1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
42
43 #define WITH_DF_BLOCK_ALLOCATOR
44
45 #define GANG_ALLOCATION(flags) \
46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47
48 /*
49 * Metaslab granularity, in bytes. This is roughly similar to what would be
50 * referred to as the "stripe size" in traditional RAID arrays. In normal
51 * operation, we will try to write this amount of data to each disk before
52 * moving on to the next top-level vdev.
53 */
54 static uint64_t metaslab_aliquot = 1024 * 1024;
55
56 /*
57 * For testing, make some blocks above a certain size be gang blocks.
58 */
59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60
61 /*
62 * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
63 */
64 uint_t metaslab_force_ganging_pct = 3;
65
66 /*
67 * In pools where the log space map feature is not enabled we touch
68 * multiple metaslabs (and their respective space maps) with each
69 * transaction group. Thus, we benefit from having a small space map
70 * block size since it allows us to issue more I/O operations scattered
71 * around the disk. So a sane default for the space map block size
72 * is 8~16K.
73 */
74 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
75
76 /*
77 * When the log space map feature is enabled, we accumulate a lot of
78 * changes per metaslab that are flushed once in a while so we benefit
79 * from a bigger block size like 128K for the metaslab space maps.
80 */
81 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
82
83 /*
84 * The in-core space map representation is more compact than its on-disk form.
85 * The zfs_condense_pct determines how much more compact the in-core
86 * space map representation must be before we compact it on-disk.
87 * Values should be greater than or equal to 100.
88 */
89 uint_t zfs_condense_pct = 200;
90
91 /*
92 * Condensing a metaslab is not guaranteed to actually reduce the amount of
93 * space used on disk. In particular, a space map uses data in increments of
94 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
95 * same number of blocks after condensing. Since the goal of condensing is to
96 * reduce the number of IOPs required to read the space map, we only want to
97 * condense when we can be sure we will reduce the number of blocks used by the
98 * space map. Unfortunately, we cannot precisely compute whether or not this is
99 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
100 * we apply the following heuristic: do not condense a spacemap unless the
101 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
102 * blocks.
103 */
104 static const int zfs_metaslab_condense_block_threshold = 4;
105
106 /*
107 * The zfs_mg_noalloc_threshold defines which metaslab groups should
108 * be eligible for allocation. The value is defined as a percentage of
109 * free space. Metaslab groups that have more free space than
110 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
111 * a metaslab group's free space is less than or equal to the
112 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
113 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
114 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
115 * groups are allowed to accept allocations. Gang blocks are always
116 * eligible to allocate on any metaslab group. The default value of 0 means
117 * no metaslab group will be excluded based on this criterion.
118 */
119 static uint_t zfs_mg_noalloc_threshold = 0;
120
121 /*
122 * Metaslab groups are considered eligible for allocations if their
123 * fragmentation metric (measured as a percentage) is less than or
124 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
125 * exceeds this threshold then it will be skipped unless all metaslab
126 * groups within the metaslab class have also crossed this threshold.
127 *
128 * This tunable was introduced to avoid edge cases where we continue
129 * allocating from very fragmented disks in our pool while other, less
130 * fragmented disks, exists. On the other hand, if all disks in the
131 * pool are uniformly approaching the threshold, the threshold can
132 * be a speed bump in performance, where we keep switching the disks
133 * that we allocate from (e.g. we allocate some segments from disk A
134 * making it bypassing the threshold while freeing segments from disk
135 * B getting its fragmentation below the threshold).
136 *
137 * Empirically, we've seen that our vdev selection for allocations is
138 * good enough that fragmentation increases uniformly across all vdevs
139 * the majority of the time. Thus we set the threshold percentage high
140 * enough to avoid hitting the speed bump on pools that are being pushed
141 * to the edge.
142 */
143 static uint_t zfs_mg_fragmentation_threshold = 95;
144
145 /*
146 * Allow metaslabs to keep their active state as long as their fragmentation
147 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
148 * active metaslab that exceeds this threshold will no longer keep its active
149 * status allowing better metaslabs to be selected.
150 */
151 static uint_t zfs_metaslab_fragmentation_threshold = 70;
152
153 /*
154 * When set will load all metaslabs when pool is first opened.
155 */
156 int metaslab_debug_load = B_FALSE;
157
158 /*
159 * When set will prevent metaslabs from being unloaded.
160 */
161 static int metaslab_debug_unload = B_FALSE;
162
163 /*
164 * Minimum size which forces the dynamic allocator to change
165 * it's allocation strategy. Once the space map cannot satisfy
166 * an allocation of this size then it switches to using more
167 * aggressive strategy (i.e search by size rather than offset).
168 */
169 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
170
171 /*
172 * The minimum free space, in percent, which must be available
173 * in a space map to continue allocations in a first-fit fashion.
174 * Once the space map's free space drops below this level we dynamically
175 * switch to using best-fit allocations.
176 */
177 uint_t metaslab_df_free_pct = 4;
178
179 /*
180 * Maximum distance to search forward from the last offset. Without this
181 * limit, fragmented pools can see >100,000 iterations and
182 * metaslab_block_picker() becomes the performance limiting factor on
183 * high-performance storage.
184 *
185 * With the default setting of 16MB, we typically see less than 500
186 * iterations, even with very fragmented, ashift=9 pools. The maximum number
187 * of iterations possible is:
188 * metaslab_df_max_search / (2 * (1<<ashift))
189 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
190 * 2048 (with ashift=12).
191 */
192 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
193
194 /*
195 * Forces the metaslab_block_picker function to search for at least this many
196 * segments forwards until giving up on finding a segment that the allocation
197 * will fit into.
198 */
199 static const uint32_t metaslab_min_search_count = 100;
200
201 /*
202 * If we are not searching forward (due to metaslab_df_max_search,
203 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
204 * controls what segment is used. If it is set, we will use the largest free
205 * segment. If it is not set, we will use a segment of exactly the requested
206 * size (or larger).
207 */
208 static int metaslab_df_use_largest_segment = B_FALSE;
209
210 /*
211 * These tunables control how long a metaslab will remain loaded after the
212 * last allocation from it. A metaslab can't be unloaded until at least
213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
215 * unloaded sooner. These settings are intended to be generous -- to keep
216 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217 */
218 static uint_t metaslab_unload_delay = 32;
219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220
221 /*
222 * Max number of metaslabs per group to preload.
223 */
224 uint_t metaslab_preload_limit = 10;
225
226 /*
227 * Enable/disable preloading of metaslab.
228 */
229 static int metaslab_preload_enabled = B_TRUE;
230
231 /*
232 * Enable/disable fragmentation weighting on metaslabs.
233 */
234 static int metaslab_fragmentation_factor_enabled = B_TRUE;
235
236 /*
237 * Enable/disable lba weighting (i.e. outer tracks are given preference).
238 */
239 static int metaslab_lba_weighting_enabled = B_TRUE;
240
241 /*
242 * Enable/disable metaslab group biasing.
243 */
244 static int metaslab_bias_enabled = B_TRUE;
245
246 /*
247 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
248 */
249 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
250
251 /*
252 * Enable/disable segment-based metaslab selection.
253 */
254 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
255
256 /*
257 * When using segment-based metaslab selection, we will continue
258 * allocating from the active metaslab until we have exhausted
259 * zfs_metaslab_switch_threshold of its buckets.
260 */
261 static int zfs_metaslab_switch_threshold = 2;
262
263 /*
264 * Internal switch to enable/disable the metaslab allocation tracing
265 * facility.
266 */
267 static const boolean_t metaslab_trace_enabled = B_FALSE;
268
269 /*
270 * Maximum entries that the metaslab allocation tracing facility will keep
271 * in a given list when running in non-debug mode. We limit the number
272 * of entries in non-debug mode to prevent us from using up too much memory.
273 * The limit should be sufficiently large that we don't expect any allocation
274 * to every exceed this value. In debug mode, the system will panic if this
275 * limit is ever reached allowing for further investigation.
276 */
277 static const uint64_t metaslab_trace_max_entries = 5000;
278
279 /*
280 * Maximum number of metaslabs per group that can be disabled
281 * simultaneously.
282 */
283 static const int max_disabled_ms = 3;
284
285 /*
286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
287 * To avoid 64-bit overflow, don't set above UINT32_MAX.
288 */
289 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
290
291 /*
292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
293 * a metaslab would take it over this percentage, the oldest selected metaslab
294 * is automatically unloaded.
295 */
296 static uint_t zfs_metaslab_mem_limit = 25;
297
298 /*
299 * Force the per-metaslab range trees to use 64-bit integers to store
300 * segments. Used for debugging purposes.
301 */
302 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
303
304 /*
305 * By default we only store segments over a certain size in the size-sorted
306 * metaslab trees (ms_allocatable_by_size and
307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
308 * improves load and unload times at the cost of causing us to use slightly
309 * larger segments than we would otherwise in some cases.
310 */
311 static const uint32_t metaslab_by_size_min_shift = 14;
312
313 /*
314 * If not set, we will first try normal allocation. If that fails then
315 * we will do a gang allocation. If that fails then we will do a "try hard"
316 * gang allocation. If that fails then we will have a multi-layer gang
317 * block.
318 *
319 * If set, we will first try normal allocation. If that fails then
320 * we will do a "try hard" allocation. If that fails we will do a gang
321 * allocation. If that fails we will do a "try hard" gang allocation. If
322 * that fails then we will have a multi-layer gang block.
323 */
324 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
325
326 /*
327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
328 * metaslabs. This improves performance, especially when there are many
329 * metaslabs per vdev and the allocation can't actually be satisfied (so we
330 * would otherwise iterate all the metaslabs). If there is a metaslab with a
331 * worse weight but it can actually satisfy the allocation, we won't find it
332 * until trying hard. This may happen if the worse metaslab is not loaded
333 * (and the true weight is better than we have calculated), or due to weight
334 * bucketization. E.g. we are looking for a 60K segment, and the best
335 * metaslabs all have free segments in the 32-63K bucket, but the best
336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
338 * bucket, and therefore a lower weight).
339 */
340 static uint_t zfs_metaslab_find_max_tries = 100;
341
342 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
346
347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
350 static unsigned int metaslab_idx_func(multilist_t *, void *);
351 static void metaslab_evict(metaslab_t *, uint64_t);
352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
353 kmem_cache_t *metaslab_alloc_trace_cache;
354
355 typedef struct metaslab_stats {
356 kstat_named_t metaslabstat_trace_over_limit;
357 kstat_named_t metaslabstat_reload_tree;
358 kstat_named_t metaslabstat_too_many_tries;
359 kstat_named_t metaslabstat_try_hard;
360 } metaslab_stats_t;
361
362 static metaslab_stats_t metaslab_stats = {
363 { "trace_over_limit", KSTAT_DATA_UINT64 },
364 { "reload_tree", KSTAT_DATA_UINT64 },
365 { "too_many_tries", KSTAT_DATA_UINT64 },
366 { "try_hard", KSTAT_DATA_UINT64 },
367 };
368
369 #define METASLABSTAT_BUMP(stat) \
370 atomic_inc_64(&metaslab_stats.stat.value.ui64);
371
372
373 static kstat_t *metaslab_ksp;
374
375 void
metaslab_stat_init(void)376 metaslab_stat_init(void)
377 {
378 ASSERT(metaslab_alloc_trace_cache == NULL);
379 metaslab_alloc_trace_cache = kmem_cache_create(
380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
381 0, NULL, NULL, NULL, NULL, NULL, 0);
382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
385 if (metaslab_ksp != NULL) {
386 metaslab_ksp->ks_data = &metaslab_stats;
387 kstat_install(metaslab_ksp);
388 }
389 }
390
391 void
metaslab_stat_fini(void)392 metaslab_stat_fini(void)
393 {
394 if (metaslab_ksp != NULL) {
395 kstat_delete(metaslab_ksp);
396 metaslab_ksp = NULL;
397 }
398
399 kmem_cache_destroy(metaslab_alloc_trace_cache);
400 metaslab_alloc_trace_cache = NULL;
401 }
402
403 /*
404 * ==========================================================================
405 * Metaslab classes
406 * ==========================================================================
407 */
408 metaslab_class_t *
metaslab_class_create(spa_t * spa,const metaslab_ops_t * ops)409 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
410 {
411 metaslab_class_t *mc;
412
413 mc = kmem_zalloc(offsetof(metaslab_class_t,
414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
415
416 mc->mc_spa = spa;
417 mc->mc_ops = ops;
418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
419 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
421 for (int i = 0; i < spa->spa_alloc_count; i++) {
422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
423 mca->mca_rotor = NULL;
424 zfs_refcount_create_tracked(&mca->mca_alloc_slots);
425 }
426
427 return (mc);
428 }
429
430 void
metaslab_class_destroy(metaslab_class_t * mc)431 metaslab_class_destroy(metaslab_class_t *mc)
432 {
433 spa_t *spa = mc->mc_spa;
434
435 ASSERT(mc->mc_alloc == 0);
436 ASSERT(mc->mc_deferred == 0);
437 ASSERT(mc->mc_space == 0);
438 ASSERT(mc->mc_dspace == 0);
439
440 for (int i = 0; i < spa->spa_alloc_count; i++) {
441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
442 ASSERT(mca->mca_rotor == NULL);
443 zfs_refcount_destroy(&mca->mca_alloc_slots);
444 }
445 mutex_destroy(&mc->mc_lock);
446 multilist_destroy(&mc->mc_metaslab_txg_list);
447 kmem_free(mc, offsetof(metaslab_class_t,
448 mc_allocator[spa->spa_alloc_count]));
449 }
450
451 int
metaslab_class_validate(metaslab_class_t * mc)452 metaslab_class_validate(metaslab_class_t *mc)
453 {
454 metaslab_group_t *mg;
455 vdev_t *vd;
456
457 /*
458 * Must hold one of the spa_config locks.
459 */
460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
462
463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
464 return (0);
465
466 do {
467 vd = mg->mg_vd;
468 ASSERT(vd->vdev_mg != NULL);
469 ASSERT3P(vd->vdev_top, ==, vd);
470 ASSERT3P(mg->mg_class, ==, mc);
471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
473
474 return (0);
475 }
476
477 static void
metaslab_class_space_update(metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta,int64_t dspace_delta)478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
480 {
481 atomic_add_64(&mc->mc_alloc, alloc_delta);
482 atomic_add_64(&mc->mc_deferred, defer_delta);
483 atomic_add_64(&mc->mc_space, space_delta);
484 atomic_add_64(&mc->mc_dspace, dspace_delta);
485 }
486
487 uint64_t
metaslab_class_get_alloc(metaslab_class_t * mc)488 metaslab_class_get_alloc(metaslab_class_t *mc)
489 {
490 return (mc->mc_alloc);
491 }
492
493 uint64_t
metaslab_class_get_deferred(metaslab_class_t * mc)494 metaslab_class_get_deferred(metaslab_class_t *mc)
495 {
496 return (mc->mc_deferred);
497 }
498
499 uint64_t
metaslab_class_get_space(metaslab_class_t * mc)500 metaslab_class_get_space(metaslab_class_t *mc)
501 {
502 return (mc->mc_space);
503 }
504
505 uint64_t
metaslab_class_get_dspace(metaslab_class_t * mc)506 metaslab_class_get_dspace(metaslab_class_t *mc)
507 {
508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
509 }
510
511 void
metaslab_class_histogram_verify(metaslab_class_t * mc)512 metaslab_class_histogram_verify(metaslab_class_t *mc)
513 {
514 spa_t *spa = mc->mc_spa;
515 vdev_t *rvd = spa->spa_root_vdev;
516 uint64_t *mc_hist;
517 int i;
518
519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
520 return;
521
522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
523 KM_SLEEP);
524
525 mutex_enter(&mc->mc_lock);
526 for (int c = 0; c < rvd->vdev_children; c++) {
527 vdev_t *tvd = rvd->vdev_child[c];
528 metaslab_group_t *mg = vdev_get_mg(tvd, mc);
529
530 /*
531 * Skip any holes, uninitialized top-levels, or
532 * vdevs that are not in this metalab class.
533 */
534 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
535 mg->mg_class != mc) {
536 continue;
537 }
538
539 IMPLY(mg == mg->mg_vd->vdev_log_mg,
540 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
541
542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
543 mc_hist[i] += mg->mg_histogram[i];
544 }
545
546 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
547 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
548 }
549
550 mutex_exit(&mc->mc_lock);
551 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
552 }
553
554 /*
555 * Calculate the metaslab class's fragmentation metric. The metric
556 * is weighted based on the space contribution of each metaslab group.
557 * The return value will be a number between 0 and 100 (inclusive), or
558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
559 * zfs_frag_table for more information about the metric.
560 */
561 uint64_t
metaslab_class_fragmentation(metaslab_class_t * mc)562 metaslab_class_fragmentation(metaslab_class_t *mc)
563 {
564 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
565 uint64_t fragmentation = 0;
566
567 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
568
569 for (int c = 0; c < rvd->vdev_children; c++) {
570 vdev_t *tvd = rvd->vdev_child[c];
571 metaslab_group_t *mg = tvd->vdev_mg;
572
573 /*
574 * Skip any holes, uninitialized top-levels,
575 * or vdevs that are not in this metalab class.
576 */
577 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
578 mg->mg_class != mc) {
579 continue;
580 }
581
582 /*
583 * If a metaslab group does not contain a fragmentation
584 * metric then just bail out.
585 */
586 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
587 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
588 return (ZFS_FRAG_INVALID);
589 }
590
591 /*
592 * Determine how much this metaslab_group is contributing
593 * to the overall pool fragmentation metric.
594 */
595 fragmentation += mg->mg_fragmentation *
596 metaslab_group_get_space(mg);
597 }
598 fragmentation /= metaslab_class_get_space(mc);
599
600 ASSERT3U(fragmentation, <=, 100);
601 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
602 return (fragmentation);
603 }
604
605 /*
606 * Calculate the amount of expandable space that is available in
607 * this metaslab class. If a device is expanded then its expandable
608 * space will be the amount of allocatable space that is currently not
609 * part of this metaslab class.
610 */
611 uint64_t
metaslab_class_expandable_space(metaslab_class_t * mc)612 metaslab_class_expandable_space(metaslab_class_t *mc)
613 {
614 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
615 uint64_t space = 0;
616
617 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
618 for (int c = 0; c < rvd->vdev_children; c++) {
619 vdev_t *tvd = rvd->vdev_child[c];
620 metaslab_group_t *mg = tvd->vdev_mg;
621
622 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
623 mg->mg_class != mc) {
624 continue;
625 }
626
627 /*
628 * Calculate if we have enough space to add additional
629 * metaslabs. We report the expandable space in terms
630 * of the metaslab size since that's the unit of expansion.
631 */
632 space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize,
633 1ULL << tvd->vdev_ms_shift, uint64_t);
634 }
635 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
636 return (space);
637 }
638
639 void
metaslab_class_evict_old(metaslab_class_t * mc,uint64_t txg)640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
641 {
642 multilist_t *ml = &mc->mc_metaslab_txg_list;
643 hrtime_t now = gethrtime();
644 for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
645 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
646 metaslab_t *msp = multilist_sublist_head(mls);
647 multilist_sublist_unlock(mls);
648 while (msp != NULL) {
649 mutex_enter(&msp->ms_lock);
650
651 /*
652 * If the metaslab has been removed from the list
653 * (which could happen if we were at the memory limit
654 * and it was evicted during this loop), then we can't
655 * proceed and we should restart the sublist.
656 */
657 if (!multilist_link_active(&msp->ms_class_txg_node)) {
658 mutex_exit(&msp->ms_lock);
659 i--;
660 break;
661 }
662 mls = multilist_sublist_lock_idx(ml, i);
663 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
664 multilist_sublist_unlock(mls);
665 if (txg >
666 msp->ms_selected_txg + metaslab_unload_delay &&
667 now > msp->ms_selected_time +
668 MSEC2NSEC(metaslab_unload_delay_ms) &&
669 (msp->ms_allocator == -1 ||
670 !metaslab_preload_enabled)) {
671 metaslab_evict(msp, txg);
672 } else {
673 /*
674 * Once we've hit a metaslab selected too
675 * recently to evict, we're done evicting for
676 * now.
677 */
678 mutex_exit(&msp->ms_lock);
679 break;
680 }
681 mutex_exit(&msp->ms_lock);
682 msp = next_msp;
683 }
684 }
685 }
686
687 static int
metaslab_compare(const void * x1,const void * x2)688 metaslab_compare(const void *x1, const void *x2)
689 {
690 const metaslab_t *m1 = (const metaslab_t *)x1;
691 const metaslab_t *m2 = (const metaslab_t *)x2;
692
693 int sort1 = 0;
694 int sort2 = 0;
695 if (m1->ms_allocator != -1 && m1->ms_primary)
696 sort1 = 1;
697 else if (m1->ms_allocator != -1 && !m1->ms_primary)
698 sort1 = 2;
699 if (m2->ms_allocator != -1 && m2->ms_primary)
700 sort2 = 1;
701 else if (m2->ms_allocator != -1 && !m2->ms_primary)
702 sort2 = 2;
703
704 /*
705 * Sort inactive metaslabs first, then primaries, then secondaries. When
706 * selecting a metaslab to allocate from, an allocator first tries its
707 * primary, then secondary active metaslab. If it doesn't have active
708 * metaslabs, or can't allocate from them, it searches for an inactive
709 * metaslab to activate. If it can't find a suitable one, it will steal
710 * a primary or secondary metaslab from another allocator.
711 */
712 if (sort1 < sort2)
713 return (-1);
714 if (sort1 > sort2)
715 return (1);
716
717 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
718 if (likely(cmp))
719 return (cmp);
720
721 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
722
723 return (TREE_CMP(m1->ms_start, m2->ms_start));
724 }
725
726 /*
727 * ==========================================================================
728 * Metaslab groups
729 * ==========================================================================
730 */
731 /*
732 * Update the allocatable flag and the metaslab group's capacity.
733 * The allocatable flag is set to true if the capacity is below
734 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
735 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
736 * transitions from allocatable to non-allocatable or vice versa then the
737 * metaslab group's class is updated to reflect the transition.
738 */
739 static void
metaslab_group_alloc_update(metaslab_group_t * mg)740 metaslab_group_alloc_update(metaslab_group_t *mg)
741 {
742 vdev_t *vd = mg->mg_vd;
743 metaslab_class_t *mc = mg->mg_class;
744 vdev_stat_t *vs = &vd->vdev_stat;
745 boolean_t was_allocatable;
746 boolean_t was_initialized;
747
748 ASSERT(vd == vd->vdev_top);
749 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
750 SCL_ALLOC);
751
752 mutex_enter(&mg->mg_lock);
753 was_allocatable = mg->mg_allocatable;
754 was_initialized = mg->mg_initialized;
755
756 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
757 (vs->vs_space + 1);
758
759 mutex_enter(&mc->mc_lock);
760
761 /*
762 * If the metaslab group was just added then it won't
763 * have any space until we finish syncing out this txg.
764 * At that point we will consider it initialized and available
765 * for allocations. We also don't consider non-activated
766 * metaslab groups (e.g. vdevs that are in the middle of being removed)
767 * to be initialized, because they can't be used for allocation.
768 */
769 mg->mg_initialized = metaslab_group_initialized(mg);
770 if (!was_initialized && mg->mg_initialized) {
771 mc->mc_groups++;
772 } else if (was_initialized && !mg->mg_initialized) {
773 ASSERT3U(mc->mc_groups, >, 0);
774 mc->mc_groups--;
775 }
776 if (mg->mg_initialized)
777 mg->mg_no_free_space = B_FALSE;
778
779 /*
780 * A metaslab group is considered allocatable if it has plenty
781 * of free space or is not heavily fragmented. We only take
782 * fragmentation into account if the metaslab group has a valid
783 * fragmentation metric (i.e. a value between 0 and 100).
784 */
785 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
786 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
787 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
788 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
789
790 /*
791 * The mc_alloc_groups maintains a count of the number of
792 * groups in this metaslab class that are still above the
793 * zfs_mg_noalloc_threshold. This is used by the allocating
794 * threads to determine if they should avoid allocations to
795 * a given group. The allocator will avoid allocations to a group
796 * if that group has reached or is below the zfs_mg_noalloc_threshold
797 * and there are still other groups that are above the threshold.
798 * When a group transitions from allocatable to non-allocatable or
799 * vice versa we update the metaslab class to reflect that change.
800 * When the mc_alloc_groups value drops to 0 that means that all
801 * groups have reached the zfs_mg_noalloc_threshold making all groups
802 * eligible for allocations. This effectively means that all devices
803 * are balanced again.
804 */
805 if (was_allocatable && !mg->mg_allocatable)
806 mc->mc_alloc_groups--;
807 else if (!was_allocatable && mg->mg_allocatable)
808 mc->mc_alloc_groups++;
809 mutex_exit(&mc->mc_lock);
810
811 mutex_exit(&mg->mg_lock);
812 }
813
814 int
metaslab_sort_by_flushed(const void * va,const void * vb)815 metaslab_sort_by_flushed(const void *va, const void *vb)
816 {
817 const metaslab_t *a = va;
818 const metaslab_t *b = vb;
819
820 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
821 if (likely(cmp))
822 return (cmp);
823
824 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
825 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
826 cmp = TREE_CMP(a_vdev_id, b_vdev_id);
827 if (cmp)
828 return (cmp);
829
830 return (TREE_CMP(a->ms_id, b->ms_id));
831 }
832
833 metaslab_group_t *
metaslab_group_create(metaslab_class_t * mc,vdev_t * vd,int allocators)834 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
835 {
836 metaslab_group_t *mg;
837
838 mg = kmem_zalloc(offsetof(metaslab_group_t,
839 mg_allocator[allocators]), KM_SLEEP);
840 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
841 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
842 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
843 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
844 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
845 mg->mg_vd = vd;
846 mg->mg_class = mc;
847 mg->mg_activation_count = 0;
848 mg->mg_initialized = B_FALSE;
849 mg->mg_no_free_space = B_TRUE;
850 mg->mg_allocators = allocators;
851
852 for (int i = 0; i < allocators; i++) {
853 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
854 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
855 }
856
857 return (mg);
858 }
859
860 void
metaslab_group_destroy(metaslab_group_t * mg)861 metaslab_group_destroy(metaslab_group_t *mg)
862 {
863 ASSERT(mg->mg_prev == NULL);
864 ASSERT(mg->mg_next == NULL);
865 /*
866 * We may have gone below zero with the activation count
867 * either because we never activated in the first place or
868 * because we're done, and possibly removing the vdev.
869 */
870 ASSERT(mg->mg_activation_count <= 0);
871
872 avl_destroy(&mg->mg_metaslab_tree);
873 mutex_destroy(&mg->mg_lock);
874 mutex_destroy(&mg->mg_ms_disabled_lock);
875 cv_destroy(&mg->mg_ms_disabled_cv);
876
877 for (int i = 0; i < mg->mg_allocators; i++) {
878 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
879 zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
880 }
881 kmem_free(mg, offsetof(metaslab_group_t,
882 mg_allocator[mg->mg_allocators]));
883 }
884
885 void
metaslab_group_activate(metaslab_group_t * mg)886 metaslab_group_activate(metaslab_group_t *mg)
887 {
888 metaslab_class_t *mc = mg->mg_class;
889 spa_t *spa = mc->mc_spa;
890 metaslab_group_t *mgprev, *mgnext;
891
892 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
893
894 ASSERT(mg->mg_prev == NULL);
895 ASSERT(mg->mg_next == NULL);
896 ASSERT(mg->mg_activation_count <= 0);
897
898 if (++mg->mg_activation_count <= 0)
899 return;
900
901 mg->mg_aliquot = metaslab_aliquot * MAX(1,
902 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
903 metaslab_group_alloc_update(mg);
904
905 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
906 mg->mg_prev = mg;
907 mg->mg_next = mg;
908 } else {
909 mgnext = mgprev->mg_next;
910 mg->mg_prev = mgprev;
911 mg->mg_next = mgnext;
912 mgprev->mg_next = mg;
913 mgnext->mg_prev = mg;
914 }
915 for (int i = 0; i < spa->spa_alloc_count; i++) {
916 mc->mc_allocator[i].mca_rotor = mg;
917 mg = mg->mg_next;
918 }
919 }
920
921 /*
922 * Passivate a metaslab group and remove it from the allocation rotor.
923 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
924 * a metaslab group. This function will momentarily drop spa_config_locks
925 * that are lower than the SCL_ALLOC lock (see comment below).
926 */
927 void
metaslab_group_passivate(metaslab_group_t * mg)928 metaslab_group_passivate(metaslab_group_t *mg)
929 {
930 metaslab_class_t *mc = mg->mg_class;
931 spa_t *spa = mc->mc_spa;
932 metaslab_group_t *mgprev, *mgnext;
933 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
934
935 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
936 (SCL_ALLOC | SCL_ZIO));
937
938 if (--mg->mg_activation_count != 0) {
939 for (int i = 0; i < spa->spa_alloc_count; i++)
940 ASSERT(mc->mc_allocator[i].mca_rotor != mg);
941 ASSERT(mg->mg_prev == NULL);
942 ASSERT(mg->mg_next == NULL);
943 ASSERT(mg->mg_activation_count < 0);
944 return;
945 }
946
947 /*
948 * The spa_config_lock is an array of rwlocks, ordered as
949 * follows (from highest to lowest):
950 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
951 * SCL_ZIO > SCL_FREE > SCL_VDEV
952 * (For more information about the spa_config_lock see spa_misc.c)
953 * The higher the lock, the broader its coverage. When we passivate
954 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
955 * config locks. However, the metaslab group's taskq might be trying
956 * to preload metaslabs so we must drop the SCL_ZIO lock and any
957 * lower locks to allow the I/O to complete. At a minimum,
958 * we continue to hold the SCL_ALLOC lock, which prevents any future
959 * allocations from taking place and any changes to the vdev tree.
960 */
961 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
962 taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
963 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
964 metaslab_group_alloc_update(mg);
965 for (int i = 0; i < mg->mg_allocators; i++) {
966 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
967 metaslab_t *msp = mga->mga_primary;
968 if (msp != NULL) {
969 mutex_enter(&msp->ms_lock);
970 metaslab_passivate(msp,
971 metaslab_weight_from_range_tree(msp));
972 mutex_exit(&msp->ms_lock);
973 }
974 msp = mga->mga_secondary;
975 if (msp != NULL) {
976 mutex_enter(&msp->ms_lock);
977 metaslab_passivate(msp,
978 metaslab_weight_from_range_tree(msp));
979 mutex_exit(&msp->ms_lock);
980 }
981 }
982
983 mgprev = mg->mg_prev;
984 mgnext = mg->mg_next;
985
986 if (mg == mgnext) {
987 mgnext = NULL;
988 } else {
989 mgprev->mg_next = mgnext;
990 mgnext->mg_prev = mgprev;
991 }
992 for (int i = 0; i < spa->spa_alloc_count; i++) {
993 if (mc->mc_allocator[i].mca_rotor == mg)
994 mc->mc_allocator[i].mca_rotor = mgnext;
995 }
996
997 mg->mg_prev = NULL;
998 mg->mg_next = NULL;
999 }
1000
1001 boolean_t
metaslab_group_initialized(metaslab_group_t * mg)1002 metaslab_group_initialized(metaslab_group_t *mg)
1003 {
1004 vdev_t *vd = mg->mg_vd;
1005 vdev_stat_t *vs = &vd->vdev_stat;
1006
1007 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1008 }
1009
1010 uint64_t
metaslab_group_get_space(metaslab_group_t * mg)1011 metaslab_group_get_space(metaslab_group_t *mg)
1012 {
1013 /*
1014 * Note that the number of nodes in mg_metaslab_tree may be one less
1015 * than vdev_ms_count, due to the embedded log metaslab.
1016 */
1017 mutex_enter(&mg->mg_lock);
1018 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1019 mutex_exit(&mg->mg_lock);
1020 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1021 }
1022
1023 void
metaslab_group_histogram_verify(metaslab_group_t * mg)1024 metaslab_group_histogram_verify(metaslab_group_t *mg)
1025 {
1026 uint64_t *mg_hist;
1027 avl_tree_t *t = &mg->mg_metaslab_tree;
1028 uint64_t ashift = mg->mg_vd->vdev_ashift;
1029
1030 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1031 return;
1032
1033 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1034 KM_SLEEP);
1035
1036 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1037 SPACE_MAP_HISTOGRAM_SIZE + ashift);
1038
1039 mutex_enter(&mg->mg_lock);
1040 for (metaslab_t *msp = avl_first(t);
1041 msp != NULL; msp = AVL_NEXT(t, msp)) {
1042 VERIFY3P(msp->ms_group, ==, mg);
1043 /* skip if not active */
1044 if (msp->ms_sm == NULL)
1045 continue;
1046
1047 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1048 mg_hist[i + ashift] +=
1049 msp->ms_sm->sm_phys->smp_histogram[i];
1050 }
1051 }
1052
1053 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1054 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1055
1056 mutex_exit(&mg->mg_lock);
1057
1058 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1059 }
1060
1061 static void
metaslab_group_histogram_add(metaslab_group_t * mg,metaslab_t * msp)1062 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1063 {
1064 metaslab_class_t *mc = mg->mg_class;
1065 uint64_t ashift = mg->mg_vd->vdev_ashift;
1066
1067 ASSERT(MUTEX_HELD(&msp->ms_lock));
1068 if (msp->ms_sm == NULL)
1069 return;
1070
1071 mutex_enter(&mg->mg_lock);
1072 mutex_enter(&mc->mc_lock);
1073 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1074 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1075 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1076 mg->mg_histogram[i + ashift] +=
1077 msp->ms_sm->sm_phys->smp_histogram[i];
1078 mc->mc_histogram[i + ashift] +=
1079 msp->ms_sm->sm_phys->smp_histogram[i];
1080 }
1081 mutex_exit(&mc->mc_lock);
1082 mutex_exit(&mg->mg_lock);
1083 }
1084
1085 void
metaslab_group_histogram_remove(metaslab_group_t * mg,metaslab_t * msp)1086 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1087 {
1088 metaslab_class_t *mc = mg->mg_class;
1089 uint64_t ashift = mg->mg_vd->vdev_ashift;
1090
1091 ASSERT(MUTEX_HELD(&msp->ms_lock));
1092 if (msp->ms_sm == NULL)
1093 return;
1094
1095 mutex_enter(&mg->mg_lock);
1096 mutex_enter(&mc->mc_lock);
1097 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1098 ASSERT3U(mg->mg_histogram[i + ashift], >=,
1099 msp->ms_sm->sm_phys->smp_histogram[i]);
1100 ASSERT3U(mc->mc_histogram[i + ashift], >=,
1101 msp->ms_sm->sm_phys->smp_histogram[i]);
1102 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1103 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1104
1105 mg->mg_histogram[i + ashift] -=
1106 msp->ms_sm->sm_phys->smp_histogram[i];
1107 mc->mc_histogram[i + ashift] -=
1108 msp->ms_sm->sm_phys->smp_histogram[i];
1109 }
1110 mutex_exit(&mc->mc_lock);
1111 mutex_exit(&mg->mg_lock);
1112 }
1113
1114 static void
metaslab_group_add(metaslab_group_t * mg,metaslab_t * msp)1115 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1116 {
1117 ASSERT(msp->ms_group == NULL);
1118 mutex_enter(&mg->mg_lock);
1119 msp->ms_group = mg;
1120 msp->ms_weight = 0;
1121 avl_add(&mg->mg_metaslab_tree, msp);
1122 mutex_exit(&mg->mg_lock);
1123
1124 mutex_enter(&msp->ms_lock);
1125 metaslab_group_histogram_add(mg, msp);
1126 mutex_exit(&msp->ms_lock);
1127 }
1128
1129 static void
metaslab_group_remove(metaslab_group_t * mg,metaslab_t * msp)1130 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1131 {
1132 mutex_enter(&msp->ms_lock);
1133 metaslab_group_histogram_remove(mg, msp);
1134 mutex_exit(&msp->ms_lock);
1135
1136 mutex_enter(&mg->mg_lock);
1137 ASSERT(msp->ms_group == mg);
1138 avl_remove(&mg->mg_metaslab_tree, msp);
1139
1140 metaslab_class_t *mc = msp->ms_group->mg_class;
1141 multilist_sublist_t *mls =
1142 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1143 if (multilist_link_active(&msp->ms_class_txg_node))
1144 multilist_sublist_remove(mls, msp);
1145 multilist_sublist_unlock(mls);
1146
1147 msp->ms_group = NULL;
1148 mutex_exit(&mg->mg_lock);
1149 }
1150
1151 static void
metaslab_group_sort_impl(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1152 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1153 {
1154 ASSERT(MUTEX_HELD(&msp->ms_lock));
1155 ASSERT(MUTEX_HELD(&mg->mg_lock));
1156 ASSERT(msp->ms_group == mg);
1157
1158 avl_remove(&mg->mg_metaslab_tree, msp);
1159 msp->ms_weight = weight;
1160 avl_add(&mg->mg_metaslab_tree, msp);
1161
1162 }
1163
1164 static void
metaslab_group_sort(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1165 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1166 {
1167 /*
1168 * Although in principle the weight can be any value, in
1169 * practice we do not use values in the range [1, 511].
1170 */
1171 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1172 ASSERT(MUTEX_HELD(&msp->ms_lock));
1173
1174 mutex_enter(&mg->mg_lock);
1175 metaslab_group_sort_impl(mg, msp, weight);
1176 mutex_exit(&mg->mg_lock);
1177 }
1178
1179 /*
1180 * Calculate the fragmentation for a given metaslab group. We can use
1181 * a simple average here since all metaslabs within the group must have
1182 * the same size. The return value will be a value between 0 and 100
1183 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1184 * group have a fragmentation metric.
1185 */
1186 uint64_t
metaslab_group_fragmentation(metaslab_group_t * mg)1187 metaslab_group_fragmentation(metaslab_group_t *mg)
1188 {
1189 vdev_t *vd = mg->mg_vd;
1190 uint64_t fragmentation = 0;
1191 uint64_t valid_ms = 0;
1192
1193 for (int m = 0; m < vd->vdev_ms_count; m++) {
1194 metaslab_t *msp = vd->vdev_ms[m];
1195
1196 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1197 continue;
1198 if (msp->ms_group != mg)
1199 continue;
1200
1201 valid_ms++;
1202 fragmentation += msp->ms_fragmentation;
1203 }
1204
1205 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1206 return (ZFS_FRAG_INVALID);
1207
1208 fragmentation /= valid_ms;
1209 ASSERT3U(fragmentation, <=, 100);
1210 return (fragmentation);
1211 }
1212
1213 /*
1214 * Determine if a given metaslab group should skip allocations. A metaslab
1215 * group should avoid allocations if its free capacity is less than the
1216 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1217 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1218 * that can still handle allocations. If the allocation throttle is enabled
1219 * then we skip allocations to devices that have reached their maximum
1220 * allocation queue depth unless the selected metaslab group is the only
1221 * eligible group remaining.
1222 */
1223 static boolean_t
metaslab_group_allocatable(metaslab_group_t * mg,metaslab_group_t * rotor,int flags,uint64_t psize,int allocator,int d)1224 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1225 int flags, uint64_t psize, int allocator, int d)
1226 {
1227 spa_t *spa = mg->mg_vd->vdev_spa;
1228 metaslab_class_t *mc = mg->mg_class;
1229
1230 /*
1231 * We can only consider skipping this metaslab group if it's
1232 * in the normal metaslab class and there are other metaslab
1233 * groups to select from. Otherwise, we always consider it eligible
1234 * for allocations.
1235 */
1236 if ((mc != spa_normal_class(spa) &&
1237 mc != spa_special_class(spa) &&
1238 mc != spa_dedup_class(spa)) ||
1239 mc->mc_groups <= 1)
1240 return (B_TRUE);
1241
1242 /*
1243 * If the metaslab group's mg_allocatable flag is set (see comments
1244 * in metaslab_group_alloc_update() for more information) and
1245 * the allocation throttle is disabled then allow allocations to this
1246 * device. However, if the allocation throttle is enabled then
1247 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1248 * to determine if we should allow allocations to this metaslab group.
1249 * If all metaslab groups are no longer considered allocatable
1250 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1251 * gang block size then we allow allocations on this metaslab group
1252 * regardless of the mg_allocatable or throttle settings.
1253 */
1254 if (mg->mg_allocatable) {
1255 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1256 int64_t qdepth;
1257 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1258
1259 if (!mc->mc_alloc_throttle_enabled)
1260 return (B_TRUE);
1261
1262 /*
1263 * If this metaslab group does not have any free space, then
1264 * there is no point in looking further.
1265 */
1266 if (mg->mg_no_free_space)
1267 return (B_FALSE);
1268
1269 /*
1270 * Some allocations (e.g., those coming from device removal
1271 * where the * allocations are not even counted in the
1272 * metaslab * allocation queues) are allowed to bypass
1273 * the throttle.
1274 */
1275 if (flags & METASLAB_DONT_THROTTLE)
1276 return (B_TRUE);
1277
1278 /*
1279 * Relax allocation throttling for ditto blocks. Due to
1280 * random imbalances in allocation it tends to push copies
1281 * to one vdev, that looks a bit better at the moment.
1282 */
1283 qmax = qmax * (4 + d) / 4;
1284
1285 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1286
1287 /*
1288 * If this metaslab group is below its qmax or it's
1289 * the only allocatable metaslab group, then attempt
1290 * to allocate from it.
1291 */
1292 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1293 return (B_TRUE);
1294 ASSERT3U(mc->mc_alloc_groups, >, 1);
1295
1296 /*
1297 * Since this metaslab group is at or over its qmax, we
1298 * need to determine if there are metaslab groups after this
1299 * one that might be able to handle this allocation. This is
1300 * racy since we can't hold the locks for all metaslab
1301 * groups at the same time when we make this check.
1302 */
1303 for (metaslab_group_t *mgp = mg->mg_next;
1304 mgp != rotor; mgp = mgp->mg_next) {
1305 metaslab_group_allocator_t *mgap =
1306 &mgp->mg_allocator[allocator];
1307 qmax = mgap->mga_cur_max_alloc_queue_depth;
1308 qmax = qmax * (4 + d) / 4;
1309 qdepth =
1310 zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1311
1312 /*
1313 * If there is another metaslab group that
1314 * might be able to handle the allocation, then
1315 * we return false so that we skip this group.
1316 */
1317 if (qdepth < qmax && !mgp->mg_no_free_space)
1318 return (B_FALSE);
1319 }
1320
1321 /*
1322 * We didn't find another group to handle the allocation
1323 * so we can't skip this metaslab group even though
1324 * we are at or over our qmax.
1325 */
1326 return (B_TRUE);
1327
1328 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1329 return (B_TRUE);
1330 }
1331 return (B_FALSE);
1332 }
1333
1334 /*
1335 * ==========================================================================
1336 * Range tree callbacks
1337 * ==========================================================================
1338 */
1339
1340 /*
1341 * Comparison function for the private size-ordered tree using 32-bit
1342 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1343 */
1344 __attribute__((always_inline)) inline
1345 static int
metaslab_rangesize32_compare(const void * x1,const void * x2)1346 metaslab_rangesize32_compare(const void *x1, const void *x2)
1347 {
1348 const range_seg32_t *r1 = x1;
1349 const range_seg32_t *r2 = x2;
1350
1351 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1352 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1353
1354 int cmp = TREE_CMP(rs_size1, rs_size2);
1355
1356 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1357 }
1358
1359 /*
1360 * Comparison function for the private size-ordered tree using 64-bit
1361 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1362 */
1363 __attribute__((always_inline)) inline
1364 static int
metaslab_rangesize64_compare(const void * x1,const void * x2)1365 metaslab_rangesize64_compare(const void *x1, const void *x2)
1366 {
1367 const range_seg64_t *r1 = x1;
1368 const range_seg64_t *r2 = x2;
1369
1370 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1371 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1372
1373 int cmp = TREE_CMP(rs_size1, rs_size2);
1374
1375 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1376 }
1377
1378 typedef struct metaslab_rt_arg {
1379 zfs_btree_t *mra_bt;
1380 uint32_t mra_floor_shift;
1381 } metaslab_rt_arg_t;
1382
1383 struct mssa_arg {
1384 range_tree_t *rt;
1385 metaslab_rt_arg_t *mra;
1386 };
1387
1388 static void
metaslab_size_sorted_add(void * arg,uint64_t start,uint64_t size)1389 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1390 {
1391 struct mssa_arg *mssap = arg;
1392 range_tree_t *rt = mssap->rt;
1393 metaslab_rt_arg_t *mrap = mssap->mra;
1394 range_seg_max_t seg = {0};
1395 rs_set_start(&seg, rt, start);
1396 rs_set_end(&seg, rt, start + size);
1397 metaslab_rt_add(rt, &seg, mrap);
1398 }
1399
1400 static void
metaslab_size_tree_full_load(range_tree_t * rt)1401 metaslab_size_tree_full_load(range_tree_t *rt)
1402 {
1403 metaslab_rt_arg_t *mrap = rt->rt_arg;
1404 METASLABSTAT_BUMP(metaslabstat_reload_tree);
1405 ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1406 mrap->mra_floor_shift = 0;
1407 struct mssa_arg arg = {0};
1408 arg.rt = rt;
1409 arg.mra = mrap;
1410 range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1411 }
1412
1413
ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,range_seg32_t,metaslab_rangesize32_compare)1414 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1415 range_seg32_t, metaslab_rangesize32_compare)
1416
1417 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1418 range_seg64_t, metaslab_rangesize64_compare)
1419
1420 /*
1421 * Create any block allocator specific components. The current allocators
1422 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1423 */
1424 static void
1425 metaslab_rt_create(range_tree_t *rt, void *arg)
1426 {
1427 metaslab_rt_arg_t *mrap = arg;
1428 zfs_btree_t *size_tree = mrap->mra_bt;
1429
1430 size_t size;
1431 int (*compare) (const void *, const void *);
1432 bt_find_in_buf_f bt_find;
1433 switch (rt->rt_type) {
1434 case RANGE_SEG32:
1435 size = sizeof (range_seg32_t);
1436 compare = metaslab_rangesize32_compare;
1437 bt_find = metaslab_rt_find_rangesize32_in_buf;
1438 break;
1439 case RANGE_SEG64:
1440 size = sizeof (range_seg64_t);
1441 compare = metaslab_rangesize64_compare;
1442 bt_find = metaslab_rt_find_rangesize64_in_buf;
1443 break;
1444 default:
1445 panic("Invalid range seg type %d", rt->rt_type);
1446 }
1447 zfs_btree_create(size_tree, compare, bt_find, size);
1448 mrap->mra_floor_shift = metaslab_by_size_min_shift;
1449 }
1450
1451 static void
metaslab_rt_destroy(range_tree_t * rt,void * arg)1452 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1453 {
1454 (void) rt;
1455 metaslab_rt_arg_t *mrap = arg;
1456 zfs_btree_t *size_tree = mrap->mra_bt;
1457
1458 zfs_btree_destroy(size_tree);
1459 kmem_free(mrap, sizeof (*mrap));
1460 }
1461
1462 static void
metaslab_rt_add(range_tree_t * rt,range_seg_t * rs,void * arg)1463 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1464 {
1465 metaslab_rt_arg_t *mrap = arg;
1466 zfs_btree_t *size_tree = mrap->mra_bt;
1467
1468 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1469 (1ULL << mrap->mra_floor_shift))
1470 return;
1471
1472 zfs_btree_add(size_tree, rs);
1473 }
1474
1475 static void
metaslab_rt_remove(range_tree_t * rt,range_seg_t * rs,void * arg)1476 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1477 {
1478 metaslab_rt_arg_t *mrap = arg;
1479 zfs_btree_t *size_tree = mrap->mra_bt;
1480
1481 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
1482 mrap->mra_floor_shift))
1483 return;
1484
1485 zfs_btree_remove(size_tree, rs);
1486 }
1487
1488 static void
metaslab_rt_vacate(range_tree_t * rt,void * arg)1489 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1490 {
1491 metaslab_rt_arg_t *mrap = arg;
1492 zfs_btree_t *size_tree = mrap->mra_bt;
1493 zfs_btree_clear(size_tree);
1494 zfs_btree_destroy(size_tree);
1495
1496 metaslab_rt_create(rt, arg);
1497 }
1498
1499 static const range_tree_ops_t metaslab_rt_ops = {
1500 .rtop_create = metaslab_rt_create,
1501 .rtop_destroy = metaslab_rt_destroy,
1502 .rtop_add = metaslab_rt_add,
1503 .rtop_remove = metaslab_rt_remove,
1504 .rtop_vacate = metaslab_rt_vacate
1505 };
1506
1507 /*
1508 * ==========================================================================
1509 * Common allocator routines
1510 * ==========================================================================
1511 */
1512
1513 /*
1514 * Return the maximum contiguous segment within the metaslab.
1515 */
1516 uint64_t
metaslab_largest_allocatable(metaslab_t * msp)1517 metaslab_largest_allocatable(metaslab_t *msp)
1518 {
1519 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1520 range_seg_t *rs;
1521
1522 if (t == NULL)
1523 return (0);
1524 if (zfs_btree_numnodes(t) == 0)
1525 metaslab_size_tree_full_load(msp->ms_allocatable);
1526
1527 rs = zfs_btree_last(t, NULL);
1528 if (rs == NULL)
1529 return (0);
1530
1531 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1532 msp->ms_allocatable));
1533 }
1534
1535 /*
1536 * Return the maximum contiguous segment within the unflushed frees of this
1537 * metaslab.
1538 */
1539 static uint64_t
metaslab_largest_unflushed_free(metaslab_t * msp)1540 metaslab_largest_unflushed_free(metaslab_t *msp)
1541 {
1542 ASSERT(MUTEX_HELD(&msp->ms_lock));
1543
1544 if (msp->ms_unflushed_frees == NULL)
1545 return (0);
1546
1547 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1548 metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1549 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1550 NULL);
1551 if (rs == NULL)
1552 return (0);
1553
1554 /*
1555 * When a range is freed from the metaslab, that range is added to
1556 * both the unflushed frees and the deferred frees. While the block
1557 * will eventually be usable, if the metaslab were loaded the range
1558 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1559 * txgs had passed. As a result, when attempting to estimate an upper
1560 * bound for the largest currently-usable free segment in the
1561 * metaslab, we need to not consider any ranges currently in the defer
1562 * trees. This algorithm approximates the largest available chunk in
1563 * the largest range in the unflushed_frees tree by taking the first
1564 * chunk. While this may be a poor estimate, it should only remain so
1565 * briefly and should eventually self-correct as frees are no longer
1566 * deferred. Similar logic applies to the ms_freed tree. See
1567 * metaslab_load() for more details.
1568 *
1569 * There are two primary sources of inaccuracy in this estimate. Both
1570 * are tolerated for performance reasons. The first source is that we
1571 * only check the largest segment for overlaps. Smaller segments may
1572 * have more favorable overlaps with the other trees, resulting in
1573 * larger usable chunks. Second, we only look at the first chunk in
1574 * the largest segment; there may be other usable chunks in the
1575 * largest segment, but we ignore them.
1576 */
1577 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1578 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1579 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1580 uint64_t start = 0;
1581 uint64_t size = 0;
1582 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1583 rsize, &start, &size);
1584 if (found) {
1585 if (rstart == start)
1586 return (0);
1587 rsize = start - rstart;
1588 }
1589 }
1590
1591 uint64_t start = 0;
1592 uint64_t size = 0;
1593 boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1594 rsize, &start, &size);
1595 if (found)
1596 rsize = start - rstart;
1597
1598 return (rsize);
1599 }
1600
1601 static range_seg_t *
metaslab_block_find(zfs_btree_t * t,range_tree_t * rt,uint64_t start,uint64_t size,zfs_btree_index_t * where)1602 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1603 uint64_t size, zfs_btree_index_t *where)
1604 {
1605 range_seg_t *rs;
1606 range_seg_max_t rsearch;
1607
1608 rs_set_start(&rsearch, rt, start);
1609 rs_set_end(&rsearch, rt, start + size);
1610
1611 rs = zfs_btree_find(t, &rsearch, where);
1612 if (rs == NULL) {
1613 rs = zfs_btree_next(t, where, where);
1614 }
1615
1616 return (rs);
1617 }
1618
1619 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1620 defined(WITH_CF_BLOCK_ALLOCATOR)
1621
1622 /*
1623 * This is a helper function that can be used by the allocator to find a
1624 * suitable block to allocate. This will search the specified B-tree looking
1625 * for a block that matches the specified criteria.
1626 */
1627 static uint64_t
metaslab_block_picker(range_tree_t * rt,uint64_t * cursor,uint64_t size,uint64_t max_search)1628 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1629 uint64_t max_search)
1630 {
1631 if (*cursor == 0)
1632 *cursor = rt->rt_start;
1633 zfs_btree_t *bt = &rt->rt_root;
1634 zfs_btree_index_t where;
1635 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1636 uint64_t first_found;
1637 int count_searched = 0;
1638
1639 if (rs != NULL)
1640 first_found = rs_get_start(rs, rt);
1641
1642 while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1643 max_search || count_searched < metaslab_min_search_count)) {
1644 uint64_t offset = rs_get_start(rs, rt);
1645 if (offset + size <= rs_get_end(rs, rt)) {
1646 *cursor = offset + size;
1647 return (offset);
1648 }
1649 rs = zfs_btree_next(bt, &where, &where);
1650 count_searched++;
1651 }
1652
1653 *cursor = 0;
1654 return (-1ULL);
1655 }
1656 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1657
1658 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1659 /*
1660 * ==========================================================================
1661 * Dynamic Fit (df) block allocator
1662 *
1663 * Search for a free chunk of at least this size, starting from the last
1664 * offset (for this alignment of block) looking for up to
1665 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1666 * found within 16MB, then return a free chunk of exactly the requested size (or
1667 * larger).
1668 *
1669 * If it seems like searching from the last offset will be unproductive, skip
1670 * that and just return a free chunk of exactly the requested size (or larger).
1671 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1672 * mechanism is probably not very useful and may be removed in the future.
1673 *
1674 * The behavior when not searching can be changed to return the largest free
1675 * chunk, instead of a free chunk of exactly the requested size, by setting
1676 * metaslab_df_use_largest_segment.
1677 * ==========================================================================
1678 */
1679 static uint64_t
metaslab_df_alloc(metaslab_t * msp,uint64_t size)1680 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1681 {
1682 /*
1683 * Find the largest power of 2 block size that evenly divides the
1684 * requested size. This is used to try to allocate blocks with similar
1685 * alignment from the same area of the metaslab (i.e. same cursor
1686 * bucket) but it does not guarantee that other allocations sizes
1687 * may exist in the same region.
1688 */
1689 uint64_t align = size & -size;
1690 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1691 range_tree_t *rt = msp->ms_allocatable;
1692 uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1693 uint64_t offset;
1694
1695 ASSERT(MUTEX_HELD(&msp->ms_lock));
1696
1697 /*
1698 * If we're running low on space, find a segment based on size,
1699 * rather than iterating based on offset.
1700 */
1701 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1702 free_pct < metaslab_df_free_pct) {
1703 offset = -1;
1704 } else {
1705 offset = metaslab_block_picker(rt,
1706 cursor, size, metaslab_df_max_search);
1707 }
1708
1709 if (offset == -1) {
1710 range_seg_t *rs;
1711 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1712 metaslab_size_tree_full_load(msp->ms_allocatable);
1713
1714 if (metaslab_df_use_largest_segment) {
1715 /* use largest free segment */
1716 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1717 } else {
1718 zfs_btree_index_t where;
1719 /* use segment of this size, or next largest */
1720 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1721 rt, msp->ms_start, size, &where);
1722 }
1723 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1724 rt)) {
1725 offset = rs_get_start(rs, rt);
1726 *cursor = offset + size;
1727 }
1728 }
1729
1730 return (offset);
1731 }
1732
1733 const metaslab_ops_t zfs_metaslab_ops = {
1734 metaslab_df_alloc
1735 };
1736 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1737
1738 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1739 /*
1740 * ==========================================================================
1741 * Cursor fit block allocator -
1742 * Select the largest region in the metaslab, set the cursor to the beginning
1743 * of the range and the cursor_end to the end of the range. As allocations
1744 * are made advance the cursor. Continue allocating from the cursor until
1745 * the range is exhausted and then find a new range.
1746 * ==========================================================================
1747 */
1748 static uint64_t
metaslab_cf_alloc(metaslab_t * msp,uint64_t size)1749 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1750 {
1751 range_tree_t *rt = msp->ms_allocatable;
1752 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1753 uint64_t *cursor = &msp->ms_lbas[0];
1754 uint64_t *cursor_end = &msp->ms_lbas[1];
1755 uint64_t offset = 0;
1756
1757 ASSERT(MUTEX_HELD(&msp->ms_lock));
1758
1759 ASSERT3U(*cursor_end, >=, *cursor);
1760
1761 if ((*cursor + size) > *cursor_end) {
1762 range_seg_t *rs;
1763
1764 if (zfs_btree_numnodes(t) == 0)
1765 metaslab_size_tree_full_load(msp->ms_allocatable);
1766 rs = zfs_btree_last(t, NULL);
1767 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1768 size)
1769 return (-1ULL);
1770
1771 *cursor = rs_get_start(rs, rt);
1772 *cursor_end = rs_get_end(rs, rt);
1773 }
1774
1775 offset = *cursor;
1776 *cursor += size;
1777
1778 return (offset);
1779 }
1780
1781 const metaslab_ops_t zfs_metaslab_ops = {
1782 metaslab_cf_alloc
1783 };
1784 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1785
1786 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1787 /*
1788 * ==========================================================================
1789 * New dynamic fit allocator -
1790 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1791 * contiguous blocks. If no region is found then just use the largest segment
1792 * that remains.
1793 * ==========================================================================
1794 */
1795
1796 /*
1797 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1798 * to request from the allocator.
1799 */
1800 uint64_t metaslab_ndf_clump_shift = 4;
1801
1802 static uint64_t
metaslab_ndf_alloc(metaslab_t * msp,uint64_t size)1803 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1804 {
1805 zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1806 range_tree_t *rt = msp->ms_allocatable;
1807 zfs_btree_index_t where;
1808 range_seg_t *rs;
1809 range_seg_max_t rsearch;
1810 uint64_t hbit = highbit64(size);
1811 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1812 uint64_t max_size = metaslab_largest_allocatable(msp);
1813
1814 ASSERT(MUTEX_HELD(&msp->ms_lock));
1815
1816 if (max_size < size)
1817 return (-1ULL);
1818
1819 rs_set_start(&rsearch, rt, *cursor);
1820 rs_set_end(&rsearch, rt, *cursor + size);
1821
1822 rs = zfs_btree_find(t, &rsearch, &where);
1823 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1824 t = &msp->ms_allocatable_by_size;
1825
1826 rs_set_start(&rsearch, rt, 0);
1827 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1828 metaslab_ndf_clump_shift)));
1829
1830 rs = zfs_btree_find(t, &rsearch, &where);
1831 if (rs == NULL)
1832 rs = zfs_btree_next(t, &where, &where);
1833 ASSERT(rs != NULL);
1834 }
1835
1836 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1837 *cursor = rs_get_start(rs, rt) + size;
1838 return (rs_get_start(rs, rt));
1839 }
1840 return (-1ULL);
1841 }
1842
1843 const metaslab_ops_t zfs_metaslab_ops = {
1844 metaslab_ndf_alloc
1845 };
1846 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1847
1848
1849 /*
1850 * ==========================================================================
1851 * Metaslabs
1852 * ==========================================================================
1853 */
1854
1855 /*
1856 * Wait for any in-progress metaslab loads to complete.
1857 */
1858 static void
metaslab_load_wait(metaslab_t * msp)1859 metaslab_load_wait(metaslab_t *msp)
1860 {
1861 ASSERT(MUTEX_HELD(&msp->ms_lock));
1862
1863 while (msp->ms_loading) {
1864 ASSERT(!msp->ms_loaded);
1865 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1866 }
1867 }
1868
1869 /*
1870 * Wait for any in-progress flushing to complete.
1871 */
1872 static void
metaslab_flush_wait(metaslab_t * msp)1873 metaslab_flush_wait(metaslab_t *msp)
1874 {
1875 ASSERT(MUTEX_HELD(&msp->ms_lock));
1876
1877 while (msp->ms_flushing)
1878 cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1879 }
1880
1881 static unsigned int
metaslab_idx_func(multilist_t * ml,void * arg)1882 metaslab_idx_func(multilist_t *ml, void *arg)
1883 {
1884 metaslab_t *msp = arg;
1885
1886 /*
1887 * ms_id values are allocated sequentially, so full 64bit
1888 * division would be a waste of time, so limit it to 32 bits.
1889 */
1890 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1891 }
1892
1893 uint64_t
metaslab_allocated_space(metaslab_t * msp)1894 metaslab_allocated_space(metaslab_t *msp)
1895 {
1896 return (msp->ms_allocated_space);
1897 }
1898
1899 /*
1900 * Verify that the space accounting on disk matches the in-core range_trees.
1901 */
1902 static void
metaslab_verify_space(metaslab_t * msp,uint64_t txg)1903 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1904 {
1905 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1906 uint64_t allocating = 0;
1907 uint64_t sm_free_space, msp_free_space;
1908
1909 ASSERT(MUTEX_HELD(&msp->ms_lock));
1910 ASSERT(!msp->ms_condensing);
1911
1912 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1913 return;
1914
1915 /*
1916 * We can only verify the metaslab space when we're called
1917 * from syncing context with a loaded metaslab that has an
1918 * allocated space map. Calling this in non-syncing context
1919 * does not provide a consistent view of the metaslab since
1920 * we're performing allocations in the future.
1921 */
1922 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1923 !msp->ms_loaded)
1924 return;
1925
1926 /*
1927 * Even though the smp_alloc field can get negative,
1928 * when it comes to a metaslab's space map, that should
1929 * never be the case.
1930 */
1931 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1932
1933 ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1934 range_tree_space(msp->ms_unflushed_frees));
1935
1936 ASSERT3U(metaslab_allocated_space(msp), ==,
1937 space_map_allocated(msp->ms_sm) +
1938 range_tree_space(msp->ms_unflushed_allocs) -
1939 range_tree_space(msp->ms_unflushed_frees));
1940
1941 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1942
1943 /*
1944 * Account for future allocations since we would have
1945 * already deducted that space from the ms_allocatable.
1946 */
1947 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1948 allocating +=
1949 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1950 }
1951 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1952 msp->ms_allocating_total);
1953
1954 ASSERT3U(msp->ms_deferspace, ==,
1955 range_tree_space(msp->ms_defer[0]) +
1956 range_tree_space(msp->ms_defer[1]));
1957
1958 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1959 msp->ms_deferspace + range_tree_space(msp->ms_freed);
1960
1961 VERIFY3U(sm_free_space, ==, msp_free_space);
1962 }
1963
1964 static void
metaslab_aux_histograms_clear(metaslab_t * msp)1965 metaslab_aux_histograms_clear(metaslab_t *msp)
1966 {
1967 /*
1968 * Auxiliary histograms are only cleared when resetting them,
1969 * which can only happen while the metaslab is loaded.
1970 */
1971 ASSERT(msp->ms_loaded);
1972
1973 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
1974 for (int t = 0; t < TXG_DEFER_SIZE; t++)
1975 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
1976 }
1977
1978 static void
metaslab_aux_histogram_add(uint64_t * histogram,uint64_t shift,range_tree_t * rt)1979 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1980 range_tree_t *rt)
1981 {
1982 /*
1983 * This is modeled after space_map_histogram_add(), so refer to that
1984 * function for implementation details. We want this to work like
1985 * the space map histogram, and not the range tree histogram, as we
1986 * are essentially constructing a delta that will be later subtracted
1987 * from the space map histogram.
1988 */
1989 int idx = 0;
1990 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1991 ASSERT3U(i, >=, idx + shift);
1992 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1993
1994 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1995 ASSERT3U(idx + shift, ==, i);
1996 idx++;
1997 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1998 }
1999 }
2000 }
2001
2002 /*
2003 * Called at every sync pass that the metaslab gets synced.
2004 *
2005 * The reason is that we want our auxiliary histograms to be updated
2006 * wherever the metaslab's space map histogram is updated. This way
2007 * we stay consistent on which parts of the metaslab space map's
2008 * histogram are currently not available for allocations (e.g because
2009 * they are in the defer, freed, and freeing trees).
2010 */
2011 static void
metaslab_aux_histograms_update(metaslab_t * msp)2012 metaslab_aux_histograms_update(metaslab_t *msp)
2013 {
2014 space_map_t *sm = msp->ms_sm;
2015 ASSERT(sm != NULL);
2016
2017 /*
2018 * This is similar to the metaslab's space map histogram updates
2019 * that take place in metaslab_sync(). The only difference is that
2020 * we only care about segments that haven't made it into the
2021 * ms_allocatable tree yet.
2022 */
2023 if (msp->ms_loaded) {
2024 metaslab_aux_histograms_clear(msp);
2025
2026 metaslab_aux_histogram_add(msp->ms_synchist,
2027 sm->sm_shift, msp->ms_freed);
2028
2029 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2030 metaslab_aux_histogram_add(msp->ms_deferhist[t],
2031 sm->sm_shift, msp->ms_defer[t]);
2032 }
2033 }
2034
2035 metaslab_aux_histogram_add(msp->ms_synchist,
2036 sm->sm_shift, msp->ms_freeing);
2037 }
2038
2039 /*
2040 * Called every time we are done syncing (writing to) the metaslab,
2041 * i.e. at the end of each sync pass.
2042 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2043 */
2044 static void
metaslab_aux_histograms_update_done(metaslab_t * msp,boolean_t defer_allowed)2045 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2046 {
2047 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2048 space_map_t *sm = msp->ms_sm;
2049
2050 if (sm == NULL) {
2051 /*
2052 * We came here from metaslab_init() when creating/opening a
2053 * pool, looking at a metaslab that hasn't had any allocations
2054 * yet.
2055 */
2056 return;
2057 }
2058
2059 /*
2060 * This is similar to the actions that we take for the ms_freed
2061 * and ms_defer trees in metaslab_sync_done().
2062 */
2063 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2064 if (defer_allowed) {
2065 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2066 sizeof (msp->ms_synchist));
2067 } else {
2068 memset(msp->ms_deferhist[hist_index], 0,
2069 sizeof (msp->ms_deferhist[hist_index]));
2070 }
2071 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2072 }
2073
2074 /*
2075 * Ensure that the metaslab's weight and fragmentation are consistent
2076 * with the contents of the histogram (either the range tree's histogram
2077 * or the space map's depending whether the metaslab is loaded).
2078 */
2079 static void
metaslab_verify_weight_and_frag(metaslab_t * msp)2080 metaslab_verify_weight_and_frag(metaslab_t *msp)
2081 {
2082 ASSERT(MUTEX_HELD(&msp->ms_lock));
2083
2084 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2085 return;
2086
2087 /*
2088 * We can end up here from vdev_remove_complete(), in which case we
2089 * cannot do these assertions because we hold spa config locks and
2090 * thus we are not allowed to read from the DMU.
2091 *
2092 * We check if the metaslab group has been removed and if that's
2093 * the case we return immediately as that would mean that we are
2094 * here from the aforementioned code path.
2095 */
2096 if (msp->ms_group == NULL)
2097 return;
2098
2099 /*
2100 * Devices being removed always return a weight of 0 and leave
2101 * fragmentation and ms_max_size as is - there is nothing for
2102 * us to verify here.
2103 */
2104 vdev_t *vd = msp->ms_group->mg_vd;
2105 if (vd->vdev_removing)
2106 return;
2107
2108 /*
2109 * If the metaslab is dirty it probably means that we've done
2110 * some allocations or frees that have changed our histograms
2111 * and thus the weight.
2112 */
2113 for (int t = 0; t < TXG_SIZE; t++) {
2114 if (txg_list_member(&vd->vdev_ms_list, msp, t))
2115 return;
2116 }
2117
2118 /*
2119 * This verification checks that our in-memory state is consistent
2120 * with what's on disk. If the pool is read-only then there aren't
2121 * any changes and we just have the initially-loaded state.
2122 */
2123 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2124 return;
2125
2126 /* some extra verification for in-core tree if you can */
2127 if (msp->ms_loaded) {
2128 range_tree_stat_verify(msp->ms_allocatable);
2129 VERIFY(space_map_histogram_verify(msp->ms_sm,
2130 msp->ms_allocatable));
2131 }
2132
2133 uint64_t weight = msp->ms_weight;
2134 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2135 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2136 uint64_t frag = msp->ms_fragmentation;
2137 uint64_t max_segsize = msp->ms_max_size;
2138
2139 msp->ms_weight = 0;
2140 msp->ms_fragmentation = 0;
2141
2142 /*
2143 * This function is used for verification purposes and thus should
2144 * not introduce any side-effects/mutations on the system's state.
2145 *
2146 * Regardless of whether metaslab_weight() thinks this metaslab
2147 * should be active or not, we want to ensure that the actual weight
2148 * (and therefore the value of ms_weight) would be the same if it
2149 * was to be recalculated at this point.
2150 *
2151 * In addition we set the nodirty flag so metaslab_weight() does
2152 * not dirty the metaslab for future TXGs (e.g. when trying to
2153 * force condensing to upgrade the metaslab spacemaps).
2154 */
2155 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2156
2157 VERIFY3U(max_segsize, ==, msp->ms_max_size);
2158
2159 /*
2160 * If the weight type changed then there is no point in doing
2161 * verification. Revert fields to their original values.
2162 */
2163 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2164 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2165 msp->ms_fragmentation = frag;
2166 msp->ms_weight = weight;
2167 return;
2168 }
2169
2170 VERIFY3U(msp->ms_fragmentation, ==, frag);
2171 VERIFY3U(msp->ms_weight, ==, weight);
2172 }
2173
2174 /*
2175 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2176 * this class that was used longest ago, and attempt to unload it. We don't
2177 * want to spend too much time in this loop to prevent performance
2178 * degradation, and we expect that most of the time this operation will
2179 * succeed. Between that and the normal unloading processing during txg sync,
2180 * we expect this to keep the metaslab memory usage under control.
2181 */
2182 static void
metaslab_potentially_evict(metaslab_class_t * mc)2183 metaslab_potentially_evict(metaslab_class_t *mc)
2184 {
2185 #ifdef _KERNEL
2186 uint64_t allmem = arc_all_memory();
2187 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2188 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2189 uint_t tries = 0;
2190 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2191 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2192 tries++) {
2193 unsigned int idx = multilist_get_random_index(
2194 &mc->mc_metaslab_txg_list);
2195 multilist_sublist_t *mls =
2196 multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx);
2197 metaslab_t *msp = multilist_sublist_head(mls);
2198 multilist_sublist_unlock(mls);
2199 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2200 inuse * size) {
2201 VERIFY3P(mls, ==, multilist_sublist_lock_idx(
2202 &mc->mc_metaslab_txg_list, idx));
2203 ASSERT3U(idx, ==,
2204 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2205
2206 if (!multilist_link_active(&msp->ms_class_txg_node)) {
2207 multilist_sublist_unlock(mls);
2208 break;
2209 }
2210 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2211 multilist_sublist_unlock(mls);
2212 /*
2213 * If the metaslab is currently loading there are two
2214 * cases. If it's the metaslab we're evicting, we
2215 * can't continue on or we'll panic when we attempt to
2216 * recursively lock the mutex. If it's another
2217 * metaslab that's loading, it can be safely skipped,
2218 * since we know it's very new and therefore not a
2219 * good eviction candidate. We check later once the
2220 * lock is held that the metaslab is fully loaded
2221 * before actually unloading it.
2222 */
2223 if (msp->ms_loading) {
2224 msp = next_msp;
2225 inuse =
2226 spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2227 continue;
2228 }
2229 /*
2230 * We can't unload metaslabs with no spacemap because
2231 * they're not ready to be unloaded yet. We can't
2232 * unload metaslabs with outstanding allocations
2233 * because doing so could cause the metaslab's weight
2234 * to decrease while it's unloaded, which violates an
2235 * invariant that we use to prevent unnecessary
2236 * loading. We also don't unload metaslabs that are
2237 * currently active because they are high-weight
2238 * metaslabs that are likely to be used in the near
2239 * future.
2240 */
2241 mutex_enter(&msp->ms_lock);
2242 if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2243 msp->ms_allocating_total == 0) {
2244 metaslab_unload(msp);
2245 }
2246 mutex_exit(&msp->ms_lock);
2247 msp = next_msp;
2248 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2249 }
2250 }
2251 #else
2252 (void) mc, (void) zfs_metaslab_mem_limit;
2253 #endif
2254 }
2255
2256 static int
metaslab_load_impl(metaslab_t * msp)2257 metaslab_load_impl(metaslab_t *msp)
2258 {
2259 int error = 0;
2260
2261 ASSERT(MUTEX_HELD(&msp->ms_lock));
2262 ASSERT(msp->ms_loading);
2263 ASSERT(!msp->ms_condensing);
2264
2265 /*
2266 * We temporarily drop the lock to unblock other operations while we
2267 * are reading the space map. Therefore, metaslab_sync() and
2268 * metaslab_sync_done() can run at the same time as we do.
2269 *
2270 * If we are using the log space maps, metaslab_sync() can't write to
2271 * the metaslab's space map while we are loading as we only write to
2272 * it when we are flushing the metaslab, and that can't happen while
2273 * we are loading it.
2274 *
2275 * If we are not using log space maps though, metaslab_sync() can
2276 * append to the space map while we are loading. Therefore we load
2277 * only entries that existed when we started the load. Additionally,
2278 * metaslab_sync_done() has to wait for the load to complete because
2279 * there are potential races like metaslab_load() loading parts of the
2280 * space map that are currently being appended by metaslab_sync(). If
2281 * we didn't, the ms_allocatable would have entries that
2282 * metaslab_sync_done() would try to re-add later.
2283 *
2284 * That's why before dropping the lock we remember the synced length
2285 * of the metaslab and read up to that point of the space map,
2286 * ignoring entries appended by metaslab_sync() that happen after we
2287 * drop the lock.
2288 */
2289 uint64_t length = msp->ms_synced_length;
2290 mutex_exit(&msp->ms_lock);
2291
2292 hrtime_t load_start = gethrtime();
2293 metaslab_rt_arg_t *mrap;
2294 if (msp->ms_allocatable->rt_arg == NULL) {
2295 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2296 } else {
2297 mrap = msp->ms_allocatable->rt_arg;
2298 msp->ms_allocatable->rt_ops = NULL;
2299 msp->ms_allocatable->rt_arg = NULL;
2300 }
2301 mrap->mra_bt = &msp->ms_allocatable_by_size;
2302 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2303
2304 if (msp->ms_sm != NULL) {
2305 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2306 SM_FREE, length);
2307
2308 /* Now, populate the size-sorted tree. */
2309 metaslab_rt_create(msp->ms_allocatable, mrap);
2310 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2311 msp->ms_allocatable->rt_arg = mrap;
2312
2313 struct mssa_arg arg = {0};
2314 arg.rt = msp->ms_allocatable;
2315 arg.mra = mrap;
2316 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2317 &arg);
2318 } else {
2319 /*
2320 * Add the size-sorted tree first, since we don't need to load
2321 * the metaslab from the spacemap.
2322 */
2323 metaslab_rt_create(msp->ms_allocatable, mrap);
2324 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2325 msp->ms_allocatable->rt_arg = mrap;
2326 /*
2327 * The space map has not been allocated yet, so treat
2328 * all the space in the metaslab as free and add it to the
2329 * ms_allocatable tree.
2330 */
2331 range_tree_add(msp->ms_allocatable,
2332 msp->ms_start, msp->ms_size);
2333
2334 if (msp->ms_new) {
2335 /*
2336 * If the ms_sm doesn't exist, this means that this
2337 * metaslab hasn't gone through metaslab_sync() and
2338 * thus has never been dirtied. So we shouldn't
2339 * expect any unflushed allocs or frees from previous
2340 * TXGs.
2341 */
2342 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2343 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2344 }
2345 }
2346
2347 /*
2348 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2349 * changing the ms_sm (or log_sm) and the metaslab's range trees
2350 * while we are about to use them and populate the ms_allocatable.
2351 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2352 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2353 */
2354 mutex_enter(&msp->ms_sync_lock);
2355 mutex_enter(&msp->ms_lock);
2356
2357 ASSERT(!msp->ms_condensing);
2358 ASSERT(!msp->ms_flushing);
2359
2360 if (error != 0) {
2361 mutex_exit(&msp->ms_sync_lock);
2362 return (error);
2363 }
2364
2365 ASSERT3P(msp->ms_group, !=, NULL);
2366 msp->ms_loaded = B_TRUE;
2367
2368 /*
2369 * Apply all the unflushed changes to ms_allocatable right
2370 * away so any manipulations we do below have a clear view
2371 * of what is allocated and what is free.
2372 */
2373 range_tree_walk(msp->ms_unflushed_allocs,
2374 range_tree_remove, msp->ms_allocatable);
2375 range_tree_walk(msp->ms_unflushed_frees,
2376 range_tree_add, msp->ms_allocatable);
2377
2378 ASSERT3P(msp->ms_group, !=, NULL);
2379 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2380 if (spa_syncing_log_sm(spa) != NULL) {
2381 ASSERT(spa_feature_is_enabled(spa,
2382 SPA_FEATURE_LOG_SPACEMAP));
2383
2384 /*
2385 * If we use a log space map we add all the segments
2386 * that are in ms_unflushed_frees so they are available
2387 * for allocation.
2388 *
2389 * ms_allocatable needs to contain all free segments
2390 * that are ready for allocations (thus not segments
2391 * from ms_freeing, ms_freed, and the ms_defer trees).
2392 * But if we grab the lock in this code path at a sync
2393 * pass later that 1, then it also contains the
2394 * segments of ms_freed (they were added to it earlier
2395 * in this path through ms_unflushed_frees). So we
2396 * need to remove all the segments that exist in
2397 * ms_freed from ms_allocatable as they will be added
2398 * later in metaslab_sync_done().
2399 *
2400 * When there's no log space map, the ms_allocatable
2401 * correctly doesn't contain any segments that exist
2402 * in ms_freed [see ms_synced_length].
2403 */
2404 range_tree_walk(msp->ms_freed,
2405 range_tree_remove, msp->ms_allocatable);
2406 }
2407
2408 /*
2409 * If we are not using the log space map, ms_allocatable
2410 * contains the segments that exist in the ms_defer trees
2411 * [see ms_synced_length]. Thus we need to remove them
2412 * from ms_allocatable as they will be added again in
2413 * metaslab_sync_done().
2414 *
2415 * If we are using the log space map, ms_allocatable still
2416 * contains the segments that exist in the ms_defer trees.
2417 * Not because it read them through the ms_sm though. But
2418 * because these segments are part of ms_unflushed_frees
2419 * whose segments we add to ms_allocatable earlier in this
2420 * code path.
2421 */
2422 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2423 range_tree_walk(msp->ms_defer[t],
2424 range_tree_remove, msp->ms_allocatable);
2425 }
2426
2427 /*
2428 * Call metaslab_recalculate_weight_and_sort() now that the
2429 * metaslab is loaded so we get the metaslab's real weight.
2430 *
2431 * Unless this metaslab was created with older software and
2432 * has not yet been converted to use segment-based weight, we
2433 * expect the new weight to be better or equal to the weight
2434 * that the metaslab had while it was not loaded. This is
2435 * because the old weight does not take into account the
2436 * consolidation of adjacent segments between TXGs. [see
2437 * comment for ms_synchist and ms_deferhist[] for more info]
2438 */
2439 uint64_t weight = msp->ms_weight;
2440 uint64_t max_size = msp->ms_max_size;
2441 metaslab_recalculate_weight_and_sort(msp);
2442 if (!WEIGHT_IS_SPACEBASED(weight))
2443 ASSERT3U(weight, <=, msp->ms_weight);
2444 msp->ms_max_size = metaslab_largest_allocatable(msp);
2445 ASSERT3U(max_size, <=, msp->ms_max_size);
2446 hrtime_t load_end = gethrtime();
2447 msp->ms_load_time = load_end;
2448 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2449 "ms_id %llu, smp_length %llu, "
2450 "unflushed_allocs %llu, unflushed_frees %llu, "
2451 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2452 "loading_time %lld ms, ms_max_size %llu, "
2453 "max size error %lld, "
2454 "old_weight %llx, new_weight %llx",
2455 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2456 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2457 (u_longlong_t)msp->ms_id,
2458 (u_longlong_t)space_map_length(msp->ms_sm),
2459 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2460 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2461 (u_longlong_t)range_tree_space(msp->ms_freed),
2462 (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2463 (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2464 (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2465 (longlong_t)((load_end - load_start) / 1000000),
2466 (u_longlong_t)msp->ms_max_size,
2467 (u_longlong_t)msp->ms_max_size - max_size,
2468 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2469
2470 metaslab_verify_space(msp, spa_syncing_txg(spa));
2471 mutex_exit(&msp->ms_sync_lock);
2472 return (0);
2473 }
2474
2475 int
metaslab_load(metaslab_t * msp)2476 metaslab_load(metaslab_t *msp)
2477 {
2478 ASSERT(MUTEX_HELD(&msp->ms_lock));
2479
2480 /*
2481 * There may be another thread loading the same metaslab, if that's
2482 * the case just wait until the other thread is done and return.
2483 */
2484 metaslab_load_wait(msp);
2485 if (msp->ms_loaded)
2486 return (0);
2487 VERIFY(!msp->ms_loading);
2488 ASSERT(!msp->ms_condensing);
2489
2490 /*
2491 * We set the loading flag BEFORE potentially dropping the lock to
2492 * wait for an ongoing flush (see ms_flushing below). This way other
2493 * threads know that there is already a thread that is loading this
2494 * metaslab.
2495 */
2496 msp->ms_loading = B_TRUE;
2497
2498 /*
2499 * Wait for any in-progress flushing to finish as we drop the ms_lock
2500 * both here (during space_map_load()) and in metaslab_flush() (when
2501 * we flush our changes to the ms_sm).
2502 */
2503 if (msp->ms_flushing)
2504 metaslab_flush_wait(msp);
2505
2506 /*
2507 * In the possibility that we were waiting for the metaslab to be
2508 * flushed (where we temporarily dropped the ms_lock), ensure that
2509 * no one else loaded the metaslab somehow.
2510 */
2511 ASSERT(!msp->ms_loaded);
2512
2513 /*
2514 * If we're loading a metaslab in the normal class, consider evicting
2515 * another one to keep our memory usage under the limit defined by the
2516 * zfs_metaslab_mem_limit tunable.
2517 */
2518 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2519 msp->ms_group->mg_class) {
2520 metaslab_potentially_evict(msp->ms_group->mg_class);
2521 }
2522
2523 int error = metaslab_load_impl(msp);
2524
2525 ASSERT(MUTEX_HELD(&msp->ms_lock));
2526 msp->ms_loading = B_FALSE;
2527 cv_broadcast(&msp->ms_load_cv);
2528
2529 return (error);
2530 }
2531
2532 void
metaslab_unload(metaslab_t * msp)2533 metaslab_unload(metaslab_t *msp)
2534 {
2535 ASSERT(MUTEX_HELD(&msp->ms_lock));
2536
2537 /*
2538 * This can happen if a metaslab is selected for eviction (in
2539 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2540 * metaslab_class_evict_old).
2541 */
2542 if (!msp->ms_loaded)
2543 return;
2544
2545 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2546 msp->ms_loaded = B_FALSE;
2547 msp->ms_unload_time = gethrtime();
2548
2549 msp->ms_activation_weight = 0;
2550 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2551
2552 if (msp->ms_group != NULL) {
2553 metaslab_class_t *mc = msp->ms_group->mg_class;
2554 multilist_sublist_t *mls =
2555 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2556 if (multilist_link_active(&msp->ms_class_txg_node))
2557 multilist_sublist_remove(mls, msp);
2558 multilist_sublist_unlock(mls);
2559
2560 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2561 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2562 "ms_id %llu, weight %llx, "
2563 "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2564 "loaded %llu ms ago, max_size %llu",
2565 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2566 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2567 (u_longlong_t)msp->ms_id,
2568 (u_longlong_t)msp->ms_weight,
2569 (u_longlong_t)msp->ms_selected_txg,
2570 (u_longlong_t)(msp->ms_unload_time -
2571 msp->ms_selected_time) / 1000 / 1000,
2572 (u_longlong_t)msp->ms_alloc_txg,
2573 (u_longlong_t)(msp->ms_unload_time -
2574 msp->ms_load_time) / 1000 / 1000,
2575 (u_longlong_t)msp->ms_max_size);
2576 }
2577
2578 /*
2579 * We explicitly recalculate the metaslab's weight based on its space
2580 * map (as it is now not loaded). We want unload metaslabs to always
2581 * have their weights calculated from the space map histograms, while
2582 * loaded ones have it calculated from their in-core range tree
2583 * [see metaslab_load()]. This way, the weight reflects the information
2584 * available in-core, whether it is loaded or not.
2585 *
2586 * If ms_group == NULL means that we came here from metaslab_fini(),
2587 * at which point it doesn't make sense for us to do the recalculation
2588 * and the sorting.
2589 */
2590 if (msp->ms_group != NULL)
2591 metaslab_recalculate_weight_and_sort(msp);
2592 }
2593
2594 /*
2595 * We want to optimize the memory use of the per-metaslab range
2596 * trees. To do this, we store the segments in the range trees in
2597 * units of sectors, zero-indexing from the start of the metaslab. If
2598 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2599 * the ranges using two uint32_ts, rather than two uint64_ts.
2600 */
2601 range_seg_type_t
metaslab_calculate_range_tree_type(vdev_t * vdev,metaslab_t * msp,uint64_t * start,uint64_t * shift)2602 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2603 uint64_t *start, uint64_t *shift)
2604 {
2605 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2606 !zfs_metaslab_force_large_segs) {
2607 *shift = vdev->vdev_ashift;
2608 *start = msp->ms_start;
2609 return (RANGE_SEG32);
2610 } else {
2611 *shift = 0;
2612 *start = 0;
2613 return (RANGE_SEG64);
2614 }
2615 }
2616
2617 void
metaslab_set_selected_txg(metaslab_t * msp,uint64_t txg)2618 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2619 {
2620 ASSERT(MUTEX_HELD(&msp->ms_lock));
2621 metaslab_class_t *mc = msp->ms_group->mg_class;
2622 multilist_sublist_t *mls =
2623 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2624 if (multilist_link_active(&msp->ms_class_txg_node))
2625 multilist_sublist_remove(mls, msp);
2626 msp->ms_selected_txg = txg;
2627 msp->ms_selected_time = gethrtime();
2628 multilist_sublist_insert_tail(mls, msp);
2629 multilist_sublist_unlock(mls);
2630 }
2631
2632 void
metaslab_space_update(vdev_t * vd,metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)2633 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2634 int64_t defer_delta, int64_t space_delta)
2635 {
2636 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2637
2638 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2639 ASSERT(vd->vdev_ms_count != 0);
2640
2641 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2642 vdev_deflated_space(vd, space_delta));
2643 }
2644
2645 int
metaslab_init(metaslab_group_t * mg,uint64_t id,uint64_t object,uint64_t txg,metaslab_t ** msp)2646 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2647 uint64_t txg, metaslab_t **msp)
2648 {
2649 vdev_t *vd = mg->mg_vd;
2650 spa_t *spa = vd->vdev_spa;
2651 objset_t *mos = spa->spa_meta_objset;
2652 metaslab_t *ms;
2653 int error;
2654
2655 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2656 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2657 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2658 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2659 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2660 multilist_link_init(&ms->ms_class_txg_node);
2661
2662 ms->ms_id = id;
2663 ms->ms_start = id << vd->vdev_ms_shift;
2664 ms->ms_size = 1ULL << vd->vdev_ms_shift;
2665 ms->ms_allocator = -1;
2666 ms->ms_new = B_TRUE;
2667
2668 vdev_ops_t *ops = vd->vdev_ops;
2669 if (ops->vdev_op_metaslab_init != NULL)
2670 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2671
2672 /*
2673 * We only open space map objects that already exist. All others
2674 * will be opened when we finally allocate an object for it. For
2675 * readonly pools there is no need to open the space map object.
2676 *
2677 * Note:
2678 * When called from vdev_expand(), we can't call into the DMU as
2679 * we are holding the spa_config_lock as a writer and we would
2680 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2681 * that case, the object parameter is zero though, so we won't
2682 * call into the DMU.
2683 */
2684 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2685 !spa->spa_read_spacemaps)) {
2686 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2687 ms->ms_size, vd->vdev_ashift);
2688
2689 if (error != 0) {
2690 kmem_free(ms, sizeof (metaslab_t));
2691 return (error);
2692 }
2693
2694 ASSERT(ms->ms_sm != NULL);
2695 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2696 }
2697
2698 uint64_t shift, start;
2699 range_seg_type_t type =
2700 metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2701
2702 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2703 for (int t = 0; t < TXG_SIZE; t++) {
2704 ms->ms_allocating[t] = range_tree_create(NULL, type,
2705 NULL, start, shift);
2706 }
2707 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2708 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2709 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2710 ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2711 start, shift);
2712 }
2713 ms->ms_checkpointing =
2714 range_tree_create(NULL, type, NULL, start, shift);
2715 ms->ms_unflushed_allocs =
2716 range_tree_create(NULL, type, NULL, start, shift);
2717
2718 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2719 mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2720 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2721 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2722 type, mrap, start, shift);
2723
2724 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2725
2726 metaslab_group_add(mg, ms);
2727 metaslab_set_fragmentation(ms, B_FALSE);
2728
2729 /*
2730 * If we're opening an existing pool (txg == 0) or creating
2731 * a new one (txg == TXG_INITIAL), all space is available now.
2732 * If we're adding space to an existing pool, the new space
2733 * does not become available until after this txg has synced.
2734 * The metaslab's weight will also be initialized when we sync
2735 * out this txg. This ensures that we don't attempt to allocate
2736 * from it before we have initialized it completely.
2737 */
2738 if (txg <= TXG_INITIAL) {
2739 metaslab_sync_done(ms, 0);
2740 metaslab_space_update(vd, mg->mg_class,
2741 metaslab_allocated_space(ms), 0, 0);
2742 }
2743
2744 if (txg != 0) {
2745 vdev_dirty(vd, 0, NULL, txg);
2746 vdev_dirty(vd, VDD_METASLAB, ms, txg);
2747 }
2748
2749 *msp = ms;
2750
2751 return (0);
2752 }
2753
2754 static void
metaslab_fini_flush_data(metaslab_t * msp)2755 metaslab_fini_flush_data(metaslab_t *msp)
2756 {
2757 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2758
2759 if (metaslab_unflushed_txg(msp) == 0) {
2760 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2761 ==, NULL);
2762 return;
2763 }
2764 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2765
2766 mutex_enter(&spa->spa_flushed_ms_lock);
2767 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2768 mutex_exit(&spa->spa_flushed_ms_lock);
2769
2770 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2771 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2772 metaslab_unflushed_dirty(msp));
2773 }
2774
2775 uint64_t
metaslab_unflushed_changes_memused(metaslab_t * ms)2776 metaslab_unflushed_changes_memused(metaslab_t *ms)
2777 {
2778 return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2779 range_tree_numsegs(ms->ms_unflushed_frees)) *
2780 ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2781 }
2782
2783 void
metaslab_fini(metaslab_t * msp)2784 metaslab_fini(metaslab_t *msp)
2785 {
2786 metaslab_group_t *mg = msp->ms_group;
2787 vdev_t *vd = mg->mg_vd;
2788 spa_t *spa = vd->vdev_spa;
2789
2790 metaslab_fini_flush_data(msp);
2791
2792 metaslab_group_remove(mg, msp);
2793
2794 mutex_enter(&msp->ms_lock);
2795 VERIFY(msp->ms_group == NULL);
2796
2797 /*
2798 * If this metaslab hasn't been through metaslab_sync_done() yet its
2799 * space hasn't been accounted for in its vdev and doesn't need to be
2800 * subtracted.
2801 */
2802 if (!msp->ms_new) {
2803 metaslab_space_update(vd, mg->mg_class,
2804 -metaslab_allocated_space(msp), 0, -msp->ms_size);
2805
2806 }
2807 space_map_close(msp->ms_sm);
2808 msp->ms_sm = NULL;
2809
2810 metaslab_unload(msp);
2811
2812 range_tree_destroy(msp->ms_allocatable);
2813 range_tree_destroy(msp->ms_freeing);
2814 range_tree_destroy(msp->ms_freed);
2815
2816 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2817 metaslab_unflushed_changes_memused(msp));
2818 spa->spa_unflushed_stats.sus_memused -=
2819 metaslab_unflushed_changes_memused(msp);
2820 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2821 range_tree_destroy(msp->ms_unflushed_allocs);
2822 range_tree_destroy(msp->ms_checkpointing);
2823 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2824 range_tree_destroy(msp->ms_unflushed_frees);
2825
2826 for (int t = 0; t < TXG_SIZE; t++) {
2827 range_tree_destroy(msp->ms_allocating[t]);
2828 }
2829 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2830 range_tree_destroy(msp->ms_defer[t]);
2831 }
2832 ASSERT0(msp->ms_deferspace);
2833
2834 for (int t = 0; t < TXG_SIZE; t++)
2835 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2836
2837 range_tree_vacate(msp->ms_trim, NULL, NULL);
2838 range_tree_destroy(msp->ms_trim);
2839
2840 mutex_exit(&msp->ms_lock);
2841 cv_destroy(&msp->ms_load_cv);
2842 cv_destroy(&msp->ms_flush_cv);
2843 mutex_destroy(&msp->ms_lock);
2844 mutex_destroy(&msp->ms_sync_lock);
2845 ASSERT3U(msp->ms_allocator, ==, -1);
2846
2847 kmem_free(msp, sizeof (metaslab_t));
2848 }
2849
2850 #define FRAGMENTATION_TABLE_SIZE 17
2851
2852 /*
2853 * This table defines a segment size based fragmentation metric that will
2854 * allow each metaslab to derive its own fragmentation value. This is done
2855 * by calculating the space in each bucket of the spacemap histogram and
2856 * multiplying that by the fragmentation metric in this table. Doing
2857 * this for all buckets and dividing it by the total amount of free
2858 * space in this metaslab (i.e. the total free space in all buckets) gives
2859 * us the fragmentation metric. This means that a high fragmentation metric
2860 * equates to most of the free space being comprised of small segments.
2861 * Conversely, if the metric is low, then most of the free space is in
2862 * large segments. A 10% change in fragmentation equates to approximately
2863 * double the number of segments.
2864 *
2865 * This table defines 0% fragmented space using 16MB segments. Testing has
2866 * shown that segments that are greater than or equal to 16MB do not suffer
2867 * from drastic performance problems. Using this value, we derive the rest
2868 * of the table. Since the fragmentation value is never stored on disk, it
2869 * is possible to change these calculations in the future.
2870 */
2871 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2872 100, /* 512B */
2873 100, /* 1K */
2874 98, /* 2K */
2875 95, /* 4K */
2876 90, /* 8K */
2877 80, /* 16K */
2878 70, /* 32K */
2879 60, /* 64K */
2880 50, /* 128K */
2881 40, /* 256K */
2882 30, /* 512K */
2883 20, /* 1M */
2884 15, /* 2M */
2885 10, /* 4M */
2886 5, /* 8M */
2887 0 /* 16M */
2888 };
2889
2890 /*
2891 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2892 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2893 * been upgraded and does not support this metric. Otherwise, the return
2894 * value should be in the range [0, 100].
2895 */
2896 static void
metaslab_set_fragmentation(metaslab_t * msp,boolean_t nodirty)2897 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2898 {
2899 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2900 uint64_t fragmentation = 0;
2901 uint64_t total = 0;
2902 boolean_t feature_enabled = spa_feature_is_enabled(spa,
2903 SPA_FEATURE_SPACEMAP_HISTOGRAM);
2904
2905 if (!feature_enabled) {
2906 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2907 return;
2908 }
2909
2910 /*
2911 * A null space map means that the entire metaslab is free
2912 * and thus is not fragmented.
2913 */
2914 if (msp->ms_sm == NULL) {
2915 msp->ms_fragmentation = 0;
2916 return;
2917 }
2918
2919 /*
2920 * If this metaslab's space map has not been upgraded, flag it
2921 * so that we upgrade next time we encounter it.
2922 */
2923 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2924 uint64_t txg = spa_syncing_txg(spa);
2925 vdev_t *vd = msp->ms_group->mg_vd;
2926
2927 /*
2928 * If we've reached the final dirty txg, then we must
2929 * be shutting down the pool. We don't want to dirty
2930 * any data past this point so skip setting the condense
2931 * flag. We can retry this action the next time the pool
2932 * is imported. We also skip marking this metaslab for
2933 * condensing if the caller has explicitly set nodirty.
2934 */
2935 if (!nodirty &&
2936 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2937 msp->ms_condense_wanted = B_TRUE;
2938 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2939 zfs_dbgmsg("txg %llu, requesting force condense: "
2940 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2941 (u_longlong_t)msp->ms_id,
2942 (u_longlong_t)vd->vdev_id);
2943 }
2944 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2945 return;
2946 }
2947
2948 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2949 uint64_t space = 0;
2950 uint8_t shift = msp->ms_sm->sm_shift;
2951
2952 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2953 FRAGMENTATION_TABLE_SIZE - 1);
2954
2955 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2956 continue;
2957
2958 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2959 total += space;
2960
2961 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2962 fragmentation += space * zfs_frag_table[idx];
2963 }
2964
2965 if (total > 0)
2966 fragmentation /= total;
2967 ASSERT3U(fragmentation, <=, 100);
2968
2969 msp->ms_fragmentation = fragmentation;
2970 }
2971
2972 /*
2973 * Compute a weight -- a selection preference value -- for the given metaslab.
2974 * This is based on the amount of free space, the level of fragmentation,
2975 * the LBA range, and whether the metaslab is loaded.
2976 */
2977 static uint64_t
metaslab_space_weight(metaslab_t * msp)2978 metaslab_space_weight(metaslab_t *msp)
2979 {
2980 metaslab_group_t *mg = msp->ms_group;
2981 vdev_t *vd = mg->mg_vd;
2982 uint64_t weight, space;
2983
2984 ASSERT(MUTEX_HELD(&msp->ms_lock));
2985
2986 /*
2987 * The baseline weight is the metaslab's free space.
2988 */
2989 space = msp->ms_size - metaslab_allocated_space(msp);
2990
2991 if (metaslab_fragmentation_factor_enabled &&
2992 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2993 /*
2994 * Use the fragmentation information to inversely scale
2995 * down the baseline weight. We need to ensure that we
2996 * don't exclude this metaslab completely when it's 100%
2997 * fragmented. To avoid this we reduce the fragmented value
2998 * by 1.
2999 */
3000 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3001
3002 /*
3003 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3004 * this metaslab again. The fragmentation metric may have
3005 * decreased the space to something smaller than
3006 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3007 * so that we can consume any remaining space.
3008 */
3009 if (space > 0 && space < SPA_MINBLOCKSIZE)
3010 space = SPA_MINBLOCKSIZE;
3011 }
3012 weight = space;
3013
3014 /*
3015 * Modern disks have uniform bit density and constant angular velocity.
3016 * Therefore, the outer recording zones are faster (higher bandwidth)
3017 * than the inner zones by the ratio of outer to inner track diameter,
3018 * which is typically around 2:1. We account for this by assigning
3019 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3020 * In effect, this means that we'll select the metaslab with the most
3021 * free bandwidth rather than simply the one with the most free space.
3022 */
3023 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3024 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3025 ASSERT(weight >= space && weight <= 2 * space);
3026 }
3027
3028 /*
3029 * If this metaslab is one we're actively using, adjust its
3030 * weight to make it preferable to any inactive metaslab so
3031 * we'll polish it off. If the fragmentation on this metaslab
3032 * has exceed our threshold, then don't mark it active.
3033 */
3034 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3035 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3036 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3037 }
3038
3039 WEIGHT_SET_SPACEBASED(weight);
3040 return (weight);
3041 }
3042
3043 /*
3044 * Return the weight of the specified metaslab, according to the segment-based
3045 * weighting algorithm. The metaslab must be loaded. This function can
3046 * be called within a sync pass since it relies only on the metaslab's
3047 * range tree which is always accurate when the metaslab is loaded.
3048 */
3049 static uint64_t
metaslab_weight_from_range_tree(metaslab_t * msp)3050 metaslab_weight_from_range_tree(metaslab_t *msp)
3051 {
3052 uint64_t weight = 0;
3053 uint32_t segments = 0;
3054
3055 ASSERT(msp->ms_loaded);
3056
3057 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3058 i--) {
3059 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3060 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3061
3062 segments <<= 1;
3063 segments += msp->ms_allocatable->rt_histogram[i];
3064
3065 /*
3066 * The range tree provides more precision than the space map
3067 * and must be downgraded so that all values fit within the
3068 * space map's histogram. This allows us to compare loaded
3069 * vs. unloaded metaslabs to determine which metaslab is
3070 * considered "best".
3071 */
3072 if (i > max_idx)
3073 continue;
3074
3075 if (segments != 0) {
3076 WEIGHT_SET_COUNT(weight, segments);
3077 WEIGHT_SET_INDEX(weight, i);
3078 WEIGHT_SET_ACTIVE(weight, 0);
3079 break;
3080 }
3081 }
3082 return (weight);
3083 }
3084
3085 /*
3086 * Calculate the weight based on the on-disk histogram. Should be applied
3087 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3088 * give results consistent with the on-disk state
3089 */
3090 static uint64_t
metaslab_weight_from_spacemap(metaslab_t * msp)3091 metaslab_weight_from_spacemap(metaslab_t *msp)
3092 {
3093 space_map_t *sm = msp->ms_sm;
3094 ASSERT(!msp->ms_loaded);
3095 ASSERT(sm != NULL);
3096 ASSERT3U(space_map_object(sm), !=, 0);
3097 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3098
3099 /*
3100 * Create a joint histogram from all the segments that have made
3101 * it to the metaslab's space map histogram, that are not yet
3102 * available for allocation because they are still in the freeing
3103 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3104 * these segments from the space map's histogram to get a more
3105 * accurate weight.
3106 */
3107 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3108 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3109 deferspace_histogram[i] += msp->ms_synchist[i];
3110 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3111 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3112 deferspace_histogram[i] += msp->ms_deferhist[t][i];
3113 }
3114 }
3115
3116 uint64_t weight = 0;
3117 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3118 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3119 deferspace_histogram[i]);
3120 uint64_t count =
3121 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3122 if (count != 0) {
3123 WEIGHT_SET_COUNT(weight, count);
3124 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3125 WEIGHT_SET_ACTIVE(weight, 0);
3126 break;
3127 }
3128 }
3129 return (weight);
3130 }
3131
3132 /*
3133 * Compute a segment-based weight for the specified metaslab. The weight
3134 * is determined by highest bucket in the histogram. The information
3135 * for the highest bucket is encoded into the weight value.
3136 */
3137 static uint64_t
metaslab_segment_weight(metaslab_t * msp)3138 metaslab_segment_weight(metaslab_t *msp)
3139 {
3140 metaslab_group_t *mg = msp->ms_group;
3141 uint64_t weight = 0;
3142 uint8_t shift = mg->mg_vd->vdev_ashift;
3143
3144 ASSERT(MUTEX_HELD(&msp->ms_lock));
3145
3146 /*
3147 * The metaslab is completely free.
3148 */
3149 if (metaslab_allocated_space(msp) == 0) {
3150 int idx = highbit64(msp->ms_size) - 1;
3151 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3152
3153 if (idx < max_idx) {
3154 WEIGHT_SET_COUNT(weight, 1ULL);
3155 WEIGHT_SET_INDEX(weight, idx);
3156 } else {
3157 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3158 WEIGHT_SET_INDEX(weight, max_idx);
3159 }
3160 WEIGHT_SET_ACTIVE(weight, 0);
3161 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3162 return (weight);
3163 }
3164
3165 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3166
3167 /*
3168 * If the metaslab is fully allocated then just make the weight 0.
3169 */
3170 if (metaslab_allocated_space(msp) == msp->ms_size)
3171 return (0);
3172 /*
3173 * If the metaslab is already loaded, then use the range tree to
3174 * determine the weight. Otherwise, we rely on the space map information
3175 * to generate the weight.
3176 */
3177 if (msp->ms_loaded) {
3178 weight = metaslab_weight_from_range_tree(msp);
3179 } else {
3180 weight = metaslab_weight_from_spacemap(msp);
3181 }
3182
3183 /*
3184 * If the metaslab was active the last time we calculated its weight
3185 * then keep it active. We want to consume the entire region that
3186 * is associated with this weight.
3187 */
3188 if (msp->ms_activation_weight != 0 && weight != 0)
3189 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3190 return (weight);
3191 }
3192
3193 /*
3194 * Determine if we should attempt to allocate from this metaslab. If the
3195 * metaslab is loaded, then we can determine if the desired allocation
3196 * can be satisfied by looking at the size of the maximum free segment
3197 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3198 * weight. For segment-based weighting we can determine the maximum
3199 * allocation based on the index encoded in its value. For space-based
3200 * weights we rely on the entire weight (excluding the weight-type bit).
3201 */
3202 static boolean_t
metaslab_should_allocate(metaslab_t * msp,uint64_t asize,boolean_t try_hard)3203 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3204 {
3205 /*
3206 * This case will usually but not always get caught by the checks below;
3207 * metaslabs can be loaded by various means, including the trim and
3208 * initialize code. Once that happens, without this check they are
3209 * allocatable even before they finish their first txg sync.
3210 */
3211 if (unlikely(msp->ms_new))
3212 return (B_FALSE);
3213
3214 /*
3215 * If the metaslab is loaded, ms_max_size is definitive and we can use
3216 * the fast check. If it's not, the ms_max_size is a lower bound (once
3217 * set), and we should use the fast check as long as we're not in
3218 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3219 * seconds since the metaslab was unloaded.
3220 */
3221 if (msp->ms_loaded ||
3222 (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3223 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3224 return (msp->ms_max_size >= asize);
3225
3226 boolean_t should_allocate;
3227 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3228 /*
3229 * The metaslab segment weight indicates segments in the
3230 * range [2^i, 2^(i+1)), where i is the index in the weight.
3231 * Since the asize might be in the middle of the range, we
3232 * should attempt the allocation if asize < 2^(i+1).
3233 */
3234 should_allocate = (asize <
3235 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3236 } else {
3237 should_allocate = (asize <=
3238 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3239 }
3240
3241 return (should_allocate);
3242 }
3243
3244 static uint64_t
metaslab_weight(metaslab_t * msp,boolean_t nodirty)3245 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3246 {
3247 vdev_t *vd = msp->ms_group->mg_vd;
3248 spa_t *spa = vd->vdev_spa;
3249 uint64_t weight;
3250
3251 ASSERT(MUTEX_HELD(&msp->ms_lock));
3252
3253 metaslab_set_fragmentation(msp, nodirty);
3254
3255 /*
3256 * Update the maximum size. If the metaslab is loaded, this will
3257 * ensure that we get an accurate maximum size if newly freed space
3258 * has been added back into the free tree. If the metaslab is
3259 * unloaded, we check if there's a larger free segment in the
3260 * unflushed frees. This is a lower bound on the largest allocatable
3261 * segment size. Coalescing of adjacent entries may reveal larger
3262 * allocatable segments, but we aren't aware of those until loading
3263 * the space map into a range tree.
3264 */
3265 if (msp->ms_loaded) {
3266 msp->ms_max_size = metaslab_largest_allocatable(msp);
3267 } else {
3268 msp->ms_max_size = MAX(msp->ms_max_size,
3269 metaslab_largest_unflushed_free(msp));
3270 }
3271
3272 /*
3273 * Segment-based weighting requires space map histogram support.
3274 */
3275 if (zfs_metaslab_segment_weight_enabled &&
3276 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3277 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3278 sizeof (space_map_phys_t))) {
3279 weight = metaslab_segment_weight(msp);
3280 } else {
3281 weight = metaslab_space_weight(msp);
3282 }
3283 return (weight);
3284 }
3285
3286 void
metaslab_recalculate_weight_and_sort(metaslab_t * msp)3287 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3288 {
3289 ASSERT(MUTEX_HELD(&msp->ms_lock));
3290
3291 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3292 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3293 metaslab_group_sort(msp->ms_group, msp,
3294 metaslab_weight(msp, B_FALSE) | was_active);
3295 }
3296
3297 static int
metaslab_activate_allocator(metaslab_group_t * mg,metaslab_t * msp,int allocator,uint64_t activation_weight)3298 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3299 int allocator, uint64_t activation_weight)
3300 {
3301 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3302 ASSERT(MUTEX_HELD(&msp->ms_lock));
3303
3304 /*
3305 * If we're activating for the claim code, we don't want to actually
3306 * set the metaslab up for a specific allocator.
3307 */
3308 if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3309 ASSERT0(msp->ms_activation_weight);
3310 msp->ms_activation_weight = msp->ms_weight;
3311 metaslab_group_sort(mg, msp, msp->ms_weight |
3312 activation_weight);
3313 return (0);
3314 }
3315
3316 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3317 &mga->mga_primary : &mga->mga_secondary);
3318
3319 mutex_enter(&mg->mg_lock);
3320 if (*mspp != NULL) {
3321 mutex_exit(&mg->mg_lock);
3322 return (EEXIST);
3323 }
3324
3325 *mspp = msp;
3326 ASSERT3S(msp->ms_allocator, ==, -1);
3327 msp->ms_allocator = allocator;
3328 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3329
3330 ASSERT0(msp->ms_activation_weight);
3331 msp->ms_activation_weight = msp->ms_weight;
3332 metaslab_group_sort_impl(mg, msp,
3333 msp->ms_weight | activation_weight);
3334 mutex_exit(&mg->mg_lock);
3335
3336 return (0);
3337 }
3338
3339 static int
metaslab_activate(metaslab_t * msp,int allocator,uint64_t activation_weight)3340 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3341 {
3342 ASSERT(MUTEX_HELD(&msp->ms_lock));
3343
3344 /*
3345 * The current metaslab is already activated for us so there
3346 * is nothing to do. Already activated though, doesn't mean
3347 * that this metaslab is activated for our allocator nor our
3348 * requested activation weight. The metaslab could have started
3349 * as an active one for our allocator but changed allocators
3350 * while we were waiting to grab its ms_lock or we stole it
3351 * [see find_valid_metaslab()]. This means that there is a
3352 * possibility of passivating a metaslab of another allocator
3353 * or from a different activation mask, from this thread.
3354 */
3355 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3356 ASSERT(msp->ms_loaded);
3357 return (0);
3358 }
3359
3360 int error = metaslab_load(msp);
3361 if (error != 0) {
3362 metaslab_group_sort(msp->ms_group, msp, 0);
3363 return (error);
3364 }
3365
3366 /*
3367 * When entering metaslab_load() we may have dropped the
3368 * ms_lock because we were loading this metaslab, or we
3369 * were waiting for another thread to load it for us. In
3370 * that scenario, we recheck the weight of the metaslab
3371 * to see if it was activated by another thread.
3372 *
3373 * If the metaslab was activated for another allocator or
3374 * it was activated with a different activation weight (e.g.
3375 * we wanted to make it a primary but it was activated as
3376 * secondary) we return error (EBUSY).
3377 *
3378 * If the metaslab was activated for the same allocator
3379 * and requested activation mask, skip activating it.
3380 */
3381 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3382 if (msp->ms_allocator != allocator)
3383 return (EBUSY);
3384
3385 if ((msp->ms_weight & activation_weight) == 0)
3386 return (SET_ERROR(EBUSY));
3387
3388 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3389 msp->ms_primary);
3390 return (0);
3391 }
3392
3393 /*
3394 * If the metaslab has literally 0 space, it will have weight 0. In
3395 * that case, don't bother activating it. This can happen if the
3396 * metaslab had space during find_valid_metaslab, but another thread
3397 * loaded it and used all that space while we were waiting to grab the
3398 * lock.
3399 */
3400 if (msp->ms_weight == 0) {
3401 ASSERT0(range_tree_space(msp->ms_allocatable));
3402 return (SET_ERROR(ENOSPC));
3403 }
3404
3405 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3406 allocator, activation_weight)) != 0) {
3407 return (error);
3408 }
3409
3410 ASSERT(msp->ms_loaded);
3411 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3412
3413 return (0);
3414 }
3415
3416 static void
metaslab_passivate_allocator(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)3417 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3418 uint64_t weight)
3419 {
3420 ASSERT(MUTEX_HELD(&msp->ms_lock));
3421 ASSERT(msp->ms_loaded);
3422
3423 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3424 metaslab_group_sort(mg, msp, weight);
3425 return;
3426 }
3427
3428 mutex_enter(&mg->mg_lock);
3429 ASSERT3P(msp->ms_group, ==, mg);
3430 ASSERT3S(0, <=, msp->ms_allocator);
3431 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3432
3433 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3434 if (msp->ms_primary) {
3435 ASSERT3P(mga->mga_primary, ==, msp);
3436 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3437 mga->mga_primary = NULL;
3438 } else {
3439 ASSERT3P(mga->mga_secondary, ==, msp);
3440 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3441 mga->mga_secondary = NULL;
3442 }
3443 msp->ms_allocator = -1;
3444 metaslab_group_sort_impl(mg, msp, weight);
3445 mutex_exit(&mg->mg_lock);
3446 }
3447
3448 static void
metaslab_passivate(metaslab_t * msp,uint64_t weight)3449 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3450 {
3451 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3452
3453 /*
3454 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3455 * this metaslab again. In that case, it had better be empty,
3456 * or we would be leaving space on the table.
3457 */
3458 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3459 size >= SPA_MINBLOCKSIZE ||
3460 range_tree_space(msp->ms_allocatable) == 0);
3461 ASSERT0(weight & METASLAB_ACTIVE_MASK);
3462
3463 ASSERT(msp->ms_activation_weight != 0);
3464 msp->ms_activation_weight = 0;
3465 metaslab_passivate_allocator(msp->ms_group, msp, weight);
3466 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3467 }
3468
3469 /*
3470 * Segment-based metaslabs are activated once and remain active until
3471 * we either fail an allocation attempt (similar to space-based metaslabs)
3472 * or have exhausted the free space in zfs_metaslab_switch_threshold
3473 * buckets since the metaslab was activated. This function checks to see
3474 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3475 * metaslab and passivates it proactively. This will allow us to select a
3476 * metaslab with a larger contiguous region, if any, remaining within this
3477 * metaslab group. If we're in sync pass > 1, then we continue using this
3478 * metaslab so that we don't dirty more block and cause more sync passes.
3479 */
3480 static void
metaslab_segment_may_passivate(metaslab_t * msp)3481 metaslab_segment_may_passivate(metaslab_t *msp)
3482 {
3483 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3484
3485 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3486 return;
3487
3488 /*
3489 * Since we are in the middle of a sync pass, the most accurate
3490 * information that is accessible to us is the in-core range tree
3491 * histogram; calculate the new weight based on that information.
3492 */
3493 uint64_t weight = metaslab_weight_from_range_tree(msp);
3494 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3495 int current_idx = WEIGHT_GET_INDEX(weight);
3496
3497 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3498 metaslab_passivate(msp, weight);
3499 }
3500
3501 static void
metaslab_preload(void * arg)3502 metaslab_preload(void *arg)
3503 {
3504 metaslab_t *msp = arg;
3505 metaslab_class_t *mc = msp->ms_group->mg_class;
3506 spa_t *spa = mc->mc_spa;
3507 fstrans_cookie_t cookie = spl_fstrans_mark();
3508
3509 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3510
3511 mutex_enter(&msp->ms_lock);
3512 (void) metaslab_load(msp);
3513 metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3514 mutex_exit(&msp->ms_lock);
3515 spl_fstrans_unmark(cookie);
3516 }
3517
3518 static void
metaslab_group_preload(metaslab_group_t * mg)3519 metaslab_group_preload(metaslab_group_t *mg)
3520 {
3521 spa_t *spa = mg->mg_vd->vdev_spa;
3522 metaslab_t *msp;
3523 avl_tree_t *t = &mg->mg_metaslab_tree;
3524 int m = 0;
3525
3526 if (spa_shutting_down(spa) || !metaslab_preload_enabled)
3527 return;
3528
3529 mutex_enter(&mg->mg_lock);
3530
3531 /*
3532 * Load the next potential metaslabs
3533 */
3534 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3535 ASSERT3P(msp->ms_group, ==, mg);
3536
3537 /*
3538 * We preload only the maximum number of metaslabs specified
3539 * by metaslab_preload_limit. If a metaslab is being forced
3540 * to condense then we preload it too. This will ensure
3541 * that force condensing happens in the next txg.
3542 */
3543 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3544 continue;
3545 }
3546
3547 VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
3548 msp, TQ_SLEEP | (m <= mg->mg_allocators ? TQ_FRONT : 0))
3549 != TASKQID_INVALID);
3550 }
3551 mutex_exit(&mg->mg_lock);
3552 }
3553
3554 /*
3555 * Determine if the space map's on-disk footprint is past our tolerance for
3556 * inefficiency. We would like to use the following criteria to make our
3557 * decision:
3558 *
3559 * 1. Do not condense if the size of the space map object would dramatically
3560 * increase as a result of writing out the free space range tree.
3561 *
3562 * 2. Condense if the on on-disk space map representation is at least
3563 * zfs_condense_pct/100 times the size of the optimal representation
3564 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3565 *
3566 * 3. Do not condense if the on-disk size of the space map does not actually
3567 * decrease.
3568 *
3569 * Unfortunately, we cannot compute the on-disk size of the space map in this
3570 * context because we cannot accurately compute the effects of compression, etc.
3571 * Instead, we apply the heuristic described in the block comment for
3572 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3573 * is greater than a threshold number of blocks.
3574 */
3575 static boolean_t
metaslab_should_condense(metaslab_t * msp)3576 metaslab_should_condense(metaslab_t *msp)
3577 {
3578 space_map_t *sm = msp->ms_sm;
3579 vdev_t *vd = msp->ms_group->mg_vd;
3580 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3581
3582 ASSERT(MUTEX_HELD(&msp->ms_lock));
3583 ASSERT(msp->ms_loaded);
3584 ASSERT(sm != NULL);
3585 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3586
3587 /*
3588 * We always condense metaslabs that are empty and metaslabs for
3589 * which a condense request has been made.
3590 */
3591 if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3592 msp->ms_condense_wanted)
3593 return (B_TRUE);
3594
3595 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3596 uint64_t object_size = space_map_length(sm);
3597 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3598 msp->ms_allocatable, SM_NO_VDEVID);
3599
3600 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3601 object_size > zfs_metaslab_condense_block_threshold * record_size);
3602 }
3603
3604 /*
3605 * Condense the on-disk space map representation to its minimized form.
3606 * The minimized form consists of a small number of allocations followed
3607 * by the entries of the free range tree (ms_allocatable). The condensed
3608 * spacemap contains all the entries of previous TXGs (including those in
3609 * the pool-wide log spacemaps; thus this is effectively a superset of
3610 * metaslab_flush()), but this TXG's entries still need to be written.
3611 */
3612 static void
metaslab_condense(metaslab_t * msp,dmu_tx_t * tx)3613 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3614 {
3615 range_tree_t *condense_tree;
3616 space_map_t *sm = msp->ms_sm;
3617 uint64_t txg = dmu_tx_get_txg(tx);
3618 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3619
3620 ASSERT(MUTEX_HELD(&msp->ms_lock));
3621 ASSERT(msp->ms_loaded);
3622 ASSERT(msp->ms_sm != NULL);
3623
3624 /*
3625 * In order to condense the space map, we need to change it so it
3626 * only describes which segments are currently allocated and free.
3627 *
3628 * All the current free space resides in the ms_allocatable, all
3629 * the ms_defer trees, and all the ms_allocating trees. We ignore
3630 * ms_freed because it is empty because we're in sync pass 1. We
3631 * ignore ms_freeing because these changes are not yet reflected
3632 * in the spacemap (they will be written later this txg).
3633 *
3634 * So to truncate the space map to represent all the entries of
3635 * previous TXGs we do the following:
3636 *
3637 * 1] We create a range tree (condense tree) that is 100% empty.
3638 * 2] We add to it all segments found in the ms_defer trees
3639 * as those segments are marked as free in the original space
3640 * map. We do the same with the ms_allocating trees for the same
3641 * reason. Adding these segments should be a relatively
3642 * inexpensive operation since we expect these trees to have a
3643 * small number of nodes.
3644 * 3] We vacate any unflushed allocs, since they are not frees we
3645 * need to add to the condense tree. Then we vacate any
3646 * unflushed frees as they should already be part of ms_allocatable.
3647 * 4] At this point, we would ideally like to add all segments
3648 * in the ms_allocatable tree from the condense tree. This way
3649 * we would write all the entries of the condense tree as the
3650 * condensed space map, which would only contain freed
3651 * segments with everything else assumed to be allocated.
3652 *
3653 * Doing so can be prohibitively expensive as ms_allocatable can
3654 * be large, and therefore computationally expensive to add to
3655 * the condense_tree. Instead we first sync out an entry marking
3656 * everything as allocated, then the condense_tree and then the
3657 * ms_allocatable, in the condensed space map. While this is not
3658 * optimal, it is typically close to optimal and more importantly
3659 * much cheaper to compute.
3660 *
3661 * 5] Finally, as both of the unflushed trees were written to our
3662 * new and condensed metaslab space map, we basically flushed
3663 * all the unflushed changes to disk, thus we call
3664 * metaslab_flush_update().
3665 */
3666 ASSERT3U(spa_sync_pass(spa), ==, 1);
3667 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3668
3669 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3670 "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3671 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3672 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3673 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3674 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3675 msp->ms_condense_wanted ? "TRUE" : "FALSE");
3676
3677 msp->ms_condense_wanted = B_FALSE;
3678
3679 range_seg_type_t type;
3680 uint64_t shift, start;
3681 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3682 &start, &shift);
3683
3684 condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3685
3686 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3687 range_tree_walk(msp->ms_defer[t],
3688 range_tree_add, condense_tree);
3689 }
3690
3691 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3692 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3693 range_tree_add, condense_tree);
3694 }
3695
3696 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3697 metaslab_unflushed_changes_memused(msp));
3698 spa->spa_unflushed_stats.sus_memused -=
3699 metaslab_unflushed_changes_memused(msp);
3700 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3701 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3702
3703 /*
3704 * We're about to drop the metaslab's lock thus allowing other
3705 * consumers to change it's content. Set the metaslab's ms_condensing
3706 * flag to ensure that allocations on this metaslab do not occur
3707 * while we're in the middle of committing it to disk. This is only
3708 * critical for ms_allocatable as all other range trees use per TXG
3709 * views of their content.
3710 */
3711 msp->ms_condensing = B_TRUE;
3712
3713 mutex_exit(&msp->ms_lock);
3714 uint64_t object = space_map_object(msp->ms_sm);
3715 space_map_truncate(sm,
3716 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3717 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3718
3719 /*
3720 * space_map_truncate() may have reallocated the spacemap object.
3721 * If so, update the vdev_ms_array.
3722 */
3723 if (space_map_object(msp->ms_sm) != object) {
3724 object = space_map_object(msp->ms_sm);
3725 dmu_write(spa->spa_meta_objset,
3726 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3727 msp->ms_id, sizeof (uint64_t), &object, tx);
3728 }
3729
3730 /*
3731 * Note:
3732 * When the log space map feature is enabled, each space map will
3733 * always have ALLOCS followed by FREES for each sync pass. This is
3734 * typically true even when the log space map feature is disabled,
3735 * except from the case where a metaslab goes through metaslab_sync()
3736 * and gets condensed. In that case the metaslab's space map will have
3737 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3738 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3739 * sync pass 1.
3740 */
3741 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3742 shift);
3743 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3744 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3745 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3746 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3747
3748 range_tree_vacate(condense_tree, NULL, NULL);
3749 range_tree_destroy(condense_tree);
3750 range_tree_vacate(tmp_tree, NULL, NULL);
3751 range_tree_destroy(tmp_tree);
3752 mutex_enter(&msp->ms_lock);
3753
3754 msp->ms_condensing = B_FALSE;
3755 metaslab_flush_update(msp, tx);
3756 }
3757
3758 static void
metaslab_unflushed_add(metaslab_t * msp,dmu_tx_t * tx)3759 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3760 {
3761 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3762 ASSERT(spa_syncing_log_sm(spa) != NULL);
3763 ASSERT(msp->ms_sm != NULL);
3764 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3765 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3766
3767 mutex_enter(&spa->spa_flushed_ms_lock);
3768 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3769 metaslab_set_unflushed_dirty(msp, B_TRUE);
3770 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3771 mutex_exit(&spa->spa_flushed_ms_lock);
3772
3773 spa_log_sm_increment_current_mscount(spa);
3774 spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3775 }
3776
3777 void
metaslab_unflushed_bump(metaslab_t * msp,dmu_tx_t * tx,boolean_t dirty)3778 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3779 {
3780 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3781 ASSERT(spa_syncing_log_sm(spa) != NULL);
3782 ASSERT(msp->ms_sm != NULL);
3783 ASSERT(metaslab_unflushed_txg(msp) != 0);
3784 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3785 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3786 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3787
3788 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3789
3790 /* update metaslab's position in our flushing tree */
3791 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3792 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3793 mutex_enter(&spa->spa_flushed_ms_lock);
3794 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3795 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3796 metaslab_set_unflushed_dirty(msp, dirty);
3797 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3798 mutex_exit(&spa->spa_flushed_ms_lock);
3799
3800 /* update metaslab counts of spa_log_sm_t nodes */
3801 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3802 spa_log_sm_increment_current_mscount(spa);
3803
3804 /* update log space map summary */
3805 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3806 ms_prev_flushed_dirty);
3807 spa_log_summary_add_flushed_metaslab(spa, dirty);
3808
3809 /* cleanup obsolete logs if any */
3810 spa_cleanup_old_sm_logs(spa, tx);
3811 }
3812
3813 /*
3814 * Called when the metaslab has been flushed (its own spacemap now reflects
3815 * all the contents of the pool-wide spacemap log). Updates the metaslab's
3816 * metadata and any pool-wide related log space map data (e.g. summary,
3817 * obsolete logs, etc..) to reflect that.
3818 */
3819 static void
metaslab_flush_update(metaslab_t * msp,dmu_tx_t * tx)3820 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3821 {
3822 metaslab_group_t *mg = msp->ms_group;
3823 spa_t *spa = mg->mg_vd->vdev_spa;
3824
3825 ASSERT(MUTEX_HELD(&msp->ms_lock));
3826
3827 ASSERT3U(spa_sync_pass(spa), ==, 1);
3828
3829 /*
3830 * Just because a metaslab got flushed, that doesn't mean that
3831 * it will pass through metaslab_sync_done(). Thus, make sure to
3832 * update ms_synced_length here in case it doesn't.
3833 */
3834 msp->ms_synced_length = space_map_length(msp->ms_sm);
3835
3836 /*
3837 * We may end up here from metaslab_condense() without the
3838 * feature being active. In that case this is a no-op.
3839 */
3840 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3841 metaslab_unflushed_txg(msp) == 0)
3842 return;
3843
3844 metaslab_unflushed_bump(msp, tx, B_FALSE);
3845 }
3846
3847 boolean_t
metaslab_flush(metaslab_t * msp,dmu_tx_t * tx)3848 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3849 {
3850 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3851
3852 ASSERT(MUTEX_HELD(&msp->ms_lock));
3853 ASSERT3U(spa_sync_pass(spa), ==, 1);
3854 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3855
3856 ASSERT(msp->ms_sm != NULL);
3857 ASSERT(metaslab_unflushed_txg(msp) != 0);
3858 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3859
3860 /*
3861 * There is nothing wrong with flushing the same metaslab twice, as
3862 * this codepath should work on that case. However, the current
3863 * flushing scheme makes sure to avoid this situation as we would be
3864 * making all these calls without having anything meaningful to write
3865 * to disk. We assert this behavior here.
3866 */
3867 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3868
3869 /*
3870 * We can not flush while loading, because then we would
3871 * not load the ms_unflushed_{allocs,frees}.
3872 */
3873 if (msp->ms_loading)
3874 return (B_FALSE);
3875
3876 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3877 metaslab_verify_weight_and_frag(msp);
3878
3879 /*
3880 * Metaslab condensing is effectively flushing. Therefore if the
3881 * metaslab can be condensed we can just condense it instead of
3882 * flushing it.
3883 *
3884 * Note that metaslab_condense() does call metaslab_flush_update()
3885 * so we can just return immediately after condensing. We also
3886 * don't need to care about setting ms_flushing or broadcasting
3887 * ms_flush_cv, even if we temporarily drop the ms_lock in
3888 * metaslab_condense(), as the metaslab is already loaded.
3889 */
3890 if (msp->ms_loaded && metaslab_should_condense(msp)) {
3891 metaslab_group_t *mg = msp->ms_group;
3892
3893 /*
3894 * For all histogram operations below refer to the
3895 * comments of metaslab_sync() where we follow a
3896 * similar procedure.
3897 */
3898 metaslab_group_histogram_verify(mg);
3899 metaslab_class_histogram_verify(mg->mg_class);
3900 metaslab_group_histogram_remove(mg, msp);
3901
3902 metaslab_condense(msp, tx);
3903
3904 space_map_histogram_clear(msp->ms_sm);
3905 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3906 ASSERT(range_tree_is_empty(msp->ms_freed));
3907 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3908 space_map_histogram_add(msp->ms_sm,
3909 msp->ms_defer[t], tx);
3910 }
3911 metaslab_aux_histograms_update(msp);
3912
3913 metaslab_group_histogram_add(mg, msp);
3914 metaslab_group_histogram_verify(mg);
3915 metaslab_class_histogram_verify(mg->mg_class);
3916
3917 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3918
3919 /*
3920 * Since we recreated the histogram (and potentially
3921 * the ms_sm too while condensing) ensure that the
3922 * weight is updated too because we are not guaranteed
3923 * that this metaslab is dirty and will go through
3924 * metaslab_sync_done().
3925 */
3926 metaslab_recalculate_weight_and_sort(msp);
3927 return (B_TRUE);
3928 }
3929
3930 msp->ms_flushing = B_TRUE;
3931 uint64_t sm_len_before = space_map_length(msp->ms_sm);
3932
3933 mutex_exit(&msp->ms_lock);
3934 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3935 SM_NO_VDEVID, tx);
3936 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3937 SM_NO_VDEVID, tx);
3938 mutex_enter(&msp->ms_lock);
3939
3940 uint64_t sm_len_after = space_map_length(msp->ms_sm);
3941 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3942 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3943 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3944 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3945 spa_name(spa),
3946 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3947 (u_longlong_t)msp->ms_id,
3948 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3949 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3950 (u_longlong_t)(sm_len_after - sm_len_before));
3951 }
3952
3953 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3954 metaslab_unflushed_changes_memused(msp));
3955 spa->spa_unflushed_stats.sus_memused -=
3956 metaslab_unflushed_changes_memused(msp);
3957 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3958 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3959
3960 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3961 metaslab_verify_weight_and_frag(msp);
3962
3963 metaslab_flush_update(msp, tx);
3964
3965 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3966 metaslab_verify_weight_and_frag(msp);
3967
3968 msp->ms_flushing = B_FALSE;
3969 cv_broadcast(&msp->ms_flush_cv);
3970 return (B_TRUE);
3971 }
3972
3973 /*
3974 * Write a metaslab to disk in the context of the specified transaction group.
3975 */
3976 void
metaslab_sync(metaslab_t * msp,uint64_t txg)3977 metaslab_sync(metaslab_t *msp, uint64_t txg)
3978 {
3979 metaslab_group_t *mg = msp->ms_group;
3980 vdev_t *vd = mg->mg_vd;
3981 spa_t *spa = vd->vdev_spa;
3982 objset_t *mos = spa_meta_objset(spa);
3983 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3984 dmu_tx_t *tx;
3985
3986 ASSERT(!vd->vdev_ishole);
3987
3988 /*
3989 * This metaslab has just been added so there's no work to do now.
3990 */
3991 if (msp->ms_new) {
3992 ASSERT0(range_tree_space(alloctree));
3993 ASSERT0(range_tree_space(msp->ms_freeing));
3994 ASSERT0(range_tree_space(msp->ms_freed));
3995 ASSERT0(range_tree_space(msp->ms_checkpointing));
3996 ASSERT0(range_tree_space(msp->ms_trim));
3997 return;
3998 }
3999
4000 /*
4001 * Normally, we don't want to process a metaslab if there are no
4002 * allocations or frees to perform. However, if the metaslab is being
4003 * forced to condense, it's loaded and we're not beyond the final
4004 * dirty txg, we need to let it through. Not condensing beyond the
4005 * final dirty txg prevents an issue where metaslabs that need to be
4006 * condensed but were loaded for other reasons could cause a panic
4007 * here. By only checking the txg in that branch of the conditional,
4008 * we preserve the utility of the VERIFY statements in all other
4009 * cases.
4010 */
4011 if (range_tree_is_empty(alloctree) &&
4012 range_tree_is_empty(msp->ms_freeing) &&
4013 range_tree_is_empty(msp->ms_checkpointing) &&
4014 !(msp->ms_loaded && msp->ms_condense_wanted &&
4015 txg <= spa_final_dirty_txg(spa)))
4016 return;
4017
4018
4019 VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4020
4021 /*
4022 * The only state that can actually be changing concurrently
4023 * with metaslab_sync() is the metaslab's ms_allocatable. No
4024 * other thread can be modifying this txg's alloc, freeing,
4025 * freed, or space_map_phys_t. We drop ms_lock whenever we
4026 * could call into the DMU, because the DMU can call down to
4027 * us (e.g. via zio_free()) at any time.
4028 *
4029 * The spa_vdev_remove_thread() can be reading metaslab state
4030 * concurrently, and it is locked out by the ms_sync_lock.
4031 * Note that the ms_lock is insufficient for this, because it
4032 * is dropped by space_map_write().
4033 */
4034 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4035
4036 /*
4037 * Generate a log space map if one doesn't exist already.
4038 */
4039 spa_generate_syncing_log_sm(spa, tx);
4040
4041 if (msp->ms_sm == NULL) {
4042 uint64_t new_object = space_map_alloc(mos,
4043 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4044 zfs_metaslab_sm_blksz_with_log :
4045 zfs_metaslab_sm_blksz_no_log, tx);
4046 VERIFY3U(new_object, !=, 0);
4047
4048 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4049 msp->ms_id, sizeof (uint64_t), &new_object, tx);
4050
4051 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4052 msp->ms_start, msp->ms_size, vd->vdev_ashift));
4053 ASSERT(msp->ms_sm != NULL);
4054
4055 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4056 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4057 ASSERT0(metaslab_allocated_space(msp));
4058 }
4059
4060 if (!range_tree_is_empty(msp->ms_checkpointing) &&
4061 vd->vdev_checkpoint_sm == NULL) {
4062 ASSERT(spa_has_checkpoint(spa));
4063
4064 uint64_t new_object = space_map_alloc(mos,
4065 zfs_vdev_standard_sm_blksz, tx);
4066 VERIFY3U(new_object, !=, 0);
4067
4068 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4069 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4070 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4071
4072 /*
4073 * We save the space map object as an entry in vdev_top_zap
4074 * so it can be retrieved when the pool is reopened after an
4075 * export or through zdb.
4076 */
4077 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4078 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4079 sizeof (new_object), 1, &new_object, tx));
4080 }
4081
4082 mutex_enter(&msp->ms_sync_lock);
4083 mutex_enter(&msp->ms_lock);
4084
4085 /*
4086 * Note: metaslab_condense() clears the space map's histogram.
4087 * Therefore we must verify and remove this histogram before
4088 * condensing.
4089 */
4090 metaslab_group_histogram_verify(mg);
4091 metaslab_class_histogram_verify(mg->mg_class);
4092 metaslab_group_histogram_remove(mg, msp);
4093
4094 if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4095 metaslab_should_condense(msp))
4096 metaslab_condense(msp, tx);
4097
4098 /*
4099 * We'll be going to disk to sync our space accounting, thus we
4100 * drop the ms_lock during that time so allocations coming from
4101 * open-context (ZIL) for future TXGs do not block.
4102 */
4103 mutex_exit(&msp->ms_lock);
4104 space_map_t *log_sm = spa_syncing_log_sm(spa);
4105 if (log_sm != NULL) {
4106 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4107 if (metaslab_unflushed_txg(msp) == 0)
4108 metaslab_unflushed_add(msp, tx);
4109 else if (!metaslab_unflushed_dirty(msp))
4110 metaslab_unflushed_bump(msp, tx, B_TRUE);
4111
4112 space_map_write(log_sm, alloctree, SM_ALLOC,
4113 vd->vdev_id, tx);
4114 space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4115 vd->vdev_id, tx);
4116 mutex_enter(&msp->ms_lock);
4117
4118 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4119 metaslab_unflushed_changes_memused(msp));
4120 spa->spa_unflushed_stats.sus_memused -=
4121 metaslab_unflushed_changes_memused(msp);
4122 range_tree_remove_xor_add(alloctree,
4123 msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4124 range_tree_remove_xor_add(msp->ms_freeing,
4125 msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4126 spa->spa_unflushed_stats.sus_memused +=
4127 metaslab_unflushed_changes_memused(msp);
4128 } else {
4129 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4130
4131 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4132 SM_NO_VDEVID, tx);
4133 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4134 SM_NO_VDEVID, tx);
4135 mutex_enter(&msp->ms_lock);
4136 }
4137
4138 msp->ms_allocated_space += range_tree_space(alloctree);
4139 ASSERT3U(msp->ms_allocated_space, >=,
4140 range_tree_space(msp->ms_freeing));
4141 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4142
4143 if (!range_tree_is_empty(msp->ms_checkpointing)) {
4144 ASSERT(spa_has_checkpoint(spa));
4145 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4146
4147 /*
4148 * Since we are doing writes to disk and the ms_checkpointing
4149 * tree won't be changing during that time, we drop the
4150 * ms_lock while writing to the checkpoint space map, for the
4151 * same reason mentioned above.
4152 */
4153 mutex_exit(&msp->ms_lock);
4154 space_map_write(vd->vdev_checkpoint_sm,
4155 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4156 mutex_enter(&msp->ms_lock);
4157
4158 spa->spa_checkpoint_info.sci_dspace +=
4159 range_tree_space(msp->ms_checkpointing);
4160 vd->vdev_stat.vs_checkpoint_space +=
4161 range_tree_space(msp->ms_checkpointing);
4162 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4163 -space_map_allocated(vd->vdev_checkpoint_sm));
4164
4165 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4166 }
4167
4168 if (msp->ms_loaded) {
4169 /*
4170 * When the space map is loaded, we have an accurate
4171 * histogram in the range tree. This gives us an opportunity
4172 * to bring the space map's histogram up-to-date so we clear
4173 * it first before updating it.
4174 */
4175 space_map_histogram_clear(msp->ms_sm);
4176 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4177
4178 /*
4179 * Since we've cleared the histogram we need to add back
4180 * any free space that has already been processed, plus
4181 * any deferred space. This allows the on-disk histogram
4182 * to accurately reflect all free space even if some space
4183 * is not yet available for allocation (i.e. deferred).
4184 */
4185 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4186
4187 /*
4188 * Add back any deferred free space that has not been
4189 * added back into the in-core free tree yet. This will
4190 * ensure that we don't end up with a space map histogram
4191 * that is completely empty unless the metaslab is fully
4192 * allocated.
4193 */
4194 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4195 space_map_histogram_add(msp->ms_sm,
4196 msp->ms_defer[t], tx);
4197 }
4198 }
4199
4200 /*
4201 * Always add the free space from this sync pass to the space
4202 * map histogram. We want to make sure that the on-disk histogram
4203 * accounts for all free space. If the space map is not loaded,
4204 * then we will lose some accuracy but will correct it the next
4205 * time we load the space map.
4206 */
4207 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4208 metaslab_aux_histograms_update(msp);
4209
4210 metaslab_group_histogram_add(mg, msp);
4211 metaslab_group_histogram_verify(mg);
4212 metaslab_class_histogram_verify(mg->mg_class);
4213
4214 /*
4215 * For sync pass 1, we avoid traversing this txg's free range tree
4216 * and instead will just swap the pointers for freeing and freed.
4217 * We can safely do this since the freed_tree is guaranteed to be
4218 * empty on the initial pass.
4219 *
4220 * Keep in mind that even if we are currently using a log spacemap
4221 * we want current frees to end up in the ms_allocatable (but not
4222 * get appended to the ms_sm) so their ranges can be reused as usual.
4223 */
4224 if (spa_sync_pass(spa) == 1) {
4225 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4226 ASSERT0(msp->ms_allocated_this_txg);
4227 } else {
4228 range_tree_vacate(msp->ms_freeing,
4229 range_tree_add, msp->ms_freed);
4230 }
4231 msp->ms_allocated_this_txg += range_tree_space(alloctree);
4232 range_tree_vacate(alloctree, NULL, NULL);
4233
4234 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4235 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4236 & TXG_MASK]));
4237 ASSERT0(range_tree_space(msp->ms_freeing));
4238 ASSERT0(range_tree_space(msp->ms_checkpointing));
4239
4240 mutex_exit(&msp->ms_lock);
4241
4242 /*
4243 * Verify that the space map object ID has been recorded in the
4244 * vdev_ms_array.
4245 */
4246 uint64_t object;
4247 VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4248 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4249 VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4250
4251 mutex_exit(&msp->ms_sync_lock);
4252 dmu_tx_commit(tx);
4253 }
4254
4255 static void
metaslab_evict(metaslab_t * msp,uint64_t txg)4256 metaslab_evict(metaslab_t *msp, uint64_t txg)
4257 {
4258 if (!msp->ms_loaded || msp->ms_disabled != 0)
4259 return;
4260
4261 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4262 VERIFY0(range_tree_space(
4263 msp->ms_allocating[(txg + t) & TXG_MASK]));
4264 }
4265 if (msp->ms_allocator != -1)
4266 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4267
4268 if (!metaslab_debug_unload)
4269 metaslab_unload(msp);
4270 }
4271
4272 /*
4273 * Called after a transaction group has completely synced to mark
4274 * all of the metaslab's free space as usable.
4275 */
4276 void
metaslab_sync_done(metaslab_t * msp,uint64_t txg)4277 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4278 {
4279 metaslab_group_t *mg = msp->ms_group;
4280 vdev_t *vd = mg->mg_vd;
4281 spa_t *spa = vd->vdev_spa;
4282 range_tree_t **defer_tree;
4283 int64_t alloc_delta, defer_delta;
4284 boolean_t defer_allowed = B_TRUE;
4285
4286 ASSERT(!vd->vdev_ishole);
4287
4288 mutex_enter(&msp->ms_lock);
4289
4290 if (msp->ms_new) {
4291 /* this is a new metaslab, add its capacity to the vdev */
4292 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4293
4294 /* there should be no allocations nor frees at this point */
4295 VERIFY0(msp->ms_allocated_this_txg);
4296 VERIFY0(range_tree_space(msp->ms_freed));
4297 }
4298
4299 ASSERT0(range_tree_space(msp->ms_freeing));
4300 ASSERT0(range_tree_space(msp->ms_checkpointing));
4301
4302 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4303
4304 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4305 metaslab_class_get_alloc(spa_normal_class(spa));
4306 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4307 defer_allowed = B_FALSE;
4308 }
4309
4310 defer_delta = 0;
4311 alloc_delta = msp->ms_allocated_this_txg -
4312 range_tree_space(msp->ms_freed);
4313
4314 if (defer_allowed) {
4315 defer_delta = range_tree_space(msp->ms_freed) -
4316 range_tree_space(*defer_tree);
4317 } else {
4318 defer_delta -= range_tree_space(*defer_tree);
4319 }
4320 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4321 defer_delta, 0);
4322
4323 if (spa_syncing_log_sm(spa) == NULL) {
4324 /*
4325 * If there's a metaslab_load() in progress and we don't have
4326 * a log space map, it means that we probably wrote to the
4327 * metaslab's space map. If this is the case, we need to
4328 * make sure that we wait for the load to complete so that we
4329 * have a consistent view at the in-core side of the metaslab.
4330 */
4331 metaslab_load_wait(msp);
4332 } else {
4333 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4334 }
4335
4336 /*
4337 * When auto-trimming is enabled, free ranges which are added to
4338 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4339 * periodically consumed by the vdev_autotrim_thread() which issues
4340 * trims for all ranges and then vacates the tree. The ms_trim tree
4341 * can be discarded at any time with the sole consequence of recent
4342 * frees not being trimmed.
4343 */
4344 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4345 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4346 if (!defer_allowed) {
4347 range_tree_walk(msp->ms_freed, range_tree_add,
4348 msp->ms_trim);
4349 }
4350 } else {
4351 range_tree_vacate(msp->ms_trim, NULL, NULL);
4352 }
4353
4354 /*
4355 * Move the frees from the defer_tree back to the free
4356 * range tree (if it's loaded). Swap the freed_tree and
4357 * the defer_tree -- this is safe to do because we've
4358 * just emptied out the defer_tree.
4359 */
4360 range_tree_vacate(*defer_tree,
4361 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4362 if (defer_allowed) {
4363 range_tree_swap(&msp->ms_freed, defer_tree);
4364 } else {
4365 range_tree_vacate(msp->ms_freed,
4366 msp->ms_loaded ? range_tree_add : NULL,
4367 msp->ms_allocatable);
4368 }
4369
4370 msp->ms_synced_length = space_map_length(msp->ms_sm);
4371
4372 msp->ms_deferspace += defer_delta;
4373 ASSERT3S(msp->ms_deferspace, >=, 0);
4374 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4375 if (msp->ms_deferspace != 0) {
4376 /*
4377 * Keep syncing this metaslab until all deferred frees
4378 * are back in circulation.
4379 */
4380 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4381 }
4382 metaslab_aux_histograms_update_done(msp, defer_allowed);
4383
4384 if (msp->ms_new) {
4385 msp->ms_new = B_FALSE;
4386 mutex_enter(&mg->mg_lock);
4387 mg->mg_ms_ready++;
4388 mutex_exit(&mg->mg_lock);
4389 }
4390
4391 /*
4392 * Re-sort metaslab within its group now that we've adjusted
4393 * its allocatable space.
4394 */
4395 metaslab_recalculate_weight_and_sort(msp);
4396
4397 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4398 ASSERT0(range_tree_space(msp->ms_freeing));
4399 ASSERT0(range_tree_space(msp->ms_freed));
4400 ASSERT0(range_tree_space(msp->ms_checkpointing));
4401 msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4402 msp->ms_allocated_this_txg = 0;
4403 mutex_exit(&msp->ms_lock);
4404 }
4405
4406 void
metaslab_sync_reassess(metaslab_group_t * mg)4407 metaslab_sync_reassess(metaslab_group_t *mg)
4408 {
4409 spa_t *spa = mg->mg_class->mc_spa;
4410
4411 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4412 metaslab_group_alloc_update(mg);
4413 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4414
4415 /*
4416 * Preload the next potential metaslabs but only on active
4417 * metaslab groups. We can get into a state where the metaslab
4418 * is no longer active since we dirty metaslabs as we remove a
4419 * a device, thus potentially making the metaslab group eligible
4420 * for preloading.
4421 */
4422 if (mg->mg_activation_count > 0) {
4423 metaslab_group_preload(mg);
4424 }
4425 spa_config_exit(spa, SCL_ALLOC, FTAG);
4426 }
4427
4428 /*
4429 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4430 * the same vdev as an existing DVA of this BP, then try to allocate it
4431 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4432 */
4433 static boolean_t
metaslab_is_unique(metaslab_t * msp,dva_t * dva)4434 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4435 {
4436 uint64_t dva_ms_id;
4437
4438 if (DVA_GET_ASIZE(dva) == 0)
4439 return (B_TRUE);
4440
4441 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4442 return (B_TRUE);
4443
4444 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4445
4446 return (msp->ms_id != dva_ms_id);
4447 }
4448
4449 /*
4450 * ==========================================================================
4451 * Metaslab allocation tracing facility
4452 * ==========================================================================
4453 */
4454
4455 /*
4456 * Add an allocation trace element to the allocation tracing list.
4457 */
4458 static void
metaslab_trace_add(zio_alloc_list_t * zal,metaslab_group_t * mg,metaslab_t * msp,uint64_t psize,uint32_t dva_id,uint64_t offset,int allocator)4459 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4460 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4461 int allocator)
4462 {
4463 metaslab_alloc_trace_t *mat;
4464
4465 if (!metaslab_trace_enabled)
4466 return;
4467
4468 /*
4469 * When the tracing list reaches its maximum we remove
4470 * the second element in the list before adding a new one.
4471 * By removing the second element we preserve the original
4472 * entry as a clue to what allocations steps have already been
4473 * performed.
4474 */
4475 if (zal->zal_size == metaslab_trace_max_entries) {
4476 metaslab_alloc_trace_t *mat_next;
4477 #ifdef ZFS_DEBUG
4478 panic("too many entries in allocation list");
4479 #endif
4480 METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4481 zal->zal_size--;
4482 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4483 list_remove(&zal->zal_list, mat_next);
4484 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4485 }
4486
4487 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4488 list_link_init(&mat->mat_list_node);
4489 mat->mat_mg = mg;
4490 mat->mat_msp = msp;
4491 mat->mat_size = psize;
4492 mat->mat_dva_id = dva_id;
4493 mat->mat_offset = offset;
4494 mat->mat_weight = 0;
4495 mat->mat_allocator = allocator;
4496
4497 if (msp != NULL)
4498 mat->mat_weight = msp->ms_weight;
4499
4500 /*
4501 * The list is part of the zio so locking is not required. Only
4502 * a single thread will perform allocations for a given zio.
4503 */
4504 list_insert_tail(&zal->zal_list, mat);
4505 zal->zal_size++;
4506
4507 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4508 }
4509
4510 void
metaslab_trace_init(zio_alloc_list_t * zal)4511 metaslab_trace_init(zio_alloc_list_t *zal)
4512 {
4513 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4514 offsetof(metaslab_alloc_trace_t, mat_list_node));
4515 zal->zal_size = 0;
4516 }
4517
4518 void
metaslab_trace_fini(zio_alloc_list_t * zal)4519 metaslab_trace_fini(zio_alloc_list_t *zal)
4520 {
4521 metaslab_alloc_trace_t *mat;
4522
4523 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4524 kmem_cache_free(metaslab_alloc_trace_cache, mat);
4525 list_destroy(&zal->zal_list);
4526 zal->zal_size = 0;
4527 }
4528
4529 /*
4530 * ==========================================================================
4531 * Metaslab block operations
4532 * ==========================================================================
4533 */
4534
4535 static void
metaslab_group_alloc_increment(spa_t * spa,uint64_t vdev,const void * tag,int flags,int allocator)4536 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4537 int flags, int allocator)
4538 {
4539 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4540 (flags & METASLAB_DONT_THROTTLE))
4541 return;
4542
4543 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4544 if (!mg->mg_class->mc_alloc_throttle_enabled)
4545 return;
4546
4547 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4548 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4549 }
4550
4551 static void
metaslab_group_increment_qdepth(metaslab_group_t * mg,int allocator)4552 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4553 {
4554 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4555 metaslab_class_allocator_t *mca =
4556 &mg->mg_class->mc_allocator[allocator];
4557 uint64_t max = mg->mg_max_alloc_queue_depth;
4558 uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4559 while (cur < max) {
4560 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4561 cur, cur + 1) == cur) {
4562 atomic_inc_64(&mca->mca_alloc_max_slots);
4563 return;
4564 }
4565 cur = mga->mga_cur_max_alloc_queue_depth;
4566 }
4567 }
4568
4569 void
metaslab_group_alloc_decrement(spa_t * spa,uint64_t vdev,const void * tag,int flags,int allocator,boolean_t io_complete)4570 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4571 int flags, int allocator, boolean_t io_complete)
4572 {
4573 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4574 (flags & METASLAB_DONT_THROTTLE))
4575 return;
4576
4577 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4578 if (!mg->mg_class->mc_alloc_throttle_enabled)
4579 return;
4580
4581 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4582 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4583 if (io_complete)
4584 metaslab_group_increment_qdepth(mg, allocator);
4585 }
4586
4587 void
metaslab_group_alloc_verify(spa_t * spa,const blkptr_t * bp,const void * tag,int allocator)4588 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4589 int allocator)
4590 {
4591 #ifdef ZFS_DEBUG
4592 const dva_t *dva = bp->blk_dva;
4593 int ndvas = BP_GET_NDVAS(bp);
4594
4595 for (int d = 0; d < ndvas; d++) {
4596 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4597 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4598 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4599 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4600 }
4601 #endif
4602 }
4603
4604 static uint64_t
metaslab_block_alloc(metaslab_t * msp,uint64_t size,uint64_t txg)4605 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4606 {
4607 uint64_t start;
4608 range_tree_t *rt = msp->ms_allocatable;
4609 metaslab_class_t *mc = msp->ms_group->mg_class;
4610
4611 ASSERT(MUTEX_HELD(&msp->ms_lock));
4612 VERIFY(!msp->ms_condensing);
4613 VERIFY0(msp->ms_disabled);
4614
4615 start = mc->mc_ops->msop_alloc(msp, size);
4616 if (start != -1ULL) {
4617 metaslab_group_t *mg = msp->ms_group;
4618 vdev_t *vd = mg->mg_vd;
4619
4620 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4621 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4622 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4623 range_tree_remove(rt, start, size);
4624 range_tree_clear(msp->ms_trim, start, size);
4625
4626 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4627 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4628
4629 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4630 msp->ms_allocating_total += size;
4631
4632 /* Track the last successful allocation */
4633 msp->ms_alloc_txg = txg;
4634 metaslab_verify_space(msp, txg);
4635 }
4636
4637 /*
4638 * Now that we've attempted the allocation we need to update the
4639 * metaslab's maximum block size since it may have changed.
4640 */
4641 msp->ms_max_size = metaslab_largest_allocatable(msp);
4642 return (start);
4643 }
4644
4645 /*
4646 * Find the metaslab with the highest weight that is less than what we've
4647 * already tried. In the common case, this means that we will examine each
4648 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4649 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4650 * activated by another thread, and we fail to allocate from the metaslab we
4651 * have selected, we may not try the newly-activated metaslab, and instead
4652 * activate another metaslab. This is not optimal, but generally does not cause
4653 * any problems (a possible exception being if every metaslab is completely full
4654 * except for the newly-activated metaslab which we fail to examine).
4655 */
4656 static metaslab_t *
find_valid_metaslab(metaslab_group_t * mg,uint64_t activation_weight,dva_t * dva,int d,boolean_t want_unique,uint64_t asize,int allocator,boolean_t try_hard,zio_alloc_list_t * zal,metaslab_t * search,boolean_t * was_active)4657 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4658 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4659 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4660 boolean_t *was_active)
4661 {
4662 avl_index_t idx;
4663 avl_tree_t *t = &mg->mg_metaslab_tree;
4664 metaslab_t *msp = avl_find(t, search, &idx);
4665 if (msp == NULL)
4666 msp = avl_nearest(t, idx, AVL_AFTER);
4667
4668 uint_t tries = 0;
4669 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4670 int i;
4671
4672 if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4673 METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4674 return (NULL);
4675 }
4676 tries++;
4677
4678 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4679 metaslab_trace_add(zal, mg, msp, asize, d,
4680 TRACE_TOO_SMALL, allocator);
4681 continue;
4682 }
4683
4684 /*
4685 * If the selected metaslab is condensing or disabled,
4686 * skip it.
4687 */
4688 if (msp->ms_condensing || msp->ms_disabled > 0)
4689 continue;
4690
4691 *was_active = msp->ms_allocator != -1;
4692 /*
4693 * If we're activating as primary, this is our first allocation
4694 * from this disk, so we don't need to check how close we are.
4695 * If the metaslab under consideration was already active,
4696 * we're getting desperate enough to steal another allocator's
4697 * metaslab, so we still don't care about distances.
4698 */
4699 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4700 break;
4701
4702 for (i = 0; i < d; i++) {
4703 if (want_unique &&
4704 !metaslab_is_unique(msp, &dva[i]))
4705 break; /* try another metaslab */
4706 }
4707 if (i == d)
4708 break;
4709 }
4710
4711 if (msp != NULL) {
4712 search->ms_weight = msp->ms_weight;
4713 search->ms_start = msp->ms_start + 1;
4714 search->ms_allocator = msp->ms_allocator;
4715 search->ms_primary = msp->ms_primary;
4716 }
4717 return (msp);
4718 }
4719
4720 static void
metaslab_active_mask_verify(metaslab_t * msp)4721 metaslab_active_mask_verify(metaslab_t *msp)
4722 {
4723 ASSERT(MUTEX_HELD(&msp->ms_lock));
4724
4725 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4726 return;
4727
4728 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4729 return;
4730
4731 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4732 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4733 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4734 VERIFY3S(msp->ms_allocator, !=, -1);
4735 VERIFY(msp->ms_primary);
4736 return;
4737 }
4738
4739 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4740 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4741 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4742 VERIFY3S(msp->ms_allocator, !=, -1);
4743 VERIFY(!msp->ms_primary);
4744 return;
4745 }
4746
4747 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4748 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4749 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4750 VERIFY3S(msp->ms_allocator, ==, -1);
4751 return;
4752 }
4753 }
4754
4755 static uint64_t
metaslab_group_alloc_normal(metaslab_group_t * mg,zio_alloc_list_t * zal,uint64_t asize,uint64_t txg,boolean_t want_unique,dva_t * dva,int d,int allocator,boolean_t try_hard)4756 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4757 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4758 int allocator, boolean_t try_hard)
4759 {
4760 metaslab_t *msp = NULL;
4761 uint64_t offset = -1ULL;
4762
4763 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4764 for (int i = 0; i < d; i++) {
4765 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4766 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4767 activation_weight = METASLAB_WEIGHT_SECONDARY;
4768 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4769 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4770 activation_weight = METASLAB_WEIGHT_CLAIM;
4771 break;
4772 }
4773 }
4774
4775 /*
4776 * If we don't have enough metaslabs active to fill the entire array, we
4777 * just use the 0th slot.
4778 */
4779 if (mg->mg_ms_ready < mg->mg_allocators * 3)
4780 allocator = 0;
4781 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4782
4783 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4784
4785 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4786 search->ms_weight = UINT64_MAX;
4787 search->ms_start = 0;
4788 /*
4789 * At the end of the metaslab tree are the already-active metaslabs,
4790 * first the primaries, then the secondaries. When we resume searching
4791 * through the tree, we need to consider ms_allocator and ms_primary so
4792 * we start in the location right after where we left off, and don't
4793 * accidentally loop forever considering the same metaslabs.
4794 */
4795 search->ms_allocator = -1;
4796 search->ms_primary = B_TRUE;
4797 for (;;) {
4798 boolean_t was_active = B_FALSE;
4799
4800 mutex_enter(&mg->mg_lock);
4801
4802 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4803 mga->mga_primary != NULL) {
4804 msp = mga->mga_primary;
4805
4806 /*
4807 * Even though we don't hold the ms_lock for the
4808 * primary metaslab, those fields should not
4809 * change while we hold the mg_lock. Thus it is
4810 * safe to make assertions on them.
4811 */
4812 ASSERT(msp->ms_primary);
4813 ASSERT3S(msp->ms_allocator, ==, allocator);
4814 ASSERT(msp->ms_loaded);
4815
4816 was_active = B_TRUE;
4817 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4818 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4819 mga->mga_secondary != NULL) {
4820 msp = mga->mga_secondary;
4821
4822 /*
4823 * See comment above about the similar assertions
4824 * for the primary metaslab.
4825 */
4826 ASSERT(!msp->ms_primary);
4827 ASSERT3S(msp->ms_allocator, ==, allocator);
4828 ASSERT(msp->ms_loaded);
4829
4830 was_active = B_TRUE;
4831 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4832 } else {
4833 msp = find_valid_metaslab(mg, activation_weight, dva, d,
4834 want_unique, asize, allocator, try_hard, zal,
4835 search, &was_active);
4836 }
4837
4838 mutex_exit(&mg->mg_lock);
4839 if (msp == NULL) {
4840 kmem_free(search, sizeof (*search));
4841 return (-1ULL);
4842 }
4843 mutex_enter(&msp->ms_lock);
4844
4845 metaslab_active_mask_verify(msp);
4846
4847 /*
4848 * This code is disabled out because of issues with
4849 * tracepoints in non-gpl kernel modules.
4850 */
4851 #if 0
4852 DTRACE_PROBE3(ms__activation__attempt,
4853 metaslab_t *, msp, uint64_t, activation_weight,
4854 boolean_t, was_active);
4855 #endif
4856
4857 /*
4858 * Ensure that the metaslab we have selected is still
4859 * capable of handling our request. It's possible that
4860 * another thread may have changed the weight while we
4861 * were blocked on the metaslab lock. We check the
4862 * active status first to see if we need to set_selected_txg
4863 * a new metaslab.
4864 */
4865 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4866 ASSERT3S(msp->ms_allocator, ==, -1);
4867 mutex_exit(&msp->ms_lock);
4868 continue;
4869 }
4870
4871 /*
4872 * If the metaslab was activated for another allocator
4873 * while we were waiting in the ms_lock above, or it's
4874 * a primary and we're seeking a secondary (or vice versa),
4875 * we go back and select a new metaslab.
4876 */
4877 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4878 (msp->ms_allocator != -1) &&
4879 (msp->ms_allocator != allocator || ((activation_weight ==
4880 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4881 ASSERT(msp->ms_loaded);
4882 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4883 msp->ms_allocator != -1);
4884 mutex_exit(&msp->ms_lock);
4885 continue;
4886 }
4887
4888 /*
4889 * This metaslab was used for claiming regions allocated
4890 * by the ZIL during pool import. Once these regions are
4891 * claimed we don't need to keep the CLAIM bit set
4892 * anymore. Passivate this metaslab to zero its activation
4893 * mask.
4894 */
4895 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4896 activation_weight != METASLAB_WEIGHT_CLAIM) {
4897 ASSERT(msp->ms_loaded);
4898 ASSERT3S(msp->ms_allocator, ==, -1);
4899 metaslab_passivate(msp, msp->ms_weight &
4900 ~METASLAB_WEIGHT_CLAIM);
4901 mutex_exit(&msp->ms_lock);
4902 continue;
4903 }
4904
4905 metaslab_set_selected_txg(msp, txg);
4906
4907 int activation_error =
4908 metaslab_activate(msp, allocator, activation_weight);
4909 metaslab_active_mask_verify(msp);
4910
4911 /*
4912 * If the metaslab was activated by another thread for
4913 * another allocator or activation_weight (EBUSY), or it
4914 * failed because another metaslab was assigned as primary
4915 * for this allocator (EEXIST) we continue using this
4916 * metaslab for our allocation, rather than going on to a
4917 * worse metaslab (we waited for that metaslab to be loaded
4918 * after all).
4919 *
4920 * If the activation failed due to an I/O error or ENOSPC we
4921 * skip to the next metaslab.
4922 */
4923 boolean_t activated;
4924 if (activation_error == 0) {
4925 activated = B_TRUE;
4926 } else if (activation_error == EBUSY ||
4927 activation_error == EEXIST) {
4928 activated = B_FALSE;
4929 } else {
4930 mutex_exit(&msp->ms_lock);
4931 continue;
4932 }
4933 ASSERT(msp->ms_loaded);
4934
4935 /*
4936 * Now that we have the lock, recheck to see if we should
4937 * continue to use this metaslab for this allocation. The
4938 * the metaslab is now loaded so metaslab_should_allocate()
4939 * can accurately determine if the allocation attempt should
4940 * proceed.
4941 */
4942 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4943 /* Passivate this metaslab and select a new one. */
4944 metaslab_trace_add(zal, mg, msp, asize, d,
4945 TRACE_TOO_SMALL, allocator);
4946 goto next;
4947 }
4948
4949 /*
4950 * If this metaslab is currently condensing then pick again
4951 * as we can't manipulate this metaslab until it's committed
4952 * to disk. If this metaslab is being initialized, we shouldn't
4953 * allocate from it since the allocated region might be
4954 * overwritten after allocation.
4955 */
4956 if (msp->ms_condensing) {
4957 metaslab_trace_add(zal, mg, msp, asize, d,
4958 TRACE_CONDENSING, allocator);
4959 if (activated) {
4960 metaslab_passivate(msp, msp->ms_weight &
4961 ~METASLAB_ACTIVE_MASK);
4962 }
4963 mutex_exit(&msp->ms_lock);
4964 continue;
4965 } else if (msp->ms_disabled > 0) {
4966 metaslab_trace_add(zal, mg, msp, asize, d,
4967 TRACE_DISABLED, allocator);
4968 if (activated) {
4969 metaslab_passivate(msp, msp->ms_weight &
4970 ~METASLAB_ACTIVE_MASK);
4971 }
4972 mutex_exit(&msp->ms_lock);
4973 continue;
4974 }
4975
4976 offset = metaslab_block_alloc(msp, asize, txg);
4977 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4978
4979 if (offset != -1ULL) {
4980 /* Proactively passivate the metaslab, if needed */
4981 if (activated)
4982 metaslab_segment_may_passivate(msp);
4983 break;
4984 }
4985 next:
4986 ASSERT(msp->ms_loaded);
4987
4988 /*
4989 * This code is disabled out because of issues with
4990 * tracepoints in non-gpl kernel modules.
4991 */
4992 #if 0
4993 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4994 uint64_t, asize);
4995 #endif
4996
4997 /*
4998 * We were unable to allocate from this metaslab so determine
4999 * a new weight for this metaslab. Now that we have loaded
5000 * the metaslab we can provide a better hint to the metaslab
5001 * selector.
5002 *
5003 * For space-based metaslabs, we use the maximum block size.
5004 * This information is only available when the metaslab
5005 * is loaded and is more accurate than the generic free
5006 * space weight that was calculated by metaslab_weight().
5007 * This information allows us to quickly compare the maximum
5008 * available allocation in the metaslab to the allocation
5009 * size being requested.
5010 *
5011 * For segment-based metaslabs, determine the new weight
5012 * based on the highest bucket in the range tree. We
5013 * explicitly use the loaded segment weight (i.e. the range
5014 * tree histogram) since it contains the space that is
5015 * currently available for allocation and is accurate
5016 * even within a sync pass.
5017 */
5018 uint64_t weight;
5019 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5020 weight = metaslab_largest_allocatable(msp);
5021 WEIGHT_SET_SPACEBASED(weight);
5022 } else {
5023 weight = metaslab_weight_from_range_tree(msp);
5024 }
5025
5026 if (activated) {
5027 metaslab_passivate(msp, weight);
5028 } else {
5029 /*
5030 * For the case where we use the metaslab that is
5031 * active for another allocator we want to make
5032 * sure that we retain the activation mask.
5033 *
5034 * Note that we could attempt to use something like
5035 * metaslab_recalculate_weight_and_sort() that
5036 * retains the activation mask here. That function
5037 * uses metaslab_weight() to set the weight though
5038 * which is not as accurate as the calculations
5039 * above.
5040 */
5041 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5042 metaslab_group_sort(mg, msp, weight);
5043 }
5044 metaslab_active_mask_verify(msp);
5045
5046 /*
5047 * We have just failed an allocation attempt, check
5048 * that metaslab_should_allocate() agrees. Otherwise,
5049 * we may end up in an infinite loop retrying the same
5050 * metaslab.
5051 */
5052 ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5053
5054 mutex_exit(&msp->ms_lock);
5055 }
5056 mutex_exit(&msp->ms_lock);
5057 kmem_free(search, sizeof (*search));
5058 return (offset);
5059 }
5060
5061 static uint64_t
metaslab_group_alloc(metaslab_group_t * mg,zio_alloc_list_t * zal,uint64_t asize,uint64_t txg,boolean_t want_unique,dva_t * dva,int d,int allocator,boolean_t try_hard)5062 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5063 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5064 int allocator, boolean_t try_hard)
5065 {
5066 uint64_t offset;
5067
5068 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5069 dva, d, allocator, try_hard);
5070
5071 mutex_enter(&mg->mg_lock);
5072 if (offset == -1ULL) {
5073 mg->mg_failed_allocations++;
5074 metaslab_trace_add(zal, mg, NULL, asize, d,
5075 TRACE_GROUP_FAILURE, allocator);
5076 if (asize == SPA_GANGBLOCKSIZE) {
5077 /*
5078 * This metaslab group was unable to allocate
5079 * the minimum gang block size so it must be out of
5080 * space. We must notify the allocation throttle
5081 * to start skipping allocation attempts to this
5082 * metaslab group until more space becomes available.
5083 * Note: this failure cannot be caused by the
5084 * allocation throttle since the allocation throttle
5085 * is only responsible for skipping devices and
5086 * not failing block allocations.
5087 */
5088 mg->mg_no_free_space = B_TRUE;
5089 }
5090 }
5091 mg->mg_allocations++;
5092 mutex_exit(&mg->mg_lock);
5093 return (offset);
5094 }
5095
5096 /*
5097 * Allocate a block for the specified i/o.
5098 */
5099 int
metaslab_alloc_dva(spa_t * spa,metaslab_class_t * mc,uint64_t psize,dva_t * dva,int d,dva_t * hintdva,uint64_t txg,int flags,zio_alloc_list_t * zal,int allocator)5100 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5101 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5102 zio_alloc_list_t *zal, int allocator)
5103 {
5104 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5105 metaslab_group_t *mg, *rotor;
5106 vdev_t *vd;
5107 boolean_t try_hard = B_FALSE;
5108
5109 ASSERT(!DVA_IS_VALID(&dva[d]));
5110
5111 /*
5112 * For testing, make some blocks above a certain size be gang blocks.
5113 * This will result in more split blocks when using device removal,
5114 * and a large number of split blocks coupled with ztest-induced
5115 * damage can result in extremely long reconstruction times. This
5116 * will also test spilling from special to normal.
5117 */
5118 if (psize >= metaslab_force_ganging &&
5119 metaslab_force_ganging_pct > 0 &&
5120 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5121 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5122 allocator);
5123 return (SET_ERROR(ENOSPC));
5124 }
5125
5126 /*
5127 * Start at the rotor and loop through all mgs until we find something.
5128 * Note that there's no locking on mca_rotor or mca_aliquot because
5129 * nothing actually breaks if we miss a few updates -- we just won't
5130 * allocate quite as evenly. It all balances out over time.
5131 *
5132 * If we are doing ditto or log blocks, try to spread them across
5133 * consecutive vdevs. If we're forced to reuse a vdev before we've
5134 * allocated all of our ditto blocks, then try and spread them out on
5135 * that vdev as much as possible. If it turns out to not be possible,
5136 * gradually lower our standards until anything becomes acceptable.
5137 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5138 * gives us hope of containing our fault domains to something we're
5139 * able to reason about. Otherwise, any two top-level vdev failures
5140 * will guarantee the loss of data. With consecutive allocation,
5141 * only two adjacent top-level vdev failures will result in data loss.
5142 *
5143 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5144 * ourselves on the same vdev as our gang block header. That
5145 * way, we can hope for locality in vdev_cache, plus it makes our
5146 * fault domains something tractable.
5147 */
5148 if (hintdva) {
5149 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5150
5151 /*
5152 * It's possible the vdev we're using as the hint no
5153 * longer exists or its mg has been closed (e.g. by
5154 * device removal). Consult the rotor when
5155 * all else fails.
5156 */
5157 if (vd != NULL && vd->vdev_mg != NULL) {
5158 mg = vdev_get_mg(vd, mc);
5159
5160 if (flags & METASLAB_HINTBP_AVOID)
5161 mg = mg->mg_next;
5162 } else {
5163 mg = mca->mca_rotor;
5164 }
5165 } else if (d != 0) {
5166 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5167 mg = vd->vdev_mg->mg_next;
5168 } else {
5169 ASSERT(mca->mca_rotor != NULL);
5170 mg = mca->mca_rotor;
5171 }
5172
5173 /*
5174 * If the hint put us into the wrong metaslab class, or into a
5175 * metaslab group that has been passivated, just follow the rotor.
5176 */
5177 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5178 mg = mca->mca_rotor;
5179
5180 rotor = mg;
5181 top:
5182 do {
5183 boolean_t allocatable;
5184
5185 ASSERT(mg->mg_activation_count == 1);
5186 vd = mg->mg_vd;
5187
5188 /*
5189 * Don't allocate from faulted devices.
5190 */
5191 if (try_hard) {
5192 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5193 allocatable = vdev_allocatable(vd);
5194 spa_config_exit(spa, SCL_ZIO, FTAG);
5195 } else {
5196 allocatable = vdev_allocatable(vd);
5197 }
5198
5199 /*
5200 * Determine if the selected metaslab group is eligible
5201 * for allocations. If we're ganging then don't allow
5202 * this metaslab group to skip allocations since that would
5203 * inadvertently return ENOSPC and suspend the pool
5204 * even though space is still available.
5205 */
5206 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5207 allocatable = metaslab_group_allocatable(mg, rotor,
5208 flags, psize, allocator, d);
5209 }
5210
5211 if (!allocatable) {
5212 metaslab_trace_add(zal, mg, NULL, psize, d,
5213 TRACE_NOT_ALLOCATABLE, allocator);
5214 goto next;
5215 }
5216
5217 /*
5218 * Avoid writing single-copy data to an unhealthy,
5219 * non-redundant vdev, unless we've already tried all
5220 * other vdevs.
5221 */
5222 if (vd->vdev_state < VDEV_STATE_HEALTHY &&
5223 d == 0 && !try_hard && vd->vdev_children == 0) {
5224 metaslab_trace_add(zal, mg, NULL, psize, d,
5225 TRACE_VDEV_ERROR, allocator);
5226 goto next;
5227 }
5228
5229 ASSERT(mg->mg_class == mc);
5230
5231 uint64_t asize = vdev_psize_to_asize(vd, psize);
5232 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5233
5234 /*
5235 * If we don't need to try hard, then require that the
5236 * block be on a different metaslab from any other DVAs
5237 * in this BP (unique=true). If we are trying hard, then
5238 * allow any metaslab to be used (unique=false).
5239 */
5240 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5241 !try_hard, dva, d, allocator, try_hard);
5242
5243 if (offset != -1ULL) {
5244 /*
5245 * If we've just selected this metaslab group,
5246 * figure out whether the corresponding vdev is
5247 * over- or under-used relative to the pool,
5248 * and set an allocation bias to even it out.
5249 *
5250 * Bias is also used to compensate for unequally
5251 * sized vdevs so that space is allocated fairly.
5252 */
5253 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5254 vdev_stat_t *vs = &vd->vdev_stat;
5255 int64_t vs_free = vs->vs_space - vs->vs_alloc;
5256 int64_t mc_free = mc->mc_space - mc->mc_alloc;
5257 int64_t ratio;
5258
5259 /*
5260 * Calculate how much more or less we should
5261 * try to allocate from this device during
5262 * this iteration around the rotor.
5263 *
5264 * This basically introduces a zero-centered
5265 * bias towards the devices with the most
5266 * free space, while compensating for vdev
5267 * size differences.
5268 *
5269 * Examples:
5270 * vdev V1 = 16M/128M
5271 * vdev V2 = 16M/128M
5272 * ratio(V1) = 100% ratio(V2) = 100%
5273 *
5274 * vdev V1 = 16M/128M
5275 * vdev V2 = 64M/128M
5276 * ratio(V1) = 127% ratio(V2) = 72%
5277 *
5278 * vdev V1 = 16M/128M
5279 * vdev V2 = 64M/512M
5280 * ratio(V1) = 40% ratio(V2) = 160%
5281 */
5282 ratio = (vs_free * mc->mc_alloc_groups * 100) /
5283 (mc_free + 1);
5284 mg->mg_bias = ((ratio - 100) *
5285 (int64_t)mg->mg_aliquot) / 100;
5286 } else if (!metaslab_bias_enabled) {
5287 mg->mg_bias = 0;
5288 }
5289
5290 if ((flags & METASLAB_ZIL) ||
5291 atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5292 mg->mg_aliquot + mg->mg_bias) {
5293 mca->mca_rotor = mg->mg_next;
5294 mca->mca_aliquot = 0;
5295 }
5296
5297 DVA_SET_VDEV(&dva[d], vd->vdev_id);
5298 DVA_SET_OFFSET(&dva[d], offset);
5299 DVA_SET_GANG(&dva[d],
5300 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5301 DVA_SET_ASIZE(&dva[d], asize);
5302
5303 return (0);
5304 }
5305 next:
5306 mca->mca_rotor = mg->mg_next;
5307 mca->mca_aliquot = 0;
5308 } while ((mg = mg->mg_next) != rotor);
5309
5310 /*
5311 * If we haven't tried hard, perhaps do so now.
5312 */
5313 if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5314 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5315 psize <= 1 << spa->spa_min_ashift)) {
5316 METASLABSTAT_BUMP(metaslabstat_try_hard);
5317 try_hard = B_TRUE;
5318 goto top;
5319 }
5320
5321 memset(&dva[d], 0, sizeof (dva_t));
5322
5323 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5324 return (SET_ERROR(ENOSPC));
5325 }
5326
5327 void
metaslab_free_concrete(vdev_t * vd,uint64_t offset,uint64_t asize,boolean_t checkpoint)5328 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5329 boolean_t checkpoint)
5330 {
5331 metaslab_t *msp;
5332 spa_t *spa = vd->vdev_spa;
5333
5334 ASSERT(vdev_is_concrete(vd));
5335 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5336 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5337
5338 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5339
5340 VERIFY(!msp->ms_condensing);
5341 VERIFY3U(offset, >=, msp->ms_start);
5342 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5343 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5344 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5345
5346 metaslab_check_free_impl(vd, offset, asize);
5347
5348 mutex_enter(&msp->ms_lock);
5349 if (range_tree_is_empty(msp->ms_freeing) &&
5350 range_tree_is_empty(msp->ms_checkpointing)) {
5351 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5352 }
5353
5354 if (checkpoint) {
5355 ASSERT(spa_has_checkpoint(spa));
5356 range_tree_add(msp->ms_checkpointing, offset, asize);
5357 } else {
5358 range_tree_add(msp->ms_freeing, offset, asize);
5359 }
5360 mutex_exit(&msp->ms_lock);
5361 }
5362
5363 void
metaslab_free_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5364 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5365 uint64_t size, void *arg)
5366 {
5367 (void) inner_offset;
5368 boolean_t *checkpoint = arg;
5369
5370 ASSERT3P(checkpoint, !=, NULL);
5371
5372 if (vd->vdev_ops->vdev_op_remap != NULL)
5373 vdev_indirect_mark_obsolete(vd, offset, size);
5374 else
5375 metaslab_free_impl(vd, offset, size, *checkpoint);
5376 }
5377
5378 static void
metaslab_free_impl(vdev_t * vd,uint64_t offset,uint64_t size,boolean_t checkpoint)5379 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5380 boolean_t checkpoint)
5381 {
5382 spa_t *spa = vd->vdev_spa;
5383
5384 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5385
5386 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5387 return;
5388
5389 if (spa->spa_vdev_removal != NULL &&
5390 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5391 vdev_is_concrete(vd)) {
5392 /*
5393 * Note: we check if the vdev is concrete because when
5394 * we complete the removal, we first change the vdev to be
5395 * an indirect vdev (in open context), and then (in syncing
5396 * context) clear spa_vdev_removal.
5397 */
5398 free_from_removing_vdev(vd, offset, size);
5399 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
5400 vdev_indirect_mark_obsolete(vd, offset, size);
5401 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5402 metaslab_free_impl_cb, &checkpoint);
5403 } else {
5404 metaslab_free_concrete(vd, offset, size, checkpoint);
5405 }
5406 }
5407
5408 typedef struct remap_blkptr_cb_arg {
5409 blkptr_t *rbca_bp;
5410 spa_remap_cb_t rbca_cb;
5411 vdev_t *rbca_remap_vd;
5412 uint64_t rbca_remap_offset;
5413 void *rbca_cb_arg;
5414 } remap_blkptr_cb_arg_t;
5415
5416 static void
remap_blkptr_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5417 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5418 uint64_t size, void *arg)
5419 {
5420 remap_blkptr_cb_arg_t *rbca = arg;
5421 blkptr_t *bp = rbca->rbca_bp;
5422
5423 /* We can not remap split blocks. */
5424 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5425 return;
5426 ASSERT0(inner_offset);
5427
5428 if (rbca->rbca_cb != NULL) {
5429 /*
5430 * At this point we know that we are not handling split
5431 * blocks and we invoke the callback on the previous
5432 * vdev which must be indirect.
5433 */
5434 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5435
5436 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5437 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5438
5439 /* set up remap_blkptr_cb_arg for the next call */
5440 rbca->rbca_remap_vd = vd;
5441 rbca->rbca_remap_offset = offset;
5442 }
5443
5444 /*
5445 * The phys birth time is that of dva[0]. This ensures that we know
5446 * when each dva was written, so that resilver can determine which
5447 * blocks need to be scrubbed (i.e. those written during the time
5448 * the vdev was offline). It also ensures that the key used in
5449 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5450 * we didn't change the phys_birth, a lookup in the ARC for a
5451 * remapped BP could find the data that was previously stored at
5452 * this vdev + offset.
5453 */
5454 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5455 DVA_GET_VDEV(&bp->blk_dva[0]));
5456 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5457 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5458 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5459
5460 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5461 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5462 }
5463
5464 /*
5465 * If the block pointer contains any indirect DVAs, modify them to refer to
5466 * concrete DVAs. Note that this will sometimes not be possible, leaving
5467 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5468 * segments in the mapping (i.e. it is a "split block").
5469 *
5470 * If the BP was remapped, calls the callback on the original dva (note the
5471 * callback can be called multiple times if the original indirect DVA refers
5472 * to another indirect DVA, etc).
5473 *
5474 * Returns TRUE if the BP was remapped.
5475 */
5476 boolean_t
spa_remap_blkptr(spa_t * spa,blkptr_t * bp,spa_remap_cb_t callback,void * arg)5477 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5478 {
5479 remap_blkptr_cb_arg_t rbca;
5480
5481 if (!zfs_remap_blkptr_enable)
5482 return (B_FALSE);
5483
5484 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5485 return (B_FALSE);
5486
5487 /*
5488 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5489 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5490 */
5491 if (BP_GET_DEDUP(bp))
5492 return (B_FALSE);
5493
5494 /*
5495 * Gang blocks can not be remapped, because
5496 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5497 * the BP used to read the gang block header (GBH) being the same
5498 * as the DVA[0] that we allocated for the GBH.
5499 */
5500 if (BP_IS_GANG(bp))
5501 return (B_FALSE);
5502
5503 /*
5504 * Embedded BP's have no DVA to remap.
5505 */
5506 if (BP_GET_NDVAS(bp) < 1)
5507 return (B_FALSE);
5508
5509 /*
5510 * Note: we only remap dva[0]. If we remapped other dvas, we
5511 * would no longer know what their phys birth txg is.
5512 */
5513 dva_t *dva = &bp->blk_dva[0];
5514
5515 uint64_t offset = DVA_GET_OFFSET(dva);
5516 uint64_t size = DVA_GET_ASIZE(dva);
5517 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5518
5519 if (vd->vdev_ops->vdev_op_remap == NULL)
5520 return (B_FALSE);
5521
5522 rbca.rbca_bp = bp;
5523 rbca.rbca_cb = callback;
5524 rbca.rbca_remap_vd = vd;
5525 rbca.rbca_remap_offset = offset;
5526 rbca.rbca_cb_arg = arg;
5527
5528 /*
5529 * remap_blkptr_cb() will be called in order for each level of
5530 * indirection, until a concrete vdev is reached or a split block is
5531 * encountered. old_vd and old_offset are updated within the callback
5532 * as we go from the one indirect vdev to the next one (either concrete
5533 * or indirect again) in that order.
5534 */
5535 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5536
5537 /* Check if the DVA wasn't remapped because it is a split block */
5538 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5539 return (B_FALSE);
5540
5541 return (B_TRUE);
5542 }
5543
5544 /*
5545 * Undo the allocation of a DVA which happened in the given transaction group.
5546 */
5547 void
metaslab_unalloc_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5548 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5549 {
5550 metaslab_t *msp;
5551 vdev_t *vd;
5552 uint64_t vdev = DVA_GET_VDEV(dva);
5553 uint64_t offset = DVA_GET_OFFSET(dva);
5554 uint64_t size = DVA_GET_ASIZE(dva);
5555
5556 ASSERT(DVA_IS_VALID(dva));
5557 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5558
5559 if (txg > spa_freeze_txg(spa))
5560 return;
5561
5562 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5563 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5564 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5565 (u_longlong_t)vdev, (u_longlong_t)offset,
5566 (u_longlong_t)size);
5567 return;
5568 }
5569
5570 ASSERT(!vd->vdev_removing);
5571 ASSERT(vdev_is_concrete(vd));
5572 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5573 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5574
5575 if (DVA_GET_GANG(dva))
5576 size = vdev_gang_header_asize(vd);
5577
5578 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5579
5580 mutex_enter(&msp->ms_lock);
5581 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5582 offset, size);
5583 msp->ms_allocating_total -= size;
5584
5585 VERIFY(!msp->ms_condensing);
5586 VERIFY3U(offset, >=, msp->ms_start);
5587 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5588 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5589 msp->ms_size);
5590 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5591 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5592 range_tree_add(msp->ms_allocatable, offset, size);
5593 mutex_exit(&msp->ms_lock);
5594 }
5595
5596 /*
5597 * Free the block represented by the given DVA.
5598 */
5599 void
metaslab_free_dva(spa_t * spa,const dva_t * dva,boolean_t checkpoint)5600 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5601 {
5602 uint64_t vdev = DVA_GET_VDEV(dva);
5603 uint64_t offset = DVA_GET_OFFSET(dva);
5604 uint64_t size = DVA_GET_ASIZE(dva);
5605 vdev_t *vd = vdev_lookup_top(spa, vdev);
5606
5607 ASSERT(DVA_IS_VALID(dva));
5608 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5609
5610 if (DVA_GET_GANG(dva)) {
5611 size = vdev_gang_header_asize(vd);
5612 }
5613
5614 metaslab_free_impl(vd, offset, size, checkpoint);
5615 }
5616
5617 /*
5618 * Reserve some allocation slots. The reservation system must be called
5619 * before we call into the allocator. If there aren't any available slots
5620 * then the I/O will be throttled until an I/O completes and its slots are
5621 * freed up. The function returns true if it was successful in placing
5622 * the reservation.
5623 */
5624 boolean_t
metaslab_class_throttle_reserve(metaslab_class_t * mc,int slots,int allocator,zio_t * zio,int flags)5625 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5626 zio_t *zio, int flags)
5627 {
5628 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5629 uint64_t max = mca->mca_alloc_max_slots;
5630
5631 ASSERT(mc->mc_alloc_throttle_enabled);
5632 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5633 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5634 /*
5635 * The potential race between _count() and _add() is covered
5636 * by the allocator lock in most cases, or irrelevant due to
5637 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5638 * But even if we assume some other non-existing scenario, the
5639 * worst that can happen is few more I/Os get to allocation
5640 * earlier, that is not a problem.
5641 *
5642 * We reserve the slots individually so that we can unreserve
5643 * them individually when an I/O completes.
5644 */
5645 zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
5646 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5647 return (B_TRUE);
5648 }
5649 return (B_FALSE);
5650 }
5651
5652 void
metaslab_class_throttle_unreserve(metaslab_class_t * mc,int slots,int allocator,zio_t * zio)5653 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5654 int allocator, zio_t *zio)
5655 {
5656 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5657
5658 ASSERT(mc->mc_alloc_throttle_enabled);
5659 zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
5660 }
5661
5662 static int
metaslab_claim_concrete(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5663 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5664 uint64_t txg)
5665 {
5666 metaslab_t *msp;
5667 spa_t *spa = vd->vdev_spa;
5668 int error = 0;
5669
5670 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5671 return (SET_ERROR(ENXIO));
5672
5673 ASSERT3P(vd->vdev_ms, !=, NULL);
5674 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5675
5676 mutex_enter(&msp->ms_lock);
5677
5678 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5679 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5680 if (error == EBUSY) {
5681 ASSERT(msp->ms_loaded);
5682 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5683 error = 0;
5684 }
5685 }
5686
5687 if (error == 0 &&
5688 !range_tree_contains(msp->ms_allocatable, offset, size))
5689 error = SET_ERROR(ENOENT);
5690
5691 if (error || txg == 0) { /* txg == 0 indicates dry run */
5692 mutex_exit(&msp->ms_lock);
5693 return (error);
5694 }
5695
5696 VERIFY(!msp->ms_condensing);
5697 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5698 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5699 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5700 msp->ms_size);
5701 range_tree_remove(msp->ms_allocatable, offset, size);
5702 range_tree_clear(msp->ms_trim, offset, size);
5703
5704 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
5705 metaslab_class_t *mc = msp->ms_group->mg_class;
5706 multilist_sublist_t *mls =
5707 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5708 if (!multilist_link_active(&msp->ms_class_txg_node)) {
5709 msp->ms_selected_txg = txg;
5710 multilist_sublist_insert_head(mls, msp);
5711 }
5712 multilist_sublist_unlock(mls);
5713
5714 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5715 vdev_dirty(vd, VDD_METASLAB, msp, txg);
5716 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5717 offset, size);
5718 msp->ms_allocating_total += size;
5719 }
5720
5721 mutex_exit(&msp->ms_lock);
5722
5723 return (0);
5724 }
5725
5726 typedef struct metaslab_claim_cb_arg_t {
5727 uint64_t mcca_txg;
5728 int mcca_error;
5729 } metaslab_claim_cb_arg_t;
5730
5731 static void
metaslab_claim_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5732 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5733 uint64_t size, void *arg)
5734 {
5735 (void) inner_offset;
5736 metaslab_claim_cb_arg_t *mcca_arg = arg;
5737
5738 if (mcca_arg->mcca_error == 0) {
5739 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5740 size, mcca_arg->mcca_txg);
5741 }
5742 }
5743
5744 int
metaslab_claim_impl(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5745 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5746 {
5747 if (vd->vdev_ops->vdev_op_remap != NULL) {
5748 metaslab_claim_cb_arg_t arg;
5749
5750 /*
5751 * Only zdb(8) can claim on indirect vdevs. This is used
5752 * to detect leaks of mapped space (that are not accounted
5753 * for in the obsolete counts, spacemap, or bpobj).
5754 */
5755 ASSERT(!spa_writeable(vd->vdev_spa));
5756 arg.mcca_error = 0;
5757 arg.mcca_txg = txg;
5758
5759 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5760 metaslab_claim_impl_cb, &arg);
5761
5762 if (arg.mcca_error == 0) {
5763 arg.mcca_error = metaslab_claim_concrete(vd,
5764 offset, size, txg);
5765 }
5766 return (arg.mcca_error);
5767 } else {
5768 return (metaslab_claim_concrete(vd, offset, size, txg));
5769 }
5770 }
5771
5772 /*
5773 * Intent log support: upon opening the pool after a crash, notify the SPA
5774 * of blocks that the intent log has allocated for immediate write, but
5775 * which are still considered free by the SPA because the last transaction
5776 * group didn't commit yet.
5777 */
5778 static int
metaslab_claim_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5779 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5780 {
5781 uint64_t vdev = DVA_GET_VDEV(dva);
5782 uint64_t offset = DVA_GET_OFFSET(dva);
5783 uint64_t size = DVA_GET_ASIZE(dva);
5784 vdev_t *vd;
5785
5786 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5787 return (SET_ERROR(ENXIO));
5788 }
5789
5790 ASSERT(DVA_IS_VALID(dva));
5791
5792 if (DVA_GET_GANG(dva))
5793 size = vdev_gang_header_asize(vd);
5794
5795 return (metaslab_claim_impl(vd, offset, size, txg));
5796 }
5797
5798 int
metaslab_alloc(spa_t * spa,metaslab_class_t * mc,uint64_t psize,blkptr_t * bp,int ndvas,uint64_t txg,blkptr_t * hintbp,int flags,zio_alloc_list_t * zal,zio_t * zio,int allocator)5799 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5800 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5801 zio_alloc_list_t *zal, zio_t *zio, int allocator)
5802 {
5803 dva_t *dva = bp->blk_dva;
5804 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5805 int error = 0;
5806
5807 ASSERT(bp->blk_birth == 0);
5808 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5809
5810 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5811
5812 if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5813 /* no vdevs in this class */
5814 spa_config_exit(spa, SCL_ALLOC, FTAG);
5815 return (SET_ERROR(ENOSPC));
5816 }
5817
5818 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5819 ASSERT(BP_GET_NDVAS(bp) == 0);
5820 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5821 ASSERT3P(zal, !=, NULL);
5822
5823 for (int d = 0; d < ndvas; d++) {
5824 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5825 txg, flags, zal, allocator);
5826 if (error != 0) {
5827 for (d--; d >= 0; d--) {
5828 metaslab_unalloc_dva(spa, &dva[d], txg);
5829 metaslab_group_alloc_decrement(spa,
5830 DVA_GET_VDEV(&dva[d]), zio, flags,
5831 allocator, B_FALSE);
5832 memset(&dva[d], 0, sizeof (dva_t));
5833 }
5834 spa_config_exit(spa, SCL_ALLOC, FTAG);
5835 return (error);
5836 } else {
5837 /*
5838 * Update the metaslab group's queue depth
5839 * based on the newly allocated dva.
5840 */
5841 metaslab_group_alloc_increment(spa,
5842 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5843 }
5844 }
5845 ASSERT(error == 0);
5846 ASSERT(BP_GET_NDVAS(bp) == ndvas);
5847
5848 spa_config_exit(spa, SCL_ALLOC, FTAG);
5849
5850 BP_SET_BIRTH(bp, txg, 0);
5851
5852 return (0);
5853 }
5854
5855 void
metaslab_free(spa_t * spa,const blkptr_t * bp,uint64_t txg,boolean_t now)5856 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5857 {
5858 const dva_t *dva = bp->blk_dva;
5859 int ndvas = BP_GET_NDVAS(bp);
5860
5861 ASSERT(!BP_IS_HOLE(bp));
5862 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5863
5864 /*
5865 * If we have a checkpoint for the pool we need to make sure that
5866 * the blocks that we free that are part of the checkpoint won't be
5867 * reused until the checkpoint is discarded or we revert to it.
5868 *
5869 * The checkpoint flag is passed down the metaslab_free code path
5870 * and is set whenever we want to add a block to the checkpoint's
5871 * accounting. That is, we "checkpoint" blocks that existed at the
5872 * time the checkpoint was created and are therefore referenced by
5873 * the checkpointed uberblock.
5874 *
5875 * Note that, we don't checkpoint any blocks if the current
5876 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5877 * normally as they will be referenced by the checkpointed uberblock.
5878 */
5879 boolean_t checkpoint = B_FALSE;
5880 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5881 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5882 /*
5883 * At this point, if the block is part of the checkpoint
5884 * there is no way it was created in the current txg.
5885 */
5886 ASSERT(!now);
5887 ASSERT3U(spa_syncing_txg(spa), ==, txg);
5888 checkpoint = B_TRUE;
5889 }
5890
5891 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5892
5893 for (int d = 0; d < ndvas; d++) {
5894 if (now) {
5895 metaslab_unalloc_dva(spa, &dva[d], txg);
5896 } else {
5897 ASSERT3U(txg, ==, spa_syncing_txg(spa));
5898 metaslab_free_dva(spa, &dva[d], checkpoint);
5899 }
5900 }
5901
5902 spa_config_exit(spa, SCL_FREE, FTAG);
5903 }
5904
5905 int
metaslab_claim(spa_t * spa,const blkptr_t * bp,uint64_t txg)5906 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5907 {
5908 const dva_t *dva = bp->blk_dva;
5909 int ndvas = BP_GET_NDVAS(bp);
5910 int error = 0;
5911
5912 ASSERT(!BP_IS_HOLE(bp));
5913
5914 if (txg != 0) {
5915 /*
5916 * First do a dry run to make sure all DVAs are claimable,
5917 * so we don't have to unwind from partial failures below.
5918 */
5919 if ((error = metaslab_claim(spa, bp, 0)) != 0)
5920 return (error);
5921 }
5922
5923 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5924
5925 for (int d = 0; d < ndvas; d++) {
5926 error = metaslab_claim_dva(spa, &dva[d], txg);
5927 if (error != 0)
5928 break;
5929 }
5930
5931 spa_config_exit(spa, SCL_ALLOC, FTAG);
5932
5933 ASSERT(error == 0 || txg == 0);
5934
5935 return (error);
5936 }
5937
5938 static void
metaslab_check_free_impl_cb(uint64_t inner,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5939 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5940 uint64_t size, void *arg)
5941 {
5942 (void) inner, (void) arg;
5943
5944 if (vd->vdev_ops == &vdev_indirect_ops)
5945 return;
5946
5947 metaslab_check_free_impl(vd, offset, size);
5948 }
5949
5950 static void
metaslab_check_free_impl(vdev_t * vd,uint64_t offset,uint64_t size)5951 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5952 {
5953 metaslab_t *msp;
5954 spa_t *spa __maybe_unused = vd->vdev_spa;
5955
5956 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5957 return;
5958
5959 if (vd->vdev_ops->vdev_op_remap != NULL) {
5960 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5961 metaslab_check_free_impl_cb, NULL);
5962 return;
5963 }
5964
5965 ASSERT(vdev_is_concrete(vd));
5966 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5967 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5968
5969 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5970
5971 mutex_enter(&msp->ms_lock);
5972 if (msp->ms_loaded) {
5973 range_tree_verify_not_present(msp->ms_allocatable,
5974 offset, size);
5975 }
5976
5977 /*
5978 * Check all segments that currently exist in the freeing pipeline.
5979 *
5980 * It would intuitively make sense to also check the current allocating
5981 * tree since metaslab_unalloc_dva() exists for extents that are
5982 * allocated and freed in the same sync pass within the same txg.
5983 * Unfortunately there are places (e.g. the ZIL) where we allocate a
5984 * segment but then we free part of it within the same txg
5985 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
5986 * current allocating tree.
5987 */
5988 range_tree_verify_not_present(msp->ms_freeing, offset, size);
5989 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
5990 range_tree_verify_not_present(msp->ms_freed, offset, size);
5991 for (int j = 0; j < TXG_DEFER_SIZE; j++)
5992 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
5993 range_tree_verify_not_present(msp->ms_trim, offset, size);
5994 mutex_exit(&msp->ms_lock);
5995 }
5996
5997 void
metaslab_check_free(spa_t * spa,const blkptr_t * bp)5998 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
5999 {
6000 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6001 return;
6002
6003 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6004 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6005 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6006 vdev_t *vd = vdev_lookup_top(spa, vdev);
6007 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6008 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6009
6010 if (DVA_GET_GANG(&bp->blk_dva[i]))
6011 size = vdev_gang_header_asize(vd);
6012
6013 ASSERT3P(vd, !=, NULL);
6014
6015 metaslab_check_free_impl(vd, offset, size);
6016 }
6017 spa_config_exit(spa, SCL_VDEV, FTAG);
6018 }
6019
6020 static void
metaslab_group_disable_wait(metaslab_group_t * mg)6021 metaslab_group_disable_wait(metaslab_group_t *mg)
6022 {
6023 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6024 while (mg->mg_disabled_updating) {
6025 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6026 }
6027 }
6028
6029 static void
metaslab_group_disabled_increment(metaslab_group_t * mg)6030 metaslab_group_disabled_increment(metaslab_group_t *mg)
6031 {
6032 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6033 ASSERT(mg->mg_disabled_updating);
6034
6035 while (mg->mg_ms_disabled >= max_disabled_ms) {
6036 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6037 }
6038 mg->mg_ms_disabled++;
6039 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6040 }
6041
6042 /*
6043 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6044 * We must also track how many metaslabs are currently disabled within a
6045 * metaslab group and limit them to prevent allocation failures from
6046 * occurring because all metaslabs are disabled.
6047 */
6048 void
metaslab_disable(metaslab_t * msp)6049 metaslab_disable(metaslab_t *msp)
6050 {
6051 ASSERT(!MUTEX_HELD(&msp->ms_lock));
6052 metaslab_group_t *mg = msp->ms_group;
6053
6054 mutex_enter(&mg->mg_ms_disabled_lock);
6055
6056 /*
6057 * To keep an accurate count of how many threads have disabled
6058 * a specific metaslab group, we only allow one thread to mark
6059 * the metaslab group at a time. This ensures that the value of
6060 * ms_disabled will be accurate when we decide to mark a metaslab
6061 * group as disabled. To do this we force all other threads
6062 * to wait till the metaslab's mg_disabled_updating flag is no
6063 * longer set.
6064 */
6065 metaslab_group_disable_wait(mg);
6066 mg->mg_disabled_updating = B_TRUE;
6067 if (msp->ms_disabled == 0) {
6068 metaslab_group_disabled_increment(mg);
6069 }
6070 mutex_enter(&msp->ms_lock);
6071 msp->ms_disabled++;
6072 mutex_exit(&msp->ms_lock);
6073
6074 mg->mg_disabled_updating = B_FALSE;
6075 cv_broadcast(&mg->mg_ms_disabled_cv);
6076 mutex_exit(&mg->mg_ms_disabled_lock);
6077 }
6078
6079 void
metaslab_enable(metaslab_t * msp,boolean_t sync,boolean_t unload)6080 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6081 {
6082 metaslab_group_t *mg = msp->ms_group;
6083 spa_t *spa = mg->mg_vd->vdev_spa;
6084
6085 /*
6086 * Wait for the outstanding IO to be synced to prevent newly
6087 * allocated blocks from being overwritten. This used by
6088 * initialize and TRIM which are modifying unallocated space.
6089 */
6090 if (sync)
6091 txg_wait_synced(spa_get_dsl(spa), 0);
6092
6093 mutex_enter(&mg->mg_ms_disabled_lock);
6094 mutex_enter(&msp->ms_lock);
6095 if (--msp->ms_disabled == 0) {
6096 mg->mg_ms_disabled--;
6097 cv_broadcast(&mg->mg_ms_disabled_cv);
6098 if (unload)
6099 metaslab_unload(msp);
6100 }
6101 mutex_exit(&msp->ms_lock);
6102 mutex_exit(&mg->mg_ms_disabled_lock);
6103 }
6104
6105 void
metaslab_set_unflushed_dirty(metaslab_t * ms,boolean_t dirty)6106 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6107 {
6108 ms->ms_unflushed_dirty = dirty;
6109 }
6110
6111 static void
metaslab_update_ondisk_flush_data(metaslab_t * ms,dmu_tx_t * tx)6112 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6113 {
6114 vdev_t *vd = ms->ms_group->mg_vd;
6115 spa_t *spa = vd->vdev_spa;
6116 objset_t *mos = spa_meta_objset(spa);
6117
6118 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6119
6120 metaslab_unflushed_phys_t entry = {
6121 .msp_unflushed_txg = metaslab_unflushed_txg(ms),
6122 };
6123 uint64_t entry_size = sizeof (entry);
6124 uint64_t entry_offset = ms->ms_id * entry_size;
6125
6126 uint64_t object = 0;
6127 int err = zap_lookup(mos, vd->vdev_top_zap,
6128 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6129 &object);
6130 if (err == ENOENT) {
6131 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6132 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6133 VERIFY0(zap_add(mos, vd->vdev_top_zap,
6134 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6135 &object, tx));
6136 } else {
6137 VERIFY0(err);
6138 }
6139
6140 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6141 &entry, tx);
6142 }
6143
6144 void
metaslab_set_unflushed_txg(metaslab_t * ms,uint64_t txg,dmu_tx_t * tx)6145 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6146 {
6147 ms->ms_unflushed_txg = txg;
6148 metaslab_update_ondisk_flush_data(ms, tx);
6149 }
6150
6151 boolean_t
metaslab_unflushed_dirty(metaslab_t * ms)6152 metaslab_unflushed_dirty(metaslab_t *ms)
6153 {
6154 return (ms->ms_unflushed_dirty);
6155 }
6156
6157 uint64_t
metaslab_unflushed_txg(metaslab_t * ms)6158 metaslab_unflushed_txg(metaslab_t *ms)
6159 {
6160 return (ms->ms_unflushed_txg);
6161 }
6162
6163 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6164 "Allocation granularity (a.k.a. stripe size)");
6165
6166 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6167 "Load all metaslabs when pool is first opened");
6168
6169 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6170 "Prevent metaslabs from being unloaded");
6171
6172 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6173 "Preload potential metaslabs during reassessment");
6174
6175 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
6176 "Max number of metaslabs per group to preload");
6177
6178 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6179 "Delay in txgs after metaslab was last used before unloading");
6180
6181 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6182 "Delay in milliseconds after metaslab was last used before unloading");
6183
6184 /* BEGIN CSTYLED */
6185 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6186 "Percentage of metaslab group size that should be free to make it "
6187 "eligible for allocation");
6188
6189 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6190 "Percentage of metaslab group size that should be considered eligible "
6191 "for allocations unless all metaslab groups within the metaslab class "
6192 "have also crossed this threshold");
6193
6194 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6195 ZMOD_RW,
6196 "Use the fragmentation metric to prefer less fragmented metaslabs");
6197 /* END CSTYLED */
6198
6199 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6200 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6201
6202 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6203 "Prefer metaslabs with lower LBAs");
6204
6205 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6206 "Enable metaslab group biasing");
6207
6208 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6209 ZMOD_RW, "Enable segment-based metaslab selection");
6210
6211 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6212 "Segment-based metaslab selection maximum buckets before switching");
6213
6214 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6215 "Blocks larger than this size are sometimes forced to be gang blocks");
6216
6217 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
6218 "Percentage of large blocks that will be forced to be gang blocks");
6219
6220 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6221 "Max distance (bytes) to search forward before using size tree");
6222
6223 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6224 "When looking in size tree, use largest segment instead of exact fit");
6225
6226 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6227 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6228
6229 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6230 "Percentage of memory that can be used to store metaslab range trees");
6231
6232 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6233 ZMOD_RW, "Try hard to allocate before ganging");
6234
6235 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6236 "Normally only consider this many of the best metaslabs in each vdev");
6237