xref: /freebsd-12.1/sys/arm64/arm64/mp_machdep.c (revision 97fba750)
1 /*-
2  * Copyright (c) 2015-2016 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Andrew Turner under
6  * sponsorship from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  */
30 
31 #include "opt_acpi.h"
32 #include "opt_kstack_pages.h"
33 #include "opt_platform.h"
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/cpu.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/sched.h>
48 #include <sys/smp.h>
49 
50 #include <vm/vm.h>
51 #include <vm/pmap.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_kern.h>
54 
55 #include <machine/machdep.h>
56 #include <machine/intr.h>
57 #include <machine/smp.h>
58 #ifdef VFP
59 #include <machine/vfp.h>
60 #endif
61 
62 #ifdef DEV_ACPI
63 #include <contrib/dev/acpica/include/acpi.h>
64 #include <dev/acpica/acpivar.h>
65 #endif
66 
67 #ifdef FDT
68 #include <dev/ofw/openfirm.h>
69 #include <dev/ofw/ofw_bus.h>
70 #include <dev/ofw/ofw_bus_subr.h>
71 #include <dev/ofw/ofw_cpu.h>
72 #endif
73 
74 #include <dev/psci/psci.h>
75 
76 #include "pic_if.h"
77 
78 #define	MP_QUIRK_CPULIST	0x01	/* The list of cpus may be wrong, */
79 					/* don't panic if one fails to start */
80 static uint32_t mp_quirks;
81 
82 #ifdef FDT
83 static struct {
84 	const char *compat;
85 	uint32_t quirks;
86 } fdt_quirks[] = {
87 	{ "arm,foundation-aarch64",	MP_QUIRK_CPULIST },
88 	{ "arm,fvp-base",		MP_QUIRK_CPULIST },
89 	/* This is incorrect in some DTS files */
90 	{ "arm,vfp-base",		MP_QUIRK_CPULIST },
91 	{ NULL, 0 },
92 };
93 #endif
94 
95 typedef void intr_ipi_send_t(void *, cpuset_t, u_int);
96 typedef void intr_ipi_handler_t(void *);
97 
98 #define INTR_IPI_NAMELEN	(MAXCOMLEN + 1)
99 struct intr_ipi {
100 	intr_ipi_handler_t *	ii_handler;
101 	void *			ii_handler_arg;
102 	intr_ipi_send_t *	ii_send;
103 	void *			ii_send_arg;
104 	char			ii_name[INTR_IPI_NAMELEN];
105 	u_long *		ii_count;
106 };
107 
108 static struct intr_ipi ipi_sources[INTR_IPI_COUNT];
109 
110 static struct intr_ipi *intr_ipi_lookup(u_int);
111 static void intr_pic_ipi_setup(u_int, const char *, intr_ipi_handler_t *,
112     void *);
113 
114 extern struct pcpu __pcpu[];
115 
116 static device_identify_t arm64_cpu_identify;
117 static device_probe_t arm64_cpu_probe;
118 static device_attach_t arm64_cpu_attach;
119 
120 static void ipi_ast(void *);
121 static void ipi_hardclock(void *);
122 static void ipi_preempt(void *);
123 static void ipi_rendezvous(void *);
124 static void ipi_stop(void *);
125 
126 struct mtx ap_boot_mtx;
127 struct pcb stoppcbs[MAXCPU];
128 
129 static device_t cpu_list[MAXCPU];
130 
131 /*
132  * Not all systems boot from the first CPU in the device tree. To work around
133  * this we need to find which CPU we have booted from so when we later
134  * enable the secondary CPUs we skip this one.
135  */
136 static int cpu0 = -1;
137 
138 void mpentry(unsigned long cpuid);
139 void init_secondary(uint64_t);
140 
141 uint8_t secondary_stacks[MAXCPU - 1][PAGE_SIZE * KSTACK_PAGES] __aligned(16);
142 
143 /* Set to 1 once we're ready to let the APs out of the pen. */
144 volatile int aps_ready = 0;
145 
146 /* Temporary variables for init_secondary()  */
147 void *dpcpu[MAXCPU - 1];
148 
149 static device_method_t arm64_cpu_methods[] = {
150 	/* Device interface */
151 	DEVMETHOD(device_identify,	arm64_cpu_identify),
152 	DEVMETHOD(device_probe,		arm64_cpu_probe),
153 	DEVMETHOD(device_attach,	arm64_cpu_attach),
154 
155 	DEVMETHOD_END
156 };
157 
158 static devclass_t arm64_cpu_devclass;
159 static driver_t arm64_cpu_driver = {
160 	"arm64_cpu",
161 	arm64_cpu_methods,
162 	0
163 };
164 
165 DRIVER_MODULE(arm64_cpu, cpu, arm64_cpu_driver, arm64_cpu_devclass, 0, 0);
166 
167 static void
arm64_cpu_identify(driver_t * driver,device_t parent)168 arm64_cpu_identify(driver_t *driver, device_t parent)
169 {
170 
171 	if (device_find_child(parent, "arm64_cpu", -1) != NULL)
172 		return;
173 	if (BUS_ADD_CHILD(parent, 0, "arm64_cpu", -1) == NULL)
174 		device_printf(parent, "add child failed\n");
175 }
176 
177 static int
arm64_cpu_probe(device_t dev)178 arm64_cpu_probe(device_t dev)
179 {
180 	u_int cpuid;
181 
182 	cpuid = device_get_unit(dev);
183 	if (cpuid >= MAXCPU || cpuid > mp_maxid)
184 		return (EINVAL);
185 
186 	device_quiet(dev);
187 	return (0);
188 }
189 
190 static int
arm64_cpu_attach(device_t dev)191 arm64_cpu_attach(device_t dev)
192 {
193 	const uint32_t *reg;
194 	size_t reg_size;
195 	u_int cpuid;
196 	int i;
197 
198 	cpuid = device_get_unit(dev);
199 
200 	if (cpuid >= MAXCPU || cpuid > mp_maxid)
201 		return (EINVAL);
202 	KASSERT(cpu_list[cpuid] == NULL, ("Already have cpu %u", cpuid));
203 
204 	reg = cpu_get_cpuid(dev, &reg_size);
205 	if (reg == NULL)
206 		return (EINVAL);
207 
208 	if (bootverbose) {
209 		device_printf(dev, "register <");
210 		for (i = 0; i < reg_size; i++)
211 			printf("%s%x", (i == 0) ? "" : " ", reg[i]);
212 		printf(">\n");
213 	}
214 
215 	/* Set the device to start it later */
216 	cpu_list[cpuid] = dev;
217 
218 	return (0);
219 }
220 
221 static void
release_aps(void * dummy __unused)222 release_aps(void *dummy __unused)
223 {
224 	int i, started;
225 
226 	/* Only release CPUs if they exist */
227 	if (mp_ncpus == 1)
228 		return;
229 
230 	intr_pic_ipi_setup(IPI_AST, "ast", ipi_ast, NULL);
231 	intr_pic_ipi_setup(IPI_PREEMPT, "preempt", ipi_preempt, NULL);
232 	intr_pic_ipi_setup(IPI_RENDEZVOUS, "rendezvous", ipi_rendezvous, NULL);
233 	intr_pic_ipi_setup(IPI_STOP, "stop", ipi_stop, NULL);
234 	intr_pic_ipi_setup(IPI_STOP_HARD, "stop hard", ipi_stop, NULL);
235 	intr_pic_ipi_setup(IPI_HARDCLOCK, "hardclock", ipi_hardclock, NULL);
236 
237 	atomic_store_rel_int(&aps_ready, 1);
238 	/* Wake up the other CPUs */
239 	__asm __volatile(
240 	    "dsb ishst	\n"
241 	    "sev	\n"
242 	    ::: "memory");
243 
244 	printf("Release APs...");
245 
246 	started = 0;
247 	for (i = 0; i < 2000; i++) {
248 		if (smp_started) {
249 			printf("done\n");
250 			return;
251 		}
252 		/*
253 		 * Don't time out while we are making progress. Some large
254 		 * systems can take a while to start all CPUs.
255 		 */
256 		if (smp_cpus > started) {
257 			i = 0;
258 			started = smp_cpus;
259 		}
260 		DELAY(1000);
261 	}
262 
263 	printf("APs not started\n");
264 }
265 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
266 
267 void
init_secondary(uint64_t cpu)268 init_secondary(uint64_t cpu)
269 {
270 	struct pcpu *pcpup;
271 
272 	pcpup = &__pcpu[cpu];
273 	/*
274 	 * Set the pcpu pointer with a backup in tpidr_el1 to be
275 	 * loaded when entering the kernel from userland.
276 	 */
277 	__asm __volatile(
278 	    "mov x18, %0 \n"
279 	    "msr tpidr_el1, %0" :: "r"(pcpup));
280 
281 	/* Spin until the BSP releases the APs */
282 	while (!aps_ready)
283 		__asm __volatile("wfe");
284 
285 	/* Initialize curthread */
286 	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
287 	pcpup->pc_curthread = pcpup->pc_idlethread;
288 	pcpup->pc_curpcb = pcpup->pc_idlethread->td_pcb;
289 
290 	/*
291 	 * Identify current CPU. This is necessary to setup
292 	 * affinity registers and to provide support for
293 	 * runtime chip identification.
294 	 */
295 	identify_cpu();
296 	install_cpu_errata();
297 
298 	intr_pic_init_secondary();
299 
300 	/* Start per-CPU event timers. */
301 	cpu_initclocks_ap();
302 
303 #ifdef VFP
304 	vfp_init();
305 #endif
306 
307 	dbg_init();
308 	pan_enable();
309 
310 	/* Enable interrupts */
311 	intr_enable();
312 
313 	mtx_lock_spin(&ap_boot_mtx);
314 
315 	atomic_add_rel_32(&smp_cpus, 1);
316 
317 	if (smp_cpus == mp_ncpus) {
318 		/* enable IPI's, tlb shootdown, freezes etc */
319 		atomic_store_rel_int(&smp_started, 1);
320 	}
321 
322 	mtx_unlock_spin(&ap_boot_mtx);
323 
324 	/* Enter the scheduler */
325 	sched_throw(NULL);
326 
327 	panic("scheduler returned us to init_secondary");
328 	/* NOTREACHED */
329 }
330 
331 /*
332  *  Send IPI thru interrupt controller.
333  */
334 static void
pic_ipi_send(void * arg,cpuset_t cpus,u_int ipi)335 pic_ipi_send(void *arg, cpuset_t cpus, u_int ipi)
336 {
337 
338 	KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
339 	PIC_IPI_SEND(intr_irq_root_dev, arg, cpus, ipi);
340 }
341 
342 /*
343  *  Setup IPI handler on interrupt controller.
344  *
345  *  Not SMP coherent.
346  */
347 static void
intr_pic_ipi_setup(u_int ipi,const char * name,intr_ipi_handler_t * hand,void * arg)348 intr_pic_ipi_setup(u_int ipi, const char *name, intr_ipi_handler_t *hand,
349     void *arg)
350 {
351 	struct intr_irqsrc *isrc;
352 	struct intr_ipi *ii;
353 	int error;
354 
355 	KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
356 	KASSERT(hand != NULL, ("%s: ipi %u no handler", __func__, ipi));
357 
358 	error = PIC_IPI_SETUP(intr_irq_root_dev, ipi, &isrc);
359 	if (error != 0)
360 		return;
361 
362 	isrc->isrc_handlers++;
363 
364 	ii = intr_ipi_lookup(ipi);
365 	KASSERT(ii->ii_count == NULL, ("%s: ipi %u reused", __func__, ipi));
366 
367 	ii->ii_handler = hand;
368 	ii->ii_handler_arg = arg;
369 	ii->ii_send = pic_ipi_send;
370 	ii->ii_send_arg = isrc;
371 	strlcpy(ii->ii_name, name, INTR_IPI_NAMELEN);
372 	ii->ii_count = intr_ipi_setup_counters(name);
373 }
374 
375 static void
intr_ipi_send(cpuset_t cpus,u_int ipi)376 intr_ipi_send(cpuset_t cpus, u_int ipi)
377 {
378 	struct intr_ipi *ii;
379 
380 	ii = intr_ipi_lookup(ipi);
381 	if (ii->ii_count == NULL)
382 		panic("%s: not setup IPI %u", __func__, ipi);
383 
384 	ii->ii_send(ii->ii_send_arg, cpus, ipi);
385 }
386 
387 static void
ipi_ast(void * dummy __unused)388 ipi_ast(void *dummy __unused)
389 {
390 
391 	CTR0(KTR_SMP, "IPI_AST");
392 }
393 
394 static void
ipi_hardclock(void * dummy __unused)395 ipi_hardclock(void *dummy __unused)
396 {
397 
398 	CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
399 	hardclockintr();
400 }
401 
402 static void
ipi_preempt(void * dummy __unused)403 ipi_preempt(void *dummy __unused)
404 {
405 	CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
406 	sched_preempt(curthread);
407 }
408 
409 static void
ipi_rendezvous(void * dummy __unused)410 ipi_rendezvous(void *dummy __unused)
411 {
412 
413 	CTR0(KTR_SMP, "IPI_RENDEZVOUS");
414 	smp_rendezvous_action();
415 }
416 
417 static void
ipi_stop(void * dummy __unused)418 ipi_stop(void *dummy __unused)
419 {
420 	u_int cpu;
421 
422 	CTR0(KTR_SMP, "IPI_STOP");
423 
424 	cpu = PCPU_GET(cpuid);
425 	savectx(&stoppcbs[cpu]);
426 
427 	/* Indicate we are stopped */
428 	CPU_SET_ATOMIC(cpu, &stopped_cpus);
429 
430 	/* Wait for restart */
431 	while (!CPU_ISSET(cpu, &started_cpus))
432 		cpu_spinwait();
433 
434 	CPU_CLR_ATOMIC(cpu, &started_cpus);
435 	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
436 	CTR0(KTR_SMP, "IPI_STOP (restart)");
437 }
438 
439 struct cpu_group *
cpu_topo(void)440 cpu_topo(void)
441 {
442 
443 	return (smp_topo_none());
444 }
445 
446 /* Determine if we running MP machine */
447 int
cpu_mp_probe(void)448 cpu_mp_probe(void)
449 {
450 
451 	/* ARM64TODO: Read the u bit of mpidr_el1 to determine this */
452 	return (1);
453 }
454 
455 static bool
start_cpu(u_int id,uint64_t target_cpu)456 start_cpu(u_int id, uint64_t target_cpu)
457 {
458 	struct pcpu *pcpup;
459 	vm_paddr_t pa;
460 	u_int cpuid;
461 	int err;
462 
463 	/* Check we are able to start this cpu */
464 	if (id > mp_maxid)
465 		return (false);
466 
467 	KASSERT(id < MAXCPU, ("Too many CPUs"));
468 
469 	/* We are already running on cpu 0 */
470 	if (id == cpu0)
471 		return (true);
472 
473 	/*
474 	 * Rotate the CPU IDs to put the boot CPU as CPU 0. We keep the other
475 	 * CPUs ordered as the are likely grouped into clusters so it can be
476 	 * useful to keep that property, e.g. for the GICv3 driver to send
477 	 * an IPI to all CPUs in the cluster.
478 	 */
479 	cpuid = id;
480 	if (cpuid < cpu0)
481 		cpuid += mp_maxid + 1;
482 	cpuid -= cpu0;
483 
484 	pcpup = &__pcpu[cpuid];
485 	pcpu_init(pcpup, cpuid, sizeof(struct pcpu));
486 
487 	dpcpu[cpuid - 1] = (void *)kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO);
488 	dpcpu_init(dpcpu[cpuid - 1], cpuid);
489 
490 	printf("Starting CPU %u (%lx)\n", cpuid, target_cpu);
491 	pa = pmap_extract(kernel_pmap, (vm_offset_t)mpentry);
492 
493 	err = psci_cpu_on(target_cpu, pa, cpuid);
494 	if (err != PSCI_RETVAL_SUCCESS) {
495 		/*
496 		 * Panic here if INVARIANTS are enabled and PSCI failed to
497 		 * start the requested CPU. If psci_cpu_on returns PSCI_MISSING
498 		 * to indicate we are unable to use it to start the given CPU.
499 		 */
500 		KASSERT(err == PSCI_MISSING ||
501 		    (mp_quirks & MP_QUIRK_CPULIST) == MP_QUIRK_CPULIST,
502 		    ("Failed to start CPU %u (%lx)\n", id, target_cpu));
503 
504 		pcpu_destroy(pcpup);
505 		kmem_free((vm_offset_t)dpcpu[cpuid - 1], DPCPU_SIZE);
506 		dpcpu[cpuid - 1] = NULL;
507 		mp_ncpus--;
508 
509 		/* Notify the user that the CPU failed to start */
510 		printf("Failed to start CPU %u (%lx)\n", id, target_cpu);
511 	} else
512 		CPU_SET(cpuid, &all_cpus);
513 
514 	return (true);
515 }
516 
517 #ifdef DEV_ACPI
518 static void
madt_handler(ACPI_SUBTABLE_HEADER * entry,void * arg)519 madt_handler(ACPI_SUBTABLE_HEADER *entry, void *arg)
520 {
521 	ACPI_MADT_GENERIC_INTERRUPT *intr;
522 	u_int *cpuid;
523 
524 	switch(entry->Type) {
525 	case ACPI_MADT_TYPE_GENERIC_INTERRUPT:
526 		intr = (ACPI_MADT_GENERIC_INTERRUPT *)entry;
527 		cpuid = arg;
528 
529 		start_cpu((*cpuid), intr->ArmMpidr);
530 		(*cpuid)++;
531 		break;
532 	default:
533 		break;
534 	}
535 }
536 
537 static void
cpu_init_acpi(void)538 cpu_init_acpi(void)
539 {
540 	ACPI_TABLE_MADT *madt;
541 	vm_paddr_t physaddr;
542 	u_int cpuid;
543 
544 	physaddr = acpi_find_table(ACPI_SIG_MADT);
545 	if (physaddr == 0)
546 		return;
547 
548 	madt = acpi_map_table(physaddr, ACPI_SIG_MADT);
549 	if (madt == NULL) {
550 		printf("Unable to map the MADT, not starting APs\n");
551 		return;
552 	}
553 
554 	cpuid = 0;
555 	acpi_walk_subtables(madt + 1, (char *)madt + madt->Header.Length,
556 	    madt_handler, &cpuid);
557 
558 	acpi_unmap_table(madt);
559 }
560 #endif
561 
562 #ifdef FDT
563 static boolean_t
cpu_init_fdt(u_int id,phandle_t node,u_int addr_size,pcell_t * reg)564 cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
565 {
566 	uint64_t target_cpu;
567 	int domain;
568 
569 	target_cpu = reg[0];
570 	if (addr_size == 2) {
571 		target_cpu <<= 32;
572 		target_cpu |= reg[1];
573 	}
574 
575 	if (!start_cpu(id, target_cpu))
576 		return (FALSE);
577 
578 	/* Try to read the numa node of this cpu */
579 	if (vm_ndomains == 1 ||
580 	    OF_getencprop(node, "numa-node-id", &domain, sizeof(domain)) <= 0)
581 		domain = 0;
582 	__pcpu[id].pc_domain = domain;
583 	if (domain < MAXMEMDOM)
584 		CPU_SET(id, &cpuset_domain[domain]);
585 
586 	return (TRUE);
587 }
588 #endif
589 
590 /* Initialize and fire up non-boot processors */
591 void
cpu_mp_start(void)592 cpu_mp_start(void)
593 {
594 #ifdef FDT
595 	phandle_t node;
596 	int i;
597 #endif
598 
599 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
600 
601 	CPU_SET(0, &all_cpus);
602 
603 	switch(arm64_bus_method) {
604 #ifdef DEV_ACPI
605 	case ARM64_BUS_ACPI:
606 		KASSERT(cpu0 >= 0, ("Current CPU was not found"));
607 		cpu_init_acpi();
608 		break;
609 #endif
610 #ifdef FDT
611 	case ARM64_BUS_FDT:
612 		node = OF_peer(0);
613 		for (i = 0; fdt_quirks[i].compat != NULL; i++) {
614 			if (ofw_bus_node_is_compatible(node,
615 			    fdt_quirks[i].compat) != 0) {
616 				mp_quirks = fdt_quirks[i].quirks;
617 			}
618 		}
619 		KASSERT(cpu0 >= 0, ("Current CPU was not found"));
620 		ofw_cpu_early_foreach(cpu_init_fdt, true);
621 		break;
622 #endif
623 	default:
624 		break;
625 	}
626 }
627 
628 /* Introduce rest of cores to the world */
629 void
cpu_mp_announce(void)630 cpu_mp_announce(void)
631 {
632 }
633 
634 #ifdef DEV_ACPI
635 static void
cpu_count_acpi_handler(ACPI_SUBTABLE_HEADER * entry,void * arg)636 cpu_count_acpi_handler(ACPI_SUBTABLE_HEADER *entry, void *arg)
637 {
638 	ACPI_MADT_GENERIC_INTERRUPT *intr;
639 	u_int *cores = arg;
640 	uint64_t mpidr_reg;
641 
642 	switch(entry->Type) {
643 	case ACPI_MADT_TYPE_GENERIC_INTERRUPT:
644 		intr = (ACPI_MADT_GENERIC_INTERRUPT *)entry;
645 		if (cpu0 < 0) {
646 			mpidr_reg = READ_SPECIALREG(mpidr_el1);
647 			if ((mpidr_reg & 0xff00fffffful) == intr->ArmMpidr)
648 				cpu0 = *cores;
649 		}
650 		(*cores)++;
651 		break;
652 	default:
653 		break;
654 	}
655 }
656 
657 static u_int
cpu_count_acpi(void)658 cpu_count_acpi(void)
659 {
660 	ACPI_TABLE_MADT *madt;
661 	vm_paddr_t physaddr;
662 	u_int cores;
663 
664 	physaddr = acpi_find_table(ACPI_SIG_MADT);
665 	if (physaddr == 0)
666 		return (0);
667 
668 	madt = acpi_map_table(physaddr, ACPI_SIG_MADT);
669 	if (madt == NULL) {
670 		printf("Unable to map the MADT, not starting APs\n");
671 		return (0);
672 	}
673 
674 	cores = 0;
675 	acpi_walk_subtables(madt + 1, (char *)madt + madt->Header.Length,
676 	    cpu_count_acpi_handler, &cores);
677 
678 	acpi_unmap_table(madt);
679 
680 	return (cores);
681 }
682 #endif
683 
684 #ifdef FDT
685 static boolean_t
cpu_find_cpu0_fdt(u_int id,phandle_t node,u_int addr_size,pcell_t * reg)686 cpu_find_cpu0_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
687 {
688 	uint64_t mpidr_fdt, mpidr_reg;
689 
690 	if (cpu0 < 0) {
691 		mpidr_fdt = reg[0];
692 		if (addr_size == 2) {
693 			mpidr_fdt <<= 32;
694 			mpidr_fdt |= reg[1];
695 		}
696 
697 		mpidr_reg = READ_SPECIALREG(mpidr_el1);
698 
699 		if ((mpidr_reg & 0xff00fffffful) == mpidr_fdt)
700 			cpu0 = id;
701 	}
702 
703 	return (TRUE);
704 }
705 #endif
706 
707 void
cpu_mp_setmaxid(void)708 cpu_mp_setmaxid(void)
709 {
710 #if defined(DEV_ACPI) || defined(FDT)
711 	int cores;
712 #endif
713 
714 	switch(arm64_bus_method) {
715 #ifdef DEV_ACPI
716 	case ARM64_BUS_ACPI:
717 		cores = cpu_count_acpi();
718 		if (cores > 0) {
719 			cores = MIN(cores, MAXCPU);
720 			if (bootverbose)
721 				printf("Found %d CPUs in the ACPI tables\n",
722 				    cores);
723 			mp_ncpus = cores;
724 			mp_maxid = cores - 1;
725 			return;
726 		}
727 		break;
728 #endif
729 #ifdef FDT
730 	case ARM64_BUS_FDT:
731 		cores = ofw_cpu_early_foreach(cpu_find_cpu0_fdt, false);
732 		if (cores > 0) {
733 			cores = MIN(cores, MAXCPU);
734 			if (bootverbose)
735 				printf("Found %d CPUs in the device tree\n",
736 				    cores);
737 			mp_ncpus = cores;
738 			mp_maxid = cores - 1;
739 			return;
740 		}
741 		break;
742 #endif
743 	default:
744 		break;
745 	}
746 
747 	if (bootverbose)
748 		printf("No CPU data, limiting to 1 core\n");
749 	mp_ncpus = 1;
750 	mp_maxid = 0;
751 }
752 
753 /*
754  *  Lookup IPI source.
755  */
756 static struct intr_ipi *
intr_ipi_lookup(u_int ipi)757 intr_ipi_lookup(u_int ipi)
758 {
759 
760 	if (ipi >= INTR_IPI_COUNT)
761 		panic("%s: no such IPI %u", __func__, ipi);
762 
763 	return (&ipi_sources[ipi]);
764 }
765 
766 /*
767  *  interrupt controller dispatch function for IPIs. It should
768  *  be called straight from the interrupt controller, when associated
769  *  interrupt source is learned. Or from anybody who has an interrupt
770  *  source mapped.
771  */
772 void
intr_ipi_dispatch(u_int ipi,struct trapframe * tf)773 intr_ipi_dispatch(u_int ipi, struct trapframe *tf)
774 {
775 	void *arg;
776 	struct intr_ipi *ii;
777 
778 	ii = intr_ipi_lookup(ipi);
779 	if (ii->ii_count == NULL)
780 		panic("%s: not setup IPI %u", __func__, ipi);
781 
782 	intr_ipi_increment_count(ii->ii_count, PCPU_GET(cpuid));
783 
784 	/*
785 	 * Supply ipi filter with trapframe argument
786 	 * if none is registered.
787 	 */
788 	arg = ii->ii_handler_arg != NULL ? ii->ii_handler_arg : tf;
789 	ii->ii_handler(arg);
790 }
791 
792 #ifdef notyet
793 /*
794  *  Map IPI into interrupt controller.
795  *
796  *  Not SMP coherent.
797  */
798 static int
ipi_map(struct intr_irqsrc * isrc,u_int ipi)799 ipi_map(struct intr_irqsrc *isrc, u_int ipi)
800 {
801 	boolean_t is_percpu;
802 	int error;
803 
804 	if (ipi >= INTR_IPI_COUNT)
805 		panic("%s: no such IPI %u", __func__, ipi);
806 
807 	KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
808 
809 	isrc->isrc_type = INTR_ISRCT_NAMESPACE;
810 	isrc->isrc_nspc_type = INTR_IRQ_NSPC_IPI;
811 	isrc->isrc_nspc_num = ipi_next_num;
812 
813 	error = PIC_REGISTER(intr_irq_root_dev, isrc, &is_percpu);
814 	if (error == 0) {
815 		isrc->isrc_dev = intr_irq_root_dev;
816 		ipi_next_num++;
817 	}
818 	return (error);
819 }
820 
821 /*
822  *  Setup IPI handler to interrupt source.
823  *
824  *  Note that there could be more ways how to send and receive IPIs
825  *  on a platform like fast interrupts for example. In that case,
826  *  one can call this function with ASIF_NOALLOC flag set and then
827  *  call intr_ipi_dispatch() when appropriate.
828  *
829  *  Not SMP coherent.
830  */
831 int
intr_ipi_set_handler(u_int ipi,const char * name,intr_ipi_filter_t * filter,void * arg,u_int flags)832 intr_ipi_set_handler(u_int ipi, const char *name, intr_ipi_filter_t *filter,
833     void *arg, u_int flags)
834 {
835 	struct intr_irqsrc *isrc;
836 	int error;
837 
838 	if (filter == NULL)
839 		return(EINVAL);
840 
841 	isrc = intr_ipi_lookup(ipi);
842 	if (isrc->isrc_ipifilter != NULL)
843 		return (EEXIST);
844 
845 	if ((flags & AISHF_NOALLOC) == 0) {
846 		error = ipi_map(isrc, ipi);
847 		if (error != 0)
848 			return (error);
849 	}
850 
851 	isrc->isrc_ipifilter = filter;
852 	isrc->isrc_arg = arg;
853 	isrc->isrc_handlers = 1;
854 	isrc->isrc_count = intr_ipi_setup_counters(name);
855 	isrc->isrc_index = 0; /* it should not be used in IPI case */
856 
857 	if (isrc->isrc_dev != NULL) {
858 		PIC_ENABLE_INTR(isrc->isrc_dev, isrc);
859 		PIC_ENABLE_SOURCE(isrc->isrc_dev, isrc);
860 	}
861 	return (0);
862 }
863 #endif
864 
865 /* Sending IPI */
866 void
ipi_all_but_self(u_int ipi)867 ipi_all_but_self(u_int ipi)
868 {
869 	cpuset_t cpus;
870 
871 	cpus = all_cpus;
872 	CPU_CLR(PCPU_GET(cpuid), &cpus);
873 	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
874 	intr_ipi_send(cpus, ipi);
875 }
876 
877 void
ipi_cpu(int cpu,u_int ipi)878 ipi_cpu(int cpu, u_int ipi)
879 {
880 	cpuset_t cpus;
881 
882 	CPU_ZERO(&cpus);
883 	CPU_SET(cpu, &cpus);
884 
885 	CTR3(KTR_SMP, "%s: cpu: %d, ipi: %x", __func__, cpu, ipi);
886 	intr_ipi_send(cpus, ipi);
887 }
888 
889 void
ipi_selected(cpuset_t cpus,u_int ipi)890 ipi_selected(cpuset_t cpus, u_int ipi)
891 {
892 
893 	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
894 	intr_ipi_send(cpus, ipi);
895 }
896