1 /*	$FreeBSD$	*/
2 
3 /*
4  * Copyright (C) 2012 by Darren Reed.
5  *
6  * See the IPFILTER.LICENCE file for details on licencing.
7  *
8  * Copyright 2008 Sun Microsystems.
9  *
10  * $Id$
11  *
12  */
13 #if defined(KERNEL) || defined(_KERNEL)
14 # undef KERNEL
15 # undef _KERNEL
16 # define        KERNEL	1
17 # define        _KERNEL	1
18 #endif
19 #include <sys/errno.h>
20 #include <sys/types.h>
21 #include <sys/param.h>
22 #include <sys/time.h>
23 #if defined(_KERNEL) && defined(__FreeBSD_version)
24 #  if !defined(IPFILTER_LKM)
25 #   include "opt_inet6.h"
26 #  endif
27 # include <sys/filio.h>
28 #else
29 # include <sys/ioctl.h>
30 #endif
31 #if defined(__SVR4) || defined(sun) /* SOLARIS */
32 # include <sys/filio.h>
33 #endif
34 # include <sys/fcntl.h>
35 #if defined(_KERNEL)
36 # include <sys/systm.h>
37 # include <sys/file.h>
38 #else
39 # include <stdio.h>
40 # include <string.h>
41 # include <stdlib.h>
42 # include <stddef.h>
43 # include <sys/file.h>
44 # define _KERNEL
45 # include <sys/uio.h>
46 # undef _KERNEL
47 #endif
48 #if !defined(__SVR4)
49 # include <sys/mbuf.h>
50 #else
51 #  include <sys/byteorder.h>
52 # if (SOLARIS2 < 5) && defined(sun)
53 #  include <sys/dditypes.h>
54 # endif
55 #endif
56 # include <sys/protosw.h>
57 #include <sys/socket.h>
58 #include <net/if.h>
59 #ifdef sun
60 # include <net/af.h>
61 #endif
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 # include <netinet/udp.h>
67 # include <netinet/ip_icmp.h>
68 #include "netinet/ip_compat.h"
69 #ifdef	USE_INET6
70 # include <netinet/icmp6.h>
71 # if !SOLARIS && defined(_KERNEL)
72 #  include <netinet6/in6_var.h>
73 # endif
74 #endif
75 #include "netinet/ip_fil.h"
76 #include "netinet/ip_nat.h"
77 #include "netinet/ip_frag.h"
78 #include "netinet/ip_state.h"
79 #include "netinet/ip_proxy.h"
80 #include "netinet/ip_auth.h"
81 #ifdef IPFILTER_SCAN
82 # include "netinet/ip_scan.h"
83 #endif
84 #include "netinet/ip_sync.h"
85 #include "netinet/ip_lookup.h"
86 #include "netinet/ip_pool.h"
87 #include "netinet/ip_htable.h"
88 #ifdef IPFILTER_COMPILED
89 # include "netinet/ip_rules.h"
90 #endif
91 #if defined(IPFILTER_BPF) && defined(_KERNEL)
92 # include <net/bpf.h>
93 #endif
94 #if defined(__FreeBSD_version)
95 # include <sys/malloc.h>
96 #endif
97 #include "netinet/ipl.h"
98 
99 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
100 # include <sys/callout.h>
101 extern struct callout ipf_slowtimer_ch;
102 #endif
103 /* END OF INCLUDES */
104 
105 #if !defined(lint)
106 static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
107 static const char rcsid[] = "@(#)$FreeBSD$";
108 /* static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.125 2007/10/10 09:27:20 darrenr Exp $"; */
109 #endif
110 
111 #ifndef	_KERNEL
112 # include "ipf.h"
113 # include "ipt.h"
114 extern	int	opts;
115 extern	int	blockreason;
116 #endif /* _KERNEL */
117 
118 #define	LBUMP(x)	softc->x++
119 #define	LBUMPD(x, y)	do { softc->x.y++; DT(y); } while (0)
120 
121 static	INLINE int	ipf_check_ipf __P((fr_info_t *, frentry_t *, int));
122 static	u_32_t		ipf_checkcipso __P((fr_info_t *, u_char *, int));
123 static	u_32_t		ipf_checkripso __P((u_char *));
124 static	u_32_t		ipf_decaps __P((fr_info_t *, u_32_t, int));
125 #ifdef IPFILTER_LOG
126 static	frentry_t	*ipf_dolog __P((fr_info_t *, u_32_t *));
127 #endif
128 static	int		ipf_flushlist __P((ipf_main_softc_t *, int *,
129 					   frentry_t **));
130 static	int		ipf_flush_groups __P((ipf_main_softc_t *, frgroup_t **,
131 					      int));
132 static	ipfunc_t	ipf_findfunc __P((ipfunc_t));
133 static	void		*ipf_findlookup __P((ipf_main_softc_t *, int,
134 					     frentry_t *,
135 					     i6addr_t *, i6addr_t *));
136 static	frentry_t	*ipf_firewall __P((fr_info_t *, u_32_t *));
137 static	int		ipf_fr_matcharray __P((fr_info_t *, int *));
138 static	int		ipf_frruleiter __P((ipf_main_softc_t *, void *, int,
139 					    void *));
140 static	void		ipf_funcfini __P((ipf_main_softc_t *, frentry_t *));
141 static	int		ipf_funcinit __P((ipf_main_softc_t *, frentry_t *));
142 static	int		ipf_geniter __P((ipf_main_softc_t *, ipftoken_t *,
143 					 ipfgeniter_t *));
144 static	void		ipf_getstat __P((ipf_main_softc_t *,
145 					 struct friostat *, int));
146 static	int		ipf_group_flush __P((ipf_main_softc_t *, frgroup_t *));
147 static	void		ipf_group_free __P((frgroup_t *));
148 static	int		ipf_grpmapfini __P((struct ipf_main_softc_s *,
149 					    frentry_t *));
150 static	int		ipf_grpmapinit __P((struct ipf_main_softc_s *,
151 					    frentry_t *));
152 static	frentry_t	*ipf_nextrule __P((ipf_main_softc_t *, int, int,
153 					   frentry_t *, int));
154 static	int		ipf_portcheck __P((frpcmp_t *, u_32_t));
155 static	INLINE int	ipf_pr_ah __P((fr_info_t *));
156 static	INLINE void	ipf_pr_esp __P((fr_info_t *));
157 static	INLINE void	ipf_pr_gre __P((fr_info_t *));
158 static	INLINE void	ipf_pr_udp __P((fr_info_t *));
159 static	INLINE void	ipf_pr_tcp __P((fr_info_t *));
160 static	INLINE void	ipf_pr_icmp __P((fr_info_t *));
161 static	INLINE void	ipf_pr_ipv4hdr __P((fr_info_t *));
162 static	INLINE void	ipf_pr_short __P((fr_info_t *, int));
163 static	INLINE int	ipf_pr_tcpcommon __P((fr_info_t *));
164 static	INLINE int	ipf_pr_udpcommon __P((fr_info_t *));
165 static	void		ipf_rule_delete __P((ipf_main_softc_t *, frentry_t *f,
166 					     int, int));
167 static	void		ipf_rule_expire_insert __P((ipf_main_softc_t *,
168 						    frentry_t *, int));
169 static	int		ipf_synclist __P((ipf_main_softc_t *, frentry_t *,
170 					  void *));
171 static	void		ipf_token_flush __P((ipf_main_softc_t *));
172 static	void		ipf_token_unlink __P((ipf_main_softc_t *,
173 					      ipftoken_t *));
174 static	ipftuneable_t	*ipf_tune_findbyname __P((ipftuneable_t *,
175 						  const char *));
176 static	ipftuneable_t	*ipf_tune_findbycookie __P((ipftuneable_t **, void *,
177 						    void **));
178 static	int		ipf_updateipid __P((fr_info_t *));
179 static	int		ipf_settimeout __P((struct ipf_main_softc_s *,
180 					    struct ipftuneable *,
181 					    ipftuneval_t *));
182 #ifdef	USE_INET6
183 static	u_int		ipf_pcksum6 __P((fr_info_t *, ip6_t *,
184 						u_int32_t, u_int32_t));
185 #endif
186 #if !defined(_KERNEL) || SOLARIS
187 static	int		ppsratecheck(struct timeval *, int *, int);
188 #endif
189 
190 
191 /*
192  * bit values for identifying presence of individual IP options
193  * All of these tables should be ordered by increasing key value on the left
194  * hand side to allow for binary searching of the array and include a trailer
195  * with a 0 for the bitmask for linear searches to easily find the end with.
196  */
197 static const	struct	optlist	ipopts[] = {
198 	{ IPOPT_NOP,	0x000001 },
199 	{ IPOPT_RR,	0x000002 },
200 	{ IPOPT_ZSU,	0x000004 },
201 	{ IPOPT_MTUP,	0x000008 },
202 	{ IPOPT_MTUR,	0x000010 },
203 	{ IPOPT_ENCODE,	0x000020 },
204 	{ IPOPT_TS,	0x000040 },
205 	{ IPOPT_TR,	0x000080 },
206 	{ IPOPT_SECURITY, 0x000100 },
207 	{ IPOPT_LSRR,	0x000200 },
208 	{ IPOPT_E_SEC,	0x000400 },
209 	{ IPOPT_CIPSO,	0x000800 },
210 	{ IPOPT_SATID,	0x001000 },
211 	{ IPOPT_SSRR,	0x002000 },
212 	{ IPOPT_ADDEXT,	0x004000 },
213 	{ IPOPT_VISA,	0x008000 },
214 	{ IPOPT_IMITD,	0x010000 },
215 	{ IPOPT_EIP,	0x020000 },
216 	{ IPOPT_FINN,	0x040000 },
217 	{ 0,		0x000000 }
218 };
219 
220 #ifdef USE_INET6
221 static const struct optlist ip6exthdr[] = {
222 	{ IPPROTO_HOPOPTS,		0x000001 },
223 	{ IPPROTO_IPV6,			0x000002 },
224 	{ IPPROTO_ROUTING,		0x000004 },
225 	{ IPPROTO_FRAGMENT,		0x000008 },
226 	{ IPPROTO_ESP,			0x000010 },
227 	{ IPPROTO_AH,			0x000020 },
228 	{ IPPROTO_NONE,			0x000040 },
229 	{ IPPROTO_DSTOPTS,		0x000080 },
230 	{ IPPROTO_MOBILITY,		0x000100 },
231 	{ 0,				0 }
232 };
233 #endif
234 
235 /*
236  * bit values for identifying presence of individual IP security options
237  */
238 static const	struct	optlist	secopt[] = {
239 	{ IPSO_CLASS_RES4,	0x01 },
240 	{ IPSO_CLASS_TOPS,	0x02 },
241 	{ IPSO_CLASS_SECR,	0x04 },
242 	{ IPSO_CLASS_RES3,	0x08 },
243 	{ IPSO_CLASS_CONF,	0x10 },
244 	{ IPSO_CLASS_UNCL,	0x20 },
245 	{ IPSO_CLASS_RES2,	0x40 },
246 	{ IPSO_CLASS_RES1,	0x80 }
247 };
248 
249 char	ipfilter_version[] = IPL_VERSION;
250 
251 int	ipf_features = 0
252 #ifdef	IPFILTER_LKM
253 		| IPF_FEAT_LKM
254 #endif
255 #ifdef	IPFILTER_LOG
256 		| IPF_FEAT_LOG
257 #endif
258 		| IPF_FEAT_LOOKUP
259 #ifdef	IPFILTER_BPF
260 		| IPF_FEAT_BPF
261 #endif
262 #ifdef	IPFILTER_COMPILED
263 		| IPF_FEAT_COMPILED
264 #endif
265 #ifdef	IPFILTER_CKSUM
266 		| IPF_FEAT_CKSUM
267 #endif
268 		| IPF_FEAT_SYNC
269 #ifdef	IPFILTER_SCAN
270 		| IPF_FEAT_SCAN
271 #endif
272 #ifdef	USE_INET6
273 		| IPF_FEAT_IPV6
274 #endif
275 	;
276 
277 
278 /*
279  * Table of functions available for use with call rules.
280  */
281 static ipfunc_resolve_t ipf_availfuncs[] = {
282 	{ "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
283 	{ "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
284 	{ "",	      NULL,	      NULL,	      NULL }
285 };
286 
287 static ipftuneable_t ipf_main_tuneables[] = {
288 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
289 		"ipf_flags",		0,	0xffffffff,
290 		stsizeof(ipf_main_softc_t, ipf_flags),
291 		0,			NULL,	NULL },
292 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
293 		"active",		0,	0,
294 		stsizeof(ipf_main_softc_t, ipf_active),
295 		IPFT_RDONLY,		NULL,	NULL },
296 	{ { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
297 		"control_forwarding",	0, 1,
298 		stsizeof(ipf_main_softc_t, ipf_control_forwarding),
299 		0,			NULL,	NULL },
300 	{ { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
301 		"update_ipid",		0,	1,
302 		stsizeof(ipf_main_softc_t, ipf_update_ipid),
303 		0,			NULL,	NULL },
304 	{ { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
305 		"chksrc",		0,	1,
306 		stsizeof(ipf_main_softc_t, ipf_chksrc),
307 		0,			NULL,	NULL },
308 	{ { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
309 		"min_ttl",		0,	1,
310 		stsizeof(ipf_main_softc_t, ipf_minttl),
311 		0,			NULL,	NULL },
312 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
313 		"icmp_minfragmtu",	0,	1,
314 		stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
315 		0,			NULL,	NULL },
316 	{ { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
317 		"default_pass",		0,	0xffffffff,
318 		stsizeof(ipf_main_softc_t, ipf_pass),
319 		0,			NULL,	NULL },
320 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
321 		"tcp_idle_timeout",	1,	0x7fffffff,
322 		stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
323 		0,			NULL,	ipf_settimeout },
324 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
325 		"tcp_close_wait",	1,	0x7fffffff,
326 		stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
327 		0,			NULL,	ipf_settimeout },
328 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
329 		"tcp_last_ack",		1,	0x7fffffff,
330 		stsizeof(ipf_main_softc_t, ipf_tcplastack),
331 		0,			NULL,	ipf_settimeout },
332 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
333 		"tcp_timeout",		1,	0x7fffffff,
334 		stsizeof(ipf_main_softc_t, ipf_tcptimeout),
335 		0,			NULL,	ipf_settimeout },
336 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
337 		"tcp_syn_sent",		1,	0x7fffffff,
338 		stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
339 		0,			NULL,	ipf_settimeout },
340 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
341 		"tcp_syn_received",	1,	0x7fffffff,
342 		stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
343 		0,			NULL,	ipf_settimeout },
344 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
345 		"tcp_closed",		1,	0x7fffffff,
346 		stsizeof(ipf_main_softc_t, ipf_tcpclosed),
347 		0,			NULL,	ipf_settimeout },
348 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
349 		"tcp_half_closed",	1,	0x7fffffff,
350 		stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
351 		0,			NULL,	ipf_settimeout },
352 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
353 		"tcp_time_wait",	1,	0x7fffffff,
354 		stsizeof(ipf_main_softc_t, ipf_tcptimewait),
355 		0,			NULL,	ipf_settimeout },
356 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
357 		"udp_timeout",		1,	0x7fffffff,
358 		stsizeof(ipf_main_softc_t, ipf_udptimeout),
359 		0,			NULL,	ipf_settimeout },
360 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
361 		"udp_ack_timeout",	1,	0x7fffffff,
362 		stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
363 		0,			NULL,	ipf_settimeout },
364 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
365 		"icmp_timeout",		1,	0x7fffffff,
366 		stsizeof(ipf_main_softc_t, ipf_icmptimeout),
367 		0,			NULL,	ipf_settimeout },
368 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
369 		"icmp_ack_timeout",	1,	0x7fffffff,
370 		stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
371 		0,			NULL,	ipf_settimeout },
372 	{ { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
373 		"ip_timeout",		1,	0x7fffffff,
374 		stsizeof(ipf_main_softc_t, ipf_iptimeout),
375 		0,			NULL,	ipf_settimeout },
376 #if defined(INSTANCES) && defined(_KERNEL)
377 	{ { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
378 		"intercept_loopback",	0,	1,
379 		stsizeof(ipf_main_softc_t, ipf_get_loopback),
380 		0,			NULL,	ipf_set_loopback },
381 #endif
382 	{ { 0 },
383 		NULL,			0,	0,
384 		0,
385 		0,			NULL,	NULL }
386 };
387 
388 
389 /*
390  * The next section of code is a collection of small routines that set
391  * fields in the fr_info_t structure passed based on properties of the
392  * current packet.  There are different routines for the same protocol
393  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
394  * will "special" inspection for setup, is now more easily done by adding
395  * a new routine and expanding the ipf_pr_ipinit*() function rather than by
396  * adding more code to a growing switch statement.
397  */
398 #ifdef USE_INET6
399 static	INLINE int	ipf_pr_ah6 __P((fr_info_t *));
400 static	INLINE void	ipf_pr_esp6 __P((fr_info_t *));
401 static	INLINE void	ipf_pr_gre6 __P((fr_info_t *));
402 static	INLINE void	ipf_pr_udp6 __P((fr_info_t *));
403 static	INLINE void	ipf_pr_tcp6 __P((fr_info_t *));
404 static	INLINE void	ipf_pr_icmp6 __P((fr_info_t *));
405 static	INLINE void	ipf_pr_ipv6hdr __P((fr_info_t *));
406 static	INLINE void	ipf_pr_short6 __P((fr_info_t *, int));
407 static	INLINE int	ipf_pr_hopopts6 __P((fr_info_t *));
408 static	INLINE int	ipf_pr_mobility6 __P((fr_info_t *));
409 static	INLINE int	ipf_pr_routing6 __P((fr_info_t *));
410 static	INLINE int	ipf_pr_dstopts6 __P((fr_info_t *));
411 static	INLINE int	ipf_pr_fragment6 __P((fr_info_t *));
412 static	INLINE struct ip6_ext *ipf_pr_ipv6exthdr __P((fr_info_t *, int, int));
413 
414 
415 /* ------------------------------------------------------------------------ */
416 /* Function:    ipf_pr_short6                                               */
417 /* Returns:     void                                                        */
418 /* Parameters:  fin(I)  - pointer to packet information                     */
419 /*              xmin(I) - minimum header size                               */
420 /*                                                                          */
421 /* IPv6 Only                                                                */
422 /* This is function enforces the 'is a packet too short to be legit' rule   */
423 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
424 /* for ipf_pr_short() for more details.                                     */
425 /* ------------------------------------------------------------------------ */
426 static INLINE void
ipf_pr_short6(fin,xmin)427 ipf_pr_short6(fin, xmin)
428 	fr_info_t *fin;
429 	int xmin;
430 {
431 
432 	if (fin->fin_dlen < xmin)
433 		fin->fin_flx |= FI_SHORT;
434 }
435 
436 
437 /* ------------------------------------------------------------------------ */
438 /* Function:    ipf_pr_ipv6hdr                                              */
439 /* Returns:     void                                                        */
440 /* Parameters:  fin(I) - pointer to packet information                      */
441 /*                                                                          */
442 /* IPv6 Only                                                                */
443 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
444 /* per-protocol analyzer if it exists.  In validating the packet, a protocol*/
445 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
446 /* of that possibility arising.                                             */
447 /* ------------------------------------------------------------------------ */
448 static INLINE void
ipf_pr_ipv6hdr(fin)449 ipf_pr_ipv6hdr(fin)
450 	fr_info_t *fin;
451 {
452 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
453 	int p, go = 1, i, hdrcount;
454 	fr_ip_t *fi = &fin->fin_fi;
455 
456 	fin->fin_off = 0;
457 
458 	fi->fi_tos = 0;
459 	fi->fi_optmsk = 0;
460 	fi->fi_secmsk = 0;
461 	fi->fi_auth = 0;
462 
463 	p = ip6->ip6_nxt;
464 	fin->fin_crc = p;
465 	fi->fi_ttl = ip6->ip6_hlim;
466 	fi->fi_src.in6 = ip6->ip6_src;
467 	fin->fin_crc += fi->fi_src.i6[0];
468 	fin->fin_crc += fi->fi_src.i6[1];
469 	fin->fin_crc += fi->fi_src.i6[2];
470 	fin->fin_crc += fi->fi_src.i6[3];
471 	fi->fi_dst.in6 = ip6->ip6_dst;
472 	fin->fin_crc += fi->fi_dst.i6[0];
473 	fin->fin_crc += fi->fi_dst.i6[1];
474 	fin->fin_crc += fi->fi_dst.i6[2];
475 	fin->fin_crc += fi->fi_dst.i6[3];
476 	fin->fin_id = 0;
477 	if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
478 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
479 
480 	hdrcount = 0;
481 	while (go && !(fin->fin_flx & FI_SHORT)) {
482 		switch (p)
483 		{
484 		case IPPROTO_UDP :
485 			ipf_pr_udp6(fin);
486 			go = 0;
487 			break;
488 
489 		case IPPROTO_TCP :
490 			ipf_pr_tcp6(fin);
491 			go = 0;
492 			break;
493 
494 		case IPPROTO_ICMPV6 :
495 			ipf_pr_icmp6(fin);
496 			go = 0;
497 			break;
498 
499 		case IPPROTO_GRE :
500 			ipf_pr_gre6(fin);
501 			go = 0;
502 			break;
503 
504 		case IPPROTO_HOPOPTS :
505 			p = ipf_pr_hopopts6(fin);
506 			break;
507 
508 		case IPPROTO_MOBILITY :
509 			p = ipf_pr_mobility6(fin);
510 			break;
511 
512 		case IPPROTO_DSTOPTS :
513 			p = ipf_pr_dstopts6(fin);
514 			break;
515 
516 		case IPPROTO_ROUTING :
517 			p = ipf_pr_routing6(fin);
518 			break;
519 
520 		case IPPROTO_AH :
521 			p = ipf_pr_ah6(fin);
522 			break;
523 
524 		case IPPROTO_ESP :
525 			ipf_pr_esp6(fin);
526 			go = 0;
527 			break;
528 
529 		case IPPROTO_IPV6 :
530 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
531 				if (ip6exthdr[i].ol_val == p) {
532 					fin->fin_flx |= ip6exthdr[i].ol_bit;
533 					break;
534 				}
535 			go = 0;
536 			break;
537 
538 		case IPPROTO_NONE :
539 			go = 0;
540 			break;
541 
542 		case IPPROTO_FRAGMENT :
543 			p = ipf_pr_fragment6(fin);
544 			/*
545 			 * Given that the only fragments we want to let through
546 			 * (where fin_off != 0) are those where the non-first
547 			 * fragments only have data, we can safely stop looking
548 			 * at headers if this is a non-leading fragment.
549 			 */
550 			if (fin->fin_off != 0)
551 				go = 0;
552 			break;
553 
554 		default :
555 			go = 0;
556 			break;
557 		}
558 		hdrcount++;
559 
560 		/*
561 		 * It is important to note that at this point, for the
562 		 * extension headers (go != 0), the entire header may not have
563 		 * been pulled up when the code gets to this point.  This is
564 		 * only done for "go != 0" because the other header handlers
565 		 * will all pullup their complete header.  The other indicator
566 		 * of an incomplete packet is that this was just an extension
567 		 * header.
568 		 */
569 		if ((go != 0) && (p != IPPROTO_NONE) &&
570 		    (ipf_pr_pullup(fin, 0) == -1)) {
571 			p = IPPROTO_NONE;
572 			break;
573 		}
574 	}
575 
576 	/*
577 	 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
578 	 * and destroy whatever packet was here.  The caller of this function
579 	 * expects us to return if there is a problem with ipf_pullup.
580 	 */
581 	if (fin->fin_m == NULL) {
582 		ipf_main_softc_t *softc = fin->fin_main_soft;
583 
584 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
585 		return;
586 	}
587 
588 	fi->fi_p = p;
589 
590 	/*
591 	 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
592 	 * "go != 0" imples the above loop hasn't arrived at a layer 4 header.
593 	 */
594 	if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
595 		ipf_main_softc_t *softc = fin->fin_main_soft;
596 
597 		fin->fin_flx |= FI_BAD;
598 		DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go);
599 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
600 		LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
601 	}
602 }
603 
604 
605 /* ------------------------------------------------------------------------ */
606 /* Function:    ipf_pr_ipv6exthdr                                           */
607 /* Returns:     struct ip6_ext * - pointer to the start of the next header  */
608 /*                                 or NULL if there is a prolblem.          */
609 /* Parameters:  fin(I)      - pointer to packet information                 */
610 /*              multiple(I) - flag indicating yes/no if multiple occurances */
611 /*                            of this extension header are allowed.         */
612 /*              proto(I)    - protocol number for this extension header     */
613 /*                                                                          */
614 /* IPv6 Only                                                                */
615 /* This function embodies a number of common checks that all IPv6 extension */
616 /* headers must be subjected to.  For example, making sure the packet is    */
617 /* big enough for it to be in, checking if it is repeated and setting a     */
618 /* flag to indicate its presence.                                           */
619 /* ------------------------------------------------------------------------ */
620 static INLINE struct ip6_ext *
ipf_pr_ipv6exthdr(fin,multiple,proto)621 ipf_pr_ipv6exthdr(fin, multiple, proto)
622 	fr_info_t *fin;
623 	int multiple, proto;
624 {
625 	ipf_main_softc_t *softc = fin->fin_main_soft;
626 	struct ip6_ext *hdr;
627 	u_short shift;
628 	int i;
629 
630 	fin->fin_flx |= FI_V6EXTHDR;
631 
632 				/* 8 is default length of extension hdr */
633 	if ((fin->fin_dlen - 8) < 0) {
634 		fin->fin_flx |= FI_SHORT;
635 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
636 		return NULL;
637 	}
638 
639 	if (ipf_pr_pullup(fin, 8) == -1) {
640 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
641 		return NULL;
642 	}
643 
644 	hdr = fin->fin_dp;
645 	switch (proto)
646 	{
647 	case IPPROTO_FRAGMENT :
648 		shift = 8;
649 		break;
650 	default :
651 		shift = 8 + (hdr->ip6e_len << 3);
652 		break;
653 	}
654 
655 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
656 		fin->fin_flx |= FI_BAD;
657 		DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen);
658 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
659 		return NULL;
660 	}
661 
662 	fin->fin_dp = (char *)fin->fin_dp + shift;
663 	fin->fin_dlen -= shift;
664 
665 	/*
666 	 * If we have seen a fragment header, do not set any flags to indicate
667 	 * the presence of this extension header as it has no impact on the
668 	 * end result until after it has been defragmented.
669 	 */
670 	if (fin->fin_flx & FI_FRAG)
671 		return hdr;
672 
673 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
674 		if (ip6exthdr[i].ol_val == proto) {
675 			/*
676 			 * Most IPv6 extension headers are only allowed once.
677 			 */
678 			if ((multiple == 0) &&
679 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) {
680 				fin->fin_flx |= FI_BAD;
681 				DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit));
682 			} else
683 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
684 			break;
685 		}
686 
687 	return hdr;
688 }
689 
690 
691 /* ------------------------------------------------------------------------ */
692 /* Function:    ipf_pr_hopopts6                                             */
693 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
694 /* Parameters:  fin(I) - pointer to packet information                      */
695 /*                                                                          */
696 /* IPv6 Only                                                                */
697 /* This is function checks pending hop by hop options extension header      */
698 /* ------------------------------------------------------------------------ */
699 static INLINE int
ipf_pr_hopopts6(fin)700 ipf_pr_hopopts6(fin)
701 	fr_info_t *fin;
702 {
703 	struct ip6_ext *hdr;
704 
705 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
706 	if (hdr == NULL)
707 		return IPPROTO_NONE;
708 	return hdr->ip6e_nxt;
709 }
710 
711 
712 /* ------------------------------------------------------------------------ */
713 /* Function:    ipf_pr_mobility6                                            */
714 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
715 /* Parameters:  fin(I) - pointer to packet information                      */
716 /*                                                                          */
717 /* IPv6 Only                                                                */
718 /* This is function checks the IPv6 mobility extension header               */
719 /* ------------------------------------------------------------------------ */
720 static INLINE int
ipf_pr_mobility6(fin)721 ipf_pr_mobility6(fin)
722 	fr_info_t *fin;
723 {
724 	struct ip6_ext *hdr;
725 
726 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
727 	if (hdr == NULL)
728 		return IPPROTO_NONE;
729 	return hdr->ip6e_nxt;
730 }
731 
732 
733 /* ------------------------------------------------------------------------ */
734 /* Function:    ipf_pr_routing6                                             */
735 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
736 /* Parameters:  fin(I) - pointer to packet information                      */
737 /*                                                                          */
738 /* IPv6 Only                                                                */
739 /* This is function checks pending routing extension header                 */
740 /* ------------------------------------------------------------------------ */
741 static INLINE int
ipf_pr_routing6(fin)742 ipf_pr_routing6(fin)
743 	fr_info_t *fin;
744 {
745 	struct ip6_routing *hdr;
746 
747 	hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
748 	if (hdr == NULL)
749 		return IPPROTO_NONE;
750 
751 	switch (hdr->ip6r_type)
752 	{
753 	case 0 :
754 		/*
755 		 * Nasty extension header length?
756 		 */
757 		if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
758 		    (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
759 			ipf_main_softc_t *softc = fin->fin_main_soft;
760 
761 			fin->fin_flx |= FI_BAD;
762 			DT1(ipf_fi_bad_routing6, fr_info_t *, fin);
763 			LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
764 			return IPPROTO_NONE;
765 		}
766 		break;
767 
768 	default :
769 		break;
770 	}
771 
772 	return hdr->ip6r_nxt;
773 }
774 
775 
776 /* ------------------------------------------------------------------------ */
777 /* Function:    ipf_pr_fragment6                                            */
778 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
779 /* Parameters:  fin(I) - pointer to packet information                      */
780 /*                                                                          */
781 /* IPv6 Only                                                                */
782 /* Examine the IPv6 fragment header and extract fragment offset information.*/
783 /*                                                                          */
784 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
785 /* so than in IPv4.  There are 5 cases of fragments with IPv6 that all      */
786 /* packets with a fragment header can fit into.  They are as follows:       */
787 /*                                                                          */
788 /* 1.  [IPv6][0-n EH][FH][0-n EH] (no L4HDR present)                        */
789 /* 2.  [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short)                       */
790 /* 3.  [IPV6][0-n EH][FH][L4HDR part][0-n data] (short)                     */
791 /* 4.  [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data]                          */
792 /* 5.  [IPV6][0-n EH][FH][data]                                             */
793 /*                                                                          */
794 /* IPV6 = IPv6 header, FH = Fragment Header,                                */
795 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
796 /*                                                                          */
797 /* Packets that match 1, 2, 3 will be dropped as the only reasonable        */
798 /* scenario in which they happen is in extreme circumstances that are most  */
799 /* likely to be an indication of an attack rather than normal traffic.      */
800 /* A type 3 packet may be sent by an attacked after a type 4 packet.  There */
801 /* are two rules that can be used to guard against type 3 packets: L4       */
802 /* headers must always be in a packet that has the offset field set to 0    */
803 /* and no packet is allowed to overlay that where offset = 0.               */
804 /* ------------------------------------------------------------------------ */
805 static INLINE int
ipf_pr_fragment6(fin)806 ipf_pr_fragment6(fin)
807 	fr_info_t *fin;
808 {
809 	ipf_main_softc_t *softc = fin->fin_main_soft;
810 	struct ip6_frag *frag;
811 
812 	fin->fin_flx |= FI_FRAG;
813 
814 	frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
815 	if (frag == NULL) {
816 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
817 		return IPPROTO_NONE;
818 	}
819 
820 	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
821 		/*
822 		 * Any fragment that isn't the last fragment must have its
823 		 * length as a multiple of 8.
824 		 */
825 		if ((fin->fin_plen & 7) != 0) {
826 			fin->fin_flx |= FI_BAD;
827 			DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7));
828 		}
829 	}
830 
831 	fin->fin_fraghdr = frag;
832 	fin->fin_id = frag->ip6f_ident;
833 	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
834 	if (fin->fin_off != 0)
835 		fin->fin_flx |= FI_FRAGBODY;
836 
837 	/*
838 	 * Jumbograms aren't handled, so the max. length is 64k
839 	 */
840 	if ((fin->fin_off << 3) + fin->fin_dlen > 65535) {
841 		  fin->fin_flx |= FI_BAD;
842 		  DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen));
843 	}
844 
845 	/*
846 	 * We don't know where the transport layer header (or whatever is next
847 	 * is), as it could be behind destination options (amongst others) so
848 	 * return the fragment header as the type of packet this is.  Note that
849 	 * this effectively disables the fragment cache for > 1 protocol at a
850 	 * time.
851 	 */
852 	return frag->ip6f_nxt;
853 }
854 
855 
856 /* ------------------------------------------------------------------------ */
857 /* Function:    ipf_pr_dstopts6                                             */
858 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
859 /* Parameters:  fin(I) - pointer to packet information                      */
860 /*                                                                          */
861 /* IPv6 Only                                                                */
862 /* This is function checks pending destination options extension header     */
863 /* ------------------------------------------------------------------------ */
864 static INLINE int
ipf_pr_dstopts6(fin)865 ipf_pr_dstopts6(fin)
866 	fr_info_t *fin;
867 {
868 	ipf_main_softc_t *softc = fin->fin_main_soft;
869 	struct ip6_ext *hdr;
870 
871 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
872 	if (hdr == NULL) {
873 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
874 		return IPPROTO_NONE;
875 	}
876 	return hdr->ip6e_nxt;
877 }
878 
879 
880 /* ------------------------------------------------------------------------ */
881 /* Function:    ipf_pr_icmp6                                                */
882 /* Returns:     void                                                        */
883 /* Parameters:  fin(I) - pointer to packet information                      */
884 /*                                                                          */
885 /* IPv6 Only                                                                */
886 /* This routine is mainly concerned with determining the minimum valid size */
887 /* for an ICMPv6 packet.                                                    */
888 /* ------------------------------------------------------------------------ */
889 static INLINE void
ipf_pr_icmp6(fin)890 ipf_pr_icmp6(fin)
891 	fr_info_t *fin;
892 {
893 	int minicmpsz = sizeof(struct icmp6_hdr);
894 	struct icmp6_hdr *icmp6;
895 
896 	if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
897 		ipf_main_softc_t *softc = fin->fin_main_soft;
898 
899 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
900 		return;
901 	}
902 
903 	if (fin->fin_dlen > 1) {
904 		ip6_t *ip6;
905 
906 		icmp6 = fin->fin_dp;
907 
908 		fin->fin_data[0] = *(u_short *)icmp6;
909 
910 		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
911 			fin->fin_flx |= FI_ICMPQUERY;
912 
913 		switch (icmp6->icmp6_type)
914 		{
915 		case ICMP6_ECHO_REPLY :
916 		case ICMP6_ECHO_REQUEST :
917 			if (fin->fin_dlen >= 6)
918 				fin->fin_data[1] = icmp6->icmp6_id;
919 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
920 			break;
921 
922 		case ICMP6_DST_UNREACH :
923 		case ICMP6_PACKET_TOO_BIG :
924 		case ICMP6_TIME_EXCEEDED :
925 		case ICMP6_PARAM_PROB :
926 			fin->fin_flx |= FI_ICMPERR;
927 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
928 			if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
929 				break;
930 
931 			if (M_LEN(fin->fin_m) < fin->fin_plen) {
932 				if (ipf_coalesce(fin) != 1)
933 					return;
934 			}
935 
936 			if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
937 				return;
938 
939 			/*
940 			 * If the destination of this packet doesn't match the
941 			 * source of the original packet then this packet is
942 			 * not correct.
943 			 */
944 			icmp6 = fin->fin_dp;
945 			ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
946 			if (IP6_NEQ(&fin->fin_fi.fi_dst,
947 				    (i6addr_t *)&ip6->ip6_src)) {
948 				fin->fin_flx |= FI_BAD;
949 				DT1(ipf_fi_bad_icmp6, fr_info_t *, fin);
950 			}
951 			break;
952 		default :
953 			break;
954 		}
955 	}
956 
957 	ipf_pr_short6(fin, minicmpsz);
958 	if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
959 		u_char p = fin->fin_p;
960 
961 		fin->fin_p = IPPROTO_ICMPV6;
962 		ipf_checkv6sum(fin);
963 		fin->fin_p = p;
964 	}
965 }
966 
967 
968 /* ------------------------------------------------------------------------ */
969 /* Function:    ipf_pr_udp6                                                 */
970 /* Returns:     void                                                        */
971 /* Parameters:  fin(I) - pointer to packet information                      */
972 /*                                                                          */
973 /* IPv6 Only                                                                */
974 /* Analyse the packet for IPv6/UDP properties.                              */
975 /* Is not expected to be called for fragmented packets.                     */
976 /* ------------------------------------------------------------------------ */
977 static INLINE void
ipf_pr_udp6(fin)978 ipf_pr_udp6(fin)
979 	fr_info_t *fin;
980 {
981 
982 	if (ipf_pr_udpcommon(fin) == 0) {
983 		u_char p = fin->fin_p;
984 
985 		fin->fin_p = IPPROTO_UDP;
986 		ipf_checkv6sum(fin);
987 		fin->fin_p = p;
988 	}
989 }
990 
991 
992 /* ------------------------------------------------------------------------ */
993 /* Function:    ipf_pr_tcp6                                                 */
994 /* Returns:     void                                                        */
995 /* Parameters:  fin(I) - pointer to packet information                      */
996 /*                                                                          */
997 /* IPv6 Only                                                                */
998 /* Analyse the packet for IPv6/TCP properties.                              */
999 /* Is not expected to be called for fragmented packets.                     */
1000 /* ------------------------------------------------------------------------ */
1001 static INLINE void
ipf_pr_tcp6(fin)1002 ipf_pr_tcp6(fin)
1003 	fr_info_t *fin;
1004 {
1005 
1006 	if (ipf_pr_tcpcommon(fin) == 0) {
1007 		u_char p = fin->fin_p;
1008 
1009 		fin->fin_p = IPPROTO_TCP;
1010 		ipf_checkv6sum(fin);
1011 		fin->fin_p = p;
1012 	}
1013 }
1014 
1015 
1016 /* ------------------------------------------------------------------------ */
1017 /* Function:    ipf_pr_esp6                                                 */
1018 /* Returns:     void                                                        */
1019 /* Parameters:  fin(I) - pointer to packet information                      */
1020 /*                                                                          */
1021 /* IPv6 Only                                                                */
1022 /* Analyse the packet for ESP properties.                                   */
1023 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1024 /* even though the newer ESP packets must also have a sequence number that  */
1025 /* is 32bits as well, it is not possible(?) to determine the version from a */
1026 /* simple packet header.                                                    */
1027 /* ------------------------------------------------------------------------ */
1028 static INLINE void
ipf_pr_esp6(fin)1029 ipf_pr_esp6(fin)
1030 	fr_info_t *fin;
1031 {
1032 
1033 	if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1034 		ipf_main_softc_t *softc = fin->fin_main_soft;
1035 
1036 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1037 		return;
1038 	}
1039 }
1040 
1041 
1042 /* ------------------------------------------------------------------------ */
1043 /* Function:    ipf_pr_ah6                                                  */
1044 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1045 /* Parameters:  fin(I) - pointer to packet information                      */
1046 /*                                                                          */
1047 /* IPv6 Only                                                                */
1048 /* Analyse the packet for AH properties.                                    */
1049 /* The minimum length is taken to be the combination of all fields in the   */
1050 /* header being present and no authentication data (null algorithm used.)   */
1051 /* ------------------------------------------------------------------------ */
1052 static INLINE int
ipf_pr_ah6(fin)1053 ipf_pr_ah6(fin)
1054 	fr_info_t *fin;
1055 {
1056 	authhdr_t *ah;
1057 
1058 	fin->fin_flx |= FI_AH;
1059 
1060 	ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1061 	if (ah == NULL) {
1062 		ipf_main_softc_t *softc = fin->fin_main_soft;
1063 
1064 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1065 		return IPPROTO_NONE;
1066 	}
1067 
1068 	ipf_pr_short6(fin, sizeof(*ah));
1069 
1070 	/*
1071 	 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1072 	 * enough data to satisfy ah_next (the very first one.)
1073 	 */
1074 	return ah->ah_next;
1075 }
1076 
1077 
1078 /* ------------------------------------------------------------------------ */
1079 /* Function:    ipf_pr_gre6                                                 */
1080 /* Returns:     void                                                        */
1081 /* Parameters:  fin(I) - pointer to packet information                      */
1082 /*                                                                          */
1083 /* Analyse the packet for GRE properties.                                   */
1084 /* ------------------------------------------------------------------------ */
1085 static INLINE void
ipf_pr_gre6(fin)1086 ipf_pr_gre6(fin)
1087 	fr_info_t *fin;
1088 {
1089 	grehdr_t *gre;
1090 
1091 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1092 		ipf_main_softc_t *softc = fin->fin_main_soft;
1093 
1094 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1095 		return;
1096 	}
1097 
1098 	gre = fin->fin_dp;
1099 	if (GRE_REV(gre->gr_flags) == 1)
1100 		fin->fin_data[0] = gre->gr_call;
1101 }
1102 #endif	/* USE_INET6 */
1103 
1104 
1105 /* ------------------------------------------------------------------------ */
1106 /* Function:    ipf_pr_pullup                                               */
1107 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
1108 /* Parameters:  fin(I)  - pointer to packet information                     */
1109 /*              plen(I) - length (excluding L3 header) to pullup            */
1110 /*                                                                          */
1111 /* Short inline function to cut down on code duplication to perform a call  */
1112 /* to ipf_pullup to ensure there is the required amount of data,            */
1113 /* consecutively in the packet buffer.                                      */
1114 /*                                                                          */
1115 /* This function pulls up 'extra' data at the location of fin_dp.  fin_dp   */
1116 /* points to the first byte after the complete layer 3 header, which will   */
1117 /* include all of the known extension headers for IPv6 or options for IPv4. */
1118 /*                                                                          */
1119 /* Since fr_pullup() expects the total length of bytes to be pulled up, it  */
1120 /* is necessary to add those we can already assume to be pulled up (fin_dp  */
1121 /* - fin_ip) to what is passed through.                                     */
1122 /* ------------------------------------------------------------------------ */
1123 int
ipf_pr_pullup(fin,plen)1124 ipf_pr_pullup(fin, plen)
1125 	fr_info_t *fin;
1126 	int plen;
1127 {
1128 	ipf_main_softc_t *softc = fin->fin_main_soft;
1129 
1130 	if (fin->fin_m != NULL) {
1131 		if (fin->fin_dp != NULL)
1132 			plen += (char *)fin->fin_dp -
1133 				((char *)fin->fin_ip + fin->fin_hlen);
1134 		plen += fin->fin_hlen;
1135 		if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1136 #if defined(_KERNEL)
1137 			if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1138 				DT(ipf_pullup_fail);
1139 				LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1140 				return -1;
1141 			}
1142 			LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1143 #else
1144 			LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1145 			/*
1146 			 * Fake ipf_pullup failing
1147 			 */
1148 			fin->fin_reason = FRB_PULLUP;
1149 			*fin->fin_mp = NULL;
1150 			fin->fin_m = NULL;
1151 			fin->fin_ip = NULL;
1152 			return -1;
1153 #endif
1154 		}
1155 	}
1156 	return 0;
1157 }
1158 
1159 
1160 /* ------------------------------------------------------------------------ */
1161 /* Function:    ipf_pr_short                                                */
1162 /* Returns:     void                                                        */
1163 /* Parameters:  fin(I)  - pointer to packet information                     */
1164 /*              xmin(I) - minimum header size                               */
1165 /*                                                                          */
1166 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
1167 /* applying here is that the packet must not be fragmented within the layer */
1168 /* 4 header.  That is, it must not be a fragment that has its offset set to */
1169 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
1170 /* entire layer 4 header must be present (min).                             */
1171 /* ------------------------------------------------------------------------ */
1172 static INLINE void
ipf_pr_short(fin,xmin)1173 ipf_pr_short(fin, xmin)
1174 	fr_info_t *fin;
1175 	int xmin;
1176 {
1177 
1178 	if (fin->fin_off == 0) {
1179 		if (fin->fin_dlen < xmin)
1180 			fin->fin_flx |= FI_SHORT;
1181 	} else if (fin->fin_off < xmin) {
1182 		fin->fin_flx |= FI_SHORT;
1183 	}
1184 }
1185 
1186 
1187 /* ------------------------------------------------------------------------ */
1188 /* Function:    ipf_pr_icmp                                                 */
1189 /* Returns:     void                                                        */
1190 /* Parameters:  fin(I) - pointer to packet information                      */
1191 /*                                                                          */
1192 /* IPv4 Only                                                                */
1193 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
1194 /* except extrememly bad packets, both type and code will be present.       */
1195 /* The expected minimum size of an ICMP packet is very much dependent on    */
1196 /* the type of it.                                                          */
1197 /*                                                                          */
1198 /* XXX - other ICMP sanity checks?                                          */
1199 /* ------------------------------------------------------------------------ */
1200 static INLINE void
ipf_pr_icmp(fin)1201 ipf_pr_icmp(fin)
1202 	fr_info_t *fin;
1203 {
1204 	ipf_main_softc_t *softc = fin->fin_main_soft;
1205 	int minicmpsz = sizeof(struct icmp);
1206 	icmphdr_t *icmp;
1207 	ip_t *oip;
1208 
1209 	ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1210 
1211 	if (fin->fin_off != 0) {
1212 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1213 		return;
1214 	}
1215 
1216 	if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1217 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1218 		return;
1219 	}
1220 
1221 	icmp = fin->fin_dp;
1222 
1223 	fin->fin_data[0] = *(u_short *)icmp;
1224 	fin->fin_data[1] = icmp->icmp_id;
1225 
1226 	switch (icmp->icmp_type)
1227 	{
1228 	case ICMP_ECHOREPLY :
1229 	case ICMP_ECHO :
1230 	/* Router discovery messaes - RFC 1256 */
1231 	case ICMP_ROUTERADVERT :
1232 	case ICMP_ROUTERSOLICIT :
1233 		fin->fin_flx |= FI_ICMPQUERY;
1234 		minicmpsz = ICMP_MINLEN;
1235 		break;
1236 	/*
1237 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1238 	 * 3 * timestamp(3 * 4)
1239 	 */
1240 	case ICMP_TSTAMP :
1241 	case ICMP_TSTAMPREPLY :
1242 		fin->fin_flx |= FI_ICMPQUERY;
1243 		minicmpsz = 20;
1244 		break;
1245 	/*
1246 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1247 	 * mask(4)
1248 	 */
1249 	case ICMP_IREQ :
1250 	case ICMP_IREQREPLY :
1251 	case ICMP_MASKREQ :
1252 	case ICMP_MASKREPLY :
1253 		fin->fin_flx |= FI_ICMPQUERY;
1254 		minicmpsz = 12;
1255 		break;
1256 	/*
1257 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1258 	 */
1259 	case ICMP_UNREACH :
1260 #ifdef icmp_nextmtu
1261 		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1262 			if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) {
1263 				fin->fin_flx |= FI_BAD;
1264 				DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu);
1265 			}
1266 		}
1267 #endif
1268 		/* FALLTHROUGH */
1269 	case ICMP_SOURCEQUENCH :
1270 	case ICMP_REDIRECT :
1271 	case ICMP_TIMXCEED :
1272 	case ICMP_PARAMPROB :
1273 		fin->fin_flx |= FI_ICMPERR;
1274 		if (ipf_coalesce(fin) != 1) {
1275 			LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1276 			return;
1277 		}
1278 
1279 		/*
1280 		 * ICMP error packets should not be generated for IP
1281 		 * packets that are a fragment that isn't the first
1282 		 * fragment.
1283 		 */
1284 		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1285 		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) {
1286 			fin->fin_flx |= FI_BAD;
1287 			DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK));
1288 		}
1289 
1290 		/*
1291 		 * If the destination of this packet doesn't match the
1292 		 * source of the original packet then this packet is
1293 		 * not correct.
1294 		 */
1295 		if (oip->ip_src.s_addr != fin->fin_daddr) {
1296 			fin->fin_flx |= FI_BAD;
1297 			DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin);
1298 		}
1299 		break;
1300 	default :
1301 		break;
1302 	}
1303 
1304 	ipf_pr_short(fin, minicmpsz);
1305 
1306 	ipf_checkv4sum(fin);
1307 }
1308 
1309 
1310 /* ------------------------------------------------------------------------ */
1311 /* Function:    ipf_pr_tcpcommon                                            */
1312 /* Returns:     int    - 0 = header ok, 1 = bad packet, -1 = buffer error   */
1313 /* Parameters:  fin(I) - pointer to packet information                      */
1314 /*                                                                          */
1315 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1316 /* and make some checks with how they interact with other fields.           */
1317 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1318 /* valid and mark the packet as bad if not.                                 */
1319 /* ------------------------------------------------------------------------ */
1320 static INLINE int
ipf_pr_tcpcommon(fin)1321 ipf_pr_tcpcommon(fin)
1322 	fr_info_t *fin;
1323 {
1324 	ipf_main_softc_t *softc = fin->fin_main_soft;
1325 	int flags, tlen;
1326 	tcphdr_t *tcp;
1327 
1328 	fin->fin_flx |= FI_TCPUDP;
1329 	if (fin->fin_off != 0) {
1330 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1331 		return 0;
1332 	}
1333 
1334 	if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1335 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1336 		return -1;
1337 	}
1338 
1339 	tcp = fin->fin_dp;
1340 	if (fin->fin_dlen > 3) {
1341 		fin->fin_sport = ntohs(tcp->th_sport);
1342 		fin->fin_dport = ntohs(tcp->th_dport);
1343 	}
1344 
1345 	if ((fin->fin_flx & FI_SHORT) != 0) {
1346 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1347 		return 1;
1348 	}
1349 
1350 	/*
1351 	 * Use of the TCP data offset *must* result in a value that is at
1352 	 * least the same size as the TCP header.
1353 	 */
1354 	tlen = TCP_OFF(tcp) << 2;
1355 	if (tlen < sizeof(tcphdr_t)) {
1356 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1357 		fin->fin_flx |= FI_BAD;
1358 		DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t));
1359 		return 1;
1360 	}
1361 
1362 	flags = tcp->th_flags;
1363 	fin->fin_tcpf = tcp->th_flags;
1364 
1365 	/*
1366 	 * If the urgent flag is set, then the urgent pointer must
1367 	 * also be set and vice versa.  Good TCP packets do not have
1368 	 * just one of these set.
1369 	 */
1370 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1371 		fin->fin_flx |= FI_BAD;
1372 		DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1373 #if 0
1374 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1375 		/*
1376 		 * Ignore this case (#if 0) as it shows up in "real"
1377 		 * traffic with bogus values in the urgent pointer field.
1378 		 */
1379 		fin->fin_flx |= FI_BAD;
1380 		DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1381 #endif
1382 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1383 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1384 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1385 		fin->fin_flx |= FI_BAD;
1386 		DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin);
1387 #if 1
1388 	} else if (((flags & TH_SYN) != 0) &&
1389 		   ((flags & (TH_URG|TH_PUSH)) != 0)) {
1390 		/*
1391 		 * SYN with URG and PUSH set is not for normal TCP but it is
1392 		 * possible(?) with T/TCP...but who uses T/TCP?
1393 		 */
1394 		fin->fin_flx |= FI_BAD;
1395 		DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin);
1396 #endif
1397 	} else if (!(flags & TH_ACK)) {
1398 		/*
1399 		 * If the ack bit isn't set, then either the SYN or
1400 		 * RST bit must be set.  If the SYN bit is set, then
1401 		 * we expect the ACK field to be 0.  If the ACK is
1402 		 * not set and if URG, PSH or FIN are set, consdier
1403 		 * that to indicate a bad TCP packet.
1404 		 */
1405 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1406 			/*
1407 			 * Cisco PIX sets the ACK field to a random value.
1408 			 * In light of this, do not set FI_BAD until a patch
1409 			 * is available from Cisco to ensure that
1410 			 * interoperability between existing systems is
1411 			 * achieved.
1412 			 */
1413 			/*fin->fin_flx |= FI_BAD*/;
1414 			/*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/
1415 		} else if (!(flags & (TH_RST|TH_SYN))) {
1416 			fin->fin_flx |= FI_BAD;
1417 			DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin);
1418 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1419 			fin->fin_flx |= FI_BAD;
1420 			DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin);
1421 		}
1422 	}
1423 	if (fin->fin_flx & FI_BAD) {
1424 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1425 		return 1;
1426 	}
1427 
1428 	/*
1429 	 * At this point, it's not exactly clear what is to be gained by
1430 	 * marking up which TCP options are and are not present.  The one we
1431 	 * are most interested in is the TCP window scale.  This is only in
1432 	 * a SYN packet [RFC1323] so we don't need this here...?
1433 	 * Now if we were to analyse the header for passive fingerprinting,
1434 	 * then that might add some weight to adding this...
1435 	 */
1436 	if (tlen == sizeof(tcphdr_t)) {
1437 		return 0;
1438 	}
1439 
1440 	if (ipf_pr_pullup(fin, tlen) == -1) {
1441 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1442 		return -1;
1443 	}
1444 
1445 #if 0
1446 	tcp = fin->fin_dp;
1447 	ip = fin->fin_ip;
1448 	s = (u_char *)(tcp + 1);
1449 	off = IP_HL(ip) << 2;
1450 # ifdef _KERNEL
1451 	if (fin->fin_mp != NULL) {
1452 		mb_t *m = *fin->fin_mp;
1453 
1454 		if (off + tlen > M_LEN(m))
1455 			return;
1456 	}
1457 # endif
1458 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1459 		opt = *s;
1460 		if (opt == '\0')
1461 			break;
1462 		else if (opt == TCPOPT_NOP)
1463 			ol = 1;
1464 		else {
1465 			if (tlen < 2)
1466 				break;
1467 			ol = (int)*(s + 1);
1468 			if (ol < 2 || ol > tlen)
1469 				break;
1470 		}
1471 
1472 		for (i = 9, mv = 4; mv >= 0; ) {
1473 			op = ipopts + i;
1474 			if (opt == (u_char)op->ol_val) {
1475 				optmsk |= op->ol_bit;
1476 				break;
1477 			}
1478 		}
1479 		tlen -= ol;
1480 		s += ol;
1481 	}
1482 #endif /* 0 */
1483 
1484 	return 0;
1485 }
1486 
1487 
1488 
1489 /* ------------------------------------------------------------------------ */
1490 /* Function:    ipf_pr_udpcommon                                            */
1491 /* Returns:     int    - 0 = header ok, 1 = bad packet                      */
1492 /* Parameters:  fin(I) - pointer to packet information                      */
1493 /*                                                                          */
1494 /* Extract the UDP source and destination ports, if present.  If compiled   */
1495 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1496 /* ------------------------------------------------------------------------ */
1497 static INLINE int
ipf_pr_udpcommon(fin)1498 ipf_pr_udpcommon(fin)
1499 	fr_info_t *fin;
1500 {
1501 	udphdr_t *udp;
1502 
1503 	fin->fin_flx |= FI_TCPUDP;
1504 
1505 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1506 		if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1507 			ipf_main_softc_t *softc = fin->fin_main_soft;
1508 
1509 			fin->fin_flx |= FI_SHORT;
1510 			LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1511 			return 1;
1512 		}
1513 
1514 		udp = fin->fin_dp;
1515 
1516 		fin->fin_sport = ntohs(udp->uh_sport);
1517 		fin->fin_dport = ntohs(udp->uh_dport);
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 
1524 /* ------------------------------------------------------------------------ */
1525 /* Function:    ipf_pr_tcp                                                  */
1526 /* Returns:     void                                                        */
1527 /* Parameters:  fin(I) - pointer to packet information                      */
1528 /*                                                                          */
1529 /* IPv4 Only                                                                */
1530 /* Analyse the packet for IPv4/TCP properties.                              */
1531 /* ------------------------------------------------------------------------ */
1532 static INLINE void
ipf_pr_tcp(fin)1533 ipf_pr_tcp(fin)
1534 	fr_info_t *fin;
1535 {
1536 
1537 	ipf_pr_short(fin, sizeof(tcphdr_t));
1538 
1539 	if (ipf_pr_tcpcommon(fin) == 0)
1540 		ipf_checkv4sum(fin);
1541 }
1542 
1543 
1544 /* ------------------------------------------------------------------------ */
1545 /* Function:    ipf_pr_udp                                                  */
1546 /* Returns:     void                                                        */
1547 /* Parameters:  fin(I) - pointer to packet information                      */
1548 /*                                                                          */
1549 /* IPv4 Only                                                                */
1550 /* Analyse the packet for IPv4/UDP properties.                              */
1551 /* ------------------------------------------------------------------------ */
1552 static INLINE void
ipf_pr_udp(fin)1553 ipf_pr_udp(fin)
1554 	fr_info_t *fin;
1555 {
1556 
1557 	ipf_pr_short(fin, sizeof(udphdr_t));
1558 
1559 	if (ipf_pr_udpcommon(fin) == 0)
1560 		ipf_checkv4sum(fin);
1561 }
1562 
1563 
1564 /* ------------------------------------------------------------------------ */
1565 /* Function:    ipf_pr_esp                                                  */
1566 /* Returns:     void                                                        */
1567 /* Parameters:  fin(I) - pointer to packet information                      */
1568 /*                                                                          */
1569 /* Analyse the packet for ESP properties.                                   */
1570 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1571 /* even though the newer ESP packets must also have a sequence number that  */
1572 /* is 32bits as well, it is not possible(?) to determine the version from a */
1573 /* simple packet header.                                                    */
1574 /* ------------------------------------------------------------------------ */
1575 static INLINE void
ipf_pr_esp(fin)1576 ipf_pr_esp(fin)
1577 	fr_info_t *fin;
1578 {
1579 
1580 	if (fin->fin_off == 0) {
1581 		ipf_pr_short(fin, 8);
1582 		if (ipf_pr_pullup(fin, 8) == -1) {
1583 			ipf_main_softc_t *softc = fin->fin_main_soft;
1584 
1585 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1586 		}
1587 	}
1588 }
1589 
1590 
1591 /* ------------------------------------------------------------------------ */
1592 /* Function:    ipf_pr_ah                                                   */
1593 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1594 /* Parameters:  fin(I) - pointer to packet information                      */
1595 /*                                                                          */
1596 /* Analyse the packet for AH properties.                                    */
1597 /* The minimum length is taken to be the combination of all fields in the   */
1598 /* header being present and no authentication data (null algorithm used.)   */
1599 /* ------------------------------------------------------------------------ */
1600 static INLINE int
ipf_pr_ah(fin)1601 ipf_pr_ah(fin)
1602 	fr_info_t *fin;
1603 {
1604 	ipf_main_softc_t *softc = fin->fin_main_soft;
1605 	authhdr_t *ah;
1606 	int len;
1607 
1608 	fin->fin_flx |= FI_AH;
1609 	ipf_pr_short(fin, sizeof(*ah));
1610 
1611 	if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1612 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1613 		return IPPROTO_NONE;
1614 	}
1615 
1616 	if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1617 		DT(fr_v4_ah_pullup_1);
1618 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1619 		return IPPROTO_NONE;
1620 	}
1621 
1622 	ah = (authhdr_t *)fin->fin_dp;
1623 
1624 	len = (ah->ah_plen + 2) << 2;
1625 	ipf_pr_short(fin, len);
1626 	if (ipf_pr_pullup(fin, len) == -1) {
1627 		DT(fr_v4_ah_pullup_2);
1628 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1629 		return IPPROTO_NONE;
1630 	}
1631 
1632 	/*
1633 	 * Adjust fin_dp and fin_dlen for skipping over the authentication
1634 	 * header.
1635 	 */
1636 	fin->fin_dp = (char *)fin->fin_dp + len;
1637 	fin->fin_dlen -= len;
1638 	return ah->ah_next;
1639 }
1640 
1641 
1642 /* ------------------------------------------------------------------------ */
1643 /* Function:    ipf_pr_gre                                                  */
1644 /* Returns:     void                                                        */
1645 /* Parameters:  fin(I) - pointer to packet information                      */
1646 /*                                                                          */
1647 /* Analyse the packet for GRE properties.                                   */
1648 /* ------------------------------------------------------------------------ */
1649 static INLINE void
ipf_pr_gre(fin)1650 ipf_pr_gre(fin)
1651 	fr_info_t *fin;
1652 {
1653 	ipf_main_softc_t *softc = fin->fin_main_soft;
1654 	grehdr_t *gre;
1655 
1656 	ipf_pr_short(fin, sizeof(grehdr_t));
1657 
1658 	if (fin->fin_off != 0) {
1659 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1660 		return;
1661 	}
1662 
1663 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1664 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1665 		return;
1666 	}
1667 
1668 	gre = fin->fin_dp;
1669 	if (GRE_REV(gre->gr_flags) == 1)
1670 		fin->fin_data[0] = gre->gr_call;
1671 }
1672 
1673 
1674 /* ------------------------------------------------------------------------ */
1675 /* Function:    ipf_pr_ipv4hdr                                              */
1676 /* Returns:     void                                                        */
1677 /* Parameters:  fin(I) - pointer to packet information                      */
1678 /*                                                                          */
1679 /* IPv4 Only                                                                */
1680 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1681 /* Check all options present and flag their presence if any exist.          */
1682 /* ------------------------------------------------------------------------ */
1683 static INLINE void
ipf_pr_ipv4hdr(fin)1684 ipf_pr_ipv4hdr(fin)
1685 	fr_info_t *fin;
1686 {
1687 	u_short optmsk = 0, secmsk = 0, auth = 0;
1688 	int hlen, ol, mv, p, i;
1689 	const struct optlist *op;
1690 	u_char *s, opt;
1691 	u_short off;
1692 	fr_ip_t *fi;
1693 	ip_t *ip;
1694 
1695 	fi = &fin->fin_fi;
1696 	hlen = fin->fin_hlen;
1697 
1698 	ip = fin->fin_ip;
1699 	p = ip->ip_p;
1700 	fi->fi_p = p;
1701 	fin->fin_crc = p;
1702 	fi->fi_tos = ip->ip_tos;
1703 	fin->fin_id = ip->ip_id;
1704 	off = ntohs(ip->ip_off);
1705 
1706 	/* Get both TTL and protocol */
1707 	fi->fi_p = ip->ip_p;
1708 	fi->fi_ttl = ip->ip_ttl;
1709 
1710 	/* Zero out bits not used in IPv6 address */
1711 	fi->fi_src.i6[1] = 0;
1712 	fi->fi_src.i6[2] = 0;
1713 	fi->fi_src.i6[3] = 0;
1714 	fi->fi_dst.i6[1] = 0;
1715 	fi->fi_dst.i6[2] = 0;
1716 	fi->fi_dst.i6[3] = 0;
1717 
1718 	fi->fi_saddr = ip->ip_src.s_addr;
1719 	fin->fin_crc += fi->fi_saddr;
1720 	fi->fi_daddr = ip->ip_dst.s_addr;
1721 	fin->fin_crc += fi->fi_daddr;
1722 	if (IN_CLASSD(ntohl(fi->fi_daddr)))
1723 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1724 
1725 	/*
1726 	 * set packet attribute flags based on the offset and
1727 	 * calculate the byte offset that it represents.
1728 	 */
1729 	off &= IP_MF|IP_OFFMASK;
1730 	if (off != 0) {
1731 		int morefrag = off & IP_MF;
1732 
1733 		fi->fi_flx |= FI_FRAG;
1734 		off &= IP_OFFMASK;
1735 		if (off == 1 && p == IPPROTO_TCP) {
1736 			fin->fin_flx |= FI_SHORT;	/* RFC 3128 */
1737 			DT1(ipf_fi_tcp_frag_off_1, fr_info_t *, fin);
1738 		}
1739 		if (off != 0) {
1740 			fin->fin_flx |= FI_FRAGBODY;
1741 			off <<= 3;
1742 			if ((off + fin->fin_dlen > 65535) ||
1743 			    (fin->fin_dlen == 0) ||
1744 			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1745 				/*
1746 				 * The length of the packet, starting at its
1747 				 * offset cannot exceed 65535 (0xffff) as the
1748 				 * length of an IP packet is only 16 bits.
1749 				 *
1750 				 * Any fragment that isn't the last fragment
1751 				 * must have a length greater than 0 and it
1752 				 * must be an even multiple of 8.
1753 				 */
1754 				fi->fi_flx |= FI_BAD;
1755 				DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin);
1756 			}
1757 		}
1758 	}
1759 	fin->fin_off = off;
1760 
1761 	/*
1762 	 * Call per-protocol setup and checking
1763 	 */
1764 	if (p == IPPROTO_AH) {
1765 		/*
1766 		 * Treat AH differently because we expect there to be another
1767 		 * layer 4 header after it.
1768 		 */
1769 		p = ipf_pr_ah(fin);
1770 	}
1771 
1772 	switch (p)
1773 	{
1774 	case IPPROTO_UDP :
1775 		ipf_pr_udp(fin);
1776 		break;
1777 	case IPPROTO_TCP :
1778 		ipf_pr_tcp(fin);
1779 		break;
1780 	case IPPROTO_ICMP :
1781 		ipf_pr_icmp(fin);
1782 		break;
1783 	case IPPROTO_ESP :
1784 		ipf_pr_esp(fin);
1785 		break;
1786 	case IPPROTO_GRE :
1787 		ipf_pr_gre(fin);
1788 		break;
1789 	}
1790 
1791 	ip = fin->fin_ip;
1792 	if (ip == NULL)
1793 		return;
1794 
1795 	/*
1796 	 * If it is a standard IP header (no options), set the flag fields
1797 	 * which relate to options to 0.
1798 	 */
1799 	if (hlen == sizeof(*ip)) {
1800 		fi->fi_optmsk = 0;
1801 		fi->fi_secmsk = 0;
1802 		fi->fi_auth = 0;
1803 		return;
1804 	}
1805 
1806 	/*
1807 	 * So the IP header has some IP options attached.  Walk the entire
1808 	 * list of options present with this packet and set flags to indicate
1809 	 * which ones are here and which ones are not.  For the somewhat out
1810 	 * of date and obscure security classification options, set a flag to
1811 	 * represent which classification is present.
1812 	 */
1813 	fi->fi_flx |= FI_OPTIONS;
1814 
1815 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1816 		opt = *s;
1817 		if (opt == '\0')
1818 			break;
1819 		else if (opt == IPOPT_NOP)
1820 			ol = 1;
1821 		else {
1822 			if (hlen < 2)
1823 				break;
1824 			ol = (int)*(s + 1);
1825 			if (ol < 2 || ol > hlen)
1826 				break;
1827 		}
1828 		for (i = 9, mv = 4; mv >= 0; ) {
1829 			op = ipopts + i;
1830 
1831 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1832 				u_32_t doi;
1833 
1834 				switch (opt)
1835 				{
1836 				case IPOPT_SECURITY :
1837 					if (optmsk & op->ol_bit) {
1838 						fin->fin_flx |= FI_BAD;
1839 						DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1840 					} else {
1841 						doi = ipf_checkripso(s);
1842 						secmsk = doi >> 16;
1843 						auth = doi & 0xffff;
1844 					}
1845 					break;
1846 
1847 				case IPOPT_CIPSO :
1848 
1849 					if (optmsk & op->ol_bit) {
1850 						fin->fin_flx |= FI_BAD;
1851 						DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1852 					} else {
1853 						doi = ipf_checkcipso(fin,
1854 								     s, ol);
1855 						secmsk = doi >> 16;
1856 						auth = doi & 0xffff;
1857 					}
1858 					break;
1859 				}
1860 				optmsk |= op->ol_bit;
1861 			}
1862 
1863 			if (opt < op->ol_val)
1864 				i -= mv;
1865 			else
1866 				i += mv;
1867 			mv--;
1868 		}
1869 		hlen -= ol;
1870 		s += ol;
1871 	}
1872 
1873 	/*
1874 	 *
1875 	 */
1876 	if (auth && !(auth & 0x0100))
1877 		auth &= 0xff00;
1878 	fi->fi_optmsk = optmsk;
1879 	fi->fi_secmsk = secmsk;
1880 	fi->fi_auth = auth;
1881 }
1882 
1883 
1884 /* ------------------------------------------------------------------------ */
1885 /* Function:    ipf_checkripso                                              */
1886 /* Returns:     void                                                        */
1887 /* Parameters:  s(I)   - pointer to start of RIPSO option                   */
1888 /*                                                                          */
1889 /* ------------------------------------------------------------------------ */
1890 static u_32_t
ipf_checkripso(s)1891 ipf_checkripso(s)
1892 	u_char *s;
1893 {
1894 	const struct optlist *sp;
1895 	u_short secmsk = 0, auth = 0;
1896 	u_char sec;
1897 	int j, m;
1898 
1899 	sec = *(s + 2);	/* classification */
1900 	for (j = 3, m = 2; m >= 0; ) {
1901 		sp = secopt + j;
1902 		if (sec == sp->ol_val) {
1903 			secmsk |= sp->ol_bit;
1904 			auth = *(s + 3);
1905 			auth *= 256;
1906 			auth += *(s + 4);
1907 			break;
1908 		}
1909 		if (sec < sp->ol_val)
1910 			j -= m;
1911 		else
1912 			j += m;
1913 		m--;
1914 	}
1915 
1916 	return (secmsk << 16) | auth;
1917 }
1918 
1919 
1920 /* ------------------------------------------------------------------------ */
1921 /* Function:    ipf_checkcipso                                              */
1922 /* Returns:     u_32_t  - 0 = failure, else the doi from the header         */
1923 /* Parameters:  fin(IO) - pointer to packet information                     */
1924 /*              s(I)    - pointer to start of CIPSO option                  */
1925 /*              ol(I)   - length of CIPSO option field                      */
1926 /*                                                                          */
1927 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1928 /* header and returns that whilst also storing the highest sensitivity      */
1929 /* value found in the fr_info_t structure.                                  */
1930 /*                                                                          */
1931 /* No attempt is made to extract the category bitmaps as these are defined  */
1932 /* by the user (rather than the protocol) and can be rather numerous on the */
1933 /* end nodes.                                                               */
1934 /* ------------------------------------------------------------------------ */
1935 static u_32_t
ipf_checkcipso(fin,s,ol)1936 ipf_checkcipso(fin, s, ol)
1937 	fr_info_t *fin;
1938 	u_char *s;
1939 	int ol;
1940 {
1941 	ipf_main_softc_t *softc = fin->fin_main_soft;
1942 	fr_ip_t *fi;
1943 	u_32_t doi;
1944 	u_char *t, tag, tlen, sensitivity;
1945 	int len;
1946 
1947 	if (ol < 6 || ol > 40) {
1948 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1949 		fin->fin_flx |= FI_BAD;
1950 		DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol);
1951 		return 0;
1952 	}
1953 
1954 	fi = &fin->fin_fi;
1955 	fi->fi_sensitivity = 0;
1956 	/*
1957 	 * The DOI field MUST be there.
1958 	 */
1959 	bcopy(s + 2, &doi, sizeof(doi));
1960 
1961 	t = (u_char *)s + 6;
1962 	for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1963 		tag = *t;
1964 		tlen = *(t + 1);
1965 		if (tlen > len || tlen < 4 || tlen > 34) {
1966 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1967 			fin->fin_flx |= FI_BAD;
1968 			DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen);
1969 			return 0;
1970 		}
1971 
1972 		sensitivity = 0;
1973 		/*
1974 		 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1975 		 * draft (16 July 1992) that has expired.
1976 		 */
1977 		if (tag == 0) {
1978 			fin->fin_flx |= FI_BAD;
1979 			DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag);
1980 			continue;
1981 		} else if (tag == 1) {
1982 			if (*(t + 2) != 0) {
1983 				fin->fin_flx |= FI_BAD;
1984 				DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2));
1985 				continue;
1986 			}
1987 			sensitivity = *(t + 3);
1988 			/* Category bitmap for categories 0-239 */
1989 
1990 		} else if (tag == 4) {
1991 			if (*(t + 2) != 0) {
1992 				fin->fin_flx |= FI_BAD;
1993 				DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2));
1994 				continue;
1995 			}
1996 			sensitivity = *(t + 3);
1997 			/* Enumerated categories, 16bits each, upto 15 */
1998 
1999 		} else if (tag == 5) {
2000 			if (*(t + 2) != 0) {
2001 				fin->fin_flx |= FI_BAD;
2002 				DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2));
2003 				continue;
2004 			}
2005 			sensitivity = *(t + 3);
2006 			/* Range of categories (2*16bits), up to 7 pairs */
2007 
2008 		} else if (tag > 127) {
2009 			/* Custom defined DOI */
2010 			;
2011 		} else {
2012 			fin->fin_flx |= FI_BAD;
2013 			DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag);
2014 			continue;
2015 		}
2016 
2017 		if (sensitivity > fi->fi_sensitivity)
2018 			fi->fi_sensitivity = sensitivity;
2019 	}
2020 
2021 	return doi;
2022 }
2023 
2024 
2025 /* ------------------------------------------------------------------------ */
2026 /* Function:    ipf_makefrip                                                */
2027 /* Returns:     int     - 0 == packet ok, -1 == packet freed                */
2028 /* Parameters:  hlen(I) - length of IP packet header                        */
2029 /*              ip(I)   - pointer to the IP header                          */
2030 /*              fin(IO) - pointer to packet information                     */
2031 /*                                                                          */
2032 /* Compact the IP header into a structure which contains just the info.     */
2033 /* which is useful for comparing IP headers with and store this information */
2034 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
2035 /* this function will be called with either an IPv4 or IPv6 packet.         */
2036 /* ------------------------------------------------------------------------ */
2037 int
ipf_makefrip(hlen,ip,fin)2038 ipf_makefrip(hlen, ip, fin)
2039 	int hlen;
2040 	ip_t *ip;
2041 	fr_info_t *fin;
2042 {
2043 	ipf_main_softc_t *softc = fin->fin_main_soft;
2044 	int v;
2045 
2046 	fin->fin_depth = 0;
2047 	fin->fin_hlen = (u_short)hlen;
2048 	fin->fin_ip = ip;
2049 	fin->fin_rule = 0xffffffff;
2050 	fin->fin_group[0] = -1;
2051 	fin->fin_group[1] = '\0';
2052 	fin->fin_dp = (char *)ip + hlen;
2053 
2054 	v = fin->fin_v;
2055 	if (v == 4) {
2056 		fin->fin_plen = ntohs(ip->ip_len);
2057 		fin->fin_dlen = fin->fin_plen - hlen;
2058 		ipf_pr_ipv4hdr(fin);
2059 #ifdef	USE_INET6
2060 	} else if (v == 6) {
2061 		fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2062 		fin->fin_dlen = fin->fin_plen;
2063 		fin->fin_plen += hlen;
2064 
2065 		ipf_pr_ipv6hdr(fin);
2066 #endif
2067 	}
2068 	if (fin->fin_ip == NULL) {
2069 		LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2070 		return -1;
2071 	}
2072 	return 0;
2073 }
2074 
2075 
2076 /* ------------------------------------------------------------------------ */
2077 /* Function:    ipf_portcheck                                               */
2078 /* Returns:     int - 1 == port matched, 0 == port match failed             */
2079 /* Parameters:  frp(I) - pointer to port check `expression'                 */
2080 /*              pop(I) - port number to evaluate                            */
2081 /*                                                                          */
2082 /* Perform a comparison of a port number against some other(s), using a     */
2083 /* structure with compare information stored in it.                         */
2084 /* ------------------------------------------------------------------------ */
2085 static INLINE int
ipf_portcheck(frp,pop)2086 ipf_portcheck(frp, pop)
2087 	frpcmp_t *frp;
2088 	u_32_t pop;
2089 {
2090 	int err = 1;
2091 	u_32_t po;
2092 
2093 	po = frp->frp_port;
2094 
2095 	/*
2096 	 * Do opposite test to that required and continue if that succeeds.
2097 	 */
2098 	switch (frp->frp_cmp)
2099 	{
2100 	case FR_EQUAL :
2101 		if (pop != po) /* EQUAL */
2102 			err = 0;
2103 		break;
2104 	case FR_NEQUAL :
2105 		if (pop == po) /* NOTEQUAL */
2106 			err = 0;
2107 		break;
2108 	case FR_LESST :
2109 		if (pop >= po) /* LESSTHAN */
2110 			err = 0;
2111 		break;
2112 	case FR_GREATERT :
2113 		if (pop <= po) /* GREATERTHAN */
2114 			err = 0;
2115 		break;
2116 	case FR_LESSTE :
2117 		if (pop > po) /* LT or EQ */
2118 			err = 0;
2119 		break;
2120 	case FR_GREATERTE :
2121 		if (pop < po) /* GT or EQ */
2122 			err = 0;
2123 		break;
2124 	case FR_OUTRANGE :
2125 		if (pop >= po && pop <= frp->frp_top) /* Out of range */
2126 			err = 0;
2127 		break;
2128 	case FR_INRANGE :
2129 		if (pop <= po || pop >= frp->frp_top) /* In range */
2130 			err = 0;
2131 		break;
2132 	case FR_INCRANGE :
2133 		if (pop < po || pop > frp->frp_top) /* Inclusive range */
2134 			err = 0;
2135 		break;
2136 	default :
2137 		break;
2138 	}
2139 	return err;
2140 }
2141 
2142 
2143 /* ------------------------------------------------------------------------ */
2144 /* Function:    ipf_tcpudpchk                                               */
2145 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
2146 /* Parameters:  fda(I) - pointer to packet information                      */
2147 /*              ft(I)  - pointer to structure with comparison data          */
2148 /*                                                                          */
2149 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
2150 /* structure containing information that we want to match against.          */
2151 /* ------------------------------------------------------------------------ */
2152 int
ipf_tcpudpchk(fi,ft)2153 ipf_tcpudpchk(fi, ft)
2154 	fr_ip_t *fi;
2155 	frtuc_t *ft;
2156 {
2157 	int err = 1;
2158 
2159 	/*
2160 	 * Both ports should *always* be in the first fragment.
2161 	 * So far, I cannot find any cases where they can not be.
2162 	 *
2163 	 * compare destination ports
2164 	 */
2165 	if (ft->ftu_dcmp)
2166 		err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2167 
2168 	/*
2169 	 * compare source ports
2170 	 */
2171 	if (err && ft->ftu_scmp)
2172 		err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2173 
2174 	/*
2175 	 * If we don't have all the TCP/UDP header, then how can we
2176 	 * expect to do any sort of match on it ?  If we were looking for
2177 	 * TCP flags, then NO match.  If not, then match (which should
2178 	 * satisfy the "short" class too).
2179 	 */
2180 	if (err && (fi->fi_p == IPPROTO_TCP)) {
2181 		if (fi->fi_flx & FI_SHORT)
2182 			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2183 		/*
2184 		 * Match the flags ?  If not, abort this match.
2185 		 */
2186 		if (ft->ftu_tcpfm &&
2187 		    ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2188 			FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2189 				 ft->ftu_tcpfm, ft->ftu_tcpf));
2190 			err = 0;
2191 		}
2192 	}
2193 	return err;
2194 }
2195 
2196 
2197 /* ------------------------------------------------------------------------ */
2198 /* Function:    ipf_check_ipf                                               */
2199 /* Returns:     int - 0 == match, else no match                             */
2200 /* Parameters:  fin(I)     - pointer to packet information                  */
2201 /*              fr(I)      - pointer to filter rule                         */
2202 /*              portcmp(I) - flag indicating whether to attempt matching on */
2203 /*                           TCP/UDP port data.                             */
2204 /*                                                                          */
2205 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
2206 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2207 /* this function.                                                           */
2208 /* ------------------------------------------------------------------------ */
2209 static INLINE int
ipf_check_ipf(fin,fr,portcmp)2210 ipf_check_ipf(fin, fr, portcmp)
2211 	fr_info_t *fin;
2212 	frentry_t *fr;
2213 	int portcmp;
2214 {
2215 	u_32_t	*ld, *lm, *lip;
2216 	fripf_t *fri;
2217 	fr_ip_t *fi;
2218 	int i;
2219 
2220 	fi = &fin->fin_fi;
2221 	fri = fr->fr_ipf;
2222 	lip = (u_32_t *)fi;
2223 	lm = (u_32_t *)&fri->fri_mip;
2224 	ld = (u_32_t *)&fri->fri_ip;
2225 
2226 	/*
2227 	 * first 32 bits to check coversion:
2228 	 * IP version, TOS, TTL, protocol
2229 	 */
2230 	i = ((*lip & *lm) != *ld);
2231 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2232 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2233 	if (i)
2234 		return 1;
2235 
2236 	/*
2237 	 * Next 32 bits is a constructed bitmask indicating which IP options
2238 	 * are present (if any) in this packet.
2239 	 */
2240 	lip++, lm++, ld++;
2241 	i = ((*lip & *lm) != *ld);
2242 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2243 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2244 	if (i != 0)
2245 		return 1;
2246 
2247 	lip++, lm++, ld++;
2248 	/*
2249 	 * Unrolled loops (4 each, for 32 bits) for address checks.
2250 	 */
2251 	/*
2252 	 * Check the source address.
2253 	 */
2254 	if (fr->fr_satype == FRI_LOOKUP) {
2255 		i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2256 				      fi->fi_v, lip, fin->fin_plen);
2257 		if (i == -1)
2258 			return 1;
2259 		lip += 3;
2260 		lm += 3;
2261 		ld += 3;
2262 	} else {
2263 		i = ((*lip & *lm) != *ld);
2264 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2265 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2266 		if (fi->fi_v == 6) {
2267 			lip++, lm++, ld++;
2268 			i |= ((*lip & *lm) != *ld);
2269 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2270 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2271 			lip++, lm++, ld++;
2272 			i |= ((*lip & *lm) != *ld);
2273 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2274 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2275 			lip++, lm++, ld++;
2276 			i |= ((*lip & *lm) != *ld);
2277 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2278 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2279 		} else {
2280 			lip += 3;
2281 			lm += 3;
2282 			ld += 3;
2283 		}
2284 	}
2285 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2286 	if (i != 0)
2287 		return 1;
2288 
2289 	/*
2290 	 * Check the destination address.
2291 	 */
2292 	lip++, lm++, ld++;
2293 	if (fr->fr_datype == FRI_LOOKUP) {
2294 		i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2295 				      fi->fi_v, lip, fin->fin_plen);
2296 		if (i == -1)
2297 			return 1;
2298 		lip += 3;
2299 		lm += 3;
2300 		ld += 3;
2301 	} else {
2302 		i = ((*lip & *lm) != *ld);
2303 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2304 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2305 		if (fi->fi_v == 6) {
2306 			lip++, lm++, ld++;
2307 			i |= ((*lip & *lm) != *ld);
2308 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2309 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2310 			lip++, lm++, ld++;
2311 			i |= ((*lip & *lm) != *ld);
2312 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2313 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2314 			lip++, lm++, ld++;
2315 			i |= ((*lip & *lm) != *ld);
2316 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2317 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2318 		} else {
2319 			lip += 3;
2320 			lm += 3;
2321 			ld += 3;
2322 		}
2323 	}
2324 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2325 	if (i != 0)
2326 		return 1;
2327 	/*
2328 	 * IP addresses matched.  The next 32bits contains:
2329 	 * mast of old IP header security & authentication bits.
2330 	 */
2331 	lip++, lm++, ld++;
2332 	i = (*ld - (*lip & *lm));
2333 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2334 
2335 	/*
2336 	 * Next we have 32 bits of packet flags.
2337 	 */
2338 	lip++, lm++, ld++;
2339 	i |= (*ld - (*lip & *lm));
2340 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2341 
2342 	if (i == 0) {
2343 		/*
2344 		 * If a fragment, then only the first has what we're
2345 		 * looking for here...
2346 		 */
2347 		if (portcmp) {
2348 			if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2349 				i = 1;
2350 		} else {
2351 			if (fr->fr_dcmp || fr->fr_scmp ||
2352 			    fr->fr_tcpf || fr->fr_tcpfm)
2353 				i = 1;
2354 			if (fr->fr_icmpm || fr->fr_icmp) {
2355 				if (((fi->fi_p != IPPROTO_ICMP) &&
2356 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
2357 				    fin->fin_off || (fin->fin_dlen < 2))
2358 					i = 1;
2359 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2360 					 fr->fr_icmp) {
2361 					FR_DEBUG(("i. %#x & %#x != %#x\n",
2362 						 fin->fin_data[0],
2363 						 fr->fr_icmpm, fr->fr_icmp));
2364 					i = 1;
2365 				}
2366 			}
2367 		}
2368 	}
2369 	return i;
2370 }
2371 
2372 
2373 /* ------------------------------------------------------------------------ */
2374 /* Function:    ipf_scanlist                                                */
2375 /* Returns:     int - result flags of scanning filter list                  */
2376 /* Parameters:  fin(I) - pointer to packet information                      */
2377 /*              pass(I) - default result to return for filtering            */
2378 /*                                                                          */
2379 /* Check the input/output list of rules for a match to the current packet.  */
2380 /* If a match is found, the value of fr_flags from the rule becomes the     */
2381 /* return value and fin->fin_fr points to the matched rule.                 */
2382 /*                                                                          */
2383 /* This function may be called recusively upto 16 times (limit inbuilt.)    */
2384 /* When unwinding, it should finish up with fin_depth as 0.                 */
2385 /*                                                                          */
2386 /* Could be per interface, but this gets real nasty when you don't have,    */
2387 /* or can't easily change, the kernel source code to .                      */
2388 /* ------------------------------------------------------------------------ */
2389 int
ipf_scanlist(fin,pass)2390 ipf_scanlist(fin, pass)
2391 	fr_info_t *fin;
2392 	u_32_t pass;
2393 {
2394 	ipf_main_softc_t *softc = fin->fin_main_soft;
2395 	int rulen, portcmp, off, skip;
2396 	struct frentry *fr, *fnext;
2397 	u_32_t passt, passo;
2398 
2399 	/*
2400 	 * Do not allow nesting deeper than 16 levels.
2401 	 */
2402 	if (fin->fin_depth >= 16)
2403 		return pass;
2404 
2405 	fr = fin->fin_fr;
2406 
2407 	/*
2408 	 * If there are no rules in this list, return now.
2409 	 */
2410 	if (fr == NULL)
2411 		return pass;
2412 
2413 	skip = 0;
2414 	portcmp = 0;
2415 	fin->fin_depth++;
2416 	fin->fin_fr = NULL;
2417 	off = fin->fin_off;
2418 
2419 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2420 		portcmp = 1;
2421 
2422 	for (rulen = 0; fr; fr = fnext, rulen++) {
2423 		fnext = fr->fr_next;
2424 		if (skip != 0) {
2425 			FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2426 			skip--;
2427 			continue;
2428 		}
2429 
2430 		/*
2431 		 * In all checks below, a null (zero) value in the
2432 		 * filter struture is taken to mean a wildcard.
2433 		 *
2434 		 * check that we are working for the right interface
2435 		 */
2436 #ifdef	_KERNEL
2437 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2438 			continue;
2439 #else
2440 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
2441 			printf("\n");
2442 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2443 				  FR_ISPASS(pass) ? 'p' :
2444 				  FR_ISACCOUNT(pass) ? 'A' :
2445 				  FR_ISAUTH(pass) ? 'a' :
2446 				  (pass & FR_NOMATCH) ? 'n' :'b'));
2447 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2448 			continue;
2449 		FR_VERBOSE((":i"));
2450 #endif
2451 
2452 		switch (fr->fr_type)
2453 		{
2454 		case FR_T_IPF :
2455 		case FR_T_IPF_BUILTIN :
2456 			if (ipf_check_ipf(fin, fr, portcmp))
2457 				continue;
2458 			break;
2459 #if defined(IPFILTER_BPF)
2460 		case FR_T_BPFOPC :
2461 		case FR_T_BPFOPC_BUILTIN :
2462 		    {
2463 			u_char *mc;
2464 			int wlen;
2465 
2466 			if (*fin->fin_mp == NULL)
2467 				continue;
2468 			if (fin->fin_family != fr->fr_family)
2469 				continue;
2470 			mc = (u_char *)fin->fin_m;
2471 			wlen = fin->fin_dlen + fin->fin_hlen;
2472 			if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2473 				continue;
2474 			break;
2475 		    }
2476 #endif
2477 		case FR_T_CALLFUNC_BUILTIN :
2478 		    {
2479 			frentry_t *f;
2480 
2481 			f = (*fr->fr_func)(fin, &pass);
2482 			if (f != NULL)
2483 				fr = f;
2484 			else
2485 				continue;
2486 			break;
2487 		    }
2488 
2489 		case FR_T_IPFEXPR :
2490 		case FR_T_IPFEXPR_BUILTIN :
2491 			if (fin->fin_family != fr->fr_family)
2492 				continue;
2493 			if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2494 				continue;
2495 			break;
2496 
2497 		default :
2498 			break;
2499 		}
2500 
2501 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2502 			if (fin->fin_nattag == NULL)
2503 				continue;
2504 			if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2505 				continue;
2506 		}
2507 		FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2508 
2509 		passt = fr->fr_flags;
2510 
2511 		/*
2512 		 * If the rule is a "call now" rule, then call the function
2513 		 * in the rule, if it exists and use the results from that.
2514 		 * If the function pointer is bad, just make like we ignore
2515 		 * it, except for increasing the hit counter.
2516 		 */
2517 		if ((passt & FR_CALLNOW) != 0) {
2518 			frentry_t *frs;
2519 
2520 			ATOMIC_INC64(fr->fr_hits);
2521 			if ((fr->fr_func == NULL) ||
2522 			    (fr->fr_func == (ipfunc_t)-1))
2523 				continue;
2524 
2525 			frs = fin->fin_fr;
2526 			fin->fin_fr = fr;
2527 			fr = (*fr->fr_func)(fin, &passt);
2528 			if (fr == NULL) {
2529 				fin->fin_fr = frs;
2530 				continue;
2531 			}
2532 			passt = fr->fr_flags;
2533 		}
2534 		fin->fin_fr = fr;
2535 
2536 #ifdef  IPFILTER_LOG
2537 		/*
2538 		 * Just log this packet...
2539 		 */
2540 		if ((passt & FR_LOGMASK) == FR_LOG) {
2541 			if (ipf_log_pkt(fin, passt) == -1) {
2542 				if (passt & FR_LOGORBLOCK) {
2543 					DT(frb_logfail);
2544 					passt &= ~FR_CMDMASK;
2545 					passt |= FR_BLOCK|FR_QUICK;
2546 					fin->fin_reason = FRB_LOGFAIL;
2547 				}
2548 			}
2549 		}
2550 #endif /* IPFILTER_LOG */
2551 
2552 		MUTEX_ENTER(&fr->fr_lock);
2553 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2554 		fr->fr_hits++;
2555 		MUTEX_EXIT(&fr->fr_lock);
2556 		fin->fin_rule = rulen;
2557 
2558 		passo = pass;
2559 		if (FR_ISSKIP(passt)) {
2560 			skip = fr->fr_arg;
2561 			continue;
2562 		} else if (((passt & FR_LOGMASK) != FR_LOG) &&
2563 			   ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2564 			pass = passt;
2565 		}
2566 
2567 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2568 			fin->fin_icode = fr->fr_icode;
2569 
2570 		if (fr->fr_group != -1) {
2571 			(void) strncpy(fin->fin_group,
2572 				       FR_NAME(fr, fr_group),
2573 				       strlen(FR_NAME(fr, fr_group)));
2574 		} else {
2575 			fin->fin_group[0] = '\0';
2576 		}
2577 
2578 		FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2579 
2580 		if (fr->fr_grphead != NULL) {
2581 			fin->fin_fr = fr->fr_grphead->fg_start;
2582 			FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2583 
2584 			if (FR_ISDECAPS(passt))
2585 				passt = ipf_decaps(fin, pass, fr->fr_icode);
2586 			else
2587 				passt = ipf_scanlist(fin, pass);
2588 
2589 			if (fin->fin_fr == NULL) {
2590 				fin->fin_rule = rulen;
2591 				if (fr->fr_group != -1)
2592 					(void) strncpy(fin->fin_group,
2593 						       fr->fr_names +
2594 						       fr->fr_group,
2595 						       strlen(fr->fr_names +
2596 							      fr->fr_group));
2597 				fin->fin_fr = fr;
2598 				passt = pass;
2599 			}
2600 			pass = passt;
2601 		}
2602 
2603 		if (pass & FR_QUICK) {
2604 			/*
2605 			 * Finally, if we've asked to track state for this
2606 			 * packet, set it up.  Add state for "quick" rules
2607 			 * here so that if the action fails we can consider
2608 			 * the rule to "not match" and keep on processing
2609 			 * filter rules.
2610 			 */
2611 			if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2612 			    !(fin->fin_flx & FI_STATE)) {
2613 				int out = fin->fin_out;
2614 
2615 				fin->fin_fr = fr;
2616 				if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2617 					LBUMPD(ipf_stats[out], fr_ads);
2618 				} else {
2619 					LBUMPD(ipf_stats[out], fr_bads);
2620 					pass = passo;
2621 					continue;
2622 				}
2623 			}
2624 			break;
2625 		}
2626 	}
2627 	fin->fin_depth--;
2628 	return pass;
2629 }
2630 
2631 
2632 /* ------------------------------------------------------------------------ */
2633 /* Function:    ipf_acctpkt                                                 */
2634 /* Returns:     frentry_t* - always returns NULL                            */
2635 /* Parameters:  fin(I) - pointer to packet information                      */
2636 /*              passp(IO) - pointer to current/new filter decision (unused) */
2637 /*                                                                          */
2638 /* Checks a packet against accounting rules, if there are any for the given */
2639 /* IP protocol version.                                                     */
2640 /*                                                                          */
2641 /* N.B.: this function returns NULL to match the prototype used by other    */
2642 /* functions called from the IPFilter "mainline" in ipf_check().            */
2643 /* ------------------------------------------------------------------------ */
2644 frentry_t *
ipf_acctpkt(fin,passp)2645 ipf_acctpkt(fin, passp)
2646 	fr_info_t *fin;
2647 	u_32_t *passp;
2648 {
2649 	ipf_main_softc_t *softc = fin->fin_main_soft;
2650 	char group[FR_GROUPLEN];
2651 	frentry_t *fr, *frsave;
2652 	u_32_t pass, rulen;
2653 
2654 	passp = passp;
2655 	fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2656 
2657 	if (fr != NULL) {
2658 		frsave = fin->fin_fr;
2659 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2660 		rulen = fin->fin_rule;
2661 		fin->fin_fr = fr;
2662 		pass = ipf_scanlist(fin, FR_NOMATCH);
2663 		if (FR_ISACCOUNT(pass)) {
2664 			LBUMPD(ipf_stats[0], fr_acct);
2665 		}
2666 		fin->fin_fr = frsave;
2667 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2668 		fin->fin_rule = rulen;
2669 	}
2670 	return NULL;
2671 }
2672 
2673 
2674 /* ------------------------------------------------------------------------ */
2675 /* Function:    ipf_firewall                                                */
2676 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2677 /*                           were found, returns NULL.                      */
2678 /* Parameters:  fin(I) - pointer to packet information                      */
2679 /*              passp(IO) - pointer to current/new filter decision (unused) */
2680 /*                                                                          */
2681 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2682 /* there are any matches.  The first check is to see if a match can be seen */
2683 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2684 /* matching rule is found, take any appropriate actions as defined by the   */
2685 /* rule - except logging.                                                   */
2686 /* ------------------------------------------------------------------------ */
2687 static frentry_t *
ipf_firewall(fin,passp)2688 ipf_firewall(fin, passp)
2689 	fr_info_t *fin;
2690 	u_32_t *passp;
2691 {
2692 	ipf_main_softc_t *softc = fin->fin_main_soft;
2693 	frentry_t *fr;
2694 	u_32_t pass;
2695 	int out;
2696 
2697 	out = fin->fin_out;
2698 	pass = *passp;
2699 
2700 	/*
2701 	 * This rule cache will only affect packets that are not being
2702 	 * statefully filtered.
2703 	 */
2704 	fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2705 	if (fin->fin_fr != NULL)
2706 		pass = ipf_scanlist(fin, softc->ipf_pass);
2707 
2708 	if ((pass & FR_NOMATCH)) {
2709 		LBUMPD(ipf_stats[out], fr_nom);
2710 	}
2711 	fr = fin->fin_fr;
2712 
2713 	/*
2714 	 * Apply packets per second rate-limiting to a rule as required.
2715 	 */
2716 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2717 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2718 		DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2719 		pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2720 		pass |= FR_BLOCK;
2721 		LBUMPD(ipf_stats[out], fr_ppshit);
2722 		fin->fin_reason = FRB_PPSRATE;
2723 	}
2724 
2725 	/*
2726 	 * If we fail to add a packet to the authorization queue, then we
2727 	 * drop the packet later.  However, if it was added then pretend
2728 	 * we've dropped it already.
2729 	 */
2730 	if (FR_ISAUTH(pass)) {
2731 		if (ipf_auth_new(fin->fin_m, fin) != 0) {
2732 			DT1(frb_authnew, fr_info_t *, fin);
2733 			fin->fin_m = *fin->fin_mp = NULL;
2734 			fin->fin_reason = FRB_AUTHNEW;
2735 			fin->fin_error = 0;
2736 		} else {
2737 			IPFERROR(1);
2738 			fin->fin_error = ENOSPC;
2739 		}
2740 	}
2741 
2742 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2743 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2744 		(void) (*fr->fr_func)(fin, &pass);
2745 
2746 	/*
2747 	 * If a rule is a pre-auth rule, check again in the list of rules
2748 	 * loaded for authenticated use.  It does not particulary matter
2749 	 * if this search fails because a "preauth" result, from a rule,
2750 	 * is treated as "not a pass", hence the packet is blocked.
2751 	 */
2752 	if (FR_ISPREAUTH(pass)) {
2753 		pass = ipf_auth_pre_scanlist(softc, fin, pass);
2754 	}
2755 
2756 	/*
2757 	 * If the rule has "keep frag" and the packet is actually a fragment,
2758 	 * then create a fragment state entry.
2759 	 */
2760 	if (pass & FR_KEEPFRAG) {
2761 		if (fin->fin_flx & FI_FRAG) {
2762 			if (ipf_frag_new(softc, fin, pass) == -1) {
2763 				LBUMP(ipf_stats[out].fr_bnfr);
2764 			} else {
2765 				LBUMP(ipf_stats[out].fr_nfr);
2766 			}
2767 		} else {
2768 			LBUMP(ipf_stats[out].fr_cfr);
2769 		}
2770 	}
2771 
2772 	fr = fin->fin_fr;
2773 	*passp = pass;
2774 
2775 	return fr;
2776 }
2777 
2778 
2779 /* ------------------------------------------------------------------------ */
2780 /* Function:    ipf_check                                                   */
2781 /* Returns:     int -  0 == packet allowed through,                         */
2782 /*              User space:                                                 */
2783 /*                    -1 == packet blocked                                  */
2784 /*                     1 == packet not matched                              */
2785 /*                    -2 == requires authentication                         */
2786 /*              Kernel:                                                     */
2787 /*                   > 0 == filter error # for packet                       */
2788 /* Parameters: ctx(I)  - pointer to the instance context                    */
2789 /*             ip(I)   - pointer to start of IPv4/6 packet                  */
2790 /*             hlen(I) - length of header                                   */
2791 /*             ifp(I)  - pointer to interface this packet is on             */
2792 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2793 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2794 /*                       IP packet.                                         */
2795 /* Solaris:                                                                 */
2796 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2797 /*                       interface & direction.                             */
2798 /*                                                                          */
2799 /* ipf_check() is the master function for all IPFilter packet processing.   */
2800 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2801 /* authorisation (or pre-authorisation), presence of related state info.,   */
2802 /* generating log entries, IP packet accounting, routing of packets as      */
2803 /* directed by firewall rules and of course whether or not to allow the     */
2804 /* packet to be further processed by the kernel.                            */
2805 /*                                                                          */
2806 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2807 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2808 /* by "mp" changed to a new buffer.                                         */
2809 /* ------------------------------------------------------------------------ */
2810 int
ipf_check(ctx,ip,hlen,ifp,out,qif,mp)2811 ipf_check(ctx, ip, hlen, ifp, out
2812 #if defined(_KERNEL) && defined(MENTAT)
2813 	, qif, mp)
2814 	void *qif;
2815 #else
2816 	, mp)
2817 #endif
2818 	mb_t **mp;
2819 	ip_t *ip;
2820 	int hlen;
2821 	struct ifnet *ifp;
2822 	int out;
2823 	void *ctx;
2824 {
2825 	/*
2826 	 * The above really sucks, but short of writing a diff
2827 	 */
2828 	ipf_main_softc_t *softc = ctx;
2829 	fr_info_t frinfo;
2830 	fr_info_t *fin = &frinfo;
2831 	u_32_t pass = softc->ipf_pass;
2832 	frentry_t *fr = NULL;
2833 	int v = IP_V(ip);
2834 	mb_t *mc = NULL;
2835 	mb_t *m;
2836 	/*
2837 	 * The first part of ipf_check() deals with making sure that what goes
2838 	 * into the filtering engine makes some sense.  Information about the
2839 	 * the packet is distilled, collected into a fr_info_t structure and
2840 	 * the an attempt to ensure the buffer the packet is in is big enough
2841 	 * to hold all the required packet headers.
2842 	 */
2843 #ifdef	_KERNEL
2844 # ifdef MENTAT
2845 	qpktinfo_t *qpi = qif;
2846 
2847 #  ifdef __sparc
2848 	if ((u_int)ip & 0x3)
2849 		return 2;
2850 #  endif
2851 # else
2852 	SPL_INT(s);
2853 # endif
2854 
2855 	if (softc->ipf_running <= 0) {
2856 		return 0;
2857 	}
2858 
2859 	bzero((char *)fin, sizeof(*fin));
2860 
2861 # ifdef MENTAT
2862 	if (qpi->qpi_flags & QF_BROADCAST)
2863 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2864 	if (qpi->qpi_flags & QF_MULTICAST)
2865 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2866 	m = qpi->qpi_m;
2867 	fin->fin_qfm = m;
2868 	fin->fin_qpi = qpi;
2869 # else /* MENTAT */
2870 
2871 	m = *mp;
2872 
2873 #  if defined(M_MCAST)
2874 	if ((m->m_flags & M_MCAST) != 0)
2875 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2876 #  endif
2877 #  if defined(M_MLOOP)
2878 	if ((m->m_flags & M_MLOOP) != 0)
2879 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2880 #  endif
2881 #  if defined(M_BCAST)
2882 	if ((m->m_flags & M_BCAST) != 0)
2883 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2884 #  endif
2885 #  ifdef M_CANFASTFWD
2886 	/*
2887 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2888 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2889 	 * XXX get a "can-fast-forward" filter rule.
2890 	 */
2891 	m->m_flags &= ~M_CANFASTFWD;
2892 #  endif /* M_CANFASTFWD */
2893 #  if defined(CSUM_DELAY_DATA) && !defined(__FreeBSD_version)
2894 	/*
2895 	 * disable delayed checksums.
2896 	 */
2897 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2898 		in_delayed_cksum(m);
2899 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2900 	}
2901 #  endif /* CSUM_DELAY_DATA */
2902 # endif /* MENTAT */
2903 #else
2904 	bzero((char *)fin, sizeof(*fin));
2905 	m = *mp;
2906 # if defined(M_MCAST)
2907 	if ((m->m_flags & M_MCAST) != 0)
2908 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2909 # endif
2910 # if defined(M_MLOOP)
2911 	if ((m->m_flags & M_MLOOP) != 0)
2912 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2913 # endif
2914 # if defined(M_BCAST)
2915 	if ((m->m_flags & M_BCAST) != 0)
2916 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2917 # endif
2918 #endif /* _KERNEL */
2919 
2920 	fin->fin_v = v;
2921 	fin->fin_m = m;
2922 	fin->fin_ip = ip;
2923 	fin->fin_mp = mp;
2924 	fin->fin_out = out;
2925 	fin->fin_ifp = ifp;
2926 	fin->fin_error = ENETUNREACH;
2927 	fin->fin_hlen = (u_short)hlen;
2928 	fin->fin_dp = (char *)ip + hlen;
2929 	fin->fin_main_soft = softc;
2930 
2931 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2932 
2933 	SPL_NET(s);
2934 
2935 #ifdef	USE_INET6
2936 	if (v == 6) {
2937 		LBUMP(ipf_stats[out].fr_ipv6);
2938 		/*
2939 		 * Jumbo grams are quite likely too big for internal buffer
2940 		 * structures to handle comfortably, for now, so just drop
2941 		 * them.
2942 		 */
2943 		if (((ip6_t *)ip)->ip6_plen == 0) {
2944 			DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2945 			pass = FR_BLOCK|FR_NOMATCH;
2946 			fin->fin_reason = FRB_JUMBO;
2947 			goto finished;
2948 		}
2949 		fin->fin_family = AF_INET6;
2950 	} else
2951 #endif
2952 	{
2953 		fin->fin_family = AF_INET;
2954 	}
2955 
2956 	if (ipf_makefrip(hlen, ip, fin) == -1) {
2957 		DT1(frb_makefrip, fr_info_t *, fin);
2958 		pass = FR_BLOCK|FR_NOMATCH;
2959 		fin->fin_reason = FRB_MAKEFRIP;
2960 		goto finished;
2961 	}
2962 
2963 	/*
2964 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2965 	 * becomes NULL and so we have no packet to free.
2966 	 */
2967 	if (*fin->fin_mp == NULL)
2968 		goto finished;
2969 
2970 	if (!out) {
2971 		if (v == 4) {
2972 			if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2973 				LBUMPD(ipf_stats[0], fr_v4_badsrc);
2974 				fin->fin_flx |= FI_BADSRC;
2975 			}
2976 			if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2977 				LBUMPD(ipf_stats[0], fr_v4_badttl);
2978 				fin->fin_flx |= FI_LOWTTL;
2979 			}
2980 		}
2981 #ifdef USE_INET6
2982 		else  if (v == 6) {
2983 			if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2984 				LBUMPD(ipf_stats[0], fr_v6_badttl);
2985 				fin->fin_flx |= FI_LOWTTL;
2986 			}
2987 		}
2988 #endif
2989 	}
2990 
2991 	if (fin->fin_flx & FI_SHORT) {
2992 		LBUMPD(ipf_stats[out], fr_short);
2993 	}
2994 
2995 	READ_ENTER(&softc->ipf_mutex);
2996 
2997 	if (!out) {
2998 		switch (fin->fin_v)
2999 		{
3000 		case 4 :
3001 			if (ipf_nat_checkin(fin, &pass) == -1) {
3002 				goto filterdone;
3003 			}
3004 			break;
3005 #ifdef USE_INET6
3006 		case 6 :
3007 			if (ipf_nat6_checkin(fin, &pass) == -1) {
3008 				goto filterdone;
3009 			}
3010 			break;
3011 #endif
3012 		default :
3013 			break;
3014 		}
3015 	}
3016 	/*
3017 	 * Check auth now.
3018 	 * If a packet is found in the auth table, then skip checking
3019 	 * the access lists for permission but we do need to consider
3020 	 * the result as if it were from the ACL's.  In addition, being
3021 	 * found in the auth table means it has been seen before, so do
3022 	 * not pass it through accounting (again), lest it be counted twice.
3023 	 */
3024 	fr = ipf_auth_check(fin, &pass);
3025 	if (!out && (fr == NULL))
3026 		(void) ipf_acctpkt(fin, NULL);
3027 
3028 	if (fr == NULL) {
3029 		if ((fin->fin_flx & FI_FRAG) != 0)
3030 			fr = ipf_frag_known(fin, &pass);
3031 
3032 		if (fr == NULL)
3033 			fr = ipf_state_check(fin, &pass);
3034 	}
3035 
3036 	if ((pass & FR_NOMATCH) || (fr == NULL))
3037 		fr = ipf_firewall(fin, &pass);
3038 
3039 	/*
3040 	 * If we've asked to track state for this packet, set it up.
3041 	 * Here rather than ipf_firewall because ipf_checkauth may decide
3042 	 * to return a packet for "keep state"
3043 	 */
3044 	if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
3045 	    !(fin->fin_flx & FI_STATE)) {
3046 		if (ipf_state_add(softc, fin, NULL, 0) == 0) {
3047 			LBUMP(ipf_stats[out].fr_ads);
3048 		} else {
3049 			LBUMP(ipf_stats[out].fr_bads);
3050 			if (FR_ISPASS(pass)) {
3051 				DT(frb_stateadd);
3052 				pass &= ~FR_CMDMASK;
3053 				pass |= FR_BLOCK;
3054 				fin->fin_reason = FRB_STATEADD;
3055 			}
3056 		}
3057 	}
3058 
3059 	fin->fin_fr = fr;
3060 	if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
3061 		fin->fin_dif = &fr->fr_dif;
3062 		fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3063 	}
3064 
3065 	/*
3066 	 * Only count/translate packets which will be passed on, out the
3067 	 * interface.
3068 	 */
3069 	if (out && FR_ISPASS(pass)) {
3070 		(void) ipf_acctpkt(fin, NULL);
3071 
3072 		switch (fin->fin_v)
3073 		{
3074 		case 4 :
3075 			if (ipf_nat_checkout(fin, &pass) == -1) {
3076 				;
3077 			} else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3078 				if (ipf_updateipid(fin) == -1) {
3079 					DT(frb_updateipid);
3080 					LBUMP(ipf_stats[1].fr_ipud);
3081 					pass &= ~FR_CMDMASK;
3082 					pass |= FR_BLOCK;
3083 					fin->fin_reason = FRB_UPDATEIPID;
3084 				} else {
3085 					LBUMP(ipf_stats[0].fr_ipud);
3086 				}
3087 			}
3088 			break;
3089 #ifdef USE_INET6
3090 		case 6 :
3091 			(void) ipf_nat6_checkout(fin, &pass);
3092 			break;
3093 #endif
3094 		default :
3095 			break;
3096 		}
3097 	}
3098 
3099 filterdone:
3100 #ifdef	IPFILTER_LOG
3101 	if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3102 		(void) ipf_dolog(fin, &pass);
3103 	}
3104 #endif
3105 
3106 	/*
3107 	 * The FI_STATE flag is cleared here so that calling ipf_state_check
3108 	 * will work when called from inside of fr_fastroute.  Although
3109 	 * there is a similar flag, FI_NATED, for NAT, it does have the same
3110 	 * impact on code execution.
3111 	 */
3112 	fin->fin_flx &= ~FI_STATE;
3113 
3114 #if defined(FASTROUTE_RECURSION)
3115 	/*
3116 	 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3117 	 * a packet below can sometimes cause a recursive call into IPFilter.
3118 	 * On those platforms where that does happen, we need to hang onto
3119 	 * the filter rule just in case someone decides to remove or flush it
3120 	 * in the meantime.
3121 	 */
3122 	if (fr != NULL) {
3123 		MUTEX_ENTER(&fr->fr_lock);
3124 		fr->fr_ref++;
3125 		MUTEX_EXIT(&fr->fr_lock);
3126 	}
3127 
3128 	RWLOCK_EXIT(&softc->ipf_mutex);
3129 #endif
3130 
3131 	if ((pass & FR_RETMASK) != 0) {
3132 		/*
3133 		 * Should we return an ICMP packet to indicate error
3134 		 * status passing through the packet filter ?
3135 		 * WARNING: ICMP error packets AND TCP RST packets should
3136 		 * ONLY be sent in repsonse to incoming packets.  Sending
3137 		 * them in response to outbound packets can result in a
3138 		 * panic on some operating systems.
3139 		 */
3140 		if (!out) {
3141 			if (pass & FR_RETICMP) {
3142 				int dst;
3143 
3144 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
3145 					dst = 1;
3146 				else
3147 					dst = 0;
3148 				(void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3149 							 dst);
3150 				LBUMP(ipf_stats[0].fr_ret);
3151 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
3152 				   !(fin->fin_flx & FI_SHORT)) {
3153 				if (((fin->fin_flx & FI_OOW) != 0) ||
3154 				    (ipf_send_reset(fin) == 0)) {
3155 					LBUMP(ipf_stats[1].fr_ret);
3156 				}
3157 			}
3158 
3159 			/*
3160 			 * When using return-* with auth rules, the auth code
3161 			 * takes over disposing of this packet.
3162 			 */
3163 			if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3164 				DT1(frb_authcapture, fr_info_t *, fin);
3165 				fin->fin_m = *fin->fin_mp = NULL;
3166 				fin->fin_reason = FRB_AUTHCAPTURE;
3167 				m = NULL;
3168 			}
3169 		} else {
3170 			if (pass & FR_RETRST) {
3171 				fin->fin_error = ECONNRESET;
3172 			}
3173 		}
3174 	}
3175 
3176 	/*
3177 	 * After the above so that ICMP unreachables and TCP RSTs get
3178 	 * created properly.
3179 	 */
3180 	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3181 		ipf_nat_uncreate(fin);
3182 
3183 	/*
3184 	 * If we didn't drop off the bottom of the list of rules (and thus
3185 	 * the 'current' rule fr is not NULL), then we may have some extra
3186 	 * instructions about what to do with a packet.
3187 	 * Once we're finished return to our caller, freeing the packet if
3188 	 * we are dropping it.
3189 	 */
3190 	if (fr != NULL) {
3191 		frdest_t *fdp;
3192 
3193 		/*
3194 		 * Generate a duplicated packet first because ipf_fastroute
3195 		 * can lead to fin_m being free'd... not good.
3196 		 */
3197 		fdp = fin->fin_dif;
3198 		if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3199 		    (fdp->fd_ptr != (void *)-1)) {
3200 			mc = M_COPY(fin->fin_m);
3201 			if (mc != NULL)
3202 				ipf_fastroute(mc, &mc, fin, fdp);
3203 		}
3204 
3205 		fdp = fin->fin_tif;
3206 		if (!out && (pass & FR_FASTROUTE)) {
3207 			/*
3208 			 * For fastroute rule, no destination interface defined
3209 			 * so pass NULL as the frdest_t parameter
3210 			 */
3211 			(void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3212 			m = *mp = NULL;
3213 		} else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3214 			   (fdp->fd_ptr != (struct ifnet *)-1)) {
3215 			/* this is for to rules: */
3216 			ipf_fastroute(fin->fin_m, mp, fin, fdp);
3217 			m = *mp = NULL;
3218 		}
3219 
3220 #if defined(FASTROUTE_RECURSION)
3221 		(void) ipf_derefrule(softc, &fr);
3222 #endif
3223 	}
3224 #if !defined(FASTROUTE_RECURSION)
3225 	RWLOCK_EXIT(&softc->ipf_mutex);
3226 #endif
3227 
3228 finished:
3229 	if (!FR_ISPASS(pass)) {
3230 		LBUMP(ipf_stats[out].fr_block);
3231 		if (*mp != NULL) {
3232 #ifdef _KERNEL
3233 			FREE_MB_T(*mp);
3234 #endif
3235 			m = *mp = NULL;
3236 		}
3237 	} else {
3238 		LBUMP(ipf_stats[out].fr_pass);
3239 	}
3240 
3241 	SPL_X(s);
3242 
3243 #ifdef _KERNEL
3244 	if (FR_ISPASS(pass))
3245 		return 0;
3246 	LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3247 	return fin->fin_error;
3248 #else /* _KERNEL */
3249 	if (*mp != NULL)
3250 		(*mp)->mb_ifp = fin->fin_ifp;
3251 	blockreason = fin->fin_reason;
3252 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3253 	/*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3254 		if ((pass & FR_NOMATCH) != 0)
3255 			return 1;
3256 
3257 	if ((pass & FR_RETMASK) != 0)
3258 		switch (pass & FR_RETMASK)
3259 		{
3260 		case FR_RETRST :
3261 			return 3;
3262 		case FR_RETICMP :
3263 			return 4;
3264 		case FR_FAKEICMP :
3265 			return 5;
3266 		}
3267 
3268 	switch (pass & FR_CMDMASK)
3269 	{
3270 	case FR_PASS :
3271 		return 0;
3272 	case FR_BLOCK :
3273 		return -1;
3274 	case FR_AUTH :
3275 		return -2;
3276 	case FR_ACCOUNT :
3277 		return -3;
3278 	case FR_PREAUTH :
3279 		return -4;
3280 	}
3281 	return 2;
3282 #endif /* _KERNEL */
3283 }
3284 
3285 
3286 #ifdef	IPFILTER_LOG
3287 /* ------------------------------------------------------------------------ */
3288 /* Function:    ipf_dolog                                                   */
3289 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
3290 /* Parameters:  fin(I) - pointer to packet information                      */
3291 /*              passp(IO) - pointer to current/new filter decision (unused) */
3292 /*                                                                          */
3293 /* Checks flags set to see how a packet should be logged, if it is to be    */
3294 /* logged.  Adjust statistics based on its success or not.                  */
3295 /* ------------------------------------------------------------------------ */
3296 frentry_t *
ipf_dolog(fin,passp)3297 ipf_dolog(fin, passp)
3298 	fr_info_t *fin;
3299 	u_32_t *passp;
3300 {
3301 	ipf_main_softc_t *softc = fin->fin_main_soft;
3302 	u_32_t pass;
3303 	int out;
3304 
3305 	out = fin->fin_out;
3306 	pass = *passp;
3307 
3308 	if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3309 		pass |= FF_LOGNOMATCH;
3310 		LBUMPD(ipf_stats[out], fr_npkl);
3311 		goto logit;
3312 
3313 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3314 	    (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3315 		if ((pass & FR_LOGMASK) != FR_LOGP)
3316 			pass |= FF_LOGPASS;
3317 		LBUMPD(ipf_stats[out], fr_ppkl);
3318 		goto logit;
3319 
3320 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3321 		   (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3322 		if ((pass & FR_LOGMASK) != FR_LOGB)
3323 			pass |= FF_LOGBLOCK;
3324 		LBUMPD(ipf_stats[out], fr_bpkl);
3325 
3326 logit:
3327 		if (ipf_log_pkt(fin, pass) == -1) {
3328 			/*
3329 			 * If the "or-block" option has been used then
3330 			 * block the packet if we failed to log it.
3331 			 */
3332 			if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3333 				DT1(frb_logfail2, u_int, pass);
3334 				pass &= ~FR_CMDMASK;
3335 				pass |= FR_BLOCK;
3336 				fin->fin_reason = FRB_LOGFAIL2;
3337 			}
3338 		}
3339 		*passp = pass;
3340 	}
3341 
3342 	return fin->fin_fr;
3343 }
3344 #endif /* IPFILTER_LOG */
3345 
3346 
3347 /* ------------------------------------------------------------------------ */
3348 /* Function:    ipf_cksum                                                   */
3349 /* Returns:     u_short - IP header checksum                                */
3350 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
3351 /*              len(I)  - length of buffer in bytes                         */
3352 /*                                                                          */
3353 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
3354 /*                                                                          */
3355 /* N.B.: addr should be 16bit aligned.                                      */
3356 /* ------------------------------------------------------------------------ */
3357 u_short
ipf_cksum(addr,len)3358 ipf_cksum(addr, len)
3359 	u_short *addr;
3360 	int len;
3361 {
3362 	u_32_t sum = 0;
3363 
3364 	for (sum = 0; len > 1; len -= 2)
3365 		sum += *addr++;
3366 
3367 	/* mop up an odd byte, if necessary */
3368 	if (len == 1)
3369 		sum += *(u_char *)addr;
3370 
3371 	/*
3372 	 * add back carry outs from top 16 bits to low 16 bits
3373 	 */
3374 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
3375 	sum += (sum >> 16);			/* add carry */
3376 	return (u_short)(~sum);
3377 }
3378 
3379 
3380 /* ------------------------------------------------------------------------ */
3381 /* Function:    fr_cksum                                                    */
3382 /* Returns:     u_short - layer 4 checksum                                  */
3383 /* Parameters:  fin(I)     - pointer to packet information                  */
3384 /*              ip(I)      - pointer to IP header                           */
3385 /*              l4proto(I) - protocol to caclulate checksum for             */
3386 /*              l4hdr(I)   - pointer to layer 4 header                      */
3387 /*                                                                          */
3388 /* Calculates the TCP checksum for the packet held in "m", using the data   */
3389 /* in the IP header "ip" to seed it.                                        */
3390 /*                                                                          */
3391 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3392 /* and the TCP header.  We also assume that data blocks aren't allocated in */
3393 /* odd sizes.                                                               */
3394 /*                                                                          */
3395 /* Expects ip_len and ip_off to be in network byte order when called.       */
3396 /* ------------------------------------------------------------------------ */
3397 u_short
fr_cksum(fin,ip,l4proto,l4hdr)3398 fr_cksum(fin, ip, l4proto, l4hdr)
3399 	fr_info_t *fin;
3400 	ip_t *ip;
3401 	int l4proto;
3402 	void *l4hdr;
3403 {
3404 	u_short *sp, slen, sumsave, *csump;
3405 	u_int sum, sum2;
3406 	int hlen;
3407 	int off;
3408 #ifdef	USE_INET6
3409 	ip6_t *ip6;
3410 #endif
3411 
3412 	csump = NULL;
3413 	sumsave = 0;
3414 	sp = NULL;
3415 	slen = 0;
3416 	hlen = 0;
3417 	sum = 0;
3418 
3419 	sum = htons((u_short)l4proto);
3420 	/*
3421 	 * Add up IP Header portion
3422 	 */
3423 #ifdef	USE_INET6
3424 	if (IP_V(ip) == 4) {
3425 #endif
3426 		hlen = IP_HL(ip) << 2;
3427 		off = hlen;
3428 		sp = (u_short *)&ip->ip_src;
3429 		sum += *sp++;	/* ip_src */
3430 		sum += *sp++;
3431 		sum += *sp++;	/* ip_dst */
3432 		sum += *sp++;
3433 		slen = fin->fin_plen - off;
3434 		sum += htons(slen);
3435 #ifdef	USE_INET6
3436 	} else if (IP_V(ip) == 6) {
3437 		mb_t *m;
3438 
3439 		m = fin->fin_m;
3440 		ip6 = (ip6_t *)ip;
3441 		off = ((caddr_t)ip6 - m->m_data) + sizeof(struct ip6_hdr);
3442 		int len = ntohs(ip6->ip6_plen) - (off - sizeof(*ip6));
3443 		return(ipf_pcksum6(fin, ip6, off, len));
3444 	} else {
3445 		return 0xffff;
3446 	}
3447 #endif
3448 
3449 	switch (l4proto)
3450 	{
3451 	case IPPROTO_UDP :
3452 		csump = &((udphdr_t *)l4hdr)->uh_sum;
3453 		break;
3454 
3455 	case IPPROTO_TCP :
3456 		csump = &((tcphdr_t *)l4hdr)->th_sum;
3457 		break;
3458 	case IPPROTO_ICMP :
3459 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3460 		sum = 0;	/* Pseudo-checksum is not included */
3461 		break;
3462 #ifdef USE_INET6
3463 	case IPPROTO_ICMPV6 :
3464 		csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3465 		break;
3466 #endif
3467 	default :
3468 		break;
3469 	}
3470 
3471 	if (csump != NULL) {
3472 		sumsave = *csump;
3473 		*csump = 0;
3474 	}
3475 
3476 	sum2 = ipf_pcksum(fin, off, sum);
3477 	if (csump != NULL)
3478 		*csump = sumsave;
3479 	return sum2;
3480 }
3481 
3482 
3483 /* ------------------------------------------------------------------------ */
3484 /* Function:    ipf_findgroup                                               */
3485 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3486 /* Parameters:  softc(I) - pointer to soft context main structure           */
3487 /*              group(I) - group name to search for                         */
3488 /*              unit(I)  - device to which this group belongs               */
3489 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3490 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3491 /*                         to where to add the next (last) group or where   */
3492 /*                         to delete group from.                            */
3493 /*                                                                          */
3494 /* Search amongst the defined groups for a particular group number.         */
3495 /* ------------------------------------------------------------------------ */
3496 frgroup_t *
ipf_findgroup(softc,group,unit,set,fgpp)3497 ipf_findgroup(softc, group, unit, set, fgpp)
3498 	ipf_main_softc_t *softc;
3499 	char *group;
3500 	minor_t unit;
3501 	int set;
3502 	frgroup_t ***fgpp;
3503 {
3504 	frgroup_t *fg, **fgp;
3505 
3506 	/*
3507 	 * Which list of groups to search in is dependent on which list of
3508 	 * rules are being operated on.
3509 	 */
3510 	fgp = &softc->ipf_groups[unit][set];
3511 
3512 	while ((fg = *fgp) != NULL) {
3513 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3514 			break;
3515 		else
3516 			fgp = &fg->fg_next;
3517 	}
3518 	if (fgpp != NULL)
3519 		*fgpp = fgp;
3520 	return fg;
3521 }
3522 
3523 
3524 /* ------------------------------------------------------------------------ */
3525 /* Function:    ipf_group_add                                               */
3526 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3527 /*                            != NULL == pointer to the group               */
3528 /* Parameters:  softc(I) - pointer to soft context main structure           */
3529 /*              num(I)   - group number to add                              */
3530 /*              head(I)  - rule pointer that is using this as the head      */
3531 /*              flags(I) - rule flags which describe the type of rule it is */
3532 /*              unit(I)  - device to which this group will belong to        */
3533 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3534 /* Write Locks: ipf_mutex                                                   */
3535 /*                                                                          */
3536 /* Add a new group head, or if it already exists, increase the reference    */
3537 /* count to it.                                                             */
3538 /* ------------------------------------------------------------------------ */
3539 frgroup_t *
ipf_group_add(softc,group,head,flags,unit,set)3540 ipf_group_add(softc, group, head, flags, unit, set)
3541 	ipf_main_softc_t *softc;
3542 	char *group;
3543 	void *head;
3544 	u_32_t flags;
3545 	minor_t unit;
3546 	int set;
3547 {
3548 	frgroup_t *fg, **fgp;
3549 	u_32_t gflags;
3550 
3551 	if (group == NULL)
3552 		return NULL;
3553 
3554 	if (unit == IPL_LOGIPF && *group == '\0')
3555 		return NULL;
3556 
3557 	fgp = NULL;
3558 	gflags = flags & FR_INOUT;
3559 
3560 	fg = ipf_findgroup(softc, group, unit, set, &fgp);
3561 	if (fg != NULL) {
3562 		if (fg->fg_head == NULL && head != NULL)
3563 			fg->fg_head = head;
3564 		if (fg->fg_flags == 0)
3565 			fg->fg_flags = gflags;
3566 		else if (gflags != fg->fg_flags)
3567 			return NULL;
3568 		fg->fg_ref++;
3569 		return fg;
3570 	}
3571 
3572 	KMALLOC(fg, frgroup_t *);
3573 	if (fg != NULL) {
3574 		fg->fg_head = head;
3575 		fg->fg_start = NULL;
3576 		fg->fg_next = *fgp;
3577 		bcopy(group, fg->fg_name, strlen(group) + 1);
3578 		fg->fg_flags = gflags;
3579 		fg->fg_ref = 1;
3580 		fg->fg_set = &softc->ipf_groups[unit][set];
3581 		*fgp = fg;
3582 	}
3583 	return fg;
3584 }
3585 
3586 
3587 /* ------------------------------------------------------------------------ */
3588 /* Function:    ipf_group_del                                               */
3589 /* Returns:     int      - number of rules deleted                          */
3590 /* Parameters:  softc(I) - pointer to soft context main structure           */
3591 /*              group(I) - group name to delete                             */
3592 /*              fr(I)    - filter rule from which group is referenced       */
3593 /* Write Locks: ipf_mutex                                                   */
3594 /*                                                                          */
3595 /* This function is called whenever a reference to a group is to be dropped */
3596 /* and thus its reference count needs to be lowered and the group free'd if */
3597 /* the reference count reaches zero. Passing in fr is really for the sole   */
3598 /* purpose of knowing when the head rule is being deleted.                  */
3599 /* ------------------------------------------------------------------------ */
3600 void
ipf_group_del(softc,group,fr)3601 ipf_group_del(softc, group, fr)
3602 	ipf_main_softc_t *softc;
3603 	frgroup_t *group;
3604 	frentry_t *fr;
3605 {
3606 
3607 	if (group->fg_head == fr)
3608 		group->fg_head = NULL;
3609 
3610 	group->fg_ref--;
3611 	if ((group->fg_ref == 0) && (group->fg_start == NULL))
3612 		ipf_group_free(group);
3613 }
3614 
3615 
3616 /* ------------------------------------------------------------------------ */
3617 /* Function:    ipf_group_free                                              */
3618 /* Returns:     Nil                                                         */
3619 /* Parameters:  group(I) - pointer to filter rule group                     */
3620 /*                                                                          */
3621 /* Remove the group from the list of groups and free it.                    */
3622 /* ------------------------------------------------------------------------ */
3623 static void
ipf_group_free(group)3624 ipf_group_free(group)
3625 	frgroup_t *group;
3626 {
3627 	frgroup_t **gp;
3628 
3629 	for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3630 		if (*gp == group) {
3631 			*gp = group->fg_next;
3632 			break;
3633 		}
3634 	}
3635 	KFREE(group);
3636 }
3637 
3638 
3639 /* ------------------------------------------------------------------------ */
3640 /* Function:    ipf_group_flush                                             */
3641 /* Returns:     int      - number of rules flush from group                 */
3642 /* Parameters:  softc(I) - pointer to soft context main structure           */
3643 /* Parameters:  group(I) - pointer to filter rule group                     */
3644 /*                                                                          */
3645 /* Remove all of the rules that currently are listed under the given group. */
3646 /* ------------------------------------------------------------------------ */
3647 static int
ipf_group_flush(softc,group)3648 ipf_group_flush(softc, group)
3649 	ipf_main_softc_t *softc;
3650 	frgroup_t *group;
3651 {
3652 	int gone = 0;
3653 
3654 	(void) ipf_flushlist(softc, &gone, &group->fg_start);
3655 
3656 	return gone;
3657 }
3658 
3659 
3660 /* ------------------------------------------------------------------------ */
3661 /* Function:    ipf_getrulen                                                */
3662 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3663 /* Parameters:  softc(I) - pointer to soft context main structure           */
3664 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3665 /*              flags(I) - which set of rules to find the rule in           */
3666 /*              group(I) - group name                                       */
3667 /*              n(I)     - rule number to find                              */
3668 /*                                                                          */
3669 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3670 /* group # g doesn't exist or there are less than n rules in the group.     */
3671 /* ------------------------------------------------------------------------ */
3672 frentry_t *
ipf_getrulen(softc,unit,group,n)3673 ipf_getrulen(softc, unit, group, n)
3674 	ipf_main_softc_t *softc;
3675 	int unit;
3676 	char *group;
3677 	u_32_t n;
3678 {
3679 	frentry_t *fr;
3680 	frgroup_t *fg;
3681 
3682 	fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3683 	if (fg == NULL)
3684 		return NULL;
3685 	for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3686 		;
3687 	if (n != 0)
3688 		return NULL;
3689 	return fr;
3690 }
3691 
3692 
3693 /* ------------------------------------------------------------------------ */
3694 /* Function:    ipf_flushlist                                               */
3695 /* Returns:     int - >= 0 - number of flushed rules                        */
3696 /* Parameters:  softc(I)   - pointer to soft context main structure         */
3697 /*              nfreedp(O) - pointer to int where flush count is stored     */
3698 /*              listp(I)   - pointer to list to flush pointer               */
3699 /* Write Locks: ipf_mutex                                                   */
3700 /*                                                                          */
3701 /* Recursively flush rules from the list, descending groups as they are     */
3702 /* encountered.  if a rule is the head of a group and it has lost all its   */
3703 /* group members, then also delete the group reference.  nfreedp is needed  */
3704 /* to store the accumulating count of rules removed, whereas the returned   */
3705 /* value is just the number removed from the current list.  The latter is   */
3706 /* needed to correctly adjust reference counts on rules that define groups. */
3707 /*                                                                          */
3708 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3709 /* ------------------------------------------------------------------------ */
3710 static int
ipf_flushlist(softc,nfreedp,listp)3711 ipf_flushlist(softc, nfreedp, listp)
3712 	ipf_main_softc_t *softc;
3713 	int *nfreedp;
3714 	frentry_t **listp;
3715 {
3716 	int freed = 0;
3717 	frentry_t *fp;
3718 
3719 	while ((fp = *listp) != NULL) {
3720 		if ((fp->fr_type & FR_T_BUILTIN) ||
3721 		    !(fp->fr_flags & FR_COPIED)) {
3722 			listp = &fp->fr_next;
3723 			continue;
3724 		}
3725 		*listp = fp->fr_next;
3726 		if (fp->fr_next != NULL)
3727 			fp->fr_next->fr_pnext = fp->fr_pnext;
3728 		fp->fr_pnext = NULL;
3729 
3730 		if (fp->fr_grphead != NULL) {
3731 			freed += ipf_group_flush(softc, fp->fr_grphead);
3732 			fp->fr_names[fp->fr_grhead] = '\0';
3733 		}
3734 
3735 		if (fp->fr_icmpgrp != NULL) {
3736 			freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3737 			fp->fr_names[fp->fr_icmphead] = '\0';
3738 		}
3739 
3740 		if (fp->fr_srctrack.ht_max_nodes)
3741 			ipf_rb_ht_flush(&fp->fr_srctrack);
3742 
3743 		fp->fr_next = NULL;
3744 
3745 		ASSERT(fp->fr_ref > 0);
3746 		if (ipf_derefrule(softc, &fp) == 0)
3747 			freed++;
3748 	}
3749 	*nfreedp += freed;
3750 	return freed;
3751 }
3752 
3753 
3754 /* ------------------------------------------------------------------------ */
3755 /* Function:    ipf_flush                                                   */
3756 /* Returns:     int - >= 0 - number of flushed rules                        */
3757 /* Parameters:  softc(I) - pointer to soft context main structure           */
3758 /*              unit(I)  - device for which to flush rules                  */
3759 /*              flags(I) - which set of rules to flush                      */
3760 /*                                                                          */
3761 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3762 /* and IPv6) as defined by the value of flags.                              */
3763 /* ------------------------------------------------------------------------ */
3764 int
ipf_flush(softc,unit,flags)3765 ipf_flush(softc, unit, flags)
3766 	ipf_main_softc_t *softc;
3767 	minor_t unit;
3768 	int flags;
3769 {
3770 	int flushed = 0, set;
3771 
3772 	WRITE_ENTER(&softc->ipf_mutex);
3773 
3774 	set = softc->ipf_active;
3775 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3776 		set = 1 - set;
3777 
3778 	if (flags & FR_OUTQUE) {
3779 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3780 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3781 	}
3782 	if (flags & FR_INQUE) {
3783 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3784 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3785 	}
3786 
3787 	flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3788 				    flags & (FR_INQUE|FR_OUTQUE));
3789 
3790 	RWLOCK_EXIT(&softc->ipf_mutex);
3791 
3792 	if (unit == IPL_LOGIPF) {
3793 		int tmp;
3794 
3795 		tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3796 		if (tmp >= 0)
3797 			flushed += tmp;
3798 	}
3799 	return flushed;
3800 }
3801 
3802 
3803 /* ------------------------------------------------------------------------ */
3804 /* Function:    ipf_flush_groups                                            */
3805 /* Returns:     int - >= 0 - number of flushed rules                        */
3806 /* Parameters:  softc(I)  - soft context pointerto work with                */
3807 /*              grhead(I) - pointer to the start of the group list to flush */
3808 /*              flags(I)  - which set of rules to flush                     */
3809 /*                                                                          */
3810 /* Walk through all of the groups under the given group head and remove all */
3811 /* of those that match the flags passed in. The for loop here is bit more   */
3812 /* complicated than usual because the removal of a rule with ipf_derefrule  */
3813 /* may end up removing not only the structure pointed to by "fg" but also   */
3814 /* what is fg_next and fg_next after that. So if a filter rule is actually  */
3815 /* removed from the group then it is necessary to start again.              */
3816 /* ------------------------------------------------------------------------ */
3817 static int
ipf_flush_groups(softc,grhead,flags)3818 ipf_flush_groups(softc, grhead, flags)
3819 	ipf_main_softc_t *softc;
3820 	frgroup_t **grhead;
3821 	int flags;
3822 {
3823 	frentry_t *fr, **frp;
3824 	frgroup_t *fg, **fgp;
3825 	int flushed = 0;
3826 	int removed = 0;
3827 
3828 	for (fgp = grhead; (fg = *fgp) != NULL; ) {
3829 		while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3830 			fg = fg->fg_next;
3831 		if (fg == NULL)
3832 			break;
3833 		removed = 0;
3834 		frp = &fg->fg_start;
3835 		while ((removed == 0) && ((fr = *frp) != NULL)) {
3836 			if ((fr->fr_flags & flags) == 0) {
3837 				frp = &fr->fr_next;
3838 			} else {
3839 				if (fr->fr_next != NULL)
3840 					fr->fr_next->fr_pnext = fr->fr_pnext;
3841 				*frp = fr->fr_next;
3842 				fr->fr_pnext = NULL;
3843 				fr->fr_next = NULL;
3844 				(void) ipf_derefrule(softc, &fr);
3845 				flushed++;
3846 				removed++;
3847 			}
3848 		}
3849 		if (removed == 0)
3850 			fgp = &fg->fg_next;
3851 	}
3852 	return flushed;
3853 }
3854 
3855 
3856 /* ------------------------------------------------------------------------ */
3857 /* Function:    memstr                                                      */
3858 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3859 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3860 /*              dst(I)  - pointer to byte sequence to search                */
3861 /*              slen(I) - match length                                      */
3862 /*              dlen(I) - length available to search in                     */
3863 /*                                                                          */
3864 /* Search dst for a sequence of bytes matching those at src and extend for  */
3865 /* slen bytes.                                                              */
3866 /* ------------------------------------------------------------------------ */
3867 char *
memstr(src,dst,slen,dlen)3868 memstr(src, dst, slen, dlen)
3869 	const char *src;
3870 	char *dst;
3871 	size_t slen, dlen;
3872 {
3873 	char *s = NULL;
3874 
3875 	while (dlen >= slen) {
3876 		if (bcmp(src, dst, slen) == 0) {
3877 			s = dst;
3878 			break;
3879 		}
3880 		dst++;
3881 		dlen--;
3882 	}
3883 	return s;
3884 }
3885 /* ------------------------------------------------------------------------ */
3886 /* Function:    ipf_fixskip                                                 */
3887 /* Returns:     Nil                                                         */
3888 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3889 /*              rp(I)        - rule added/removed with skip in it.          */
3890 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3891 /*                             depending on whether a rule was just added   */
3892 /*                             or removed.                                  */
3893 /*                                                                          */
3894 /* Adjust all the rules in a list which would have skip'd past the position */
3895 /* where we are inserting to skip to the right place given the change.      */
3896 /* ------------------------------------------------------------------------ */
3897 void
ipf_fixskip(listp,rp,addremove)3898 ipf_fixskip(listp, rp, addremove)
3899 	frentry_t **listp, *rp;
3900 	int addremove;
3901 {
3902 	int rules, rn;
3903 	frentry_t *fp;
3904 
3905 	rules = 0;
3906 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3907 		rules++;
3908 
3909 	if (fp == NULL)
3910 		return;
3911 
3912 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3913 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3914 			fp->fr_arg += addremove;
3915 }
3916 
3917 
3918 #ifdef	_KERNEL
3919 /* ------------------------------------------------------------------------ */
3920 /* Function:    count4bits                                                  */
3921 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3922 /* Parameters:  ip(I) - 32bit IP address                                    */
3923 /*                                                                          */
3924 /* IPv4 ONLY                                                                */
3925 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3926 /* consecutive 1's is different to that passed, return -1, else return #    */
3927 /* of bits.                                                                 */
3928 /* ------------------------------------------------------------------------ */
3929 int
count4bits(ip)3930 count4bits(ip)
3931 	u_32_t	ip;
3932 {
3933 	u_32_t	ipn;
3934 	int	cnt = 0, i, j;
3935 
3936 	ip = ipn = ntohl(ip);
3937 	for (i = 32; i; i--, ipn *= 2)
3938 		if (ipn & 0x80000000)
3939 			cnt++;
3940 		else
3941 			break;
3942 	ipn = 0;
3943 	for (i = 32, j = cnt; i; i--, j--) {
3944 		ipn *= 2;
3945 		if (j > 0)
3946 			ipn++;
3947 	}
3948 	if (ipn == ip)
3949 		return cnt;
3950 	return -1;
3951 }
3952 
3953 
3954 /* ------------------------------------------------------------------------ */
3955 /* Function:    count6bits                                                  */
3956 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3957 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3958 /*                                                                          */
3959 /* IPv6 ONLY                                                                */
3960 /* count consecutive 1's in bit mask.                                       */
3961 /* ------------------------------------------------------------------------ */
3962 # ifdef USE_INET6
3963 int
count6bits(msk)3964 count6bits(msk)
3965 	u_32_t *msk;
3966 {
3967 	int i = 0, k;
3968 	u_32_t j;
3969 
3970 	for (k = 3; k >= 0; k--)
3971 		if (msk[k] == 0xffffffff)
3972 			i += 32;
3973 		else {
3974 			for (j = msk[k]; j; j <<= 1)
3975 				if (j & 0x80000000)
3976 					i++;
3977 		}
3978 	return i;
3979 }
3980 # endif
3981 #endif /* _KERNEL */
3982 
3983 
3984 /* ------------------------------------------------------------------------ */
3985 /* Function:    ipf_synclist                                                */
3986 /* Returns:     int    - 0 = no failures, else indication of first failure  */
3987 /* Parameters:  fr(I)  - start of filter list to sync interface names for   */
3988 /*              ifp(I) - interface pointer for limiting sync lookups        */
3989 /* Write Locks: ipf_mutex                                                   */
3990 /*                                                                          */
3991 /* Walk through a list of filter rules and resolve any interface names into */
3992 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3993 /* used in the rule.  The interface pointer is used to limit the lookups to */
3994 /* a specific set of matching names if it is non-NULL.                      */
3995 /* Errors can occur when resolving the destination name of to/dup-to fields */
3996 /* when the name points to a pool and that pool doest not exist. If this    */
3997 /* does happen then it is necessary to check if there are any lookup refs   */
3998 /* that need to be dropped before returning with an error.                  */
3999 /* ------------------------------------------------------------------------ */
4000 static int
ipf_synclist(softc,fr,ifp)4001 ipf_synclist(softc, fr, ifp)
4002 	ipf_main_softc_t *softc;
4003 	frentry_t *fr;
4004 	void *ifp;
4005 {
4006 	frentry_t *frt, *start = fr;
4007 	frdest_t *fdp;
4008 	char *name;
4009 	int error;
4010 	void *ifa;
4011 	int v, i;
4012 
4013 	error = 0;
4014 
4015 	for (; fr; fr = fr->fr_next) {
4016 		if (fr->fr_family == AF_INET)
4017 			v = 4;
4018 		else if (fr->fr_family == AF_INET6)
4019 			v = 6;
4020 		else
4021 			v = 0;
4022 
4023 		/*
4024 		 * Lookup all the interface names that are part of the rule.
4025 		 */
4026 		for (i = 0; i < FR_NUM(fr->fr_ifas); i++) {
4027 			if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
4028 				continue;
4029 			if (fr->fr_ifnames[i] == -1)
4030 				continue;
4031 			name = FR_NAME(fr, fr_ifnames[i]);
4032 			fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
4033 		}
4034 
4035 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
4036 			if (fr->fr_satype != FRI_NORMAL &&
4037 			    fr->fr_satype != FRI_LOOKUP) {
4038 				ifa = ipf_resolvenic(softc, fr->fr_names +
4039 						     fr->fr_sifpidx, v);
4040 				ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
4041 					    &fr->fr_src6, &fr->fr_smsk6);
4042 			}
4043 			if (fr->fr_datype != FRI_NORMAL &&
4044 			    fr->fr_datype != FRI_LOOKUP) {
4045 				ifa = ipf_resolvenic(softc, fr->fr_names +
4046 						     fr->fr_sifpidx, v);
4047 				ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
4048 					    &fr->fr_dst6, &fr->fr_dmsk6);
4049 			}
4050 		}
4051 
4052 		fdp = &fr->fr_tifs[0];
4053 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4054 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4055 			if (error != 0)
4056 				goto unwind;
4057 		}
4058 
4059 		fdp = &fr->fr_tifs[1];
4060 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4061 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4062 			if (error != 0)
4063 				goto unwind;
4064 		}
4065 
4066 		fdp = &fr->fr_dif;
4067 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4068 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4069 			if (error != 0)
4070 				goto unwind;
4071 		}
4072 
4073 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4074 		    (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
4075 			fr->fr_srcptr = ipf_lookup_res_num(softc,
4076 							   fr->fr_srctype,
4077 							   IPL_LOGIPF,
4078 							   fr->fr_srcnum,
4079 							   &fr->fr_srcfunc);
4080 		}
4081 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4082 		    (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
4083 			fr->fr_dstptr = ipf_lookup_res_num(softc,
4084 							   fr->fr_dsttype,
4085 							   IPL_LOGIPF,
4086 							   fr->fr_dstnum,
4087 							   &fr->fr_dstfunc);
4088 		}
4089 	}
4090 	return 0;
4091 
4092 unwind:
4093 	for (frt = start; frt != fr; fr = fr->fr_next) {
4094 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4095 		    (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
4096 				ipf_lookup_deref(softc, frt->fr_srctype,
4097 						 frt->fr_srcptr);
4098 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4099 		    (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4100 				ipf_lookup_deref(softc, frt->fr_dsttype,
4101 						 frt->fr_dstptr);
4102 	}
4103 	return error;
4104 }
4105 
4106 
4107 /* ------------------------------------------------------------------------ */
4108 /* Function:    ipf_sync                                                    */
4109 /* Returns:     void                                                        */
4110 /* Parameters:  Nil                                                         */
4111 /*                                                                          */
4112 /* ipf_sync() is called when we suspect that the interface list or          */
4113 /* information about interfaces (like IP#) has changed.  Go through all     */
4114 /* filter rules, NAT entries and the state table and check if anything      */
4115 /* needs to be changed/updated.                                             */
4116 /* ------------------------------------------------------------------------ */
4117 int
ipf_sync(softc,ifp)4118 ipf_sync(softc, ifp)
4119 	ipf_main_softc_t *softc;
4120 	void *ifp;
4121 {
4122 	int i;
4123 
4124 # if !SOLARIS
4125 	ipf_nat_sync(softc, ifp);
4126 	ipf_state_sync(softc, ifp);
4127 	ipf_lookup_sync(softc, ifp);
4128 # endif
4129 
4130 	WRITE_ENTER(&softc->ipf_mutex);
4131 	(void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4132 	(void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4133 	(void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4134 	(void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4135 
4136 	for (i = 0; i < IPL_LOGSIZE; i++) {
4137 		frgroup_t *g;
4138 
4139 		for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4140 			(void) ipf_synclist(softc, g->fg_start, ifp);
4141 		for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4142 			(void) ipf_synclist(softc, g->fg_start, ifp);
4143 	}
4144 	RWLOCK_EXIT(&softc->ipf_mutex);
4145 
4146 	return 0;
4147 }
4148 
4149 
4150 /*
4151  * In the functions below, bcopy() is called because the pointer being
4152  * copied _from_ in this instance is a pointer to a char buf (which could
4153  * end up being unaligned) and on the kernel's local stack.
4154  */
4155 /* ------------------------------------------------------------------------ */
4156 /* Function:    copyinptr                                                   */
4157 /* Returns:     int - 0 = success, else failure                             */
4158 /* Parameters:  src(I)  - pointer to the source address                     */
4159 /*              dst(I)  - destination address                               */
4160 /*              size(I) - number of bytes to copy                           */
4161 /*                                                                          */
4162 /* Copy a block of data in from user space, given a pointer to the pointer  */
4163 /* to start copying from (src) and a pointer to where to store it (dst).    */
4164 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
4165 /* ------------------------------------------------------------------------ */
4166 int
copyinptr(softc,src,dst,size)4167 copyinptr(softc, src, dst, size)
4168 	ipf_main_softc_t *softc;
4169 	void *src, *dst;
4170 	size_t size;
4171 {
4172 	caddr_t ca;
4173 	int error;
4174 
4175 # if SOLARIS
4176 	error = COPYIN(src, &ca, sizeof(ca));
4177 	if (error != 0)
4178 		return error;
4179 # else
4180 	bcopy(src, (caddr_t)&ca, sizeof(ca));
4181 # endif
4182 	error = COPYIN(ca, dst, size);
4183 	if (error != 0) {
4184 		IPFERROR(3);
4185 		error = EFAULT;
4186 	}
4187 	return error;
4188 }
4189 
4190 
4191 /* ------------------------------------------------------------------------ */
4192 /* Function:    copyoutptr                                                  */
4193 /* Returns:     int - 0 = success, else failure                             */
4194 /* Parameters:  src(I)  - pointer to the source address                     */
4195 /*              dst(I)  - destination address                               */
4196 /*              size(I) - number of bytes to copy                           */
4197 /*                                                                          */
4198 /* Copy a block of data out to user space, given a pointer to the pointer   */
4199 /* to start copying from (src) and a pointer to where to store it (dst).    */
4200 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4201 /* ------------------------------------------------------------------------ */
4202 int
copyoutptr(softc,src,dst,size)4203 copyoutptr(softc, src, dst, size)
4204 	ipf_main_softc_t *softc;
4205 	void *src, *dst;
4206 	size_t size;
4207 {
4208 	caddr_t ca;
4209 	int error;
4210 
4211 	bcopy(dst, (caddr_t)&ca, sizeof(ca));
4212 	error = COPYOUT(src, ca, size);
4213 	if (error != 0) {
4214 		IPFERROR(4);
4215 		error = EFAULT;
4216 	}
4217 	return error;
4218 }
4219 
4220 
4221 /* ------------------------------------------------------------------------ */
4222 /* Function:    ipf_lock                                                    */
4223 /* Returns:     int      - 0 = success, else error                          */
4224 /* Parameters:  data(I)  - pointer to lock value to set                     */
4225 /*              lockp(O) - pointer to location to store old lock value      */
4226 /*                                                                          */
4227 /* Get the new value for the lock integer, set it and return the old value  */
4228 /* in *lockp.                                                               */
4229 /* ------------------------------------------------------------------------ */
4230 int
ipf_lock(data,lockp)4231 ipf_lock(data, lockp)
4232 	caddr_t data;
4233 	int *lockp;
4234 {
4235 	int arg, err;
4236 
4237 	err = BCOPYIN(data, &arg, sizeof(arg));
4238 	if (err != 0)
4239 		return EFAULT;
4240 	err = BCOPYOUT(lockp, data, sizeof(*lockp));
4241 	if (err != 0)
4242 		return EFAULT;
4243 	*lockp = arg;
4244 	return 0;
4245 }
4246 
4247 
4248 /* ------------------------------------------------------------------------ */
4249 /* Function:    ipf_getstat                                                 */
4250 /* Returns:     Nil                                                         */
4251 /* Parameters:  softc(I) - pointer to soft context main structure           */
4252 /*              fiop(I)  - pointer to ipfilter stats structure              */
4253 /*              rev(I)   - version claim by program doing ioctl             */
4254 /*                                                                          */
4255 /* Stores a copy of current pointers, counters, etc, in the friostat        */
4256 /* structure.                                                               */
4257 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the    */
4258 /* program is looking for. This ensure that validation of the version it    */
4259 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will      */
4260 /* allow older binaries to work but kernels without it will not.            */
4261 /* ------------------------------------------------------------------------ */
4262 /*ARGSUSED*/
4263 static void
ipf_getstat(softc,fiop,rev)4264 ipf_getstat(softc, fiop, rev)
4265 	ipf_main_softc_t *softc;
4266 	friostat_t *fiop;
4267 	int rev;
4268 {
4269 	int i;
4270 
4271 	bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4272 	      sizeof(ipf_statistics_t) * 2);
4273 	fiop->f_locks[IPL_LOGSTATE] = -1;
4274 	fiop->f_locks[IPL_LOGNAT] = -1;
4275 	fiop->f_locks[IPL_LOGIPF] = -1;
4276 	fiop->f_locks[IPL_LOGAUTH] = -1;
4277 
4278 	fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4279 	fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4280 	fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4281 	fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4282 	fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4283 	fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4284 	fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4285 	fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4286 
4287 	fiop->f_ticks = softc->ipf_ticks;
4288 	fiop->f_active = softc->ipf_active;
4289 	fiop->f_froute[0] = softc->ipf_frouteok[0];
4290 	fiop->f_froute[1] = softc->ipf_frouteok[1];
4291 	fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4292 	fiop->f_rb_node_max = softc->ipf_rb_node_max;
4293 
4294 	fiop->f_running = softc->ipf_running;
4295 	for (i = 0; i < IPL_LOGSIZE; i++) {
4296 		fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4297 		fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4298 	}
4299 #ifdef  IPFILTER_LOG
4300 	fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4301 	fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4302 	fiop->f_logging = 1;
4303 #else
4304 	fiop->f_log_ok = 0;
4305 	fiop->f_log_fail = 0;
4306 	fiop->f_logging = 0;
4307 #endif
4308 	fiop->f_defpass = softc->ipf_pass;
4309 	fiop->f_features = ipf_features;
4310 
4311 #ifdef IPFILTER_COMPAT
4312 	sprintf(fiop->f_version, "IP Filter: v%d.%d.%d",
4313 		(rev / 1000000) % 100,
4314 		(rev / 10000) % 100,
4315 		(rev / 100) % 100);
4316 #else
4317 	rev = rev;
4318 	(void) strncpy(fiop->f_version, ipfilter_version,
4319 		       sizeof(fiop->f_version));
4320 #endif
4321 }
4322 
4323 
4324 #ifdef	USE_INET6
4325 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4326 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4327 	-1,			/* 1: UNUSED */
4328 	-1,			/* 2: UNUSED */
4329 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4330 	-1,			/* 4: ICMP_SOURCEQUENCH */
4331 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4332 	-1,			/* 6: UNUSED */
4333 	-1,			/* 7: UNUSED */
4334 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4335 	-1,			/* 9: UNUSED */
4336 	-1,			/* 10: UNUSED */
4337 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4338 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4339 	-1,			/* 13: ICMP_TSTAMP */
4340 	-1,			/* 14: ICMP_TSTAMPREPLY */
4341 	-1,			/* 15: ICMP_IREQ */
4342 	-1,			/* 16: ICMP_IREQREPLY */
4343 	-1,			/* 17: ICMP_MASKREQ */
4344 	-1,			/* 18: ICMP_MASKREPLY */
4345 };
4346 
4347 
4348 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4349 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4350 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4351 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4352 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4353 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4354 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4355 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4356 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4357 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4358 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4359 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4360 	-1,				/* 11: ICMP_UNREACH_TOSNET */
4361 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4362 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4363 };
4364 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4365 #endif
4366 
4367 int	icmpreplytype4[ICMP_MAXTYPE + 1];
4368 
4369 
4370 /* ------------------------------------------------------------------------ */
4371 /* Function:    ipf_matchicmpqueryreply                                     */
4372 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4373 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4374 /*              ic(I)   - ICMP information                                  */
4375 /*              icmp(I) - ICMP packet header                                */
4376 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4377 /*                                                                          */
4378 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4379 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
4380 /* else return 0 for no match.                                              */
4381 /* ------------------------------------------------------------------------ */
4382 int
ipf_matchicmpqueryreply(v,ic,icmp,rev)4383 ipf_matchicmpqueryreply(v, ic, icmp, rev)
4384 	int v;
4385 	icmpinfo_t *ic;
4386 	icmphdr_t *icmp;
4387 	int rev;
4388 {
4389 	int ictype;
4390 
4391 	ictype = ic->ici_type;
4392 
4393 	if (v == 4) {
4394 		/*
4395 		 * If we matched its type on the way in, then when going out
4396 		 * it will still be the same type.
4397 		 */
4398 		if ((!rev && (icmp->icmp_type == ictype)) ||
4399 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4400 			if (icmp->icmp_type != ICMP_ECHOREPLY)
4401 				return 1;
4402 			if (icmp->icmp_id == ic->ici_id)
4403 				return 1;
4404 		}
4405 	}
4406 #ifdef	USE_INET6
4407 	else if (v == 6) {
4408 		if ((!rev && (icmp->icmp_type == ictype)) ||
4409 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4410 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4411 				return 1;
4412 			if (icmp->icmp_id == ic->ici_id)
4413 				return 1;
4414 		}
4415 	}
4416 #endif
4417 	return 0;
4418 }
4419 
4420 
4421 /*
4422  * IFNAMES are located in the variable length field starting at
4423  * frentry.fr_names. As pointers within the struct cannot be passed
4424  * to the kernel from ipf(8), an offset is used. An offset of -1 means it
4425  * is unused (invalid). If it is used (valid) it is an offset to the
4426  * character string of an interface name or a comment. The following
4427  * macros will assist those who follow to understand the code.
4428  */
4429 #define IPF_IFNAME_VALID(_a)	(_a != -1)
4430 #define IPF_IFNAME_INVALID(_a)	(_a == -1)
4431 #define IPF_IFNAMES_DIFFERENT(_a)	\
4432 	!((IPF_IFNAME_INVALID(fr1->_a) &&	\
4433 	IPF_IFNAME_INVALID(fr2->_a)) ||	\
4434 	(IPF_IFNAME_VALID(fr1->_a) &&	\
4435 	IPF_IFNAME_VALID(fr2->_a) &&	\
4436 	!strcmp(FR_NAME(fr1, _a), FR_NAME(fr2, _a))))
4437 #define IPF_FRDEST_DIFFERENT(_a)	\
4438 	(memcmp(&fr1->_a.fd_addr, &fr2->_a.fd_addr,	\
4439 	offsetof(frdest_t, fd_name) - offsetof(frdest_t, fd_addr)) ||	\
4440 	IPF_IFNAMES_DIFFERENT(_a.fd_name))
4441 
4442 
4443 /* ------------------------------------------------------------------------ */
4444 /* Function:    ipf_rule_compare                                            */
4445 /* Parameters:  fr1(I) - first rule structure to compare                    */
4446 /*              fr2(I) - second rule structure to compare                   */
4447 /* Returns:     int    - 0 == rules are the same, else mismatch             */
4448 /*                                                                          */
4449 /* Compare two rules and return 0 if they match or a number indicating      */
4450 /* which of the individual checks failed.                                   */
4451 /* ------------------------------------------------------------------------ */
4452 static int
ipf_rule_compare(frentry_t * fr1,frentry_t * fr2)4453 ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4454 {
4455 	int i;
4456 
4457 	if (fr1->fr_cksum != fr2->fr_cksum)
4458 		return (1);
4459 	if (fr1->fr_size != fr2->fr_size)
4460 		return (2);
4461 	if (fr1->fr_dsize != fr2->fr_dsize)
4462 		return (3);
4463 	if (bcmp((char *)&fr1->fr_func, (char *)&fr2->fr_func, FR_CMPSIZ)
4464 	    != 0)
4465 		return (4);
4466 	/*
4467 	 * XXX:	There is still a bug here as different rules with the
4468 	 *	the same interfaces but in a different order will compare
4469 	 *	differently. But since multiple interfaces in a rule doesn't
4470 	 *	work anyway a simple straightforward compare is performed
4471 	 *	here. Ultimately frentry_t creation will need to be
4472 	 *	revisited in ipf_y.y. While the other issue, recognition
4473 	 *	of only the first interface in a list of interfaces will
4474 	 *	need to be separately addressed along with why only four.
4475 	 */
4476 	for (i = 0; i < FR_NUM(fr1->fr_ifnames); i++) {
4477 		/*
4478 		 * XXX:	It's either the same index or uninitialized.
4479 		 * 	We assume this because multiple interfaces
4480 		 *	referenced by the same rule doesn't work anyway.
4481 		 */
4482 		if (IPF_IFNAMES_DIFFERENT(fr_ifnames[i]))
4483 			return(5);
4484 	}
4485 
4486 	if (IPF_FRDEST_DIFFERENT(fr_tif))
4487 		return (6);
4488 	if (IPF_FRDEST_DIFFERENT(fr_rif))
4489 		return (7);
4490 	if (IPF_FRDEST_DIFFERENT(fr_dif))
4491 		return (8);
4492 	if (!fr1->fr_data && !fr2->fr_data)
4493 		return (0);	/* move along, nothing to see here */
4494 	if (fr1->fr_data && fr2->fr_data) {
4495 		if (bcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize) == 0)
4496 			return (0);	/* same */
4497 	}
4498 	return (9);
4499 }
4500 
4501 
4502 /* ------------------------------------------------------------------------ */
4503 /* Function:    frrequest                                                   */
4504 /* Returns:     int - 0 == success, > 0 == errno value                      */
4505 /* Parameters:  unit(I)     - device for which this is for                  */
4506 /*              req(I)      - ioctl command (SIOC*)                         */
4507 /*              data(I)     - pointr to ioctl data                          */
4508 /*              set(I)      - 1 or 0 (filter set)                           */
4509 /*              makecopy(I) - flag indicating whether data points to a rule */
4510 /*                            in kernel space & hence doesn't need copying. */
4511 /*                                                                          */
4512 /* This function handles all the requests which operate on the list of      */
4513 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4514 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4515 /* names are resolved here and other sanity checks are made on the content  */
4516 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4517 /* then make sure they are created and initialised before exiting.          */
4518 /* ------------------------------------------------------------------------ */
4519 int
frrequest(softc,unit,req,data,set,makecopy)4520 frrequest(softc, unit, req, data, set, makecopy)
4521 	ipf_main_softc_t *softc;
4522 	int unit;
4523 	ioctlcmd_t req;
4524 	int set, makecopy;
4525 	caddr_t data;
4526 {
4527 	int error = 0, in, family, need_free = 0;
4528 	enum {	OP_ADD,		/* add rule */
4529 		OP_REM,		/* remove rule */
4530 		OP_ZERO 	/* zero statistics and counters */ }
4531 		addrem = OP_ADD;
4532 	frentry_t frd, *fp, *f, **fprev, **ftail;
4533 	void *ptr, *uptr, *cptr;
4534 	u_int *p, *pp;
4535 	frgroup_t *fg;
4536 	char *group;
4537 
4538 	ptr = NULL;
4539 	cptr = NULL;
4540 	fg = NULL;
4541 	fp = &frd;
4542 	if (makecopy != 0) {
4543 		bzero(fp, sizeof(frd));
4544 		error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4545 		if (error) {
4546 			return error;
4547 		}
4548 		if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4549 			IPFERROR(6);
4550 			return EINVAL;
4551 		}
4552 		KMALLOCS(f, frentry_t *, fp->fr_size);
4553 		if (f == NULL) {
4554 			IPFERROR(131);
4555 			return ENOMEM;
4556 		}
4557 		bzero(f, fp->fr_size);
4558 		error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4559 				    fp->fr_size);
4560 		if (error) {
4561 			KFREES(f, fp->fr_size);
4562 			return error;
4563 		}
4564 
4565 		fp = f;
4566 		f = NULL;
4567 		fp->fr_next = NULL;
4568 		fp->fr_dnext = NULL;
4569 		fp->fr_pnext = NULL;
4570 		fp->fr_pdnext = NULL;
4571 		fp->fr_grp = NULL;
4572 		fp->fr_grphead = NULL;
4573 		fp->fr_icmpgrp = NULL;
4574 		fp->fr_isc = (void *)-1;
4575 		fp->fr_ptr = NULL;
4576 		fp->fr_ref = 0;
4577 		fp->fr_flags |= FR_COPIED;
4578 	} else {
4579 		fp = (frentry_t *)data;
4580 		if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4581 			IPFERROR(7);
4582 			return EINVAL;
4583 		}
4584 		fp->fr_flags &= ~FR_COPIED;
4585 	}
4586 
4587 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4588 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4589 		IPFERROR(8);
4590 		error = EINVAL;
4591 		goto donenolock;
4592 	}
4593 
4594 	family = fp->fr_family;
4595 	uptr = fp->fr_data;
4596 
4597 	if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4598 	    req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4599 		addrem = OP_ADD;	/* Add rule */
4600 	else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4601 		addrem = OP_REM;		/* Remove rule */
4602 	else if (req == (ioctlcmd_t)SIOCZRLST)
4603 		addrem = OP_ZERO;	/* Zero statistics and counters */
4604 	else {
4605 		IPFERROR(9);
4606 		error = EINVAL;
4607 		goto donenolock;
4608 	}
4609 
4610 	/*
4611 	 * Only filter rules for IPv4 or IPv6 are accepted.
4612 	 */
4613 	if (family == AF_INET) {
4614 		/*EMPTY*/;
4615 #ifdef	USE_INET6
4616 	} else if (family == AF_INET6) {
4617 		/*EMPTY*/;
4618 #endif
4619 	} else if (family != 0) {
4620 		IPFERROR(10);
4621 		error = EINVAL;
4622 		goto donenolock;
4623 	}
4624 
4625 	/*
4626 	 * If the rule is being loaded from user space, i.e. we had to copy it
4627 	 * into kernel space, then do not trust the function pointer in the
4628 	 * rule.
4629 	 */
4630 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4631 		if (ipf_findfunc(fp->fr_func) == NULL) {
4632 			IPFERROR(11);
4633 			error = ESRCH;
4634 			goto donenolock;
4635 		}
4636 
4637 		if (addrem == OP_ADD) {
4638 			error = ipf_funcinit(softc, fp);
4639 			if (error != 0)
4640 				goto donenolock;
4641 		}
4642 	}
4643 	if ((fp->fr_flags & FR_CALLNOW) &&
4644 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4645 		IPFERROR(142);
4646 		error = ESRCH;
4647 		goto donenolock;
4648 	}
4649 	if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4650 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4651 		IPFERROR(143);
4652 		error = ESRCH;
4653 		goto donenolock;
4654 	}
4655 
4656 	ptr = NULL;
4657 	cptr = NULL;
4658 
4659 	if (FR_ISACCOUNT(fp->fr_flags))
4660 		unit = IPL_LOGCOUNT;
4661 
4662 	/*
4663 	 * Check that each group name in the rule has a start index that
4664 	 * is valid.
4665 	 */
4666 	if (fp->fr_icmphead != -1) {
4667 		if ((fp->fr_icmphead < 0) ||
4668 		    (fp->fr_icmphead >= fp->fr_namelen)) {
4669 			IPFERROR(136);
4670 			error = EINVAL;
4671 			goto donenolock;
4672 		}
4673 		if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4674 			fp->fr_names[fp->fr_icmphead] = '\0';
4675 	}
4676 
4677 	if (fp->fr_grhead != -1) {
4678 		if ((fp->fr_grhead < 0) ||
4679 		    (fp->fr_grhead >= fp->fr_namelen)) {
4680 			IPFERROR(137);
4681 			error = EINVAL;
4682 			goto donenolock;
4683 		}
4684 		if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4685 			fp->fr_names[fp->fr_grhead] = '\0';
4686 	}
4687 
4688 	if (fp->fr_group != -1) {
4689 		if ((fp->fr_group < 0) ||
4690 		    (fp->fr_group >= fp->fr_namelen)) {
4691 			IPFERROR(138);
4692 			error = EINVAL;
4693 			goto donenolock;
4694 		}
4695 		if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4696 			/*
4697 			 * Allow loading rules that are in groups to cause
4698 			 * them to be created if they don't already exit.
4699 			 */
4700 			group = FR_NAME(fp, fr_group);
4701 			if (addrem == OP_ADD) {
4702 				fg = ipf_group_add(softc, group, NULL,
4703 						   fp->fr_flags, unit, set);
4704 				fp->fr_grp = fg;
4705 			} else {
4706 				fg = ipf_findgroup(softc, group, unit,
4707 						   set, NULL);
4708 				if (fg == NULL) {
4709 					IPFERROR(12);
4710 					error = ESRCH;
4711 					goto donenolock;
4712 				}
4713 			}
4714 
4715 			if (fg->fg_flags == 0) {
4716 				fg->fg_flags = fp->fr_flags & FR_INOUT;
4717 			} else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4718 				IPFERROR(13);
4719 				error = ESRCH;
4720 				goto donenolock;
4721 			}
4722 		}
4723 	} else {
4724 		/*
4725 		 * If a rule is going to be part of a group then it does
4726 		 * not matter whether it is an in or out rule, but if it
4727 		 * isn't in a group, then it does...
4728 		 */
4729 		if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4730 			IPFERROR(14);
4731 			error = EINVAL;
4732 			goto donenolock;
4733 		}
4734 	}
4735 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4736 
4737 	/*
4738 	 * Work out which rule list this change is being applied to.
4739 	 */
4740 	ftail = NULL;
4741 	fprev = NULL;
4742 	if (unit == IPL_LOGAUTH) {
4743                 if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4744 		    (fp->fr_tifs[1].fd_ptr != NULL) ||
4745 		    (fp->fr_dif.fd_ptr != NULL) ||
4746 		    (fp->fr_flags & FR_FASTROUTE)) {
4747 			softc->ipf_interror = 145;
4748 			error = EINVAL;
4749 			goto donenolock;
4750 		}
4751 		fprev = ipf_auth_rulehead(softc);
4752 	} else {
4753 		if (FR_ISACCOUNT(fp->fr_flags))
4754 			fprev = &softc->ipf_acct[in][set];
4755 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4756 			fprev = &softc->ipf_rules[in][set];
4757 	}
4758 	if (fprev == NULL) {
4759 		IPFERROR(15);
4760 		error = ESRCH;
4761 		goto donenolock;
4762 	}
4763 
4764 	if (fg != NULL)
4765 		fprev = &fg->fg_start;
4766 
4767 	/*
4768 	 * Copy in extra data for the rule.
4769 	 */
4770 	if (fp->fr_dsize != 0) {
4771 		if (makecopy != 0) {
4772 			KMALLOCS(ptr, void *, fp->fr_dsize);
4773 			if (ptr == NULL) {
4774 				IPFERROR(16);
4775 				error = ENOMEM;
4776 				goto donenolock;
4777 			}
4778 
4779 			/*
4780 			 * The bcopy case is for when the data is appended
4781 			 * to the rule by ipf_in_compat().
4782 			 */
4783 			if (uptr >= (void *)fp &&
4784 			    uptr < (void *)((char *)fp + fp->fr_size)) {
4785 				bcopy(uptr, ptr, fp->fr_dsize);
4786 				error = 0;
4787 			} else {
4788 				error = COPYIN(uptr, ptr, fp->fr_dsize);
4789 				if (error != 0) {
4790 					IPFERROR(17);
4791 					error = EFAULT;
4792 					goto donenolock;
4793 				}
4794 			}
4795 		} else {
4796 			ptr = uptr;
4797 		}
4798 		fp->fr_data = ptr;
4799 	} else {
4800 		fp->fr_data = NULL;
4801 	}
4802 
4803 	/*
4804 	 * Perform per-rule type sanity checks of their members.
4805 	 * All code after this needs to be aware that allocated memory
4806 	 * may need to be free'd before exiting.
4807 	 */
4808 	switch (fp->fr_type & ~FR_T_BUILTIN)
4809 	{
4810 #if defined(IPFILTER_BPF)
4811 	case FR_T_BPFOPC :
4812 		if (fp->fr_dsize == 0) {
4813 			IPFERROR(19);
4814 			error = EINVAL;
4815 			break;
4816 		}
4817 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4818 			IPFERROR(20);
4819 			error = EINVAL;
4820 			break;
4821 		}
4822 		break;
4823 #endif
4824 	case FR_T_IPF :
4825 		/*
4826 		 * Preparation for error case at the bottom of this function.
4827 		 */
4828 		if (fp->fr_datype == FRI_LOOKUP)
4829 			fp->fr_dstptr = NULL;
4830 		if (fp->fr_satype == FRI_LOOKUP)
4831 			fp->fr_srcptr = NULL;
4832 
4833 		if (fp->fr_dsize != sizeof(fripf_t)) {
4834 			IPFERROR(21);
4835 			error = EINVAL;
4836 			break;
4837 		}
4838 
4839 		/*
4840 		 * Allowing a rule with both "keep state" and "with oow" is
4841 		 * pointless because adding a state entry to the table will
4842 		 * fail with the out of window (oow) flag set.
4843 		 */
4844 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4845 			IPFERROR(22);
4846 			error = EINVAL;
4847 			break;
4848 		}
4849 
4850 		switch (fp->fr_satype)
4851 		{
4852 		case FRI_BROADCAST :
4853 		case FRI_DYNAMIC :
4854 		case FRI_NETWORK :
4855 		case FRI_NETMASKED :
4856 		case FRI_PEERADDR :
4857 			if (fp->fr_sifpidx < 0) {
4858 				IPFERROR(23);
4859 				error = EINVAL;
4860 			}
4861 			break;
4862 		case FRI_LOOKUP :
4863 			fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4864 						       &fp->fr_src6,
4865 						       &fp->fr_smsk6);
4866 			if (fp->fr_srcfunc == NULL) {
4867 				IPFERROR(132);
4868 				error = ESRCH;
4869 				break;
4870 			}
4871 			break;
4872 		case FRI_NORMAL :
4873 			break;
4874 		default :
4875 			IPFERROR(133);
4876 			error = EINVAL;
4877 			break;
4878 		}
4879 		if (error != 0)
4880 			break;
4881 
4882 		switch (fp->fr_datype)
4883 		{
4884 		case FRI_BROADCAST :
4885 		case FRI_DYNAMIC :
4886 		case FRI_NETWORK :
4887 		case FRI_NETMASKED :
4888 		case FRI_PEERADDR :
4889 			if (fp->fr_difpidx < 0) {
4890 				IPFERROR(24);
4891 				error = EINVAL;
4892 			}
4893 			break;
4894 		case FRI_LOOKUP :
4895 			fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4896 						       &fp->fr_dst6,
4897 						       &fp->fr_dmsk6);
4898 			if (fp->fr_dstfunc == NULL) {
4899 				IPFERROR(134);
4900 				error = ESRCH;
4901 			}
4902 			break;
4903 		case FRI_NORMAL :
4904 			break;
4905 		default :
4906 			IPFERROR(135);
4907 			error = EINVAL;
4908 		}
4909 		break;
4910 
4911 	case FR_T_NONE :
4912 	case FR_T_CALLFUNC :
4913 	case FR_T_COMPIPF :
4914 		break;
4915 
4916 	case FR_T_IPFEXPR :
4917 		if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4918 			IPFERROR(25);
4919 			error = EINVAL;
4920 		}
4921 		break;
4922 
4923 	default :
4924 		IPFERROR(26);
4925 		error = EINVAL;
4926 		break;
4927 	}
4928 	if (error != 0)
4929 		goto donenolock;
4930 
4931 	if (fp->fr_tif.fd_name != -1) {
4932 		if ((fp->fr_tif.fd_name < 0) ||
4933 		    (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4934 			IPFERROR(139);
4935 			error = EINVAL;
4936 			goto donenolock;
4937 		}
4938 	}
4939 
4940 	if (fp->fr_dif.fd_name != -1) {
4941 		if ((fp->fr_dif.fd_name < 0) ||
4942 		    (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4943 			IPFERROR(140);
4944 			error = EINVAL;
4945 			goto donenolock;
4946 		}
4947 	}
4948 
4949 	if (fp->fr_rif.fd_name != -1) {
4950 		if ((fp->fr_rif.fd_name < 0) ||
4951 		    (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4952 			IPFERROR(141);
4953 			error = EINVAL;
4954 			goto donenolock;
4955 		}
4956 	}
4957 
4958 	/*
4959 	 * Lookup all the interface names that are part of the rule.
4960 	 */
4961 	error = ipf_synclist(softc, fp, NULL);
4962 	if (error != 0)
4963 		goto donenolock;
4964 	fp->fr_statecnt = 0;
4965 	if (fp->fr_srctrack.ht_max_nodes != 0)
4966 		ipf_rb_ht_init(&fp->fr_srctrack);
4967 
4968 	/*
4969 	 * Look for an existing matching filter rule, but don't include the
4970 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4971 	 * This elminates rules which are indentical being loaded.  Checksum
4972 	 * the constant part of the filter rule to make comparisons quicker
4973 	 * (this meaning no pointers are included).
4974 	 */
4975 	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4976 	for (fp->fr_cksum = 0, p = (u_int *)fp->fr_data; p < pp; p++)
4977 		fp->fr_cksum += *p;
4978 
4979 	WRITE_ENTER(&softc->ipf_mutex);
4980 
4981 	/*
4982 	 * Now that the filter rule lists are locked, we can walk the
4983 	 * chain of them without fear.
4984 	 */
4985 	ftail = fprev;
4986 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4987 		if (fp->fr_collect <= f->fr_collect) {
4988 			ftail = fprev;
4989 			f = NULL;
4990 			break;
4991 		}
4992 		fprev = ftail;
4993 	}
4994 
4995 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4996 		if (ipf_rule_compare(fp, f) == 0)
4997 			break;
4998 	}
4999 
5000 	/*
5001 	 * If zero'ing statistics, copy current to caller and zero.
5002 	 */
5003 	if (addrem == OP_ZERO) {
5004 		if (f == NULL) {
5005 			IPFERROR(27);
5006 			error = ESRCH;
5007 		} else {
5008 			/*
5009 			 * Copy and reduce lock because of impending copyout.
5010 			 * Well we should, but if we do then the atomicity of
5011 			 * this call and the correctness of fr_hits and
5012 			 * fr_bytes cannot be guaranteed.  As it is, this code
5013 			 * only resets them to 0 if they are successfully
5014 			 * copied out into user space.
5015 			 */
5016 			bcopy((char *)f, (char *)fp, f->fr_size);
5017 			/* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
5018 
5019 			/*
5020 			 * When we copy this rule back out, set the data
5021 			 * pointer to be what it was in user space.
5022 			 */
5023 			fp->fr_data = uptr;
5024 			error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
5025 
5026 			if (error == 0) {
5027 				if ((f->fr_dsize != 0) && (uptr != NULL)) {
5028 					error = COPYOUT(f->fr_data, uptr,
5029 							f->fr_dsize);
5030 					if (error == 0) {
5031 						f->fr_hits = 0;
5032 						f->fr_bytes = 0;
5033 					} else {
5034 						IPFERROR(28);
5035 						error = EFAULT;
5036 					}
5037 				}
5038 			}
5039 		}
5040 
5041 		if (makecopy != 0) {
5042 			if (ptr != NULL) {
5043 				KFREES(ptr, fp->fr_dsize);
5044 			}
5045 			KFREES(fp, fp->fr_size);
5046 		}
5047 		RWLOCK_EXIT(&softc->ipf_mutex);
5048 		return error;
5049 	}
5050 
5051 	if (f == NULL) {
5052 		/*
5053 		 * At the end of this, ftail must point to the place where the
5054 		 * new rule is to be saved/inserted/added.
5055 		 * For SIOCAD*FR, this should be the last rule in the group of
5056 		 * rules that have equal fr_collect fields.
5057 		 * For SIOCIN*FR, ...
5058 		 */
5059 		if (req == (ioctlcmd_t)SIOCADAFR ||
5060 		    req == (ioctlcmd_t)SIOCADIFR) {
5061 
5062 			for (ftail = fprev; (f = *ftail) != NULL; ) {
5063 				if (f->fr_collect > fp->fr_collect)
5064 					break;
5065 				ftail = &f->fr_next;
5066 				fprev = ftail;
5067 			}
5068 			ftail = fprev;
5069 			f = NULL;
5070 			ptr = NULL;
5071 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
5072 			   req == (ioctlcmd_t)SIOCINIFR) {
5073 			while ((f = *fprev) != NULL) {
5074 				if (f->fr_collect >= fp->fr_collect)
5075 					break;
5076 				fprev = &f->fr_next;
5077 			}
5078   			ftail = fprev;
5079   			if (fp->fr_hits != 0) {
5080 				while (fp->fr_hits && (f = *ftail)) {
5081 					if (f->fr_collect != fp->fr_collect)
5082 						break;
5083 					fprev = ftail;
5084   					ftail = &f->fr_next;
5085 					fp->fr_hits--;
5086 				}
5087   			}
5088   			f = NULL;
5089   			ptr = NULL;
5090 		}
5091 	}
5092 
5093 	/*
5094 	 * Request to remove a rule.
5095 	 */
5096 	if (addrem == OP_REM) {
5097 		if (f == NULL) {
5098 			IPFERROR(29);
5099 			error = ESRCH;
5100 		} else {
5101 			/*
5102 			 * Do not allow activity from user space to interfere
5103 			 * with rules not loaded that way.
5104 			 */
5105 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
5106 				IPFERROR(30);
5107 				error = EPERM;
5108 				goto done;
5109 			}
5110 
5111 			/*
5112 			 * Return EBUSY if the rule is being reference by
5113 			 * something else (eg state information.)
5114 			 */
5115 			if (f->fr_ref > 1) {
5116 				IPFERROR(31);
5117 				error = EBUSY;
5118 				goto done;
5119 			}
5120 #ifdef	IPFILTER_SCAN
5121 			if (f->fr_isctag != -1 &&
5122 			    (f->fr_isc != (struct ipscan *)-1))
5123 				ipf_scan_detachfr(f);
5124 #endif
5125 
5126 			if (unit == IPL_LOGAUTH) {
5127 				error = ipf_auth_precmd(softc, req, f, ftail);
5128 				goto done;
5129 			}
5130 
5131 			ipf_rule_delete(softc, f, unit, set);
5132 
5133 			need_free = makecopy;
5134 		}
5135 	} else {
5136 		/*
5137 		 * Not removing, so we must be adding/inserting a rule.
5138 		 */
5139 		if (f != NULL) {
5140 			IPFERROR(32);
5141 			error = EEXIST;
5142 			goto done;
5143 		}
5144 		if (unit == IPL_LOGAUTH) {
5145 			error = ipf_auth_precmd(softc, req, fp, ftail);
5146 			goto done;
5147 		}
5148 
5149 		MUTEX_NUKE(&fp->fr_lock);
5150 		MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5151 		if (fp->fr_die != 0)
5152 			ipf_rule_expire_insert(softc, fp, set);
5153 
5154 		fp->fr_hits = 0;
5155 		if (makecopy != 0)
5156 			fp->fr_ref = 1;
5157 		fp->fr_pnext = ftail;
5158 		fp->fr_next = *ftail;
5159 		if (fp->fr_next != NULL)
5160 			fp->fr_next->fr_pnext = &fp->fr_next;
5161 		*ftail = fp;
5162 		ipf_fixskip(ftail, fp, 1);
5163 
5164 		fp->fr_icmpgrp = NULL;
5165 		if (fp->fr_icmphead != -1) {
5166 			group = FR_NAME(fp, fr_icmphead);
5167 			fg = ipf_group_add(softc, group, fp, 0, unit, set);
5168 			fp->fr_icmpgrp = fg;
5169 		}
5170 
5171 		fp->fr_grphead = NULL;
5172 		if (fp->fr_grhead != -1) {
5173 			group = FR_NAME(fp, fr_grhead);
5174 			fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5175 					   unit, set);
5176 			fp->fr_grphead = fg;
5177 		}
5178 	}
5179 done:
5180 	RWLOCK_EXIT(&softc->ipf_mutex);
5181 donenolock:
5182 	if (need_free || (error != 0)) {
5183 		if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5184 			if ((fp->fr_satype == FRI_LOOKUP) &&
5185 			    (fp->fr_srcptr != NULL))
5186 				ipf_lookup_deref(softc, fp->fr_srctype,
5187 						 fp->fr_srcptr);
5188 			if ((fp->fr_datype == FRI_LOOKUP) &&
5189 			    (fp->fr_dstptr != NULL))
5190 				ipf_lookup_deref(softc, fp->fr_dsttype,
5191 						 fp->fr_dstptr);
5192 		}
5193 		if (fp->fr_grp != NULL) {
5194 			WRITE_ENTER(&softc->ipf_mutex);
5195 			ipf_group_del(softc, fp->fr_grp, fp);
5196 			RWLOCK_EXIT(&softc->ipf_mutex);
5197 		}
5198 		if ((ptr != NULL) && (makecopy != 0)) {
5199 			KFREES(ptr, fp->fr_dsize);
5200 		}
5201 		KFREES(fp, fp->fr_size);
5202 	}
5203 	return (error);
5204 }
5205 
5206 
5207 /* ------------------------------------------------------------------------ */
5208 /* Function:   ipf_rule_delete                                              */
5209 /* Returns:    Nil                                                          */
5210 /* Parameters: softc(I) - pointer to soft context main structure            */
5211 /*             f(I)     - pointer to the rule being deleted                 */
5212 /*             ftail(I) - pointer to the pointer to f                       */
5213 /*             unit(I)  - device for which this is for                      */
5214 /*             set(I)   - 1 or 0 (filter set)                               */
5215 /*                                                                          */
5216 /* This function attempts to do what it can to delete a filter rule: remove */
5217 /* it from any linked lists and remove any groups it is responsible for.    */
5218 /* But in the end, removing a rule can only drop the reference count - we   */
5219 /* must use that as the guide for whether or not it can be freed.           */
5220 /* ------------------------------------------------------------------------ */
5221 static void
ipf_rule_delete(softc,f,unit,set)5222 ipf_rule_delete(softc, f, unit, set)
5223 	ipf_main_softc_t *softc;
5224 	frentry_t *f;
5225 	int unit, set;
5226 {
5227 
5228 	/*
5229 	 * If fr_pdnext is set, then the rule is on the expire list, so
5230 	 * remove it from there.
5231 	 */
5232 	if (f->fr_pdnext != NULL) {
5233 		*f->fr_pdnext = f->fr_dnext;
5234 		if (f->fr_dnext != NULL)
5235 			f->fr_dnext->fr_pdnext = f->fr_pdnext;
5236 		f->fr_pdnext = NULL;
5237 		f->fr_dnext = NULL;
5238 	}
5239 
5240 	ipf_fixskip(f->fr_pnext, f, -1);
5241 	if (f->fr_pnext != NULL)
5242 		*f->fr_pnext = f->fr_next;
5243 	if (f->fr_next != NULL)
5244 		f->fr_next->fr_pnext = f->fr_pnext;
5245 	f->fr_pnext = NULL;
5246 	f->fr_next = NULL;
5247 
5248 	(void) ipf_derefrule(softc, &f);
5249 }
5250 
5251 /* ------------------------------------------------------------------------ */
5252 /* Function:   ipf_rule_expire_insert                                       */
5253 /* Returns:    Nil                                                          */
5254 /* Parameters: softc(I) - pointer to soft context main structure            */
5255 /*             f(I)     - pointer to rule to be added to expire list        */
5256 /*             set(I)   - 1 or 0 (filter set)                               */
5257 /*                                                                          */
5258 /* If the new rule has a given expiration time, insert it into the list of  */
5259 /* expiring rules with the ones to be removed first added to the front of   */
5260 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5261 /* expiration interval checks.                                              */
5262 /* ------------------------------------------------------------------------ */
5263 static void
ipf_rule_expire_insert(softc,f,set)5264 ipf_rule_expire_insert(softc, f, set)
5265 	ipf_main_softc_t *softc;
5266 	frentry_t *f;
5267 	int set;
5268 {
5269 	frentry_t *fr;
5270 
5271 	/*
5272 	 */
5273 
5274 	f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5275 	for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5276 	     fr = fr->fr_dnext) {
5277 		if (f->fr_die < fr->fr_die)
5278 			break;
5279 		if (fr->fr_dnext == NULL) {
5280 			/*
5281 			 * We've got to the last rule and everything
5282 			 * wanted to be expired before this new node,
5283 			 * so we have to tack it on the end...
5284 			 */
5285 			fr->fr_dnext = f;
5286 			f->fr_pdnext = &fr->fr_dnext;
5287 			fr = NULL;
5288 			break;
5289 		}
5290 	}
5291 
5292 	if (softc->ipf_rule_explist[set] == NULL) {
5293 		softc->ipf_rule_explist[set] = f;
5294 		f->fr_pdnext = &softc->ipf_rule_explist[set];
5295 	} else if (fr != NULL) {
5296 		f->fr_dnext = fr;
5297 		f->fr_pdnext = fr->fr_pdnext;
5298 		fr->fr_pdnext = &f->fr_dnext;
5299 	}
5300 }
5301 
5302 
5303 /* ------------------------------------------------------------------------ */
5304 /* Function:   ipf_findlookup                                               */
5305 /* Returns:    NULL = failure, else success                                 */
5306 /* Parameters: softc(I) - pointer to soft context main structure            */
5307 /*             unit(I)  - ipf device we want to find match for              */
5308 /*             fp(I)    - rule for which lookup is for                      */
5309 /*             addrp(I) - pointer to lookup information in address struct   */
5310 /*             maskp(O) - pointer to lookup information for storage         */
5311 /*                                                                          */
5312 /* When using pools and hash tables to store addresses for matching in      */
5313 /* rules, it is necessary to resolve both the object referred to by the     */
5314 /* name or address (and return that pointer) and also provide the means by  */
5315 /* which to determine if an address belongs to that object to make the      */
5316 /* packet matching quicker.                                                 */
5317 /* ------------------------------------------------------------------------ */
5318 static void *
ipf_findlookup(softc,unit,fr,addrp,maskp)5319 ipf_findlookup(softc, unit, fr, addrp, maskp)
5320 	ipf_main_softc_t *softc;
5321 	int unit;
5322 	frentry_t *fr;
5323 	i6addr_t *addrp, *maskp;
5324 {
5325 	void *ptr = NULL;
5326 
5327 	switch (addrp->iplookupsubtype)
5328 	{
5329 	case 0 :
5330 		ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5331 					 addrp->iplookupnum,
5332 					 &maskp->iplookupfunc);
5333 		break;
5334 	case 1 :
5335 		if (addrp->iplookupname < 0)
5336 			break;
5337 		if (addrp->iplookupname >= fr->fr_namelen)
5338 			break;
5339 		ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5340 					  fr->fr_names + addrp->iplookupname,
5341 					  &maskp->iplookupfunc);
5342 		break;
5343 	default :
5344 		break;
5345 	}
5346 
5347 	return ptr;
5348 }
5349 
5350 
5351 /* ------------------------------------------------------------------------ */
5352 /* Function:    ipf_funcinit                                                */
5353 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
5354 /* Parameters:  softc(I) - pointer to soft context main structure           */
5355 /*              fr(I)    - pointer to filter rule                           */
5356 /*                                                                          */
5357 /* If a rule is a call rule, then check if the function it points to needs  */
5358 /* an init function to be called now the rule has been loaded.              */
5359 /* ------------------------------------------------------------------------ */
5360 static int
ipf_funcinit(softc,fr)5361 ipf_funcinit(softc, fr)
5362 	ipf_main_softc_t *softc;
5363 	frentry_t *fr;
5364 {
5365 	ipfunc_resolve_t *ft;
5366 	int err;
5367 
5368 	IPFERROR(34);
5369 	err = ESRCH;
5370 
5371 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5372 		if (ft->ipfu_addr == fr->fr_func) {
5373 			err = 0;
5374 			if (ft->ipfu_init != NULL)
5375 				err = (*ft->ipfu_init)(softc, fr);
5376 			break;
5377 		}
5378 	return err;
5379 }
5380 
5381 
5382 /* ------------------------------------------------------------------------ */
5383 /* Function:    ipf_funcfini                                                */
5384 /* Returns:     Nil                                                         */
5385 /* Parameters:  softc(I) - pointer to soft context main structure           */
5386 /*              fr(I)    - pointer to filter rule                           */
5387 /*                                                                          */
5388 /* For a given filter rule, call the matching "fini" function if the rule   */
5389 /* is using a known function that would have resulted in the "init" being   */
5390 /* called for ealier.                                                       */
5391 /* ------------------------------------------------------------------------ */
5392 static void
ipf_funcfini(softc,fr)5393 ipf_funcfini(softc, fr)
5394 	ipf_main_softc_t *softc;
5395 	frentry_t *fr;
5396 {
5397 	ipfunc_resolve_t *ft;
5398 
5399 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5400 		if (ft->ipfu_addr == fr->fr_func) {
5401 			if (ft->ipfu_fini != NULL)
5402 				(void) (*ft->ipfu_fini)(softc, fr);
5403 			break;
5404 		}
5405 }
5406 
5407 
5408 /* ------------------------------------------------------------------------ */
5409 /* Function:    ipf_findfunc                                                */
5410 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
5411 /* Parameters:  funcptr(I) - function pointer to lookup                     */
5412 /*                                                                          */
5413 /* Look for a function in the table of known functions.                     */
5414 /* ------------------------------------------------------------------------ */
5415 static ipfunc_t
ipf_findfunc(funcptr)5416 ipf_findfunc(funcptr)
5417 	ipfunc_t funcptr;
5418 {
5419 	ipfunc_resolve_t *ft;
5420 
5421 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5422 		if (ft->ipfu_addr == funcptr)
5423 			return funcptr;
5424 	return NULL;
5425 }
5426 
5427 
5428 /* ------------------------------------------------------------------------ */
5429 /* Function:    ipf_resolvefunc                                             */
5430 /* Returns:     int - 0 == success, else error                              */
5431 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
5432 /*                                                                          */
5433 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5434 /* This will either be the function name (if the pointer is set) or the     */
5435 /* function pointer if the name is set.  When found, fill in the other one  */
5436 /* so that the entire, complete, structure can be copied back to user space.*/
5437 /* ------------------------------------------------------------------------ */
5438 int
ipf_resolvefunc(softc,data)5439 ipf_resolvefunc(softc, data)
5440 	ipf_main_softc_t *softc;
5441 	void *data;
5442 {
5443 	ipfunc_resolve_t res, *ft;
5444 	int error;
5445 
5446 	error = BCOPYIN(data, &res, sizeof(res));
5447 	if (error != 0) {
5448 		IPFERROR(123);
5449 		return EFAULT;
5450 	}
5451 
5452 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5453 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5454 			if (strncmp(res.ipfu_name, ft->ipfu_name,
5455 				    sizeof(res.ipfu_name)) == 0) {
5456 				res.ipfu_addr = ft->ipfu_addr;
5457 				res.ipfu_init = ft->ipfu_init;
5458 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5459 					IPFERROR(35);
5460 					return EFAULT;
5461 				}
5462 				return 0;
5463 			}
5464 	}
5465 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5466 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5467 			if (ft->ipfu_addr == res.ipfu_addr) {
5468 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
5469 					       sizeof(res.ipfu_name));
5470 				res.ipfu_init = ft->ipfu_init;
5471 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5472 					IPFERROR(36);
5473 					return EFAULT;
5474 				}
5475 				return 0;
5476 			}
5477 	}
5478 	IPFERROR(37);
5479 	return ESRCH;
5480 }
5481 
5482 
5483 #if !defined(_KERNEL) || SOLARIS
5484 /*
5485  * From: NetBSD
5486  * ppsratecheck(): packets (or events) per second limitation.
5487  */
5488 int
ppsratecheck(lasttime,curpps,maxpps)5489 ppsratecheck(lasttime, curpps, maxpps)
5490 	struct timeval *lasttime;
5491 	int *curpps;
5492 	int maxpps;	/* maximum pps allowed */
5493 {
5494 	struct timeval tv, delta;
5495 	int rv;
5496 
5497 	GETKTIME(&tv);
5498 
5499 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5500 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5501 	if (delta.tv_usec < 0) {
5502 		delta.tv_sec--;
5503 		delta.tv_usec += 1000000;
5504 	}
5505 
5506 	/*
5507 	 * check for 0,0 is so that the message will be seen at least once.
5508 	 * if more than one second have passed since the last update of
5509 	 * lasttime, reset the counter.
5510 	 *
5511 	 * we do increment *curpps even in *curpps < maxpps case, as some may
5512 	 * try to use *curpps for stat purposes as well.
5513 	 */
5514 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5515 	    delta.tv_sec >= 1) {
5516 		*lasttime = tv;
5517 		*curpps = 0;
5518 		rv = 1;
5519 	} else if (maxpps < 0)
5520 		rv = 1;
5521 	else if (*curpps < maxpps)
5522 		rv = 1;
5523 	else
5524 		rv = 0;
5525 	*curpps = *curpps + 1;
5526 
5527 	return (rv);
5528 }
5529 #endif
5530 
5531 
5532 /* ------------------------------------------------------------------------ */
5533 /* Function:    ipf_derefrule                                               */
5534 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
5535 /* Parameters:  fr(I) - pointer to filter rule                              */
5536 /*                                                                          */
5537 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
5538 /* free it and any associated storage space being used by it.               */
5539 /* ------------------------------------------------------------------------ */
5540 int
ipf_derefrule(softc,frp)5541 ipf_derefrule(softc, frp)
5542 	ipf_main_softc_t *softc;
5543 	frentry_t **frp;
5544 {
5545 	frentry_t *fr;
5546 	frdest_t *fdp;
5547 
5548 	fr = *frp;
5549 	*frp = NULL;
5550 
5551 	MUTEX_ENTER(&fr->fr_lock);
5552 	fr->fr_ref--;
5553 	if (fr->fr_ref == 0) {
5554 		MUTEX_EXIT(&fr->fr_lock);
5555 		MUTEX_DESTROY(&fr->fr_lock);
5556 
5557 		ipf_funcfini(softc, fr);
5558 
5559 		fdp = &fr->fr_tif;
5560 		if (fdp->fd_type == FRD_DSTLIST)
5561 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5562 
5563 		fdp = &fr->fr_rif;
5564 		if (fdp->fd_type == FRD_DSTLIST)
5565 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5566 
5567 		fdp = &fr->fr_dif;
5568 		if (fdp->fd_type == FRD_DSTLIST)
5569 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5570 
5571 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5572 		    fr->fr_satype == FRI_LOOKUP)
5573 			ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5574 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5575 		    fr->fr_datype == FRI_LOOKUP)
5576 			ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5577 
5578 		if (fr->fr_grp != NULL)
5579 			ipf_group_del(softc, fr->fr_grp, fr);
5580 
5581 		if (fr->fr_grphead != NULL)
5582 			ipf_group_del(softc, fr->fr_grphead, fr);
5583 
5584 		if (fr->fr_icmpgrp != NULL)
5585 			ipf_group_del(softc, fr->fr_icmpgrp, fr);
5586 
5587 		if ((fr->fr_flags & FR_COPIED) != 0) {
5588 			if (fr->fr_dsize) {
5589 				KFREES(fr->fr_data, fr->fr_dsize);
5590 			}
5591 			KFREES(fr, fr->fr_size);
5592 			return 0;
5593 		}
5594 		return 1;
5595 	} else {
5596 		MUTEX_EXIT(&fr->fr_lock);
5597 	}
5598 	return -1;
5599 }
5600 
5601 
5602 /* ------------------------------------------------------------------------ */
5603 /* Function:    ipf_grpmapinit                                              */
5604 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5605 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
5606 /*                                                                          */
5607 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
5608 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap.                 */
5609 /* ------------------------------------------------------------------------ */
5610 static int
ipf_grpmapinit(softc,fr)5611 ipf_grpmapinit(softc, fr)
5612 	ipf_main_softc_t *softc;
5613 	frentry_t *fr;
5614 {
5615 	char name[FR_GROUPLEN];
5616 	iphtable_t *iph;
5617 
5618 #if defined(SNPRINTF) && defined(_KERNEL)
5619 	SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
5620 #else
5621 	(void) sprintf(name, "%d", fr->fr_arg);
5622 #endif
5623 	iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5624 	if (iph == NULL) {
5625 		IPFERROR(38);
5626 		return ESRCH;
5627 	}
5628 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5629 		IPFERROR(39);
5630 		return ESRCH;
5631 	}
5632 	iph->iph_ref++;
5633 	fr->fr_ptr = iph;
5634 	return 0;
5635 }
5636 
5637 
5638 /* ------------------------------------------------------------------------ */
5639 /* Function:    ipf_grpmapfini                                              */
5640 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5641 /* Parameters:  softc(I) - pointer to soft context main structure           */
5642 /*              fr(I)    - pointer to rule to release hash table for        */
5643 /*                                                                          */
5644 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5645 /* be called to undo what ipf_grpmapinit caused to be done.                 */
5646 /* ------------------------------------------------------------------------ */
5647 static int
ipf_grpmapfini(softc,fr)5648 ipf_grpmapfini(softc, fr)
5649 	ipf_main_softc_t *softc;
5650 	frentry_t *fr;
5651 {
5652 	iphtable_t *iph;
5653 	iph = fr->fr_ptr;
5654 	if (iph != NULL)
5655 		ipf_lookup_deref(softc, IPLT_HASH, iph);
5656 	return 0;
5657 }
5658 
5659 
5660 /* ------------------------------------------------------------------------ */
5661 /* Function:    ipf_srcgrpmap                                               */
5662 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5663 /* Parameters:  fin(I)    - pointer to packet information                   */
5664 /*              passp(IO) - pointer to current/new filter decision (unused) */
5665 /*                                                                          */
5666 /* Look for a rule group head in a hash table, using the source address as  */
5667 /* the key, and descend into that group and continue matching rules against */
5668 /* the packet.                                                              */
5669 /* ------------------------------------------------------------------------ */
5670 frentry_t *
ipf_srcgrpmap(fin,passp)5671 ipf_srcgrpmap(fin, passp)
5672 	fr_info_t *fin;
5673 	u_32_t *passp;
5674 {
5675 	frgroup_t *fg;
5676 	void *rval;
5677 
5678 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5679 				 &fin->fin_src);
5680 	if (rval == NULL)
5681 		return NULL;
5682 
5683 	fg = rval;
5684 	fin->fin_fr = fg->fg_start;
5685 	(void) ipf_scanlist(fin, *passp);
5686 	return fin->fin_fr;
5687 }
5688 
5689 
5690 /* ------------------------------------------------------------------------ */
5691 /* Function:    ipf_dstgrpmap                                               */
5692 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5693 /* Parameters:  fin(I)    - pointer to packet information                   */
5694 /*              passp(IO) - pointer to current/new filter decision (unused) */
5695 /*                                                                          */
5696 /* Look for a rule group head in a hash table, using the destination        */
5697 /* address as the key, and descend into that group and continue matching    */
5698 /* rules against  the packet.                                               */
5699 /* ------------------------------------------------------------------------ */
5700 frentry_t *
ipf_dstgrpmap(fin,passp)5701 ipf_dstgrpmap(fin, passp)
5702 	fr_info_t *fin;
5703 	u_32_t *passp;
5704 {
5705 	frgroup_t *fg;
5706 	void *rval;
5707 
5708 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5709 				 &fin->fin_dst);
5710 	if (rval == NULL)
5711 		return NULL;
5712 
5713 	fg = rval;
5714 	fin->fin_fr = fg->fg_start;
5715 	(void) ipf_scanlist(fin, *passp);
5716 	return fin->fin_fr;
5717 }
5718 
5719 /*
5720  * Queue functions
5721  * ===============
5722  * These functions manage objects on queues for efficient timeouts.  There
5723  * are a number of system defined queues as well as user defined timeouts.
5724  * It is expected that a lock is held in the domain in which the queue
5725  * belongs (i.e. either state or NAT) when calling any of these functions
5726  * that prevents ipf_freetimeoutqueue() from being called at the same time
5727  * as any other.
5728  */
5729 
5730 
5731 /* ------------------------------------------------------------------------ */
5732 /* Function:    ipf_addtimeoutqueue                                         */
5733 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5734 /*                               timeout queue with given interval.         */
5735 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5736 /*                           of interface queues.                           */
5737 /*              seconds(I) - timeout value in seconds for this queue.       */
5738 /*                                                                          */
5739 /* This routine first looks for a timeout queue that matches the interval   */
5740 /* being requested.  If it finds one, increments the reference counter and  */
5741 /* returns a pointer to it.  If none are found, it allocates a new one and  */
5742 /* inserts it at the top of the list.                                       */
5743 /*                                                                          */
5744 /* Locking.                                                                 */
5745 /* It is assumed that the caller of this function has an appropriate lock   */
5746 /* held (exclusively) in the domain that encompases 'parent'.               */
5747 /* ------------------------------------------------------------------------ */
5748 ipftq_t *
ipf_addtimeoutqueue(softc,parent,seconds)5749 ipf_addtimeoutqueue(softc, parent, seconds)
5750 	ipf_main_softc_t *softc;
5751 	ipftq_t **parent;
5752 	u_int seconds;
5753 {
5754 	ipftq_t *ifq;
5755 	u_int period;
5756 
5757 	period = seconds * IPF_HZ_DIVIDE;
5758 
5759 	MUTEX_ENTER(&softc->ipf_timeoutlock);
5760 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5761 		if (ifq->ifq_ttl == period) {
5762 			/*
5763 			 * Reset the delete flag, if set, so the structure
5764 			 * gets reused rather than freed and reallocated.
5765 			 */
5766 			MUTEX_ENTER(&ifq->ifq_lock);
5767 			ifq->ifq_flags &= ~IFQF_DELETE;
5768 			ifq->ifq_ref++;
5769 			MUTEX_EXIT(&ifq->ifq_lock);
5770 			MUTEX_EXIT(&softc->ipf_timeoutlock);
5771 
5772 			return ifq;
5773 		}
5774 	}
5775 
5776 	KMALLOC(ifq, ipftq_t *);
5777 	if (ifq != NULL) {
5778 		MUTEX_NUKE(&ifq->ifq_lock);
5779 		IPFTQ_INIT(ifq, period, "ipftq mutex");
5780 		ifq->ifq_next = *parent;
5781 		ifq->ifq_pnext = parent;
5782 		ifq->ifq_flags = IFQF_USER;
5783 		ifq->ifq_ref++;
5784 		*parent = ifq;
5785 		softc->ipf_userifqs++;
5786 	}
5787 	MUTEX_EXIT(&softc->ipf_timeoutlock);
5788 	return ifq;
5789 }
5790 
5791 
5792 /* ------------------------------------------------------------------------ */
5793 /* Function:    ipf_deletetimeoutqueue                                      */
5794 /* Returns:     int    - new reference count value of the timeout queue     */
5795 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5796 /* Locks:       ifq->ifq_lock                                               */
5797 /*                                                                          */
5798 /* This routine must be called when we're discarding a pointer to a timeout */
5799 /* queue object, taking care of the reference counter.                      */
5800 /*                                                                          */
5801 /* Now that this just sets a DELETE flag, it requires the expire code to    */
5802 /* check the list of user defined timeout queues and call the free function */
5803 /* below (currently commented out) to stop memory leaking.  It is done this */
5804 /* way because the locking may not be sufficient to safely do a free when   */
5805 /* this function is called.                                                 */
5806 /* ------------------------------------------------------------------------ */
5807 int
ipf_deletetimeoutqueue(ifq)5808 ipf_deletetimeoutqueue(ifq)
5809 	ipftq_t *ifq;
5810 {
5811 
5812 	ifq->ifq_ref--;
5813 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5814 		ifq->ifq_flags |= IFQF_DELETE;
5815 	}
5816 
5817 	return ifq->ifq_ref;
5818 }
5819 
5820 
5821 /* ------------------------------------------------------------------------ */
5822 /* Function:    ipf_freetimeoutqueue                                        */
5823 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5824 /* Returns:     Nil                                                         */
5825 /*                                                                          */
5826 /* Locking:                                                                 */
5827 /* It is assumed that the caller of this function has an appropriate lock   */
5828 /* held (exclusively) in the domain that encompases the callers "domain".   */
5829 /* The ifq_lock for this structure should not be held.                      */
5830 /*                                                                          */
5831 /* Remove a user defined timeout queue from the list of queues it is in and */
5832 /* tidy up after this is done.                                              */
5833 /* ------------------------------------------------------------------------ */
5834 void
ipf_freetimeoutqueue(softc,ifq)5835 ipf_freetimeoutqueue(softc, ifq)
5836 	ipf_main_softc_t *softc;
5837 	ipftq_t *ifq;
5838 {
5839 
5840 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5841 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5842 		printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5843 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5844 		       ifq->ifq_ref);
5845 		return;
5846 	}
5847 
5848 	/*
5849 	 * Remove from its position in the list.
5850 	 */
5851 	*ifq->ifq_pnext = ifq->ifq_next;
5852 	if (ifq->ifq_next != NULL)
5853 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5854 	ifq->ifq_next = NULL;
5855 	ifq->ifq_pnext = NULL;
5856 
5857 	MUTEX_DESTROY(&ifq->ifq_lock);
5858 	ATOMIC_DEC(softc->ipf_userifqs);
5859 	KFREE(ifq);
5860 }
5861 
5862 
5863 /* ------------------------------------------------------------------------ */
5864 /* Function:    ipf_deletequeueentry                                        */
5865 /* Returns:     Nil                                                         */
5866 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
5867 /*                                                                          */
5868 /* Remove a tail queue entry from its queue and make it an orphan.          */
5869 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5870 /* queue is correct.  We can't, however, call ipf_freetimeoutqueue because  */
5871 /* the correct lock(s) may not be held that would make it safe to do so.    */
5872 /* ------------------------------------------------------------------------ */
5873 void
ipf_deletequeueentry(tqe)5874 ipf_deletequeueentry(tqe)
5875 	ipftqent_t *tqe;
5876 {
5877 	ipftq_t *ifq;
5878 
5879 	ifq = tqe->tqe_ifq;
5880 
5881 	MUTEX_ENTER(&ifq->ifq_lock);
5882 
5883 	if (tqe->tqe_pnext != NULL) {
5884 		*tqe->tqe_pnext = tqe->tqe_next;
5885 		if (tqe->tqe_next != NULL)
5886 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5887 		else    /* we must be the tail anyway */
5888 			ifq->ifq_tail = tqe->tqe_pnext;
5889 
5890 		tqe->tqe_pnext = NULL;
5891 		tqe->tqe_ifq = NULL;
5892 	}
5893 
5894 	(void) ipf_deletetimeoutqueue(ifq);
5895 	ASSERT(ifq->ifq_ref > 0);
5896 
5897 	MUTEX_EXIT(&ifq->ifq_lock);
5898 }
5899 
5900 
5901 /* ------------------------------------------------------------------------ */
5902 /* Function:    ipf_queuefront                                              */
5903 /* Returns:     Nil                                                         */
5904 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5905 /*                                                                          */
5906 /* Move a queue entry to the front of the queue, if it isn't already there. */
5907 /* ------------------------------------------------------------------------ */
5908 void
ipf_queuefront(tqe)5909 ipf_queuefront(tqe)
5910 	ipftqent_t *tqe;
5911 {
5912 	ipftq_t *ifq;
5913 
5914 	ifq = tqe->tqe_ifq;
5915 	if (ifq == NULL)
5916 		return;
5917 
5918 	MUTEX_ENTER(&ifq->ifq_lock);
5919 	if (ifq->ifq_head != tqe) {
5920 		*tqe->tqe_pnext = tqe->tqe_next;
5921 		if (tqe->tqe_next)
5922 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5923 		else
5924 			ifq->ifq_tail = tqe->tqe_pnext;
5925 
5926 		tqe->tqe_next = ifq->ifq_head;
5927 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5928 		ifq->ifq_head = tqe;
5929 		tqe->tqe_pnext = &ifq->ifq_head;
5930 	}
5931 	MUTEX_EXIT(&ifq->ifq_lock);
5932 }
5933 
5934 
5935 /* ------------------------------------------------------------------------ */
5936 /* Function:    ipf_queueback                                               */
5937 /* Returns:     Nil                                                         */
5938 /* Parameters:  ticks(I) - ipf tick time to use with this call              */
5939 /*              tqe(I)   - pointer to timeout queue entry                   */
5940 /*                                                                          */
5941 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5942 /* We use use ticks to calculate the expiration and mark for when we last   */
5943 /* touched the structure.                                                   */
5944 /* ------------------------------------------------------------------------ */
5945 void
ipf_queueback(ticks,tqe)5946 ipf_queueback(ticks, tqe)
5947 	u_long ticks;
5948 	ipftqent_t *tqe;
5949 {
5950 	ipftq_t *ifq;
5951 
5952 	ifq = tqe->tqe_ifq;
5953 	if (ifq == NULL)
5954 		return;
5955 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5956 	tqe->tqe_touched = ticks;
5957 
5958 	MUTEX_ENTER(&ifq->ifq_lock);
5959 	if (tqe->tqe_next != NULL) {		/* at the end already ? */
5960 		/*
5961 		 * Remove from list
5962 		 */
5963 		*tqe->tqe_pnext = tqe->tqe_next;
5964 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5965 
5966 		/*
5967 		 * Make it the last entry.
5968 		 */
5969 		tqe->tqe_next = NULL;
5970 		tqe->tqe_pnext = ifq->ifq_tail;
5971 		*ifq->ifq_tail = tqe;
5972 		ifq->ifq_tail = &tqe->tqe_next;
5973 	}
5974 	MUTEX_EXIT(&ifq->ifq_lock);
5975 }
5976 
5977 
5978 /* ------------------------------------------------------------------------ */
5979 /* Function:    ipf_queueappend                                             */
5980 /* Returns:     Nil                                                         */
5981 /* Parameters:  ticks(I)  - ipf tick time to use with this call             */
5982 /*              tqe(I)    - pointer to timeout queue entry                  */
5983 /*              ifq(I)    - pointer to timeout queue                        */
5984 /*              parent(I) - owing object pointer                            */
5985 /*                                                                          */
5986 /* Add a new item to this queue and put it on the very end.                 */
5987 /* We use use ticks to calculate the expiration and mark for when we last   */
5988 /* touched the structure.                                                   */
5989 /* ------------------------------------------------------------------------ */
5990 void
ipf_queueappend(ticks,tqe,ifq,parent)5991 ipf_queueappend(ticks, tqe, ifq, parent)
5992 	u_long ticks;
5993 	ipftqent_t *tqe;
5994 	ipftq_t *ifq;
5995 	void *parent;
5996 {
5997 
5998 	MUTEX_ENTER(&ifq->ifq_lock);
5999 	tqe->tqe_parent = parent;
6000 	tqe->tqe_pnext = ifq->ifq_tail;
6001 	*ifq->ifq_tail = tqe;
6002 	ifq->ifq_tail = &tqe->tqe_next;
6003 	tqe->tqe_next = NULL;
6004 	tqe->tqe_ifq = ifq;
6005 	tqe->tqe_die = ticks + ifq->ifq_ttl;
6006 	tqe->tqe_touched = ticks;
6007 	ifq->ifq_ref++;
6008 	MUTEX_EXIT(&ifq->ifq_lock);
6009 }
6010 
6011 
6012 /* ------------------------------------------------------------------------ */
6013 /* Function:    ipf_movequeue                                               */
6014 /* Returns:     Nil                                                         */
6015 /* Parameters:  tq(I)   - pointer to timeout queue information              */
6016 /*              oifp(I) - old timeout queue entry was on                    */
6017 /*              nifp(I) - new timeout queue to put entry on                 */
6018 /*                                                                          */
6019 /* Move a queue entry from one timeout queue to another timeout queue.      */
6020 /* If it notices that the current entry is already last and does not need   */
6021 /* to move queue, the return.                                               */
6022 /* ------------------------------------------------------------------------ */
6023 void
ipf_movequeue(ticks,tqe,oifq,nifq)6024 ipf_movequeue(ticks, tqe, oifq, nifq)
6025 	u_long ticks;
6026 	ipftqent_t *tqe;
6027 	ipftq_t *oifq, *nifq;
6028 {
6029 
6030 	/*
6031 	 * If the queue hasn't changed and we last touched this entry at the
6032 	 * same ipf time, then we're not going to achieve anything by either
6033 	 * changing the ttl or moving it on the queue.
6034 	 */
6035 	if (oifq == nifq && tqe->tqe_touched == ticks)
6036 		return;
6037 
6038 	/*
6039 	 * For any of this to be outside the lock, there is a risk that two
6040 	 * packets entering simultaneously, with one changing to a different
6041 	 * queue and one not, could end up with things in a bizarre state.
6042 	 */
6043 	MUTEX_ENTER(&oifq->ifq_lock);
6044 
6045 	tqe->tqe_touched = ticks;
6046 	tqe->tqe_die = ticks + nifq->ifq_ttl;
6047 	/*
6048 	 * Is the operation here going to be a no-op ?
6049 	 */
6050 	if (oifq == nifq) {
6051 		if ((tqe->tqe_next == NULL) ||
6052 		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
6053 			MUTEX_EXIT(&oifq->ifq_lock);
6054 			return;
6055 		}
6056 	}
6057 
6058 	/*
6059 	 * Remove from the old queue
6060 	 */
6061 	*tqe->tqe_pnext = tqe->tqe_next;
6062 	if (tqe->tqe_next)
6063 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
6064 	else
6065 		oifq->ifq_tail = tqe->tqe_pnext;
6066 	tqe->tqe_next = NULL;
6067 
6068 	/*
6069 	 * If we're moving from one queue to another, release the
6070 	 * lock on the old queue and get a lock on the new queue.
6071 	 * For user defined queues, if we're moving off it, call
6072 	 * delete in case it can now be freed.
6073 	 */
6074 	if (oifq != nifq) {
6075 		tqe->tqe_ifq = NULL;
6076 
6077 		(void) ipf_deletetimeoutqueue(oifq);
6078 
6079 		MUTEX_EXIT(&oifq->ifq_lock);
6080 
6081 		MUTEX_ENTER(&nifq->ifq_lock);
6082 
6083 		tqe->tqe_ifq = nifq;
6084 		nifq->ifq_ref++;
6085 	}
6086 
6087 	/*
6088 	 * Add to the bottom of the new queue
6089 	 */
6090 	tqe->tqe_pnext = nifq->ifq_tail;
6091 	*nifq->ifq_tail = tqe;
6092 	nifq->ifq_tail = &tqe->tqe_next;
6093 	MUTEX_EXIT(&nifq->ifq_lock);
6094 }
6095 
6096 
6097 /* ------------------------------------------------------------------------ */
6098 /* Function:    ipf_updateipid                                              */
6099 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
6100 /* Parameters:  fin(I) - pointer to packet information                      */
6101 /*                                                                          */
6102 /* When we are doing NAT, change the IP of every packet to represent a      */
6103 /* single sequence of packets coming from the host, hiding any host         */
6104 /* specific sequencing that might otherwise be revealed.  If the packet is  */
6105 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
6106 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
6107 /* has no match in the cache, return an error.                              */
6108 /* ------------------------------------------------------------------------ */
6109 static int
ipf_updateipid(fin)6110 ipf_updateipid(fin)
6111 	fr_info_t *fin;
6112 {
6113 	u_short id, ido, sums;
6114 	u_32_t sumd, sum;
6115 	ip_t *ip;
6116 
6117 	ip = fin->fin_ip;
6118 	ido = ntohs(ip->ip_id);
6119 	if (fin->fin_off != 0) {
6120 		sum = ipf_frag_ipidknown(fin);
6121 		if (sum == 0xffffffff)
6122 			return -1;
6123 		sum &= 0xffff;
6124 		id = (u_short)sum;
6125 		ip->ip_id = htons(id);
6126 	} else {
6127 		ip_fillid(ip);
6128 		id = ntohs(ip->ip_id);
6129 		if ((fin->fin_flx & FI_FRAG) != 0)
6130 			(void) ipf_frag_ipidnew(fin, (u_32_t)id);
6131 	}
6132 
6133 	if (id == ido)
6134 		return 0;
6135 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
6136 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
6137 	sum += sumd;
6138 	sum = (sum >> 16) + (sum & 0xffff);
6139 	sum = (sum >> 16) + (sum & 0xffff);
6140 	sums = ~(u_short)sum;
6141 	ip->ip_sum = htons(sums);
6142 	return 0;
6143 }
6144 
6145 
6146 #ifdef	NEED_FRGETIFNAME
6147 /* ------------------------------------------------------------------------ */
6148 /* Function:    ipf_getifname                                               */
6149 /* Returns:     char *    - pointer to interface name                       */
6150 /* Parameters:  ifp(I)    - pointer to network interface                    */
6151 /*              buffer(O) - pointer to where to store interface name        */
6152 /*                                                                          */
6153 /* Constructs an interface name in the buffer passed.  The buffer passed is */
6154 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
6155 /* as a NULL pointer then return a pointer to a static array.               */
6156 /* ------------------------------------------------------------------------ */
6157 char *
ipf_getifname(ifp,buffer)6158 ipf_getifname(ifp, buffer)
6159 	struct ifnet *ifp;
6160 	char *buffer;
6161 {
6162 	static char namebuf[LIFNAMSIZ];
6163 # if defined(MENTAT) || defined(__FreeBSD__)
6164 	int unit, space;
6165 	char temp[20];
6166 	char *s;
6167 # endif
6168 
6169 	if (buffer == NULL)
6170 		buffer = namebuf;
6171 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
6172 	buffer[LIFNAMSIZ - 1] = '\0';
6173 # if defined(MENTAT) || defined(__FreeBSD__)
6174 	for (s = buffer; *s; s++)
6175 		;
6176 	unit = ifp->if_unit;
6177 	space = LIFNAMSIZ - (s - buffer);
6178 	if ((space > 0) && (unit >= 0)) {
6179 #  if defined(SNPRINTF) && defined(_KERNEL)
6180 		SNPRINTF(temp, sizeof(temp), "%d", unit);
6181 #  else
6182 		(void) sprintf(temp, "%d", unit);
6183 #  endif
6184 		(void) strncpy(s, temp, space);
6185 	}
6186 # endif
6187 	return buffer;
6188 }
6189 #endif
6190 
6191 
6192 /* ------------------------------------------------------------------------ */
6193 /* Function:    ipf_ioctlswitch                                             */
6194 /* Returns:     int     - -1 continue processing, else ioctl return value   */
6195 /* Parameters:  unit(I) - device unit opened                                */
6196 /*              data(I) - pointer to ioctl data                             */
6197 /*              cmd(I)  - ioctl command                                     */
6198 /*              mode(I) - mode value                                        */
6199 /*              uid(I)  - uid making the ioctl call                         */
6200 /*              ctx(I)  - pointer to context data                           */
6201 /*                                                                          */
6202 /* Based on the value of unit, call the appropriate ioctl handler or return */
6203 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
6204 /* for the device in order to execute the ioctl.  A special case is made    */
6205 /* SIOCIPFINTERROR so that the same code isn't required in every handler.   */
6206 /* The context data pointer is passed through as this is used as the key    */
6207 /* for locating a matching token for continued access for walking lists,    */
6208 /* etc.                                                                     */
6209 /* ------------------------------------------------------------------------ */
6210 int
ipf_ioctlswitch(softc,unit,data,cmd,mode,uid,ctx)6211 ipf_ioctlswitch(softc, unit, data, cmd, mode, uid, ctx)
6212 	ipf_main_softc_t *softc;
6213 	int unit, mode, uid;
6214 	ioctlcmd_t cmd;
6215 	void *data, *ctx;
6216 {
6217 	int error = 0;
6218 
6219 	switch (cmd)
6220 	{
6221 	case SIOCIPFINTERROR :
6222 		error = BCOPYOUT(&softc->ipf_interror, data,
6223 				 sizeof(softc->ipf_interror));
6224 		if (error != 0) {
6225 			IPFERROR(40);
6226 			error = EFAULT;
6227 		}
6228 		return error;
6229 	default :
6230 		break;
6231 	}
6232 
6233 	switch (unit)
6234 	{
6235 	case IPL_LOGIPF :
6236 		error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6237 		break;
6238 	case IPL_LOGNAT :
6239 		if (softc->ipf_running > 0) {
6240 			error = ipf_nat_ioctl(softc, data, cmd, mode,
6241 					      uid, ctx);
6242 		} else {
6243 			IPFERROR(42);
6244 			error = EIO;
6245 		}
6246 		break;
6247 	case IPL_LOGSTATE :
6248 		if (softc->ipf_running > 0) {
6249 			error = ipf_state_ioctl(softc, data, cmd, mode,
6250 						uid, ctx);
6251 		} else {
6252 			IPFERROR(43);
6253 			error = EIO;
6254 		}
6255 		break;
6256 	case IPL_LOGAUTH :
6257 		if (softc->ipf_running > 0) {
6258 			error = ipf_auth_ioctl(softc, data, cmd, mode,
6259 					       uid, ctx);
6260 		} else {
6261 			IPFERROR(44);
6262 			error = EIO;
6263 		}
6264 		break;
6265 	case IPL_LOGSYNC :
6266 		if (softc->ipf_running > 0) {
6267 			error = ipf_sync_ioctl(softc, data, cmd, mode,
6268 					       uid, ctx);
6269 		} else {
6270 			error = EIO;
6271 			IPFERROR(45);
6272 		}
6273 		break;
6274 	case IPL_LOGSCAN :
6275 #ifdef IPFILTER_SCAN
6276 		if (softc->ipf_running > 0)
6277 			error = ipf_scan_ioctl(softc, data, cmd, mode,
6278 					       uid, ctx);
6279 		else
6280 #endif
6281 		{
6282 			error = EIO;
6283 			IPFERROR(46);
6284 		}
6285 		break;
6286 	case IPL_LOGLOOKUP :
6287 		if (softc->ipf_running > 0) {
6288 			error = ipf_lookup_ioctl(softc, data, cmd, mode,
6289 						 uid, ctx);
6290 		} else {
6291 			error = EIO;
6292 			IPFERROR(47);
6293 		}
6294 		break;
6295 	default :
6296 		IPFERROR(48);
6297 		error = EIO;
6298 		break;
6299 	}
6300 
6301 	return error;
6302 }
6303 
6304 
6305 /*
6306  * This array defines the expected size of objects coming into the kernel
6307  * for the various recognised object types. The first column is flags (see
6308  * below), 2nd column is current size, 3rd column is the version number of
6309  * when the current size became current.
6310  * Flags:
6311  * 1 = minimum size, not absolute size
6312  */
6313 static const int	ipf_objbytes[IPFOBJ_COUNT][3] = {
6314 	{ 1,	sizeof(struct frentry),		5010000 },	/* 0 */
6315 	{ 1,	sizeof(struct friostat),	5010000 },
6316 	{ 0,	sizeof(struct fr_info),		5010000 },
6317 	{ 0,	sizeof(struct ipf_authstat),	4010100 },
6318 	{ 0,	sizeof(struct ipfrstat),	5010000 },
6319 	{ 1,	sizeof(struct ipnat),		5010000 },	/* 5 */
6320 	{ 0,	sizeof(struct natstat),		5010000 },
6321 	{ 0,	sizeof(struct ipstate_save),	5010000 },
6322 	{ 1,	sizeof(struct nat_save),	5010000 },
6323 	{ 0,	sizeof(struct natlookup),	5010000 },
6324 	{ 1,	sizeof(struct ipstate),		5010000 },	/* 10 */
6325 	{ 0,	sizeof(struct ips_stat),	5010000 },
6326 	{ 0,	sizeof(struct frauth),		5010000 },
6327 	{ 0,	sizeof(struct ipftune),		4010100 },
6328 	{ 0,	sizeof(struct nat),		5010000 },
6329 	{ 0,	sizeof(struct ipfruleiter),	4011400 },	/* 15 */
6330 	{ 0,	sizeof(struct ipfgeniter),	4011400 },
6331 	{ 0,	sizeof(struct ipftable),	4011400 },
6332 	{ 0,	sizeof(struct ipflookupiter),	4011400 },
6333 	{ 0,	sizeof(struct ipftq) * IPF_TCP_NSTATES },
6334 	{ 1,	0,				0	}, /* IPFEXPR */
6335 	{ 0,	0,				0	}, /* PROXYCTL */
6336 	{ 0,	sizeof (struct fripf),		5010000	}
6337 };
6338 
6339 
6340 /* ------------------------------------------------------------------------ */
6341 /* Function:    ipf_inobj                                                   */
6342 /* Returns:     int     - 0 = success, else failure                         */
6343 /* Parameters:  softc(I) - soft context pointerto work with                 */
6344 /*              data(I)  - pointer to ioctl data                            */
6345 /*              objp(O)  - where to store ipfobj structure                  */
6346 /*              ptr(I)   - pointer to data to copy out                      */
6347 /*              type(I)  - type of structure being moved                    */
6348 /*                                                                          */
6349 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
6350 /* add things to check for version numbers, sizes, etc, to make it backward */
6351 /* compatible at the ABI for user land.                                     */
6352 /* If objp is not NULL then we assume that the caller wants to see what is  */
6353 /* in the ipfobj_t structure being copied in. As an example, this can tell  */
6354 /* the caller what version of ipfilter the ioctl program was written to.    */
6355 /* ------------------------------------------------------------------------ */
6356 int
ipf_inobj(softc,data,objp,ptr,type)6357 ipf_inobj(softc, data, objp, ptr, type)
6358 	ipf_main_softc_t *softc;
6359 	void *data;
6360 	ipfobj_t *objp;
6361 	void *ptr;
6362 	int type;
6363 {
6364 	ipfobj_t obj;
6365 	int error;
6366 	int size;
6367 
6368 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6369 		IPFERROR(49);
6370 		return EINVAL;
6371 	}
6372 
6373 	if (objp == NULL)
6374 		objp = &obj;
6375 	error = BCOPYIN(data, objp, sizeof(*objp));
6376 	if (error != 0) {
6377 		IPFERROR(124);
6378 		return EFAULT;
6379 	}
6380 
6381 	if (objp->ipfo_type != type) {
6382 		IPFERROR(50);
6383 		return EINVAL;
6384 	}
6385 
6386 	if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6387 		if ((ipf_objbytes[type][0] & 1) != 0) {
6388 			if (objp->ipfo_size < ipf_objbytes[type][1]) {
6389 				IPFERROR(51);
6390 				return EINVAL;
6391 			}
6392 			size =  ipf_objbytes[type][1];
6393 		} else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6394 			size =  objp->ipfo_size;
6395 		} else {
6396 			IPFERROR(52);
6397 			return EINVAL;
6398 		}
6399 		error = COPYIN(objp->ipfo_ptr, ptr, size);
6400 		if (error != 0) {
6401 			IPFERROR(55);
6402 			error = EFAULT;
6403 		}
6404 	} else {
6405 #ifdef  IPFILTER_COMPAT
6406 		error = ipf_in_compat(softc, objp, ptr, 0);
6407 #else
6408 		IPFERROR(54);
6409 		error = EINVAL;
6410 #endif
6411 	}
6412 	return error;
6413 }
6414 
6415 
6416 /* ------------------------------------------------------------------------ */
6417 /* Function:    ipf_inobjsz                                                 */
6418 /* Returns:     int     - 0 = success, else failure                         */
6419 /* Parameters:  softc(I) - soft context pointerto work with                 */
6420 /*              data(I)  - pointer to ioctl data                            */
6421 /*              ptr(I)   - pointer to store real data in                    */
6422 /*              type(I)  - type of structure being moved                    */
6423 /*              sz(I)    - size of data to copy                             */
6424 /*                                                                          */
6425 /* As per ipf_inobj, except the size of the object to copy in is passed in  */
6426 /* but it must not be smaller than the size defined for the type and the    */
6427 /* type must allow for varied sized objects.  The extra requirement here is */
6428 /* that sz must match the size of the object being passed in - this is not  */
6429 /* not possible nor required in ipf_inobj().                                */
6430 /* ------------------------------------------------------------------------ */
6431 int
ipf_inobjsz(softc,data,ptr,type,sz)6432 ipf_inobjsz(softc, data, ptr, type, sz)
6433 	ipf_main_softc_t *softc;
6434 	void *data;
6435 	void *ptr;
6436 	int type, sz;
6437 {
6438 	ipfobj_t obj;
6439 	int error;
6440 
6441 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6442 		IPFERROR(56);
6443 		return EINVAL;
6444 	}
6445 
6446 	error = BCOPYIN(data, &obj, sizeof(obj));
6447 	if (error != 0) {
6448 		IPFERROR(125);
6449 		return EFAULT;
6450 	}
6451 
6452 	if (obj.ipfo_type != type) {
6453 		IPFERROR(58);
6454 		return EINVAL;
6455 	}
6456 
6457 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6458 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6459 		    (sz < ipf_objbytes[type][1])) {
6460 			IPFERROR(57);
6461 			return EINVAL;
6462 		}
6463 		error = COPYIN(obj.ipfo_ptr, ptr, sz);
6464 		if (error != 0) {
6465 			IPFERROR(61);
6466 			error = EFAULT;
6467 		}
6468 	} else {
6469 #ifdef	IPFILTER_COMPAT
6470 		error = ipf_in_compat(softc, &obj, ptr, sz);
6471 #else
6472 		IPFERROR(60);
6473 		error = EINVAL;
6474 #endif
6475 	}
6476 	return error;
6477 }
6478 
6479 
6480 /* ------------------------------------------------------------------------ */
6481 /* Function:    ipf_outobjsz                                                */
6482 /* Returns:     int     - 0 = success, else failure                         */
6483 /* Parameters:  data(I) - pointer to ioctl data                             */
6484 /*              ptr(I)  - pointer to store real data in                     */
6485 /*              type(I) - type of structure being moved                     */
6486 /*              sz(I)   - size of data to copy                              */
6487 /*                                                                          */
6488 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6489 /* but it must not be smaller than the size defined for the type and the    */
6490 /* type must allow for varied sized objects.  The extra requirement here is */
6491 /* that sz must match the size of the object being passed in - this is not  */
6492 /* not possible nor required in ipf_outobj().                               */
6493 /* ------------------------------------------------------------------------ */
6494 int
ipf_outobjsz(softc,data,ptr,type,sz)6495 ipf_outobjsz(softc, data, ptr, type, sz)
6496 	ipf_main_softc_t *softc;
6497 	void *data;
6498 	void *ptr;
6499 	int type, sz;
6500 {
6501 	ipfobj_t obj;
6502 	int error;
6503 
6504 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6505 		IPFERROR(62);
6506 		return EINVAL;
6507 	}
6508 
6509 	error = BCOPYIN(data, &obj, sizeof(obj));
6510 	if (error != 0) {
6511 		IPFERROR(127);
6512 		return EFAULT;
6513 	}
6514 
6515 	if (obj.ipfo_type != type) {
6516 		IPFERROR(63);
6517 		return EINVAL;
6518 	}
6519 
6520 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6521 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6522 		    (sz < ipf_objbytes[type][1])) {
6523 			IPFERROR(146);
6524 			return EINVAL;
6525 		}
6526 		error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6527 		if (error != 0) {
6528 			IPFERROR(66);
6529 			error = EFAULT;
6530 		}
6531 	} else {
6532 #ifdef	IPFILTER_COMPAT
6533 		error = ipf_out_compat(softc, &obj, ptr);
6534 #else
6535 		IPFERROR(65);
6536 		error = EINVAL;
6537 #endif
6538 	}
6539 	return error;
6540 }
6541 
6542 
6543 /* ------------------------------------------------------------------------ */
6544 /* Function:    ipf_outobj                                                  */
6545 /* Returns:     int     - 0 = success, else failure                         */
6546 /* Parameters:  data(I) - pointer to ioctl data                             */
6547 /*              ptr(I)  - pointer to store real data in                     */
6548 /*              type(I) - type of structure being moved                     */
6549 /*                                                                          */
6550 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
6551 /* future, we add things to check for version numbers, sizes, etc, to make  */
6552 /* it backward  compatible at the ABI for user land.                        */
6553 /* ------------------------------------------------------------------------ */
6554 int
ipf_outobj(softc,data,ptr,type)6555 ipf_outobj(softc, data, ptr, type)
6556 	ipf_main_softc_t *softc;
6557 	void *data;
6558 	void *ptr;
6559 	int type;
6560 {
6561 	ipfobj_t obj;
6562 	int error;
6563 
6564 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6565 		IPFERROR(67);
6566 		return EINVAL;
6567 	}
6568 
6569 	error = BCOPYIN(data, &obj, sizeof(obj));
6570 	if (error != 0) {
6571 		IPFERROR(126);
6572 		return EFAULT;
6573 	}
6574 
6575 	if (obj.ipfo_type != type) {
6576 		IPFERROR(68);
6577 		return EINVAL;
6578 	}
6579 
6580 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6581 		if ((ipf_objbytes[type][0] & 1) != 0) {
6582 			if (obj.ipfo_size < ipf_objbytes[type][1]) {
6583 				IPFERROR(69);
6584 				return EINVAL;
6585 			}
6586 		} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6587 			IPFERROR(70);
6588 			return EINVAL;
6589 		}
6590 
6591 		error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6592 		if (error != 0) {
6593 			IPFERROR(73);
6594 			error = EFAULT;
6595 		}
6596 	} else {
6597 #ifdef	IPFILTER_COMPAT
6598 		error = ipf_out_compat(softc, &obj, ptr);
6599 #else
6600 		IPFERROR(72);
6601 		error = EINVAL;
6602 #endif
6603 	}
6604 	return error;
6605 }
6606 
6607 
6608 /* ------------------------------------------------------------------------ */
6609 /* Function:    ipf_outobjk                                                 */
6610 /* Returns:     int     - 0 = success, else failure                         */
6611 /* Parameters:  obj(I)  - pointer to data description structure             */
6612 /*              ptr(I)  - pointer to kernel data to copy out                */
6613 /*                                                                          */
6614 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6615 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6616 /* already populated with information and now we just need to use it.       */
6617 /* There is no need for this function to have a "type" parameter as there   */
6618 /* is no point in validating information that comes from the kernel with    */
6619 /* itself.                                                                  */
6620 /* ------------------------------------------------------------------------ */
6621 int
ipf_outobjk(softc,obj,ptr)6622 ipf_outobjk(softc, obj, ptr)
6623 	ipf_main_softc_t *softc;
6624 	ipfobj_t *obj;
6625 	void *ptr;
6626 {
6627 	int type = obj->ipfo_type;
6628 	int error;
6629 
6630 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6631 		IPFERROR(147);
6632 		return EINVAL;
6633 	}
6634 
6635 	if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6636 		if ((ipf_objbytes[type][0] & 1) != 0) {
6637 			if (obj->ipfo_size < ipf_objbytes[type][1]) {
6638 				IPFERROR(148);
6639 				return EINVAL;
6640 			}
6641 
6642 		} else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6643 			IPFERROR(149);
6644 			return EINVAL;
6645 		}
6646 
6647 		error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6648 		if (error != 0) {
6649 			IPFERROR(150);
6650 			error = EFAULT;
6651 		}
6652 	} else {
6653 #ifdef  IPFILTER_COMPAT
6654 		error = ipf_out_compat(softc, obj, ptr);
6655 #else
6656 		IPFERROR(151);
6657 		error = EINVAL;
6658 #endif
6659 	}
6660 	return error;
6661 }
6662 
6663 
6664 /* ------------------------------------------------------------------------ */
6665 /* Function:    ipf_checkl4sum                                              */
6666 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
6667 /* Parameters:  fin(I) - pointer to packet information                      */
6668 /*                                                                          */
6669 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
6670 /* not possible, return without indicating a failure or success but in a    */
6671 /* way that is ditinguishable. This function should only be called by the   */
6672 /* ipf_checkv6sum() for each platform.                                      */
6673 /* ------------------------------------------------------------------------ */
6674 INLINE int
ipf_checkl4sum(fin)6675 ipf_checkl4sum(fin)
6676 	fr_info_t *fin;
6677 {
6678 	u_short sum, hdrsum, *csump;
6679 	udphdr_t *udp;
6680 	int dosum;
6681 
6682 	/*
6683 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
6684 	 * isn't already considered "bad", then validate the checksum.  If
6685 	 * this check fails then considered the packet to be "bad".
6686 	 */
6687 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6688 		return 1;
6689 
6690 	DT2(l4sumo, int, fin->fin_out, int, (int)fin->fin_p);
6691 	if (fin->fin_out == 1) {
6692 		fin->fin_cksum = FI_CK_SUMOK;
6693 		return 0;
6694 	}
6695 
6696 	csump = NULL;
6697 	hdrsum = 0;
6698 	dosum = 0;
6699 	sum = 0;
6700 
6701 	switch (fin->fin_p)
6702 	{
6703 	case IPPROTO_TCP :
6704 		csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6705 		dosum = 1;
6706 		break;
6707 
6708 	case IPPROTO_UDP :
6709 		udp = fin->fin_dp;
6710 		if (udp->uh_sum != 0) {
6711 			csump = &udp->uh_sum;
6712 			dosum = 1;
6713 		}
6714 		break;
6715 
6716 #ifdef USE_INET6
6717 	case IPPROTO_ICMPV6 :
6718 		csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6719 		dosum = 1;
6720 		break;
6721 #endif
6722 
6723 	case IPPROTO_ICMP :
6724 		csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6725 		dosum = 1;
6726 		break;
6727 
6728 	default :
6729 		return 1;
6730 		/*NOTREACHED*/
6731 	}
6732 
6733 	if (csump != NULL)
6734 		hdrsum = *csump;
6735 
6736 	if (dosum) {
6737 		sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6738 	}
6739 #if !defined(_KERNEL)
6740 	if (sum == hdrsum) {
6741 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6742 	} else {
6743 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6744 	}
6745 #endif
6746 	DT2(l4sums, u_short, hdrsum, u_short, sum);
6747 #ifdef USE_INET6
6748 	if (hdrsum == sum || (sum == 0 && fin->fin_p == IPPROTO_ICMPV6)) {
6749 #else
6750 	if (hdrsum == sum) {
6751 #endif
6752 		fin->fin_cksum = FI_CK_SUMOK;
6753 		return 0;
6754 	}
6755 	fin->fin_cksum = FI_CK_BAD;
6756 	return -1;
6757 }
6758 
6759 
6760 /* ------------------------------------------------------------------------ */
6761 /* Function:    ipf_ifpfillv4addr                                           */
6762 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6763 /* Parameters:  atype(I)   - type of network address update to perform      */
6764 /*              sin(I)     - pointer to source of address information       */
6765 /*              mask(I)    - pointer to source of netmask information       */
6766 /*              inp(I)     - pointer to destination address store           */
6767 /*              inpmask(I) - pointer to destination netmask store           */
6768 /*                                                                          */
6769 /* Given a type of network address update (atype) to perform, copy          */
6770 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6771 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6772 /* which case the operation fails.  For all values of atype other than      */
6773 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6774 /* value.                                                                   */
6775 /* ------------------------------------------------------------------------ */
6776 int
ipf_ifpfillv4addr(atype,sin,mask,inp,inpmask)6777 ipf_ifpfillv4addr(atype, sin, mask, inp, inpmask)
6778 	int atype;
6779 	struct sockaddr_in *sin, *mask;
6780 	struct in_addr *inp, *inpmask;
6781 {
6782 	if (inpmask != NULL && atype != FRI_NETMASKED)
6783 		inpmask->s_addr = 0xffffffff;
6784 
6785 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6786 		if (atype == FRI_NETMASKED) {
6787 			if (inpmask == NULL)
6788 				return -1;
6789 			inpmask->s_addr = mask->sin_addr.s_addr;
6790 		}
6791 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6792 	} else {
6793 		inp->s_addr = sin->sin_addr.s_addr;
6794 	}
6795 	return 0;
6796 }
6797 
6798 
6799 #ifdef	USE_INET6
6800 /* ------------------------------------------------------------------------ */
6801 /* Function:    ipf_ifpfillv6addr                                           */
6802 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6803 /* Parameters:  atype(I)   - type of network address update to perform      */
6804 /*              sin(I)     - pointer to source of address information       */
6805 /*              mask(I)    - pointer to source of netmask information       */
6806 /*              inp(I)     - pointer to destination address store           */
6807 /*              inpmask(I) - pointer to destination netmask store           */
6808 /*                                                                          */
6809 /* Given a type of network address update (atype) to perform, copy          */
6810 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6811 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6812 /* which case the operation fails.  For all values of atype other than      */
6813 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6814 /* value.                                                                   */
6815 /* ------------------------------------------------------------------------ */
6816 int
ipf_ifpfillv6addr(atype,sin,mask,inp,inpmask)6817 ipf_ifpfillv6addr(atype, sin, mask, inp, inpmask)
6818 	int atype;
6819 	struct sockaddr_in6 *sin, *mask;
6820 	i6addr_t *inp, *inpmask;
6821 {
6822 	i6addr_t *src, *and;
6823 
6824 	src = (i6addr_t *)&sin->sin6_addr;
6825 	and = (i6addr_t *)&mask->sin6_addr;
6826 
6827 	if (inpmask != NULL && atype != FRI_NETMASKED) {
6828 		inpmask->i6[0] = 0xffffffff;
6829 		inpmask->i6[1] = 0xffffffff;
6830 		inpmask->i6[2] = 0xffffffff;
6831 		inpmask->i6[3] = 0xffffffff;
6832 	}
6833 
6834 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6835 		if (atype == FRI_NETMASKED) {
6836 			if (inpmask == NULL)
6837 				return -1;
6838 			inpmask->i6[0] = and->i6[0];
6839 			inpmask->i6[1] = and->i6[1];
6840 			inpmask->i6[2] = and->i6[2];
6841 			inpmask->i6[3] = and->i6[3];
6842 		}
6843 
6844 		inp->i6[0] = src->i6[0] & and->i6[0];
6845 		inp->i6[1] = src->i6[1] & and->i6[1];
6846 		inp->i6[2] = src->i6[2] & and->i6[2];
6847 		inp->i6[3] = src->i6[3] & and->i6[3];
6848 	} else {
6849 		inp->i6[0] = src->i6[0];
6850 		inp->i6[1] = src->i6[1];
6851 		inp->i6[2] = src->i6[2];
6852 		inp->i6[3] = src->i6[3];
6853 	}
6854 	return 0;
6855 }
6856 #endif
6857 
6858 
6859 /* ------------------------------------------------------------------------ */
6860 /* Function:    ipf_matchtag                                                */
6861 /* Returns:     0 == mismatch, 1 == match.                                  */
6862 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
6863 /*              tag2(I) - pointer to second tag to compare                  */
6864 /*                                                                          */
6865 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
6866 /* considered to be a match or not match, respectively.  The tag is 16      */
6867 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6868 /* compare the ints instead, for speed. tag1 is the master of the           */
6869 /* comparison.  This function should only be called with both tag1 and tag2 */
6870 /* as non-NULL pointers.                                                    */
6871 /* ------------------------------------------------------------------------ */
6872 int
ipf_matchtag(tag1,tag2)6873 ipf_matchtag(tag1, tag2)
6874 	ipftag_t *tag1, *tag2;
6875 {
6876 	if (tag1 == tag2)
6877 		return 1;
6878 
6879 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6880 		return 1;
6881 
6882 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6883 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6884 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6885 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6886 		return 1;
6887 	return 0;
6888 }
6889 
6890 
6891 /* ------------------------------------------------------------------------ */
6892 /* Function:    ipf_coalesce                                                */
6893 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
6894 /* Parameters:  fin(I) - pointer to packet information                      */
6895 /*                                                                          */
6896 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
6897 /* If this call returns a failure then the buffers have also been freed.    */
6898 /* ------------------------------------------------------------------------ */
6899 int
ipf_coalesce(fin)6900 ipf_coalesce(fin)
6901 	fr_info_t *fin;
6902 {
6903 
6904 	if ((fin->fin_flx & FI_COALESCE) != 0)
6905 		return 1;
6906 
6907 	/*
6908 	 * If the mbuf pointers indicate that there is no mbuf to work with,
6909 	 * return but do not indicate success or failure.
6910 	 */
6911 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6912 		return 0;
6913 
6914 #if defined(_KERNEL)
6915 	if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6916 		ipf_main_softc_t *softc = fin->fin_main_soft;
6917 
6918 		DT1(frb_coalesce, fr_info_t *, fin);
6919 		LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6920 # ifdef MENTAT
6921 		FREE_MB_T(*fin->fin_mp);
6922 # endif
6923 		fin->fin_reason = FRB_COALESCE;
6924 		*fin->fin_mp = NULL;
6925 		fin->fin_m = NULL;
6926 		return -1;
6927 	}
6928 #else
6929 	fin = fin;	/* LINT */
6930 #endif
6931 	return 1;
6932 }
6933 
6934 
6935 /*
6936  * The following table lists all of the tunable variables that can be
6937  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt.  The format of each row
6938  * in the table below is as follows:
6939  *
6940  * pointer to value, name of value, minimum, maximum, size of the value's
6941  *     container, value attribute flags
6942  *
6943  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6944  * means the value can only be written to when IPFilter is loaded but disabled.
6945  * The obvious implication is if neither of these are set then the value can be
6946  * changed at any time without harm.
6947  */
6948 
6949 
6950 /* ------------------------------------------------------------------------ */
6951 /* Function:    ipf_tune_findbycookie                                       */
6952 /* Returns:     NULL = search failed, else pointer to tune struct           */
6953 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6954 /*              next(O)   - pointer to place to store the cookie for the    */
6955 /*                          "next" tuneable, if it is desired.              */
6956 /*                                                                          */
6957 /* This function is used to walk through all of the existing tunables with  */
6958 /* successive calls.  It searches the known tunables for the one which has  */
6959 /* a matching value for "cookie" - ie its address.  When returning a match, */
6960 /* the next one to be found may be returned inside next.                    */
6961 /* ------------------------------------------------------------------------ */
6962 static ipftuneable_t *
ipf_tune_findbycookie(ptop,cookie,next)6963 ipf_tune_findbycookie(ptop, cookie, next)
6964 	ipftuneable_t **ptop;
6965 	void *cookie, **next;
6966 {
6967 	ipftuneable_t *ta, **tap;
6968 
6969 	for (ta = *ptop; ta->ipft_name != NULL; ta++)
6970 		if (ta == cookie) {
6971 			if (next != NULL) {
6972 				/*
6973 				 * If the next entry in the array has a name
6974 				 * present, then return a pointer to it for
6975 				 * where to go next, else return a pointer to
6976 				 * the dynaminc list as a key to search there
6977 				 * next.  This facilitates a weak linking of
6978 				 * the two "lists" together.
6979 				 */
6980 				if ((ta + 1)->ipft_name != NULL)
6981 					*next = ta + 1;
6982 				else
6983 					*next = ptop;
6984 			}
6985 			return ta;
6986 		}
6987 
6988 	for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6989 		if (tap == cookie) {
6990 			if (next != NULL)
6991 				*next = &ta->ipft_next;
6992 			return ta;
6993 		}
6994 
6995 	if (next != NULL)
6996 		*next = NULL;
6997 	return NULL;
6998 }
6999 
7000 
7001 /* ------------------------------------------------------------------------ */
7002 /* Function:    ipf_tune_findbyname                                         */
7003 /* Returns:     NULL = search failed, else pointer to tune struct           */
7004 /* Parameters:  name(I) - name of the tuneable entry to find.               */
7005 /*                                                                          */
7006 /* Search the static array of tuneables and the list of dynamic tuneables   */
7007 /* for an entry with a matching name.  If we can find one, return a pointer */
7008 /* to the matching structure.                                               */
7009 /* ------------------------------------------------------------------------ */
7010 static ipftuneable_t *
ipf_tune_findbyname(top,name)7011 ipf_tune_findbyname(top, name)
7012 	ipftuneable_t *top;
7013 	const char *name;
7014 {
7015 	ipftuneable_t *ta;
7016 
7017 	for (ta = top; ta != NULL; ta = ta->ipft_next)
7018 		if (!strcmp(ta->ipft_name, name)) {
7019 			return ta;
7020 		}
7021 
7022 	return NULL;
7023 }
7024 
7025 
7026 /* ------------------------------------------------------------------------ */
7027 /* Function:    ipf_tune_add_array                                          */
7028 /* Returns:     int - 0 == success, else failure                            */
7029 /* Parameters:  newtune - pointer to new tune array to add to tuneables     */
7030 /*                                                                          */
7031 /* Appends tune structures from the array passed in (newtune) to the end of */
7032 /* the current list of "dynamic" tuneable parameters.                       */
7033 /* If any entry to be added is already present (by name) then the operation */
7034 /* is aborted - entries that have been added are removed before returning.  */
7035 /* An entry with no name (NULL) is used as the indication that the end of   */
7036 /* the array has been reached.                                              */
7037 /* ------------------------------------------------------------------------ */
7038 int
ipf_tune_add_array(softc,newtune)7039 ipf_tune_add_array(softc, newtune)
7040 	ipf_main_softc_t *softc;
7041 	ipftuneable_t *newtune;
7042 {
7043 	ipftuneable_t *nt, *dt;
7044 	int error = 0;
7045 
7046 	for (nt = newtune; nt->ipft_name != NULL; nt++) {
7047 		error = ipf_tune_add(softc, nt);
7048 		if (error != 0) {
7049 			for (dt = newtune; dt != nt; dt++) {
7050 				(void) ipf_tune_del(softc, dt);
7051 			}
7052 		}
7053 	}
7054 
7055 	return error;
7056 }
7057 
7058 
7059 /* ------------------------------------------------------------------------ */
7060 /* Function:    ipf_tune_array_link                                         */
7061 /* Returns:     0 == success, -1 == failure                                 */
7062 /* Parameters:  softc(I) - soft context pointerto work with                 */
7063 /*              array(I) - pointer to an array of tuneables                 */
7064 /*                                                                          */
7065 /* Given an array of tunables (array), append them to the current list of   */
7066 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the  */
7067 /* the array for being appended to the list, initialise all of the next     */
7068 /* pointers so we don't need to walk parts of it with ++ and others with    */
7069 /* next. The array is expected to have an entry with a NULL name as the     */
7070 /* terminator. Trying to add an array with no non-NULL names will return as */
7071 /* a failure.                                                               */
7072 /* ------------------------------------------------------------------------ */
7073 int
ipf_tune_array_link(softc,array)7074 ipf_tune_array_link(softc, array)
7075 	ipf_main_softc_t *softc;
7076 	ipftuneable_t *array;
7077 {
7078 	ipftuneable_t *t, **p;
7079 
7080 	t = array;
7081 	if (t->ipft_name == NULL)
7082 		return -1;
7083 
7084 	for (; t[1].ipft_name != NULL; t++)
7085 		t[0].ipft_next = &t[1];
7086 	t->ipft_next = NULL;
7087 
7088 	/*
7089 	 * Since a pointer to the last entry isn't kept, we need to find it
7090 	 * each time we want to add new variables to the list.
7091 	 */
7092 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
7093 		if (t->ipft_name == NULL)
7094 			break;
7095 	*p = array;
7096 
7097 	return 0;
7098 }
7099 
7100 
7101 /* ------------------------------------------------------------------------ */
7102 /* Function:    ipf_tune_array_unlink                                       */
7103 /* Returns:     0 == success, -1 == failure                                 */
7104 /* Parameters:  softc(I) - soft context pointerto work with                 */
7105 /*              array(I) - pointer to an array of tuneables                 */
7106 /*                                                                          */
7107 /* ------------------------------------------------------------------------ */
7108 int
ipf_tune_array_unlink(softc,array)7109 ipf_tune_array_unlink(softc, array)
7110 	ipf_main_softc_t *softc;
7111 	ipftuneable_t *array;
7112 {
7113 	ipftuneable_t *t, **p;
7114 
7115 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
7116 		if (t == array)
7117 			break;
7118 	if (t == NULL)
7119 		return -1;
7120 
7121 	for (; t[1].ipft_name != NULL; t++)
7122 		;
7123 
7124 	*p = t->ipft_next;
7125 
7126 	return 0;
7127 }
7128 
7129 
7130 /* ------------------------------------------------------------------------ */
7131 /* Function:   ipf_tune_array_copy                                          */
7132 /* Returns:    NULL = failure, else pointer to new array                    */
7133 /* Parameters: base(I)     - pointer to structure base                      */
7134 /*             size(I)     - size of the array at template                  */
7135 /*             template(I) - original array to copy                         */
7136 /*                                                                          */
7137 /* Allocate memory for a new set of tuneable values and copy everything     */
7138 /* from template into the new region of memory.  The new region is full of  */
7139 /* uninitialised pointers (ipft_next) so set them up.  Now, ipftp_offset... */
7140 /*                                                                          */
7141 /* NOTE: the following assumes that sizeof(long) == sizeof(void *)          */
7142 /* In the array template, ipftp_offset is the offset (in bytes) of the      */
7143 /* location of the tuneable value inside the structure pointed to by base.  */
7144 /* As ipftp_offset is a union over the pointers to the tuneable values, if  */
7145 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in   */
7146 /* ipftp_void that points to the stored value.                              */
7147 /* ------------------------------------------------------------------------ */
7148 ipftuneable_t *
ipf_tune_array_copy(base,size,template)7149 ipf_tune_array_copy(base, size, template)
7150 	void *base;
7151 	size_t size;
7152 	ipftuneable_t *template;
7153 {
7154 	ipftuneable_t *copy;
7155 	int i;
7156 
7157 
7158 	KMALLOCS(copy, ipftuneable_t *, size);
7159 	if (copy == NULL) {
7160 		return NULL;
7161 	}
7162 	bcopy(template, copy, size);
7163 
7164 	for (i = 0; copy[i].ipft_name; i++) {
7165 		copy[i].ipft_una.ipftp_offset += (u_long)base;
7166 		copy[i].ipft_next = copy + i + 1;
7167 	}
7168 
7169 	return copy;
7170 }
7171 
7172 
7173 /* ------------------------------------------------------------------------ */
7174 /* Function:    ipf_tune_add                                                */
7175 /* Returns:     int - 0 == success, else failure                            */
7176 /* Parameters:  newtune - pointer to new tune entry to add to tuneables     */
7177 /*                                                                          */
7178 /* Appends tune structures from the array passed in (newtune) to the end of */
7179 /* the current list of "dynamic" tuneable parameters.  Once added, the      */
7180 /* owner of the object is not expected to ever change "ipft_next".          */
7181 /* ------------------------------------------------------------------------ */
7182 int
ipf_tune_add(softc,newtune)7183 ipf_tune_add(softc, newtune)
7184 	ipf_main_softc_t *softc;
7185 	ipftuneable_t *newtune;
7186 {
7187 	ipftuneable_t *ta, **tap;
7188 
7189 	ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
7190 	if (ta != NULL) {
7191 		IPFERROR(74);
7192 		return EEXIST;
7193 	}
7194 
7195 	for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
7196 		;
7197 
7198 	newtune->ipft_next = NULL;
7199 	*tap = newtune;
7200 	return 0;
7201 }
7202 
7203 
7204 /* ------------------------------------------------------------------------ */
7205 /* Function:    ipf_tune_del                                                */
7206 /* Returns:     int - 0 == success, else failure                            */
7207 /* Parameters:  oldtune - pointer to tune entry to remove from the list of  */
7208 /*                        current dynamic tuneables                         */
7209 /*                                                                          */
7210 /* Search for the tune structure, by pointer, in the list of those that are */
7211 /* dynamically added at run time.  If found, adjust the list so that this   */
7212 /* structure is no longer part of it.                                       */
7213 /* ------------------------------------------------------------------------ */
7214 int
ipf_tune_del(softc,oldtune)7215 ipf_tune_del(softc, oldtune)
7216 	ipf_main_softc_t *softc;
7217 	ipftuneable_t *oldtune;
7218 {
7219 	ipftuneable_t *ta, **tap;
7220 	int error = 0;
7221 
7222 	for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
7223 	     tap = &ta->ipft_next) {
7224 		if (ta == oldtune) {
7225 			*tap = oldtune->ipft_next;
7226 			oldtune->ipft_next = NULL;
7227 			break;
7228 		}
7229 	}
7230 
7231 	if (ta == NULL) {
7232 		error = ESRCH;
7233 		IPFERROR(75);
7234 	}
7235 	return error;
7236 }
7237 
7238 
7239 /* ------------------------------------------------------------------------ */
7240 /* Function:    ipf_tune_del_array                                          */
7241 /* Returns:     int - 0 == success, else failure                            */
7242 /* Parameters:  oldtune - pointer to tuneables array                        */
7243 /*                                                                          */
7244 /* Remove each tuneable entry in the array from the list of "dynamic"       */
7245 /* tunables.  If one entry should fail to be found, an error will be        */
7246 /* returned and no further ones removed.                                    */
7247 /* An entry with a NULL name is used as the indicator of the last entry in  */
7248 /* the array.                                                               */
7249 /* ------------------------------------------------------------------------ */
7250 int
ipf_tune_del_array(softc,oldtune)7251 ipf_tune_del_array(softc, oldtune)
7252 	ipf_main_softc_t *softc;
7253 	ipftuneable_t *oldtune;
7254 {
7255 	ipftuneable_t *ot;
7256 	int error = 0;
7257 
7258 	for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7259 		error = ipf_tune_del(softc, ot);
7260 		if (error != 0)
7261 			break;
7262 	}
7263 
7264 	return error;
7265 
7266 }
7267 
7268 
7269 /* ------------------------------------------------------------------------ */
7270 /* Function:    ipf_tune                                                    */
7271 /* Returns:     int - 0 == success, else failure                            */
7272 /* Parameters:  cmd(I)  - ioctl command number                              */
7273 /*              data(I) - pointer to ioctl data structure                   */
7274 /*                                                                          */
7275 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
7276 /* three ioctls provide the means to access and control global variables    */
7277 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
7278 /* changed without rebooting, reloading or recompiling.  The initialisation */
7279 /* and 'destruction' routines of the various components of ipfilter are all */
7280 /* each responsible for handling their own values being too big.            */
7281 /* ------------------------------------------------------------------------ */
7282 int
ipf_ipftune(softc,cmd,data)7283 ipf_ipftune(softc, cmd, data)
7284 	ipf_main_softc_t *softc;
7285 	ioctlcmd_t cmd;
7286 	void *data;
7287 {
7288 	ipftuneable_t *ta;
7289 	ipftune_t tu;
7290 	void *cookie;
7291 	int error;
7292 
7293 	error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7294 	if (error != 0)
7295 		return error;
7296 
7297 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7298 	cookie = tu.ipft_cookie;
7299 	ta = NULL;
7300 
7301 	switch (cmd)
7302 	{
7303 	case SIOCIPFGETNEXT :
7304 		/*
7305 		 * If cookie is non-NULL, assume it to be a pointer to the last
7306 		 * entry we looked at, so find it (if possible) and return a
7307 		 * pointer to the next one after it.  The last entry in the
7308 		 * the table is a NULL entry, so when we get to it, set cookie
7309 		 * to NULL and return that, indicating end of list, erstwhile
7310 		 * if we come in with cookie set to NULL, we are starting anew
7311 		 * at the front of the list.
7312 		 */
7313 		if (cookie != NULL) {
7314 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7315 						   cookie, &tu.ipft_cookie);
7316 		} else {
7317 			ta = softc->ipf_tuners;
7318 			tu.ipft_cookie = ta + 1;
7319 		}
7320 		if (ta != NULL) {
7321 			/*
7322 			 * Entry found, but does the data pointed to by that
7323 			 * row fit in what we can return?
7324 			 */
7325 			if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7326 				IPFERROR(76);
7327 				return EINVAL;
7328 			}
7329 
7330 			tu.ipft_vlong = 0;
7331 			if (ta->ipft_sz == sizeof(u_long))
7332 				tu.ipft_vlong = *ta->ipft_plong;
7333 			else if (ta->ipft_sz == sizeof(u_int))
7334 				tu.ipft_vint = *ta->ipft_pint;
7335 			else if (ta->ipft_sz == sizeof(u_short))
7336 				tu.ipft_vshort = *ta->ipft_pshort;
7337 			else if (ta->ipft_sz == sizeof(u_char))
7338 				tu.ipft_vchar = *ta->ipft_pchar;
7339 
7340 			tu.ipft_sz = ta->ipft_sz;
7341 			tu.ipft_min = ta->ipft_min;
7342 			tu.ipft_max = ta->ipft_max;
7343 			tu.ipft_flags = ta->ipft_flags;
7344 			bcopy(ta->ipft_name, tu.ipft_name,
7345 			      MIN(sizeof(tu.ipft_name),
7346 				  strlen(ta->ipft_name) + 1));
7347 		}
7348 		error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7349 		break;
7350 
7351 	case SIOCIPFGET :
7352 	case SIOCIPFSET :
7353 		/*
7354 		 * Search by name or by cookie value for a particular entry
7355 		 * in the tuning paramter table.
7356 		 */
7357 		IPFERROR(77);
7358 		error = ESRCH;
7359 		if (cookie != NULL) {
7360 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7361 						   cookie, NULL);
7362 			if (ta != NULL)
7363 				error = 0;
7364 		} else if (tu.ipft_name[0] != '\0') {
7365 			ta = ipf_tune_findbyname(softc->ipf_tuners,
7366 						 tu.ipft_name);
7367 			if (ta != NULL)
7368 				error = 0;
7369 		}
7370 		if (error != 0)
7371 			break;
7372 
7373 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7374 			/*
7375 			 * Fetch the tuning parameters for a particular value
7376 			 */
7377 			tu.ipft_vlong = 0;
7378 			if (ta->ipft_sz == sizeof(u_long))
7379 				tu.ipft_vlong = *ta->ipft_plong;
7380 			else if (ta->ipft_sz == sizeof(u_int))
7381 				tu.ipft_vint = *ta->ipft_pint;
7382 			else if (ta->ipft_sz == sizeof(u_short))
7383 				tu.ipft_vshort = *ta->ipft_pshort;
7384 			else if (ta->ipft_sz == sizeof(u_char))
7385 				tu.ipft_vchar = *ta->ipft_pchar;
7386 			tu.ipft_cookie = ta;
7387 			tu.ipft_sz = ta->ipft_sz;
7388 			tu.ipft_min = ta->ipft_min;
7389 			tu.ipft_max = ta->ipft_max;
7390 			tu.ipft_flags = ta->ipft_flags;
7391 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7392 
7393 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7394 			/*
7395 			 * Set an internal parameter.  The hard part here is
7396 			 * getting the new value safely and correctly out of
7397 			 * the kernel (given we only know its size, not type.)
7398 			 */
7399 			u_long in;
7400 
7401 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7402 			    (softc->ipf_running > 0)) {
7403 				IPFERROR(78);
7404 				error = EBUSY;
7405 				break;
7406 			}
7407 
7408 			in = tu.ipft_vlong;
7409 			if (in < ta->ipft_min || in > ta->ipft_max) {
7410 				IPFERROR(79);
7411 				error = EINVAL;
7412 				break;
7413 			}
7414 
7415 			if (ta->ipft_func != NULL) {
7416 				SPL_INT(s);
7417 
7418 				SPL_NET(s);
7419 				error = (*ta->ipft_func)(softc, ta,
7420 							 &tu.ipft_un);
7421 				SPL_X(s);
7422 
7423 			} else if (ta->ipft_sz == sizeof(u_long)) {
7424 				tu.ipft_vlong = *ta->ipft_plong;
7425 				*ta->ipft_plong = in;
7426 
7427 			} else if (ta->ipft_sz == sizeof(u_int)) {
7428 				tu.ipft_vint = *ta->ipft_pint;
7429 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
7430 
7431 			} else if (ta->ipft_sz == sizeof(u_short)) {
7432 				tu.ipft_vshort = *ta->ipft_pshort;
7433 				*ta->ipft_pshort = (u_short)(in & 0xffff);
7434 
7435 			} else if (ta->ipft_sz == sizeof(u_char)) {
7436 				tu.ipft_vchar = *ta->ipft_pchar;
7437 				*ta->ipft_pchar = (u_char)(in & 0xff);
7438 			}
7439 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7440 		}
7441 		break;
7442 
7443 	default :
7444 		IPFERROR(80);
7445 		error = EINVAL;
7446 		break;
7447 	}
7448 
7449 	return error;
7450 }
7451 
7452 
7453 /* ------------------------------------------------------------------------ */
7454 /* Function:    ipf_zerostats                                               */
7455 /* Returns:     int - 0 = success, else failure                             */
7456 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
7457 /*                                                                          */
7458 /* Copies the current statistics out to userspace and then zero's the       */
7459 /* current ones in the kernel. The lock is only held across the bzero() as  */
7460 /* the copyout may result in paging (ie network activity.)                  */
7461 /* ------------------------------------------------------------------------ */
7462 int
ipf_zerostats(softc,data)7463 ipf_zerostats(softc, data)
7464 	ipf_main_softc_t *softc;
7465 	caddr_t	data;
7466 {
7467 	friostat_t fio;
7468 	ipfobj_t obj;
7469 	int error;
7470 
7471 	error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7472 	if (error != 0)
7473 		return error;
7474 	ipf_getstat(softc, &fio, obj.ipfo_rev);
7475 	error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7476 	if (error != 0)
7477 		return error;
7478 
7479 	WRITE_ENTER(&softc->ipf_mutex);
7480 	bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7481 	RWLOCK_EXIT(&softc->ipf_mutex);
7482 
7483 	return 0;
7484 }
7485 
7486 
7487 /* ------------------------------------------------------------------------ */
7488 /* Function:    ipf_resolvedest                                             */
7489 /* Returns:     Nil                                                         */
7490 /* Parameters:  softc(I) - pointer to soft context main structure           */
7491 /*              base(I)  - where strings are stored                         */
7492 /*              fdp(IO)  - pointer to destination information to resolve    */
7493 /*              v(I)     - IP protocol version to match                     */
7494 /*                                                                          */
7495 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7496 /* if a matching name can be found for the particular IP protocol version   */
7497 /* then store the interface pointer in the frdest struct.  If no match is   */
7498 /* found, then set the interface pointer to be -1 as NULL is considered to  */
7499 /* indicate there is no information at all in the structure.                */
7500 /* ------------------------------------------------------------------------ */
7501 int
ipf_resolvedest(softc,base,fdp,v)7502 ipf_resolvedest(softc, base, fdp, v)
7503 	ipf_main_softc_t *softc;
7504 	char *base;
7505 	frdest_t *fdp;
7506 	int v;
7507 {
7508 	int errval = 0;
7509 	void *ifp;
7510 
7511 	ifp = NULL;
7512 
7513 	if (fdp->fd_name != -1) {
7514 		if (fdp->fd_type == FRD_DSTLIST) {
7515 			ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7516 						  IPLT_DSTLIST,
7517 						  base + fdp->fd_name,
7518 						  NULL);
7519 			if (ifp == NULL) {
7520 				IPFERROR(144);
7521 				errval = ESRCH;
7522 			}
7523 		} else {
7524 			ifp = GETIFP(base + fdp->fd_name, v);
7525 			if (ifp == NULL)
7526 				ifp = (void *)-1;
7527 		}
7528 	}
7529 	fdp->fd_ptr = ifp;
7530 
7531 	return errval;
7532 }
7533 
7534 
7535 /* ------------------------------------------------------------------------ */
7536 /* Function:    ipf_resolvenic                                              */
7537 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
7538 /*                      pointer to interface structure for NIC              */
7539 /* Parameters:  softc(I)- pointer to soft context main structure            */
7540 /*              name(I) - complete interface name                           */
7541 /*              v(I)    - IP protocol version                               */
7542 /*                                                                          */
7543 /* Look for a network interface structure that firstly has a matching name  */
7544 /* to that passed in and that is also being used for that IP protocol       */
7545 /* version (necessary on some platforms where there are separate listings   */
7546 /* for both IPv4 and IPv6 on the same physical NIC.                         */
7547 /* ------------------------------------------------------------------------ */
7548 void *
ipf_resolvenic(softc,name,v)7549 ipf_resolvenic(softc, name, v)
7550 	ipf_main_softc_t *softc;
7551 	char *name;
7552 	int v;
7553 {
7554 	void *nic;
7555 
7556 	softc = softc;	/* gcc -Wextra */
7557 	if (name[0] == '\0')
7558 		return NULL;
7559 
7560 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7561 		return NULL;
7562 	}
7563 
7564 	nic = GETIFP(name, v);
7565 	if (nic == NULL)
7566 		nic = (void *)-1;
7567 	return nic;
7568 }
7569 
7570 
7571 /* ------------------------------------------------------------------------ */
7572 /* Function:    ipf_token_expire                                            */
7573 /* Returns:     None.                                                       */
7574 /* Parameters:  softc(I) - pointer to soft context main structure           */
7575 /*                                                                          */
7576 /* This function is run every ipf tick to see if there are any tokens that  */
7577 /* have been held for too long and need to be freed up.                     */
7578 /* ------------------------------------------------------------------------ */
7579 void
ipf_token_expire(softc)7580 ipf_token_expire(softc)
7581 	ipf_main_softc_t *softc;
7582 {
7583 	ipftoken_t *it;
7584 
7585 	WRITE_ENTER(&softc->ipf_tokens);
7586 	while ((it = softc->ipf_token_head) != NULL) {
7587 		if (it->ipt_die > softc->ipf_ticks)
7588 			break;
7589 
7590 		ipf_token_deref(softc, it);
7591 	}
7592 	RWLOCK_EXIT(&softc->ipf_tokens);
7593 }
7594 
7595 
7596 /* ------------------------------------------------------------------------ */
7597 /* Function:    ipf_token_flush                                             */
7598 /* Returns:     None.                                                       */
7599 /* Parameters:  softc(I) - pointer to soft context main structure           */
7600 /*                                                                          */
7601 /* Loop through all of the existing tokens and call deref to see if they    */
7602 /* can be freed. Normally a function like this might just loop on           */
7603 /* ipf_token_head but there is a chance that a token might have a ref count */
7604 /* of greater than one and in that case the the reference would drop twice  */
7605 /* by code that is only entitled to drop it once.                           */
7606 /* ------------------------------------------------------------------------ */
7607 static void
ipf_token_flush(softc)7608 ipf_token_flush(softc)
7609 	ipf_main_softc_t *softc;
7610 {
7611 	ipftoken_t *it, *next;
7612 
7613 	WRITE_ENTER(&softc->ipf_tokens);
7614 	for (it = softc->ipf_token_head; it != NULL; it = next) {
7615 		next = it->ipt_next;
7616 		(void) ipf_token_deref(softc, it);
7617 	}
7618 	RWLOCK_EXIT(&softc->ipf_tokens);
7619 }
7620 
7621 
7622 /* ------------------------------------------------------------------------ */
7623 /* Function:    ipf_token_del                                               */
7624 /* Returns:     int     - 0 = success, else error                           */
7625 /* Parameters:  softc(I)- pointer to soft context main structure            */
7626 /*              type(I) - the token type to match                           */
7627 /*              uid(I)  - uid owning the token                              */
7628 /*              ptr(I)  - context pointer for the token                     */
7629 /*                                                                          */
7630 /* This function looks for a a token in the current list that matches up    */
7631 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
7632 /* call ipf_token_dewref() to remove it from the list. In the event that    */
7633 /* the token has a reference held elsewhere, setting ipt_complete to 2      */
7634 /* enables debugging to distinguish between the two paths that ultimately   */
7635 /* lead to a token to be deleted.                                           */
7636 /* ------------------------------------------------------------------------ */
7637 int
ipf_token_del(softc,type,uid,ptr)7638 ipf_token_del(softc, type, uid, ptr)
7639 	ipf_main_softc_t *softc;
7640 	int type, uid;
7641 	void *ptr;
7642 {
7643 	ipftoken_t *it;
7644 	int error;
7645 
7646 	IPFERROR(82);
7647 	error = ESRCH;
7648 
7649 	WRITE_ENTER(&softc->ipf_tokens);
7650 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7651 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
7652 		    uid == it->ipt_uid) {
7653 			it->ipt_complete = 2;
7654 			ipf_token_deref(softc, it);
7655 			error = 0;
7656 			break;
7657 		}
7658 	}
7659 	RWLOCK_EXIT(&softc->ipf_tokens);
7660 
7661 	return error;
7662 }
7663 
7664 
7665 /* ------------------------------------------------------------------------ */
7666 /* Function:    ipf_token_mark_complete                                     */
7667 /* Returns:     None.                                                       */
7668 /* Parameters:  token(I) - pointer to token structure                       */
7669 /*                                                                          */
7670 /* Mark a token as being ineligable for being found with ipf_token_find.    */
7671 /* ------------------------------------------------------------------------ */
7672 void
ipf_token_mark_complete(token)7673 ipf_token_mark_complete(token)
7674 	ipftoken_t *token;
7675 {
7676 	if (token->ipt_complete == 0)
7677 		token->ipt_complete = 1;
7678 }
7679 
7680 
7681 /* ------------------------------------------------------------------------ */
7682 /* Function:    ipf_token_find                                               */
7683 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
7684 /* Parameters:  softc(I)- pointer to soft context main structure            */
7685 /*              type(I) - the token type to match                           */
7686 /*              uid(I)  - uid owning the token                              */
7687 /*              ptr(I)  - context pointer for the token                     */
7688 /*                                                                          */
7689 /* This function looks for a live token in the list of current tokens that  */
7690 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
7691 /* allocated.  If one is found then it is moved to the top of the list of   */
7692 /* currently active tokens.                                                 */
7693 /* ------------------------------------------------------------------------ */
7694 ipftoken_t *
ipf_token_find(softc,type,uid,ptr)7695 ipf_token_find(softc, type, uid, ptr)
7696 	ipf_main_softc_t *softc;
7697 	int type, uid;
7698 	void *ptr;
7699 {
7700 	ipftoken_t *it, *new;
7701 
7702 	KMALLOC(new, ipftoken_t *);
7703 	if (new != NULL)
7704 		bzero((char *)new, sizeof(*new));
7705 
7706 	WRITE_ENTER(&softc->ipf_tokens);
7707 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7708 		if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7709 		    (uid == it->ipt_uid) && (it->ipt_complete < 2))
7710 			break;
7711 	}
7712 
7713 	if (it == NULL) {
7714 		it = new;
7715 		new = NULL;
7716 		if (it == NULL) {
7717 			RWLOCK_EXIT(&softc->ipf_tokens);
7718 			return NULL;
7719 		}
7720 		it->ipt_ctx = ptr;
7721 		it->ipt_uid = uid;
7722 		it->ipt_type = type;
7723 		it->ipt_ref = 1;
7724 	} else {
7725 		if (new != NULL) {
7726 			KFREE(new);
7727 			new = NULL;
7728 		}
7729 
7730 		if (it->ipt_complete > 0)
7731 			it = NULL;
7732 		else
7733 			ipf_token_unlink(softc, it);
7734 	}
7735 
7736 	if (it != NULL) {
7737 		it->ipt_pnext = softc->ipf_token_tail;
7738 		*softc->ipf_token_tail = it;
7739 		softc->ipf_token_tail = &it->ipt_next;
7740 		it->ipt_next = NULL;
7741 		it->ipt_ref++;
7742 
7743 		it->ipt_die = softc->ipf_ticks + 20;
7744 	}
7745 
7746 	RWLOCK_EXIT(&softc->ipf_tokens);
7747 
7748 	return it;
7749 }
7750 
7751 
7752 /* ------------------------------------------------------------------------ */
7753 /* Function:    ipf_token_unlink                                            */
7754 /* Returns:     None.                                                       */
7755 /* Parameters:  softc(I) - pointer to soft context main structure           */
7756 /*              token(I) - pointer to token structure                       */
7757 /* Write Locks: ipf_tokens                                                  */
7758 /*                                                                          */
7759 /* This function unlinks a token structure from the linked list of tokens   */
7760 /* that "own" it.  The head pointer never needs to be explicitly adjusted   */
7761 /* but the tail does due to the linked list implementation.                 */
7762 /* ------------------------------------------------------------------------ */
7763 static void
ipf_token_unlink(softc,token)7764 ipf_token_unlink(softc, token)
7765 	ipf_main_softc_t *softc;
7766 	ipftoken_t *token;
7767 {
7768 
7769 	if (softc->ipf_token_tail == &token->ipt_next)
7770 		softc->ipf_token_tail = token->ipt_pnext;
7771 
7772 	*token->ipt_pnext = token->ipt_next;
7773 	if (token->ipt_next != NULL)
7774 		token->ipt_next->ipt_pnext = token->ipt_pnext;
7775 	token->ipt_next = NULL;
7776 	token->ipt_pnext = NULL;
7777 }
7778 
7779 
7780 /* ------------------------------------------------------------------------ */
7781 /* Function:    ipf_token_deref                                             */
7782 /* Returns:     int      - 0 == token freed, else reference count           */
7783 /* Parameters:  softc(I) - pointer to soft context main structure           */
7784 /*              token(I) - pointer to token structure                       */
7785 /* Write Locks: ipf_tokens                                                  */
7786 /*                                                                          */
7787 /* Drop the reference count on the token structure and if it drops to zero, */
7788 /* call the dereference function for the token type because it is then      */
7789 /* possible to free the token data structure.                               */
7790 /* ------------------------------------------------------------------------ */
7791 int
ipf_token_deref(softc,token)7792 ipf_token_deref(softc, token)
7793 	ipf_main_softc_t *softc;
7794 	ipftoken_t *token;
7795 {
7796 	void *data, **datap;
7797 
7798 	ASSERT(token->ipt_ref > 0);
7799 	token->ipt_ref--;
7800 	if (token->ipt_ref > 0)
7801 		return token->ipt_ref;
7802 
7803 	data = token->ipt_data;
7804 	datap = &data;
7805 
7806 	if ((data != NULL) && (data != (void *)-1)) {
7807 		switch (token->ipt_type)
7808 		{
7809 		case IPFGENITER_IPF :
7810 			(void) ipf_derefrule(softc, (frentry_t **)datap);
7811 			break;
7812 		case IPFGENITER_IPNAT :
7813 			WRITE_ENTER(&softc->ipf_nat);
7814 			ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7815 			RWLOCK_EXIT(&softc->ipf_nat);
7816 			break;
7817 		case IPFGENITER_NAT :
7818 			ipf_nat_deref(softc, (nat_t **)datap);
7819 			break;
7820 		case IPFGENITER_STATE :
7821 			ipf_state_deref(softc, (ipstate_t **)datap);
7822 			break;
7823 		case IPFGENITER_FRAG :
7824 			ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7825 			break;
7826 		case IPFGENITER_NATFRAG :
7827 			ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7828 			break;
7829 		case IPFGENITER_HOSTMAP :
7830 			WRITE_ENTER(&softc->ipf_nat);
7831 			ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7832 			RWLOCK_EXIT(&softc->ipf_nat);
7833 			break;
7834 		default :
7835 			ipf_lookup_iterderef(softc, token->ipt_type, data);
7836 			break;
7837 		}
7838 	}
7839 
7840 	ipf_token_unlink(softc, token);
7841 	KFREE(token);
7842 	return 0;
7843 }
7844 
7845 
7846 /* ------------------------------------------------------------------------ */
7847 /* Function:    ipf_nextrule                                                */
7848 /* Returns:     frentry_t * - NULL == no more rules, else pointer to next   */
7849 /* Parameters:  softc(I)    - pointer to soft context main structure        */
7850 /*              fr(I)       - pointer to filter rule                        */
7851 /*              out(I)      - 1 == out rules, 0 == input rules              */
7852 /*                                                                          */
7853 /* Starting with "fr", find the next rule to visit. This includes visiting  */
7854 /* the list of rule groups if either fr is NULL (empty list) or it is the   */
7855 /* last rule in the list. When walking rule lists, it is either input or    */
7856 /* output rules that are returned, never both.                              */
7857 /* ------------------------------------------------------------------------ */
7858 static frentry_t *
ipf_nextrule(softc,active,unit,fr,out)7859 ipf_nextrule(softc, active, unit, fr, out)
7860 	ipf_main_softc_t *softc;
7861 	int active, unit;
7862 	frentry_t *fr;
7863 	int out;
7864 {
7865 	frentry_t *next;
7866 	frgroup_t *fg;
7867 
7868 	if (fr != NULL && fr->fr_group != -1) {
7869 		fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7870 				   unit, active, NULL);
7871 		if (fg != NULL)
7872 			fg = fg->fg_next;
7873 	} else {
7874 		fg = softc->ipf_groups[unit][active];
7875 	}
7876 
7877 	while (fg != NULL) {
7878 		next = fg->fg_start;
7879 		while (next != NULL) {
7880 			if (out) {
7881 				if (next->fr_flags & FR_OUTQUE)
7882 					return next;
7883 			} else if (next->fr_flags & FR_INQUE) {
7884 				return next;
7885 			}
7886 			next = next->fr_next;
7887 		}
7888 		if (next == NULL)
7889 			fg = fg->fg_next;
7890 	}
7891 
7892 	return NULL;
7893 }
7894 
7895 /* ------------------------------------------------------------------------ */
7896 /* Function:    ipf_getnextrule                                             */
7897 /* Returns:     int - 0 = success, else error                               */
7898 /* Parameters:  softc(I)- pointer to soft context main structure            */
7899 /*              t(I)   - pointer to destination information to resolve      */
7900 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7901 /*                                                                          */
7902 /* This function's first job is to bring in the ipfruleiter_t structure via */
7903 /* the ipfobj_t structure to determine what should be the next rule to      */
7904 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7905 /* find the 'next rule'.  This may include searching rule group lists or    */
7906 /* just be as simple as looking at the 'next' field in the rule structure.  */
7907 /* When we have found the rule to return, increase its reference count and  */
7908 /* if we used an existing rule to get here, decrease its reference count.   */
7909 /* ------------------------------------------------------------------------ */
7910 int
ipf_getnextrule(softc,t,ptr)7911 ipf_getnextrule(softc, t, ptr)
7912 	ipf_main_softc_t *softc;
7913 	ipftoken_t *t;
7914 	void *ptr;
7915 {
7916 	frentry_t *fr, *next, zero;
7917 	ipfruleiter_t it;
7918 	int error, out;
7919 	frgroup_t *fg;
7920 	ipfobj_t obj;
7921 	int predict;
7922 	char *dst;
7923 	int unit;
7924 
7925 	if (t == NULL || ptr == NULL) {
7926 		IPFERROR(84);
7927 		return EFAULT;
7928 	}
7929 
7930 	error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7931 	if (error != 0)
7932 		return error;
7933 
7934 	if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7935 		IPFERROR(85);
7936 		return EINVAL;
7937 	}
7938 	if ((it.iri_active != 0) && (it.iri_active != 1)) {
7939 		IPFERROR(86);
7940 		return EINVAL;
7941 	}
7942 	if (it.iri_nrules == 0) {
7943 		IPFERROR(87);
7944 		return ENOSPC;
7945 	}
7946 	if (it.iri_rule == NULL) {
7947 		IPFERROR(88);
7948 		return EFAULT;
7949 	}
7950 
7951 	fg = NULL;
7952 	fr = t->ipt_data;
7953 	if ((it.iri_inout & F_OUT) != 0)
7954 		out = 1;
7955 	else
7956 		out = 0;
7957 	if ((it.iri_inout & F_ACIN) != 0)
7958 		unit = IPL_LOGCOUNT;
7959 	else
7960 		unit = IPL_LOGIPF;
7961 
7962 	READ_ENTER(&softc->ipf_mutex);
7963 	if (fr == NULL) {
7964 		if (*it.iri_group == '\0') {
7965 			if (unit == IPL_LOGCOUNT) {
7966 				next = softc->ipf_acct[out][it.iri_active];
7967 			} else {
7968 				next = softc->ipf_rules[out][it.iri_active];
7969 			}
7970 			if (next == NULL)
7971 				next = ipf_nextrule(softc, it.iri_active,
7972 						    unit, NULL, out);
7973 		} else {
7974 			fg = ipf_findgroup(softc, it.iri_group, unit,
7975 					   it.iri_active, NULL);
7976 			if (fg != NULL)
7977 				next = fg->fg_start;
7978 			else
7979 				next = NULL;
7980 		}
7981 	} else {
7982 		next = fr->fr_next;
7983 		if (next == NULL)
7984 			next = ipf_nextrule(softc, it.iri_active, unit,
7985 					    fr, out);
7986 	}
7987 
7988 	if (next != NULL && next->fr_next != NULL)
7989 		predict = 1;
7990 	else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7991 		predict = 1;
7992 	else
7993 		predict = 0;
7994 
7995 	if (fr != NULL)
7996 		(void) ipf_derefrule(softc, &fr);
7997 
7998 	obj.ipfo_type = IPFOBJ_FRENTRY;
7999 	dst = (char *)it.iri_rule;
8000 
8001 	if (next != NULL) {
8002 		obj.ipfo_size = next->fr_size;
8003 		MUTEX_ENTER(&next->fr_lock);
8004 		next->fr_ref++;
8005 		MUTEX_EXIT(&next->fr_lock);
8006 		t->ipt_data = next;
8007 	} else {
8008 		obj.ipfo_size = sizeof(frentry_t);
8009 		bzero(&zero, sizeof(zero));
8010 		next = &zero;
8011 		t->ipt_data = NULL;
8012 	}
8013 	it.iri_rule = predict ? next : NULL;
8014 	if (predict == 0)
8015 		ipf_token_mark_complete(t);
8016 
8017 	RWLOCK_EXIT(&softc->ipf_mutex);
8018 
8019 	obj.ipfo_ptr = dst;
8020 	error = ipf_outobjk(softc, &obj, next);
8021 	if (error == 0 && t->ipt_data != NULL) {
8022 		dst += obj.ipfo_size;
8023 		if (next->fr_data != NULL) {
8024 			ipfobj_t dobj;
8025 
8026 			if (next->fr_type == FR_T_IPFEXPR)
8027 				dobj.ipfo_type = IPFOBJ_IPFEXPR;
8028 			else
8029 				dobj.ipfo_type = IPFOBJ_FRIPF;
8030 			dobj.ipfo_size = next->fr_dsize;
8031 			dobj.ipfo_rev = obj.ipfo_rev;
8032 			dobj.ipfo_ptr = dst;
8033 			error = ipf_outobjk(softc, &dobj, next->fr_data);
8034 		}
8035 	}
8036 
8037 	if ((fr != NULL) && (next == &zero))
8038 		(void) ipf_derefrule(softc, &fr);
8039 
8040 	return error;
8041 }
8042 
8043 
8044 /* ------------------------------------------------------------------------ */
8045 /* Function:    ipf_frruleiter                                              */
8046 /* Returns:     int - 0 = success, else error                               */
8047 /* Parameters:  softc(I)- pointer to soft context main structure            */
8048 /*              data(I) - the token type to match                           */
8049 /*              uid(I)  - uid owning the token                              */
8050 /*              ptr(I)  - context pointer for the token                     */
8051 /*                                                                          */
8052 /* This function serves as a stepping stone between ipf_ipf_ioctl and       */
8053 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
8054 /* the process doing the ioctl and use that to ask for the next rule.       */
8055 /* ------------------------------------------------------------------------ */
8056 static int
ipf_frruleiter(softc,data,uid,ctx)8057 ipf_frruleiter(softc, data, uid, ctx)
8058 	ipf_main_softc_t *softc;
8059 	void *data, *ctx;
8060 	int uid;
8061 {
8062 	ipftoken_t *token;
8063 	ipfruleiter_t it;
8064 	ipfobj_t obj;
8065 	int error;
8066 
8067 	token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
8068 	if (token != NULL) {
8069 		error = ipf_getnextrule(softc, token, data);
8070 		WRITE_ENTER(&softc->ipf_tokens);
8071 		ipf_token_deref(softc, token);
8072 		RWLOCK_EXIT(&softc->ipf_tokens);
8073 	} else {
8074 		error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
8075 		if (error != 0)
8076 			return error;
8077 		it.iri_rule = NULL;
8078 		error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
8079 	}
8080 
8081 	return error;
8082 }
8083 
8084 
8085 /* ------------------------------------------------------------------------ */
8086 /* Function:    ipf_geniter                                                 */
8087 /* Returns:     int - 0 = success, else error                               */
8088 /* Parameters:  softc(I) - pointer to soft context main structure           */
8089 /*              token(I) - pointer to ipftoken_t structure                  */
8090 /*              itp(I)   - pointer to iterator data                         */
8091 /*                                                                          */
8092 /* Decide which iterator function to call using information passed through  */
8093 /* the ipfgeniter_t structure at itp.                                       */
8094 /* ------------------------------------------------------------------------ */
8095 static int
ipf_geniter(softc,token,itp)8096 ipf_geniter(softc, token, itp)
8097 	ipf_main_softc_t *softc;
8098 	ipftoken_t *token;
8099 	ipfgeniter_t *itp;
8100 {
8101 	int error;
8102 
8103 	switch (itp->igi_type)
8104 	{
8105 	case IPFGENITER_FRAG :
8106 		error = ipf_frag_pkt_next(softc, token, itp);
8107 		break;
8108 	default :
8109 		IPFERROR(92);
8110 		error = EINVAL;
8111 		break;
8112 	}
8113 
8114 	return error;
8115 }
8116 
8117 
8118 /* ------------------------------------------------------------------------ */
8119 /* Function:    ipf_genericiter                                             */
8120 /* Returns:     int - 0 = success, else error                               */
8121 /* Parameters:  softc(I)- pointer to soft context main structure            */
8122 /*              data(I) - the token type to match                           */
8123 /*              uid(I)  - uid owning the token                              */
8124 /*              ptr(I)  - context pointer for the token                     */
8125 /*                                                                          */
8126 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role   */
8127 /* ------------------------------------------------------------------------ */
8128 int
ipf_genericiter(softc,data,uid,ctx)8129 ipf_genericiter(softc, data, uid, ctx)
8130 	ipf_main_softc_t *softc;
8131 	void *data, *ctx;
8132 	int uid;
8133 {
8134 	ipftoken_t *token;
8135 	ipfgeniter_t iter;
8136 	int error;
8137 
8138 	error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
8139 	if (error != 0)
8140 		return error;
8141 
8142 	token = ipf_token_find(softc, iter.igi_type, uid, ctx);
8143 	if (token != NULL) {
8144 		token->ipt_subtype = iter.igi_type;
8145 		error = ipf_geniter(softc, token, &iter);
8146 		WRITE_ENTER(&softc->ipf_tokens);
8147 		ipf_token_deref(softc, token);
8148 		RWLOCK_EXIT(&softc->ipf_tokens);
8149 	} else {
8150 		IPFERROR(93);
8151 		error = 0;
8152 	}
8153 
8154 	return error;
8155 }
8156 
8157 
8158 /* ------------------------------------------------------------------------ */
8159 /* Function:    ipf_ipf_ioctl                                               */
8160 /* Returns:     int - 0 = success, else error                               */
8161 /* Parameters:  softc(I)- pointer to soft context main structure           */
8162 /*              data(I) - the token type to match                           */
8163 /*              cmd(I)  - the ioctl command number                          */
8164 /*              mode(I) - mode flags for the ioctl                          */
8165 /*              uid(I)  - uid owning the token                              */
8166 /*              ptr(I)  - context pointer for the token                     */
8167 /*                                                                          */
8168 /* This function handles all of the ioctl command that are actually isssued */
8169 /* to the /dev/ipl device.                                                  */
8170 /* ------------------------------------------------------------------------ */
8171 int
ipf_ipf_ioctl(softc,data,cmd,mode,uid,ctx)8172 ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx)
8173 	ipf_main_softc_t *softc;
8174 	caddr_t data;
8175 	ioctlcmd_t cmd;
8176 	int mode, uid;
8177 	void *ctx;
8178 {
8179 	friostat_t fio;
8180 	int error, tmp;
8181 	ipfobj_t obj;
8182 	SPL_INT(s);
8183 
8184 	switch (cmd)
8185 	{
8186 	case SIOCFRENB :
8187 		if (!(mode & FWRITE)) {
8188 			IPFERROR(94);
8189 			error = EPERM;
8190 		} else {
8191 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8192 			if (error != 0) {
8193 				IPFERROR(95);
8194 				error = EFAULT;
8195 				break;
8196 			}
8197 
8198 			WRITE_ENTER(&softc->ipf_global);
8199 			if (tmp) {
8200 				if (softc->ipf_running > 0)
8201 					error = 0;
8202 				else
8203 					error = ipfattach(softc);
8204 				if (error == 0)
8205 					softc->ipf_running = 1;
8206 				else
8207 					(void) ipfdetach(softc);
8208 			} else {
8209 				if (softc->ipf_running == 1)
8210 					error = ipfdetach(softc);
8211 				else
8212 					error = 0;
8213 				if (error == 0)
8214 					softc->ipf_running = -1;
8215 			}
8216 			RWLOCK_EXIT(&softc->ipf_global);
8217 		}
8218 		break;
8219 
8220 	case SIOCIPFSET :
8221 		if (!(mode & FWRITE)) {
8222 			IPFERROR(96);
8223 			error = EPERM;
8224 			break;
8225 		}
8226 		/* FALLTHRU */
8227 	case SIOCIPFGETNEXT :
8228 	case SIOCIPFGET :
8229 		error = ipf_ipftune(softc, cmd, (void *)data);
8230 		break;
8231 
8232 	case SIOCSETFF :
8233 		if (!(mode & FWRITE)) {
8234 			IPFERROR(97);
8235 			error = EPERM;
8236 		} else {
8237 			error = BCOPYIN(data, &softc->ipf_flags,
8238 					sizeof(softc->ipf_flags));
8239 			if (error != 0) {
8240 				IPFERROR(98);
8241 				error = EFAULT;
8242 			}
8243 		}
8244 		break;
8245 
8246 	case SIOCGETFF :
8247 		error = BCOPYOUT(&softc->ipf_flags, data,
8248 				 sizeof(softc->ipf_flags));
8249 		if (error != 0) {
8250 			IPFERROR(99);
8251 			error = EFAULT;
8252 		}
8253 		break;
8254 
8255 	case SIOCFUNCL :
8256 		error = ipf_resolvefunc(softc, (void *)data);
8257 		break;
8258 
8259 	case SIOCINAFR :
8260 	case SIOCRMAFR :
8261 	case SIOCADAFR :
8262 	case SIOCZRLST :
8263 		if (!(mode & FWRITE)) {
8264 			IPFERROR(100);
8265 			error = EPERM;
8266 		} else {
8267 			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8268 					  softc->ipf_active, 1);
8269 		}
8270 		break;
8271 
8272 	case SIOCINIFR :
8273 	case SIOCRMIFR :
8274 	case SIOCADIFR :
8275 		if (!(mode & FWRITE)) {
8276 			IPFERROR(101);
8277 			error = EPERM;
8278 		} else {
8279 			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8280 					  1 - softc->ipf_active, 1);
8281 		}
8282 		break;
8283 
8284 	case SIOCSWAPA :
8285 		if (!(mode & FWRITE)) {
8286 			IPFERROR(102);
8287 			error = EPERM;
8288 		} else {
8289 			WRITE_ENTER(&softc->ipf_mutex);
8290 			error = BCOPYOUT(&softc->ipf_active, data,
8291 					 sizeof(softc->ipf_active));
8292 			if (error != 0) {
8293 				IPFERROR(103);
8294 				error = EFAULT;
8295 			} else {
8296 				softc->ipf_active = 1 - softc->ipf_active;
8297 			}
8298 			RWLOCK_EXIT(&softc->ipf_mutex);
8299 		}
8300 		break;
8301 
8302 	case SIOCGETFS :
8303 		error = ipf_inobj(softc, (void *)data, &obj, &fio,
8304 				  IPFOBJ_IPFSTAT);
8305 		if (error != 0)
8306 			break;
8307 		ipf_getstat(softc, &fio, obj.ipfo_rev);
8308 		error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8309 		break;
8310 
8311 	case SIOCFRZST :
8312 		if (!(mode & FWRITE)) {
8313 			IPFERROR(104);
8314 			error = EPERM;
8315 		} else
8316 			error = ipf_zerostats(softc, (caddr_t)data);
8317 		break;
8318 
8319 	case SIOCIPFFL :
8320 		if (!(mode & FWRITE)) {
8321 			IPFERROR(105);
8322 			error = EPERM;
8323 		} else {
8324 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8325 			if (!error) {
8326 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8327 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8328 				if (error != 0) {
8329 					IPFERROR(106);
8330 					error = EFAULT;
8331 				}
8332 			} else {
8333 				IPFERROR(107);
8334 				error = EFAULT;
8335 			}
8336 		}
8337 		break;
8338 
8339 #ifdef USE_INET6
8340 	case SIOCIPFL6 :
8341 		if (!(mode & FWRITE)) {
8342 			IPFERROR(108);
8343 			error = EPERM;
8344 		} else {
8345 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8346 			if (!error) {
8347 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8348 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8349 				if (error != 0) {
8350 					IPFERROR(109);
8351 					error = EFAULT;
8352 				}
8353 			} else {
8354 				IPFERROR(110);
8355 				error = EFAULT;
8356 			}
8357 		}
8358 		break;
8359 #endif
8360 
8361 	case SIOCSTLCK :
8362 		if (!(mode & FWRITE)) {
8363 			IPFERROR(122);
8364 			error = EPERM;
8365 		} else {
8366 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8367 			if (error == 0) {
8368 				ipf_state_setlock(softc->ipf_state_soft, tmp);
8369 				ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8370 				ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8371 				ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8372 			} else {
8373 				IPFERROR(111);
8374 				error = EFAULT;
8375 			}
8376 		}
8377 		break;
8378 
8379 #ifdef	IPFILTER_LOG
8380 	case SIOCIPFFB :
8381 		if (!(mode & FWRITE)) {
8382 			IPFERROR(112);
8383 			error = EPERM;
8384 		} else {
8385 			tmp = ipf_log_clear(softc, IPL_LOGIPF);
8386 			error = BCOPYOUT(&tmp, data, sizeof(tmp));
8387 			if (error) {
8388 				IPFERROR(113);
8389 				error = EFAULT;
8390 			}
8391 		}
8392 		break;
8393 #endif /* IPFILTER_LOG */
8394 
8395 	case SIOCFRSYN :
8396 		if (!(mode & FWRITE)) {
8397 			IPFERROR(114);
8398 			error = EPERM;
8399 		} else {
8400 			WRITE_ENTER(&softc->ipf_global);
8401 #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8402 			error = ipfsync();
8403 #else
8404 			ipf_sync(softc, NULL);
8405 			error = 0;
8406 #endif
8407 			RWLOCK_EXIT(&softc->ipf_global);
8408 
8409 		}
8410 		break;
8411 
8412 	case SIOCGFRST :
8413 		error = ipf_outobj(softc, (void *)data,
8414 				   ipf_frag_stats(softc->ipf_frag_soft),
8415 				   IPFOBJ_FRAGSTAT);
8416 		break;
8417 
8418 #ifdef	IPFILTER_LOG
8419 	case FIONREAD :
8420 		tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8421 		error = BCOPYOUT(&tmp, data, sizeof(tmp));
8422 		break;
8423 #endif
8424 
8425 	case SIOCIPFITER :
8426 		SPL_SCHED(s);
8427 		error = ipf_frruleiter(softc, data, uid, ctx);
8428 		SPL_X(s);
8429 		break;
8430 
8431 	case SIOCGENITER :
8432 		SPL_SCHED(s);
8433 		error = ipf_genericiter(softc, data, uid, ctx);
8434 		SPL_X(s);
8435 		break;
8436 
8437 	case SIOCIPFDELTOK :
8438 		error = BCOPYIN(data, &tmp, sizeof(tmp));
8439 		if (error == 0) {
8440 			SPL_SCHED(s);
8441 			error = ipf_token_del(softc, tmp, uid, ctx);
8442 			SPL_X(s);
8443 		}
8444 		break;
8445 
8446 	default :
8447 		IPFERROR(115);
8448 		error = EINVAL;
8449 		break;
8450 	}
8451 
8452 	return error;
8453 }
8454 
8455 
8456 /* ------------------------------------------------------------------------ */
8457 /* Function:    ipf_decaps                                                  */
8458 /* Returns:     int        - -1 == decapsulation failed, else bit mask of   */
8459 /*                           flags indicating packet filtering decision.    */
8460 /* Parameters:  fin(I)     - pointer to packet information                  */
8461 /*              pass(I)    - IP protocol version to match                   */
8462 /*              l5proto(I) - layer 5 protocol to decode UDP data as.        */
8463 /*                                                                          */
8464 /* This function is called for packets that are wrapt up in other packets,  */
8465 /* for example, an IP packet that is the entire data segment for another IP */
8466 /* packet.  If the basic constraints for this are satisfied, change the     */
8467 /* buffer to point to the start of the inner packet and start processing    */
8468 /* rules belonging to the head group this rule specifies.                   */
8469 /* ------------------------------------------------------------------------ */
8470 u_32_t
ipf_decaps(fin,pass,l5proto)8471 ipf_decaps(fin, pass, l5proto)
8472 	fr_info_t *fin;
8473 	u_32_t pass;
8474 	int l5proto;
8475 {
8476 	fr_info_t fin2, *fino = NULL;
8477 	int elen, hlen, nh;
8478 	grehdr_t gre;
8479 	ip_t *ip;
8480 	mb_t *m;
8481 
8482 	if ((fin->fin_flx & FI_COALESCE) == 0)
8483 		if (ipf_coalesce(fin) == -1)
8484 			goto cantdecaps;
8485 
8486 	m = fin->fin_m;
8487 	hlen = fin->fin_hlen;
8488 
8489 	switch (fin->fin_p)
8490 	{
8491 	case IPPROTO_UDP :
8492 		/*
8493 		 * In this case, the specific protocol being decapsulated
8494 		 * inside UDP frames comes from the rule.
8495 		 */
8496 		nh = fin->fin_fr->fr_icode;
8497 		break;
8498 
8499 	case IPPROTO_GRE :	/* 47 */
8500 		bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8501 		hlen += sizeof(grehdr_t);
8502 		if (gre.gr_R|gre.gr_s)
8503 			goto cantdecaps;
8504 		if (gre.gr_C)
8505 			hlen += 4;
8506 		if (gre.gr_K)
8507 			hlen += 4;
8508 		if (gre.gr_S)
8509 			hlen += 4;
8510 
8511 		nh = IPPROTO_IP;
8512 
8513 		/*
8514 		 * If the routing options flag is set, validate that it is
8515 		 * there and bounce over it.
8516 		 */
8517 #if 0
8518 		/* This is really heavy weight and lots of room for error, */
8519 		/* so for now, put it off and get the simple stuff right.  */
8520 		if (gre.gr_R) {
8521 			u_char off, len, *s;
8522 			u_short af;
8523 			int end;
8524 
8525 			end = 0;
8526 			s = fin->fin_dp;
8527 			s += hlen;
8528 			aplen = fin->fin_plen - hlen;
8529 			while (aplen > 3) {
8530 				af = (s[0] << 8) | s[1];
8531 				off = s[2];
8532 				len = s[3];
8533 				aplen -= 4;
8534 				s += 4;
8535 				if (af == 0 && len == 0) {
8536 					end = 1;
8537 					break;
8538 				}
8539 				if (aplen < len)
8540 					break;
8541 				s += len;
8542 				aplen -= len;
8543 			}
8544 			if (end != 1)
8545 				goto cantdecaps;
8546 			hlen = s - (u_char *)fin->fin_dp;
8547 		}
8548 #endif
8549 		break;
8550 
8551 #ifdef IPPROTO_IPIP
8552 	case IPPROTO_IPIP :	/* 4 */
8553 #endif
8554 		nh = IPPROTO_IP;
8555 		break;
8556 
8557 	default :	/* Includes ESP, AH is special for IPv4 */
8558 		goto cantdecaps;
8559 	}
8560 
8561 	switch (nh)
8562 	{
8563 	case IPPROTO_IP :
8564 	case IPPROTO_IPV6 :
8565 		break;
8566 	default :
8567 		goto cantdecaps;
8568 	}
8569 
8570 	bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8571 	fino = fin;
8572 	fin = &fin2;
8573 	elen = hlen;
8574 #if defined(MENTAT) && defined(_KERNEL)
8575 	m->b_rptr += elen;
8576 #else
8577 	m->m_data += elen;
8578 	m->m_len -= elen;
8579 #endif
8580 	fin->fin_plen -= elen;
8581 
8582 	ip = (ip_t *)((char *)fin->fin_ip + elen);
8583 
8584 	/*
8585 	 * Make sure we have at least enough data for the network layer
8586 	 * header.
8587 	 */
8588 	if (IP_V(ip) == 4)
8589 		hlen = IP_HL(ip) << 2;
8590 #ifdef USE_INET6
8591 	else if (IP_V(ip) == 6)
8592 		hlen = sizeof(ip6_t);
8593 #endif
8594 	else
8595 		goto cantdecaps2;
8596 
8597 	if (fin->fin_plen < hlen)
8598 		goto cantdecaps2;
8599 
8600 	fin->fin_dp = (char *)ip + hlen;
8601 
8602 	if (IP_V(ip) == 4) {
8603 		/*
8604 		 * Perform IPv4 header checksum validation.
8605 		 */
8606 		if (ipf_cksum((u_short *)ip, hlen))
8607 			goto cantdecaps2;
8608 	}
8609 
8610 	if (ipf_makefrip(hlen, ip, fin) == -1) {
8611 cantdecaps2:
8612 		if (m != NULL) {
8613 #if defined(MENTAT) && defined(_KERNEL)
8614 			m->b_rptr -= elen;
8615 #else
8616 			m->m_data -= elen;
8617 			m->m_len += elen;
8618 #endif
8619 		}
8620 cantdecaps:
8621 		DT1(frb_decapfrip, fr_info_t *, fin);
8622 		pass &= ~FR_CMDMASK;
8623 		pass |= FR_BLOCK|FR_QUICK;
8624 		fin->fin_reason = FRB_DECAPFRIP;
8625 		return -1;
8626 	}
8627 
8628 	pass = ipf_scanlist(fin, pass);
8629 
8630 	/*
8631 	 * Copy the packet filter "result" fields out of the fr_info_t struct
8632 	 * that is local to the decapsulation processing and back into the
8633 	 * one we were called with.
8634 	 */
8635 	fino->fin_flx = fin->fin_flx;
8636 	fino->fin_rev = fin->fin_rev;
8637 	fino->fin_icode = fin->fin_icode;
8638 	fino->fin_rule = fin->fin_rule;
8639 	(void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8640 	fino->fin_fr = fin->fin_fr;
8641 	fino->fin_error = fin->fin_error;
8642 	fino->fin_mp = fin->fin_mp;
8643 	fino->fin_m = fin->fin_m;
8644 	m = fin->fin_m;
8645 	if (m != NULL) {
8646 #if defined(MENTAT) && defined(_KERNEL)
8647 		m->b_rptr -= elen;
8648 #else
8649 		m->m_data -= elen;
8650 		m->m_len += elen;
8651 #endif
8652 	}
8653 	return pass;
8654 }
8655 
8656 
8657 /* ------------------------------------------------------------------------ */
8658 /* Function:    ipf_matcharray_load                                         */
8659 /* Returns:     int         - 0 = success, else error                       */
8660 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8661 /*              data(I)     - pointer to ioctl data                         */
8662 /*              objp(I)     - ipfobj_t structure to load data into          */
8663 /*              arrayptr(I) - pointer to location to store array pointer    */
8664 /*                                                                          */
8665 /* This function loads in a mathing array through the ipfobj_t struct that  */
8666 /* describes it.  Sanity checking and array size limitations are enforced   */
8667 /* in this function to prevent userspace from trying to load in something   */
8668 /* that is insanely big.  Once the size of the array is known, the memory   */
8669 /* required is malloc'd and returned through changing *arrayptr.  The       */
8670 /* contents of the array are verified before returning.  Only in the event  */
8671 /* of a successful call is the caller required to free up the malloc area.  */
8672 /* ------------------------------------------------------------------------ */
8673 int
ipf_matcharray_load(softc,data,objp,arrayptr)8674 ipf_matcharray_load(softc, data, objp, arrayptr)
8675 	ipf_main_softc_t *softc;
8676 	caddr_t data;
8677 	ipfobj_t *objp;
8678 	int **arrayptr;
8679 {
8680 	int arraysize, *array, error;
8681 
8682 	*arrayptr = NULL;
8683 
8684 	error = BCOPYIN(data, objp, sizeof(*objp));
8685 	if (error != 0) {
8686 		IPFERROR(116);
8687 		return EFAULT;
8688 	}
8689 
8690 	if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8691 		IPFERROR(117);
8692 		return EINVAL;
8693 	}
8694 
8695 	if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8696 	    (objp->ipfo_size > 1024)) {
8697 		IPFERROR(118);
8698 		return EINVAL;
8699 	}
8700 
8701 	arraysize = objp->ipfo_size * sizeof(*array);
8702 	KMALLOCS(array, int *, arraysize);
8703 	if (array == NULL) {
8704 		IPFERROR(119);
8705 		return ENOMEM;
8706 	}
8707 
8708 	error = COPYIN(objp->ipfo_ptr, array, arraysize);
8709 	if (error != 0) {
8710 		KFREES(array, arraysize);
8711 		IPFERROR(120);
8712 		return EFAULT;
8713 	}
8714 
8715 	if (ipf_matcharray_verify(array, arraysize) != 0) {
8716 		KFREES(array, arraysize);
8717 		IPFERROR(121);
8718 		return EINVAL;
8719 	}
8720 
8721 	*arrayptr = array;
8722 	return 0;
8723 }
8724 
8725 
8726 /* ------------------------------------------------------------------------ */
8727 /* Function:    ipf_matcharray_verify                                       */
8728 /* Returns:     Nil                                                         */
8729 /* Parameters:  array(I)     - pointer to matching array                    */
8730 /*              arraysize(I) - number of elements in the array              */
8731 /*                                                                          */
8732 /* Verify the contents of a matching array by stepping through each element */
8733 /* in it.  The actual commands in the array are not verified for            */
8734 /* correctness, only that all of the sizes are correctly within limits.     */
8735 /* ------------------------------------------------------------------------ */
8736 int
ipf_matcharray_verify(array,arraysize)8737 ipf_matcharray_verify(array, arraysize)
8738 	int *array, arraysize;
8739 {
8740 	int i, nelem, maxidx;
8741 	ipfexp_t *e;
8742 
8743 	nelem = arraysize / sizeof(*array);
8744 
8745 	/*
8746 	 * Currently, it makes no sense to have an array less than 6
8747 	 * elements long - the initial size at the from, a single operation
8748 	 * (minimum 4 in length) and a trailer, for a total of 6.
8749 	 */
8750 	if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8751 		return -1;
8752 	}
8753 
8754 	/*
8755 	 * Verify the size of data pointed to by array with how long
8756 	 * the array claims to be itself.
8757 	 */
8758 	if (array[0] * sizeof(*array) != arraysize) {
8759 		return -1;
8760 	}
8761 
8762 	maxidx = nelem - 1;
8763 	/*
8764 	 * The last opcode in this array should be an IPF_EXP_END.
8765 	 */
8766 	if (array[maxidx] != IPF_EXP_END) {
8767 		return -1;
8768 	}
8769 
8770 	for (i = 1; i < maxidx; ) {
8771 		e = (ipfexp_t *)(array + i);
8772 
8773 		/*
8774 		 * The length of the bits to check must be at least 1
8775 		 * (or else there is nothing to comapre with!) and it
8776 		 * cannot exceed the length of the data present.
8777 		 */
8778 		if ((e->ipfe_size < 1 ) ||
8779 		    (e->ipfe_size + i > maxidx)) {
8780 			return -1;
8781 		}
8782 		i += e->ipfe_size;
8783 	}
8784 	return 0;
8785 }
8786 
8787 
8788 /* ------------------------------------------------------------------------ */
8789 /* Function:    ipf_fr_matcharray                                           */
8790 /* Returns:     int      - 0 = match failed, else positive match            */
8791 /* Parameters:  fin(I)   - pointer to packet information                    */
8792 /*              array(I) - pointer to matching array                        */
8793 /*                                                                          */
8794 /* This function is used to apply a matching array against a packet and     */
8795 /* return an indication of whether or not the packet successfully matches   */
8796 /* all of the commands in it.                                               */
8797 /* ------------------------------------------------------------------------ */
8798 static int
ipf_fr_matcharray(fin,array)8799 ipf_fr_matcharray(fin, array)
8800 	fr_info_t *fin;
8801 	int *array;
8802 {
8803 	int i, n, *x, rv, p;
8804 	ipfexp_t *e;
8805 
8806 	rv = 0;
8807 	n = array[0];
8808 	x = array + 1;
8809 
8810 	for (; n > 0; x += 3 + x[3], rv = 0) {
8811 		e = (ipfexp_t *)x;
8812 		if (e->ipfe_cmd == IPF_EXP_END)
8813 			break;
8814 		n -= e->ipfe_size;
8815 
8816 		/*
8817 		 * The upper 16 bits currently store the protocol value.
8818 		 * This is currently used with TCP and UDP port compares and
8819 		 * allows "tcp.port = 80" without requiring an explicit
8820 		 " "ip.pr = tcp" first.
8821 		 */
8822 		p = e->ipfe_cmd >> 16;
8823 		if ((p != 0) && (p != fin->fin_p))
8824 			break;
8825 
8826 		switch (e->ipfe_cmd)
8827 		{
8828 		case IPF_EXP_IP_PR :
8829 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8830 				rv |= (fin->fin_p == e->ipfe_arg0[i]);
8831 			}
8832 			break;
8833 
8834 		case IPF_EXP_IP_SRCADDR :
8835 			if (fin->fin_v != 4)
8836 				break;
8837 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8838 				rv |= ((fin->fin_saddr &
8839 					e->ipfe_arg0[i * 2 + 1]) ==
8840 				       e->ipfe_arg0[i * 2]);
8841 			}
8842 			break;
8843 
8844 		case IPF_EXP_IP_DSTADDR :
8845 			if (fin->fin_v != 4)
8846 				break;
8847 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8848 				rv |= ((fin->fin_daddr &
8849 					e->ipfe_arg0[i * 2 + 1]) ==
8850 				       e->ipfe_arg0[i * 2]);
8851 			}
8852 			break;
8853 
8854 		case IPF_EXP_IP_ADDR :
8855 			if (fin->fin_v != 4)
8856 				break;
8857 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8858 				rv |= ((fin->fin_saddr &
8859 					e->ipfe_arg0[i * 2 + 1]) ==
8860 				       e->ipfe_arg0[i * 2]) ||
8861 				      ((fin->fin_daddr &
8862 					e->ipfe_arg0[i * 2 + 1]) ==
8863 				       e->ipfe_arg0[i * 2]);
8864 			}
8865 			break;
8866 
8867 #ifdef USE_INET6
8868 		case IPF_EXP_IP6_SRCADDR :
8869 			if (fin->fin_v != 6)
8870 				break;
8871 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8872 				rv |= IP6_MASKEQ(&fin->fin_src6,
8873 						 &e->ipfe_arg0[i * 8 + 4],
8874 						 &e->ipfe_arg0[i * 8]);
8875 			}
8876 			break;
8877 
8878 		case IPF_EXP_IP6_DSTADDR :
8879 			if (fin->fin_v != 6)
8880 				break;
8881 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8882 				rv |= IP6_MASKEQ(&fin->fin_dst6,
8883 						 &e->ipfe_arg0[i * 8 + 4],
8884 						 &e->ipfe_arg0[i * 8]);
8885 			}
8886 			break;
8887 
8888 		case IPF_EXP_IP6_ADDR :
8889 			if (fin->fin_v != 6)
8890 				break;
8891 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8892 				rv |= IP6_MASKEQ(&fin->fin_src6,
8893 						 &e->ipfe_arg0[i * 8 + 4],
8894 						 &e->ipfe_arg0[i * 8]) ||
8895 				      IP6_MASKEQ(&fin->fin_dst6,
8896 						 &e->ipfe_arg0[i * 8 + 4],
8897 						 &e->ipfe_arg0[i * 8]);
8898 			}
8899 			break;
8900 #endif
8901 
8902 		case IPF_EXP_UDP_PORT :
8903 		case IPF_EXP_TCP_PORT :
8904 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8905 				rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8906 				      (fin->fin_dport == e->ipfe_arg0[i]);
8907 			}
8908 			break;
8909 
8910 		case IPF_EXP_UDP_SPORT :
8911 		case IPF_EXP_TCP_SPORT :
8912 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8913 				rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8914 			}
8915 			break;
8916 
8917 		case IPF_EXP_UDP_DPORT :
8918 		case IPF_EXP_TCP_DPORT :
8919 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8920 				rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8921 			}
8922 			break;
8923 
8924 		case IPF_EXP_TCP_FLAGS :
8925 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8926 				rv |= ((fin->fin_tcpf &
8927 					e->ipfe_arg0[i * 2 + 1]) ==
8928 				       e->ipfe_arg0[i * 2]);
8929 			}
8930 			break;
8931 		}
8932 		rv ^= e->ipfe_not;
8933 
8934 		if (rv == 0)
8935 			break;
8936 	}
8937 
8938 	return rv;
8939 }
8940 
8941 
8942 /* ------------------------------------------------------------------------ */
8943 /* Function:    ipf_queueflush                                              */
8944 /* Returns:     int - number of entries flushed (0 = none)                  */
8945 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8946 /*              deletefn(I) - function to call to delete entry              */
8947 /*              ipfqs(I)    - top of the list of ipf internal queues        */
8948 /*              userqs(I)   - top of the list of user defined timeouts      */
8949 /*                                                                          */
8950 /* This fucntion gets called when the state/NAT hash tables fill up and we  */
8951 /* need to try a bit harder to free up some space.  The algorithm used here */
8952 /* split into two parts but both halves have the same goal: to reduce the   */
8953 /* number of connections considered to be "active" to the low watermark.    */
8954 /* There are two steps in doing this:                                       */
8955 /* 1) Remove any TCP connections that are already considered to be "closed" */
8956 /*    but have not yet been removed from the state table.  The two states   */
8957 /*    TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect       */
8958 /*    candidates for this style of removal.  If freeing up entries in       */
8959 /*    CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark,   */
8960 /*    we do not go on to step 2.                                            */
8961 /*                                                                          */
8962 /* 2) Look for the oldest entries on each timeout queue and free them if    */
8963 /*    they are within the given window we are considering.  Where the       */
8964 /*    window starts and the steps taken to increase its size depend upon    */
8965 /*    how long ipf has been running (ipf_ticks.)  Anything modified in the  */
8966 /*    last 30 seconds is not touched.                                       */
8967 /*                                              touched                     */
8968 /*         die     ipf_ticks  30*1.5    1800*1.5   |  43200*1.5             */
8969 /*           |          |        |           |     |     |                  */
8970 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8971 /*                     now        \_int=30s_/ \_int=1hr_/ \_int=12hr        */
8972 /*                                                                          */
8973 /* Points to note:                                                          */
8974 /* - tqe_die is the time, in the future, when entries die.                  */
8975 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8976 /*   ticks.                                                                 */
8977 /* - tqe_touched is when the entry was last used by NAT/state               */
8978 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be    */
8979 /*   ipf_ticks any given timeout queue and vice versa.                      */
8980 /* - both tqe_die and tqe_touched increase over time                        */
8981 /* - timeout queues are sorted with the highest value of tqe_die at the     */
8982 /*   bottom and therefore the smallest values of each are at the top        */
8983 /* - the pointer passed in as ipfqs should point to an array of timeout     */
8984 /*   queues representing each of the TCP states                             */
8985 /*                                                                          */
8986 /* We start by setting up a maximum range to scan for things to move of     */
8987 /* iend (newest) to istart (oldest) in chunks of "interval".  If nothing is */
8988 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8989 /* we start again with a new value for "iend" and "istart".  This is        */
8990 /* continued until we either finish the scan of 30 second intervals or the  */
8991 /* low water mark is reached.                                               */
8992 /* ------------------------------------------------------------------------ */
8993 int
ipf_queueflush(softc,deletefn,ipfqs,userqs,activep,size,low)8994 ipf_queueflush(softc, deletefn, ipfqs, userqs, activep, size, low)
8995 	ipf_main_softc_t *softc;
8996 	ipftq_delete_fn_t deletefn;
8997 	ipftq_t *ipfqs, *userqs;
8998 	u_int *activep;
8999 	int size, low;
9000 {
9001 	u_long interval, istart, iend;
9002 	ipftq_t *ifq, *ifqnext;
9003 	ipftqent_t *tqe, *tqn;
9004 	int removed = 0;
9005 
9006 	for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
9007 		tqn = tqe->tqe_next;
9008 		if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9009 			removed++;
9010 	}
9011 	if ((*activep * 100 / size) > low) {
9012 		for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
9013 		     ((tqe = tqn) != NULL); ) {
9014 			tqn = tqe->tqe_next;
9015 			if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9016 				removed++;
9017 		}
9018 	}
9019 
9020 	if ((*activep * 100 / size) <= low) {
9021 		return removed;
9022 	}
9023 
9024 	/*
9025 	 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
9026 	 *       used then the operations are upgraded to floating point
9027 	 *       and kernels don't like floating point...
9028 	 */
9029 	if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
9030 		istart = IPF_TTLVAL(86400 * 4);
9031 		interval = IPF_TTLVAL(43200);
9032 	} else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
9033 		istart = IPF_TTLVAL(43200);
9034 		interval = IPF_TTLVAL(1800);
9035 	} else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
9036 		istart = IPF_TTLVAL(1800);
9037 		interval = IPF_TTLVAL(30);
9038 	} else {
9039 		return 0;
9040 	}
9041 	if (istart > softc->ipf_ticks) {
9042 		if (softc->ipf_ticks - interval < interval)
9043 			istart = interval;
9044 		else
9045 			istart = (softc->ipf_ticks / interval) * interval;
9046 	}
9047 
9048 	iend = softc->ipf_ticks - interval;
9049 
9050 	while ((*activep * 100 / size) > low) {
9051 		u_long try;
9052 
9053 		try = softc->ipf_ticks - istart;
9054 
9055 		for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
9056 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
9057 				if (try < tqe->tqe_touched)
9058 					break;
9059 				tqn = tqe->tqe_next;
9060 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9061 					removed++;
9062 			}
9063 		}
9064 
9065 		for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
9066 			ifqnext = ifq->ifq_next;
9067 
9068 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
9069 				if (try < tqe->tqe_touched)
9070 					break;
9071 				tqn = tqe->tqe_next;
9072 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9073 					removed++;
9074 			}
9075 		}
9076 
9077 		if (try >= iend) {
9078 			if (interval == IPF_TTLVAL(43200)) {
9079 				interval = IPF_TTLVAL(1800);
9080 			} else if (interval == IPF_TTLVAL(1800)) {
9081 				interval = IPF_TTLVAL(30);
9082 			} else {
9083 				break;
9084 			}
9085 			if (interval >= softc->ipf_ticks)
9086 				break;
9087 
9088 			iend = softc->ipf_ticks - interval;
9089 		}
9090 		istart -= interval;
9091 	}
9092 
9093 	return removed;
9094 }
9095 
9096 
9097 /* ------------------------------------------------------------------------ */
9098 /* Function:    ipf_deliverlocal                                            */
9099 /* Returns:     int - 1 = local address, 0 = non-local address              */
9100 /* Parameters:  softc(I)     - pointer to soft context main structure       */
9101 /*              ipversion(I) - IP protocol version (4 or 6)                 */
9102 /*              ifp(I)       - network interface pointer                    */
9103 /*              ipaddr(I)    - IPv4/6 destination address                   */
9104 /*                                                                          */
9105 /* This fucntion is used to determine in the address "ipaddr" belongs to    */
9106 /* the network interface represented by ifp.                                */
9107 /* ------------------------------------------------------------------------ */
9108 int
ipf_deliverlocal(softc,ipversion,ifp,ipaddr)9109 ipf_deliverlocal(softc, ipversion, ifp, ipaddr)
9110 	ipf_main_softc_t *softc;
9111 	int ipversion;
9112 	void *ifp;
9113 	i6addr_t *ipaddr;
9114 {
9115 	i6addr_t addr;
9116 	int islocal = 0;
9117 
9118 	if (ipversion == 4) {
9119 		if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
9120 			if (addr.in4.s_addr == ipaddr->in4.s_addr)
9121 				islocal = 1;
9122 		}
9123 
9124 #ifdef USE_INET6
9125 	} else if (ipversion == 6) {
9126 		if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
9127 			if (IP6_EQ(&addr, ipaddr))
9128 				islocal = 1;
9129 		}
9130 #endif
9131 	}
9132 
9133 	return islocal;
9134 }
9135 
9136 
9137 /* ------------------------------------------------------------------------ */
9138 /* Function:    ipf_settimeout                                              */
9139 /* Returns:     int - 0 = success, -1 = failure                             */
9140 /* Parameters:  softc(I) - pointer to soft context main structure           */
9141 /*              t(I)     - pointer to tuneable array entry                  */
9142 /*              p(I)     - pointer to values passed in to apply             */
9143 /*                                                                          */
9144 /* This function is called to set the timeout values for each distinct      */
9145 /* queue timeout that is available.  When called, it calls into both the    */
9146 /* state and NAT code, telling them to update their timeout queues.         */
9147 /* ------------------------------------------------------------------------ */
9148 static int
ipf_settimeout(softc,t,p)9149 ipf_settimeout(softc, t, p)
9150 	struct ipf_main_softc_s *softc;
9151 	ipftuneable_t *t;
9152 	ipftuneval_t *p;
9153 {
9154 
9155 	/*
9156 	 * ipf_interror should be set by the functions called here, not
9157 	 * by this function - it's just a middle man.
9158 	 */
9159 	if (ipf_state_settimeout(softc, t, p) == -1)
9160 		return -1;
9161 	if (ipf_nat_settimeout(softc, t, p) == -1)
9162 		return -1;
9163 	return 0;
9164 }
9165 
9166 
9167 /* ------------------------------------------------------------------------ */
9168 /* Function:    ipf_apply_timeout                                           */
9169 /* Returns:     int - 0 = success, -1 = failure                             */
9170 /* Parameters:  head(I)    - pointer to tuneable array entry                */
9171 /*              seconds(I) - pointer to values passed in to apply           */
9172 /*                                                                          */
9173 /* This function applies a timeout of "seconds" to the timeout queue that   */
9174 /* is pointed to by "head".  All entries on this list have an expiration    */
9175 /* set to be the current tick value of ipf plus the ttl.  Given that this   */
9176 /* function should only be called when the delta is non-zero, the task is   */
9177 /* to walk the entire list and apply the change.  The sort order will not   */
9178 /* change.  The only catch is that this is O(n) across the list, so if the  */
9179 /* queue has lots of entries (10s of thousands or 100s of thousands), it    */
9180 /* could take a relatively long time to work through them all.              */
9181 /* ------------------------------------------------------------------------ */
9182 void
ipf_apply_timeout(head,seconds)9183 ipf_apply_timeout(head, seconds)
9184 	ipftq_t *head;
9185 	u_int seconds;
9186 {
9187 	u_int oldtimeout, newtimeout;
9188 	ipftqent_t *tqe;
9189 	int delta;
9190 
9191 	MUTEX_ENTER(&head->ifq_lock);
9192 	oldtimeout = head->ifq_ttl;
9193 	newtimeout = IPF_TTLVAL(seconds);
9194 	delta = oldtimeout - newtimeout;
9195 
9196 	head->ifq_ttl = newtimeout;
9197 
9198 	for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
9199 		tqe->tqe_die += delta;
9200 	}
9201 	MUTEX_EXIT(&head->ifq_lock);
9202 }
9203 
9204 
9205 /* ------------------------------------------------------------------------ */
9206 /* Function:   ipf_settimeout_tcp                                           */
9207 /* Returns:    int - 0 = successfully applied, -1 = failed                  */
9208 /* Parameters: t(I)   - pointer to tuneable to change                       */
9209 /*             p(I)   - pointer to new timeout information                  */
9210 /*             tab(I) - pointer to table of TCP queues                      */
9211 /*                                                                          */
9212 /* This function applies the new timeout (p) to the TCP tunable (t) and     */
9213 /* updates all of the entries on the relevant timeout queue by calling      */
9214 /* ipf_apply_timeout().                                                     */
9215 /* ------------------------------------------------------------------------ */
9216 int
ipf_settimeout_tcp(t,p,tab)9217 ipf_settimeout_tcp(t, p, tab)
9218 	ipftuneable_t *t;
9219 	ipftuneval_t *p;
9220 	ipftq_t *tab;
9221 {
9222 	if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
9223 	    !strcmp(t->ipft_name, "tcp_established")) {
9224 		ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
9225 	} else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
9226 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
9227 	} else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
9228 		ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
9229 	} else if (!strcmp(t->ipft_name, "tcp_timeout")) {
9230 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9231 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9232 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9233 	} else if (!strcmp(t->ipft_name, "tcp_listen")) {
9234 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9235 	} else if (!strcmp(t->ipft_name, "tcp_half_established")) {
9236 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9237 	} else if (!strcmp(t->ipft_name, "tcp_closing")) {
9238 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9239 	} else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
9240 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
9241 	} else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
9242 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
9243 	} else if (!strcmp(t->ipft_name, "tcp_closed")) {
9244 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9245 	} else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
9246 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9247 	} else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
9248 		ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
9249 	} else {
9250 		/*
9251 		 * ipf_interror isn't set here because it should be set
9252 		 * by whatever called this function.
9253 		 */
9254 		return -1;
9255 	}
9256 	return 0;
9257 }
9258 
9259 
9260 /* ------------------------------------------------------------------------ */
9261 /* Function:   ipf_main_soft_create                                         */
9262 /* Returns:    NULL = failure, else success                                 */
9263 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
9264 /*                                                                          */
9265 /* Create the foundation soft context structure. In circumstances where it  */
9266 /* is not required to dynamically allocate the context, a pointer can be    */
9267 /* passed in (rather than NULL) to a structure to be initialised.           */
9268 /* The main thing of interest is that a number of locks are initialised     */
9269 /* here instead of in the where might be expected - in the relevant create  */
9270 /* function elsewhere.  This is done because the current locking design has */
9271 /* some areas where these locks are used outside of their module.           */
9272 /* Possibly the most important exercise that is done here is setting of all */
9273 /* the timeout values, allowing them to be changed before init().           */
9274 /* ------------------------------------------------------------------------ */
9275 void *
ipf_main_soft_create(arg)9276 ipf_main_soft_create(arg)
9277 	void *arg;
9278 {
9279 	ipf_main_softc_t *softc;
9280 
9281 	if (arg == NULL) {
9282 		KMALLOC(softc, ipf_main_softc_t *);
9283 		if (softc == NULL)
9284 			return NULL;
9285 	} else {
9286 		softc = arg;
9287 	}
9288 
9289 	bzero((char *)softc, sizeof(*softc));
9290 
9291 	/*
9292 	 * This serves as a flag as to whether or not the softc should be
9293 	 * free'd when _destroy is called.
9294 	 */
9295 	softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9296 
9297 	softc->ipf_tuners = ipf_tune_array_copy(softc,
9298 						sizeof(ipf_main_tuneables),
9299 						ipf_main_tuneables);
9300 	if (softc->ipf_tuners == NULL) {
9301 		ipf_main_soft_destroy(softc);
9302 		return NULL;
9303 	}
9304 
9305 	MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9306 	MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9307 	RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9308 	RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9309 	RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9310 	RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9311 	RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9312 	RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9313 	RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9314 
9315 	softc->ipf_token_head = NULL;
9316 	softc->ipf_token_tail = &softc->ipf_token_head;
9317 
9318 	softc->ipf_tcpidletimeout = FIVE_DAYS;
9319 	softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9320 	softc->ipf_tcplastack = IPF_TTLVAL(30);
9321 	softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9322 	softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9323 	softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9324 	softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9325 	softc->ipf_tcpclosed = IPF_TTLVAL(30);
9326 	softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9327 	softc->ipf_udptimeout = IPF_TTLVAL(120);
9328 	softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9329 	softc->ipf_icmptimeout = IPF_TTLVAL(60);
9330 	softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9331 	softc->ipf_iptimeout = IPF_TTLVAL(60);
9332 
9333 #if defined(IPFILTER_DEFAULT_BLOCK)
9334 	softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9335 #else
9336 	softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9337 #endif
9338 	softc->ipf_minttl = 4;
9339 	softc->ipf_icmpminfragmtu = 68;
9340 	softc->ipf_flags = IPF_LOGGING;
9341 
9342 	return softc;
9343 }
9344 
9345 /* ------------------------------------------------------------------------ */
9346 /* Function:   ipf_main_soft_init                                           */
9347 /* Returns:    0 = success, -1 = failure                                    */
9348 /* Parameters: softc(I) - pointer to soft context main structure            */
9349 /*                                                                          */
9350 /* A null-op function that exists as a placeholder so that the flow in      */
9351 /* other functions is obvious.                                              */
9352 /* ------------------------------------------------------------------------ */
9353 /*ARGSUSED*/
9354 int
ipf_main_soft_init(softc)9355 ipf_main_soft_init(softc)
9356 	ipf_main_softc_t *softc;
9357 {
9358 	return 0;
9359 }
9360 
9361 
9362 /* ------------------------------------------------------------------------ */
9363 /* Function:   ipf_main_soft_destroy                                        */
9364 /* Returns:    void                                                         */
9365 /* Parameters: softc(I) - pointer to soft context main structure            */
9366 /*                                                                          */
9367 /* Undo everything that we did in ipf_main_soft_create.                     */
9368 /*                                                                          */
9369 /* The most important check that needs to be made here is whether or not    */
9370 /* the structure was allocated by ipf_main_soft_create() by checking what   */
9371 /* value is stored in ipf_dynamic_main.                                     */
9372 /* ------------------------------------------------------------------------ */
9373 /*ARGSUSED*/
9374 void
ipf_main_soft_destroy(softc)9375 ipf_main_soft_destroy(softc)
9376 	ipf_main_softc_t *softc;
9377 {
9378 
9379 	RW_DESTROY(&softc->ipf_frag);
9380 	RW_DESTROY(&softc->ipf_poolrw);
9381 	RW_DESTROY(&softc->ipf_nat);
9382 	RW_DESTROY(&softc->ipf_state);
9383 	RW_DESTROY(&softc->ipf_tokens);
9384 	RW_DESTROY(&softc->ipf_mutex);
9385 	RW_DESTROY(&softc->ipf_global);
9386 	MUTEX_DESTROY(&softc->ipf_timeoutlock);
9387 	MUTEX_DESTROY(&softc->ipf_rw);
9388 
9389 	if (softc->ipf_tuners != NULL) {
9390 		KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9391 	}
9392 	if (softc->ipf_dynamic_softc == 1) {
9393 		KFREE(softc);
9394 	}
9395 }
9396 
9397 
9398 /* ------------------------------------------------------------------------ */
9399 /* Function:   ipf_main_soft_fini                                           */
9400 /* Returns:    0 = success, -1 = failure                                    */
9401 /* Parameters: softc(I) - pointer to soft context main structure            */
9402 /*                                                                          */
9403 /* Clean out the rules which have been added since _init was last called,   */
9404 /* the only dynamic part of the mainline.                                   */
9405 /* ------------------------------------------------------------------------ */
9406 int
ipf_main_soft_fini(softc)9407 ipf_main_soft_fini(softc)
9408 	ipf_main_softc_t *softc;
9409 {
9410 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9411 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9412 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9413 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9414 
9415 	return 0;
9416 }
9417 
9418 
9419 /* ------------------------------------------------------------------------ */
9420 /* Function:   ipf_main_load                                                */
9421 /* Returns:    0 = success, -1 = failure                                    */
9422 /* Parameters: none                                                         */
9423 /*                                                                          */
9424 /* Handle global initialisation that needs to be done for the base part of  */
9425 /* IPFilter. At present this just amounts to initialising some ICMP lookup  */
9426 /* arrays that get used by the state/NAT code.                              */
9427 /* ------------------------------------------------------------------------ */
9428 int
ipf_main_load()9429 ipf_main_load()
9430 {
9431 	int i;
9432 
9433 	/* fill icmp reply type table */
9434 	for (i = 0; i <= ICMP_MAXTYPE; i++)
9435 		icmpreplytype4[i] = -1;
9436 	icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9437 	icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9438 	icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9439 	icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9440 
9441 #ifdef  USE_INET6
9442 	/* fill icmp reply type table */
9443 	for (i = 0; i <= ICMP6_MAXTYPE; i++)
9444 		icmpreplytype6[i] = -1;
9445 	icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9446 	icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9447 	icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9448 	icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9449 	icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9450 #endif
9451 
9452 	return 0;
9453 }
9454 
9455 
9456 /* ------------------------------------------------------------------------ */
9457 /* Function:   ipf_main_unload                                              */
9458 /* Returns:    0 = success, -1 = failure                                    */
9459 /* Parameters: none                                                         */
9460 /*                                                                          */
9461 /* A null-op function that exists as a placeholder so that the flow in      */
9462 /* other functions is obvious.                                              */
9463 /* ------------------------------------------------------------------------ */
9464 int
ipf_main_unload()9465 ipf_main_unload()
9466 {
9467 	return 0;
9468 }
9469 
9470 
9471 /* ------------------------------------------------------------------------ */
9472 /* Function:   ipf_load_all                                                 */
9473 /* Returns:    0 = success, -1 = failure                                    */
9474 /* Parameters: none                                                         */
9475 /*                                                                          */
9476 /* Work through all of the subsystems inside IPFilter and call the load     */
9477 /* function for each in an order that won't lead to a crash :)              */
9478 /* ------------------------------------------------------------------------ */
9479 int
ipf_load_all()9480 ipf_load_all()
9481 {
9482 	if (ipf_main_load() == -1)
9483 		return -1;
9484 
9485 	if (ipf_state_main_load() == -1)
9486 		return -1;
9487 
9488 	if (ipf_nat_main_load() == -1)
9489 		return -1;
9490 
9491 	if (ipf_frag_main_load() == -1)
9492 		return -1;
9493 
9494 	if (ipf_auth_main_load() == -1)
9495 		return -1;
9496 
9497 	if (ipf_proxy_main_load() == -1)
9498 		return -1;
9499 
9500 	return 0;
9501 }
9502 
9503 
9504 /* ------------------------------------------------------------------------ */
9505 /* Function:   ipf_unload_all                                               */
9506 /* Returns:    0 = success, -1 = failure                                    */
9507 /* Parameters: none                                                         */
9508 /*                                                                          */
9509 /* Work through all of the subsystems inside IPFilter and call the unload   */
9510 /* function for each in an order that won't lead to a crash :)              */
9511 /* ------------------------------------------------------------------------ */
9512 int
ipf_unload_all()9513 ipf_unload_all()
9514 {
9515 	if (ipf_proxy_main_unload() == -1)
9516 		return -1;
9517 
9518 	if (ipf_auth_main_unload() == -1)
9519 		return -1;
9520 
9521 	if (ipf_frag_main_unload() == -1)
9522 		return -1;
9523 
9524 	if (ipf_nat_main_unload() == -1)
9525 		return -1;
9526 
9527 	if (ipf_state_main_unload() == -1)
9528 		return -1;
9529 
9530 	if (ipf_main_unload() == -1)
9531 		return -1;
9532 
9533 	return 0;
9534 }
9535 
9536 
9537 /* ------------------------------------------------------------------------ */
9538 /* Function:   ipf_create_all                                               */
9539 /* Returns:    NULL = failure, else success                                 */
9540 /* Parameters: arg(I) - pointer to soft context main structure              */
9541 /*                                                                          */
9542 /* Work through all of the subsystems inside IPFilter and call the create   */
9543 /* function for each in an order that won't lead to a crash :)              */
9544 /* ------------------------------------------------------------------------ */
9545 ipf_main_softc_t *
ipf_create_all(arg)9546 ipf_create_all(arg)
9547 	void *arg;
9548 {
9549 	ipf_main_softc_t *softc;
9550 
9551 	softc = ipf_main_soft_create(arg);
9552 	if (softc == NULL)
9553 		return NULL;
9554 
9555 #ifdef IPFILTER_LOG
9556 	softc->ipf_log_soft = ipf_log_soft_create(softc);
9557 	if (softc->ipf_log_soft == NULL) {
9558 		ipf_destroy_all(softc);
9559 		return NULL;
9560 	}
9561 #endif
9562 
9563 	softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9564 	if (softc->ipf_lookup_soft == NULL) {
9565 		ipf_destroy_all(softc);
9566 		return NULL;
9567 	}
9568 
9569 	softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9570 	if (softc->ipf_sync_soft == NULL) {
9571 		ipf_destroy_all(softc);
9572 		return NULL;
9573 	}
9574 
9575 	softc->ipf_state_soft = ipf_state_soft_create(softc);
9576 	if (softc->ipf_state_soft == NULL) {
9577 		ipf_destroy_all(softc);
9578 		return NULL;
9579 	}
9580 
9581 	softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9582 	if (softc->ipf_nat_soft == NULL) {
9583 		ipf_destroy_all(softc);
9584 		return NULL;
9585 	}
9586 
9587 	softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9588 	if (softc->ipf_frag_soft == NULL) {
9589 		ipf_destroy_all(softc);
9590 		return NULL;
9591 	}
9592 
9593 	softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9594 	if (softc->ipf_auth_soft == NULL) {
9595 		ipf_destroy_all(softc);
9596 		return NULL;
9597 	}
9598 
9599 	softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9600 	if (softc->ipf_proxy_soft == NULL) {
9601 		ipf_destroy_all(softc);
9602 		return NULL;
9603 	}
9604 
9605 	return softc;
9606 }
9607 
9608 
9609 /* ------------------------------------------------------------------------ */
9610 /* Function:   ipf_destroy_all                                              */
9611 /* Returns:    void                                                         */
9612 /* Parameters: softc(I) - pointer to soft context main structure            */
9613 /*                                                                          */
9614 /* Work through all of the subsystems inside IPFilter and call the destroy  */
9615 /* function for each in an order that won't lead to a crash :)              */
9616 /*                                                                          */
9617 /* Every one of these functions is expected to succeed, so there is no      */
9618 /* checking of return values.                                               */
9619 /* ------------------------------------------------------------------------ */
9620 void
ipf_destroy_all(softc)9621 ipf_destroy_all(softc)
9622 	ipf_main_softc_t *softc;
9623 {
9624 
9625 	if (softc->ipf_state_soft != NULL) {
9626 		ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9627 		softc->ipf_state_soft = NULL;
9628 	}
9629 
9630 	if (softc->ipf_nat_soft != NULL) {
9631 		ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9632 		softc->ipf_nat_soft = NULL;
9633 	}
9634 
9635 	if (softc->ipf_frag_soft != NULL) {
9636 		ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9637 		softc->ipf_frag_soft = NULL;
9638 	}
9639 
9640 	if (softc->ipf_auth_soft != NULL) {
9641 		ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9642 		softc->ipf_auth_soft = NULL;
9643 	}
9644 
9645 	if (softc->ipf_proxy_soft != NULL) {
9646 		ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9647 		softc->ipf_proxy_soft = NULL;
9648 	}
9649 
9650 	if (softc->ipf_sync_soft != NULL) {
9651 		ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9652 		softc->ipf_sync_soft = NULL;
9653 	}
9654 
9655 	if (softc->ipf_lookup_soft != NULL) {
9656 		ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9657 		softc->ipf_lookup_soft = NULL;
9658 	}
9659 
9660 #ifdef IPFILTER_LOG
9661 	if (softc->ipf_log_soft != NULL) {
9662 		ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9663 		softc->ipf_log_soft = NULL;
9664 	}
9665 #endif
9666 
9667 	ipf_main_soft_destroy(softc);
9668 }
9669 
9670 
9671 /* ------------------------------------------------------------------------ */
9672 /* Function:   ipf_init_all                                                 */
9673 /* Returns:    0 = success, -1 = failure                                    */
9674 /* Parameters: softc(I) - pointer to soft context main structure            */
9675 /*                                                                          */
9676 /* Work through all of the subsystems inside IPFilter and call the init     */
9677 /* function for each in an order that won't lead to a crash :)              */
9678 /* ------------------------------------------------------------------------ */
9679 int
ipf_init_all(softc)9680 ipf_init_all(softc)
9681 	ipf_main_softc_t *softc;
9682 {
9683 
9684 	if (ipf_main_soft_init(softc) == -1)
9685 		return -1;
9686 
9687 #ifdef IPFILTER_LOG
9688 	if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9689 		return -1;
9690 #endif
9691 
9692 	if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9693 		return -1;
9694 
9695 	if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9696 		return -1;
9697 
9698 	if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9699 		return -1;
9700 
9701 	if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9702 		return -1;
9703 
9704 	if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9705 		return -1;
9706 
9707 	if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9708 		return -1;
9709 
9710 	if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9711 		return -1;
9712 
9713 	return 0;
9714 }
9715 
9716 
9717 /* ------------------------------------------------------------------------ */
9718 /* Function:   ipf_fini_all                                                 */
9719 /* Returns:    0 = success, -1 = failure                                    */
9720 /* Parameters: softc(I) - pointer to soft context main structure            */
9721 /*                                                                          */
9722 /* Work through all of the subsystems inside IPFilter and call the fini     */
9723 /* function for each in an order that won't lead to a crash :)              */
9724 /* ------------------------------------------------------------------------ */
9725 int
ipf_fini_all(softc)9726 ipf_fini_all(softc)
9727 	ipf_main_softc_t *softc;
9728 {
9729 
9730 	ipf_token_flush(softc);
9731 
9732 	if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9733 		return -1;
9734 
9735 	if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9736 		return -1;
9737 
9738 	if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9739 		return -1;
9740 
9741 	if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9742 		return -1;
9743 
9744 	if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9745 		return -1;
9746 
9747 	if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9748 		return -1;
9749 
9750 	if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9751 		return -1;
9752 
9753 #ifdef IPFILTER_LOG
9754 	if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9755 		return -1;
9756 #endif
9757 
9758 	if (ipf_main_soft_fini(softc) == -1)
9759 		return -1;
9760 
9761 	return 0;
9762 }
9763 
9764 
9765 /* ------------------------------------------------------------------------ */
9766 /* Function:    ipf_rule_expire                                             */
9767 /* Returns:     Nil                                                         */
9768 /* Parameters:  softc(I) - pointer to soft context main structure           */
9769 /*                                                                          */
9770 /* At present this function exists just to support temporary addition of    */
9771 /* firewall rules. Both inactive and active lists are scanned for items to  */
9772 /* purge, as by rights, the expiration is computed as soon as the rule is   */
9773 /* loaded in.                                                               */
9774 /* ------------------------------------------------------------------------ */
9775 void
ipf_rule_expire(softc)9776 ipf_rule_expire(softc)
9777 	ipf_main_softc_t *softc;
9778 {
9779 	frentry_t *fr;
9780 
9781 	if ((softc->ipf_rule_explist[0] == NULL) &&
9782 	    (softc->ipf_rule_explist[1] == NULL))
9783 		return;
9784 
9785 	WRITE_ENTER(&softc->ipf_mutex);
9786 
9787 	while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9788 		/*
9789 		 * Because the list is kept sorted on insertion, the fist
9790 		 * one that dies in the future means no more work to do.
9791 		 */
9792 		if (fr->fr_die > softc->ipf_ticks)
9793 			break;
9794 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9795 	}
9796 
9797 	while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9798 		/*
9799 		 * Because the list is kept sorted on insertion, the fist
9800 		 * one that dies in the future means no more work to do.
9801 		 */
9802 		if (fr->fr_die > softc->ipf_ticks)
9803 			break;
9804 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9805 	}
9806 
9807 	RWLOCK_EXIT(&softc->ipf_mutex);
9808 }
9809 
9810 
9811 static int ipf_ht_node_cmp __P((struct host_node_s *, struct host_node_s *));
9812 static void ipf_ht_node_make_key __P((host_track_t *, host_node_t *, int,
9813 				      i6addr_t *));
9814 
9815 host_node_t RBI_ZERO(ipf_rb);
9816 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9817 
9818 
9819 /* ------------------------------------------------------------------------ */
9820 /* Function:    ipf_ht_node_cmp                                             */
9821 /* Returns:     int   - 0 == nodes are the same, ..                         */
9822 /* Parameters:  k1(I) - pointer to first key to compare                     */
9823 /*              k2(I) - pointer to second key to compare                    */
9824 /*                                                                          */
9825 /* The "key" for the node is a combination of two fields: the address       */
9826 /* family and the address itself.                                           */
9827 /*                                                                          */
9828 /* Because we're not actually interpreting the address data, it isn't       */
9829 /* necessary to convert them to/from network/host byte order. The mask is   */
9830 /* just used to remove bits that aren't significant - it doesn't matter     */
9831 /* where they are, as long as they're always in the same place.             */
9832 /*                                                                          */
9833 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because    */
9834 /* this is where individual ones will differ the most - but not true for    */
9835 /* for /48's, etc.                                                          */
9836 /* ------------------------------------------------------------------------ */
9837 static int
9838 ipf_ht_node_cmp(k1, k2)
9839 	struct host_node_s *k1, *k2;
9840 {
9841 	int i;
9842 
9843 	i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9844 	if (i != 0)
9845 		return i;
9846 
9847 	if (k1->hn_addr.adf_family == AF_INET)
9848 		return (k2->hn_addr.adf_addr.in4.s_addr -
9849 			k1->hn_addr.adf_addr.in4.s_addr);
9850 
9851 	i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9852 	if (i != 0)
9853 		return i;
9854 	i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9855 	if (i != 0)
9856 		return i;
9857 	i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9858 	if (i != 0)
9859 		return i;
9860 	i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9861 	return i;
9862 }
9863 
9864 
9865 /* ------------------------------------------------------------------------ */
9866 /* Function:    ipf_ht_node_make_key                                        */
9867 /* Returns:     Nil                                                         */
9868 /* parameters:  htp(I)    - pointer to address tracking structure           */
9869 /*              key(I)    - where to store masked address for lookup        */
9870 /*              family(I) - protocol family of address                      */
9871 /*              addr(I)   - pointer to network address                      */
9872 /*                                                                          */
9873 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9874 /* copy the address passed in into the key structure whilst masking out the */
9875 /* bits that we don't want.                                                 */
9876 /*                                                                          */
9877 /* Because the parser will set ht_netmask to 128 if there is no protocol    */
9878 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we  */
9879 /* have to be wary of that and not allow 32-128 to happen.                  */
9880 /* ------------------------------------------------------------------------ */
9881 static void
ipf_ht_node_make_key(htp,key,family,addr)9882 ipf_ht_node_make_key(htp, key, family, addr)
9883 	host_track_t *htp;
9884 	host_node_t *key;
9885 	int family;
9886 	i6addr_t *addr;
9887 {
9888 	key->hn_addr.adf_family = family;
9889 	if (family == AF_INET) {
9890 		u_32_t mask;
9891 		int bits;
9892 
9893 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9894 		bits = htp->ht_netmask;
9895 		if (bits >= 32) {
9896 			mask = 0xffffffff;
9897 		} else {
9898 			mask = htonl(0xffffffff << (32 - bits));
9899 		}
9900 		key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9901 #ifdef USE_INET6
9902 	} else {
9903 		int bits = htp->ht_netmask;
9904 
9905 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9906 		if (bits > 96) {
9907 			key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9908 					     htonl(0xffffffff << (128 - bits));
9909 			key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9910 			key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9911 			key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9912 		} else if (bits > 64) {
9913 			key->hn_addr.adf_addr.i6[3] = 0;
9914 			key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9915 					     htonl(0xffffffff << (96 - bits));
9916 			key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9917 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9918 		} else if (bits > 32) {
9919 			key->hn_addr.adf_addr.i6[3] = 0;
9920 			key->hn_addr.adf_addr.i6[2] = 0;
9921 			key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9922 					     htonl(0xffffffff << (64 - bits));
9923 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9924 		} else {
9925 			key->hn_addr.adf_addr.i6[3] = 0;
9926 			key->hn_addr.adf_addr.i6[2] = 0;
9927 			key->hn_addr.adf_addr.i6[1] = 0;
9928 			key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9929 					     htonl(0xffffffff << (32 - bits));
9930 		}
9931 #endif
9932 	}
9933 }
9934 
9935 
9936 /* ------------------------------------------------------------------------ */
9937 /* Function:    ipf_ht_node_add                                             */
9938 /* Returns:     int       - 0 == success,  -1 == failure                    */
9939 /* Parameters:  softc(I)  - pointer to soft context main structure          */
9940 /*              htp(I)    - pointer to address tracking structure           */
9941 /*              family(I) - protocol family of address                      */
9942 /*              addr(I)   - pointer to network address                      */
9943 /*                                                                          */
9944 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9945 /*       ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9946 /*                                                                          */
9947 /* After preparing the key with the address information to find, look in    */
9948 /* the red-black tree to see if the address is known. A successful call to  */
9949 /* this function can mean one of two things: a new node was added to the    */
9950 /* tree or a matching node exists and we're able to bump up its activity.   */
9951 /* ------------------------------------------------------------------------ */
9952 int
ipf_ht_node_add(softc,htp,family,addr)9953 ipf_ht_node_add(softc, htp, family, addr)
9954 	ipf_main_softc_t *softc;
9955 	host_track_t *htp;
9956 	int family;
9957 	i6addr_t *addr;
9958 {
9959 	host_node_t *h;
9960 	host_node_t k;
9961 
9962 	ipf_ht_node_make_key(htp, &k, family, addr);
9963 
9964 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9965 	if (h == NULL) {
9966 		if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9967 			return -1;
9968 		KMALLOC(h, host_node_t *);
9969 		if (h == NULL) {
9970 			DT(ipf_rb_no_mem);
9971 			LBUMP(ipf_rb_no_mem);
9972 			return -1;
9973 		}
9974 
9975 		/*
9976 		 * If there was a macro to initialise the RB node then that
9977 		 * would get used here, but there isn't...
9978 		 */
9979 		bzero((char *)h, sizeof(*h));
9980 		h->hn_addr = k.hn_addr;
9981 		h->hn_addr.adf_family = k.hn_addr.adf_family;
9982 		RBI_INSERT(ipf_rb, &htp->ht_root, h);
9983 		htp->ht_cur_nodes++;
9984 	} else {
9985 		if ((htp->ht_max_per_node != 0) &&
9986 		    (h->hn_active >= htp->ht_max_per_node)) {
9987 			DT(ipf_rb_node_max);
9988 			LBUMP(ipf_rb_node_max);
9989 			return -1;
9990 		}
9991 	}
9992 
9993 	h->hn_active++;
9994 
9995 	return 0;
9996 }
9997 
9998 
9999 /* ------------------------------------------------------------------------ */
10000 /* Function:    ipf_ht_node_del                                             */
10001 /* Returns:     int       - 0 == success,  -1 == failure                    */
10002 /* parameters:  htp(I)    - pointer to address tracking structure           */
10003 /*              family(I) - protocol family of address                      */
10004 /*              addr(I)   - pointer to network address                      */
10005 /*                                                                          */
10006 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
10007 /*       ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
10008 /*                                                                          */
10009 /* Try and find the address passed in amongst the leavese on this tree to   */
10010 /* be friend. If found then drop the active account for that node drops by  */
10011 /* one. If that count reaches 0, it is time to free it all up.              */
10012 /* ------------------------------------------------------------------------ */
10013 int
ipf_ht_node_del(htp,family,addr)10014 ipf_ht_node_del(htp, family, addr)
10015 	host_track_t *htp;
10016 	int family;
10017 	i6addr_t *addr;
10018 {
10019 	host_node_t *h;
10020 	host_node_t k;
10021 
10022 	ipf_ht_node_make_key(htp, &k, family, addr);
10023 
10024 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
10025 	if (h == NULL) {
10026 		return -1;
10027 	} else {
10028 		h->hn_active--;
10029 		if (h->hn_active == 0) {
10030 			(void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
10031 			htp->ht_cur_nodes--;
10032 			KFREE(h);
10033 		}
10034 	}
10035 
10036 	return 0;
10037 }
10038 
10039 
10040 /* ------------------------------------------------------------------------ */
10041 /* Function:    ipf_rb_ht_init                                              */
10042 /* Returns:     Nil                                                         */
10043 /* Parameters:  head(I) - pointer to host tracking structure                */
10044 /*                                                                          */
10045 /* Initialise the host tracking structure to be ready for use above.        */
10046 /* ------------------------------------------------------------------------ */
10047 void
ipf_rb_ht_init(head)10048 ipf_rb_ht_init(head)
10049 	host_track_t *head;
10050 {
10051 	RBI_INIT(ipf_rb, &head->ht_root);
10052 }
10053 
10054 
10055 /* ------------------------------------------------------------------------ */
10056 /* Function:    ipf_rb_ht_freenode                                          */
10057 /* Returns:     Nil                                                         */
10058 /* Parameters:  head(I) - pointer to host tracking structure                */
10059 /*              arg(I)  - additional argument from walk caller              */
10060 /*                                                                          */
10061 /* Free an actual host_node_t structure.                                    */
10062 /* ------------------------------------------------------------------------ */
10063 void
ipf_rb_ht_freenode(node,arg)10064 ipf_rb_ht_freenode(node, arg)
10065 	host_node_t *node;
10066 	void *arg;
10067 {
10068 	KFREE(node);
10069 }
10070 
10071 
10072 /* ------------------------------------------------------------------------ */
10073 /* Function:    ipf_rb_ht_flush                                             */
10074 /* Returns:     Nil                                                         */
10075 /* Parameters:  head(I) - pointer to host tracking structure                */
10076 /*                                                                          */
10077 /* Remove all of the nodes in the tree tracking hosts by calling a walker   */
10078 /* and free'ing each one.                                                   */
10079 /* ------------------------------------------------------------------------ */
10080 void
ipf_rb_ht_flush(head)10081 ipf_rb_ht_flush(head)
10082 	host_track_t *head;
10083 {
10084 	RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
10085 }
10086 
10087 
10088 /* ------------------------------------------------------------------------ */
10089 /* Function:    ipf_slowtimer                                               */
10090 /* Returns:     Nil                                                         */
10091 /* Parameters:  ptr(I) - pointer to main ipf soft context structure         */
10092 /*                                                                          */
10093 /* Slowly expire held state for fragments.  Timeouts are set * in           */
10094 /* expectation of this being called twice per second.                       */
10095 /* ------------------------------------------------------------------------ */
10096 void
ipf_slowtimer(softc)10097 ipf_slowtimer(softc)
10098 	ipf_main_softc_t *softc;
10099 {
10100 
10101 	ipf_token_expire(softc);
10102 	ipf_frag_expire(softc);
10103 	ipf_state_expire(softc);
10104 	ipf_nat_expire(softc);
10105 	ipf_auth_expire(softc);
10106 	ipf_lookup_expire(softc);
10107 	ipf_rule_expire(softc);
10108 	ipf_sync_expire(softc);
10109 	softc->ipf_ticks++;
10110 }
10111 
10112 
10113 /* ------------------------------------------------------------------------ */
10114 /* Function:    ipf_inet_mask_add                                           */
10115 /* Returns:     Nil                                                         */
10116 /* Parameters:  bits(I) - pointer to nat context information                */
10117 /*              mtab(I) - pointer to mask hash table structure              */
10118 /*                                                                          */
10119 /* When called, bits represents the mask of a new NAT rule that has just    */
10120 /* been added. This function inserts a bitmask into the array of masks to   */
10121 /* search when searching for a matching NAT rule for a packet.              */
10122 /* Prevention of duplicate masks is achieved by checking the use count for  */
10123 /* a given netmask.                                                         */
10124 /* ------------------------------------------------------------------------ */
10125 void
ipf_inet_mask_add(bits,mtab)10126 ipf_inet_mask_add(bits, mtab)
10127 	int bits;
10128 	ipf_v4_masktab_t *mtab;
10129 {
10130 	u_32_t mask;
10131 	int i, j;
10132 
10133 	mtab->imt4_masks[bits]++;
10134 	if (mtab->imt4_masks[bits] > 1)
10135 		return;
10136 
10137 	if (bits == 0)
10138 		mask = 0;
10139 	else
10140 		mask = 0xffffffff << (32 - bits);
10141 
10142 	for (i = 0; i < 33; i++) {
10143 		if (ntohl(mtab->imt4_active[i]) < mask) {
10144 			for (j = 32; j > i; j--)
10145 				mtab->imt4_active[j] = mtab->imt4_active[j - 1];
10146 			mtab->imt4_active[i] = htonl(mask);
10147 			break;
10148 		}
10149 	}
10150 	mtab->imt4_max++;
10151 }
10152 
10153 
10154 /* ------------------------------------------------------------------------ */
10155 /* Function:    ipf_inet_mask_del                                           */
10156 /* Returns:     Nil                                                         */
10157 /* Parameters:  bits(I) - number of bits set in the netmask                 */
10158 /*              mtab(I) - pointer to mask hash table structure              */
10159 /*                                                                          */
10160 /* Remove the 32bit bitmask represented by "bits" from the collection of    */
10161 /* netmasks stored inside of mtab.                                          */
10162 /* ------------------------------------------------------------------------ */
10163 void
ipf_inet_mask_del(bits,mtab)10164 ipf_inet_mask_del(bits, mtab)
10165 	int bits;
10166 	ipf_v4_masktab_t *mtab;
10167 {
10168 	u_32_t mask;
10169 	int i, j;
10170 
10171 	mtab->imt4_masks[bits]--;
10172 	if (mtab->imt4_masks[bits] > 0)
10173 		return;
10174 
10175 	mask = htonl(0xffffffff << (32 - bits));
10176 	for (i = 0; i < 33; i++) {
10177 		if (mtab->imt4_active[i] == mask) {
10178 			for (j = i + 1; j < 33; j++)
10179 				mtab->imt4_active[j - 1] = mtab->imt4_active[j];
10180 			break;
10181 		}
10182 	}
10183 	mtab->imt4_max--;
10184 	ASSERT(mtab->imt4_max >= 0);
10185 }
10186 
10187 
10188 #ifdef USE_INET6
10189 /* ------------------------------------------------------------------------ */
10190 /* Function:    ipf_inet6_mask_add                                          */
10191 /* Returns:     Nil                                                         */
10192 /* Parameters:  bits(I) - number of bits set in mask                        */
10193 /*              mask(I) - pointer to mask to add                            */
10194 /*              mtab(I) - pointer to mask hash table structure              */
10195 /*                                                                          */
10196 /* When called, bitcount represents the mask of a IPv6 NAT map rule that    */
10197 /* has just been added. This function inserts a bitmask into the array of   */
10198 /* masks to search when searching for a matching NAT rule for a packet.     */
10199 /* Prevention of duplicate masks is achieved by checking the use count for  */
10200 /* a given netmask.                                                         */
10201 /* ------------------------------------------------------------------------ */
10202 void
ipf_inet6_mask_add(bits,mask,mtab)10203 ipf_inet6_mask_add(bits, mask, mtab)
10204 	int bits;
10205 	i6addr_t *mask;
10206 	ipf_v6_masktab_t *mtab;
10207 {
10208 	i6addr_t zero;
10209 	int i, j;
10210 
10211 	mtab->imt6_masks[bits]++;
10212 	if (mtab->imt6_masks[bits] > 1)
10213 		return;
10214 
10215 	if (bits == 0) {
10216 		mask = &zero;
10217 		zero.i6[0] = 0;
10218 		zero.i6[1] = 0;
10219 		zero.i6[2] = 0;
10220 		zero.i6[3] = 0;
10221 	}
10222 
10223 	for (i = 0; i < 129; i++) {
10224 		if (IP6_LT(&mtab->imt6_active[i], mask)) {
10225 			for (j = 128; j > i; j--)
10226 				mtab->imt6_active[j] = mtab->imt6_active[j - 1];
10227 			mtab->imt6_active[i] = *mask;
10228 			break;
10229 		}
10230 	}
10231 	mtab->imt6_max++;
10232 }
10233 
10234 
10235 /* ------------------------------------------------------------------------ */
10236 /* Function:    ipf_inet6_mask_del                                          */
10237 /* Returns:     Nil                                                         */
10238 /* Parameters:  bits(I) - number of bits set in mask                        */
10239 /*              mask(I) - pointer to mask to remove                         */
10240 /*              mtab(I) - pointer to mask hash table structure              */
10241 /*                                                                          */
10242 /* Remove the 128bit bitmask represented by "bits" from the collection of   */
10243 /* netmasks stored inside of mtab.                                          */
10244 /* ------------------------------------------------------------------------ */
10245 void
ipf_inet6_mask_del(bits,mask,mtab)10246 ipf_inet6_mask_del(bits, mask, mtab)
10247 	int bits;
10248 	i6addr_t *mask;
10249 	ipf_v6_masktab_t *mtab;
10250 {
10251 	i6addr_t zero;
10252 	int i, j;
10253 
10254 	mtab->imt6_masks[bits]--;
10255 	if (mtab->imt6_masks[bits] > 0)
10256 		return;
10257 
10258 	if (bits == 0)
10259 		mask = &zero;
10260 	zero.i6[0] = 0;
10261 	zero.i6[1] = 0;
10262 	zero.i6[2] = 0;
10263 	zero.i6[3] = 0;
10264 
10265 	for (i = 0; i < 129; i++) {
10266 		if (IP6_EQ(&mtab->imt6_active[i], mask)) {
10267 			for (j = i + 1; j < 129; j++) {
10268 				mtab->imt6_active[j - 1] = mtab->imt6_active[j];
10269 				if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
10270 					break;
10271 			}
10272 			break;
10273 		}
10274 	}
10275 	mtab->imt6_max--;
10276 	ASSERT(mtab->imt6_max >= 0);
10277 }
10278 
10279 #ifdef	_KERNEL
10280 static u_int
ipf_pcksum6(fin,ip6,off,len)10281 ipf_pcksum6(fin, ip6, off, len)
10282 	fr_info_t *fin;
10283 	ip6_t *ip6;
10284 	u_int32_t off;
10285 	u_int32_t len;
10286 {
10287 	struct mbuf *m;
10288 	int sum;
10289 
10290 	m = fin->fin_m;
10291 	if (m->m_len < sizeof(struct ip6_hdr)) {
10292 		return 0xffff;
10293 	}
10294 
10295 	sum = in6_cksum(m, ip6->ip6_nxt, off, len);
10296 	return(sum);
10297 }
10298 #else
10299 static u_int
ipf_pcksum6(fin,ip6,off,len)10300 ipf_pcksum6(fin, ip6, off, len)
10301 	fr_info_t *fin;
10302 	ip6_t *ip6;
10303 	u_int32_t off;
10304 	u_int32_t len;
10305 {
10306 	u_short *sp;
10307 	u_int sum;
10308 
10309 	sp = (u_short *)&ip6->ip6_src;
10310 	sum = *sp++;   /* ip6_src */
10311 	sum += *sp++;
10312 	sum += *sp++;
10313 	sum += *sp++;
10314 	sum += *sp++;
10315 	sum += *sp++;
10316 	sum += *sp++;
10317 	sum += *sp++;
10318 	sum += *sp++;   /* ip6_dst */
10319 	sum += *sp++;
10320 	sum += *sp++;
10321 	sum += *sp++;
10322 	sum += *sp++;
10323 	sum += *sp++;
10324 	sum += *sp++;
10325 	sum += *sp++;
10326 	return(ipf_pcksum(fin, off, sum));
10327 }
10328 #endif
10329 #endif
10330