B_TRUE;
6304
6305 return (0);
6306 }
6307
6308 /*
6309 * Scrub the pool.
6310 */
6311 /* ARGSUSED */
6312 void
ztest_scrub(ztest_ds_t * zd,uint64_t id)6313 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6314 {
6315 spa_t *spa = ztest_spa;
6316 int error;
6317
6318 /*
6319 * Scrub in progress by device removal.
6320 */
6321 if (ztest_device_removal_active)
6322 return;
6323
6324 /*
6325 * Start a scrub, wait a moment, then force a restart.
6326 */
6327 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6328 (void) poll(NULL, 0, 100);
6329
6330 error = ztest_scrub_impl(spa);
6331 if (error == EBUSY)
6332 error = 0;
6333 ASSERT0(error);
6334 }
6335
6336 /*
6337 * Change the guid for the pool.
6338 */
6339 /* ARGSUSED */
6340 void
ztest_reguid(ztest_ds_t * zd,uint64_t id)6341 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6342 {
6343 spa_t *spa = ztest_spa;
6344 uint64_t orig, load;
6345 int error;
6346
6347 if (ztest_opts.zo_mmp_test)
6348 return;
6349
6350 orig = spa_guid(spa);
6351 load = spa_load_guid(spa);
6352
6353 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6354 error = spa_change_guid(spa);
6355 (void) pthread_rwlock_unlock(&ztest_name_lock);
6356
6357 if (error != 0)
6358 return;
6359
6360 if (ztest_opts.zo_verbose >= 4) {
6361 (void) printf("Changed guid old %llu -> %llu\n",
6362 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
6363 }
6364
6365 VERIFY3U(orig, !=, spa_guid(spa));
6366 VERIFY3U(load, ==, spa_load_guid(spa));
6367 }
6368
6369 void
ztest_fletcher(ztest_ds_t * zd,uint64_t id)6370 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6371 {
6372 hrtime_t end = gethrtime() + NANOSEC;
6373
6374 while (gethrtime() <= end) {
6375 int run_count = 100;
6376 void *buf;
6377 struct abd *abd_data, *abd_meta;
6378 uint32_t size;
6379 int *ptr;
6380 int i;
6381 zio_cksum_t zc_ref;
6382 zio_cksum_t zc_ref_byteswap;
6383
6384 size = ztest_random_blocksize();
6385
6386 buf = umem_alloc(size, UMEM_NOFAIL);
6387 abd_data = abd_alloc(size, B_FALSE);
6388 abd_meta = abd_alloc(size, B_TRUE);
6389
6390 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6391 *ptr = ztest_random(UINT_MAX);
6392
6393 abd_copy_from_buf_off(abd_data, buf, 0, size);
6394 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6395
6396 VERIFY0(fletcher_4_impl_set("scalar"));
6397 fletcher_4_native(buf, size, NULL, &zc_ref);
6398 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6399
6400 VERIFY0(fletcher_4_impl_set("cycle"));
6401 while (run_count-- > 0) {
6402 zio_cksum_t zc;
6403 zio_cksum_t zc_byteswap;
6404
6405 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6406 fletcher_4_native(buf, size, NULL, &zc);
6407
6408 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6409 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6410 sizeof (zc_byteswap)));
6411
6412 /* Test ABD - data */
6413 abd_fletcher_4_byteswap(abd_data, size, NULL,
6414 &zc_byteswap);
6415 abd_fletcher_4_native(abd_data, size, NULL, &zc);
6416
6417 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6418 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6419 sizeof (zc_byteswap)));
6420
6421 /* Test ABD - metadata */
6422 abd_fletcher_4_byteswap(abd_meta, size, NULL,
6423 &zc_byteswap);
6424 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6425
6426 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6427 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6428 sizeof (zc_byteswap)));
6429
6430 }
6431
6432 umem_free(buf, size);
6433 abd_free(abd_data);
6434 abd_free(abd_meta);
6435 }
6436 }
6437
6438 void
ztest_fletcher_incr(ztest_ds_t * zd,uint64_t id)6439 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6440 {
6441 void *buf;
6442 size_t size;
6443 int *ptr;
6444 int i;
6445 zio_cksum_t zc_ref;
6446 zio_cksum_t zc_ref_bswap;
6447
6448 hrtime_t end = gethrtime() + NANOSEC;
6449
6450 while (gethrtime() <= end) {
6451 int run_count = 100;
6452
6453 size = ztest_random_blocksize();
6454 buf = umem_alloc(size, UMEM_NOFAIL);
6455
6456 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6457 *ptr = ztest_random(UINT_MAX);
6458
6459 VERIFY0(fletcher_4_impl_set("scalar"));
6460 fletcher_4_native(buf, size, NULL, &zc_ref);
6461 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6462
6463 VERIFY0(fletcher_4_impl_set("cycle"));
6464
6465 while (run_count-- > 0) {
6466 zio_cksum_t zc;
6467 zio_cksum_t zc_bswap;
6468 size_t pos = 0;
6469
6470 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6471 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6472
6473 while (pos < size) {
6474 size_t inc = 64 * ztest_random(size / 67);
6475 /* sometimes add few bytes to test non-simd */
6476 if (ztest_random(100) < 10)
6477 inc += P2ALIGN(ztest_random(64),
6478 sizeof (uint32_t));
6479
6480 if (inc > (size - pos))
6481 inc = size - pos;
6482
6483 fletcher_4_incremental_native(buf + pos, inc,
6484 &zc);
6485 fletcher_4_incremental_byteswap(buf + pos, inc,
6486 &zc_bswap);
6487
6488 pos += inc;
6489 }
6490
6491 VERIFY3U(pos, ==, size);
6492
6493 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6494 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6495
6496 /*
6497 * verify if incremental on the whole buffer is
6498 * equivalent to non-incremental version
6499 */
6500 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6501 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6502
6503 fletcher_4_incremental_native(buf, size, &zc);
6504 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6505
6506 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6507 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6508 }
6509
6510 umem_free(buf, size);
6511 }
6512 }
6513
6514 static int
ztest_set_global_vars(void)6515 ztest_set_global_vars(void)
6516 {
6517 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6518 char *kv = ztest_opts.zo_gvars[i];
6519 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
6520 VERIFY3U(strlen(kv), >, 0);
6521 int err = set_global_var(kv);
6522 if (ztest_opts.zo_verbose > 0) {
6523 (void) printf("setting global var %s ... %s\n", kv,
6524 err ? "failed" : "ok");
6525 }
6526 if (err != 0) {
6527 (void) fprintf(stderr,
6528 "failed to set global var '%s'\n", kv);
6529 return (err);
6530 }
6531 }
6532 return (0);
6533 }
6534
6535 static char **
ztest_global_vars_to_zdb_args(void)6536 ztest_global_vars_to_zdb_args(void)
6537 {
6538 char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
6539 char **cur = args;
6540 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6541 char *kv = ztest_opts.zo_gvars[i];
6542 *cur = "-o";
6543 cur++;
6544 *cur = strdup(kv);
6545 cur++;
6546 }
6547 ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
6548 *cur = NULL;
6549 return (args);
6550 }
6551
6552 /* The end of strings is indicated by a NULL element */
6553 static char *
join_strings(char ** strings,const char * sep)6554 join_strings(char **strings, const char *sep)
6555 {
6556 size_t totallen = 0;
6557 for (char **sp = strings; *sp != NULL; sp++) {
6558 totallen += strlen(*sp);
6559 totallen += strlen(sep);
6560 }
6561 if (totallen > 0) {
6562 ASSERT(totallen >= strlen(sep));
6563 totallen -= strlen(sep);
6564 }
6565
6566 size_t buflen = totallen + 1;
6567 char *o = malloc(buflen); /* trailing 0 byte */
6568 o[0] = '\0';
6569 for (char **sp = strings; *sp != NULL; sp++) {
6570 size_t would;
6571 would = strlcat(o, *sp, buflen);
6572 VERIFY3U(would, <, buflen);
6573 if (*(sp+1) == NULL) {
6574 break;
6575 }
6576 would = strlcat(o, sep, buflen);
6577 VERIFY3U(would, <, buflen);
6578 }
6579 ASSERT3S(strlen(o), ==, totallen);
6580 return (o);
6581 }
6582
6583 static int
ztest_check_path(char * path)6584 ztest_check_path(char *path)
6585 {
6586 struct stat s;
6587 /* return true on success */
6588 return (!stat(path, &s));
6589 }
6590
6591 static void
ztest_get_zdb_bin(char * bin,int len)6592 ztest_get_zdb_bin(char *bin, int len)
6593 {
6594 char *zdb_path;
6595 /*
6596 * Try to use ZDB_PATH and in-tree zdb path. If not successful, just
6597 * let popen to search through PATH.
6598 */
6599 if ((zdb_path = getenv("ZDB_PATH"))) {
6600 strlcpy(bin, zdb_path, len); /* In env */
6601 if (!ztest_check_path(bin)) {
6602 ztest_dump_core = 0;
6603 fatal(1, "invalid ZDB_PATH '%s'", bin);
6604 }
6605 return;
6606 }
6607
6608 VERIFY3P(realpath(getexecname(), bin), !=, NULL);
6609 if (strstr(bin, "/ztest/")) {
6610 strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
6611 strcat(bin, "/zdb/zdb");
6612 if (ztest_check_path(bin))
6613 return;
6614 }
6615 strcpy(bin, "zdb");
6616 }
6617
6618 static vdev_t *
ztest_random_concrete_vdev_leaf(vdev_t * vd)6619 ztest_random_concrete_vdev_leaf(vdev_t *vd)
6620 {
6621 if (vd == NULL)
6622 return (NULL);
6623
6624 if (vd->vdev_children == 0)
6625 return (vd);
6626
6627 vdev_t *eligible[vd->vdev_children];
6628 int eligible_idx = 0, i;
6629 for (i = 0; i < vd->vdev_children; i++) {
6630 vdev_t *cvd = vd->vdev_child[i];
6631 if (cvd->vdev_top->vdev_removing)
6632 continue;
6633 if (cvd->vdev_children > 0 ||
6634 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
6635 eligible[eligible_idx++] = cvd;
6636 }
6637 }
6638 VERIFY3S(eligible_idx, >, 0);
6639
6640 uint64_t child_no = ztest_random(eligible_idx);
6641 return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
6642 }
6643
6644 /* ARGSUSED */
6645 void
ztest_initialize(ztest_ds_t * zd,uint64_t id)6646 ztest_initialize(ztest_ds_t *zd, uint64_t id)
6647 {
6648 spa_t *spa = ztest_spa;
6649 int error = 0;
6650
6651 mutex_enter(&ztest_vdev_lock);
6652
6653 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6654
6655 /* Random leaf vdev */
6656 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6657 if (rand_vd == NULL) {
6658 spa_config_exit(spa, SCL_VDEV, FTAG);
6659 mutex_exit(&ztest_vdev_lock);
6660 return;
6661 }
6662
6663 /*
6664 * The random vdev we've selected may change as soon as we
6665 * drop the spa_config_lock. We create local copies of things
6666 * we're interested in.
6667 */
6668 uint64_t guid = rand_vd->vdev_guid;
6669 char *path = strdup(rand_vd->vdev_path);
6670 boolean_t active = rand_vd->vdev_initialize_thread != NULL;
6671
6672 zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
6673 spa_config_exit(spa, SCL_VDEV, FTAG);
6674
6675 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
6676
6677 nvlist_t *vdev_guids = fnvlist_alloc();
6678 nvlist_t *vdev_errlist = fnvlist_alloc();
6679 fnvlist_add_uint64(vdev_guids, path, guid);
6680 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
6681 fnvlist_free(vdev_guids);
6682 fnvlist_free(vdev_errlist);
6683
6684 switch (cmd) {
6685 case POOL_INITIALIZE_CANCEL:
6686 if (ztest_opts.zo_verbose >= 4) {
6687 (void) printf("Cancel initialize %s", path);
6688 if (!active)
6689 (void) printf(" failed (no initialize active)");
6690 (void) printf("\n");
6691 }
6692 break;
6693 case POOL_INITIALIZE_START:
6694 if (ztest_opts.zo_verbose >= 4) {
6695 (void) printf("Start initialize %s", path);
6696 if (active && error == 0)
6697 (void) printf(" failed (already active)");
6698 else if (error != 0)
6699 (void) printf(" failed (error %d)", error);
6700 (void) printf("\n");
6701 }
6702 break;
6703 case POOL_INITIALIZE_SUSPEND:
6704 if (ztest_opts.zo_verbose >= 4) {
6705 (void) printf("Suspend initialize %s", path);
6706 if (!active)
6707 (void) printf(" failed (no initialize active)");
6708 (void) printf("\n");
6709 }
6710 break;
6711 }
6712 free(path);
6713 mutex_exit(&ztest_vdev_lock);
6714 }
6715
6716 /* ARGSUSED */
6717 void
ztest_trim(ztest_ds_t * zd,uint64_t id)6718 ztest_trim(ztest_ds_t *zd, uint64_t id)
6719 {
6720 spa_t *spa = ztest_spa;
6721 int error = 0;
6722
6723 mutex_enter(&ztest_vdev_lock);
6724
6725 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6726
6727 /* Random leaf vdev */
6728 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6729 if (rand_vd == NULL) {
6730 spa_config_exit(spa, SCL_VDEV, FTAG);
6731 mutex_exit(&ztest_vdev_lock);
6732 return;
6733 }
6734
6735 /*
6736 * The random vdev we've selected may change as soon as we
6737 * drop the spa_config_lock. We create local copies of things
6738 * we're interested in.
6739 */
6740 uint64_t guid = rand_vd->vdev_guid;
6741 char *path = strdup(rand_vd->vdev_path);
6742 boolean_t active = rand_vd->vdev_trim_thread != NULL;
6743
6744 zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
6745 spa_config_exit(spa, SCL_VDEV, FTAG);
6746
6747 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
6748 uint64_t rate = 1 << ztest_random(30);
6749 boolean_t partial = (ztest_random(5) > 0);
6750 boolean_t secure = (ztest_random(5) > 0);
6751
6752 nvlist_t *vdev_guids = fnvlist_alloc();
6753 nvlist_t *vdev_errlist = fnvlist_alloc();
6754 fnvlist_add_uint64(vdev_guids, path, guid);
6755 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
6756 secure, vdev_errlist);
6757 fnvlist_free(vdev_guids);
6758 fnvlist_free(vdev_errlist);
6759
6760 switch (cmd) {
6761 case POOL_TRIM_CANCEL:
6762 if (ztest_opts.zo_verbose >= 4) {
6763 (void) printf("Cancel TRIM %s", path);
6764 if (!active)
6765 (void) printf(" failed (no TRIM active)");
6766 (void) printf("\n");
6767 }
6768 break;
6769 case POOL_TRIM_START:
6770 if (ztest_opts.zo_verbose >= 4) {
6771 (void) printf("Start TRIM %s", path);
6772 if (active && error == 0)
6773 (void) printf(" failed (already active)");
6774 else if (error != 0)
6775 (void) printf(" failed (error %d)", error);
6776 (void) printf("\n");
6777 }
6778 break;
6779 case POOL_TRIM_SUSPEND:
6780 if (ztest_opts.zo_verbose >= 4) {
6781 (void) printf("Suspend TRIM %s", path);
6782 if (!active)
6783 (void) printf(" failed (no TRIM active)");
6784 (void) printf("\n");
6785 }
6786 break;
6787 }
6788 free(path);
6789 mutex_exit(&ztest_vdev_lock);
6790 }
6791
6792 /*
6793 * Verify pool integrity by running zdb.
6794 */
6795 static void
ztest_run_zdb(char * pool)6796 ztest_run_zdb(char *pool)
6797 {
6798 int status;
6799 char *bin;
6800 char *zdb;
6801 char *zbuf;
6802 const int len = MAXPATHLEN + MAXNAMELEN + 20;
6803 FILE *fp;
6804
6805 bin = umem_alloc(len, UMEM_NOFAIL);
6806 zdb = umem_alloc(len, UMEM_NOFAIL);
6807 zbuf = umem_alloc(1024, UMEM_NOFAIL);
6808
6809 ztest_get_zdb_bin(bin, len);
6810
6811 char **set_gvars_args = ztest_global_vars_to_zdb_args();
6812 char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
6813 free(set_gvars_args);
6814
6815 size_t would = snprintf(zdb, len,
6816 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s",
6817 bin,
6818 ztest_opts.zo_verbose >= 3 ? "s" : "",
6819 ztest_opts.zo_verbose >= 4 ? "v" : "",
6820 set_gvars_args_joined,
6821 ztest_opts.zo_dir,
6822 pool);
6823 ASSERT3U(would, <, len);
6824
6825 free(set_gvars_args_joined);
6826
6827 if (ztest_opts.zo_verbose >= 5)
6828 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
6829
6830 fp = popen(zdb, "r");
6831
6832 while (fgets(zbuf, 1024, fp) != NULL)
6833 if (ztest_opts.zo_verbose >= 3)
6834 (void) printf("%s", zbuf);
6835
6836 status = pclose(fp);
6837
6838 if (status == 0)
6839 goto out;
6840
6841 ztest_dump_core = 0;
6842 if (WIFEXITED(status))
6843 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6844 else
6845 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
6846 out:
6847 umem_free(bin, len);
6848 umem_free(zdb, len);
6849 umem_free(zbuf, 1024);
6850 }
6851
6852 static void
ztest_walk_pool_directory(char * header)6853 ztest_walk_pool_directory(char *header)
6854 {
6855 spa_t *spa = NULL;
6856
6857 if (ztest_opts.zo_verbose >= 6)
6858 (void) printf("%s\n", header);
6859
6860 mutex_enter(&spa_namespace_lock);
6861 while ((spa = spa_next(spa)) != NULL)
6862 if (ztest_opts.zo_verbose >= 6)
6863 (void) printf("\t%s\n", spa_name(spa));
6864 mutex_exit(&spa_namespace_lock);
6865 }
6866
6867 static void
ztest_spa_import_export(char * oldname,char * newname)6868 ztest_spa_import_export(char *oldname, char *newname)
6869 {
6870 nvlist_t *config, *newconfig;
6871 uint64_t pool_guid;
6872 spa_t *spa;
6873 int error;
6874
6875 if (ztest_opts.zo_verbose >= 4) {
6876 (void) printf("import/export: old = %s, new = %s\n",
6877 oldname, newname);
6878 }
6879
6880 /*
6881 * Clean up from previous runs.
6882 */
6883 (void) spa_destroy(newname);
6884
6885 /*
6886 * Get the pool's configuration and guid.
6887 */
6888 VERIFY0(spa_open(oldname, &spa, FTAG));
6889
6890 /*
6891 * Kick off a scrub to tickle scrub/export races.
6892 */
6893 if (ztest_random(2) == 0)
6894 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6895
6896 pool_guid = spa_guid(spa);
6897 spa_close(spa, FTAG);
6898
6899 ztest_walk_pool_directory("pools before export");
6900
6901 /*
6902 * Export it.
6903 */
6904 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
6905
6906 ztest_walk_pool_directory("pools after export");
6907
6908 /*
6909 * Try to import it.
6910 */
6911 newconfig = spa_tryimport(config);
6912 ASSERT3P(newconfig, !=, NULL);
6913 fnvlist_free(newconfig);
6914
6915 /*
6916 * Import it under the new name.
6917 */
6918 error = spa_import(newname, config, NULL, 0);
6919 if (error != 0) {
6920 dump_nvlist(config, 0);
6921 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
6922 oldname, newname, error);
6923 }
6924
6925 ztest_walk_pool_directory("pools after import");
6926
6927 /*
6928 * Try to import it again -- should fail with EEXIST.
6929 */
6930 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
6931
6932 /*
6933 * Try to import it under a different name -- should fail with EEXIST.
6934 */
6935 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
6936
6937 /*
6938 * Verify that the pool is no longer visible under the old name.
6939 */
6940 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6941
6942 /*
6943 * Verify that we can open and close the pool using the new name.
6944 */
6945 VERIFY0(spa_open(newname, &spa, FTAG));
6946 ASSERT3U(pool_guid, ==, spa_guid(spa));
6947 spa_close(spa, FTAG);
6948
6949 fnvlist_free(config);
6950 }
6951
6952 static void
ztest_resume(spa_t * spa)6953 ztest_resume(spa_t *spa)
6954 {
6955 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
6956 (void) printf("resuming from suspended state\n");
6957 spa_vdev_state_enter(spa, SCL_NONE);
6958 vdev_clear(spa, NULL);
6959 (void) spa_vdev_state_exit(spa, NULL, 0);
6960 (void) zio_resume(spa);
6961 }
6962
6963 static void
ztest_resume_thread(void * arg)6964 ztest_resume_thread(void *arg)
6965 {
6966 spa_t *spa = arg;
6967
6968 while (!ztest_exiting) {
6969 if (spa_suspended(spa))
6970 ztest_resume(spa);
6971 (void) poll(NULL, 0, 100);
6972
6973 /*
6974 * Periodically change the zfs_compressed_arc_enabled setting.
6975 */
6976 if (ztest_random(10) == 0)
6977 zfs_compressed_arc_enabled = ztest_random(2);
6978
6979 /*
6980 * Periodically change the zfs_abd_scatter_enabled setting.
6981 */
6982 if (ztest_random(10) == 0)
6983 zfs_abd_scatter_enabled = ztest_random(2);
6984 }
6985
6986 thread_exit();
6987 }
6988
6989 static void
ztest_deadman_thread(void * arg)6990 ztest_deadman_thread(void *arg)
6991 {
6992 ztest_shared_t *zs = arg;
6993 spa_t *spa = ztest_spa;
6994 hrtime_t delay, overdue, last_run = gethrtime();
6995
6996 delay = (zs->zs_thread_stop - zs->zs_thread_start) +
6997 MSEC2NSEC(zfs_deadman_synctime_ms);
6998
6999 while (!ztest_exiting) {
7000 /*
7001 * Wait for the delay timer while checking occasionally
7002 * if we should stop.
7003 */
7004 if (gethrtime() < last_run + delay) {
7005 (void) poll(NULL, 0, 1000);
7006 continue;
7007 }
7008
7009 /*
7010 * If the pool is suspended then fail immediately. Otherwise,
7011 * check to see if the pool is making any progress. If
7012 * vdev_deadman() discovers that there hasn't been any recent
7013 * I/Os then it will end up aborting the tests.
7014 */
7015 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7016 fatal(0, "aborting test after %llu seconds because "
7017 "pool has transitioned to a suspended state.",
7018 zfs_deadman_synctime_ms / 1000);
7019 }
7020 vdev_deadman(spa->spa_root_vdev, FTAG);
7021
7022 /*
7023 * If the process doesn't complete within a grace period of
7024 * zfs_deadman_synctime_ms over the expected finish time,
7025 * then it may be hung and is terminated.
7026 */
7027 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7028 if (gethrtime() > overdue) {
7029 fatal(0, "aborting test after %llu seconds because "
7030 "the process is overdue for termination.",
7031 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7032 }
7033
7034 (void) printf("ztest has been running for %lld seconds\n",
7035 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7036
7037 last_run = gethrtime();
7038 delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7039 }
7040
7041 thread_exit();
7042 }
7043
7044 static void
ztest_execute(int test,ztest_info_t * zi,uint64_t id)7045 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7046 {
7047 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7048 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7049 hrtime_t functime = gethrtime();
7050 int i;
7051
7052 for (i = 0; i < zi->zi_iters; i++)
7053 zi->zi_func(zd, id);
7054
7055 functime = gethrtime() - functime;
7056
7057 atomic_add_64(&zc->zc_count, 1);
7058 atomic_add_64(&zc->zc_time, functime);
7059
7060 if (ztest_opts.zo_verbose >= 4)
7061 (void) printf("%6.2f sec in %s\n",
7062 (double)functime / NANOSEC, zi->zi_funcname);
7063 }
7064
7065 static void
ztest_thread(void * arg)7066 ztest_thread(void *arg)
7067 {
7068 int rand;
7069 uint64_t id = (uintptr_t)arg;
7070 ztest_shared_t *zs = ztest_shared;
7071 uint64_t call_next;
7072 hrtime_t now;
7073 ztest_info_t *zi;
7074 ztest_shared_callstate_t *zc;
7075
7076 while ((now = gethrtime()) < zs->zs_thread_stop) {
7077 /*
7078 * See if it's time to force a crash.
7079 */
7080 if (now > zs->zs_thread_kill)
7081 ztest_kill(zs);
7082
7083 /*
7084 * If we're getting ENOSPC with some regularity, stop.
7085 */
7086 if (zs->zs_enospc_count > 10)
7087 break;
7088
7089 /*
7090 * Pick a random function to execute.
7091 */
7092 rand = ztest_random(ZTEST_FUNCS);
7093 zi = &ztest_info[rand];
7094 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7095 call_next = zc->zc_next;
7096
7097 if (now >= call_next &&
7098 atomic_cas_64(&zc->zc_next, call_next, call_next +
7099 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7100 ztest_execute(rand, zi, id);
7101 }
7102 }
7103
7104 thread_exit();
7105 }
7106
7107 static void
ztest_dataset_name(char * dsname,char * pool,int d)7108 ztest_dataset_name(char *dsname, char *pool, int d)
7109 {
7110 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7111 }
7112
7113 static void
ztest_dataset_destroy(int d)7114 ztest_dataset_destroy(int d)
7115 {
7116 char name[ZFS_MAX_DATASET_NAME_LEN];
7117 int t;
7118
7119 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7120
7121 if (ztest_opts.zo_verbose >= 3)
7122 (void) printf("Destroying %s to free up space\n", name);
7123
7124 /*
7125 * Cleanup any non-standard clones and snapshots. In general,
7126 * ztest thread t operates on dataset (t % zopt_datasets),
7127 * so there may be more than one thing to clean up.
7128 */
7129 for (t = d; t < ztest_opts.zo_threads;
7130 t += ztest_opts.zo_datasets)
7131 ztest_dsl_dataset_cleanup(name, t);
7132
7133 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7134 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7135 }
7136
7137 static void
ztest_dataset_dirobj_verify(ztest_ds_t * zd)7138 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7139 {
7140 uint64_t usedobjs, dirobjs, scratch;
7141
7142 /*
7143 * ZTEST_DIROBJ is the object directory for the entire dataset.
7144 * Therefore, the number of objects in use should equal the
7145 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7146 * If not, we have an object leak.
7147 *
7148 * Note that we can only check this in ztest_dataset_open(),
7149 * when the open-context and syncing-context values agree.
7150 * That's because zap_count() returns the open-context value,
7151 * while dmu_objset_space() returns the rootbp fill count.
7152 */
7153 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7154 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7155 ASSERT3U(dirobjs + 1, ==, usedobjs);
7156 }
7157
7158 static int
ztest_dataset_open(int d)7159 ztest_dataset_open(int d)
7160 {
7161 ztest_ds_t *zd = &ztest_ds[d];
7162 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7163 objset_t *os;
7164 zilog_t *zilog;
7165 char name[ZFS_MAX_DATASET_NAME_LEN];
7166 int error;
7167
7168 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7169
7170 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7171
7172 error = ztest_dataset_create(name);
7173 if (error == ENOSPC) {
7174 (void) pthread_rwlock_unlock(&ztest_name_lock);
7175 ztest_record_enospc(FTAG);
7176 return (error);
7177 }
7178 ASSERT(error == 0 || error == EEXIST);
7179
7180 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7181 B_TRUE, zd, &os));
7182 (void) pthread_rwlock_unlock(&ztest_name_lock);
7183
7184 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7185
7186 zilog = zd->zd_zilog;
7187
7188 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7189 zilog->zl_header->zh_claim_lr_seq < committed_seq)
7190 fatal(0, "missing log records: claimed %llu < committed %llu",
7191 zilog->zl_header->zh_claim_lr_seq, committed_seq);
7192
7193 ztest_dataset_dirobj_verify(zd);
7194
7195 zil_replay(os, zd, ztest_replay_vector);
7196
7197 ztest_dataset_dirobj_verify(zd);
7198
7199 if (ztest_opts.zo_verbose >= 6)
7200 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
7201 zd->zd_name,
7202 (u_longlong_t)zilog->zl_parse_blk_count,
7203 (u_longlong_t)zilog->zl_parse_lr_count,
7204 (u_longlong_t)zilog->zl_replaying_seq);
7205
7206 zilog = zil_open(os, ztest_get_data);
7207
7208 if (zilog->zl_replaying_seq != 0 &&
7209 zilog->zl_replaying_seq < committed_seq)
7210 fatal(0, "missing log records: replayed %llu < committed %llu",
7211 zilog->zl_replaying_seq, committed_seq);
7212
7213 return (0);
7214 }
7215
7216 static void
ztest_dataset_close(int d)7217 ztest_dataset_close(int d)
7218 {
7219 ztest_ds_t *zd = &ztest_ds[d];
7220
7221 zil_close(zd->zd_zilog);
7222 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7223
7224 ztest_zd_fini(zd);
7225 }
7226
7227 /* ARGSUSED */
7228 static int
ztest_replay_zil_cb(const char * name,void * arg)7229 ztest_replay_zil_cb(const char *name, void *arg)
7230 {
7231 objset_t *os;
7232 ztest_ds_t *zdtmp;
7233
7234 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7235 B_TRUE, FTAG, &os));
7236
7237 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7238
7239 ztest_zd_init(zdtmp, NULL, os);
7240 zil_replay(os, zdtmp, ztest_replay_vector);
7241 ztest_zd_fini(zdtmp);
7242
7243 if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7244 ztest_opts.zo_verbose >= 6) {
7245 zilog_t *zilog = dmu_objset_zil(os);
7246
7247 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
7248 name,
7249 (u_longlong_t)zilog->zl_parse_blk_count,
7250 (u_longlong_t)zilog->zl_parse_lr_count,
7251 (u_longlong_t)zilog->zl_replaying_seq);
7252 }
7253
7254 umem_free(zdtmp, sizeof (ztest_ds_t));
7255
7256 dmu_objset_disown(os, B_TRUE, FTAG);
7257 return (0);
7258 }
7259
7260 static void
ztest_freeze(void)7261 ztest_freeze(void)
7262 {
7263 ztest_ds_t *zd = &ztest_ds[0];
7264 spa_t *spa;
7265 int numloops = 0;
7266
7267 if (ztest_opts.zo_verbose >= 3)
7268 (void) printf("testing spa_freeze()...\n");
7269
7270 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7271 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7272 VERIFY0(ztest_dataset_open(0));
7273 ztest_spa = spa;
7274
7275 /*
7276 * Force the first log block to be transactionally allocated.
7277 * We have to do this before we freeze the pool -- otherwise
7278 * the log chain won't be anchored.
7279 */
7280 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7281 ztest_dmu_object_alloc_free(zd, 0);
7282 zil_commit(zd->zd_zilog, 0);
7283 }
7284
7285 txg_wait_synced(spa_get_dsl(spa), 0);
7286
7287 /*
7288 * Freeze the pool. This stops spa_sync() from doing anything,
7289 * so that the only way to record changes from now on is the ZIL.
7290 */
7291 spa_freeze(spa);
7292
7293 /*
7294 * Because it is hard to predict how much space a write will actually
7295 * require beforehand, we leave ourselves some fudge space to write over
7296 * capacity.
7297 */
7298 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7299
7300 /*
7301 * Run tests that generate log records but don't alter the pool config
7302 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7303 * We do a txg_wait_synced() after each iteration to force the txg
7304 * to increase well beyond the last synced value in the uberblock.
7305 * The ZIL should be OK with that.
7306 *
7307 * Run a random number of times less than zo_maxloops and ensure we do
7308 * not run out of space on the pool.
7309 */
7310 while (ztest_random(10) != 0 &&
7311 numloops++ < ztest_opts.zo_maxloops &&
7312 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7313 ztest_od_t od;
7314 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7315 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7316 ztest_io(zd, od.od_object,
7317 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7318 txg_wait_synced(spa_get_dsl(spa), 0);
7319 }
7320
7321 /*
7322 * Commit all of the changes we just generated.
7323 */
7324 zil_commit(zd->zd_zilog, 0);
7325 txg_wait_synced(spa_get_dsl(spa), 0);
7326
7327 /*
7328 * Close our dataset and close the pool.
7329 */
7330 ztest_dataset_close(0);
7331 spa_close(spa, FTAG);
7332 kernel_fini();
7333
7334 /*
7335 * Open and close the pool and dataset to induce log replay.
7336 */
7337 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7338 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7339 ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7340 VERIFY0(ztest_dataset_open(0));
7341 ztest_spa = spa;
7342 txg_wait_synced(spa_get_dsl(spa), 0);
7343 ztest_dataset_close(0);
7344 ztest_reguid(NULL, 0);
7345
7346 spa_close(spa, FTAG);
7347 kernel_fini();
7348 }
7349
7350 static void
ztest_import_impl(ztest_shared_t * zs)7351 ztest_import_impl(ztest_shared_t *zs)
7352 {
7353 importargs_t args = { 0 };
7354 nvlist_t *cfg = NULL;
7355 int nsearch = 1;
7356 char *searchdirs[nsearch];
7357 int flags = ZFS_IMPORT_MISSING_LOG;
7358
7359 searchdirs[0] = ztest_opts.zo_dir;
7360 args.paths = nsearch;
7361 args.path = searchdirs;
7362 args.can_be_active = B_FALSE;
7363
7364 VERIFY0(zpool_find_config(NULL, ztest_opts.zo_pool, &cfg, &args,
7365 &libzpool_config_ops));
7366 VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7367 fnvlist_free(cfg);
7368 }
7369
7370 /*
7371 * Import a storage pool with the given name.
7372 */
7373 static void
ztest_import(ztest_shared_t * zs)7374 ztest_import(ztest_shared_t *zs)
7375 {
7376 spa_t *spa;
7377
7378 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7379 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7380 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7381
7382 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7383
7384 ztest_import_impl(zs);
7385
7386 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7387 zs->zs_metaslab_sz =
7388 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7389 spa_close(spa, FTAG);
7390
7391 kernel_fini();
7392
7393 if (!ztest_opts.zo_mmp_test) {
7394 ztest_run_zdb(ztest_opts.zo_pool);
7395 ztest_freeze();
7396 ztest_run_zdb(ztest_opts.zo_pool);
7397 }
7398
7399 (void) pthread_rwlock_destroy(&ztest_name_lock);
7400 mutex_destroy(&ztest_vdev_lock);
7401 mutex_destroy(&ztest_checkpoint_lock);
7402 }
7403
7404 /*
7405 * Kick off threads to run tests on all datasets in parallel.
7406 */
7407 static void
ztest_run(ztest_shared_t * zs)7408 ztest_run(ztest_shared_t *zs)
7409 {
7410 spa_t *spa;
7411 objset_t *os;
7412 kthread_t *resume_thread, *deadman_thread;
7413 kthread_t **run_threads;
7414 uint64_t object;
7415 int error;
7416 int t, d;
7417
7418 ztest_exiting = B_FALSE;
7419
7420 /*
7421 * Initialize parent/child shared state.
7422 */
7423 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7424 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7425 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7426
7427 zs->zs_thread_start = gethrtime();
7428 zs->zs_thread_stop =
7429 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
7430 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
7431 zs->zs_thread_kill = zs->zs_thread_stop;
7432 if (ztest_random(100) < ztest_opts.zo_killrate) {
7433 zs->zs_thread_kill -=
7434 ztest_random(ztest_opts.zo_passtime * NANOSEC);
7435 }
7436
7437 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
7438
7439 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
7440 offsetof(ztest_cb_data_t, zcd_node));
7441
7442 /*
7443 * Open our pool. It may need to be imported first depending on
7444 * what tests were running when the previous pass was terminated.
7445 */
7446 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7447 error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
7448 if (error) {
7449 VERIFY3S(error, ==, ENOENT);
7450 ztest_import_impl(zs);
7451 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7452 zs->zs_metaslab_sz =
7453 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7454 }
7455
7456 metaslab_preload_limit = ztest_random(20) + 1;
7457 ztest_spa = spa;
7458
7459 VERIFY0(vdev_raidz_impl_set("cycle"));
7460
7461 dmu_objset_stats_t dds;
7462 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
7463 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
7464 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
7465 dmu_objset_fast_stat(os, &dds);
7466 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
7467 zs->zs_guid = dds.dds_guid;
7468 dmu_objset_disown(os, B_TRUE, FTAG);
7469
7470 /*
7471 * Create a thread to periodically resume suspended I/O.
7472 */
7473 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
7474 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7475
7476 /*
7477 * Create a deadman thread and set to panic if we hang.
7478 */
7479 deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
7480 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7481
7482 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
7483
7484 /*
7485 * Verify that we can safely inquire about any object,
7486 * whether it's allocated or not. To make it interesting,
7487 * we probe a 5-wide window around each power of two.
7488 * This hits all edge cases, including zero and the max.
7489 */
7490 for (t = 0; t < 64; t++) {
7491 for (d = -5; d <= 5; d++) {
7492 error = dmu_object_info(spa->spa_meta_objset,
7493 (1ULL << t) + d, NULL);
7494 ASSERT(error == 0 || error == ENOENT ||
7495 error == EINVAL);
7496 }
7497 }
7498
7499 /*
7500 * If we got any ENOSPC errors on the previous run, destroy something.
7501 */
7502 if (zs->zs_enospc_count != 0) {
7503 int d = ztest_random(ztest_opts.zo_datasets);
7504 ztest_dataset_destroy(d);
7505 }
7506 zs->zs_enospc_count = 0;
7507
7508 /*
7509 * If we were in the middle of ztest_device_removal() and were killed
7510 * we need to ensure the removal and scrub complete before running
7511 * any tests that check ztest_device_removal_active. The removal will
7512 * be restarted automatically when the spa is opened, but we need to
7513 * initiate the scrub manually if it is not already in progress. Note
7514 * that we always run the scrub whenever an indirect vdev exists
7515 * because we have no way of knowing for sure if ztest_device_removal()
7516 * fully completed its scrub before the pool was reimported.
7517 */
7518 if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
7519 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7520 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
7521 txg_wait_synced(spa_get_dsl(spa), 0);
7522
7523 error = ztest_scrub_impl(spa);
7524 if (error == EBUSY)
7525 error = 0;
7526 ASSERT0(error);
7527 }
7528
7529 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
7530 UMEM_NOFAIL);
7531
7532 if (ztest_opts.zo_verbose >= 4)
7533 (void) printf("starting main threads...\n");
7534
7535 /*
7536 * Replay all logs of all datasets in the pool. This is primarily for
7537 * temporary datasets which wouldn't otherwise get replayed, which
7538 * can trigger failures when attempting to offline a SLOG in
7539 * ztest_fault_inject().
7540 */
7541 (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
7542 NULL, DS_FIND_CHILDREN);
7543
7544 /*
7545 * Kick off all the tests that run in parallel.
7546 */
7547 for (t = 0; t < ztest_opts.zo_threads; t++) {
7548 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
7549 umem_free(run_threads, ztest_opts.zo_threads *
7550 sizeof (kthread_t *));
7551 return;
7552 }
7553
7554 run_threads[t] = thread_create(NULL, 0, ztest_thread,
7555 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
7556 defclsyspri);
7557 }
7558
7559 /*
7560 * Wait for all of the tests to complete.
7561 */
7562 for (t = 0; t < ztest_opts.zo_threads; t++)
7563 VERIFY0(thread_join(run_threads[t]));
7564
7565 /*
7566 * Close all datasets. This must be done after all the threads
7567 * are joined so we can be sure none of the datasets are in-use
7568 * by any of the threads.
7569 */
7570 for (t = 0; t < ztest_opts.zo_threads; t++) {
7571 if (t < ztest_opts.zo_datasets)
7572 ztest_dataset_close(t);
7573 }
7574
7575 txg_wait_synced(spa_get_dsl(spa), 0);
7576
7577 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7578 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
7579
7580 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
7581
7582 /* Kill the resume and deadman threads */
7583 ztest_exiting = B_TRUE;
7584 VERIFY0(thread_join(resume_thread));
7585 VERIFY0(thread_join(deadman_thread));
7586 ztest_resume(spa);
7587
7588 /*
7589 * Right before closing the pool, kick off a bunch of async I/O;
7590 * spa_close() should wait for it to complete.
7591 */
7592 for (object = 1; object < 50; object++) {
7593 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
7594 ZIO_PRIORITY_SYNC_READ);
7595 }
7596
7597 /* Verify that at least one commit cb was called in a timely fashion */
7598 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
7599 VERIFY0(zc_min_txg_delay);
7600
7601 spa_close(spa, FTAG);
7602
7603 /*
7604 * Verify that we can loop over all pools.
7605 */
7606 mutex_enter(&spa_namespace_lock);
7607 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
7608 if (ztest_opts.zo_verbose > 3)
7609 (void) printf("spa_next: found %s\n", spa_name(spa));
7610 mutex_exit(&spa_namespace_lock);
7611
7612 /*
7613 * Verify that we can export the pool and reimport it under a
7614 * different name.
7615 */
7616 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
7617 char name[ZFS_MAX_DATASET_NAME_LEN];
7618 (void) snprintf(name, sizeof (name), "%s_import",
7619 ztest_opts.zo_pool);
7620 ztest_spa_import_export(ztest_opts.zo_pool, name);
7621 ztest_spa_import_export(name, ztest_opts.zo_pool);
7622 }
7623
7624 kernel_fini();
7625
7626 list_destroy(&zcl.zcl_callbacks);
7627 mutex_destroy(&zcl.zcl_callbacks_lock);
7628 (void) pthread_rwlock_destroy(&ztest_name_lock);
7629 mutex_destroy(&ztest_vdev_lock);
7630 mutex_destroy(&ztest_checkpoint_lock);
7631 }
7632
7633 static void
print_time(hrtime_t t,char * timebuf)7634 print_time(hrtime_t t, char *timebuf)
7635 {
7636 hrtime_t s = t / NANOSEC;
7637 hrtime_t m = s / 60;
7638 hrtime_t h = m / 60;
7639 hrtime_t d = h / 24;
7640
7641 s -= m * 60;
7642 m -= h * 60;
7643 h -= d * 24;
7644
7645 timebuf[0] = '\0';
7646
7647 if (d)
7648 (void) sprintf(timebuf,
7649 "%llud%02lluh%02llum%02llus", d, h, m, s);
7650 else if (h)
7651 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
7652 else if (m)
7653 (void) sprintf(timebuf, "%llum%02llus", m, s);
7654 else
7655 (void) sprintf(timebuf, "%llus", s);
7656 }
7657
7658 static nvlist_t *
make_random_props(void)7659 make_random_props(void)
7660 {
7661 nvlist_t *props;
7662
7663 props = fnvlist_alloc();
7664
7665 if (ztest_random(2) == 0)
7666 return (props);
7667
7668 fnvlist_add_uint64(props,
7669 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
7670
7671 return (props);
7672 }
7673
7674 /*
7675 * Create a storage pool with the given name and initial vdev size.
7676 * Then test spa_freeze() functionality.
7677 */
7678 static void
ztest_init(ztest_shared_t * zs)7679 ztest_init(ztest_shared_t *zs)
7680 {
7681 spa_t *spa;
7682 nvlist_t *nvroot, *props;
7683 int i;
7684
7685 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7686 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7687 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7688
7689 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7690
7691 /*
7692 * Create the storage pool.
7693 */
7694 (void) spa_destroy(ztest_opts.zo_pool);
7695 ztest_shared->zs_vdev_next_leaf = 0;
7696 zs->zs_splits = 0;
7697 zs->zs_mirrors = ztest_opts.zo_mirrors;
7698 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7699 NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
7700 props = make_random_props();
7701
7702 /*
7703 * We don't expect the pool to suspend unless maxfaults == 0,
7704 * in which case ztest_fault_inject() temporarily takes away
7705 * the only valid replica.
7706 */
7707 fnvlist_add_uint64(props,
7708 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
7709 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
7710
7711 for (i = 0; i < SPA_FEATURES; i++) {
7712 char *buf;
7713
7714 if (!spa_feature_table[i].fi_zfs_mod_supported)
7715 continue;
7716
7717 /*
7718 * 75% chance of using the log space map feature. We want ztest
7719 * to exercise both the code paths that use the log space map
7720 * feature and the ones that don't.
7721 */
7722 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
7723 continue;
7724
7725 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
7726 spa_feature_table[i].fi_uname));
7727 fnvlist_add_uint64(props, buf, 0);
7728 free(buf);
7729 }
7730
7731 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7732 fnvlist_free(nvroot);
7733 fnvlist_free(props);
7734
7735 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7736 zs->zs_metaslab_sz =
7737 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7738 spa_close(spa, FTAG);
7739
7740 kernel_fini();
7741
7742 if (!ztest_opts.zo_mmp_test) {
7743 ztest_run_zdb(ztest_opts.zo_pool);
7744 ztest_freeze();
7745 ztest_run_zdb(ztest_opts.zo_pool);
7746 }
7747
7748 (void) pthread_rwlock_destroy(&ztest_name_lock);
7749 mutex_destroy(&ztest_vdev_lock);
7750 mutex_destroy(&ztest_checkpoint_lock);
7751 }
7752
7753 static void
setup_data_fd(void)7754 setup_data_fd(void)
7755 {
7756 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7757
7758 ztest_fd_data = mkstemp(ztest_name_data);
7759 ASSERT3S(ztest_fd_data, >=, 0);
7760 (void) unlink(ztest_name_data);
7761 }
7762
7763 static int
shared_data_size(ztest_shared_hdr_t * hdr)7764 shared_data_size(ztest_shared_hdr_t *hdr)
7765 {
7766 int size;
7767
7768 size = hdr->zh_hdr_size;
7769 size += hdr->zh_opts_size;
7770 size += hdr->zh_size;
7771 size += hdr->zh_stats_size * hdr->zh_stats_count;
7772 size += hdr->zh_ds_size * hdr->zh_ds_count;
7773
7774 return (size);
7775 }
7776
7777 static void
setup_hdr(void)7778 setup_hdr(void)
7779 {
7780 int size;
7781 ztest_shared_hdr_t *hdr;
7782
7783 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7784 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7785 ASSERT3P(hdr, !=, MAP_FAILED);
7786
7787 VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7788
7789 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7790 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7791 hdr->zh_size = sizeof (ztest_shared_t);
7792 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7793 hdr->zh_stats_count = ZTEST_FUNCS;
7794 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7795 hdr->zh_ds_count = ztest_opts.zo_datasets;
7796
7797 size = shared_data_size(hdr);
7798 VERIFY0(ftruncate(ztest_fd_data, size));
7799
7800 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7801 }
7802
7803 static void
setup_data(void)7804 setup_data(void)
7805 {
7806 int size, offset;
7807 ztest_shared_hdr_t *hdr;
7808 uint8_t *buf;
7809
7810 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7811 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7812 ASSERT3P(hdr, !=, MAP_FAILED);
7813
7814 size = shared_data_size(hdr);
7815
7816 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7817 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7818 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7819 ASSERT3P(hdr, !=, MAP_FAILED);
7820 buf = (uint8_t *)hdr;
7821
7822 offset = hdr->zh_hdr_size;
7823 ztest_shared_opts = (void *)&buf[offset];
7824 offset += hdr->zh_opts_size;
7825 ztest_shared = (void *)&buf[offset];
7826 offset += hdr->zh_size;
7827 ztest_shared_callstate = (void *)&buf[offset];
7828 offset += hdr->zh_stats_size * hdr->zh_stats_count;
7829 ztest_shared_ds = (void *)&buf[offset];
7830 }
7831
7832 static boolean_t
exec_child(char * cmd,char * libpath,boolean_t ignorekill,int * statusp)7833 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7834 {
7835 pid_t pid;
7836 int status;
7837 char *cmdbuf = NULL;
7838
7839 pid = fork();
7840
7841 if (cmd == NULL) {
7842 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7843 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7844 cmd = cmdbuf;
7845 }
7846
7847 if (pid == -1)
7848 fatal(1, "fork failed");
7849
7850 if (pid == 0) { /* child */
7851 char *emptyargv[2] = { cmd, NULL };
7852 char fd_data_str[12];
7853
7854 struct rlimit rl = { 1024, 1024 };
7855 (void) setrlimit(RLIMIT_NOFILE, &rl);
7856
7857 (void) close(ztest_fd_rand);
7858 VERIFY3S(11, >=,
7859 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7860 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
7861
7862 (void) enable_extended_FILE_stdio(-1, -1);
7863 if (libpath != NULL)
7864 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
7865 (void) execv(cmd, emptyargv);
7866 ztest_dump_core = B_FALSE;
7867 fatal(B_TRUE, "exec failed: %s", cmd);
7868 }
7869
7870 if (cmdbuf != NULL) {
7871 umem_free(cmdbuf, MAXPATHLEN);
7872 cmd = NULL;
7873 }
7874
7875 while (waitpid(pid, &status, 0) != pid)
7876 continue;
7877 if (statusp != NULL)
7878 *statusp = status;
7879
7880 if (WIFEXITED(status)) {
7881 if (WEXITSTATUS(status) != 0) {
7882 (void) fprintf(stderr, "child exited with code %d\n",
7883 WEXITSTATUS(status));
7884 exit(2);
7885 }
7886 return (B_FALSE);
7887 } else if (WIFSIGNALED(status)) {
7888 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
7889 (void) fprintf(stderr, "child died with signal %d\n",
7890 WTERMSIG(status));
7891 exit(3);
7892 }
7893 return (B_TRUE);
7894 } else {
7895 (void) fprintf(stderr, "something strange happened to child\n");
7896 exit(4);
7897 /* NOTREACHED */
7898 }
7899 }
7900
7901 static void
ztest_run_init(void)7902 ztest_run_init(void)
7903 {
7904 int i;
7905
7906 ztest_shared_t *zs = ztest_shared;
7907
7908 /*
7909 * Blow away any existing copy of zpool.cache
7910 */
7911 (void) remove(spa_config_path);
7912
7913 if (ztest_opts.zo_init == 0) {
7914 if (ztest_opts.zo_verbose >= 1)
7915 (void) printf("Importing pool %s\n",
7916 ztest_opts.zo_pool);
7917 ztest_import(zs);
7918 return;
7919 }
7920
7921 /*
7922 * Create and initialize our storage pool.
7923 */
7924 for (i = 1; i <= ztest_opts.zo_init; i++) {
7925 bzero(zs, sizeof (ztest_shared_t));
7926 if (ztest_opts.zo_verbose >= 3 &&
7927 ztest_opts.zo_init != 1) {
7928 (void) printf("ztest_init(), pass %d\n", i);
7929 }
7930 ztest_init(zs);
7931 }
7932 }
7933
7934 int
main(int argc,char ** argv)7935 main(int argc, char **argv)
7936 {
7937 int kills = 0;
7938 int iters = 0;
7939 int older = 0;
7940 int newer = 0;
7941 ztest_shared_t *zs;
7942 ztest_info_t *zi;
7943 ztest_shared_callstate_t *zc;
7944 char timebuf[100];
7945 char numbuf[NN_NUMBUF_SZ];
7946 char *cmd;
7947 boolean_t hasalt;
7948 int f, err;
7949 char *fd_data_str = getenv("ZTEST_FD_DATA");
7950 struct sigaction action;
7951
7952 (void) setvbuf(stdout, NULL, _IOLBF, 0);
7953
7954 dprintf_setup(&argc, argv);
7955 zfs_deadman_synctime_ms = 300000;
7956 zfs_deadman_checktime_ms = 30000;
7957 /*
7958 * As two-word space map entries may not come up often (especially
7959 * if pool and vdev sizes are small) we want to force at least some
7960 * of them so the feature get tested.
7961 */
7962 zfs_force_some_double_word_sm_entries = B_TRUE;
7963
7964 /*
7965 * Verify that even extensively damaged split blocks with many
7966 * segments can be reconstructed in a reasonable amount of time
7967 * when reconstruction is known to be possible.
7968 *
7969 * Note: the lower this value is, the more damage we inflict, and
7970 * the more time ztest spends in recovering that damage. We chose
7971 * to induce damage 1/100th of the time so recovery is tested but
7972 * not so frequently that ztest doesn't get to test other code paths.
7973 */
7974 zfs_reconstruct_indirect_damage_fraction = 100;
7975
7976 action.sa_handler = sig_handler;
7977 sigemptyset(&action.sa_mask);
7978 action.sa_flags = 0;
7979
7980 if (sigaction(SIGSEGV, &action, NULL) < 0) {
7981 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
7982 strerror(errno));
7983 exit(EXIT_FAILURE);
7984 }
7985
7986 if (sigaction(SIGABRT, &action, NULL) < 0) {
7987 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
7988 strerror(errno));
7989 exit(EXIT_FAILURE);
7990 }
7991
7992 /*
7993 * Force random_get_bytes() to use /dev/urandom in order to prevent
7994 * ztest from needlessly depleting the system entropy pool.
7995 */
7996 random_path = "/dev/urandom";
7997 ztest_fd_rand = open(random_path, O_RDONLY);
7998 ASSERT3S(ztest_fd_rand, >=, 0);
7999
8000 if (!fd_data_str) {
8001 process_options(argc, argv);
8002
8003 setup_data_fd();
8004 setup_hdr();
8005 setup_data();
8006 bcopy(&ztest_opts, ztest_shared_opts,
8007 sizeof (*ztest_shared_opts));
8008 } else {
8009 ztest_fd_data = atoi(fd_data_str);
8010 setup_data();
8011 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
8012 }
8013 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8014
8015 err = ztest_set_global_vars();
8016 if (err != 0 && !fd_data_str) {
8017 /* error message done by ztest_set_global_vars */
8018 exit(EXIT_FAILURE);
8019 } else {
8020 /* children should not be spawned if setting gvars fails */
8021 VERIFY3S(err, ==, 0);
8022 }
8023
8024 /* Override location of zpool.cache */
8025 VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8026 ztest_opts.zo_dir), !=, -1);
8027
8028 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8029 UMEM_NOFAIL);
8030 zs = ztest_shared;
8031
8032 if (fd_data_str) {
8033 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8034 metaslab_df_alloc_threshold =
8035 zs->zs_metaslab_df_alloc_threshold;
8036
8037 if (zs->zs_do_init)
8038 ztest_run_init();
8039 else
8040 ztest_run(zs);
8041 exit(0);
8042 }
8043
8044 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8045
8046 if (ztest_opts.zo_verbose >= 1) {
8047 (void) printf("%llu vdevs, %d datasets, %d threads,"
8048 "%d %s disks, %llu seconds...\n\n",
8049 (u_longlong_t)ztest_opts.zo_vdevs,
8050 ztest_opts.zo_datasets,
8051 ztest_opts.zo_threads,
8052 ztest_opts.zo_raid_children,
8053 ztest_opts.zo_raid_type,
8054 (u_longlong_t)ztest_opts.zo_time);
8055 }
8056
8057 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8058 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8059
8060 zs->zs_do_init = B_TRUE;
8061 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8062 if (ztest_opts.zo_verbose >= 1) {
8063 (void) printf("Executing older ztest for "
8064 "initialization: %s\n", ztest_opts.zo_alt_ztest);
8065 }
8066 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
8067 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
8068 } else {
8069 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
8070 }
8071 zs->zs_do_init = B_FALSE;
8072
8073 zs->zs_proc_start = gethrtime();
8074 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
8075
8076 for (f = 0; f < ZTEST_FUNCS; f++) {
8077 zi = &ztest_info[f];
8078 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8079 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
8080 zc->zc_next = UINT64_MAX;
8081 else
8082 zc->zc_next = zs->zs_proc_start +
8083 ztest_random(2 * zi->zi_interval[0] + 1);
8084 }
8085
8086 /*
8087 * Run the tests in a loop. These tests include fault injection
8088 * to verify that self-healing data works, and forced crashes
8089 * to verify that we never lose on-disk consistency.
8090 */
8091 while (gethrtime() < zs->zs_proc_stop) {
8092 int status;
8093 boolean_t killed;
8094
8095 /*
8096 * Initialize the workload counters for each function.
8097 */
8098 for (f = 0; f < ZTEST_FUNCS; f++) {
8099 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8100 zc->zc_count = 0;
8101 zc->zc_time = 0;
8102 }
8103
8104 /* Set the allocation switch size */
8105 zs->zs_metaslab_df_alloc_threshold =
8106 ztest_random(zs->zs_metaslab_sz / 4) + 1;
8107
8108 if (!hasalt || ztest_random(2) == 0) {
8109 if (hasalt && ztest_opts.zo_verbose >= 1) {
8110 (void) printf("Executing newer ztest: %s\n",
8111 cmd);
8112 }
8113 newer++;
8114 killed = exec_child(cmd, NULL, B_TRUE, &status);
8115 } else {
8116 if (hasalt && ztest_opts.zo_verbose >= 1) {
8117 (void) printf("Executing older ztest: %s\n",
8118 ztest_opts.zo_alt_ztest);
8119 }
8120 older++;
8121 killed = exec_child(ztest_opts.zo_alt_ztest,
8122 ztest_opts.zo_alt_libpath, B_TRUE, &status);
8123 }
8124
8125 if (killed)
8126 kills++;
8127 iters++;
8128
8129 if (ztest_opts.zo_verbose >= 1) {
8130 hrtime_t now = gethrtime();
8131
8132 now = MIN(now, zs->zs_proc_stop);
8133 print_time(zs->zs_proc_stop - now, timebuf);
8134 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
8135
8136 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
8137 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8138 iters,
8139 WIFEXITED(status) ? "Complete" : "SIGKILL",
8140 (u_longlong_t)zs->zs_enospc_count,
8141 100.0 * zs->zs_alloc / zs->zs_space,
8142 numbuf,
8143 100.0 * (now - zs->zs_proc_start) /
8144 (ztest_opts.zo_time * NANOSEC), timebuf);
8145 }
8146
8147 if (ztest_opts.zo_verbose >= 2) {
8148 (void) printf("\nWorkload summary:\n\n");
8149 (void) printf("%7s %9s %s\n",
8150 "Calls", "Time", "Function");
8151 (void) printf("%7s %9s %s\n",
8152 "-----", "----", "--------");
8153 for (f = 0; f < ZTEST_FUNCS; f++) {
8154 zi = &ztest_info[f];
8155 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8156 print_time(zc->zc_time, timebuf);
8157 (void) printf("%7llu %9s %s\n",
8158 (u_longlong_t)zc->zc_count, timebuf,
8159 zi->zi_funcname);
8160 }
8161 (void) printf("\n");
8162 }
8163
8164 if (!ztest_opts.zo_mmp_test)
8165 ztest_run_zdb(ztest_opts.zo_pool);
8166 }
8167
8168 if (ztest_opts.zo_verbose >= 1) {
8169 if (hasalt) {
8170 (void) printf("%d runs of older ztest: %s\n", older,
8171 ztest_opts.zo_alt_ztest);
8172 (void) printf("%d runs of newer ztest: %s\n", newer,
8173 cmd);
8174 }
8175 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
8176 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
8177 }
8178
8179 umem_free(cmd, MAXNAMELEN);
8180
8181 return (0);
8182 }
8183