1 /* $FreeBSD$ */
2
3 /*
4 * Copyright (C) 2012 by Darren Reed.
5 *
6 * See the IPFILTER.LICENCE file for details on licencing.
7 *
8 * Copyright 2008 Sun Microsystems.
9 *
10 * $Id$
11 *
12 */
13 #if defined(KERNEL) || defined(_KERNEL)
14 # undef KERNEL
15 # undef _KERNEL
16 # define KERNEL 1
17 # define _KERNEL 1
18 #endif
19 #include <sys/errno.h>
20 #include <sys/types.h>
21 #include <sys/param.h>
22 #include <sys/time.h>
23 #if defined(_KERNEL) && defined(__FreeBSD_version)
24 # if !defined(IPFILTER_LKM)
25 # include "opt_inet6.h"
26 # endif
27 # include <sys/filio.h>
28 #else
29 # include <sys/ioctl.h>
30 #endif
31 #if defined(__SVR4) || defined(sun) /* SOLARIS */
32 # include <sys/filio.h>
33 #endif
34 # include <sys/fcntl.h>
35 #if defined(_KERNEL)
36 # include <sys/systm.h>
37 # include <sys/file.h>
38 #else
39 # include <stdio.h>
40 # include <string.h>
41 # include <stdlib.h>
42 # include <stddef.h>
43 # include <sys/file.h>
44 # define _KERNEL
45 # include <sys/uio.h>
46 # undef _KERNEL
47 #endif
48 #if !defined(__SVR4)
49 # include <sys/mbuf.h>
50 #else
51 # include <sys/byteorder.h>
52 # if (SOLARIS2 < 5) && defined(sun)
53 # include <sys/dditypes.h>
54 # endif
55 #endif
56 # include <sys/protosw.h>
57 #include <sys/socket.h>
58 #include <net/if.h>
59 #ifdef sun
60 # include <net/af.h>
61 #endif
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 # include <netinet/udp.h>
67 # include <netinet/ip_icmp.h>
68 #include "netinet/ip_compat.h"
69 #ifdef USE_INET6
70 # include <netinet/icmp6.h>
71 # if !SOLARIS && defined(_KERNEL)
72 # include <netinet6/in6_var.h>
73 # endif
74 #endif
75 #include "netinet/ip_fil.h"
76 #include "netinet/ip_nat.h"
77 #include "netinet/ip_frag.h"
78 #include "netinet/ip_state.h"
79 #include "netinet/ip_proxy.h"
80 #include "netinet/ip_auth.h"
81 #ifdef IPFILTER_SCAN
82 # include "netinet/ip_scan.h"
83 #endif
84 #include "netinet/ip_sync.h"
85 #include "netinet/ip_lookup.h"
86 #include "netinet/ip_pool.h"
87 #include "netinet/ip_htable.h"
88 #ifdef IPFILTER_COMPILED
89 # include "netinet/ip_rules.h"
90 #endif
91 #if defined(IPFILTER_BPF) && defined(_KERNEL)
92 # include <net/bpf.h>
93 #endif
94 #if defined(__FreeBSD_version)
95 # include <sys/malloc.h>
96 #endif
97 #include "netinet/ipl.h"
98
99 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
100 # include <sys/callout.h>
101 extern struct callout ipf_slowtimer_ch;
102 #endif
103 /* END OF INCLUDES */
104
105 #if !defined(lint)
106 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed";
107 static const char rcsid[] = "@(#)$FreeBSD$";
108 /* static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.125 2007/10/10 09:27:20 darrenr Exp $"; */
109 #endif
110
111 #ifndef _KERNEL
112 # include "ipf.h"
113 # include "ipt.h"
114 extern int opts;
115 extern int blockreason;
116 #endif /* _KERNEL */
117
118 #define LBUMP(x) softc->x++
119 #define LBUMPD(x, y) do { softc->x.y++; DT(y); } while (0)
120
121 static INLINE int ipf_check_ipf __P((fr_info_t *, frentry_t *, int));
122 static u_32_t ipf_checkcipso __P((fr_info_t *, u_char *, int));
123 static u_32_t ipf_checkripso __P((u_char *));
124 static u_32_t ipf_decaps __P((fr_info_t *, u_32_t, int));
125 #ifdef IPFILTER_LOG
126 static frentry_t *ipf_dolog __P((fr_info_t *, u_32_t *));
127 #endif
128 static int ipf_flushlist __P((ipf_main_softc_t *, int *,
129 frentry_t **));
130 static int ipf_flush_groups __P((ipf_main_softc_t *, frgroup_t **,
131 int));
132 static ipfunc_t ipf_findfunc __P((ipfunc_t));
133 static void *ipf_findlookup __P((ipf_main_softc_t *, int,
134 frentry_t *,
135 i6addr_t *, i6addr_t *));
136 static frentry_t *ipf_firewall __P((fr_info_t *, u_32_t *));
137 static int ipf_fr_matcharray __P((fr_info_t *, int *));
138 static int ipf_frruleiter __P((ipf_main_softc_t *, void *, int,
139 void *));
140 static void ipf_funcfini __P((ipf_main_softc_t *, frentry_t *));
141 static int ipf_funcinit __P((ipf_main_softc_t *, frentry_t *));
142 static int ipf_geniter __P((ipf_main_softc_t *, ipftoken_t *,
143 ipfgeniter_t *));
144 static void ipf_getstat __P((ipf_main_softc_t *,
145 struct friostat *, int));
146 static int ipf_group_flush __P((ipf_main_softc_t *, frgroup_t *));
147 static void ipf_group_free __P((frgroup_t *));
148 static int ipf_grpmapfini __P((struct ipf_main_softc_s *,
149 frentry_t *));
150 static int ipf_grpmapinit __P((struct ipf_main_softc_s *,
151 frentry_t *));
152 static frentry_t *ipf_nextrule __P((ipf_main_softc_t *, int, int,
153 frentry_t *, int));
154 static int ipf_portcheck __P((frpcmp_t *, u_32_t));
155 static INLINE int ipf_pr_ah __P((fr_info_t *));
156 static INLINE void ipf_pr_esp __P((fr_info_t *));
157 static INLINE void ipf_pr_gre __P((fr_info_t *));
158 static INLINE void ipf_pr_udp __P((fr_info_t *));
159 static INLINE void ipf_pr_tcp __P((fr_info_t *));
160 static INLINE void ipf_pr_icmp __P((fr_info_t *));
161 static INLINE void ipf_pr_ipv4hdr __P((fr_info_t *));
162 static INLINE void ipf_pr_short __P((fr_info_t *, int));
163 static INLINE int ipf_pr_tcpcommon __P((fr_info_t *));
164 static INLINE int ipf_pr_udpcommon __P((fr_info_t *));
165 static void ipf_rule_delete __P((ipf_main_softc_t *, frentry_t *f,
166 int, int));
167 static void ipf_rule_expire_insert __P((ipf_main_softc_t *,
168 frentry_t *, int));
169 static int ipf_synclist __P((ipf_main_softc_t *, frentry_t *,
170 void *));
171 static void ipf_token_flush __P((ipf_main_softc_t *));
172 static void ipf_token_unlink __P((ipf_main_softc_t *,
173 ipftoken_t *));
174 static ipftuneable_t *ipf_tune_findbyname __P((ipftuneable_t *,
175 const char *));
176 static ipftuneable_t *ipf_tune_findbycookie __P((ipftuneable_t **, void *,
177 void **));
178 static int ipf_updateipid __P((fr_info_t *));
179 static int ipf_settimeout __P((struct ipf_main_softc_s *,
180 struct ipftuneable *,
181 ipftuneval_t *));
182 #ifdef USE_INET6
183 static u_int ipf_pcksum6 __P((fr_info_t *, ip6_t *,
184 u_int32_t, u_int32_t));
185 #endif
186 #if !defined(_KERNEL) || SOLARIS
187 static int ppsratecheck(struct timeval *, int *, int);
188 #endif
189
190
191 /*
192 * bit values for identifying presence of individual IP options
193 * All of these tables should be ordered by increasing key value on the left
194 * hand side to allow for binary searching of the array and include a trailer
195 * with a 0 for the bitmask for linear searches to easily find the end with.
196 */
197 static const struct optlist ipopts[] = {
198 { IPOPT_NOP, 0x000001 },
199 { IPOPT_RR, 0x000002 },
200 { IPOPT_ZSU, 0x000004 },
201 { IPOPT_MTUP, 0x000008 },
202 { IPOPT_MTUR, 0x000010 },
203 { IPOPT_ENCODE, 0x000020 },
204 { IPOPT_TS, 0x000040 },
205 { IPOPT_TR, 0x000080 },
206 { IPOPT_SECURITY, 0x000100 },
207 { IPOPT_LSRR, 0x000200 },
208 { IPOPT_E_SEC, 0x000400 },
209 { IPOPT_CIPSO, 0x000800 },
210 { IPOPT_SATID, 0x001000 },
211 { IPOPT_SSRR, 0x002000 },
212 { IPOPT_ADDEXT, 0x004000 },
213 { IPOPT_VISA, 0x008000 },
214 { IPOPT_IMITD, 0x010000 },
215 { IPOPT_EIP, 0x020000 },
216 { IPOPT_FINN, 0x040000 },
217 { 0, 0x000000 }
218 };
219
220 #ifdef USE_INET6
221 static const struct optlist ip6exthdr[] = {
222 { IPPROTO_HOPOPTS, 0x000001 },
223 { IPPROTO_IPV6, 0x000002 },
224 { IPPROTO_ROUTING, 0x000004 },
225 { IPPROTO_FRAGMENT, 0x000008 },
226 { IPPROTO_ESP, 0x000010 },
227 { IPPROTO_AH, 0x000020 },
228 { IPPROTO_NONE, 0x000040 },
229 { IPPROTO_DSTOPTS, 0x000080 },
230 { IPPROTO_MOBILITY, 0x000100 },
231 { 0, 0 }
232 };
233 #endif
234
235 /*
236 * bit values for identifying presence of individual IP security options
237 */
238 static const struct optlist secopt[] = {
239 { IPSO_CLASS_RES4, 0x01 },
240 { IPSO_CLASS_TOPS, 0x02 },
241 { IPSO_CLASS_SECR, 0x04 },
242 { IPSO_CLASS_RES3, 0x08 },
243 { IPSO_CLASS_CONF, 0x10 },
244 { IPSO_CLASS_UNCL, 0x20 },
245 { IPSO_CLASS_RES2, 0x40 },
246 { IPSO_CLASS_RES1, 0x80 }
247 };
248
249 char ipfilter_version[] = IPL_VERSION;
250
251 int ipf_features = 0
252 #ifdef IPFILTER_LKM
253 | IPF_FEAT_LKM
254 #endif
255 #ifdef IPFILTER_LOG
256 | IPF_FEAT_LOG
257 #endif
258 | IPF_FEAT_LOOKUP
259 #ifdef IPFILTER_BPF
260 | IPF_FEAT_BPF
261 #endif
262 #ifdef IPFILTER_COMPILED
263 | IPF_FEAT_COMPILED
264 #endif
265 #ifdef IPFILTER_CKSUM
266 | IPF_FEAT_CKSUM
267 #endif
268 | IPF_FEAT_SYNC
269 #ifdef IPFILTER_SCAN
270 | IPF_FEAT_SCAN
271 #endif
272 #ifdef USE_INET6
273 | IPF_FEAT_IPV6
274 #endif
275 ;
276
277
278 /*
279 * Table of functions available for use with call rules.
280 */
281 static ipfunc_resolve_t ipf_availfuncs[] = {
282 { "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
283 { "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
284 { "", NULL, NULL, NULL }
285 };
286
287 static ipftuneable_t ipf_main_tuneables[] = {
288 { { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
289 "ipf_flags", 0, 0xffffffff,
290 stsizeof(ipf_main_softc_t, ipf_flags),
291 0, NULL, NULL },
292 { { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
293 "active", 0, 0,
294 stsizeof(ipf_main_softc_t, ipf_active),
295 IPFT_RDONLY, NULL, NULL },
296 { { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
297 "control_forwarding", 0, 1,
298 stsizeof(ipf_main_softc_t, ipf_control_forwarding),
299 0, NULL, NULL },
300 { { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
301 "update_ipid", 0, 1,
302 stsizeof(ipf_main_softc_t, ipf_update_ipid),
303 0, NULL, NULL },
304 { { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
305 "chksrc", 0, 1,
306 stsizeof(ipf_main_softc_t, ipf_chksrc),
307 0, NULL, NULL },
308 { { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
309 "min_ttl", 0, 1,
310 stsizeof(ipf_main_softc_t, ipf_minttl),
311 0, NULL, NULL },
312 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
313 "icmp_minfragmtu", 0, 1,
314 stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
315 0, NULL, NULL },
316 { { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
317 "default_pass", 0, 0xffffffff,
318 stsizeof(ipf_main_softc_t, ipf_pass),
319 0, NULL, NULL },
320 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
321 "tcp_idle_timeout", 1, 0x7fffffff,
322 stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
323 0, NULL, ipf_settimeout },
324 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
325 "tcp_close_wait", 1, 0x7fffffff,
326 stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
327 0, NULL, ipf_settimeout },
328 { { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
329 "tcp_last_ack", 1, 0x7fffffff,
330 stsizeof(ipf_main_softc_t, ipf_tcplastack),
331 0, NULL, ipf_settimeout },
332 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
333 "tcp_timeout", 1, 0x7fffffff,
334 stsizeof(ipf_main_softc_t, ipf_tcptimeout),
335 0, NULL, ipf_settimeout },
336 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
337 "tcp_syn_sent", 1, 0x7fffffff,
338 stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
339 0, NULL, ipf_settimeout },
340 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
341 "tcp_syn_received", 1, 0x7fffffff,
342 stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
343 0, NULL, ipf_settimeout },
344 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
345 "tcp_closed", 1, 0x7fffffff,
346 stsizeof(ipf_main_softc_t, ipf_tcpclosed),
347 0, NULL, ipf_settimeout },
348 { { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
349 "tcp_half_closed", 1, 0x7fffffff,
350 stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
351 0, NULL, ipf_settimeout },
352 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
353 "tcp_time_wait", 1, 0x7fffffff,
354 stsizeof(ipf_main_softc_t, ipf_tcptimewait),
355 0, NULL, ipf_settimeout },
356 { { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
357 "udp_timeout", 1, 0x7fffffff,
358 stsizeof(ipf_main_softc_t, ipf_udptimeout),
359 0, NULL, ipf_settimeout },
360 { { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
361 "udp_ack_timeout", 1, 0x7fffffff,
362 stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
363 0, NULL, ipf_settimeout },
364 { { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
365 "icmp_timeout", 1, 0x7fffffff,
366 stsizeof(ipf_main_softc_t, ipf_icmptimeout),
367 0, NULL, ipf_settimeout },
368 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
369 "icmp_ack_timeout", 1, 0x7fffffff,
370 stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
371 0, NULL, ipf_settimeout },
372 { { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
373 "ip_timeout", 1, 0x7fffffff,
374 stsizeof(ipf_main_softc_t, ipf_iptimeout),
375 0, NULL, ipf_settimeout },
376 #if defined(INSTANCES) && defined(_KERNEL)
377 { { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
378 "intercept_loopback", 0, 1,
379 stsizeof(ipf_main_softc_t, ipf_get_loopback),
380 0, NULL, ipf_set_loopback },
381 #endif
382 { { 0 },
383 NULL, 0, 0,
384 0,
385 0, NULL, NULL }
386 };
387
388
389 /*
390 * The next section of code is a collection of small routines that set
391 * fields in the fr_info_t structure passed based on properties of the
392 * current packet. There are different routines for the same protocol
393 * for each of IPv4 and IPv6. Adding a new protocol, for which there
394 * will "special" inspection for setup, is now more easily done by adding
395 * a new routine and expanding the ipf_pr_ipinit*() function rather than by
396 * adding more code to a growing switch statement.
397 */
398 #ifdef USE_INET6
399 static INLINE int ipf_pr_ah6 __P((fr_info_t *));
400 static INLINE void ipf_pr_esp6 __P((fr_info_t *));
401 static INLINE void ipf_pr_gre6 __P((fr_info_t *));
402 static INLINE void ipf_pr_udp6 __P((fr_info_t *));
403 static INLINE void ipf_pr_tcp6 __P((fr_info_t *));
404 static INLINE void ipf_pr_icmp6 __P((fr_info_t *));
405 static INLINE void ipf_pr_ipv6hdr __P((fr_info_t *));
406 static INLINE void ipf_pr_short6 __P((fr_info_t *, int));
407 static INLINE int ipf_pr_hopopts6 __P((fr_info_t *));
408 static INLINE int ipf_pr_mobility6 __P((fr_info_t *));
409 static INLINE int ipf_pr_routing6 __P((fr_info_t *));
410 static INLINE int ipf_pr_dstopts6 __P((fr_info_t *));
411 static INLINE int ipf_pr_fragment6 __P((fr_info_t *));
412 static INLINE struct ip6_ext *ipf_pr_ipv6exthdr __P((fr_info_t *, int, int));
413
414
415 /* ------------------------------------------------------------------------ */
416 /* Function: ipf_pr_short6 */
417 /* Returns: void */
418 /* Parameters: fin(I) - pointer to packet information */
419 /* xmin(I) - minimum header size */
420 /* */
421 /* IPv6 Only */
422 /* This is function enforces the 'is a packet too short to be legit' rule */
423 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */
424 /* for ipf_pr_short() for more details. */
425 /* ------------------------------------------------------------------------ */
426 static INLINE void
ipf_pr_short6(fin,xmin)427 ipf_pr_short6(fin, xmin)
428 fr_info_t *fin;
429 int xmin;
430 {
431
432 if (fin->fin_dlen < xmin)
433 fin->fin_flx |= FI_SHORT;
434 }
435
436
437 /* ------------------------------------------------------------------------ */
438 /* Function: ipf_pr_ipv6hdr */
439 /* Returns: void */
440 /* Parameters: fin(I) - pointer to packet information */
441 /* */
442 /* IPv6 Only */
443 /* Copy values from the IPv6 header into the fr_info_t struct and call the */
444 /* per-protocol analyzer if it exists. In validating the packet, a protocol*/
445 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
446 /* of that possibility arising. */
447 /* ------------------------------------------------------------------------ */
448 static INLINE void
ipf_pr_ipv6hdr(fin)449 ipf_pr_ipv6hdr(fin)
450 fr_info_t *fin;
451 {
452 ip6_t *ip6 = (ip6_t *)fin->fin_ip;
453 int p, go = 1, i, hdrcount;
454 fr_ip_t *fi = &fin->fin_fi;
455
456 fin->fin_off = 0;
457
458 fi->fi_tos = 0;
459 fi->fi_optmsk = 0;
460 fi->fi_secmsk = 0;
461 fi->fi_auth = 0;
462
463 p = ip6->ip6_nxt;
464 fin->fin_crc = p;
465 fi->fi_ttl = ip6->ip6_hlim;
466 fi->fi_src.in6 = ip6->ip6_src;
467 fin->fin_crc += fi->fi_src.i6[0];
468 fin->fin_crc += fi->fi_src.i6[1];
469 fin->fin_crc += fi->fi_src.i6[2];
470 fin->fin_crc += fi->fi_src.i6[3];
471 fi->fi_dst.in6 = ip6->ip6_dst;
472 fin->fin_crc += fi->fi_dst.i6[0];
473 fin->fin_crc += fi->fi_dst.i6[1];
474 fin->fin_crc += fi->fi_dst.i6[2];
475 fin->fin_crc += fi->fi_dst.i6[3];
476 fin->fin_id = 0;
477 if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
478 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
479
480 hdrcount = 0;
481 while (go && !(fin->fin_flx & FI_SHORT)) {
482 switch (p)
483 {
484 case IPPROTO_UDP :
485 ipf_pr_udp6(fin);
486 go = 0;
487 break;
488
489 case IPPROTO_TCP :
490 ipf_pr_tcp6(fin);
491 go = 0;
492 break;
493
494 case IPPROTO_ICMPV6 :
495 ipf_pr_icmp6(fin);
496 go = 0;
497 break;
498
499 case IPPROTO_GRE :
500 ipf_pr_gre6(fin);
501 go = 0;
502 break;
503
504 case IPPROTO_HOPOPTS :
505 p = ipf_pr_hopopts6(fin);
506 break;
507
508 case IPPROTO_MOBILITY :
509 p = ipf_pr_mobility6(fin);
510 break;
511
512 case IPPROTO_DSTOPTS :
513 p = ipf_pr_dstopts6(fin);
514 break;
515
516 case IPPROTO_ROUTING :
517 p = ipf_pr_routing6(fin);
518 break;
519
520 case IPPROTO_AH :
521 p = ipf_pr_ah6(fin);
522 break;
523
524 case IPPROTO_ESP :
525 ipf_pr_esp6(fin);
526 go = 0;
527 break;
528
529 case IPPROTO_IPV6 :
530 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
531 if (ip6exthdr[i].ol_val == p) {
532 fin->fin_flx |= ip6exthdr[i].ol_bit;
533 break;
534 }
535 go = 0;
536 break;
537
538 case IPPROTO_NONE :
539 go = 0;
540 break;
541
542 case IPPROTO_FRAGMENT :
543 p = ipf_pr_fragment6(fin);
544 /*
545 * Given that the only fragments we want to let through
546 * (where fin_off != 0) are those where the non-first
547 * fragments only have data, we can safely stop looking
548 * at headers if this is a non-leading fragment.
549 */
550 if (fin->fin_off != 0)
551 go = 0;
552 break;
553
554 default :
555 go = 0;
556 break;
557 }
558 hdrcount++;
559
560 /*
561 * It is important to note that at this point, for the
562 * extension headers (go != 0), the entire header may not have
563 * been pulled up when the code gets to this point. This is
564 * only done for "go != 0" because the other header handlers
565 * will all pullup their complete header. The other indicator
566 * of an incomplete packet is that this was just an extension
567 * header.
568 */
569 if ((go != 0) && (p != IPPROTO_NONE) &&
570 (ipf_pr_pullup(fin, 0) == -1)) {
571 p = IPPROTO_NONE;
572 break;
573 }
574 }
575
576 /*
577 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
578 * and destroy whatever packet was here. The caller of this function
579 * expects us to return if there is a problem with ipf_pullup.
580 */
581 if (fin->fin_m == NULL) {
582 ipf_main_softc_t *softc = fin->fin_main_soft;
583
584 LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
585 return;
586 }
587
588 fi->fi_p = p;
589
590 /*
591 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
592 * "go != 0" imples the above loop hasn't arrived at a layer 4 header.
593 */
594 if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
595 ipf_main_softc_t *softc = fin->fin_main_soft;
596
597 fin->fin_flx |= FI_BAD;
598 DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go);
599 LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
600 LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
601 }
602 }
603
604
605 /* ------------------------------------------------------------------------ */
606 /* Function: ipf_pr_ipv6exthdr */
607 /* Returns: struct ip6_ext * - pointer to the start of the next header */
608 /* or NULL if there is a prolblem. */
609 /* Parameters: fin(I) - pointer to packet information */
610 /* multiple(I) - flag indicating yes/no if multiple occurances */
611 /* of this extension header are allowed. */
612 /* proto(I) - protocol number for this extension header */
613 /* */
614 /* IPv6 Only */
615 /* This function embodies a number of common checks that all IPv6 extension */
616 /* headers must be subjected to. For example, making sure the packet is */
617 /* big enough for it to be in, checking if it is repeated and setting a */
618 /* flag to indicate its presence. */
619 /* ------------------------------------------------------------------------ */
620 static INLINE struct ip6_ext *
ipf_pr_ipv6exthdr(fin,multiple,proto)621 ipf_pr_ipv6exthdr(fin, multiple, proto)
622 fr_info_t *fin;
623 int multiple, proto;
624 {
625 ipf_main_softc_t *softc = fin->fin_main_soft;
626 struct ip6_ext *hdr;
627 u_short shift;
628 int i;
629
630 fin->fin_flx |= FI_V6EXTHDR;
631
632 /* 8 is default length of extension hdr */
633 if ((fin->fin_dlen - 8) < 0) {
634 fin->fin_flx |= FI_SHORT;
635 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
636 return NULL;
637 }
638
639 if (ipf_pr_pullup(fin, 8) == -1) {
640 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
641 return NULL;
642 }
643
644 hdr = fin->fin_dp;
645 switch (proto)
646 {
647 case IPPROTO_FRAGMENT :
648 shift = 8;
649 break;
650 default :
651 shift = 8 + (hdr->ip6e_len << 3);
652 break;
653 }
654
655 if (shift > fin->fin_dlen) { /* Nasty extension header length? */
656 fin->fin_flx |= FI_BAD;
657 DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen);
658 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
659 return NULL;
660 }
661
662 fin->fin_dp = (char *)fin->fin_dp + shift;
663 fin->fin_dlen -= shift;
664
665 /*
666 * If we have seen a fragment header, do not set any flags to indicate
667 * the presence of this extension header as it has no impact on the
668 * end result until after it has been defragmented.
669 */
670 if (fin->fin_flx & FI_FRAG)
671 return hdr;
672
673 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
674 if (ip6exthdr[i].ol_val == proto) {
675 /*
676 * Most IPv6 extension headers are only allowed once.
677 */
678 if ((multiple == 0) &&
679 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) {
680 fin->fin_flx |= FI_BAD;
681 DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit));
682 } else
683 fin->fin_optmsk |= ip6exthdr[i].ol_bit;
684 break;
685 }
686
687 return hdr;
688 }
689
690
691 /* ------------------------------------------------------------------------ */
692 /* Function: ipf_pr_hopopts6 */
693 /* Returns: int - value of the next header or IPPROTO_NONE if error */
694 /* Parameters: fin(I) - pointer to packet information */
695 /* */
696 /* IPv6 Only */
697 /* This is function checks pending hop by hop options extension header */
698 /* ------------------------------------------------------------------------ */
699 static INLINE int
ipf_pr_hopopts6(fin)700 ipf_pr_hopopts6(fin)
701 fr_info_t *fin;
702 {
703 struct ip6_ext *hdr;
704
705 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
706 if (hdr == NULL)
707 return IPPROTO_NONE;
708 return hdr->ip6e_nxt;
709 }
710
711
712 /* ------------------------------------------------------------------------ */
713 /* Function: ipf_pr_mobility6 */
714 /* Returns: int - value of the next header or IPPROTO_NONE if error */
715 /* Parameters: fin(I) - pointer to packet information */
716 /* */
717 /* IPv6 Only */
718 /* This is function checks the IPv6 mobility extension header */
719 /* ------------------------------------------------------------------------ */
720 static INLINE int
ipf_pr_mobility6(fin)721 ipf_pr_mobility6(fin)
722 fr_info_t *fin;
723 {
724 struct ip6_ext *hdr;
725
726 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
727 if (hdr == NULL)
728 return IPPROTO_NONE;
729 return hdr->ip6e_nxt;
730 }
731
732
733 /* ------------------------------------------------------------------------ */
734 /* Function: ipf_pr_routing6 */
735 /* Returns: int - value of the next header or IPPROTO_NONE if error */
736 /* Parameters: fin(I) - pointer to packet information */
737 /* */
738 /* IPv6 Only */
739 /* This is function checks pending routing extension header */
740 /* ------------------------------------------------------------------------ */
741 static INLINE int
ipf_pr_routing6(fin)742 ipf_pr_routing6(fin)
743 fr_info_t *fin;
744 {
745 struct ip6_routing *hdr;
746
747 hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
748 if (hdr == NULL)
749 return IPPROTO_NONE;
750
751 switch (hdr->ip6r_type)
752 {
753 case 0 :
754 /*
755 * Nasty extension header length?
756 */
757 if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
758 (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
759 ipf_main_softc_t *softc = fin->fin_main_soft;
760
761 fin->fin_flx |= FI_BAD;
762 DT1(ipf_fi_bad_routing6, fr_info_t *, fin);
763 LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
764 return IPPROTO_NONE;
765 }
766 break;
767
768 default :
769 break;
770 }
771
772 return hdr->ip6r_nxt;
773 }
774
775
776 /* ------------------------------------------------------------------------ */
777 /* Function: ipf_pr_fragment6 */
778 /* Returns: int - value of the next header or IPPROTO_NONE if error */
779 /* Parameters: fin(I) - pointer to packet information */
780 /* */
781 /* IPv6 Only */
782 /* Examine the IPv6 fragment header and extract fragment offset information.*/
783 /* */
784 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
785 /* so than in IPv4. There are 5 cases of fragments with IPv6 that all */
786 /* packets with a fragment header can fit into. They are as follows: */
787 /* */
788 /* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */
789 /* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */
790 /* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */
791 /* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */
792 /* 5. [IPV6][0-n EH][FH][data] */
793 /* */
794 /* IPV6 = IPv6 header, FH = Fragment Header, */
795 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
796 /* */
797 /* Packets that match 1, 2, 3 will be dropped as the only reasonable */
798 /* scenario in which they happen is in extreme circumstances that are most */
799 /* likely to be an indication of an attack rather than normal traffic. */
800 /* A type 3 packet may be sent by an attacked after a type 4 packet. There */
801 /* are two rules that can be used to guard against type 3 packets: L4 */
802 /* headers must always be in a packet that has the offset field set to 0 */
803 /* and no packet is allowed to overlay that where offset = 0. */
804 /* ------------------------------------------------------------------------ */
805 static INLINE int
ipf_pr_fragment6(fin)806 ipf_pr_fragment6(fin)
807 fr_info_t *fin;
808 {
809 ipf_main_softc_t *softc = fin->fin_main_soft;
810 struct ip6_frag *frag;
811
812 fin->fin_flx |= FI_FRAG;
813
814 frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
815 if (frag == NULL) {
816 LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
817 return IPPROTO_NONE;
818 }
819
820 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
821 /*
822 * Any fragment that isn't the last fragment must have its
823 * length as a multiple of 8.
824 */
825 if ((fin->fin_plen & 7) != 0) {
826 fin->fin_flx |= FI_BAD;
827 DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7));
828 }
829 }
830
831 fin->fin_fraghdr = frag;
832 fin->fin_id = frag->ip6f_ident;
833 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
834 if (fin->fin_off != 0)
835 fin->fin_flx |= FI_FRAGBODY;
836
837 /*
838 * Jumbograms aren't handled, so the max. length is 64k
839 */
840 if ((fin->fin_off << 3) + fin->fin_dlen > 65535) {
841 fin->fin_flx |= FI_BAD;
842 DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen));
843 }
844
845 /*
846 * We don't know where the transport layer header (or whatever is next
847 * is), as it could be behind destination options (amongst others) so
848 * return the fragment header as the type of packet this is. Note that
849 * this effectively disables the fragment cache for > 1 protocol at a
850 * time.
851 */
852 return frag->ip6f_nxt;
853 }
854
855
856 /* ------------------------------------------------------------------------ */
857 /* Function: ipf_pr_dstopts6 */
858 /* Returns: int - value of the next header or IPPROTO_NONE if error */
859 /* Parameters: fin(I) - pointer to packet information */
860 /* */
861 /* IPv6 Only */
862 /* This is function checks pending destination options extension header */
863 /* ------------------------------------------------------------------------ */
864 static INLINE int
ipf_pr_dstopts6(fin)865 ipf_pr_dstopts6(fin)
866 fr_info_t *fin;
867 {
868 ipf_main_softc_t *softc = fin->fin_main_soft;
869 struct ip6_ext *hdr;
870
871 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
872 if (hdr == NULL) {
873 LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
874 return IPPROTO_NONE;
875 }
876 return hdr->ip6e_nxt;
877 }
878
879
880 /* ------------------------------------------------------------------------ */
881 /* Function: ipf_pr_icmp6 */
882 /* Returns: void */
883 /* Parameters: fin(I) - pointer to packet information */
884 /* */
885 /* IPv6 Only */
886 /* This routine is mainly concerned with determining the minimum valid size */
887 /* for an ICMPv6 packet. */
888 /* ------------------------------------------------------------------------ */
889 static INLINE void
ipf_pr_icmp6(fin)890 ipf_pr_icmp6(fin)
891 fr_info_t *fin;
892 {
893 int minicmpsz = sizeof(struct icmp6_hdr);
894 struct icmp6_hdr *icmp6;
895
896 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
897 ipf_main_softc_t *softc = fin->fin_main_soft;
898
899 LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
900 return;
901 }
902
903 if (fin->fin_dlen > 1) {
904 ip6_t *ip6;
905
906 icmp6 = fin->fin_dp;
907
908 fin->fin_data[0] = *(u_short *)icmp6;
909
910 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
911 fin->fin_flx |= FI_ICMPQUERY;
912
913 switch (icmp6->icmp6_type)
914 {
915 case ICMP6_ECHO_REPLY :
916 case ICMP6_ECHO_REQUEST :
917 if (fin->fin_dlen >= 6)
918 fin->fin_data[1] = icmp6->icmp6_id;
919 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
920 break;
921
922 case ICMP6_DST_UNREACH :
923 case ICMP6_PACKET_TOO_BIG :
924 case ICMP6_TIME_EXCEEDED :
925 case ICMP6_PARAM_PROB :
926 fin->fin_flx |= FI_ICMPERR;
927 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
928 if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
929 break;
930
931 if (M_LEN(fin->fin_m) < fin->fin_plen) {
932 if (ipf_coalesce(fin) != 1)
933 return;
934 }
935
936 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
937 return;
938
939 /*
940 * If the destination of this packet doesn't match the
941 * source of the original packet then this packet is
942 * not correct.
943 */
944 icmp6 = fin->fin_dp;
945 ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
946 if (IP6_NEQ(&fin->fin_fi.fi_dst,
947 (i6addr_t *)&ip6->ip6_src)) {
948 fin->fin_flx |= FI_BAD;
949 DT1(ipf_fi_bad_icmp6, fr_info_t *, fin);
950 }
951 break;
952 default :
953 break;
954 }
955 }
956
957 ipf_pr_short6(fin, minicmpsz);
958 if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
959 u_char p = fin->fin_p;
960
961 fin->fin_p = IPPROTO_ICMPV6;
962 ipf_checkv6sum(fin);
963 fin->fin_p = p;
964 }
965 }
966
967
968 /* ------------------------------------------------------------------------ */
969 /* Function: ipf_pr_udp6 */
970 /* Returns: void */
971 /* Parameters: fin(I) - pointer to packet information */
972 /* */
973 /* IPv6 Only */
974 /* Analyse the packet for IPv6/UDP properties. */
975 /* Is not expected to be called for fragmented packets. */
976 /* ------------------------------------------------------------------------ */
977 static INLINE void
ipf_pr_udp6(fin)978 ipf_pr_udp6(fin)
979 fr_info_t *fin;
980 {
981
982 if (ipf_pr_udpcommon(fin) == 0) {
983 u_char p = fin->fin_p;
984
985 fin->fin_p = IPPROTO_UDP;
986 ipf_checkv6sum(fin);
987 fin->fin_p = p;
988 }
989 }
990
991
992 /* ------------------------------------------------------------------------ */
993 /* Function: ipf_pr_tcp6 */
994 /* Returns: void */
995 /* Parameters: fin(I) - pointer to packet information */
996 /* */
997 /* IPv6 Only */
998 /* Analyse the packet for IPv6/TCP properties. */
999 /* Is not expected to be called for fragmented packets. */
1000 /* ------------------------------------------------------------------------ */
1001 static INLINE void
ipf_pr_tcp6(fin)1002 ipf_pr_tcp6(fin)
1003 fr_info_t *fin;
1004 {
1005
1006 if (ipf_pr_tcpcommon(fin) == 0) {
1007 u_char p = fin->fin_p;
1008
1009 fin->fin_p = IPPROTO_TCP;
1010 ipf_checkv6sum(fin);
1011 fin->fin_p = p;
1012 }
1013 }
1014
1015
1016 /* ------------------------------------------------------------------------ */
1017 /* Function: ipf_pr_esp6 */
1018 /* Returns: void */
1019 /* Parameters: fin(I) - pointer to packet information */
1020 /* */
1021 /* IPv6 Only */
1022 /* Analyse the packet for ESP properties. */
1023 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1024 /* even though the newer ESP packets must also have a sequence number that */
1025 /* is 32bits as well, it is not possible(?) to determine the version from a */
1026 /* simple packet header. */
1027 /* ------------------------------------------------------------------------ */
1028 static INLINE void
ipf_pr_esp6(fin)1029 ipf_pr_esp6(fin)
1030 fr_info_t *fin;
1031 {
1032
1033 if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1034 ipf_main_softc_t *softc = fin->fin_main_soft;
1035
1036 LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1037 return;
1038 }
1039 }
1040
1041
1042 /* ------------------------------------------------------------------------ */
1043 /* Function: ipf_pr_ah6 */
1044 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1045 /* Parameters: fin(I) - pointer to packet information */
1046 /* */
1047 /* IPv6 Only */
1048 /* Analyse the packet for AH properties. */
1049 /* The minimum length is taken to be the combination of all fields in the */
1050 /* header being present and no authentication data (null algorithm used.) */
1051 /* ------------------------------------------------------------------------ */
1052 static INLINE int
ipf_pr_ah6(fin)1053 ipf_pr_ah6(fin)
1054 fr_info_t *fin;
1055 {
1056 authhdr_t *ah;
1057
1058 fin->fin_flx |= FI_AH;
1059
1060 ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1061 if (ah == NULL) {
1062 ipf_main_softc_t *softc = fin->fin_main_soft;
1063
1064 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1065 return IPPROTO_NONE;
1066 }
1067
1068 ipf_pr_short6(fin, sizeof(*ah));
1069
1070 /*
1071 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1072 * enough data to satisfy ah_next (the very first one.)
1073 */
1074 return ah->ah_next;
1075 }
1076
1077
1078 /* ------------------------------------------------------------------------ */
1079 /* Function: ipf_pr_gre6 */
1080 /* Returns: void */
1081 /* Parameters: fin(I) - pointer to packet information */
1082 /* */
1083 /* Analyse the packet for GRE properties. */
1084 /* ------------------------------------------------------------------------ */
1085 static INLINE void
ipf_pr_gre6(fin)1086 ipf_pr_gre6(fin)
1087 fr_info_t *fin;
1088 {
1089 grehdr_t *gre;
1090
1091 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1092 ipf_main_softc_t *softc = fin->fin_main_soft;
1093
1094 LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1095 return;
1096 }
1097
1098 gre = fin->fin_dp;
1099 if (GRE_REV(gre->gr_flags) == 1)
1100 fin->fin_data[0] = gre->gr_call;
1101 }
1102 #endif /* USE_INET6 */
1103
1104
1105 /* ------------------------------------------------------------------------ */
1106 /* Function: ipf_pr_pullup */
1107 /* Returns: int - 0 == pullup succeeded, -1 == failure */
1108 /* Parameters: fin(I) - pointer to packet information */
1109 /* plen(I) - length (excluding L3 header) to pullup */
1110 /* */
1111 /* Short inline function to cut down on code duplication to perform a call */
1112 /* to ipf_pullup to ensure there is the required amount of data, */
1113 /* consecutively in the packet buffer. */
1114 /* */
1115 /* This function pulls up 'extra' data at the location of fin_dp. fin_dp */
1116 /* points to the first byte after the complete layer 3 header, which will */
1117 /* include all of the known extension headers for IPv6 or options for IPv4. */
1118 /* */
1119 /* Since fr_pullup() expects the total length of bytes to be pulled up, it */
1120 /* is necessary to add those we can already assume to be pulled up (fin_dp */
1121 /* - fin_ip) to what is passed through. */
1122 /* ------------------------------------------------------------------------ */
1123 int
ipf_pr_pullup(fin,plen)1124 ipf_pr_pullup(fin, plen)
1125 fr_info_t *fin;
1126 int plen;
1127 {
1128 ipf_main_softc_t *softc = fin->fin_main_soft;
1129
1130 if (fin->fin_m != NULL) {
1131 if (fin->fin_dp != NULL)
1132 plen += (char *)fin->fin_dp -
1133 ((char *)fin->fin_ip + fin->fin_hlen);
1134 plen += fin->fin_hlen;
1135 if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1136 #if defined(_KERNEL)
1137 if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1138 DT(ipf_pullup_fail);
1139 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1140 return -1;
1141 }
1142 LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1143 #else
1144 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1145 /*
1146 * Fake ipf_pullup failing
1147 */
1148 fin->fin_reason = FRB_PULLUP;
1149 *fin->fin_mp = NULL;
1150 fin->fin_m = NULL;
1151 fin->fin_ip = NULL;
1152 return -1;
1153 #endif
1154 }
1155 }
1156 return 0;
1157 }
1158
1159
1160 /* ------------------------------------------------------------------------ */
1161 /* Function: ipf_pr_short */
1162 /* Returns: void */
1163 /* Parameters: fin(I) - pointer to packet information */
1164 /* xmin(I) - minimum header size */
1165 /* */
1166 /* Check if a packet is "short" as defined by xmin. The rule we are */
1167 /* applying here is that the packet must not be fragmented within the layer */
1168 /* 4 header. That is, it must not be a fragment that has its offset set to */
1169 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */
1170 /* entire layer 4 header must be present (min). */
1171 /* ------------------------------------------------------------------------ */
1172 static INLINE void
ipf_pr_short(fin,xmin)1173 ipf_pr_short(fin, xmin)
1174 fr_info_t *fin;
1175 int xmin;
1176 {
1177
1178 if (fin->fin_off == 0) {
1179 if (fin->fin_dlen < xmin)
1180 fin->fin_flx |= FI_SHORT;
1181 } else if (fin->fin_off < xmin) {
1182 fin->fin_flx |= FI_SHORT;
1183 }
1184 }
1185
1186
1187 /* ------------------------------------------------------------------------ */
1188 /* Function: ipf_pr_icmp */
1189 /* Returns: void */
1190 /* Parameters: fin(I) - pointer to packet information */
1191 /* */
1192 /* IPv4 Only */
1193 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */
1194 /* except extrememly bad packets, both type and code will be present. */
1195 /* The expected minimum size of an ICMP packet is very much dependent on */
1196 /* the type of it. */
1197 /* */
1198 /* XXX - other ICMP sanity checks? */
1199 /* ------------------------------------------------------------------------ */
1200 static INLINE void
ipf_pr_icmp(fin)1201 ipf_pr_icmp(fin)
1202 fr_info_t *fin;
1203 {
1204 ipf_main_softc_t *softc = fin->fin_main_soft;
1205 int minicmpsz = sizeof(struct icmp);
1206 icmphdr_t *icmp;
1207 ip_t *oip;
1208
1209 ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1210
1211 if (fin->fin_off != 0) {
1212 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1213 return;
1214 }
1215
1216 if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1217 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1218 return;
1219 }
1220
1221 icmp = fin->fin_dp;
1222
1223 fin->fin_data[0] = *(u_short *)icmp;
1224 fin->fin_data[1] = icmp->icmp_id;
1225
1226 switch (icmp->icmp_type)
1227 {
1228 case ICMP_ECHOREPLY :
1229 case ICMP_ECHO :
1230 /* Router discovery messaes - RFC 1256 */
1231 case ICMP_ROUTERADVERT :
1232 case ICMP_ROUTERSOLICIT :
1233 fin->fin_flx |= FI_ICMPQUERY;
1234 minicmpsz = ICMP_MINLEN;
1235 break;
1236 /*
1237 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1238 * 3 * timestamp(3 * 4)
1239 */
1240 case ICMP_TSTAMP :
1241 case ICMP_TSTAMPREPLY :
1242 fin->fin_flx |= FI_ICMPQUERY;
1243 minicmpsz = 20;
1244 break;
1245 /*
1246 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1247 * mask(4)
1248 */
1249 case ICMP_IREQ :
1250 case ICMP_IREQREPLY :
1251 case ICMP_MASKREQ :
1252 case ICMP_MASKREPLY :
1253 fin->fin_flx |= FI_ICMPQUERY;
1254 minicmpsz = 12;
1255 break;
1256 /*
1257 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1258 */
1259 case ICMP_UNREACH :
1260 #ifdef icmp_nextmtu
1261 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1262 if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) {
1263 fin->fin_flx |= FI_BAD;
1264 DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu);
1265 }
1266 }
1267 #endif
1268 /* FALLTHROUGH */
1269 case ICMP_SOURCEQUENCH :
1270 case ICMP_REDIRECT :
1271 case ICMP_TIMXCEED :
1272 case ICMP_PARAMPROB :
1273 fin->fin_flx |= FI_ICMPERR;
1274 if (ipf_coalesce(fin) != 1) {
1275 LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1276 return;
1277 }
1278
1279 /*
1280 * ICMP error packets should not be generated for IP
1281 * packets that are a fragment that isn't the first
1282 * fragment.
1283 */
1284 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1285 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) {
1286 fin->fin_flx |= FI_BAD;
1287 DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK));
1288 }
1289
1290 /*
1291 * If the destination of this packet doesn't match the
1292 * source of the original packet then this packet is
1293 * not correct.
1294 */
1295 if (oip->ip_src.s_addr != fin->fin_daddr) {
1296 fin->fin_flx |= FI_BAD;
1297 DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin);
1298 }
1299 break;
1300 default :
1301 break;
1302 }
1303
1304 ipf_pr_short(fin, minicmpsz);
1305
1306 ipf_checkv4sum(fin);
1307 }
1308
1309
1310 /* ------------------------------------------------------------------------ */
1311 /* Function: ipf_pr_tcpcommon */
1312 /* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */
1313 /* Parameters: fin(I) - pointer to packet information */
1314 /* */
1315 /* TCP header sanity checking. Look for bad combinations of TCP flags, */
1316 /* and make some checks with how they interact with other fields. */
1317 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */
1318 /* valid and mark the packet as bad if not. */
1319 /* ------------------------------------------------------------------------ */
1320 static INLINE int
ipf_pr_tcpcommon(fin)1321 ipf_pr_tcpcommon(fin)
1322 fr_info_t *fin;
1323 {
1324 ipf_main_softc_t *softc = fin->fin_main_soft;
1325 int flags, tlen;
1326 tcphdr_t *tcp;
1327
1328 fin->fin_flx |= FI_TCPUDP;
1329 if (fin->fin_off != 0) {
1330 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1331 return 0;
1332 }
1333
1334 if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1335 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1336 return -1;
1337 }
1338
1339 tcp = fin->fin_dp;
1340 if (fin->fin_dlen > 3) {
1341 fin->fin_sport = ntohs(tcp->th_sport);
1342 fin->fin_dport = ntohs(tcp->th_dport);
1343 }
1344
1345 if ((fin->fin_flx & FI_SHORT) != 0) {
1346 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1347 return 1;
1348 }
1349
1350 /*
1351 * Use of the TCP data offset *must* result in a value that is at
1352 * least the same size as the TCP header.
1353 */
1354 tlen = TCP_OFF(tcp) << 2;
1355 if (tlen < sizeof(tcphdr_t)) {
1356 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1357 fin->fin_flx |= FI_BAD;
1358 DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t));
1359 return 1;
1360 }
1361
1362 flags = tcp->th_flags;
1363 fin->fin_tcpf = tcp->th_flags;
1364
1365 /*
1366 * If the urgent flag is set, then the urgent pointer must
1367 * also be set and vice versa. Good TCP packets do not have
1368 * just one of these set.
1369 */
1370 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1371 fin->fin_flx |= FI_BAD;
1372 DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1373 #if 0
1374 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1375 /*
1376 * Ignore this case (#if 0) as it shows up in "real"
1377 * traffic with bogus values in the urgent pointer field.
1378 */
1379 fin->fin_flx |= FI_BAD;
1380 DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1381 #endif
1382 } else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1383 ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1384 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1385 fin->fin_flx |= FI_BAD;
1386 DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin);
1387 #if 1
1388 } else if (((flags & TH_SYN) != 0) &&
1389 ((flags & (TH_URG|TH_PUSH)) != 0)) {
1390 /*
1391 * SYN with URG and PUSH set is not for normal TCP but it is
1392 * possible(?) with T/TCP...but who uses T/TCP?
1393 */
1394 fin->fin_flx |= FI_BAD;
1395 DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin);
1396 #endif
1397 } else if (!(flags & TH_ACK)) {
1398 /*
1399 * If the ack bit isn't set, then either the SYN or
1400 * RST bit must be set. If the SYN bit is set, then
1401 * we expect the ACK field to be 0. If the ACK is
1402 * not set and if URG, PSH or FIN are set, consdier
1403 * that to indicate a bad TCP packet.
1404 */
1405 if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1406 /*
1407 * Cisco PIX sets the ACK field to a random value.
1408 * In light of this, do not set FI_BAD until a patch
1409 * is available from Cisco to ensure that
1410 * interoperability between existing systems is
1411 * achieved.
1412 */
1413 /*fin->fin_flx |= FI_BAD*/;
1414 /*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/
1415 } else if (!(flags & (TH_RST|TH_SYN))) {
1416 fin->fin_flx |= FI_BAD;
1417 DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin);
1418 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1419 fin->fin_flx |= FI_BAD;
1420 DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin);
1421 }
1422 }
1423 if (fin->fin_flx & FI_BAD) {
1424 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1425 return 1;
1426 }
1427
1428 /*
1429 * At this point, it's not exactly clear what is to be gained by
1430 * marking up which TCP options are and are not present. The one we
1431 * are most interested in is the TCP window scale. This is only in
1432 * a SYN packet [RFC1323] so we don't need this here...?
1433 * Now if we were to analyse the header for passive fingerprinting,
1434 * then that might add some weight to adding this...
1435 */
1436 if (tlen == sizeof(tcphdr_t)) {
1437 return 0;
1438 }
1439
1440 if (ipf_pr_pullup(fin, tlen) == -1) {
1441 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1442 return -1;
1443 }
1444
1445 #if 0
1446 tcp = fin->fin_dp;
1447 ip = fin->fin_ip;
1448 s = (u_char *)(tcp + 1);
1449 off = IP_HL(ip) << 2;
1450 # ifdef _KERNEL
1451 if (fin->fin_mp != NULL) {
1452 mb_t *m = *fin->fin_mp;
1453
1454 if (off + tlen > M_LEN(m))
1455 return;
1456 }
1457 # endif
1458 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1459 opt = *s;
1460 if (opt == '\0')
1461 break;
1462 else if (opt == TCPOPT_NOP)
1463 ol = 1;
1464 else {
1465 if (tlen < 2)
1466 break;
1467 ol = (int)*(s + 1);
1468 if (ol < 2 || ol > tlen)
1469 break;
1470 }
1471
1472 for (i = 9, mv = 4; mv >= 0; ) {
1473 op = ipopts + i;
1474 if (opt == (u_char)op->ol_val) {
1475 optmsk |= op->ol_bit;
1476 break;
1477 }
1478 }
1479 tlen -= ol;
1480 s += ol;
1481 }
1482 #endif /* 0 */
1483
1484 return 0;
1485 }
1486
1487
1488
1489 /* ------------------------------------------------------------------------ */
1490 /* Function: ipf_pr_udpcommon */
1491 /* Returns: int - 0 = header ok, 1 = bad packet */
1492 /* Parameters: fin(I) - pointer to packet information */
1493 /* */
1494 /* Extract the UDP source and destination ports, if present. If compiled */
1495 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */
1496 /* ------------------------------------------------------------------------ */
1497 static INLINE int
ipf_pr_udpcommon(fin)1498 ipf_pr_udpcommon(fin)
1499 fr_info_t *fin;
1500 {
1501 udphdr_t *udp;
1502
1503 fin->fin_flx |= FI_TCPUDP;
1504
1505 if (!fin->fin_off && (fin->fin_dlen > 3)) {
1506 if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1507 ipf_main_softc_t *softc = fin->fin_main_soft;
1508
1509 fin->fin_flx |= FI_SHORT;
1510 LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1511 return 1;
1512 }
1513
1514 udp = fin->fin_dp;
1515
1516 fin->fin_sport = ntohs(udp->uh_sport);
1517 fin->fin_dport = ntohs(udp->uh_dport);
1518 }
1519
1520 return 0;
1521 }
1522
1523
1524 /* ------------------------------------------------------------------------ */
1525 /* Function: ipf_pr_tcp */
1526 /* Returns: void */
1527 /* Parameters: fin(I) - pointer to packet information */
1528 /* */
1529 /* IPv4 Only */
1530 /* Analyse the packet for IPv4/TCP properties. */
1531 /* ------------------------------------------------------------------------ */
1532 static INLINE void
ipf_pr_tcp(fin)1533 ipf_pr_tcp(fin)
1534 fr_info_t *fin;
1535 {
1536
1537 ipf_pr_short(fin, sizeof(tcphdr_t));
1538
1539 if (ipf_pr_tcpcommon(fin) == 0)
1540 ipf_checkv4sum(fin);
1541 }
1542
1543
1544 /* ------------------------------------------------------------------------ */
1545 /* Function: ipf_pr_udp */
1546 /* Returns: void */
1547 /* Parameters: fin(I) - pointer to packet information */
1548 /* */
1549 /* IPv4 Only */
1550 /* Analyse the packet for IPv4/UDP properties. */
1551 /* ------------------------------------------------------------------------ */
1552 static INLINE void
ipf_pr_udp(fin)1553 ipf_pr_udp(fin)
1554 fr_info_t *fin;
1555 {
1556
1557 ipf_pr_short(fin, sizeof(udphdr_t));
1558
1559 if (ipf_pr_udpcommon(fin) == 0)
1560 ipf_checkv4sum(fin);
1561 }
1562
1563
1564 /* ------------------------------------------------------------------------ */
1565 /* Function: ipf_pr_esp */
1566 /* Returns: void */
1567 /* Parameters: fin(I) - pointer to packet information */
1568 /* */
1569 /* Analyse the packet for ESP properties. */
1570 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1571 /* even though the newer ESP packets must also have a sequence number that */
1572 /* is 32bits as well, it is not possible(?) to determine the version from a */
1573 /* simple packet header. */
1574 /* ------------------------------------------------------------------------ */
1575 static INLINE void
ipf_pr_esp(fin)1576 ipf_pr_esp(fin)
1577 fr_info_t *fin;
1578 {
1579
1580 if (fin->fin_off == 0) {
1581 ipf_pr_short(fin, 8);
1582 if (ipf_pr_pullup(fin, 8) == -1) {
1583 ipf_main_softc_t *softc = fin->fin_main_soft;
1584
1585 LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1586 }
1587 }
1588 }
1589
1590
1591 /* ------------------------------------------------------------------------ */
1592 /* Function: ipf_pr_ah */
1593 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1594 /* Parameters: fin(I) - pointer to packet information */
1595 /* */
1596 /* Analyse the packet for AH properties. */
1597 /* The minimum length is taken to be the combination of all fields in the */
1598 /* header being present and no authentication data (null algorithm used.) */
1599 /* ------------------------------------------------------------------------ */
1600 static INLINE int
ipf_pr_ah(fin)1601 ipf_pr_ah(fin)
1602 fr_info_t *fin;
1603 {
1604 ipf_main_softc_t *softc = fin->fin_main_soft;
1605 authhdr_t *ah;
1606 int len;
1607
1608 fin->fin_flx |= FI_AH;
1609 ipf_pr_short(fin, sizeof(*ah));
1610
1611 if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1612 LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1613 return IPPROTO_NONE;
1614 }
1615
1616 if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1617 DT(fr_v4_ah_pullup_1);
1618 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1619 return IPPROTO_NONE;
1620 }
1621
1622 ah = (authhdr_t *)fin->fin_dp;
1623
1624 len = (ah->ah_plen + 2) << 2;
1625 ipf_pr_short(fin, len);
1626 if (ipf_pr_pullup(fin, len) == -1) {
1627 DT(fr_v4_ah_pullup_2);
1628 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1629 return IPPROTO_NONE;
1630 }
1631
1632 /*
1633 * Adjust fin_dp and fin_dlen for skipping over the authentication
1634 * header.
1635 */
1636 fin->fin_dp = (char *)fin->fin_dp + len;
1637 fin->fin_dlen -= len;
1638 return ah->ah_next;
1639 }
1640
1641
1642 /* ------------------------------------------------------------------------ */
1643 /* Function: ipf_pr_gre */
1644 /* Returns: void */
1645 /* Parameters: fin(I) - pointer to packet information */
1646 /* */
1647 /* Analyse the packet for GRE properties. */
1648 /* ------------------------------------------------------------------------ */
1649 static INLINE void
ipf_pr_gre(fin)1650 ipf_pr_gre(fin)
1651 fr_info_t *fin;
1652 {
1653 ipf_main_softc_t *softc = fin->fin_main_soft;
1654 grehdr_t *gre;
1655
1656 ipf_pr_short(fin, sizeof(grehdr_t));
1657
1658 if (fin->fin_off != 0) {
1659 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1660 return;
1661 }
1662
1663 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1664 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1665 return;
1666 }
1667
1668 gre = fin->fin_dp;
1669 if (GRE_REV(gre->gr_flags) == 1)
1670 fin->fin_data[0] = gre->gr_call;
1671 }
1672
1673
1674 /* ------------------------------------------------------------------------ */
1675 /* Function: ipf_pr_ipv4hdr */
1676 /* Returns: void */
1677 /* Parameters: fin(I) - pointer to packet information */
1678 /* */
1679 /* IPv4 Only */
1680 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */
1681 /* Check all options present and flag their presence if any exist. */
1682 /* ------------------------------------------------------------------------ */
1683 static INLINE void
ipf_pr_ipv4hdr(fin)1684 ipf_pr_ipv4hdr(fin)
1685 fr_info_t *fin;
1686 {
1687 u_short optmsk = 0, secmsk = 0, auth = 0;
1688 int hlen, ol, mv, p, i;
1689 const struct optlist *op;
1690 u_char *s, opt;
1691 u_short off;
1692 fr_ip_t *fi;
1693 ip_t *ip;
1694
1695 fi = &fin->fin_fi;
1696 hlen = fin->fin_hlen;
1697
1698 ip = fin->fin_ip;
1699 p = ip->ip_p;
1700 fi->fi_p = p;
1701 fin->fin_crc = p;
1702 fi->fi_tos = ip->ip_tos;
1703 fin->fin_id = ip->ip_id;
1704 off = ntohs(ip->ip_off);
1705
1706 /* Get both TTL and protocol */
1707 fi->fi_p = ip->ip_p;
1708 fi->fi_ttl = ip->ip_ttl;
1709
1710 /* Zero out bits not used in IPv6 address */
1711 fi->fi_src.i6[1] = 0;
1712 fi->fi_src.i6[2] = 0;
1713 fi->fi_src.i6[3] = 0;
1714 fi->fi_dst.i6[1] = 0;
1715 fi->fi_dst.i6[2] = 0;
1716 fi->fi_dst.i6[3] = 0;
1717
1718 fi->fi_saddr = ip->ip_src.s_addr;
1719 fin->fin_crc += fi->fi_saddr;
1720 fi->fi_daddr = ip->ip_dst.s_addr;
1721 fin->fin_crc += fi->fi_daddr;
1722 if (IN_CLASSD(ntohl(fi->fi_daddr)))
1723 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1724
1725 /*
1726 * set packet attribute flags based on the offset and
1727 * calculate the byte offset that it represents.
1728 */
1729 off &= IP_MF|IP_OFFMASK;
1730 if (off != 0) {
1731 int morefrag = off & IP_MF;
1732
1733 fi->fi_flx |= FI_FRAG;
1734 off &= IP_OFFMASK;
1735 if (off == 1 && p == IPPROTO_TCP) {
1736 fin->fin_flx |= FI_SHORT; /* RFC 3128 */
1737 DT1(ipf_fi_tcp_frag_off_1, fr_info_t *, fin);
1738 }
1739 if (off != 0) {
1740 fin->fin_flx |= FI_FRAGBODY;
1741 off <<= 3;
1742 if ((off + fin->fin_dlen > 65535) ||
1743 (fin->fin_dlen == 0) ||
1744 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1745 /*
1746 * The length of the packet, starting at its
1747 * offset cannot exceed 65535 (0xffff) as the
1748 * length of an IP packet is only 16 bits.
1749 *
1750 * Any fragment that isn't the last fragment
1751 * must have a length greater than 0 and it
1752 * must be an even multiple of 8.
1753 */
1754 fi->fi_flx |= FI_BAD;
1755 DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin);
1756 }
1757 }
1758 }
1759 fin->fin_off = off;
1760
1761 /*
1762 * Call per-protocol setup and checking
1763 */
1764 if (p == IPPROTO_AH) {
1765 /*
1766 * Treat AH differently because we expect there to be another
1767 * layer 4 header after it.
1768 */
1769 p = ipf_pr_ah(fin);
1770 }
1771
1772 switch (p)
1773 {
1774 case IPPROTO_UDP :
1775 ipf_pr_udp(fin);
1776 break;
1777 case IPPROTO_TCP :
1778 ipf_pr_tcp(fin);
1779 break;
1780 case IPPROTO_ICMP :
1781 ipf_pr_icmp(fin);
1782 break;
1783 case IPPROTO_ESP :
1784 ipf_pr_esp(fin);
1785 break;
1786 case IPPROTO_GRE :
1787 ipf_pr_gre(fin);
1788 break;
1789 }
1790
1791 ip = fin->fin_ip;
1792 if (ip == NULL)
1793 return;
1794
1795 /*
1796 * If it is a standard IP header (no options), set the flag fields
1797 * which relate to options to 0.
1798 */
1799 if (hlen == sizeof(*ip)) {
1800 fi->fi_optmsk = 0;
1801 fi->fi_secmsk = 0;
1802 fi->fi_auth = 0;
1803 return;
1804 }
1805
1806 /*
1807 * So the IP header has some IP options attached. Walk the entire
1808 * list of options present with this packet and set flags to indicate
1809 * which ones are here and which ones are not. For the somewhat out
1810 * of date and obscure security classification options, set a flag to
1811 * represent which classification is present.
1812 */
1813 fi->fi_flx |= FI_OPTIONS;
1814
1815 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1816 opt = *s;
1817 if (opt == '\0')
1818 break;
1819 else if (opt == IPOPT_NOP)
1820 ol = 1;
1821 else {
1822 if (hlen < 2)
1823 break;
1824 ol = (int)*(s + 1);
1825 if (ol < 2 || ol > hlen)
1826 break;
1827 }
1828 for (i = 9, mv = 4; mv >= 0; ) {
1829 op = ipopts + i;
1830
1831 if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1832 u_32_t doi;
1833
1834 switch (opt)
1835 {
1836 case IPOPT_SECURITY :
1837 if (optmsk & op->ol_bit) {
1838 fin->fin_flx |= FI_BAD;
1839 DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1840 } else {
1841 doi = ipf_checkripso(s);
1842 secmsk = doi >> 16;
1843 auth = doi & 0xffff;
1844 }
1845 break;
1846
1847 case IPOPT_CIPSO :
1848
1849 if (optmsk & op->ol_bit) {
1850 fin->fin_flx |= FI_BAD;
1851 DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1852 } else {
1853 doi = ipf_checkcipso(fin,
1854 s, ol);
1855 secmsk = doi >> 16;
1856 auth = doi & 0xffff;
1857 }
1858 break;
1859 }
1860 optmsk |= op->ol_bit;
1861 }
1862
1863 if (opt < op->ol_val)
1864 i -= mv;
1865 else
1866 i += mv;
1867 mv--;
1868 }
1869 hlen -= ol;
1870 s += ol;
1871 }
1872
1873 /*
1874 *
1875 */
1876 if (auth && !(auth & 0x0100))
1877 auth &= 0xff00;
1878 fi->fi_optmsk = optmsk;
1879 fi->fi_secmsk = secmsk;
1880 fi->fi_auth = auth;
1881 }
1882
1883
1884 /* ------------------------------------------------------------------------ */
1885 /* Function: ipf_checkripso */
1886 /* Returns: void */
1887 /* Parameters: s(I) - pointer to start of RIPSO option */
1888 /* */
1889 /* ------------------------------------------------------------------------ */
1890 static u_32_t
ipf_checkripso(s)1891 ipf_checkripso(s)
1892 u_char *s;
1893 {
1894 const struct optlist *sp;
1895 u_short secmsk = 0, auth = 0;
1896 u_char sec;
1897 int j, m;
1898
1899 sec = *(s + 2); /* classification */
1900 for (j = 3, m = 2; m >= 0; ) {
1901 sp = secopt + j;
1902 if (sec == sp->ol_val) {
1903 secmsk |= sp->ol_bit;
1904 auth = *(s + 3);
1905 auth *= 256;
1906 auth += *(s + 4);
1907 break;
1908 }
1909 if (sec < sp->ol_val)
1910 j -= m;
1911 else
1912 j += m;
1913 m--;
1914 }
1915
1916 return (secmsk << 16) | auth;
1917 }
1918
1919
1920 /* ------------------------------------------------------------------------ */
1921 /* Function: ipf_checkcipso */
1922 /* Returns: u_32_t - 0 = failure, else the doi from the header */
1923 /* Parameters: fin(IO) - pointer to packet information */
1924 /* s(I) - pointer to start of CIPSO option */
1925 /* ol(I) - length of CIPSO option field */
1926 /* */
1927 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1928 /* header and returns that whilst also storing the highest sensitivity */
1929 /* value found in the fr_info_t structure. */
1930 /* */
1931 /* No attempt is made to extract the category bitmaps as these are defined */
1932 /* by the user (rather than the protocol) and can be rather numerous on the */
1933 /* end nodes. */
1934 /* ------------------------------------------------------------------------ */
1935 static u_32_t
ipf_checkcipso(fin,s,ol)1936 ipf_checkcipso(fin, s, ol)
1937 fr_info_t *fin;
1938 u_char *s;
1939 int ol;
1940 {
1941 ipf_main_softc_t *softc = fin->fin_main_soft;
1942 fr_ip_t *fi;
1943 u_32_t doi;
1944 u_char *t, tag, tlen, sensitivity;
1945 int len;
1946
1947 if (ol < 6 || ol > 40) {
1948 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1949 fin->fin_flx |= FI_BAD;
1950 DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol);
1951 return 0;
1952 }
1953
1954 fi = &fin->fin_fi;
1955 fi->fi_sensitivity = 0;
1956 /*
1957 * The DOI field MUST be there.
1958 */
1959 bcopy(s + 2, &doi, sizeof(doi));
1960
1961 t = (u_char *)s + 6;
1962 for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1963 tag = *t;
1964 tlen = *(t + 1);
1965 if (tlen > len || tlen < 4 || tlen > 34) {
1966 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1967 fin->fin_flx |= FI_BAD;
1968 DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen);
1969 return 0;
1970 }
1971
1972 sensitivity = 0;
1973 /*
1974 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1975 * draft (16 July 1992) that has expired.
1976 */
1977 if (tag == 0) {
1978 fin->fin_flx |= FI_BAD;
1979 DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag);
1980 continue;
1981 } else if (tag == 1) {
1982 if (*(t + 2) != 0) {
1983 fin->fin_flx |= FI_BAD;
1984 DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2));
1985 continue;
1986 }
1987 sensitivity = *(t + 3);
1988 /* Category bitmap for categories 0-239 */
1989
1990 } else if (tag == 4) {
1991 if (*(t + 2) != 0) {
1992 fin->fin_flx |= FI_BAD;
1993 DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2));
1994 continue;
1995 }
1996 sensitivity = *(t + 3);
1997 /* Enumerated categories, 16bits each, upto 15 */
1998
1999 } else if (tag == 5) {
2000 if (*(t + 2) != 0) {
2001 fin->fin_flx |= FI_BAD;
2002 DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2));
2003 continue;
2004 }
2005 sensitivity = *(t + 3);
2006 /* Range of categories (2*16bits), up to 7 pairs */
2007
2008 } else if (tag > 127) {
2009 /* Custom defined DOI */
2010 ;
2011 } else {
2012 fin->fin_flx |= FI_BAD;
2013 DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag);
2014 continue;
2015 }
2016
2017 if (sensitivity > fi->fi_sensitivity)
2018 fi->fi_sensitivity = sensitivity;
2019 }
2020
2021 return doi;
2022 }
2023
2024
2025 /* ------------------------------------------------------------------------ */
2026 /* Function: ipf_makefrip */
2027 /* Returns: int - 0 == packet ok, -1 == packet freed */
2028 /* Parameters: hlen(I) - length of IP packet header */
2029 /* ip(I) - pointer to the IP header */
2030 /* fin(IO) - pointer to packet information */
2031 /* */
2032 /* Compact the IP header into a structure which contains just the info. */
2033 /* which is useful for comparing IP headers with and store this information */
2034 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */
2035 /* this function will be called with either an IPv4 or IPv6 packet. */
2036 /* ------------------------------------------------------------------------ */
2037 int
ipf_makefrip(hlen,ip,fin)2038 ipf_makefrip(hlen, ip, fin)
2039 int hlen;
2040 ip_t *ip;
2041 fr_info_t *fin;
2042 {
2043 ipf_main_softc_t *softc = fin->fin_main_soft;
2044 int v;
2045
2046 fin->fin_depth = 0;
2047 fin->fin_hlen = (u_short)hlen;
2048 fin->fin_ip = ip;
2049 fin->fin_rule = 0xffffffff;
2050 fin->fin_group[0] = -1;
2051 fin->fin_group[1] = '\0';
2052 fin->fin_dp = (char *)ip + hlen;
2053
2054 v = fin->fin_v;
2055 if (v == 4) {
2056 fin->fin_plen = ntohs(ip->ip_len);
2057 fin->fin_dlen = fin->fin_plen - hlen;
2058 ipf_pr_ipv4hdr(fin);
2059 #ifdef USE_INET6
2060 } else if (v == 6) {
2061 fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2062 fin->fin_dlen = fin->fin_plen;
2063 fin->fin_plen += hlen;
2064
2065 ipf_pr_ipv6hdr(fin);
2066 #endif
2067 }
2068 if (fin->fin_ip == NULL) {
2069 LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2070 return -1;
2071 }
2072 return 0;
2073 }
2074
2075
2076 /* ------------------------------------------------------------------------ */
2077 /* Function: ipf_portcheck */
2078 /* Returns: int - 1 == port matched, 0 == port match failed */
2079 /* Parameters: frp(I) - pointer to port check `expression' */
2080 /* pop(I) - port number to evaluate */
2081 /* */
2082 /* Perform a comparison of a port number against some other(s), using a */
2083 /* structure with compare information stored in it. */
2084 /* ------------------------------------------------------------------------ */
2085 static INLINE int
ipf_portcheck(frp,pop)2086 ipf_portcheck(frp, pop)
2087 frpcmp_t *frp;
2088 u_32_t pop;
2089 {
2090 int err = 1;
2091 u_32_t po;
2092
2093 po = frp->frp_port;
2094
2095 /*
2096 * Do opposite test to that required and continue if that succeeds.
2097 */
2098 switch (frp->frp_cmp)
2099 {
2100 case FR_EQUAL :
2101 if (pop != po) /* EQUAL */
2102 err = 0;
2103 break;
2104 case FR_NEQUAL :
2105 if (pop == po) /* NOTEQUAL */
2106 err = 0;
2107 break;
2108 case FR_LESST :
2109 if (pop >= po) /* LESSTHAN */
2110 err = 0;
2111 break;
2112 case FR_GREATERT :
2113 if (pop <= po) /* GREATERTHAN */
2114 err = 0;
2115 break;
2116 case FR_LESSTE :
2117 if (pop > po) /* LT or EQ */
2118 err = 0;
2119 break;
2120 case FR_GREATERTE :
2121 if (pop < po) /* GT or EQ */
2122 err = 0;
2123 break;
2124 case FR_OUTRANGE :
2125 if (pop >= po && pop <= frp->frp_top) /* Out of range */
2126 err = 0;
2127 break;
2128 case FR_INRANGE :
2129 if (pop <= po || pop >= frp->frp_top) /* In range */
2130 err = 0;
2131 break;
2132 case FR_INCRANGE :
2133 if (pop < po || pop > frp->frp_top) /* Inclusive range */
2134 err = 0;
2135 break;
2136 default :
2137 break;
2138 }
2139 return err;
2140 }
2141
2142
2143 /* ------------------------------------------------------------------------ */
2144 /* Function: ipf_tcpudpchk */
2145 /* Returns: int - 1 == protocol matched, 0 == check failed */
2146 /* Parameters: fda(I) - pointer to packet information */
2147 /* ft(I) - pointer to structure with comparison data */
2148 /* */
2149 /* Compares the current pcket (assuming it is TCP/UDP) information with a */
2150 /* structure containing information that we want to match against. */
2151 /* ------------------------------------------------------------------------ */
2152 int
ipf_tcpudpchk(fi,ft)2153 ipf_tcpudpchk(fi, ft)
2154 fr_ip_t *fi;
2155 frtuc_t *ft;
2156 {
2157 int err = 1;
2158
2159 /*
2160 * Both ports should *always* be in the first fragment.
2161 * So far, I cannot find any cases where they can not be.
2162 *
2163 * compare destination ports
2164 */
2165 if (ft->ftu_dcmp)
2166 err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2167
2168 /*
2169 * compare source ports
2170 */
2171 if (err && ft->ftu_scmp)
2172 err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2173
2174 /*
2175 * If we don't have all the TCP/UDP header, then how can we
2176 * expect to do any sort of match on it ? If we were looking for
2177 * TCP flags, then NO match. If not, then match (which should
2178 * satisfy the "short" class too).
2179 */
2180 if (err && (fi->fi_p == IPPROTO_TCP)) {
2181 if (fi->fi_flx & FI_SHORT)
2182 return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2183 /*
2184 * Match the flags ? If not, abort this match.
2185 */
2186 if (ft->ftu_tcpfm &&
2187 ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2188 FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2189 ft->ftu_tcpfm, ft->ftu_tcpf));
2190 err = 0;
2191 }
2192 }
2193 return err;
2194 }
2195
2196
2197 /* ------------------------------------------------------------------------ */
2198 /* Function: ipf_check_ipf */
2199 /* Returns: int - 0 == match, else no match */
2200 /* Parameters: fin(I) - pointer to packet information */
2201 /* fr(I) - pointer to filter rule */
2202 /* portcmp(I) - flag indicating whether to attempt matching on */
2203 /* TCP/UDP port data. */
2204 /* */
2205 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */
2206 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2207 /* this function. */
2208 /* ------------------------------------------------------------------------ */
2209 static INLINE int
ipf_check_ipf(fin,fr,portcmp)2210 ipf_check_ipf(fin, fr, portcmp)
2211 fr_info_t *fin;
2212 frentry_t *fr;
2213 int portcmp;
2214 {
2215 u_32_t *ld, *lm, *lip;
2216 fripf_t *fri;
2217 fr_ip_t *fi;
2218 int i;
2219
2220 fi = &fin->fin_fi;
2221 fri = fr->fr_ipf;
2222 lip = (u_32_t *)fi;
2223 lm = (u_32_t *)&fri->fri_mip;
2224 ld = (u_32_t *)&fri->fri_ip;
2225
2226 /*
2227 * first 32 bits to check coversion:
2228 * IP version, TOS, TTL, protocol
2229 */
2230 i = ((*lip & *lm) != *ld);
2231 FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2232 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2233 if (i)
2234 return 1;
2235
2236 /*
2237 * Next 32 bits is a constructed bitmask indicating which IP options
2238 * are present (if any) in this packet.
2239 */
2240 lip++, lm++, ld++;
2241 i = ((*lip & *lm) != *ld);
2242 FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2243 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2244 if (i != 0)
2245 return 1;
2246
2247 lip++, lm++, ld++;
2248 /*
2249 * Unrolled loops (4 each, for 32 bits) for address checks.
2250 */
2251 /*
2252 * Check the source address.
2253 */
2254 if (fr->fr_satype == FRI_LOOKUP) {
2255 i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2256 fi->fi_v, lip, fin->fin_plen);
2257 if (i == -1)
2258 return 1;
2259 lip += 3;
2260 lm += 3;
2261 ld += 3;
2262 } else {
2263 i = ((*lip & *lm) != *ld);
2264 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2265 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2266 if (fi->fi_v == 6) {
2267 lip++, lm++, ld++;
2268 i |= ((*lip & *lm) != *ld);
2269 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2270 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2271 lip++, lm++, ld++;
2272 i |= ((*lip & *lm) != *ld);
2273 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2274 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2275 lip++, lm++, ld++;
2276 i |= ((*lip & *lm) != *ld);
2277 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2278 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2279 } else {
2280 lip += 3;
2281 lm += 3;
2282 ld += 3;
2283 }
2284 }
2285 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2286 if (i != 0)
2287 return 1;
2288
2289 /*
2290 * Check the destination address.
2291 */
2292 lip++, lm++, ld++;
2293 if (fr->fr_datype == FRI_LOOKUP) {
2294 i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2295 fi->fi_v, lip, fin->fin_plen);
2296 if (i == -1)
2297 return 1;
2298 lip += 3;
2299 lm += 3;
2300 ld += 3;
2301 } else {
2302 i = ((*lip & *lm) != *ld);
2303 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2304 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2305 if (fi->fi_v == 6) {
2306 lip++, lm++, ld++;
2307 i |= ((*lip & *lm) != *ld);
2308 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2309 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2310 lip++, lm++, ld++;
2311 i |= ((*lip & *lm) != *ld);
2312 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2313 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2314 lip++, lm++, ld++;
2315 i |= ((*lip & *lm) != *ld);
2316 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2317 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2318 } else {
2319 lip += 3;
2320 lm += 3;
2321 ld += 3;
2322 }
2323 }
2324 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2325 if (i != 0)
2326 return 1;
2327 /*
2328 * IP addresses matched. The next 32bits contains:
2329 * mast of old IP header security & authentication bits.
2330 */
2331 lip++, lm++, ld++;
2332 i = (*ld - (*lip & *lm));
2333 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2334
2335 /*
2336 * Next we have 32 bits of packet flags.
2337 */
2338 lip++, lm++, ld++;
2339 i |= (*ld - (*lip & *lm));
2340 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2341
2342 if (i == 0) {
2343 /*
2344 * If a fragment, then only the first has what we're
2345 * looking for here...
2346 */
2347 if (portcmp) {
2348 if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2349 i = 1;
2350 } else {
2351 if (fr->fr_dcmp || fr->fr_scmp ||
2352 fr->fr_tcpf || fr->fr_tcpfm)
2353 i = 1;
2354 if (fr->fr_icmpm || fr->fr_icmp) {
2355 if (((fi->fi_p != IPPROTO_ICMP) &&
2356 (fi->fi_p != IPPROTO_ICMPV6)) ||
2357 fin->fin_off || (fin->fin_dlen < 2))
2358 i = 1;
2359 else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2360 fr->fr_icmp) {
2361 FR_DEBUG(("i. %#x & %#x != %#x\n",
2362 fin->fin_data[0],
2363 fr->fr_icmpm, fr->fr_icmp));
2364 i = 1;
2365 }
2366 }
2367 }
2368 }
2369 return i;
2370 }
2371
2372
2373 /* ------------------------------------------------------------------------ */
2374 /* Function: ipf_scanlist */
2375 /* Returns: int - result flags of scanning filter list */
2376 /* Parameters: fin(I) - pointer to packet information */
2377 /* pass(I) - default result to return for filtering */
2378 /* */
2379 /* Check the input/output list of rules for a match to the current packet. */
2380 /* If a match is found, the value of fr_flags from the rule becomes the */
2381 /* return value and fin->fin_fr points to the matched rule. */
2382 /* */
2383 /* This function may be called recusively upto 16 times (limit inbuilt.) */
2384 /* When unwinding, it should finish up with fin_depth as 0. */
2385 /* */
2386 /* Could be per interface, but this gets real nasty when you don't have, */
2387 /* or can't easily change, the kernel source code to . */
2388 /* ------------------------------------------------------------------------ */
2389 int
ipf_scanlist(fin,pass)2390 ipf_scanlist(fin, pass)
2391 fr_info_t *fin;
2392 u_32_t pass;
2393 {
2394 ipf_main_softc_t *softc = fin->fin_main_soft;
2395 int rulen, portcmp, off, skip;
2396 struct frentry *fr, *fnext;
2397 u_32_t passt, passo;
2398
2399 /*
2400 * Do not allow nesting deeper than 16 levels.
2401 */
2402 if (fin->fin_depth >= 16)
2403 return pass;
2404
2405 fr = fin->fin_fr;
2406
2407 /*
2408 * If there are no rules in this list, return now.
2409 */
2410 if (fr == NULL)
2411 return pass;
2412
2413 skip = 0;
2414 portcmp = 0;
2415 fin->fin_depth++;
2416 fin->fin_fr = NULL;
2417 off = fin->fin_off;
2418
2419 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2420 portcmp = 1;
2421
2422 for (rulen = 0; fr; fr = fnext, rulen++) {
2423 fnext = fr->fr_next;
2424 if (skip != 0) {
2425 FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2426 skip--;
2427 continue;
2428 }
2429
2430 /*
2431 * In all checks below, a null (zero) value in the
2432 * filter struture is taken to mean a wildcard.
2433 *
2434 * check that we are working for the right interface
2435 */
2436 #ifdef _KERNEL
2437 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2438 continue;
2439 #else
2440 if (opts & (OPT_VERBOSE|OPT_DEBUG))
2441 printf("\n");
2442 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2443 FR_ISPASS(pass) ? 'p' :
2444 FR_ISACCOUNT(pass) ? 'A' :
2445 FR_ISAUTH(pass) ? 'a' :
2446 (pass & FR_NOMATCH) ? 'n' :'b'));
2447 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2448 continue;
2449 FR_VERBOSE((":i"));
2450 #endif
2451
2452 switch (fr->fr_type)
2453 {
2454 case FR_T_IPF :
2455 case FR_T_IPF_BUILTIN :
2456 if (ipf_check_ipf(fin, fr, portcmp))
2457 continue;
2458 break;
2459 #if defined(IPFILTER_BPF)
2460 case FR_T_BPFOPC :
2461 case FR_T_BPFOPC_BUILTIN :
2462 {
2463 u_char *mc;
2464 int wlen;
2465
2466 if (*fin->fin_mp == NULL)
2467 continue;
2468 if (fin->fin_family != fr->fr_family)
2469 continue;
2470 mc = (u_char *)fin->fin_m;
2471 wlen = fin->fin_dlen + fin->fin_hlen;
2472 if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2473 continue;
2474 break;
2475 }
2476 #endif
2477 case FR_T_CALLFUNC_BUILTIN :
2478 {
2479 frentry_t *f;
2480
2481 f = (*fr->fr_func)(fin, &pass);
2482 if (f != NULL)
2483 fr = f;
2484 else
2485 continue;
2486 break;
2487 }
2488
2489 case FR_T_IPFEXPR :
2490 case FR_T_IPFEXPR_BUILTIN :
2491 if (fin->fin_family != fr->fr_family)
2492 continue;
2493 if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2494 continue;
2495 break;
2496
2497 default :
2498 break;
2499 }
2500
2501 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2502 if (fin->fin_nattag == NULL)
2503 continue;
2504 if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2505 continue;
2506 }
2507 FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2508
2509 passt = fr->fr_flags;
2510
2511 /*
2512 * If the rule is a "call now" rule, then call the function
2513 * in the rule, if it exists and use the results from that.
2514 * If the function pointer is bad, just make like we ignore
2515 * it, except for increasing the hit counter.
2516 */
2517 if ((passt & FR_CALLNOW) != 0) {
2518 frentry_t *frs;
2519
2520 ATOMIC_INC64(fr->fr_hits);
2521 if ((fr->fr_func == NULL) ||
2522 (fr->fr_func == (ipfunc_t)-1))
2523 continue;
2524
2525 frs = fin->fin_fr;
2526 fin->fin_fr = fr;
2527 fr = (*fr->fr_func)(fin, &passt);
2528 if (fr == NULL) {
2529 fin->fin_fr = frs;
2530 continue;
2531 }
2532 passt = fr->fr_flags;
2533 }
2534 fin->fin_fr = fr;
2535
2536 #ifdef IPFILTER_LOG
2537 /*
2538 * Just log this packet...
2539 */
2540 if ((passt & FR_LOGMASK) == FR_LOG) {
2541 if (ipf_log_pkt(fin, passt) == -1) {
2542 if (passt & FR_LOGORBLOCK) {
2543 DT(frb_logfail);
2544 passt &= ~FR_CMDMASK;
2545 passt |= FR_BLOCK|FR_QUICK;
2546 fin->fin_reason = FRB_LOGFAIL;
2547 }
2548 }
2549 }
2550 #endif /* IPFILTER_LOG */
2551
2552 MUTEX_ENTER(&fr->fr_lock);
2553 fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2554 fr->fr_hits++;
2555 MUTEX_EXIT(&fr->fr_lock);
2556 fin->fin_rule = rulen;
2557
2558 passo = pass;
2559 if (FR_ISSKIP(passt)) {
2560 skip = fr->fr_arg;
2561 continue;
2562 } else if (((passt & FR_LOGMASK) != FR_LOG) &&
2563 ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2564 pass = passt;
2565 }
2566
2567 if (passt & (FR_RETICMP|FR_FAKEICMP))
2568 fin->fin_icode = fr->fr_icode;
2569
2570 if (fr->fr_group != -1) {
2571 (void) strncpy(fin->fin_group,
2572 FR_NAME(fr, fr_group),
2573 strlen(FR_NAME(fr, fr_group)));
2574 } else {
2575 fin->fin_group[0] = '\0';
2576 }
2577
2578 FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2579
2580 if (fr->fr_grphead != NULL) {
2581 fin->fin_fr = fr->fr_grphead->fg_start;
2582 FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2583
2584 if (FR_ISDECAPS(passt))
2585 passt = ipf_decaps(fin, pass, fr->fr_icode);
2586 else
2587 passt = ipf_scanlist(fin, pass);
2588
2589 if (fin->fin_fr == NULL) {
2590 fin->fin_rule = rulen;
2591 if (fr->fr_group != -1)
2592 (void) strncpy(fin->fin_group,
2593 fr->fr_names +
2594 fr->fr_group,
2595 strlen(fr->fr_names +
2596 fr->fr_group));
2597 fin->fin_fr = fr;
2598 passt = pass;
2599 }
2600 pass = passt;
2601 }
2602
2603 if (pass & FR_QUICK) {
2604 /*
2605 * Finally, if we've asked to track state for this
2606 * packet, set it up. Add state for "quick" rules
2607 * here so that if the action fails we can consider
2608 * the rule to "not match" and keep on processing
2609 * filter rules.
2610 */
2611 if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2612 !(fin->fin_flx & FI_STATE)) {
2613 int out = fin->fin_out;
2614
2615 fin->fin_fr = fr;
2616 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2617 LBUMPD(ipf_stats[out], fr_ads);
2618 } else {
2619 LBUMPD(ipf_stats[out], fr_bads);
2620 pass = passo;
2621 continue;
2622 }
2623 }
2624 break;
2625 }
2626 }
2627 fin->fin_depth--;
2628 return pass;
2629 }
2630
2631
2632 /* ------------------------------------------------------------------------ */
2633 /* Function: ipf_acctpkt */
2634 /* Returns: frentry_t* - always returns NULL */
2635 /* Parameters: fin(I) - pointer to packet information */
2636 /* passp(IO) - pointer to current/new filter decision (unused) */
2637 /* */
2638 /* Checks a packet against accounting rules, if there are any for the given */
2639 /* IP protocol version. */
2640 /* */
2641 /* N.B.: this function returns NULL to match the prototype used by other */
2642 /* functions called from the IPFilter "mainline" in ipf_check(). */
2643 /* ------------------------------------------------------------------------ */
2644 frentry_t *
ipf_acctpkt(fin,passp)2645 ipf_acctpkt(fin, passp)
2646 fr_info_t *fin;
2647 u_32_t *passp;
2648 {
2649 ipf_main_softc_t *softc = fin->fin_main_soft;
2650 char group[FR_GROUPLEN];
2651 frentry_t *fr, *frsave;
2652 u_32_t pass, rulen;
2653
2654 passp = passp;
2655 fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2656
2657 if (fr != NULL) {
2658 frsave = fin->fin_fr;
2659 bcopy(fin->fin_group, group, FR_GROUPLEN);
2660 rulen = fin->fin_rule;
2661 fin->fin_fr = fr;
2662 pass = ipf_scanlist(fin, FR_NOMATCH);
2663 if (FR_ISACCOUNT(pass)) {
2664 LBUMPD(ipf_stats[0], fr_acct);
2665 }
2666 fin->fin_fr = frsave;
2667 bcopy(group, fin->fin_group, FR_GROUPLEN);
2668 fin->fin_rule = rulen;
2669 }
2670 return NULL;
2671 }
2672
2673
2674 /* ------------------------------------------------------------------------ */
2675 /* Function: ipf_firewall */
2676 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */
2677 /* were found, returns NULL. */
2678 /* Parameters: fin(I) - pointer to packet information */
2679 /* passp(IO) - pointer to current/new filter decision (unused) */
2680 /* */
2681 /* Applies an appropriate set of firewall rules to the packet, to see if */
2682 /* there are any matches. The first check is to see if a match can be seen */
2683 /* in the cache. If not, then search an appropriate list of rules. Once a */
2684 /* matching rule is found, take any appropriate actions as defined by the */
2685 /* rule - except logging. */
2686 /* ------------------------------------------------------------------------ */
2687 static frentry_t *
ipf_firewall(fin,passp)2688 ipf_firewall(fin, passp)
2689 fr_info_t *fin;
2690 u_32_t *passp;
2691 {
2692 ipf_main_softc_t *softc = fin->fin_main_soft;
2693 frentry_t *fr;
2694 u_32_t pass;
2695 int out;
2696
2697 out = fin->fin_out;
2698 pass = *passp;
2699
2700 /*
2701 * This rule cache will only affect packets that are not being
2702 * statefully filtered.
2703 */
2704 fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2705 if (fin->fin_fr != NULL)
2706 pass = ipf_scanlist(fin, softc->ipf_pass);
2707
2708 if ((pass & FR_NOMATCH)) {
2709 LBUMPD(ipf_stats[out], fr_nom);
2710 }
2711 fr = fin->fin_fr;
2712
2713 /*
2714 * Apply packets per second rate-limiting to a rule as required.
2715 */
2716 if ((fr != NULL) && (fr->fr_pps != 0) &&
2717 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2718 DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2719 pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2720 pass |= FR_BLOCK;
2721 LBUMPD(ipf_stats[out], fr_ppshit);
2722 fin->fin_reason = FRB_PPSRATE;
2723 }
2724
2725 /*
2726 * If we fail to add a packet to the authorization queue, then we
2727 * drop the packet later. However, if it was added then pretend
2728 * we've dropped it already.
2729 */
2730 if (FR_ISAUTH(pass)) {
2731 if (ipf_auth_new(fin->fin_m, fin) != 0) {
2732 DT1(frb_authnew, fr_info_t *, fin);
2733 fin->fin_m = *fin->fin_mp = NULL;
2734 fin->fin_reason = FRB_AUTHNEW;
2735 fin->fin_error = 0;
2736 } else {
2737 IPFERROR(1);
2738 fin->fin_error = ENOSPC;
2739 }
2740 }
2741
2742 if ((fr != NULL) && (fr->fr_func != NULL) &&
2743 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2744 (void) (*fr->fr_func)(fin, &pass);
2745
2746 /*
2747 * If a rule is a pre-auth rule, check again in the list of rules
2748 * loaded for authenticated use. It does not particulary matter
2749 * if this search fails because a "preauth" result, from a rule,
2750 * is treated as "not a pass", hence the packet is blocked.
2751 */
2752 if (FR_ISPREAUTH(pass)) {
2753 pass = ipf_auth_pre_scanlist(softc, fin, pass);
2754 }
2755
2756 /*
2757 * If the rule has "keep frag" and the packet is actually a fragment,
2758 * then create a fragment state entry.
2759 */
2760 if (pass & FR_KEEPFRAG) {
2761 if (fin->fin_flx & FI_FRAG) {
2762 if (ipf_frag_new(softc, fin, pass) == -1) {
2763 LBUMP(ipf_stats[out].fr_bnfr);
2764 } else {
2765 LBUMP(ipf_stats[out].fr_nfr);
2766 }
2767 } else {
2768 LBUMP(ipf_stats[out].fr_cfr);
2769 }
2770 }
2771
2772 fr = fin->fin_fr;
2773 *passp = pass;
2774
2775 return fr;
2776 }
2777
2778
2779 /* ------------------------------------------------------------------------ */
2780 /* Function: ipf_check */
2781 /* Returns: int - 0 == packet allowed through, */
2782 /* User space: */
2783 /* -1 == packet blocked */
2784 /* 1 == packet not matched */
2785 /* -2 == requires authentication */
2786 /* Kernel: */
2787 /* > 0 == filter error # for packet */
2788 /* Parameters: ctx(I) - pointer to the instance context */
2789 /* ip(I) - pointer to start of IPv4/6 packet */
2790 /* hlen(I) - length of header */
2791 /* ifp(I) - pointer to interface this packet is on */
2792 /* out(I) - 0 == packet going in, 1 == packet going out */
2793 /* mp(IO) - pointer to caller's buffer pointer that holds this */
2794 /* IP packet. */
2795 /* Solaris: */
2796 /* qpi(I) - pointer to STREAMS queue information for this */
2797 /* interface & direction. */
2798 /* */
2799 /* ipf_check() is the master function for all IPFilter packet processing. */
2800 /* It orchestrates: Network Address Translation (NAT), checking for packet */
2801 /* authorisation (or pre-authorisation), presence of related state info., */
2802 /* generating log entries, IP packet accounting, routing of packets as */
2803 /* directed by firewall rules and of course whether or not to allow the */
2804 /* packet to be further processed by the kernel. */
2805 /* */
2806 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */
2807 /* freed. Packets passed may be returned with the pointer pointed to by */
2808 /* by "mp" changed to a new buffer. */
2809 /* ------------------------------------------------------------------------ */
2810 int
ipf_check(ctx,ip,hlen,ifp,out,qif,mp)2811 ipf_check(ctx, ip, hlen, ifp, out
2812 #if defined(_KERNEL) && defined(MENTAT)
2813 , qif, mp)
2814 void *qif;
2815 #else
2816 , mp)
2817 #endif
2818 mb_t **mp;
2819 ip_t *ip;
2820 int hlen;
2821 struct ifnet *ifp;
2822 int out;
2823 void *ctx;
2824 {
2825 /*
2826 * The above really sucks, but short of writing a diff
2827 */
2828 ipf_main_softc_t *softc = ctx;
2829 fr_info_t frinfo;
2830 fr_info_t *fin = &frinfo;
2831 u_32_t pass = softc->ipf_pass;
2832 frentry_t *fr = NULL;
2833 int v = IP_V(ip);
2834 mb_t *mc = NULL;
2835 mb_t *m;
2836 /*
2837 * The first part of ipf_check() deals with making sure that what goes
2838 * into the filtering engine makes some sense. Information about the
2839 * the packet is distilled, collected into a fr_info_t structure and
2840 * the an attempt to ensure the buffer the packet is in is big enough
2841 * to hold all the required packet headers.
2842 */
2843 #ifdef _KERNEL
2844 # ifdef MENTAT
2845 qpktinfo_t *qpi = qif;
2846
2847 # ifdef __sparc
2848 if ((u_int)ip & 0x3)
2849 return 2;
2850 # endif
2851 # else
2852 SPL_INT(s);
2853 # endif
2854
2855 if (softc->ipf_running <= 0) {
2856 return 0;
2857 }
2858
2859 bzero((char *)fin, sizeof(*fin));
2860
2861 # ifdef MENTAT
2862 if (qpi->qpi_flags & QF_BROADCAST)
2863 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2864 if (qpi->qpi_flags & QF_MULTICAST)
2865 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2866 m = qpi->qpi_m;
2867 fin->fin_qfm = m;
2868 fin->fin_qpi = qpi;
2869 # else /* MENTAT */
2870
2871 m = *mp;
2872
2873 # if defined(M_MCAST)
2874 if ((m->m_flags & M_MCAST) != 0)
2875 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2876 # endif
2877 # if defined(M_MLOOP)
2878 if ((m->m_flags & M_MLOOP) != 0)
2879 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2880 # endif
2881 # if defined(M_BCAST)
2882 if ((m->m_flags & M_BCAST) != 0)
2883 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2884 # endif
2885 # ifdef M_CANFASTFWD
2886 /*
2887 * XXX For now, IP Filter and fast-forwarding of cached flows
2888 * XXX are mutually exclusive. Eventually, IP Filter should
2889 * XXX get a "can-fast-forward" filter rule.
2890 */
2891 m->m_flags &= ~M_CANFASTFWD;
2892 # endif /* M_CANFASTFWD */
2893 # if defined(CSUM_DELAY_DATA) && !defined(__FreeBSD_version)
2894 /*
2895 * disable delayed checksums.
2896 */
2897 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2898 in_delayed_cksum(m);
2899 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2900 }
2901 # endif /* CSUM_DELAY_DATA */
2902 # endif /* MENTAT */
2903 #else
2904 bzero((char *)fin, sizeof(*fin));
2905 m = *mp;
2906 # if defined(M_MCAST)
2907 if ((m->m_flags & M_MCAST) != 0)
2908 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2909 # endif
2910 # if defined(M_MLOOP)
2911 if ((m->m_flags & M_MLOOP) != 0)
2912 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2913 # endif
2914 # if defined(M_BCAST)
2915 if ((m->m_flags & M_BCAST) != 0)
2916 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2917 # endif
2918 #endif /* _KERNEL */
2919
2920 fin->fin_v = v;
2921 fin->fin_m = m;
2922 fin->fin_ip = ip;
2923 fin->fin_mp = mp;
2924 fin->fin_out = out;
2925 fin->fin_ifp = ifp;
2926 fin->fin_error = ENETUNREACH;
2927 fin->fin_hlen = (u_short)hlen;
2928 fin->fin_dp = (char *)ip + hlen;
2929 fin->fin_main_soft = softc;
2930
2931 fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2932
2933 SPL_NET(s);
2934
2935 #ifdef USE_INET6
2936 if (v == 6) {
2937 LBUMP(ipf_stats[out].fr_ipv6);
2938 /*
2939 * Jumbo grams are quite likely too big for internal buffer
2940 * structures to handle comfortably, for now, so just drop
2941 * them.
2942 */
2943 if (((ip6_t *)ip)->ip6_plen == 0) {
2944 DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2945 pass = FR_BLOCK|FR_NOMATCH;
2946 fin->fin_reason = FRB_JUMBO;
2947 goto finished;
2948 }
2949 fin->fin_family = AF_INET6;
2950 } else
2951 #endif
2952 {
2953 fin->fin_family = AF_INET;
2954 }
2955
2956 if (ipf_makefrip(hlen, ip, fin) == -1) {
2957 DT1(frb_makefrip, fr_info_t *, fin);
2958 pass = FR_BLOCK|FR_NOMATCH;
2959 fin->fin_reason = FRB_MAKEFRIP;
2960 goto finished;
2961 }
2962
2963 /*
2964 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2965 * becomes NULL and so we have no packet to free.
2966 */
2967 if (*fin->fin_mp == NULL)
2968 goto finished;
2969
2970 if (!out) {
2971 if (v == 4) {
2972 if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2973 LBUMPD(ipf_stats[0], fr_v4_badsrc);
2974 fin->fin_flx |= FI_BADSRC;
2975 }
2976 if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2977 LBUMPD(ipf_stats[0], fr_v4_badttl);
2978 fin->fin_flx |= FI_LOWTTL;
2979 }
2980 }
2981 #ifdef USE_INET6
2982 else if (v == 6) {
2983 if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2984 LBUMPD(ipf_stats[0], fr_v6_badttl);
2985 fin->fin_flx |= FI_LOWTTL;
2986 }
2987 }
2988 #endif
2989 }
2990
2991 if (fin->fin_flx & FI_SHORT) {
2992 LBUMPD(ipf_stats[out], fr_short);
2993 }
2994
2995 READ_ENTER(&softc->ipf_mutex);
2996
2997 if (!out) {
2998 switch (fin->fin_v)
2999 {
3000 case 4 :
3001 if (ipf_nat_checkin(fin, &pass) == -1) {
3002 goto filterdone;
3003 }
3004 break;
3005 #ifdef USE_INET6
3006 case 6 :
3007 if (ipf_nat6_checkin(fin, &pass) == -1) {
3008 goto filterdone;
3009 }
3010 break;
3011 #endif
3012 default :
3013 break;
3014 }
3015 }
3016 /*
3017 * Check auth now.
3018 * If a packet is found in the auth table, then skip checking
3019 * the access lists for permission but we do need to consider
3020 * the result as if it were from the ACL's. In addition, being
3021 * found in the auth table means it has been seen before, so do
3022 * not pass it through accounting (again), lest it be counted twice.
3023 */
3024 fr = ipf_auth_check(fin, &pass);
3025 if (!out && (fr == NULL))
3026 (void) ipf_acctpkt(fin, NULL);
3027
3028 if (fr == NULL) {
3029 if ((fin->fin_flx & FI_FRAG) != 0)
3030 fr = ipf_frag_known(fin, &pass);
3031
3032 if (fr == NULL)
3033 fr = ipf_state_check(fin, &pass);
3034 }
3035
3036 if ((pass & FR_NOMATCH) || (fr == NULL))
3037 fr = ipf_firewall(fin, &pass);
3038
3039 /*
3040 * If we've asked to track state for this packet, set it up.
3041 * Here rather than ipf_firewall because ipf_checkauth may decide
3042 * to return a packet for "keep state"
3043 */
3044 if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
3045 !(fin->fin_flx & FI_STATE)) {
3046 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
3047 LBUMP(ipf_stats[out].fr_ads);
3048 } else {
3049 LBUMP(ipf_stats[out].fr_bads);
3050 if (FR_ISPASS(pass)) {
3051 DT(frb_stateadd);
3052 pass &= ~FR_CMDMASK;
3053 pass |= FR_BLOCK;
3054 fin->fin_reason = FRB_STATEADD;
3055 }
3056 }
3057 }
3058
3059 fin->fin_fr = fr;
3060 if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
3061 fin->fin_dif = &fr->fr_dif;
3062 fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3063 }
3064
3065 /*
3066 * Only count/translate packets which will be passed on, out the
3067 * interface.
3068 */
3069 if (out && FR_ISPASS(pass)) {
3070 (void) ipf_acctpkt(fin, NULL);
3071
3072 switch (fin->fin_v)
3073 {
3074 case 4 :
3075 if (ipf_nat_checkout(fin, &pass) == -1) {
3076 ;
3077 } else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3078 if (ipf_updateipid(fin) == -1) {
3079 DT(frb_updateipid);
3080 LBUMP(ipf_stats[1].fr_ipud);
3081 pass &= ~FR_CMDMASK;
3082 pass |= FR_BLOCK;
3083 fin->fin_reason = FRB_UPDATEIPID;
3084 } else {
3085 LBUMP(ipf_stats[0].fr_ipud);
3086 }
3087 }
3088 break;
3089 #ifdef USE_INET6
3090 case 6 :
3091 (void) ipf_nat6_checkout(fin, &pass);
3092 break;
3093 #endif
3094 default :
3095 break;
3096 }
3097 }
3098
3099 filterdone:
3100 #ifdef IPFILTER_LOG
3101 if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3102 (void) ipf_dolog(fin, &pass);
3103 }
3104 #endif
3105
3106 /*
3107 * The FI_STATE flag is cleared here so that calling ipf_state_check
3108 * will work when called from inside of fr_fastroute. Although
3109 * there is a similar flag, FI_NATED, for NAT, it does have the same
3110 * impact on code execution.
3111 */
3112 fin->fin_flx &= ~FI_STATE;
3113
3114 #if defined(FASTROUTE_RECURSION)
3115 /*
3116 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3117 * a packet below can sometimes cause a recursive call into IPFilter.
3118 * On those platforms where that does happen, we need to hang onto
3119 * the filter rule just in case someone decides to remove or flush it
3120 * in the meantime.
3121 */
3122 if (fr != NULL) {
3123 MUTEX_ENTER(&fr->fr_lock);
3124 fr->fr_ref++;
3125 MUTEX_EXIT(&fr->fr_lock);
3126 }
3127
3128 RWLOCK_EXIT(&softc->ipf_mutex);
3129 #endif
3130
3131 if ((pass & FR_RETMASK) != 0) {
3132 /*
3133 * Should we return an ICMP packet to indicate error
3134 * status passing through the packet filter ?
3135 * WARNING: ICMP error packets AND TCP RST packets should
3136 * ONLY be sent in repsonse to incoming packets. Sending
3137 * them in response to outbound packets can result in a
3138 * panic on some operating systems.
3139 */
3140 if (!out) {
3141 if (pass & FR_RETICMP) {
3142 int dst;
3143
3144 if ((pass & FR_RETMASK) == FR_FAKEICMP)
3145 dst = 1;
3146 else
3147 dst = 0;
3148 (void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3149 dst);
3150 LBUMP(ipf_stats[0].fr_ret);
3151 } else if (((pass & FR_RETMASK) == FR_RETRST) &&
3152 !(fin->fin_flx & FI_SHORT)) {
3153 if (((fin->fin_flx & FI_OOW) != 0) ||
3154 (ipf_send_reset(fin) == 0)) {
3155 LBUMP(ipf_stats[1].fr_ret);
3156 }
3157 }
3158
3159 /*
3160 * When using return-* with auth rules, the auth code
3161 * takes over disposing of this packet.
3162 */
3163 if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3164 DT1(frb_authcapture, fr_info_t *, fin);
3165 fin->fin_m = *fin->fin_mp = NULL;
3166 fin->fin_reason = FRB_AUTHCAPTURE;
3167 m = NULL;
3168 }
3169 } else {
3170 if (pass & FR_RETRST) {
3171 fin->fin_error = ECONNRESET;
3172 }
3173 }
3174 }
3175
3176 /*
3177 * After the above so that ICMP unreachables and TCP RSTs get
3178 * created properly.
3179 */
3180 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3181 ipf_nat_uncreate(fin);
3182
3183 /*
3184 * If we didn't drop off the bottom of the list of rules (and thus
3185 * the 'current' rule fr is not NULL), then we may have some extra
3186 * instructions about what to do with a packet.
3187 * Once we're finished return to our caller, freeing the packet if
3188 * we are dropping it.
3189 */
3190 if (fr != NULL) {
3191 frdest_t *fdp;
3192
3193 /*
3194 * Generate a duplicated packet first because ipf_fastroute
3195 * can lead to fin_m being free'd... not good.
3196 */
3197 fdp = fin->fin_dif;
3198 if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3199 (fdp->fd_ptr != (void *)-1)) {
3200 mc = M_COPY(fin->fin_m);
3201 if (mc != NULL)
3202 ipf_fastroute(mc, &mc, fin, fdp);
3203 }
3204
3205 fdp = fin->fin_tif;
3206 if (!out && (pass & FR_FASTROUTE)) {
3207 /*
3208 * For fastroute rule, no destination interface defined
3209 * so pass NULL as the frdest_t parameter
3210 */
3211 (void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3212 m = *mp = NULL;
3213 } else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3214 (fdp->fd_ptr != (struct ifnet *)-1)) {
3215 /* this is for to rules: */
3216 ipf_fastroute(fin->fin_m, mp, fin, fdp);
3217 m = *mp = NULL;
3218 }
3219
3220 #if defined(FASTROUTE_RECURSION)
3221 (void) ipf_derefrule(softc, &fr);
3222 #endif
3223 }
3224 #if !defined(FASTROUTE_RECURSION)
3225 RWLOCK_EXIT(&softc->ipf_mutex);
3226 #endif
3227
3228 finished:
3229 if (!FR_ISPASS(pass)) {
3230 LBUMP(ipf_stats[out].fr_block);
3231 if (*mp != NULL) {
3232 #ifdef _KERNEL
3233 FREE_MB_T(*mp);
3234 #endif
3235 m = *mp = NULL;
3236 }
3237 } else {
3238 LBUMP(ipf_stats[out].fr_pass);
3239 }
3240
3241 SPL_X(s);
3242
3243 #ifdef _KERNEL
3244 if (FR_ISPASS(pass))
3245 return 0;
3246 LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3247 return fin->fin_error;
3248 #else /* _KERNEL */
3249 if (*mp != NULL)
3250 (*mp)->mb_ifp = fin->fin_ifp;
3251 blockreason = fin->fin_reason;
3252 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3253 /*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3254 if ((pass & FR_NOMATCH) != 0)
3255 return 1;
3256
3257 if ((pass & FR_RETMASK) != 0)
3258 switch (pass & FR_RETMASK)
3259 {
3260 case FR_RETRST :
3261 return 3;
3262 case FR_RETICMP :
3263 return 4;
3264 case FR_FAKEICMP :
3265 return 5;
3266 }
3267
3268 switch (pass & FR_CMDMASK)
3269 {
3270 case FR_PASS :
3271 return 0;
3272 case FR_BLOCK :
3273 return -1;
3274 case FR_AUTH :
3275 return -2;
3276 case FR_ACCOUNT :
3277 return -3;
3278 case FR_PREAUTH :
3279 return -4;
3280 }
3281 return 2;
3282 #endif /* _KERNEL */
3283 }
3284
3285
3286 #ifdef IPFILTER_LOG
3287 /* ------------------------------------------------------------------------ */
3288 /* Function: ipf_dolog */
3289 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */
3290 /* Parameters: fin(I) - pointer to packet information */
3291 /* passp(IO) - pointer to current/new filter decision (unused) */
3292 /* */
3293 /* Checks flags set to see how a packet should be logged, if it is to be */
3294 /* logged. Adjust statistics based on its success or not. */
3295 /* ------------------------------------------------------------------------ */
3296 frentry_t *
ipf_dolog(fin,passp)3297 ipf_dolog(fin, passp)
3298 fr_info_t *fin;
3299 u_32_t *passp;
3300 {
3301 ipf_main_softc_t *softc = fin->fin_main_soft;
3302 u_32_t pass;
3303 int out;
3304
3305 out = fin->fin_out;
3306 pass = *passp;
3307
3308 if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3309 pass |= FF_LOGNOMATCH;
3310 LBUMPD(ipf_stats[out], fr_npkl);
3311 goto logit;
3312
3313 } else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3314 (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3315 if ((pass & FR_LOGMASK) != FR_LOGP)
3316 pass |= FF_LOGPASS;
3317 LBUMPD(ipf_stats[out], fr_ppkl);
3318 goto logit;
3319
3320 } else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3321 (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3322 if ((pass & FR_LOGMASK) != FR_LOGB)
3323 pass |= FF_LOGBLOCK;
3324 LBUMPD(ipf_stats[out], fr_bpkl);
3325
3326 logit:
3327 if (ipf_log_pkt(fin, pass) == -1) {
3328 /*
3329 * If the "or-block" option has been used then
3330 * block the packet if we failed to log it.
3331 */
3332 if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3333 DT1(frb_logfail2, u_int, pass);
3334 pass &= ~FR_CMDMASK;
3335 pass |= FR_BLOCK;
3336 fin->fin_reason = FRB_LOGFAIL2;
3337 }
3338 }
3339 *passp = pass;
3340 }
3341
3342 return fin->fin_fr;
3343 }
3344 #endif /* IPFILTER_LOG */
3345
3346
3347 /* ------------------------------------------------------------------------ */
3348 /* Function: ipf_cksum */
3349 /* Returns: u_short - IP header checksum */
3350 /* Parameters: addr(I) - pointer to start of buffer to checksum */
3351 /* len(I) - length of buffer in bytes */
3352 /* */
3353 /* Calculate the two's complement 16 bit checksum of the buffer passed. */
3354 /* */
3355 /* N.B.: addr should be 16bit aligned. */
3356 /* ------------------------------------------------------------------------ */
3357 u_short
ipf_cksum(addr,len)3358 ipf_cksum(addr, len)
3359 u_short *addr;
3360 int len;
3361 {
3362 u_32_t sum = 0;
3363
3364 for (sum = 0; len > 1; len -= 2)
3365 sum += *addr++;
3366
3367 /* mop up an odd byte, if necessary */
3368 if (len == 1)
3369 sum += *(u_char *)addr;
3370
3371 /*
3372 * add back carry outs from top 16 bits to low 16 bits
3373 */
3374 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
3375 sum += (sum >> 16); /* add carry */
3376 return (u_short)(~sum);
3377 }
3378
3379
3380 /* ------------------------------------------------------------------------ */
3381 /* Function: fr_cksum */
3382 /* Returns: u_short - layer 4 checksum */
3383 /* Parameters: fin(I) - pointer to packet information */
3384 /* ip(I) - pointer to IP header */
3385 /* l4proto(I) - protocol to caclulate checksum for */
3386 /* l4hdr(I) - pointer to layer 4 header */
3387 /* */
3388 /* Calculates the TCP checksum for the packet held in "m", using the data */
3389 /* in the IP header "ip" to seed it. */
3390 /* */
3391 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3392 /* and the TCP header. We also assume that data blocks aren't allocated in */
3393 /* odd sizes. */
3394 /* */
3395 /* Expects ip_len and ip_off to be in network byte order when called. */
3396 /* ------------------------------------------------------------------------ */
3397 u_short
fr_cksum(fin,ip,l4proto,l4hdr)3398 fr_cksum(fin, ip, l4proto, l4hdr)
3399 fr_info_t *fin;
3400 ip_t *ip;
3401 int l4proto;
3402 void *l4hdr;
3403 {
3404 u_short *sp, slen, sumsave, *csump;
3405 u_int sum, sum2;
3406 int hlen;
3407 int off;
3408 #ifdef USE_INET6
3409 ip6_t *ip6;
3410 #endif
3411
3412 csump = NULL;
3413 sumsave = 0;
3414 sp = NULL;
3415 slen = 0;
3416 hlen = 0;
3417 sum = 0;
3418
3419 sum = htons((u_short)l4proto);
3420 /*
3421 * Add up IP Header portion
3422 */
3423 #ifdef USE_INET6
3424 if (IP_V(ip) == 4) {
3425 #endif
3426 hlen = IP_HL(ip) << 2;
3427 off = hlen;
3428 sp = (u_short *)&ip->ip_src;
3429 sum += *sp++; /* ip_src */
3430 sum += *sp++;
3431 sum += *sp++; /* ip_dst */
3432 sum += *sp++;
3433 slen = fin->fin_plen - off;
3434 sum += htons(slen);
3435 #ifdef USE_INET6
3436 } else if (IP_V(ip) == 6) {
3437 mb_t *m;
3438
3439 m = fin->fin_m;
3440 ip6 = (ip6_t *)ip;
3441 off = ((caddr_t)ip6 - m->m_data) + sizeof(struct ip6_hdr);
3442 int len = ntohs(ip6->ip6_plen) - (off - sizeof(*ip6));
3443 return(ipf_pcksum6(fin, ip6, off, len));
3444 } else {
3445 return 0xffff;
3446 }
3447 #endif
3448
3449 switch (l4proto)
3450 {
3451 case IPPROTO_UDP :
3452 csump = &((udphdr_t *)l4hdr)->uh_sum;
3453 break;
3454
3455 case IPPROTO_TCP :
3456 csump = &((tcphdr_t *)l4hdr)->th_sum;
3457 break;
3458 case IPPROTO_ICMP :
3459 csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3460 sum = 0; /* Pseudo-checksum is not included */
3461 break;
3462 #ifdef USE_INET6
3463 case IPPROTO_ICMPV6 :
3464 csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3465 break;
3466 #endif
3467 default :
3468 break;
3469 }
3470
3471 if (csump != NULL) {
3472 sumsave = *csump;
3473 *csump = 0;
3474 }
3475
3476 sum2 = ipf_pcksum(fin, off, sum);
3477 if (csump != NULL)
3478 *csump = sumsave;
3479 return sum2;
3480 }
3481
3482
3483 /* ------------------------------------------------------------------------ */
3484 /* Function: ipf_findgroup */
3485 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */
3486 /* Parameters: softc(I) - pointer to soft context main structure */
3487 /* group(I) - group name to search for */
3488 /* unit(I) - device to which this group belongs */
3489 /* set(I) - which set of rules (inactive/inactive) this is */
3490 /* fgpp(O) - pointer to place to store pointer to the pointer */
3491 /* to where to add the next (last) group or where */
3492 /* to delete group from. */
3493 /* */
3494 /* Search amongst the defined groups for a particular group number. */
3495 /* ------------------------------------------------------------------------ */
3496 frgroup_t *
ipf_findgroup(softc,group,unit,set,fgpp)3497 ipf_findgroup(softc, group, unit, set, fgpp)
3498 ipf_main_softc_t *softc;
3499 char *group;
3500 minor_t unit;
3501 int set;
3502 frgroup_t ***fgpp;
3503 {
3504 frgroup_t *fg, **fgp;
3505
3506 /*
3507 * Which list of groups to search in is dependent on which list of
3508 * rules are being operated on.
3509 */
3510 fgp = &softc->ipf_groups[unit][set];
3511
3512 while ((fg = *fgp) != NULL) {
3513 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3514 break;
3515 else
3516 fgp = &fg->fg_next;
3517 }
3518 if (fgpp != NULL)
3519 *fgpp = fgp;
3520 return fg;
3521 }
3522
3523
3524 /* ------------------------------------------------------------------------ */
3525 /* Function: ipf_group_add */
3526 /* Returns: frgroup_t * - NULL == did not create group, */
3527 /* != NULL == pointer to the group */
3528 /* Parameters: softc(I) - pointer to soft context main structure */
3529 /* num(I) - group number to add */
3530 /* head(I) - rule pointer that is using this as the head */
3531 /* flags(I) - rule flags which describe the type of rule it is */
3532 /* unit(I) - device to which this group will belong to */
3533 /* set(I) - which set of rules (inactive/inactive) this is */
3534 /* Write Locks: ipf_mutex */
3535 /* */
3536 /* Add a new group head, or if it already exists, increase the reference */
3537 /* count to it. */
3538 /* ------------------------------------------------------------------------ */
3539 frgroup_t *
ipf_group_add(softc,group,head,flags,unit,set)3540 ipf_group_add(softc, group, head, flags, unit, set)
3541 ipf_main_softc_t *softc;
3542 char *group;
3543 void *head;
3544 u_32_t flags;
3545 minor_t unit;
3546 int set;
3547 {
3548 frgroup_t *fg, **fgp;
3549 u_32_t gflags;
3550
3551 if (group == NULL)
3552 return NULL;
3553
3554 if (unit == IPL_LOGIPF && *group == '\0')
3555 return NULL;
3556
3557 fgp = NULL;
3558 gflags = flags & FR_INOUT;
3559
3560 fg = ipf_findgroup(softc, group, unit, set, &fgp);
3561 if (fg != NULL) {
3562 if (fg->fg_head == NULL && head != NULL)
3563 fg->fg_head = head;
3564 if (fg->fg_flags == 0)
3565 fg->fg_flags = gflags;
3566 else if (gflags != fg->fg_flags)
3567 return NULL;
3568 fg->fg_ref++;
3569 return fg;
3570 }
3571
3572 KMALLOC(fg, frgroup_t *);
3573 if (fg != NULL) {
3574 fg->fg_head = head;
3575 fg->fg_start = NULL;
3576 fg->fg_next = *fgp;
3577 bcopy(group, fg->fg_name, strlen(group) + 1);
3578 fg->fg_flags = gflags;
3579 fg->fg_ref = 1;
3580 fg->fg_set = &softc->ipf_groups[unit][set];
3581 *fgp = fg;
3582 }
3583 return fg;
3584 }
3585
3586
3587 /* ------------------------------------------------------------------------ */
3588 /* Function: ipf_group_del */
3589 /* Returns: int - number of rules deleted */
3590 /* Parameters: softc(I) - pointer to soft context main structure */
3591 /* group(I) - group name to delete */
3592 /* fr(I) - filter rule from which group is referenced */
3593 /* Write Locks: ipf_mutex */
3594 /* */
3595 /* This function is called whenever a reference to a group is to be dropped */
3596 /* and thus its reference count needs to be lowered and the group free'd if */
3597 /* the reference count reaches zero. Passing in fr is really for the sole */
3598 /* purpose of knowing when the head rule is being deleted. */
3599 /* ------------------------------------------------------------------------ */
3600 void
ipf_group_del(softc,group,fr)3601 ipf_group_del(softc, group, fr)
3602 ipf_main_softc_t *softc;
3603 frgroup_t *group;
3604 frentry_t *fr;
3605 {
3606
3607 if (group->fg_head == fr)
3608 group->fg_head = NULL;
3609
3610 group->fg_ref--;
3611 if ((group->fg_ref == 0) && (group->fg_start == NULL))
3612 ipf_group_free(group);
3613 }
3614
3615
3616 /* ------------------------------------------------------------------------ */
3617 /* Function: ipf_group_free */
3618 /* Returns: Nil */
3619 /* Parameters: group(I) - pointer to filter rule group */
3620 /* */
3621 /* Remove the group from the list of groups and free it. */
3622 /* ------------------------------------------------------------------------ */
3623 static void
ipf_group_free(group)3624 ipf_group_free(group)
3625 frgroup_t *group;
3626 {
3627 frgroup_t **gp;
3628
3629 for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3630 if (*gp == group) {
3631 *gp = group->fg_next;
3632 break;
3633 }
3634 }
3635 KFREE(group);
3636 }
3637
3638
3639 /* ------------------------------------------------------------------------ */
3640 /* Function: ipf_group_flush */
3641 /* Returns: int - number of rules flush from group */
3642 /* Parameters: softc(I) - pointer to soft context main structure */
3643 /* Parameters: group(I) - pointer to filter rule group */
3644 /* */
3645 /* Remove all of the rules that currently are listed under the given group. */
3646 /* ------------------------------------------------------------------------ */
3647 static int
ipf_group_flush(softc,group)3648 ipf_group_flush(softc, group)
3649 ipf_main_softc_t *softc;
3650 frgroup_t *group;
3651 {
3652 int gone = 0;
3653
3654 (void) ipf_flushlist(softc, &gone, &group->fg_start);
3655
3656 return gone;
3657 }
3658
3659
3660 /* ------------------------------------------------------------------------ */
3661 /* Function: ipf_getrulen */
3662 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */
3663 /* Parameters: softc(I) - pointer to soft context main structure */
3664 /* Parameters: unit(I) - device for which to count the rule's number */
3665 /* flags(I) - which set of rules to find the rule in */
3666 /* group(I) - group name */
3667 /* n(I) - rule number to find */
3668 /* */
3669 /* Find rule # n in group # g and return a pointer to it. Return NULl if */
3670 /* group # g doesn't exist or there are less than n rules in the group. */
3671 /* ------------------------------------------------------------------------ */
3672 frentry_t *
ipf_getrulen(softc,unit,group,n)3673 ipf_getrulen(softc, unit, group, n)
3674 ipf_main_softc_t *softc;
3675 int unit;
3676 char *group;
3677 u_32_t n;
3678 {
3679 frentry_t *fr;
3680 frgroup_t *fg;
3681
3682 fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3683 if (fg == NULL)
3684 return NULL;
3685 for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3686 ;
3687 if (n != 0)
3688 return NULL;
3689 return fr;
3690 }
3691
3692
3693 /* ------------------------------------------------------------------------ */
3694 /* Function: ipf_flushlist */
3695 /* Returns: int - >= 0 - number of flushed rules */
3696 /* Parameters: softc(I) - pointer to soft context main structure */
3697 /* nfreedp(O) - pointer to int where flush count is stored */
3698 /* listp(I) - pointer to list to flush pointer */
3699 /* Write Locks: ipf_mutex */
3700 /* */
3701 /* Recursively flush rules from the list, descending groups as they are */
3702 /* encountered. if a rule is the head of a group and it has lost all its */
3703 /* group members, then also delete the group reference. nfreedp is needed */
3704 /* to store the accumulating count of rules removed, whereas the returned */
3705 /* value is just the number removed from the current list. The latter is */
3706 /* needed to correctly adjust reference counts on rules that define groups. */
3707 /* */
3708 /* NOTE: Rules not loaded from user space cannot be flushed. */
3709 /* ------------------------------------------------------------------------ */
3710 static int
ipf_flushlist(softc,nfreedp,listp)3711 ipf_flushlist(softc, nfreedp, listp)
3712 ipf_main_softc_t *softc;
3713 int *nfreedp;
3714 frentry_t **listp;
3715 {
3716 int freed = 0;
3717 frentry_t *fp;
3718
3719 while ((fp = *listp) != NULL) {
3720 if ((fp->fr_type & FR_T_BUILTIN) ||
3721 !(fp->fr_flags & FR_COPIED)) {
3722 listp = &fp->fr_next;
3723 continue;
3724 }
3725 *listp = fp->fr_next;
3726 if (fp->fr_next != NULL)
3727 fp->fr_next->fr_pnext = fp->fr_pnext;
3728 fp->fr_pnext = NULL;
3729
3730 if (fp->fr_grphead != NULL) {
3731 freed += ipf_group_flush(softc, fp->fr_grphead);
3732 fp->fr_names[fp->fr_grhead] = '\0';
3733 }
3734
3735 if (fp->fr_icmpgrp != NULL) {
3736 freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3737 fp->fr_names[fp->fr_icmphead] = '\0';
3738 }
3739
3740 if (fp->fr_srctrack.ht_max_nodes)
3741 ipf_rb_ht_flush(&fp->fr_srctrack);
3742
3743 fp->fr_next = NULL;
3744
3745 ASSERT(fp->fr_ref > 0);
3746 if (ipf_derefrule(softc, &fp) == 0)
3747 freed++;
3748 }
3749 *nfreedp += freed;
3750 return freed;
3751 }
3752
3753
3754 /* ------------------------------------------------------------------------ */
3755 /* Function: ipf_flush */
3756 /* Returns: int - >= 0 - number of flushed rules */
3757 /* Parameters: softc(I) - pointer to soft context main structure */
3758 /* unit(I) - device for which to flush rules */
3759 /* flags(I) - which set of rules to flush */
3760 /* */
3761 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3762 /* and IPv6) as defined by the value of flags. */
3763 /* ------------------------------------------------------------------------ */
3764 int
ipf_flush(softc,unit,flags)3765 ipf_flush(softc, unit, flags)
3766 ipf_main_softc_t *softc;
3767 minor_t unit;
3768 int flags;
3769 {
3770 int flushed = 0, set;
3771
3772 WRITE_ENTER(&softc->ipf_mutex);
3773
3774 set = softc->ipf_active;
3775 if ((flags & FR_INACTIVE) == FR_INACTIVE)
3776 set = 1 - set;
3777
3778 if (flags & FR_OUTQUE) {
3779 ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3780 ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3781 }
3782 if (flags & FR_INQUE) {
3783 ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3784 ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3785 }
3786
3787 flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3788 flags & (FR_INQUE|FR_OUTQUE));
3789
3790 RWLOCK_EXIT(&softc->ipf_mutex);
3791
3792 if (unit == IPL_LOGIPF) {
3793 int tmp;
3794
3795 tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3796 if (tmp >= 0)
3797 flushed += tmp;
3798 }
3799 return flushed;
3800 }
3801
3802
3803 /* ------------------------------------------------------------------------ */
3804 /* Function: ipf_flush_groups */
3805 /* Returns: int - >= 0 - number of flushed rules */
3806 /* Parameters: softc(I) - soft context pointerto work with */
3807 /* grhead(I) - pointer to the start of the group list to flush */
3808 /* flags(I) - which set of rules to flush */
3809 /* */
3810 /* Walk through all of the groups under the given group head and remove all */
3811 /* of those that match the flags passed in. The for loop here is bit more */
3812 /* complicated than usual because the removal of a rule with ipf_derefrule */
3813 /* may end up removing not only the structure pointed to by "fg" but also */
3814 /* what is fg_next and fg_next after that. So if a filter rule is actually */
3815 /* removed from the group then it is necessary to start again. */
3816 /* ------------------------------------------------------------------------ */
3817 static int
ipf_flush_groups(softc,grhead,flags)3818 ipf_flush_groups(softc, grhead, flags)
3819 ipf_main_softc_t *softc;
3820 frgroup_t **grhead;
3821 int flags;
3822 {
3823 frentry_t *fr, **frp;
3824 frgroup_t *fg, **fgp;
3825 int flushed = 0;
3826 int removed = 0;
3827
3828 for (fgp = grhead; (fg = *fgp) != NULL; ) {
3829 while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3830 fg = fg->fg_next;
3831 if (fg == NULL)
3832 break;
3833 removed = 0;
3834 frp = &fg->fg_start;
3835 while ((removed == 0) && ((fr = *frp) != NULL)) {
3836 if ((fr->fr_flags & flags) == 0) {
3837 frp = &fr->fr_next;
3838 } else {
3839 if (fr->fr_next != NULL)
3840 fr->fr_next->fr_pnext = fr->fr_pnext;
3841 *frp = fr->fr_next;
3842 fr->fr_pnext = NULL;
3843 fr->fr_next = NULL;
3844 (void) ipf_derefrule(softc, &fr);
3845 flushed++;
3846 removed++;
3847 }
3848 }
3849 if (removed == 0)
3850 fgp = &fg->fg_next;
3851 }
3852 return flushed;
3853 }
3854
3855
3856 /* ------------------------------------------------------------------------ */
3857 /* Function: memstr */
3858 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */
3859 /* Parameters: src(I) - pointer to byte sequence to match */
3860 /* dst(I) - pointer to byte sequence to search */
3861 /* slen(I) - match length */
3862 /* dlen(I) - length available to search in */
3863 /* */
3864 /* Search dst for a sequence of bytes matching those at src and extend for */
3865 /* slen bytes. */
3866 /* ------------------------------------------------------------------------ */
3867 char *
memstr(src,dst,slen,dlen)3868 memstr(src, dst, slen, dlen)
3869 const char *src;
3870 char *dst;
3871 size_t slen, dlen;
3872 {
3873 char *s = NULL;
3874
3875 while (dlen >= slen) {
3876 if (bcmp(src, dst, slen) == 0) {
3877 s = dst;
3878 break;
3879 }
3880 dst++;
3881 dlen--;
3882 }
3883 return s;
3884 }
3885 /* ------------------------------------------------------------------------ */
3886 /* Function: ipf_fixskip */
3887 /* Returns: Nil */
3888 /* Parameters: listp(IO) - pointer to start of list with skip rule */
3889 /* rp(I) - rule added/removed with skip in it. */
3890 /* addremove(I) - adjustment (-1/+1) to make to skip count, */
3891 /* depending on whether a rule was just added */
3892 /* or removed. */
3893 /* */
3894 /* Adjust all the rules in a list which would have skip'd past the position */
3895 /* where we are inserting to skip to the right place given the change. */
3896 /* ------------------------------------------------------------------------ */
3897 void
ipf_fixskip(listp,rp,addremove)3898 ipf_fixskip(listp, rp, addremove)
3899 frentry_t **listp, *rp;
3900 int addremove;
3901 {
3902 int rules, rn;
3903 frentry_t *fp;
3904
3905 rules = 0;
3906 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3907 rules++;
3908
3909 if (fp == NULL)
3910 return;
3911
3912 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3913 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3914 fp->fr_arg += addremove;
3915 }
3916
3917
3918 #ifdef _KERNEL
3919 /* ------------------------------------------------------------------------ */
3920 /* Function: count4bits */
3921 /* Returns: int - >= 0 - number of consecutive bits in input */
3922 /* Parameters: ip(I) - 32bit IP address */
3923 /* */
3924 /* IPv4 ONLY */
3925 /* count consecutive 1's in bit mask. If the mask generated by counting */
3926 /* consecutive 1's is different to that passed, return -1, else return # */
3927 /* of bits. */
3928 /* ------------------------------------------------------------------------ */
3929 int
count4bits(ip)3930 count4bits(ip)
3931 u_32_t ip;
3932 {
3933 u_32_t ipn;
3934 int cnt = 0, i, j;
3935
3936 ip = ipn = ntohl(ip);
3937 for (i = 32; i; i--, ipn *= 2)
3938 if (ipn & 0x80000000)
3939 cnt++;
3940 else
3941 break;
3942 ipn = 0;
3943 for (i = 32, j = cnt; i; i--, j--) {
3944 ipn *= 2;
3945 if (j > 0)
3946 ipn++;
3947 }
3948 if (ipn == ip)
3949 return cnt;
3950 return -1;
3951 }
3952
3953
3954 /* ------------------------------------------------------------------------ */
3955 /* Function: count6bits */
3956 /* Returns: int - >= 0 - number of consecutive bits in input */
3957 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */
3958 /* */
3959 /* IPv6 ONLY */
3960 /* count consecutive 1's in bit mask. */
3961 /* ------------------------------------------------------------------------ */
3962 # ifdef USE_INET6
3963 int
count6bits(msk)3964 count6bits(msk)
3965 u_32_t *msk;
3966 {
3967 int i = 0, k;
3968 u_32_t j;
3969
3970 for (k = 3; k >= 0; k--)
3971 if (msk[k] == 0xffffffff)
3972 i += 32;
3973 else {
3974 for (j = msk[k]; j; j <<= 1)
3975 if (j & 0x80000000)
3976 i++;
3977 }
3978 return i;
3979 }
3980 # endif
3981 #endif /* _KERNEL */
3982
3983
3984 /* ------------------------------------------------------------------------ */
3985 /* Function: ipf_synclist */
3986 /* Returns: int - 0 = no failures, else indication of first failure */
3987 /* Parameters: fr(I) - start of filter list to sync interface names for */
3988 /* ifp(I) - interface pointer for limiting sync lookups */
3989 /* Write Locks: ipf_mutex */
3990 /* */
3991 /* Walk through a list of filter rules and resolve any interface names into */
3992 /* pointers. Where dynamic addresses are used, also update the IP address */
3993 /* used in the rule. The interface pointer is used to limit the lookups to */
3994 /* a specific set of matching names if it is non-NULL. */
3995 /* Errors can occur when resolving the destination name of to/dup-to fields */
3996 /* when the name points to a pool and that pool doest not exist. If this */
3997 /* does happen then it is necessary to check if there are any lookup refs */
3998 /* that need to be dropped before returning with an error. */
3999 /* ------------------------------------------------------------------------ */
4000 static int
ipf_synclist(softc,fr,ifp)4001 ipf_synclist(softc, fr, ifp)
4002 ipf_main_softc_t *softc;
4003 frentry_t *fr;
4004 void *ifp;
4005 {
4006 frentry_t *frt, *start = fr;
4007 frdest_t *fdp;
4008 char *name;
4009 int error;
4010 void *ifa;
4011 int v, i;
4012
4013 error = 0;
4014
4015 for (; fr; fr = fr->fr_next) {
4016 if (fr->fr_family == AF_INET)
4017 v = 4;
4018 else if (fr->fr_family == AF_INET6)
4019 v = 6;
4020 else
4021 v = 0;
4022
4023 /*
4024 * Lookup all the interface names that are part of the rule.
4025 */
4026 for (i = 0; i < FR_NUM(fr->fr_ifas); i++) {
4027 if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
4028 continue;
4029 if (fr->fr_ifnames[i] == -1)
4030 continue;
4031 name = FR_NAME(fr, fr_ifnames[i]);
4032 fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
4033 }
4034
4035 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
4036 if (fr->fr_satype != FRI_NORMAL &&
4037 fr->fr_satype != FRI_LOOKUP) {
4038 ifa = ipf_resolvenic(softc, fr->fr_names +
4039 fr->fr_sifpidx, v);
4040 ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
4041 &fr->fr_src6, &fr->fr_smsk6);
4042 }
4043 if (fr->fr_datype != FRI_NORMAL &&
4044 fr->fr_datype != FRI_LOOKUP) {
4045 ifa = ipf_resolvenic(softc, fr->fr_names +
4046 fr->fr_sifpidx, v);
4047 ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
4048 &fr->fr_dst6, &fr->fr_dmsk6);
4049 }
4050 }
4051
4052 fdp = &fr->fr_tifs[0];
4053 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4054 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4055 if (error != 0)
4056 goto unwind;
4057 }
4058
4059 fdp = &fr->fr_tifs[1];
4060 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4061 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4062 if (error != 0)
4063 goto unwind;
4064 }
4065
4066 fdp = &fr->fr_dif;
4067 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4068 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4069 if (error != 0)
4070 goto unwind;
4071 }
4072
4073 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4074 (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
4075 fr->fr_srcptr = ipf_lookup_res_num(softc,
4076 fr->fr_srctype,
4077 IPL_LOGIPF,
4078 fr->fr_srcnum,
4079 &fr->fr_srcfunc);
4080 }
4081 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4082 (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
4083 fr->fr_dstptr = ipf_lookup_res_num(softc,
4084 fr->fr_dsttype,
4085 IPL_LOGIPF,
4086 fr->fr_dstnum,
4087 &fr->fr_dstfunc);
4088 }
4089 }
4090 return 0;
4091
4092 unwind:
4093 for (frt = start; frt != fr; fr = fr->fr_next) {
4094 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4095 (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
4096 ipf_lookup_deref(softc, frt->fr_srctype,
4097 frt->fr_srcptr);
4098 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4099 (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4100 ipf_lookup_deref(softc, frt->fr_dsttype,
4101 frt->fr_dstptr);
4102 }
4103 return error;
4104 }
4105
4106
4107 /* ------------------------------------------------------------------------ */
4108 /* Function: ipf_sync */
4109 /* Returns: void */
4110 /* Parameters: Nil */
4111 /* */
4112 /* ipf_sync() is called when we suspect that the interface list or */
4113 /* information about interfaces (like IP#) has changed. Go through all */
4114 /* filter rules, NAT entries and the state table and check if anything */
4115 /* needs to be changed/updated. */
4116 /* ------------------------------------------------------------------------ */
4117 int
ipf_sync(softc,ifp)4118 ipf_sync(softc, ifp)
4119 ipf_main_softc_t *softc;
4120 void *ifp;
4121 {
4122 int i;
4123
4124 # if !SOLARIS
4125 ipf_nat_sync(softc, ifp);
4126 ipf_state_sync(softc, ifp);
4127 ipf_lookup_sync(softc, ifp);
4128 # endif
4129
4130 WRITE_ENTER(&softc->ipf_mutex);
4131 (void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4132 (void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4133 (void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4134 (void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4135
4136 for (i = 0; i < IPL_LOGSIZE; i++) {
4137 frgroup_t *g;
4138
4139 for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4140 (void) ipf_synclist(softc, g->fg_start, ifp);
4141 for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4142 (void) ipf_synclist(softc, g->fg_start, ifp);
4143 }
4144 RWLOCK_EXIT(&softc->ipf_mutex);
4145
4146 return 0;
4147 }
4148
4149
4150 /*
4151 * In the functions below, bcopy() is called because the pointer being
4152 * copied _from_ in this instance is a pointer to a char buf (which could
4153 * end up being unaligned) and on the kernel's local stack.
4154 */
4155 /* ------------------------------------------------------------------------ */
4156 /* Function: copyinptr */
4157 /* Returns: int - 0 = success, else failure */
4158 /* Parameters: src(I) - pointer to the source address */
4159 /* dst(I) - destination address */
4160 /* size(I) - number of bytes to copy */
4161 /* */
4162 /* Copy a block of data in from user space, given a pointer to the pointer */
4163 /* to start copying from (src) and a pointer to where to store it (dst). */
4164 /* NB: src - pointer to user space pointer, dst - kernel space pointer */
4165 /* ------------------------------------------------------------------------ */
4166 int
copyinptr(softc,src,dst,size)4167 copyinptr(softc, src, dst, size)
4168 ipf_main_softc_t *softc;
4169 void *src, *dst;
4170 size_t size;
4171 {
4172 caddr_t ca;
4173 int error;
4174
4175 # if SOLARIS
4176 error = COPYIN(src, &ca, sizeof(ca));
4177 if (error != 0)
4178 return error;
4179 # else
4180 bcopy(src, (caddr_t)&ca, sizeof(ca));
4181 # endif
4182 error = COPYIN(ca, dst, size);
4183 if (error != 0) {
4184 IPFERROR(3);
4185 error = EFAULT;
4186 }
4187 return error;
4188 }
4189
4190
4191 /* ------------------------------------------------------------------------ */
4192 /* Function: copyoutptr */
4193 /* Returns: int - 0 = success, else failure */
4194 /* Parameters: src(I) - pointer to the source address */
4195 /* dst(I) - destination address */
4196 /* size(I) - number of bytes to copy */
4197 /* */
4198 /* Copy a block of data out to user space, given a pointer to the pointer */
4199 /* to start copying from (src) and a pointer to where to store it (dst). */
4200 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */
4201 /* ------------------------------------------------------------------------ */
4202 int
copyoutptr(softc,src,dst,size)4203 copyoutptr(softc, src, dst, size)
4204 ipf_main_softc_t *softc;
4205 void *src, *dst;
4206 size_t size;
4207 {
4208 caddr_t ca;
4209 int error;
4210
4211 bcopy(dst, (caddr_t)&ca, sizeof(ca));
4212 error = COPYOUT(src, ca, size);
4213 if (error != 0) {
4214 IPFERROR(4);
4215 error = EFAULT;
4216 }
4217 return error;
4218 }
4219
4220
4221 /* ------------------------------------------------------------------------ */
4222 /* Function: ipf_lock */
4223 /* Returns: int - 0 = success, else error */
4224 /* Parameters: data(I) - pointer to lock value to set */
4225 /* lockp(O) - pointer to location to store old lock value */
4226 /* */
4227 /* Get the new value for the lock integer, set it and return the old value */
4228 /* in *lockp. */
4229 /* ------------------------------------------------------------------------ */
4230 int
ipf_lock(data,lockp)4231 ipf_lock(data, lockp)
4232 caddr_t data;
4233 int *lockp;
4234 {
4235 int arg, err;
4236
4237 err = BCOPYIN(data, &arg, sizeof(arg));
4238 if (err != 0)
4239 return EFAULT;
4240 err = BCOPYOUT(lockp, data, sizeof(*lockp));
4241 if (err != 0)
4242 return EFAULT;
4243 *lockp = arg;
4244 return 0;
4245 }
4246
4247
4248 /* ------------------------------------------------------------------------ */
4249 /* Function: ipf_getstat */
4250 /* Returns: Nil */
4251 /* Parameters: softc(I) - pointer to soft context main structure */
4252 /* fiop(I) - pointer to ipfilter stats structure */
4253 /* rev(I) - version claim by program doing ioctl */
4254 /* */
4255 /* Stores a copy of current pointers, counters, etc, in the friostat */
4256 /* structure. */
4257 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the */
4258 /* program is looking for. This ensure that validation of the version it */
4259 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will */
4260 /* allow older binaries to work but kernels without it will not. */
4261 /* ------------------------------------------------------------------------ */
4262 /*ARGSUSED*/
4263 static void
ipf_getstat(softc,fiop,rev)4264 ipf_getstat(softc, fiop, rev)
4265 ipf_main_softc_t *softc;
4266 friostat_t *fiop;
4267 int rev;
4268 {
4269 int i;
4270
4271 bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4272 sizeof(ipf_statistics_t) * 2);
4273 fiop->f_locks[IPL_LOGSTATE] = -1;
4274 fiop->f_locks[IPL_LOGNAT] = -1;
4275 fiop->f_locks[IPL_LOGIPF] = -1;
4276 fiop->f_locks[IPL_LOGAUTH] = -1;
4277
4278 fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4279 fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4280 fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4281 fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4282 fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4283 fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4284 fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4285 fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4286
4287 fiop->f_ticks = softc->ipf_ticks;
4288 fiop->f_active = softc->ipf_active;
4289 fiop->f_froute[0] = softc->ipf_frouteok[0];
4290 fiop->f_froute[1] = softc->ipf_frouteok[1];
4291 fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4292 fiop->f_rb_node_max = softc->ipf_rb_node_max;
4293
4294 fiop->f_running = softc->ipf_running;
4295 for (i = 0; i < IPL_LOGSIZE; i++) {
4296 fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4297 fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4298 }
4299 #ifdef IPFILTER_LOG
4300 fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4301 fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4302 fiop->f_logging = 1;
4303 #else
4304 fiop->f_log_ok = 0;
4305 fiop->f_log_fail = 0;
4306 fiop->f_logging = 0;
4307 #endif
4308 fiop->f_defpass = softc->ipf_pass;
4309 fiop->f_features = ipf_features;
4310
4311 #ifdef IPFILTER_COMPAT
4312 sprintf(fiop->f_version, "IP Filter: v%d.%d.%d",
4313 (rev / 1000000) % 100,
4314 (rev / 10000) % 100,
4315 (rev / 100) % 100);
4316 #else
4317 rev = rev;
4318 (void) strncpy(fiop->f_version, ipfilter_version,
4319 sizeof(fiop->f_version));
4320 #endif
4321 }
4322
4323
4324 #ifdef USE_INET6
4325 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4326 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */
4327 -1, /* 1: UNUSED */
4328 -1, /* 2: UNUSED */
4329 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */
4330 -1, /* 4: ICMP_SOURCEQUENCH */
4331 ND_REDIRECT, /* 5: ICMP_REDIRECT */
4332 -1, /* 6: UNUSED */
4333 -1, /* 7: UNUSED */
4334 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */
4335 -1, /* 9: UNUSED */
4336 -1, /* 10: UNUSED */
4337 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */
4338 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */
4339 -1, /* 13: ICMP_TSTAMP */
4340 -1, /* 14: ICMP_TSTAMPREPLY */
4341 -1, /* 15: ICMP_IREQ */
4342 -1, /* 16: ICMP_IREQREPLY */
4343 -1, /* 17: ICMP_MASKREQ */
4344 -1, /* 18: ICMP_MASKREPLY */
4345 };
4346
4347
4348 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4349 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */
4350 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */
4351 -1, /* 2: ICMP_UNREACH_PROTOCOL */
4352 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */
4353 -1, /* 4: ICMP_UNREACH_NEEDFRAG */
4354 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */
4355 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */
4356 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */
4357 -1, /* 8: ICMP_UNREACH_ISOLATED */
4358 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */
4359 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */
4360 -1, /* 11: ICMP_UNREACH_TOSNET */
4361 -1, /* 12: ICMP_UNREACH_TOSHOST */
4362 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4363 };
4364 int icmpreplytype6[ICMP6_MAXTYPE + 1];
4365 #endif
4366
4367 int icmpreplytype4[ICMP_MAXTYPE + 1];
4368
4369
4370 /* ------------------------------------------------------------------------ */
4371 /* Function: ipf_matchicmpqueryreply */
4372 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */
4373 /* Parameters: v(I) - IP protocol version (4 or 6) */
4374 /* ic(I) - ICMP information */
4375 /* icmp(I) - ICMP packet header */
4376 /* rev(I) - direction (0 = forward/1 = reverse) of packet */
4377 /* */
4378 /* Check if the ICMP packet defined by the header pointed to by icmp is a */
4379 /* reply to one as described by what's in ic. If it is a match, return 1, */
4380 /* else return 0 for no match. */
4381 /* ------------------------------------------------------------------------ */
4382 int
ipf_matchicmpqueryreply(v,ic,icmp,rev)4383 ipf_matchicmpqueryreply(v, ic, icmp, rev)
4384 int v;
4385 icmpinfo_t *ic;
4386 icmphdr_t *icmp;
4387 int rev;
4388 {
4389 int ictype;
4390
4391 ictype = ic->ici_type;
4392
4393 if (v == 4) {
4394 /*
4395 * If we matched its type on the way in, then when going out
4396 * it will still be the same type.
4397 */
4398 if ((!rev && (icmp->icmp_type == ictype)) ||
4399 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4400 if (icmp->icmp_type != ICMP_ECHOREPLY)
4401 return 1;
4402 if (icmp->icmp_id == ic->ici_id)
4403 return 1;
4404 }
4405 }
4406 #ifdef USE_INET6
4407 else if (v == 6) {
4408 if ((!rev && (icmp->icmp_type == ictype)) ||
4409 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4410 if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4411 return 1;
4412 if (icmp->icmp_id == ic->ici_id)
4413 return 1;
4414 }
4415 }
4416 #endif
4417 return 0;
4418 }
4419
4420
4421 /*
4422 * IFNAMES are located in the variable length field starting at
4423 * frentry.fr_names. As pointers within the struct cannot be passed
4424 * to the kernel from ipf(8), an offset is used. An offset of -1 means it
4425 * is unused (invalid). If it is used (valid) it is an offset to the
4426 * character string of an interface name or a comment. The following
4427 * macros will assist those who follow to understand the code.
4428 */
4429 #define IPF_IFNAME_VALID(_a) (_a != -1)
4430 #define IPF_IFNAME_INVALID(_a) (_a == -1)
4431 #define IPF_IFNAMES_DIFFERENT(_a) \
4432 !((IPF_IFNAME_INVALID(fr1->_a) && \
4433 IPF_IFNAME_INVALID(fr2->_a)) || \
4434 (IPF_IFNAME_VALID(fr1->_a) && \
4435 IPF_IFNAME_VALID(fr2->_a) && \
4436 !strcmp(FR_NAME(fr1, _a), FR_NAME(fr2, _a))))
4437 #define IPF_FRDEST_DIFFERENT(_a) \
4438 (memcmp(&fr1->_a.fd_addr, &fr2->_a.fd_addr, \
4439 offsetof(frdest_t, fd_name) - offsetof(frdest_t, fd_addr)) || \
4440 IPF_IFNAMES_DIFFERENT(_a.fd_name))
4441
4442
4443 /* ------------------------------------------------------------------------ */
4444 /* Function: ipf_rule_compare */
4445 /* Parameters: fr1(I) - first rule structure to compare */
4446 /* fr2(I) - second rule structure to compare */
4447 /* Returns: int - 0 == rules are the same, else mismatch */
4448 /* */
4449 /* Compare two rules and return 0 if they match or a number indicating */
4450 /* which of the individual checks failed. */
4451 /* ------------------------------------------------------------------------ */
4452 static int
ipf_rule_compare(frentry_t * fr1,frentry_t * fr2)4453 ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4454 {
4455 int i;
4456
4457 if (fr1->fr_cksum != fr2->fr_cksum)
4458 return (1);
4459 if (fr1->fr_size != fr2->fr_size)
4460 return (2);
4461 if (fr1->fr_dsize != fr2->fr_dsize)
4462 return (3);
4463 if (bcmp((char *)&fr1->fr_func, (char *)&fr2->fr_func, FR_CMPSIZ)
4464 != 0)
4465 return (4);
4466 /*
4467 * XXX: There is still a bug here as different rules with the
4468 * the same interfaces but in a different order will compare
4469 * differently. But since multiple interfaces in a rule doesn't
4470 * work anyway a simple straightforward compare is performed
4471 * here. Ultimately frentry_t creation will need to be
4472 * revisited in ipf_y.y. While the other issue, recognition
4473 * of only the first interface in a list of interfaces will
4474 * need to be separately addressed along with why only four.
4475 */
4476 for (i = 0; i < FR_NUM(fr1->fr_ifnames); i++) {
4477 /*
4478 * XXX: It's either the same index or uninitialized.
4479 * We assume this because multiple interfaces
4480 * referenced by the same rule doesn't work anyway.
4481 */
4482 if (IPF_IFNAMES_DIFFERENT(fr_ifnames[i]))
4483 return(5);
4484 }
4485
4486 if (IPF_FRDEST_DIFFERENT(fr_tif))
4487 return (6);
4488 if (IPF_FRDEST_DIFFERENT(fr_rif))
4489 return (7);
4490 if (IPF_FRDEST_DIFFERENT(fr_dif))
4491 return (8);
4492 if (!fr1->fr_data && !fr2->fr_data)
4493 return (0); /* move along, nothing to see here */
4494 if (fr1->fr_data && fr2->fr_data) {
4495 if (bcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize) == 0)
4496 return (0); /* same */
4497 }
4498 return (9);
4499 }
4500
4501
4502 /* ------------------------------------------------------------------------ */
4503 /* Function: frrequest */
4504 /* Returns: int - 0 == success, > 0 == errno value */
4505 /* Parameters: unit(I) - device for which this is for */
4506 /* req(I) - ioctl command (SIOC*) */
4507 /* data(I) - pointr to ioctl data */
4508 /* set(I) - 1 or 0 (filter set) */
4509 /* makecopy(I) - flag indicating whether data points to a rule */
4510 /* in kernel space & hence doesn't need copying. */
4511 /* */
4512 /* This function handles all the requests which operate on the list of */
4513 /* filter rules. This includes adding, deleting, insertion. It is also */
4514 /* responsible for creating groups when a "head" rule is loaded. Interface */
4515 /* names are resolved here and other sanity checks are made on the content */
4516 /* of the rule structure being loaded. If a rule has user defined timeouts */
4517 /* then make sure they are created and initialised before exiting. */
4518 /* ------------------------------------------------------------------------ */
4519 int
frrequest(softc,unit,req,data,set,makecopy)4520 frrequest(softc, unit, req, data, set, makecopy)
4521 ipf_main_softc_t *softc;
4522 int unit;
4523 ioctlcmd_t req;
4524 int set, makecopy;
4525 caddr_t data;
4526 {
4527 int error = 0, in, family, need_free = 0;
4528 enum { OP_ADD, /* add rule */
4529 OP_REM, /* remove rule */
4530 OP_ZERO /* zero statistics and counters */ }
4531 addrem = OP_ADD;
4532 frentry_t frd, *fp, *f, **fprev, **ftail;
4533 void *ptr, *uptr, *cptr;
4534 u_int *p, *pp;
4535 frgroup_t *fg;
4536 char *group;
4537
4538 ptr = NULL;
4539 cptr = NULL;
4540 fg = NULL;
4541 fp = &frd;
4542 if (makecopy != 0) {
4543 bzero(fp, sizeof(frd));
4544 error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4545 if (error) {
4546 return error;
4547 }
4548 if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4549 IPFERROR(6);
4550 return EINVAL;
4551 }
4552 KMALLOCS(f, frentry_t *, fp->fr_size);
4553 if (f == NULL) {
4554 IPFERROR(131);
4555 return ENOMEM;
4556 }
4557 bzero(f, fp->fr_size);
4558 error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4559 fp->fr_size);
4560 if (error) {
4561 KFREES(f, fp->fr_size);
4562 return error;
4563 }
4564
4565 fp = f;
4566 f = NULL;
4567 fp->fr_next = NULL;
4568 fp->fr_dnext = NULL;
4569 fp->fr_pnext = NULL;
4570 fp->fr_pdnext = NULL;
4571 fp->fr_grp = NULL;
4572 fp->fr_grphead = NULL;
4573 fp->fr_icmpgrp = NULL;
4574 fp->fr_isc = (void *)-1;
4575 fp->fr_ptr = NULL;
4576 fp->fr_ref = 0;
4577 fp->fr_flags |= FR_COPIED;
4578 } else {
4579 fp = (frentry_t *)data;
4580 if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4581 IPFERROR(7);
4582 return EINVAL;
4583 }
4584 fp->fr_flags &= ~FR_COPIED;
4585 }
4586
4587 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4588 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4589 IPFERROR(8);
4590 error = EINVAL;
4591 goto donenolock;
4592 }
4593
4594 family = fp->fr_family;
4595 uptr = fp->fr_data;
4596
4597 if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4598 req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4599 addrem = OP_ADD; /* Add rule */
4600 else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4601 addrem = OP_REM; /* Remove rule */
4602 else if (req == (ioctlcmd_t)SIOCZRLST)
4603 addrem = OP_ZERO; /* Zero statistics and counters */
4604 else {
4605 IPFERROR(9);
4606 error = EINVAL;
4607 goto donenolock;
4608 }
4609
4610 /*
4611 * Only filter rules for IPv4 or IPv6 are accepted.
4612 */
4613 if (family == AF_INET) {
4614 /*EMPTY*/;
4615 #ifdef USE_INET6
4616 } else if (family == AF_INET6) {
4617 /*EMPTY*/;
4618 #endif
4619 } else if (family != 0) {
4620 IPFERROR(10);
4621 error = EINVAL;
4622 goto donenolock;
4623 }
4624
4625 /*
4626 * If the rule is being loaded from user space, i.e. we had to copy it
4627 * into kernel space, then do not trust the function pointer in the
4628 * rule.
4629 */
4630 if ((makecopy == 1) && (fp->fr_func != NULL)) {
4631 if (ipf_findfunc(fp->fr_func) == NULL) {
4632 IPFERROR(11);
4633 error = ESRCH;
4634 goto donenolock;
4635 }
4636
4637 if (addrem == OP_ADD) {
4638 error = ipf_funcinit(softc, fp);
4639 if (error != 0)
4640 goto donenolock;
4641 }
4642 }
4643 if ((fp->fr_flags & FR_CALLNOW) &&
4644 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4645 IPFERROR(142);
4646 error = ESRCH;
4647 goto donenolock;
4648 }
4649 if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4650 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4651 IPFERROR(143);
4652 error = ESRCH;
4653 goto donenolock;
4654 }
4655
4656 ptr = NULL;
4657 cptr = NULL;
4658
4659 if (FR_ISACCOUNT(fp->fr_flags))
4660 unit = IPL_LOGCOUNT;
4661
4662 /*
4663 * Check that each group name in the rule has a start index that
4664 * is valid.
4665 */
4666 if (fp->fr_icmphead != -1) {
4667 if ((fp->fr_icmphead < 0) ||
4668 (fp->fr_icmphead >= fp->fr_namelen)) {
4669 IPFERROR(136);
4670 error = EINVAL;
4671 goto donenolock;
4672 }
4673 if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4674 fp->fr_names[fp->fr_icmphead] = '\0';
4675 }
4676
4677 if (fp->fr_grhead != -1) {
4678 if ((fp->fr_grhead < 0) ||
4679 (fp->fr_grhead >= fp->fr_namelen)) {
4680 IPFERROR(137);
4681 error = EINVAL;
4682 goto donenolock;
4683 }
4684 if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4685 fp->fr_names[fp->fr_grhead] = '\0';
4686 }
4687
4688 if (fp->fr_group != -1) {
4689 if ((fp->fr_group < 0) ||
4690 (fp->fr_group >= fp->fr_namelen)) {
4691 IPFERROR(138);
4692 error = EINVAL;
4693 goto donenolock;
4694 }
4695 if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4696 /*
4697 * Allow loading rules that are in groups to cause
4698 * them to be created if they don't already exit.
4699 */
4700 group = FR_NAME(fp, fr_group);
4701 if (addrem == OP_ADD) {
4702 fg = ipf_group_add(softc, group, NULL,
4703 fp->fr_flags, unit, set);
4704 fp->fr_grp = fg;
4705 } else {
4706 fg = ipf_findgroup(softc, group, unit,
4707 set, NULL);
4708 if (fg == NULL) {
4709 IPFERROR(12);
4710 error = ESRCH;
4711 goto donenolock;
4712 }
4713 }
4714
4715 if (fg->fg_flags == 0) {
4716 fg->fg_flags = fp->fr_flags & FR_INOUT;
4717 } else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4718 IPFERROR(13);
4719 error = ESRCH;
4720 goto donenolock;
4721 }
4722 }
4723 } else {
4724 /*
4725 * If a rule is going to be part of a group then it does
4726 * not matter whether it is an in or out rule, but if it
4727 * isn't in a group, then it does...
4728 */
4729 if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4730 IPFERROR(14);
4731 error = EINVAL;
4732 goto donenolock;
4733 }
4734 }
4735 in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4736
4737 /*
4738 * Work out which rule list this change is being applied to.
4739 */
4740 ftail = NULL;
4741 fprev = NULL;
4742 if (unit == IPL_LOGAUTH) {
4743 if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4744 (fp->fr_tifs[1].fd_ptr != NULL) ||
4745 (fp->fr_dif.fd_ptr != NULL) ||
4746 (fp->fr_flags & FR_FASTROUTE)) {
4747 softc->ipf_interror = 145;
4748 error = EINVAL;
4749 goto donenolock;
4750 }
4751 fprev = ipf_auth_rulehead(softc);
4752 } else {
4753 if (FR_ISACCOUNT(fp->fr_flags))
4754 fprev = &softc->ipf_acct[in][set];
4755 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4756 fprev = &softc->ipf_rules[in][set];
4757 }
4758 if (fprev == NULL) {
4759 IPFERROR(15);
4760 error = ESRCH;
4761 goto donenolock;
4762 }
4763
4764 if (fg != NULL)
4765 fprev = &fg->fg_start;
4766
4767 /*
4768 * Copy in extra data for the rule.
4769 */
4770 if (fp->fr_dsize != 0) {
4771 if (makecopy != 0) {
4772 KMALLOCS(ptr, void *, fp->fr_dsize);
4773 if (ptr == NULL) {
4774 IPFERROR(16);
4775 error = ENOMEM;
4776 goto donenolock;
4777 }
4778
4779 /*
4780 * The bcopy case is for when the data is appended
4781 * to the rule by ipf_in_compat().
4782 */
4783 if (uptr >= (void *)fp &&
4784 uptr < (void *)((char *)fp + fp->fr_size)) {
4785 bcopy(uptr, ptr, fp->fr_dsize);
4786 error = 0;
4787 } else {
4788 error = COPYIN(uptr, ptr, fp->fr_dsize);
4789 if (error != 0) {
4790 IPFERROR(17);
4791 error = EFAULT;
4792 goto donenolock;
4793 }
4794 }
4795 } else {
4796 ptr = uptr;
4797 }
4798 fp->fr_data = ptr;
4799 } else {
4800 fp->fr_data = NULL;
4801 }
4802
4803 /*
4804 * Perform per-rule type sanity checks of their members.
4805 * All code after this needs to be aware that allocated memory
4806 * may need to be free'd before exiting.
4807 */
4808 switch (fp->fr_type & ~FR_T_BUILTIN)
4809 {
4810 #if defined(IPFILTER_BPF)
4811 case FR_T_BPFOPC :
4812 if (fp->fr_dsize == 0) {
4813 IPFERROR(19);
4814 error = EINVAL;
4815 break;
4816 }
4817 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4818 IPFERROR(20);
4819 error = EINVAL;
4820 break;
4821 }
4822 break;
4823 #endif
4824 case FR_T_IPF :
4825 /*
4826 * Preparation for error case at the bottom of this function.
4827 */
4828 if (fp->fr_datype == FRI_LOOKUP)
4829 fp->fr_dstptr = NULL;
4830 if (fp->fr_satype == FRI_LOOKUP)
4831 fp->fr_srcptr = NULL;
4832
4833 if (fp->fr_dsize != sizeof(fripf_t)) {
4834 IPFERROR(21);
4835 error = EINVAL;
4836 break;
4837 }
4838
4839 /*
4840 * Allowing a rule with both "keep state" and "with oow" is
4841 * pointless because adding a state entry to the table will
4842 * fail with the out of window (oow) flag set.
4843 */
4844 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4845 IPFERROR(22);
4846 error = EINVAL;
4847 break;
4848 }
4849
4850 switch (fp->fr_satype)
4851 {
4852 case FRI_BROADCAST :
4853 case FRI_DYNAMIC :
4854 case FRI_NETWORK :
4855 case FRI_NETMASKED :
4856 case FRI_PEERADDR :
4857 if (fp->fr_sifpidx < 0) {
4858 IPFERROR(23);
4859 error = EINVAL;
4860 }
4861 break;
4862 case FRI_LOOKUP :
4863 fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4864 &fp->fr_src6,
4865 &fp->fr_smsk6);
4866 if (fp->fr_srcfunc == NULL) {
4867 IPFERROR(132);
4868 error = ESRCH;
4869 break;
4870 }
4871 break;
4872 case FRI_NORMAL :
4873 break;
4874 default :
4875 IPFERROR(133);
4876 error = EINVAL;
4877 break;
4878 }
4879 if (error != 0)
4880 break;
4881
4882 switch (fp->fr_datype)
4883 {
4884 case FRI_BROADCAST :
4885 case FRI_DYNAMIC :
4886 case FRI_NETWORK :
4887 case FRI_NETMASKED :
4888 case FRI_PEERADDR :
4889 if (fp->fr_difpidx < 0) {
4890 IPFERROR(24);
4891 error = EINVAL;
4892 }
4893 break;
4894 case FRI_LOOKUP :
4895 fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4896 &fp->fr_dst6,
4897 &fp->fr_dmsk6);
4898 if (fp->fr_dstfunc == NULL) {
4899 IPFERROR(134);
4900 error = ESRCH;
4901 }
4902 break;
4903 case FRI_NORMAL :
4904 break;
4905 default :
4906 IPFERROR(135);
4907 error = EINVAL;
4908 }
4909 break;
4910
4911 case FR_T_NONE :
4912 case FR_T_CALLFUNC :
4913 case FR_T_COMPIPF :
4914 break;
4915
4916 case FR_T_IPFEXPR :
4917 if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4918 IPFERROR(25);
4919 error = EINVAL;
4920 }
4921 break;
4922
4923 default :
4924 IPFERROR(26);
4925 error = EINVAL;
4926 break;
4927 }
4928 if (error != 0)
4929 goto donenolock;
4930
4931 if (fp->fr_tif.fd_name != -1) {
4932 if ((fp->fr_tif.fd_name < 0) ||
4933 (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4934 IPFERROR(139);
4935 error = EINVAL;
4936 goto donenolock;
4937 }
4938 }
4939
4940 if (fp->fr_dif.fd_name != -1) {
4941 if ((fp->fr_dif.fd_name < 0) ||
4942 (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4943 IPFERROR(140);
4944 error = EINVAL;
4945 goto donenolock;
4946 }
4947 }
4948
4949 if (fp->fr_rif.fd_name != -1) {
4950 if ((fp->fr_rif.fd_name < 0) ||
4951 (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4952 IPFERROR(141);
4953 error = EINVAL;
4954 goto donenolock;
4955 }
4956 }
4957
4958 /*
4959 * Lookup all the interface names that are part of the rule.
4960 */
4961 error = ipf_synclist(softc, fp, NULL);
4962 if (error != 0)
4963 goto donenolock;
4964 fp->fr_statecnt = 0;
4965 if (fp->fr_srctrack.ht_max_nodes != 0)
4966 ipf_rb_ht_init(&fp->fr_srctrack);
4967
4968 /*
4969 * Look for an existing matching filter rule, but don't include the
4970 * next or interface pointer in the comparison (fr_next, fr_ifa).
4971 * This elminates rules which are indentical being loaded. Checksum
4972 * the constant part of the filter rule to make comparisons quicker
4973 * (this meaning no pointers are included).
4974 */
4975 pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4976 for (fp->fr_cksum = 0, p = (u_int *)fp->fr_data; p < pp; p++)
4977 fp->fr_cksum += *p;
4978
4979 WRITE_ENTER(&softc->ipf_mutex);
4980
4981 /*
4982 * Now that the filter rule lists are locked, we can walk the
4983 * chain of them without fear.
4984 */
4985 ftail = fprev;
4986 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4987 if (fp->fr_collect <= f->fr_collect) {
4988 ftail = fprev;
4989 f = NULL;
4990 break;
4991 }
4992 fprev = ftail;
4993 }
4994
4995 for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4996 if (ipf_rule_compare(fp, f) == 0)
4997 break;
4998 }
4999
5000 /*
5001 * If zero'ing statistics, copy current to caller and zero.
5002 */
5003 if (addrem == OP_ZERO) {
5004 if (f == NULL) {
5005 IPFERROR(27);
5006 error = ESRCH;
5007 } else {
5008 /*
5009 * Copy and reduce lock because of impending copyout.
5010 * Well we should, but if we do then the atomicity of
5011 * this call and the correctness of fr_hits and
5012 * fr_bytes cannot be guaranteed. As it is, this code
5013 * only resets them to 0 if they are successfully
5014 * copied out into user space.
5015 */
5016 bcopy((char *)f, (char *)fp, f->fr_size);
5017 /* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
5018
5019 /*
5020 * When we copy this rule back out, set the data
5021 * pointer to be what it was in user space.
5022 */
5023 fp->fr_data = uptr;
5024 error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
5025
5026 if (error == 0) {
5027 if ((f->fr_dsize != 0) && (uptr != NULL)) {
5028 error = COPYOUT(f->fr_data, uptr,
5029 f->fr_dsize);
5030 if (error == 0) {
5031 f->fr_hits = 0;
5032 f->fr_bytes = 0;
5033 } else {
5034 IPFERROR(28);
5035 error = EFAULT;
5036 }
5037 }
5038 }
5039 }
5040
5041 if (makecopy != 0) {
5042 if (ptr != NULL) {
5043 KFREES(ptr, fp->fr_dsize);
5044 }
5045 KFREES(fp, fp->fr_size);
5046 }
5047 RWLOCK_EXIT(&softc->ipf_mutex);
5048 return error;
5049 }
5050
5051 if (f == NULL) {
5052 /*
5053 * At the end of this, ftail must point to the place where the
5054 * new rule is to be saved/inserted/added.
5055 * For SIOCAD*FR, this should be the last rule in the group of
5056 * rules that have equal fr_collect fields.
5057 * For SIOCIN*FR, ...
5058 */
5059 if (req == (ioctlcmd_t)SIOCADAFR ||
5060 req == (ioctlcmd_t)SIOCADIFR) {
5061
5062 for (ftail = fprev; (f = *ftail) != NULL; ) {
5063 if (f->fr_collect > fp->fr_collect)
5064 break;
5065 ftail = &f->fr_next;
5066 fprev = ftail;
5067 }
5068 ftail = fprev;
5069 f = NULL;
5070 ptr = NULL;
5071 } else if (req == (ioctlcmd_t)SIOCINAFR ||
5072 req == (ioctlcmd_t)SIOCINIFR) {
5073 while ((f = *fprev) != NULL) {
5074 if (f->fr_collect >= fp->fr_collect)
5075 break;
5076 fprev = &f->fr_next;
5077 }
5078 ftail = fprev;
5079 if (fp->fr_hits != 0) {
5080 while (fp->fr_hits && (f = *ftail)) {
5081 if (f->fr_collect != fp->fr_collect)
5082 break;
5083 fprev = ftail;
5084 ftail = &f->fr_next;
5085 fp->fr_hits--;
5086 }
5087 }
5088 f = NULL;
5089 ptr = NULL;
5090 }
5091 }
5092
5093 /*
5094 * Request to remove a rule.
5095 */
5096 if (addrem == OP_REM) {
5097 if (f == NULL) {
5098 IPFERROR(29);
5099 error = ESRCH;
5100 } else {
5101 /*
5102 * Do not allow activity from user space to interfere
5103 * with rules not loaded that way.
5104 */
5105 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
5106 IPFERROR(30);
5107 error = EPERM;
5108 goto done;
5109 }
5110
5111 /*
5112 * Return EBUSY if the rule is being reference by
5113 * something else (eg state information.)
5114 */
5115 if (f->fr_ref > 1) {
5116 IPFERROR(31);
5117 error = EBUSY;
5118 goto done;
5119 }
5120 #ifdef IPFILTER_SCAN
5121 if (f->fr_isctag != -1 &&
5122 (f->fr_isc != (struct ipscan *)-1))
5123 ipf_scan_detachfr(f);
5124 #endif
5125
5126 if (unit == IPL_LOGAUTH) {
5127 error = ipf_auth_precmd(softc, req, f, ftail);
5128 goto done;
5129 }
5130
5131 ipf_rule_delete(softc, f, unit, set);
5132
5133 need_free = makecopy;
5134 }
5135 } else {
5136 /*
5137 * Not removing, so we must be adding/inserting a rule.
5138 */
5139 if (f != NULL) {
5140 IPFERROR(32);
5141 error = EEXIST;
5142 goto done;
5143 }
5144 if (unit == IPL_LOGAUTH) {
5145 error = ipf_auth_precmd(softc, req, fp, ftail);
5146 goto done;
5147 }
5148
5149 MUTEX_NUKE(&fp->fr_lock);
5150 MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5151 if (fp->fr_die != 0)
5152 ipf_rule_expire_insert(softc, fp, set);
5153
5154 fp->fr_hits = 0;
5155 if (makecopy != 0)
5156 fp->fr_ref = 1;
5157 fp->fr_pnext = ftail;
5158 fp->fr_next = *ftail;
5159 if (fp->fr_next != NULL)
5160 fp->fr_next->fr_pnext = &fp->fr_next;
5161 *ftail = fp;
5162 ipf_fixskip(ftail, fp, 1);
5163
5164 fp->fr_icmpgrp = NULL;
5165 if (fp->fr_icmphead != -1) {
5166 group = FR_NAME(fp, fr_icmphead);
5167 fg = ipf_group_add(softc, group, fp, 0, unit, set);
5168 fp->fr_icmpgrp = fg;
5169 }
5170
5171 fp->fr_grphead = NULL;
5172 if (fp->fr_grhead != -1) {
5173 group = FR_NAME(fp, fr_grhead);
5174 fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5175 unit, set);
5176 fp->fr_grphead = fg;
5177 }
5178 }
5179 done:
5180 RWLOCK_EXIT(&softc->ipf_mutex);
5181 donenolock:
5182 if (need_free || (error != 0)) {
5183 if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5184 if ((fp->fr_satype == FRI_LOOKUP) &&
5185 (fp->fr_srcptr != NULL))
5186 ipf_lookup_deref(softc, fp->fr_srctype,
5187 fp->fr_srcptr);
5188 if ((fp->fr_datype == FRI_LOOKUP) &&
5189 (fp->fr_dstptr != NULL))
5190 ipf_lookup_deref(softc, fp->fr_dsttype,
5191 fp->fr_dstptr);
5192 }
5193 if (fp->fr_grp != NULL) {
5194 WRITE_ENTER(&softc->ipf_mutex);
5195 ipf_group_del(softc, fp->fr_grp, fp);
5196 RWLOCK_EXIT(&softc->ipf_mutex);
5197 }
5198 if ((ptr != NULL) && (makecopy != 0)) {
5199 KFREES(ptr, fp->fr_dsize);
5200 }
5201 KFREES(fp, fp->fr_size);
5202 }
5203 return (error);
5204 }
5205
5206
5207 /* ------------------------------------------------------------------------ */
5208 /* Function: ipf_rule_delete */
5209 /* Returns: Nil */
5210 /* Parameters: softc(I) - pointer to soft context main structure */
5211 /* f(I) - pointer to the rule being deleted */
5212 /* ftail(I) - pointer to the pointer to f */
5213 /* unit(I) - device for which this is for */
5214 /* set(I) - 1 or 0 (filter set) */
5215 /* */
5216 /* This function attempts to do what it can to delete a filter rule: remove */
5217 /* it from any linked lists and remove any groups it is responsible for. */
5218 /* But in the end, removing a rule can only drop the reference count - we */
5219 /* must use that as the guide for whether or not it can be freed. */
5220 /* ------------------------------------------------------------------------ */
5221 static void
ipf_rule_delete(softc,f,unit,set)5222 ipf_rule_delete(softc, f, unit, set)
5223 ipf_main_softc_t *softc;
5224 frentry_t *f;
5225 int unit, set;
5226 {
5227
5228 /*
5229 * If fr_pdnext is set, then the rule is on the expire list, so
5230 * remove it from there.
5231 */
5232 if (f->fr_pdnext != NULL) {
5233 *f->fr_pdnext = f->fr_dnext;
5234 if (f->fr_dnext != NULL)
5235 f->fr_dnext->fr_pdnext = f->fr_pdnext;
5236 f->fr_pdnext = NULL;
5237 f->fr_dnext = NULL;
5238 }
5239
5240 ipf_fixskip(f->fr_pnext, f, -1);
5241 if (f->fr_pnext != NULL)
5242 *f->fr_pnext = f->fr_next;
5243 if (f->fr_next != NULL)
5244 f->fr_next->fr_pnext = f->fr_pnext;
5245 f->fr_pnext = NULL;
5246 f->fr_next = NULL;
5247
5248 (void) ipf_derefrule(softc, &f);
5249 }
5250
5251 /* ------------------------------------------------------------------------ */
5252 /* Function: ipf_rule_expire_insert */
5253 /* Returns: Nil */
5254 /* Parameters: softc(I) - pointer to soft context main structure */
5255 /* f(I) - pointer to rule to be added to expire list */
5256 /* set(I) - 1 or 0 (filter set) */
5257 /* */
5258 /* If the new rule has a given expiration time, insert it into the list of */
5259 /* expiring rules with the ones to be removed first added to the front of */
5260 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5261 /* expiration interval checks. */
5262 /* ------------------------------------------------------------------------ */
5263 static void
ipf_rule_expire_insert(softc,f,set)5264 ipf_rule_expire_insert(softc, f, set)
5265 ipf_main_softc_t *softc;
5266 frentry_t *f;
5267 int set;
5268 {
5269 frentry_t *fr;
5270
5271 /*
5272 */
5273
5274 f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5275 for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5276 fr = fr->fr_dnext) {
5277 if (f->fr_die < fr->fr_die)
5278 break;
5279 if (fr->fr_dnext == NULL) {
5280 /*
5281 * We've got to the last rule and everything
5282 * wanted to be expired before this new node,
5283 * so we have to tack it on the end...
5284 */
5285 fr->fr_dnext = f;
5286 f->fr_pdnext = &fr->fr_dnext;
5287 fr = NULL;
5288 break;
5289 }
5290 }
5291
5292 if (softc->ipf_rule_explist[set] == NULL) {
5293 softc->ipf_rule_explist[set] = f;
5294 f->fr_pdnext = &softc->ipf_rule_explist[set];
5295 } else if (fr != NULL) {
5296 f->fr_dnext = fr;
5297 f->fr_pdnext = fr->fr_pdnext;
5298 fr->fr_pdnext = &f->fr_dnext;
5299 }
5300 }
5301
5302
5303 /* ------------------------------------------------------------------------ */
5304 /* Function: ipf_findlookup */
5305 /* Returns: NULL = failure, else success */
5306 /* Parameters: softc(I) - pointer to soft context main structure */
5307 /* unit(I) - ipf device we want to find match for */
5308 /* fp(I) - rule for which lookup is for */
5309 /* addrp(I) - pointer to lookup information in address struct */
5310 /* maskp(O) - pointer to lookup information for storage */
5311 /* */
5312 /* When using pools and hash tables to store addresses for matching in */
5313 /* rules, it is necessary to resolve both the object referred to by the */
5314 /* name or address (and return that pointer) and also provide the means by */
5315 /* which to determine if an address belongs to that object to make the */
5316 /* packet matching quicker. */
5317 /* ------------------------------------------------------------------------ */
5318 static void *
ipf_findlookup(softc,unit,fr,addrp,maskp)5319 ipf_findlookup(softc, unit, fr, addrp, maskp)
5320 ipf_main_softc_t *softc;
5321 int unit;
5322 frentry_t *fr;
5323 i6addr_t *addrp, *maskp;
5324 {
5325 void *ptr = NULL;
5326
5327 switch (addrp->iplookupsubtype)
5328 {
5329 case 0 :
5330 ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5331 addrp->iplookupnum,
5332 &maskp->iplookupfunc);
5333 break;
5334 case 1 :
5335 if (addrp->iplookupname < 0)
5336 break;
5337 if (addrp->iplookupname >= fr->fr_namelen)
5338 break;
5339 ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5340 fr->fr_names + addrp->iplookupname,
5341 &maskp->iplookupfunc);
5342 break;
5343 default :
5344 break;
5345 }
5346
5347 return ptr;
5348 }
5349
5350
5351 /* ------------------------------------------------------------------------ */
5352 /* Function: ipf_funcinit */
5353 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */
5354 /* Parameters: softc(I) - pointer to soft context main structure */
5355 /* fr(I) - pointer to filter rule */
5356 /* */
5357 /* If a rule is a call rule, then check if the function it points to needs */
5358 /* an init function to be called now the rule has been loaded. */
5359 /* ------------------------------------------------------------------------ */
5360 static int
ipf_funcinit(softc,fr)5361 ipf_funcinit(softc, fr)
5362 ipf_main_softc_t *softc;
5363 frentry_t *fr;
5364 {
5365 ipfunc_resolve_t *ft;
5366 int err;
5367
5368 IPFERROR(34);
5369 err = ESRCH;
5370
5371 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5372 if (ft->ipfu_addr == fr->fr_func) {
5373 err = 0;
5374 if (ft->ipfu_init != NULL)
5375 err = (*ft->ipfu_init)(softc, fr);
5376 break;
5377 }
5378 return err;
5379 }
5380
5381
5382 /* ------------------------------------------------------------------------ */
5383 /* Function: ipf_funcfini */
5384 /* Returns: Nil */
5385 /* Parameters: softc(I) - pointer to soft context main structure */
5386 /* fr(I) - pointer to filter rule */
5387 /* */
5388 /* For a given filter rule, call the matching "fini" function if the rule */
5389 /* is using a known function that would have resulted in the "init" being */
5390 /* called for ealier. */
5391 /* ------------------------------------------------------------------------ */
5392 static void
ipf_funcfini(softc,fr)5393 ipf_funcfini(softc, fr)
5394 ipf_main_softc_t *softc;
5395 frentry_t *fr;
5396 {
5397 ipfunc_resolve_t *ft;
5398
5399 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5400 if (ft->ipfu_addr == fr->fr_func) {
5401 if (ft->ipfu_fini != NULL)
5402 (void) (*ft->ipfu_fini)(softc, fr);
5403 break;
5404 }
5405 }
5406
5407
5408 /* ------------------------------------------------------------------------ */
5409 /* Function: ipf_findfunc */
5410 /* Returns: ipfunc_t - pointer to function if found, else NULL */
5411 /* Parameters: funcptr(I) - function pointer to lookup */
5412 /* */
5413 /* Look for a function in the table of known functions. */
5414 /* ------------------------------------------------------------------------ */
5415 static ipfunc_t
ipf_findfunc(funcptr)5416 ipf_findfunc(funcptr)
5417 ipfunc_t funcptr;
5418 {
5419 ipfunc_resolve_t *ft;
5420
5421 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5422 if (ft->ipfu_addr == funcptr)
5423 return funcptr;
5424 return NULL;
5425 }
5426
5427
5428 /* ------------------------------------------------------------------------ */
5429 /* Function: ipf_resolvefunc */
5430 /* Returns: int - 0 == success, else error */
5431 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */
5432 /* */
5433 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5434 /* This will either be the function name (if the pointer is set) or the */
5435 /* function pointer if the name is set. When found, fill in the other one */
5436 /* so that the entire, complete, structure can be copied back to user space.*/
5437 /* ------------------------------------------------------------------------ */
5438 int
ipf_resolvefunc(softc,data)5439 ipf_resolvefunc(softc, data)
5440 ipf_main_softc_t *softc;
5441 void *data;
5442 {
5443 ipfunc_resolve_t res, *ft;
5444 int error;
5445
5446 error = BCOPYIN(data, &res, sizeof(res));
5447 if (error != 0) {
5448 IPFERROR(123);
5449 return EFAULT;
5450 }
5451
5452 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5453 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5454 if (strncmp(res.ipfu_name, ft->ipfu_name,
5455 sizeof(res.ipfu_name)) == 0) {
5456 res.ipfu_addr = ft->ipfu_addr;
5457 res.ipfu_init = ft->ipfu_init;
5458 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5459 IPFERROR(35);
5460 return EFAULT;
5461 }
5462 return 0;
5463 }
5464 }
5465 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5466 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5467 if (ft->ipfu_addr == res.ipfu_addr) {
5468 (void) strncpy(res.ipfu_name, ft->ipfu_name,
5469 sizeof(res.ipfu_name));
5470 res.ipfu_init = ft->ipfu_init;
5471 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5472 IPFERROR(36);
5473 return EFAULT;
5474 }
5475 return 0;
5476 }
5477 }
5478 IPFERROR(37);
5479 return ESRCH;
5480 }
5481
5482
5483 #if !defined(_KERNEL) || SOLARIS
5484 /*
5485 * From: NetBSD
5486 * ppsratecheck(): packets (or events) per second limitation.
5487 */
5488 int
ppsratecheck(lasttime,curpps,maxpps)5489 ppsratecheck(lasttime, curpps, maxpps)
5490 struct timeval *lasttime;
5491 int *curpps;
5492 int maxpps; /* maximum pps allowed */
5493 {
5494 struct timeval tv, delta;
5495 int rv;
5496
5497 GETKTIME(&tv);
5498
5499 delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5500 delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5501 if (delta.tv_usec < 0) {
5502 delta.tv_sec--;
5503 delta.tv_usec += 1000000;
5504 }
5505
5506 /*
5507 * check for 0,0 is so that the message will be seen at least once.
5508 * if more than one second have passed since the last update of
5509 * lasttime, reset the counter.
5510 *
5511 * we do increment *curpps even in *curpps < maxpps case, as some may
5512 * try to use *curpps for stat purposes as well.
5513 */
5514 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5515 delta.tv_sec >= 1) {
5516 *lasttime = tv;
5517 *curpps = 0;
5518 rv = 1;
5519 } else if (maxpps < 0)
5520 rv = 1;
5521 else if (*curpps < maxpps)
5522 rv = 1;
5523 else
5524 rv = 0;
5525 *curpps = *curpps + 1;
5526
5527 return (rv);
5528 }
5529 #endif
5530
5531
5532 /* ------------------------------------------------------------------------ */
5533 /* Function: ipf_derefrule */
5534 /* Returns: int - 0 == rule freed up, else rule not freed */
5535 /* Parameters: fr(I) - pointer to filter rule */
5536 /* */
5537 /* Decrement the reference counter to a rule by one. If it reaches zero, */
5538 /* free it and any associated storage space being used by it. */
5539 /* ------------------------------------------------------------------------ */
5540 int
ipf_derefrule(softc,frp)5541 ipf_derefrule(softc, frp)
5542 ipf_main_softc_t *softc;
5543 frentry_t **frp;
5544 {
5545 frentry_t *fr;
5546 frdest_t *fdp;
5547
5548 fr = *frp;
5549 *frp = NULL;
5550
5551 MUTEX_ENTER(&fr->fr_lock);
5552 fr->fr_ref--;
5553 if (fr->fr_ref == 0) {
5554 MUTEX_EXIT(&fr->fr_lock);
5555 MUTEX_DESTROY(&fr->fr_lock);
5556
5557 ipf_funcfini(softc, fr);
5558
5559 fdp = &fr->fr_tif;
5560 if (fdp->fd_type == FRD_DSTLIST)
5561 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5562
5563 fdp = &fr->fr_rif;
5564 if (fdp->fd_type == FRD_DSTLIST)
5565 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5566
5567 fdp = &fr->fr_dif;
5568 if (fdp->fd_type == FRD_DSTLIST)
5569 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5570
5571 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5572 fr->fr_satype == FRI_LOOKUP)
5573 ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5574 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5575 fr->fr_datype == FRI_LOOKUP)
5576 ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5577
5578 if (fr->fr_grp != NULL)
5579 ipf_group_del(softc, fr->fr_grp, fr);
5580
5581 if (fr->fr_grphead != NULL)
5582 ipf_group_del(softc, fr->fr_grphead, fr);
5583
5584 if (fr->fr_icmpgrp != NULL)
5585 ipf_group_del(softc, fr->fr_icmpgrp, fr);
5586
5587 if ((fr->fr_flags & FR_COPIED) != 0) {
5588 if (fr->fr_dsize) {
5589 KFREES(fr->fr_data, fr->fr_dsize);
5590 }
5591 KFREES(fr, fr->fr_size);
5592 return 0;
5593 }
5594 return 1;
5595 } else {
5596 MUTEX_EXIT(&fr->fr_lock);
5597 }
5598 return -1;
5599 }
5600
5601
5602 /* ------------------------------------------------------------------------ */
5603 /* Function: ipf_grpmapinit */
5604 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5605 /* Parameters: fr(I) - pointer to rule to find hash table for */
5606 /* */
5607 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */
5608 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */
5609 /* ------------------------------------------------------------------------ */
5610 static int
ipf_grpmapinit(softc,fr)5611 ipf_grpmapinit(softc, fr)
5612 ipf_main_softc_t *softc;
5613 frentry_t *fr;
5614 {
5615 char name[FR_GROUPLEN];
5616 iphtable_t *iph;
5617
5618 #if defined(SNPRINTF) && defined(_KERNEL)
5619 SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
5620 #else
5621 (void) sprintf(name, "%d", fr->fr_arg);
5622 #endif
5623 iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5624 if (iph == NULL) {
5625 IPFERROR(38);
5626 return ESRCH;
5627 }
5628 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5629 IPFERROR(39);
5630 return ESRCH;
5631 }
5632 iph->iph_ref++;
5633 fr->fr_ptr = iph;
5634 return 0;
5635 }
5636
5637
5638 /* ------------------------------------------------------------------------ */
5639 /* Function: ipf_grpmapfini */
5640 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5641 /* Parameters: softc(I) - pointer to soft context main structure */
5642 /* fr(I) - pointer to rule to release hash table for */
5643 /* */
5644 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5645 /* be called to undo what ipf_grpmapinit caused to be done. */
5646 /* ------------------------------------------------------------------------ */
5647 static int
ipf_grpmapfini(softc,fr)5648 ipf_grpmapfini(softc, fr)
5649 ipf_main_softc_t *softc;
5650 frentry_t *fr;
5651 {
5652 iphtable_t *iph;
5653 iph = fr->fr_ptr;
5654 if (iph != NULL)
5655 ipf_lookup_deref(softc, IPLT_HASH, iph);
5656 return 0;
5657 }
5658
5659
5660 /* ------------------------------------------------------------------------ */
5661 /* Function: ipf_srcgrpmap */
5662 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5663 /* Parameters: fin(I) - pointer to packet information */
5664 /* passp(IO) - pointer to current/new filter decision (unused) */
5665 /* */
5666 /* Look for a rule group head in a hash table, using the source address as */
5667 /* the key, and descend into that group and continue matching rules against */
5668 /* the packet. */
5669 /* ------------------------------------------------------------------------ */
5670 frentry_t *
ipf_srcgrpmap(fin,passp)5671 ipf_srcgrpmap(fin, passp)
5672 fr_info_t *fin;
5673 u_32_t *passp;
5674 {
5675 frgroup_t *fg;
5676 void *rval;
5677
5678 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5679 &fin->fin_src);
5680 if (rval == NULL)
5681 return NULL;
5682
5683 fg = rval;
5684 fin->fin_fr = fg->fg_start;
5685 (void) ipf_scanlist(fin, *passp);
5686 return fin->fin_fr;
5687 }
5688
5689
5690 /* ------------------------------------------------------------------------ */
5691 /* Function: ipf_dstgrpmap */
5692 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5693 /* Parameters: fin(I) - pointer to packet information */
5694 /* passp(IO) - pointer to current/new filter decision (unused) */
5695 /* */
5696 /* Look for a rule group head in a hash table, using the destination */
5697 /* address as the key, and descend into that group and continue matching */
5698 /* rules against the packet. */
5699 /* ------------------------------------------------------------------------ */
5700 frentry_t *
ipf_dstgrpmap(fin,passp)5701 ipf_dstgrpmap(fin, passp)
5702 fr_info_t *fin;
5703 u_32_t *passp;
5704 {
5705 frgroup_t *fg;
5706 void *rval;
5707
5708 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5709 &fin->fin_dst);
5710 if (rval == NULL)
5711 return NULL;
5712
5713 fg = rval;
5714 fin->fin_fr = fg->fg_start;
5715 (void) ipf_scanlist(fin, *passp);
5716 return fin->fin_fr;
5717 }
5718
5719 /*
5720 * Queue functions
5721 * ===============
5722 * These functions manage objects on queues for efficient timeouts. There
5723 * are a number of system defined queues as well as user defined timeouts.
5724 * It is expected that a lock is held in the domain in which the queue
5725 * belongs (i.e. either state or NAT) when calling any of these functions
5726 * that prevents ipf_freetimeoutqueue() from being called at the same time
5727 * as any other.
5728 */
5729
5730
5731 /* ------------------------------------------------------------------------ */
5732 /* Function: ipf_addtimeoutqueue */
5733 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */
5734 /* timeout queue with given interval. */
5735 /* Parameters: parent(I) - pointer to pointer to parent node of this list */
5736 /* of interface queues. */
5737 /* seconds(I) - timeout value in seconds for this queue. */
5738 /* */
5739 /* This routine first looks for a timeout queue that matches the interval */
5740 /* being requested. If it finds one, increments the reference counter and */
5741 /* returns a pointer to it. If none are found, it allocates a new one and */
5742 /* inserts it at the top of the list. */
5743 /* */
5744 /* Locking. */
5745 /* It is assumed that the caller of this function has an appropriate lock */
5746 /* held (exclusively) in the domain that encompases 'parent'. */
5747 /* ------------------------------------------------------------------------ */
5748 ipftq_t *
ipf_addtimeoutqueue(softc,parent,seconds)5749 ipf_addtimeoutqueue(softc, parent, seconds)
5750 ipf_main_softc_t *softc;
5751 ipftq_t **parent;
5752 u_int seconds;
5753 {
5754 ipftq_t *ifq;
5755 u_int period;
5756
5757 period = seconds * IPF_HZ_DIVIDE;
5758
5759 MUTEX_ENTER(&softc->ipf_timeoutlock);
5760 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5761 if (ifq->ifq_ttl == period) {
5762 /*
5763 * Reset the delete flag, if set, so the structure
5764 * gets reused rather than freed and reallocated.
5765 */
5766 MUTEX_ENTER(&ifq->ifq_lock);
5767 ifq->ifq_flags &= ~IFQF_DELETE;
5768 ifq->ifq_ref++;
5769 MUTEX_EXIT(&ifq->ifq_lock);
5770 MUTEX_EXIT(&softc->ipf_timeoutlock);
5771
5772 return ifq;
5773 }
5774 }
5775
5776 KMALLOC(ifq, ipftq_t *);
5777 if (ifq != NULL) {
5778 MUTEX_NUKE(&ifq->ifq_lock);
5779 IPFTQ_INIT(ifq, period, "ipftq mutex");
5780 ifq->ifq_next = *parent;
5781 ifq->ifq_pnext = parent;
5782 ifq->ifq_flags = IFQF_USER;
5783 ifq->ifq_ref++;
5784 *parent = ifq;
5785 softc->ipf_userifqs++;
5786 }
5787 MUTEX_EXIT(&softc->ipf_timeoutlock);
5788 return ifq;
5789 }
5790
5791
5792 /* ------------------------------------------------------------------------ */
5793 /* Function: ipf_deletetimeoutqueue */
5794 /* Returns: int - new reference count value of the timeout queue */
5795 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5796 /* Locks: ifq->ifq_lock */
5797 /* */
5798 /* This routine must be called when we're discarding a pointer to a timeout */
5799 /* queue object, taking care of the reference counter. */
5800 /* */
5801 /* Now that this just sets a DELETE flag, it requires the expire code to */
5802 /* check the list of user defined timeout queues and call the free function */
5803 /* below (currently commented out) to stop memory leaking. It is done this */
5804 /* way because the locking may not be sufficient to safely do a free when */
5805 /* this function is called. */
5806 /* ------------------------------------------------------------------------ */
5807 int
ipf_deletetimeoutqueue(ifq)5808 ipf_deletetimeoutqueue(ifq)
5809 ipftq_t *ifq;
5810 {
5811
5812 ifq->ifq_ref--;
5813 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5814 ifq->ifq_flags |= IFQF_DELETE;
5815 }
5816
5817 return ifq->ifq_ref;
5818 }
5819
5820
5821 /* ------------------------------------------------------------------------ */
5822 /* Function: ipf_freetimeoutqueue */
5823 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5824 /* Returns: Nil */
5825 /* */
5826 /* Locking: */
5827 /* It is assumed that the caller of this function has an appropriate lock */
5828 /* held (exclusively) in the domain that encompases the callers "domain". */
5829 /* The ifq_lock for this structure should not be held. */
5830 /* */
5831 /* Remove a user defined timeout queue from the list of queues it is in and */
5832 /* tidy up after this is done. */
5833 /* ------------------------------------------------------------------------ */
5834 void
ipf_freetimeoutqueue(softc,ifq)5835 ipf_freetimeoutqueue(softc, ifq)
5836 ipf_main_softc_t *softc;
5837 ipftq_t *ifq;
5838 {
5839
5840 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5841 ((ifq->ifq_flags & IFQF_USER) == 0)) {
5842 printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5843 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5844 ifq->ifq_ref);
5845 return;
5846 }
5847
5848 /*
5849 * Remove from its position in the list.
5850 */
5851 *ifq->ifq_pnext = ifq->ifq_next;
5852 if (ifq->ifq_next != NULL)
5853 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5854 ifq->ifq_next = NULL;
5855 ifq->ifq_pnext = NULL;
5856
5857 MUTEX_DESTROY(&ifq->ifq_lock);
5858 ATOMIC_DEC(softc->ipf_userifqs);
5859 KFREE(ifq);
5860 }
5861
5862
5863 /* ------------------------------------------------------------------------ */
5864 /* Function: ipf_deletequeueentry */
5865 /* Returns: Nil */
5866 /* Parameters: tqe(I) - timeout queue entry to delete */
5867 /* */
5868 /* Remove a tail queue entry from its queue and make it an orphan. */
5869 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5870 /* queue is correct. We can't, however, call ipf_freetimeoutqueue because */
5871 /* the correct lock(s) may not be held that would make it safe to do so. */
5872 /* ------------------------------------------------------------------------ */
5873 void
ipf_deletequeueentry(tqe)5874 ipf_deletequeueentry(tqe)
5875 ipftqent_t *tqe;
5876 {
5877 ipftq_t *ifq;
5878
5879 ifq = tqe->tqe_ifq;
5880
5881 MUTEX_ENTER(&ifq->ifq_lock);
5882
5883 if (tqe->tqe_pnext != NULL) {
5884 *tqe->tqe_pnext = tqe->tqe_next;
5885 if (tqe->tqe_next != NULL)
5886 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5887 else /* we must be the tail anyway */
5888 ifq->ifq_tail = tqe->tqe_pnext;
5889
5890 tqe->tqe_pnext = NULL;
5891 tqe->tqe_ifq = NULL;
5892 }
5893
5894 (void) ipf_deletetimeoutqueue(ifq);
5895 ASSERT(ifq->ifq_ref > 0);
5896
5897 MUTEX_EXIT(&ifq->ifq_lock);
5898 }
5899
5900
5901 /* ------------------------------------------------------------------------ */
5902 /* Function: ipf_queuefront */
5903 /* Returns: Nil */
5904 /* Parameters: tqe(I) - pointer to timeout queue entry */
5905 /* */
5906 /* Move a queue entry to the front of the queue, if it isn't already there. */
5907 /* ------------------------------------------------------------------------ */
5908 void
ipf_queuefront(tqe)5909 ipf_queuefront(tqe)
5910 ipftqent_t *tqe;
5911 {
5912 ipftq_t *ifq;
5913
5914 ifq = tqe->tqe_ifq;
5915 if (ifq == NULL)
5916 return;
5917
5918 MUTEX_ENTER(&ifq->ifq_lock);
5919 if (ifq->ifq_head != tqe) {
5920 *tqe->tqe_pnext = tqe->tqe_next;
5921 if (tqe->tqe_next)
5922 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5923 else
5924 ifq->ifq_tail = tqe->tqe_pnext;
5925
5926 tqe->tqe_next = ifq->ifq_head;
5927 ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5928 ifq->ifq_head = tqe;
5929 tqe->tqe_pnext = &ifq->ifq_head;
5930 }
5931 MUTEX_EXIT(&ifq->ifq_lock);
5932 }
5933
5934
5935 /* ------------------------------------------------------------------------ */
5936 /* Function: ipf_queueback */
5937 /* Returns: Nil */
5938 /* Parameters: ticks(I) - ipf tick time to use with this call */
5939 /* tqe(I) - pointer to timeout queue entry */
5940 /* */
5941 /* Move a queue entry to the back of the queue, if it isn't already there. */
5942 /* We use use ticks to calculate the expiration and mark for when we last */
5943 /* touched the structure. */
5944 /* ------------------------------------------------------------------------ */
5945 void
ipf_queueback(ticks,tqe)5946 ipf_queueback(ticks, tqe)
5947 u_long ticks;
5948 ipftqent_t *tqe;
5949 {
5950 ipftq_t *ifq;
5951
5952 ifq = tqe->tqe_ifq;
5953 if (ifq == NULL)
5954 return;
5955 tqe->tqe_die = ticks + ifq->ifq_ttl;
5956 tqe->tqe_touched = ticks;
5957
5958 MUTEX_ENTER(&ifq->ifq_lock);
5959 if (tqe->tqe_next != NULL) { /* at the end already ? */
5960 /*
5961 * Remove from list
5962 */
5963 *tqe->tqe_pnext = tqe->tqe_next;
5964 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5965
5966 /*
5967 * Make it the last entry.
5968 */
5969 tqe->tqe_next = NULL;
5970 tqe->tqe_pnext = ifq->ifq_tail;
5971 *ifq->ifq_tail = tqe;
5972 ifq->ifq_tail = &tqe->tqe_next;
5973 }
5974 MUTEX_EXIT(&ifq->ifq_lock);
5975 }
5976
5977
5978 /* ------------------------------------------------------------------------ */
5979 /* Function: ipf_queueappend */
5980 /* Returns: Nil */
5981 /* Parameters: ticks(I) - ipf tick time to use with this call */
5982 /* tqe(I) - pointer to timeout queue entry */
5983 /* ifq(I) - pointer to timeout queue */
5984 /* parent(I) - owing object pointer */
5985 /* */
5986 /* Add a new item to this queue and put it on the very end. */
5987 /* We use use ticks to calculate the expiration and mark for when we last */
5988 /* touched the structure. */
5989 /* ------------------------------------------------------------------------ */
5990 void
ipf_queueappend(ticks,tqe,ifq,parent)5991 ipf_queueappend(ticks, tqe, ifq, parent)
5992 u_long ticks;
5993 ipftqent_t *tqe;
5994 ipftq_t *ifq;
5995 void *parent;
5996 {
5997
5998 MUTEX_ENTER(&ifq->ifq_lock);
5999 tqe->tqe_parent = parent;
6000 tqe->tqe_pnext = ifq->ifq_tail;
6001 *ifq->ifq_tail = tqe;
6002 ifq->ifq_tail = &tqe->tqe_next;
6003 tqe->tqe_next = NULL;
6004 tqe->tqe_ifq = ifq;
6005 tqe->tqe_die = ticks + ifq->ifq_ttl;
6006 tqe->tqe_touched = ticks;
6007 ifq->ifq_ref++;
6008 MUTEX_EXIT(&ifq->ifq_lock);
6009 }
6010
6011
6012 /* ------------------------------------------------------------------------ */
6013 /* Function: ipf_movequeue */
6014 /* Returns: Nil */
6015 /* Parameters: tq(I) - pointer to timeout queue information */
6016 /* oifp(I) - old timeout queue entry was on */
6017 /* nifp(I) - new timeout queue to put entry on */
6018 /* */
6019 /* Move a queue entry from one timeout queue to another timeout queue. */
6020 /* If it notices that the current entry is already last and does not need */
6021 /* to move queue, the return. */
6022 /* ------------------------------------------------------------------------ */
6023 void
ipf_movequeue(ticks,tqe,oifq,nifq)6024 ipf_movequeue(ticks, tqe, oifq, nifq)
6025 u_long ticks;
6026 ipftqent_t *tqe;
6027 ipftq_t *oifq, *nifq;
6028 {
6029
6030 /*
6031 * If the queue hasn't changed and we last touched this entry at the
6032 * same ipf time, then we're not going to achieve anything by either
6033 * changing the ttl or moving it on the queue.
6034 */
6035 if (oifq == nifq && tqe->tqe_touched == ticks)
6036 return;
6037
6038 /*
6039 * For any of this to be outside the lock, there is a risk that two
6040 * packets entering simultaneously, with one changing to a different
6041 * queue and one not, could end up with things in a bizarre state.
6042 */
6043 MUTEX_ENTER(&oifq->ifq_lock);
6044
6045 tqe->tqe_touched = ticks;
6046 tqe->tqe_die = ticks + nifq->ifq_ttl;
6047 /*
6048 * Is the operation here going to be a no-op ?
6049 */
6050 if (oifq == nifq) {
6051 if ((tqe->tqe_next == NULL) ||
6052 (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
6053 MUTEX_EXIT(&oifq->ifq_lock);
6054 return;
6055 }
6056 }
6057
6058 /*
6059 * Remove from the old queue
6060 */
6061 *tqe->tqe_pnext = tqe->tqe_next;
6062 if (tqe->tqe_next)
6063 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
6064 else
6065 oifq->ifq_tail = tqe->tqe_pnext;
6066 tqe->tqe_next = NULL;
6067
6068 /*
6069 * If we're moving from one queue to another, release the
6070 * lock on the old queue and get a lock on the new queue.
6071 * For user defined queues, if we're moving off it, call
6072 * delete in case it can now be freed.
6073 */
6074 if (oifq != nifq) {
6075 tqe->tqe_ifq = NULL;
6076
6077 (void) ipf_deletetimeoutqueue(oifq);
6078
6079 MUTEX_EXIT(&oifq->ifq_lock);
6080
6081 MUTEX_ENTER(&nifq->ifq_lock);
6082
6083 tqe->tqe_ifq = nifq;
6084 nifq->ifq_ref++;
6085 }
6086
6087 /*
6088 * Add to the bottom of the new queue
6089 */
6090 tqe->tqe_pnext = nifq->ifq_tail;
6091 *nifq->ifq_tail = tqe;
6092 nifq->ifq_tail = &tqe->tqe_next;
6093 MUTEX_EXIT(&nifq->ifq_lock);
6094 }
6095
6096
6097 /* ------------------------------------------------------------------------ */
6098 /* Function: ipf_updateipid */
6099 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */
6100 /* Parameters: fin(I) - pointer to packet information */
6101 /* */
6102 /* When we are doing NAT, change the IP of every packet to represent a */
6103 /* single sequence of packets coming from the host, hiding any host */
6104 /* specific sequencing that might otherwise be revealed. If the packet is */
6105 /* a fragment, then store the 'new' IPid in the fragment cache and look up */
6106 /* the fragment cache for non-leading fragments. If a non-leading fragment */
6107 /* has no match in the cache, return an error. */
6108 /* ------------------------------------------------------------------------ */
6109 static int
ipf_updateipid(fin)6110 ipf_updateipid(fin)
6111 fr_info_t *fin;
6112 {
6113 u_short id, ido, sums;
6114 u_32_t sumd, sum;
6115 ip_t *ip;
6116
6117 ip = fin->fin_ip;
6118 ido = ntohs(ip->ip_id);
6119 if (fin->fin_off != 0) {
6120 sum = ipf_frag_ipidknown(fin);
6121 if (sum == 0xffffffff)
6122 return -1;
6123 sum &= 0xffff;
6124 id = (u_short)sum;
6125 ip->ip_id = htons(id);
6126 } else {
6127 ip_fillid(ip);
6128 id = ntohs(ip->ip_id);
6129 if ((fin->fin_flx & FI_FRAG) != 0)
6130 (void) ipf_frag_ipidnew(fin, (u_32_t)id);
6131 }
6132
6133 if (id == ido)
6134 return 0;
6135 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */
6136 sum = (~ntohs(ip->ip_sum)) & 0xffff;
6137 sum += sumd;
6138 sum = (sum >> 16) + (sum & 0xffff);
6139 sum = (sum >> 16) + (sum & 0xffff);
6140 sums = ~(u_short)sum;
6141 ip->ip_sum = htons(sums);
6142 return 0;
6143 }
6144
6145
6146 #ifdef NEED_FRGETIFNAME
6147 /* ------------------------------------------------------------------------ */
6148 /* Function: ipf_getifname */
6149 /* Returns: char * - pointer to interface name */
6150 /* Parameters: ifp(I) - pointer to network interface */
6151 /* buffer(O) - pointer to where to store interface name */
6152 /* */
6153 /* Constructs an interface name in the buffer passed. The buffer passed is */
6154 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */
6155 /* as a NULL pointer then return a pointer to a static array. */
6156 /* ------------------------------------------------------------------------ */
6157 char *
ipf_getifname(ifp,buffer)6158 ipf_getifname(ifp, buffer)
6159 struct ifnet *ifp;
6160 char *buffer;
6161 {
6162 static char namebuf[LIFNAMSIZ];
6163 # if defined(MENTAT) || defined(__FreeBSD__)
6164 int unit, space;
6165 char temp[20];
6166 char *s;
6167 # endif
6168
6169 if (buffer == NULL)
6170 buffer = namebuf;
6171 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
6172 buffer[LIFNAMSIZ - 1] = '\0';
6173 # if defined(MENTAT) || defined(__FreeBSD__)
6174 for (s = buffer; *s; s++)
6175 ;
6176 unit = ifp->if_unit;
6177 space = LIFNAMSIZ - (s - buffer);
6178 if ((space > 0) && (unit >= 0)) {
6179 # if defined(SNPRINTF) && defined(_KERNEL)
6180 SNPRINTF(temp, sizeof(temp), "%d", unit);
6181 # else
6182 (void) sprintf(temp, "%d", unit);
6183 # endif
6184 (void) strncpy(s, temp, space);
6185 }
6186 # endif
6187 return buffer;
6188 }
6189 #endif
6190
6191
6192 /* ------------------------------------------------------------------------ */
6193 /* Function: ipf_ioctlswitch */
6194 /* Returns: int - -1 continue processing, else ioctl return value */
6195 /* Parameters: unit(I) - device unit opened */
6196 /* data(I) - pointer to ioctl data */
6197 /* cmd(I) - ioctl command */
6198 /* mode(I) - mode value */
6199 /* uid(I) - uid making the ioctl call */
6200 /* ctx(I) - pointer to context data */
6201 /* */
6202 /* Based on the value of unit, call the appropriate ioctl handler or return */
6203 /* EIO if ipfilter is not running. Also checks if write perms are req'd */
6204 /* for the device in order to execute the ioctl. A special case is made */
6205 /* SIOCIPFINTERROR so that the same code isn't required in every handler. */
6206 /* The context data pointer is passed through as this is used as the key */
6207 /* for locating a matching token for continued access for walking lists, */
6208 /* etc. */
6209 /* ------------------------------------------------------------------------ */
6210 int
ipf_ioctlswitch(softc,unit,data,cmd,mode,uid,ctx)6211 ipf_ioctlswitch(softc, unit, data, cmd, mode, uid, ctx)
6212 ipf_main_softc_t *softc;
6213 int unit, mode, uid;
6214 ioctlcmd_t cmd;
6215 void *data, *ctx;
6216 {
6217 int error = 0;
6218
6219 switch (cmd)
6220 {
6221 case SIOCIPFINTERROR :
6222 error = BCOPYOUT(&softc->ipf_interror, data,
6223 sizeof(softc->ipf_interror));
6224 if (error != 0) {
6225 IPFERROR(40);
6226 error = EFAULT;
6227 }
6228 return error;
6229 default :
6230 break;
6231 }
6232
6233 switch (unit)
6234 {
6235 case IPL_LOGIPF :
6236 error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6237 break;
6238 case IPL_LOGNAT :
6239 if (softc->ipf_running > 0) {
6240 error = ipf_nat_ioctl(softc, data, cmd, mode,
6241 uid, ctx);
6242 } else {
6243 IPFERROR(42);
6244 error = EIO;
6245 }
6246 break;
6247 case IPL_LOGSTATE :
6248 if (softc->ipf_running > 0) {
6249 error = ipf_state_ioctl(softc, data, cmd, mode,
6250 uid, ctx);
6251 } else {
6252 IPFERROR(43);
6253 error = EIO;
6254 }
6255 break;
6256 case IPL_LOGAUTH :
6257 if (softc->ipf_running > 0) {
6258 error = ipf_auth_ioctl(softc, data, cmd, mode,
6259 uid, ctx);
6260 } else {
6261 IPFERROR(44);
6262 error = EIO;
6263 }
6264 break;
6265 case IPL_LOGSYNC :
6266 if (softc->ipf_running > 0) {
6267 error = ipf_sync_ioctl(softc, data, cmd, mode,
6268 uid, ctx);
6269 } else {
6270 error = EIO;
6271 IPFERROR(45);
6272 }
6273 break;
6274 case IPL_LOGSCAN :
6275 #ifdef IPFILTER_SCAN
6276 if (softc->ipf_running > 0)
6277 error = ipf_scan_ioctl(softc, data, cmd, mode,
6278 uid, ctx);
6279 else
6280 #endif
6281 {
6282 error = EIO;
6283 IPFERROR(46);
6284 }
6285 break;
6286 case IPL_LOGLOOKUP :
6287 if (softc->ipf_running > 0) {
6288 error = ipf_lookup_ioctl(softc, data, cmd, mode,
6289 uid, ctx);
6290 } else {
6291 error = EIO;
6292 IPFERROR(47);
6293 }
6294 break;
6295 default :
6296 IPFERROR(48);
6297 error = EIO;
6298 break;
6299 }
6300
6301 return error;
6302 }
6303
6304
6305 /*
6306 * This array defines the expected size of objects coming into the kernel
6307 * for the various recognised object types. The first column is flags (see
6308 * below), 2nd column is current size, 3rd column is the version number of
6309 * when the current size became current.
6310 * Flags:
6311 * 1 = minimum size, not absolute size
6312 */
6313 static const int ipf_objbytes[IPFOBJ_COUNT][3] = {
6314 { 1, sizeof(struct frentry), 5010000 }, /* 0 */
6315 { 1, sizeof(struct friostat), 5010000 },
6316 { 0, sizeof(struct fr_info), 5010000 },
6317 { 0, sizeof(struct ipf_authstat), 4010100 },
6318 { 0, sizeof(struct ipfrstat), 5010000 },
6319 { 1, sizeof(struct ipnat), 5010000 }, /* 5 */
6320 { 0, sizeof(struct natstat), 5010000 },
6321 { 0, sizeof(struct ipstate_save), 5010000 },
6322 { 1, sizeof(struct nat_save), 5010000 },
6323 { 0, sizeof(struct natlookup), 5010000 },
6324 { 1, sizeof(struct ipstate), 5010000 }, /* 10 */
6325 { 0, sizeof(struct ips_stat), 5010000 },
6326 { 0, sizeof(struct frauth), 5010000 },
6327 { 0, sizeof(struct ipftune), 4010100 },
6328 { 0, sizeof(struct nat), 5010000 },
6329 { 0, sizeof(struct ipfruleiter), 4011400 }, /* 15 */
6330 { 0, sizeof(struct ipfgeniter), 4011400 },
6331 { 0, sizeof(struct ipftable), 4011400 },
6332 { 0, sizeof(struct ipflookupiter), 4011400 },
6333 { 0, sizeof(struct ipftq) * IPF_TCP_NSTATES },
6334 { 1, 0, 0 }, /* IPFEXPR */
6335 { 0, 0, 0 }, /* PROXYCTL */
6336 { 0, sizeof (struct fripf), 5010000 }
6337 };
6338
6339
6340 /* ------------------------------------------------------------------------ */
6341 /* Function: ipf_inobj */
6342 /* Returns: int - 0 = success, else failure */
6343 /* Parameters: softc(I) - soft context pointerto work with */
6344 /* data(I) - pointer to ioctl data */
6345 /* objp(O) - where to store ipfobj structure */
6346 /* ptr(I) - pointer to data to copy out */
6347 /* type(I) - type of structure being moved */
6348 /* */
6349 /* Copy in the contents of what the ipfobj_t points to. In future, we */
6350 /* add things to check for version numbers, sizes, etc, to make it backward */
6351 /* compatible at the ABI for user land. */
6352 /* If objp is not NULL then we assume that the caller wants to see what is */
6353 /* in the ipfobj_t structure being copied in. As an example, this can tell */
6354 /* the caller what version of ipfilter the ioctl program was written to. */
6355 /* ------------------------------------------------------------------------ */
6356 int
ipf_inobj(softc,data,objp,ptr,type)6357 ipf_inobj(softc, data, objp, ptr, type)
6358 ipf_main_softc_t *softc;
6359 void *data;
6360 ipfobj_t *objp;
6361 void *ptr;
6362 int type;
6363 {
6364 ipfobj_t obj;
6365 int error;
6366 int size;
6367
6368 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6369 IPFERROR(49);
6370 return EINVAL;
6371 }
6372
6373 if (objp == NULL)
6374 objp = &obj;
6375 error = BCOPYIN(data, objp, sizeof(*objp));
6376 if (error != 0) {
6377 IPFERROR(124);
6378 return EFAULT;
6379 }
6380
6381 if (objp->ipfo_type != type) {
6382 IPFERROR(50);
6383 return EINVAL;
6384 }
6385
6386 if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6387 if ((ipf_objbytes[type][0] & 1) != 0) {
6388 if (objp->ipfo_size < ipf_objbytes[type][1]) {
6389 IPFERROR(51);
6390 return EINVAL;
6391 }
6392 size = ipf_objbytes[type][1];
6393 } else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6394 size = objp->ipfo_size;
6395 } else {
6396 IPFERROR(52);
6397 return EINVAL;
6398 }
6399 error = COPYIN(objp->ipfo_ptr, ptr, size);
6400 if (error != 0) {
6401 IPFERROR(55);
6402 error = EFAULT;
6403 }
6404 } else {
6405 #ifdef IPFILTER_COMPAT
6406 error = ipf_in_compat(softc, objp, ptr, 0);
6407 #else
6408 IPFERROR(54);
6409 error = EINVAL;
6410 #endif
6411 }
6412 return error;
6413 }
6414
6415
6416 /* ------------------------------------------------------------------------ */
6417 /* Function: ipf_inobjsz */
6418 /* Returns: int - 0 = success, else failure */
6419 /* Parameters: softc(I) - soft context pointerto work with */
6420 /* data(I) - pointer to ioctl data */
6421 /* ptr(I) - pointer to store real data in */
6422 /* type(I) - type of structure being moved */
6423 /* sz(I) - size of data to copy */
6424 /* */
6425 /* As per ipf_inobj, except the size of the object to copy in is passed in */
6426 /* but it must not be smaller than the size defined for the type and the */
6427 /* type must allow for varied sized objects. The extra requirement here is */
6428 /* that sz must match the size of the object being passed in - this is not */
6429 /* not possible nor required in ipf_inobj(). */
6430 /* ------------------------------------------------------------------------ */
6431 int
ipf_inobjsz(softc,data,ptr,type,sz)6432 ipf_inobjsz(softc, data, ptr, type, sz)
6433 ipf_main_softc_t *softc;
6434 void *data;
6435 void *ptr;
6436 int type, sz;
6437 {
6438 ipfobj_t obj;
6439 int error;
6440
6441 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6442 IPFERROR(56);
6443 return EINVAL;
6444 }
6445
6446 error = BCOPYIN(data, &obj, sizeof(obj));
6447 if (error != 0) {
6448 IPFERROR(125);
6449 return EFAULT;
6450 }
6451
6452 if (obj.ipfo_type != type) {
6453 IPFERROR(58);
6454 return EINVAL;
6455 }
6456
6457 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6458 if (((ipf_objbytes[type][0] & 1) == 0) ||
6459 (sz < ipf_objbytes[type][1])) {
6460 IPFERROR(57);
6461 return EINVAL;
6462 }
6463 error = COPYIN(obj.ipfo_ptr, ptr, sz);
6464 if (error != 0) {
6465 IPFERROR(61);
6466 error = EFAULT;
6467 }
6468 } else {
6469 #ifdef IPFILTER_COMPAT
6470 error = ipf_in_compat(softc, &obj, ptr, sz);
6471 #else
6472 IPFERROR(60);
6473 error = EINVAL;
6474 #endif
6475 }
6476 return error;
6477 }
6478
6479
6480 /* ------------------------------------------------------------------------ */
6481 /* Function: ipf_outobjsz */
6482 /* Returns: int - 0 = success, else failure */
6483 /* Parameters: data(I) - pointer to ioctl data */
6484 /* ptr(I) - pointer to store real data in */
6485 /* type(I) - type of structure being moved */
6486 /* sz(I) - size of data to copy */
6487 /* */
6488 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6489 /* but it must not be smaller than the size defined for the type and the */
6490 /* type must allow for varied sized objects. The extra requirement here is */
6491 /* that sz must match the size of the object being passed in - this is not */
6492 /* not possible nor required in ipf_outobj(). */
6493 /* ------------------------------------------------------------------------ */
6494 int
ipf_outobjsz(softc,data,ptr,type,sz)6495 ipf_outobjsz(softc, data, ptr, type, sz)
6496 ipf_main_softc_t *softc;
6497 void *data;
6498 void *ptr;
6499 int type, sz;
6500 {
6501 ipfobj_t obj;
6502 int error;
6503
6504 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6505 IPFERROR(62);
6506 return EINVAL;
6507 }
6508
6509 error = BCOPYIN(data, &obj, sizeof(obj));
6510 if (error != 0) {
6511 IPFERROR(127);
6512 return EFAULT;
6513 }
6514
6515 if (obj.ipfo_type != type) {
6516 IPFERROR(63);
6517 return EINVAL;
6518 }
6519
6520 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6521 if (((ipf_objbytes[type][0] & 1) == 0) ||
6522 (sz < ipf_objbytes[type][1])) {
6523 IPFERROR(146);
6524 return EINVAL;
6525 }
6526 error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6527 if (error != 0) {
6528 IPFERROR(66);
6529 error = EFAULT;
6530 }
6531 } else {
6532 #ifdef IPFILTER_COMPAT
6533 error = ipf_out_compat(softc, &obj, ptr);
6534 #else
6535 IPFERROR(65);
6536 error = EINVAL;
6537 #endif
6538 }
6539 return error;
6540 }
6541
6542
6543 /* ------------------------------------------------------------------------ */
6544 /* Function: ipf_outobj */
6545 /* Returns: int - 0 = success, else failure */
6546 /* Parameters: data(I) - pointer to ioctl data */
6547 /* ptr(I) - pointer to store real data in */
6548 /* type(I) - type of structure being moved */
6549 /* */
6550 /* Copy out the contents of what ptr is to where ipfobj points to. In */
6551 /* future, we add things to check for version numbers, sizes, etc, to make */
6552 /* it backward compatible at the ABI for user land. */
6553 /* ------------------------------------------------------------------------ */
6554 int
ipf_outobj(softc,data,ptr,type)6555 ipf_outobj(softc, data, ptr, type)
6556 ipf_main_softc_t *softc;
6557 void *data;
6558 void *ptr;
6559 int type;
6560 {
6561 ipfobj_t obj;
6562 int error;
6563
6564 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6565 IPFERROR(67);
6566 return EINVAL;
6567 }
6568
6569 error = BCOPYIN(data, &obj, sizeof(obj));
6570 if (error != 0) {
6571 IPFERROR(126);
6572 return EFAULT;
6573 }
6574
6575 if (obj.ipfo_type != type) {
6576 IPFERROR(68);
6577 return EINVAL;
6578 }
6579
6580 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6581 if ((ipf_objbytes[type][0] & 1) != 0) {
6582 if (obj.ipfo_size < ipf_objbytes[type][1]) {
6583 IPFERROR(69);
6584 return EINVAL;
6585 }
6586 } else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6587 IPFERROR(70);
6588 return EINVAL;
6589 }
6590
6591 error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6592 if (error != 0) {
6593 IPFERROR(73);
6594 error = EFAULT;
6595 }
6596 } else {
6597 #ifdef IPFILTER_COMPAT
6598 error = ipf_out_compat(softc, &obj, ptr);
6599 #else
6600 IPFERROR(72);
6601 error = EINVAL;
6602 #endif
6603 }
6604 return error;
6605 }
6606
6607
6608 /* ------------------------------------------------------------------------ */
6609 /* Function: ipf_outobjk */
6610 /* Returns: int - 0 = success, else failure */
6611 /* Parameters: obj(I) - pointer to data description structure */
6612 /* ptr(I) - pointer to kernel data to copy out */
6613 /* */
6614 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6615 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6616 /* already populated with information and now we just need to use it. */
6617 /* There is no need for this function to have a "type" parameter as there */
6618 /* is no point in validating information that comes from the kernel with */
6619 /* itself. */
6620 /* ------------------------------------------------------------------------ */
6621 int
ipf_outobjk(softc,obj,ptr)6622 ipf_outobjk(softc, obj, ptr)
6623 ipf_main_softc_t *softc;
6624 ipfobj_t *obj;
6625 void *ptr;
6626 {
6627 int type = obj->ipfo_type;
6628 int error;
6629
6630 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6631 IPFERROR(147);
6632 return EINVAL;
6633 }
6634
6635 if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6636 if ((ipf_objbytes[type][0] & 1) != 0) {
6637 if (obj->ipfo_size < ipf_objbytes[type][1]) {
6638 IPFERROR(148);
6639 return EINVAL;
6640 }
6641
6642 } else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6643 IPFERROR(149);
6644 return EINVAL;
6645 }
6646
6647 error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6648 if (error != 0) {
6649 IPFERROR(150);
6650 error = EFAULT;
6651 }
6652 } else {
6653 #ifdef IPFILTER_COMPAT
6654 error = ipf_out_compat(softc, obj, ptr);
6655 #else
6656 IPFERROR(151);
6657 error = EINVAL;
6658 #endif
6659 }
6660 return error;
6661 }
6662
6663
6664 /* ------------------------------------------------------------------------ */
6665 /* Function: ipf_checkl4sum */
6666 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */
6667 /* Parameters: fin(I) - pointer to packet information */
6668 /* */
6669 /* If possible, calculate the layer 4 checksum for the packet. If this is */
6670 /* not possible, return without indicating a failure or success but in a */
6671 /* way that is ditinguishable. This function should only be called by the */
6672 /* ipf_checkv6sum() for each platform. */
6673 /* ------------------------------------------------------------------------ */
6674 INLINE int
ipf_checkl4sum(fin)6675 ipf_checkl4sum(fin)
6676 fr_info_t *fin;
6677 {
6678 u_short sum, hdrsum, *csump;
6679 udphdr_t *udp;
6680 int dosum;
6681
6682 /*
6683 * If the TCP packet isn't a fragment, isn't too short and otherwise
6684 * isn't already considered "bad", then validate the checksum. If
6685 * this check fails then considered the packet to be "bad".
6686 */
6687 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6688 return 1;
6689
6690 DT2(l4sumo, int, fin->fin_out, int, (int)fin->fin_p);
6691 if (fin->fin_out == 1) {
6692 fin->fin_cksum = FI_CK_SUMOK;
6693 return 0;
6694 }
6695
6696 csump = NULL;
6697 hdrsum = 0;
6698 dosum = 0;
6699 sum = 0;
6700
6701 switch (fin->fin_p)
6702 {
6703 case IPPROTO_TCP :
6704 csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6705 dosum = 1;
6706 break;
6707
6708 case IPPROTO_UDP :
6709 udp = fin->fin_dp;
6710 if (udp->uh_sum != 0) {
6711 csump = &udp->uh_sum;
6712 dosum = 1;
6713 }
6714 break;
6715
6716 #ifdef USE_INET6
6717 case IPPROTO_ICMPV6 :
6718 csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6719 dosum = 1;
6720 break;
6721 #endif
6722
6723 case IPPROTO_ICMP :
6724 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6725 dosum = 1;
6726 break;
6727
6728 default :
6729 return 1;
6730 /*NOTREACHED*/
6731 }
6732
6733 if (csump != NULL)
6734 hdrsum = *csump;
6735
6736 if (dosum) {
6737 sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6738 }
6739 #if !defined(_KERNEL)
6740 if (sum == hdrsum) {
6741 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6742 } else {
6743 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6744 }
6745 #endif
6746 DT2(l4sums, u_short, hdrsum, u_short, sum);
6747 #ifdef USE_INET6
6748 if (hdrsum == sum || (sum == 0 && fin->fin_p == IPPROTO_ICMPV6)) {
6749 #else
6750 if (hdrsum == sum) {
6751 #endif
6752 fin->fin_cksum = FI_CK_SUMOK;
6753 return 0;
6754 }
6755 fin->fin_cksum = FI_CK_BAD;
6756 return -1;
6757 }
6758
6759
6760 /* ------------------------------------------------------------------------ */
6761 /* Function: ipf_ifpfillv4addr */
6762 /* Returns: int - 0 = address update, -1 = address not updated */
6763 /* Parameters: atype(I) - type of network address update to perform */
6764 /* sin(I) - pointer to source of address information */
6765 /* mask(I) - pointer to source of netmask information */
6766 /* inp(I) - pointer to destination address store */
6767 /* inpmask(I) - pointer to destination netmask store */
6768 /* */
6769 /* Given a type of network address update (atype) to perform, copy */
6770 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6771 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6772 /* which case the operation fails. For all values of atype other than */
6773 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6774 /* value. */
6775 /* ------------------------------------------------------------------------ */
6776 int
ipf_ifpfillv4addr(atype,sin,mask,inp,inpmask)6777 ipf_ifpfillv4addr(atype, sin, mask, inp, inpmask)
6778 int atype;
6779 struct sockaddr_in *sin, *mask;
6780 struct in_addr *inp, *inpmask;
6781 {
6782 if (inpmask != NULL && atype != FRI_NETMASKED)
6783 inpmask->s_addr = 0xffffffff;
6784
6785 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6786 if (atype == FRI_NETMASKED) {
6787 if (inpmask == NULL)
6788 return -1;
6789 inpmask->s_addr = mask->sin_addr.s_addr;
6790 }
6791 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6792 } else {
6793 inp->s_addr = sin->sin_addr.s_addr;
6794 }
6795 return 0;
6796 }
6797
6798
6799 #ifdef USE_INET6
6800 /* ------------------------------------------------------------------------ */
6801 /* Function: ipf_ifpfillv6addr */
6802 /* Returns: int - 0 = address update, -1 = address not updated */
6803 /* Parameters: atype(I) - type of network address update to perform */
6804 /* sin(I) - pointer to source of address information */
6805 /* mask(I) - pointer to source of netmask information */
6806 /* inp(I) - pointer to destination address store */
6807 /* inpmask(I) - pointer to destination netmask store */
6808 /* */
6809 /* Given a type of network address update (atype) to perform, copy */
6810 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6811 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6812 /* which case the operation fails. For all values of atype other than */
6813 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6814 /* value. */
6815 /* ------------------------------------------------------------------------ */
6816 int
ipf_ifpfillv6addr(atype,sin,mask,inp,inpmask)6817 ipf_ifpfillv6addr(atype, sin, mask, inp, inpmask)
6818 int atype;
6819 struct sockaddr_in6 *sin, *mask;
6820 i6addr_t *inp, *inpmask;
6821 {
6822 i6addr_t *src, *and;
6823
6824 src = (i6addr_t *)&sin->sin6_addr;
6825 and = (i6addr_t *)&mask->sin6_addr;
6826
6827 if (inpmask != NULL && atype != FRI_NETMASKED) {
6828 inpmask->i6[0] = 0xffffffff;
6829 inpmask->i6[1] = 0xffffffff;
6830 inpmask->i6[2] = 0xffffffff;
6831 inpmask->i6[3] = 0xffffffff;
6832 }
6833
6834 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6835 if (atype == FRI_NETMASKED) {
6836 if (inpmask == NULL)
6837 return -1;
6838 inpmask->i6[0] = and->i6[0];
6839 inpmask->i6[1] = and->i6[1];
6840 inpmask->i6[2] = and->i6[2];
6841 inpmask->i6[3] = and->i6[3];
6842 }
6843
6844 inp->i6[0] = src->i6[0] & and->i6[0];
6845 inp->i6[1] = src->i6[1] & and->i6[1];
6846 inp->i6[2] = src->i6[2] & and->i6[2];
6847 inp->i6[3] = src->i6[3] & and->i6[3];
6848 } else {
6849 inp->i6[0] = src->i6[0];
6850 inp->i6[1] = src->i6[1];
6851 inp->i6[2] = src->i6[2];
6852 inp->i6[3] = src->i6[3];
6853 }
6854 return 0;
6855 }
6856 #endif
6857
6858
6859 /* ------------------------------------------------------------------------ */
6860 /* Function: ipf_matchtag */
6861 /* Returns: 0 == mismatch, 1 == match. */
6862 /* Parameters: tag1(I) - pointer to first tag to compare */
6863 /* tag2(I) - pointer to second tag to compare */
6864 /* */
6865 /* Returns true (non-zero) or false(0) if the two tag structures can be */
6866 /* considered to be a match or not match, respectively. The tag is 16 */
6867 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */
6868 /* compare the ints instead, for speed. tag1 is the master of the */
6869 /* comparison. This function should only be called with both tag1 and tag2 */
6870 /* as non-NULL pointers. */
6871 /* ------------------------------------------------------------------------ */
6872 int
ipf_matchtag(tag1,tag2)6873 ipf_matchtag(tag1, tag2)
6874 ipftag_t *tag1, *tag2;
6875 {
6876 if (tag1 == tag2)
6877 return 1;
6878
6879 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6880 return 1;
6881
6882 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6883 (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6884 (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6885 (tag1->ipt_num[3] == tag2->ipt_num[3]))
6886 return 1;
6887 return 0;
6888 }
6889
6890
6891 /* ------------------------------------------------------------------------ */
6892 /* Function: ipf_coalesce */
6893 /* Returns: 1 == success, -1 == failure, 0 == no change */
6894 /* Parameters: fin(I) - pointer to packet information */
6895 /* */
6896 /* Attempt to get all of the packet data into a single, contiguous buffer. */
6897 /* If this call returns a failure then the buffers have also been freed. */
6898 /* ------------------------------------------------------------------------ */
6899 int
ipf_coalesce(fin)6900 ipf_coalesce(fin)
6901 fr_info_t *fin;
6902 {
6903
6904 if ((fin->fin_flx & FI_COALESCE) != 0)
6905 return 1;
6906
6907 /*
6908 * If the mbuf pointers indicate that there is no mbuf to work with,
6909 * return but do not indicate success or failure.
6910 */
6911 if (fin->fin_m == NULL || fin->fin_mp == NULL)
6912 return 0;
6913
6914 #if defined(_KERNEL)
6915 if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6916 ipf_main_softc_t *softc = fin->fin_main_soft;
6917
6918 DT1(frb_coalesce, fr_info_t *, fin);
6919 LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6920 # ifdef MENTAT
6921 FREE_MB_T(*fin->fin_mp);
6922 # endif
6923 fin->fin_reason = FRB_COALESCE;
6924 *fin->fin_mp = NULL;
6925 fin->fin_m = NULL;
6926 return -1;
6927 }
6928 #else
6929 fin = fin; /* LINT */
6930 #endif
6931 return 1;
6932 }
6933
6934
6935 /*
6936 * The following table lists all of the tunable variables that can be
6937 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row
6938 * in the table below is as follows:
6939 *
6940 * pointer to value, name of value, minimum, maximum, size of the value's
6941 * container, value attribute flags
6942 *
6943 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6944 * means the value can only be written to when IPFilter is loaded but disabled.
6945 * The obvious implication is if neither of these are set then the value can be
6946 * changed at any time without harm.
6947 */
6948
6949
6950 /* ------------------------------------------------------------------------ */
6951 /* Function: ipf_tune_findbycookie */
6952 /* Returns: NULL = search failed, else pointer to tune struct */
6953 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */
6954 /* next(O) - pointer to place to store the cookie for the */
6955 /* "next" tuneable, if it is desired. */
6956 /* */
6957 /* This function is used to walk through all of the existing tunables with */
6958 /* successive calls. It searches the known tunables for the one which has */
6959 /* a matching value for "cookie" - ie its address. When returning a match, */
6960 /* the next one to be found may be returned inside next. */
6961 /* ------------------------------------------------------------------------ */
6962 static ipftuneable_t *
ipf_tune_findbycookie(ptop,cookie,next)6963 ipf_tune_findbycookie(ptop, cookie, next)
6964 ipftuneable_t **ptop;
6965 void *cookie, **next;
6966 {
6967 ipftuneable_t *ta, **tap;
6968
6969 for (ta = *ptop; ta->ipft_name != NULL; ta++)
6970 if (ta == cookie) {
6971 if (next != NULL) {
6972 /*
6973 * If the next entry in the array has a name
6974 * present, then return a pointer to it for
6975 * where to go next, else return a pointer to
6976 * the dynaminc list as a key to search there
6977 * next. This facilitates a weak linking of
6978 * the two "lists" together.
6979 */
6980 if ((ta + 1)->ipft_name != NULL)
6981 *next = ta + 1;
6982 else
6983 *next = ptop;
6984 }
6985 return ta;
6986 }
6987
6988 for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6989 if (tap == cookie) {
6990 if (next != NULL)
6991 *next = &ta->ipft_next;
6992 return ta;
6993 }
6994
6995 if (next != NULL)
6996 *next = NULL;
6997 return NULL;
6998 }
6999
7000
7001 /* ------------------------------------------------------------------------ */
7002 /* Function: ipf_tune_findbyname */
7003 /* Returns: NULL = search failed, else pointer to tune struct */
7004 /* Parameters: name(I) - name of the tuneable entry to find. */
7005 /* */
7006 /* Search the static array of tuneables and the list of dynamic tuneables */
7007 /* for an entry with a matching name. If we can find one, return a pointer */
7008 /* to the matching structure. */
7009 /* ------------------------------------------------------------------------ */
7010 static ipftuneable_t *
ipf_tune_findbyname(top,name)7011 ipf_tune_findbyname(top, name)
7012 ipftuneable_t *top;
7013 const char *name;
7014 {
7015 ipftuneable_t *ta;
7016
7017 for (ta = top; ta != NULL; ta = ta->ipft_next)
7018 if (!strcmp(ta->ipft_name, name)) {
7019 return ta;
7020 }
7021
7022 return NULL;
7023 }
7024
7025
7026 /* ------------------------------------------------------------------------ */
7027 /* Function: ipf_tune_add_array */
7028 /* Returns: int - 0 == success, else failure */
7029 /* Parameters: newtune - pointer to new tune array to add to tuneables */
7030 /* */
7031 /* Appends tune structures from the array passed in (newtune) to the end of */
7032 /* the current list of "dynamic" tuneable parameters. */
7033 /* If any entry to be added is already present (by name) then the operation */
7034 /* is aborted - entries that have been added are removed before returning. */
7035 /* An entry with no name (NULL) is used as the indication that the end of */
7036 /* the array has been reached. */
7037 /* ------------------------------------------------------------------------ */
7038 int
ipf_tune_add_array(softc,newtune)7039 ipf_tune_add_array(softc, newtune)
7040 ipf_main_softc_t *softc;
7041 ipftuneable_t *newtune;
7042 {
7043 ipftuneable_t *nt, *dt;
7044 int error = 0;
7045
7046 for (nt = newtune; nt->ipft_name != NULL; nt++) {
7047 error = ipf_tune_add(softc, nt);
7048 if (error != 0) {
7049 for (dt = newtune; dt != nt; dt++) {
7050 (void) ipf_tune_del(softc, dt);
7051 }
7052 }
7053 }
7054
7055 return error;
7056 }
7057
7058
7059 /* ------------------------------------------------------------------------ */
7060 /* Function: ipf_tune_array_link */
7061 /* Returns: 0 == success, -1 == failure */
7062 /* Parameters: softc(I) - soft context pointerto work with */
7063 /* array(I) - pointer to an array of tuneables */
7064 /* */
7065 /* Given an array of tunables (array), append them to the current list of */
7066 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the */
7067 /* the array for being appended to the list, initialise all of the next */
7068 /* pointers so we don't need to walk parts of it with ++ and others with */
7069 /* next. The array is expected to have an entry with a NULL name as the */
7070 /* terminator. Trying to add an array with no non-NULL names will return as */
7071 /* a failure. */
7072 /* ------------------------------------------------------------------------ */
7073 int
ipf_tune_array_link(softc,array)7074 ipf_tune_array_link(softc, array)
7075 ipf_main_softc_t *softc;
7076 ipftuneable_t *array;
7077 {
7078 ipftuneable_t *t, **p;
7079
7080 t = array;
7081 if (t->ipft_name == NULL)
7082 return -1;
7083
7084 for (; t[1].ipft_name != NULL; t++)
7085 t[0].ipft_next = &t[1];
7086 t->ipft_next = NULL;
7087
7088 /*
7089 * Since a pointer to the last entry isn't kept, we need to find it
7090 * each time we want to add new variables to the list.
7091 */
7092 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
7093 if (t->ipft_name == NULL)
7094 break;
7095 *p = array;
7096
7097 return 0;
7098 }
7099
7100
7101 /* ------------------------------------------------------------------------ */
7102 /* Function: ipf_tune_array_unlink */
7103 /* Returns: 0 == success, -1 == failure */
7104 /* Parameters: softc(I) - soft context pointerto work with */
7105 /* array(I) - pointer to an array of tuneables */
7106 /* */
7107 /* ------------------------------------------------------------------------ */
7108 int
ipf_tune_array_unlink(softc,array)7109 ipf_tune_array_unlink(softc, array)
7110 ipf_main_softc_t *softc;
7111 ipftuneable_t *array;
7112 {
7113 ipftuneable_t *t, **p;
7114
7115 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
7116 if (t == array)
7117 break;
7118 if (t == NULL)
7119 return -1;
7120
7121 for (; t[1].ipft_name != NULL; t++)
7122 ;
7123
7124 *p = t->ipft_next;
7125
7126 return 0;
7127 }
7128
7129
7130 /* ------------------------------------------------------------------------ */
7131 /* Function: ipf_tune_array_copy */
7132 /* Returns: NULL = failure, else pointer to new array */
7133 /* Parameters: base(I) - pointer to structure base */
7134 /* size(I) - size of the array at template */
7135 /* template(I) - original array to copy */
7136 /* */
7137 /* Allocate memory for a new set of tuneable values and copy everything */
7138 /* from template into the new region of memory. The new region is full of */
7139 /* uninitialised pointers (ipft_next) so set them up. Now, ipftp_offset... */
7140 /* */
7141 /* NOTE: the following assumes that sizeof(long) == sizeof(void *) */
7142 /* In the array template, ipftp_offset is the offset (in bytes) of the */
7143 /* location of the tuneable value inside the structure pointed to by base. */
7144 /* As ipftp_offset is a union over the pointers to the tuneable values, if */
7145 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in */
7146 /* ipftp_void that points to the stored value. */
7147 /* ------------------------------------------------------------------------ */
7148 ipftuneable_t *
ipf_tune_array_copy(base,size,template)7149 ipf_tune_array_copy(base, size, template)
7150 void *base;
7151 size_t size;
7152 ipftuneable_t *template;
7153 {
7154 ipftuneable_t *copy;
7155 int i;
7156
7157
7158 KMALLOCS(copy, ipftuneable_t *, size);
7159 if (copy == NULL) {
7160 return NULL;
7161 }
7162 bcopy(template, copy, size);
7163
7164 for (i = 0; copy[i].ipft_name; i++) {
7165 copy[i].ipft_una.ipftp_offset += (u_long)base;
7166 copy[i].ipft_next = copy + i + 1;
7167 }
7168
7169 return copy;
7170 }
7171
7172
7173 /* ------------------------------------------------------------------------ */
7174 /* Function: ipf_tune_add */
7175 /* Returns: int - 0 == success, else failure */
7176 /* Parameters: newtune - pointer to new tune entry to add to tuneables */
7177 /* */
7178 /* Appends tune structures from the array passed in (newtune) to the end of */
7179 /* the current list of "dynamic" tuneable parameters. Once added, the */
7180 /* owner of the object is not expected to ever change "ipft_next". */
7181 /* ------------------------------------------------------------------------ */
7182 int
ipf_tune_add(softc,newtune)7183 ipf_tune_add(softc, newtune)
7184 ipf_main_softc_t *softc;
7185 ipftuneable_t *newtune;
7186 {
7187 ipftuneable_t *ta, **tap;
7188
7189 ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
7190 if (ta != NULL) {
7191 IPFERROR(74);
7192 return EEXIST;
7193 }
7194
7195 for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
7196 ;
7197
7198 newtune->ipft_next = NULL;
7199 *tap = newtune;
7200 return 0;
7201 }
7202
7203
7204 /* ------------------------------------------------------------------------ */
7205 /* Function: ipf_tune_del */
7206 /* Returns: int - 0 == success, else failure */
7207 /* Parameters: oldtune - pointer to tune entry to remove from the list of */
7208 /* current dynamic tuneables */
7209 /* */
7210 /* Search for the tune structure, by pointer, in the list of those that are */
7211 /* dynamically added at run time. If found, adjust the list so that this */
7212 /* structure is no longer part of it. */
7213 /* ------------------------------------------------------------------------ */
7214 int
ipf_tune_del(softc,oldtune)7215 ipf_tune_del(softc, oldtune)
7216 ipf_main_softc_t *softc;
7217 ipftuneable_t *oldtune;
7218 {
7219 ipftuneable_t *ta, **tap;
7220 int error = 0;
7221
7222 for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
7223 tap = &ta->ipft_next) {
7224 if (ta == oldtune) {
7225 *tap = oldtune->ipft_next;
7226 oldtune->ipft_next = NULL;
7227 break;
7228 }
7229 }
7230
7231 if (ta == NULL) {
7232 error = ESRCH;
7233 IPFERROR(75);
7234 }
7235 return error;
7236 }
7237
7238
7239 /* ------------------------------------------------------------------------ */
7240 /* Function: ipf_tune_del_array */
7241 /* Returns: int - 0 == success, else failure */
7242 /* Parameters: oldtune - pointer to tuneables array */
7243 /* */
7244 /* Remove each tuneable entry in the array from the list of "dynamic" */
7245 /* tunables. If one entry should fail to be found, an error will be */
7246 /* returned and no further ones removed. */
7247 /* An entry with a NULL name is used as the indicator of the last entry in */
7248 /* the array. */
7249 /* ------------------------------------------------------------------------ */
7250 int
ipf_tune_del_array(softc,oldtune)7251 ipf_tune_del_array(softc, oldtune)
7252 ipf_main_softc_t *softc;
7253 ipftuneable_t *oldtune;
7254 {
7255 ipftuneable_t *ot;
7256 int error = 0;
7257
7258 for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7259 error = ipf_tune_del(softc, ot);
7260 if (error != 0)
7261 break;
7262 }
7263
7264 return error;
7265
7266 }
7267
7268
7269 /* ------------------------------------------------------------------------ */
7270 /* Function: ipf_tune */
7271 /* Returns: int - 0 == success, else failure */
7272 /* Parameters: cmd(I) - ioctl command number */
7273 /* data(I) - pointer to ioctl data structure */
7274 /* */
7275 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */
7276 /* three ioctls provide the means to access and control global variables */
7277 /* within IPFilter, allowing (for example) timeouts and table sizes to be */
7278 /* changed without rebooting, reloading or recompiling. The initialisation */
7279 /* and 'destruction' routines of the various components of ipfilter are all */
7280 /* each responsible for handling their own values being too big. */
7281 /* ------------------------------------------------------------------------ */
7282 int
ipf_ipftune(softc,cmd,data)7283 ipf_ipftune(softc, cmd, data)
7284 ipf_main_softc_t *softc;
7285 ioctlcmd_t cmd;
7286 void *data;
7287 {
7288 ipftuneable_t *ta;
7289 ipftune_t tu;
7290 void *cookie;
7291 int error;
7292
7293 error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7294 if (error != 0)
7295 return error;
7296
7297 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7298 cookie = tu.ipft_cookie;
7299 ta = NULL;
7300
7301 switch (cmd)
7302 {
7303 case SIOCIPFGETNEXT :
7304 /*
7305 * If cookie is non-NULL, assume it to be a pointer to the last
7306 * entry we looked at, so find it (if possible) and return a
7307 * pointer to the next one after it. The last entry in the
7308 * the table is a NULL entry, so when we get to it, set cookie
7309 * to NULL and return that, indicating end of list, erstwhile
7310 * if we come in with cookie set to NULL, we are starting anew
7311 * at the front of the list.
7312 */
7313 if (cookie != NULL) {
7314 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7315 cookie, &tu.ipft_cookie);
7316 } else {
7317 ta = softc->ipf_tuners;
7318 tu.ipft_cookie = ta + 1;
7319 }
7320 if (ta != NULL) {
7321 /*
7322 * Entry found, but does the data pointed to by that
7323 * row fit in what we can return?
7324 */
7325 if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7326 IPFERROR(76);
7327 return EINVAL;
7328 }
7329
7330 tu.ipft_vlong = 0;
7331 if (ta->ipft_sz == sizeof(u_long))
7332 tu.ipft_vlong = *ta->ipft_plong;
7333 else if (ta->ipft_sz == sizeof(u_int))
7334 tu.ipft_vint = *ta->ipft_pint;
7335 else if (ta->ipft_sz == sizeof(u_short))
7336 tu.ipft_vshort = *ta->ipft_pshort;
7337 else if (ta->ipft_sz == sizeof(u_char))
7338 tu.ipft_vchar = *ta->ipft_pchar;
7339
7340 tu.ipft_sz = ta->ipft_sz;
7341 tu.ipft_min = ta->ipft_min;
7342 tu.ipft_max = ta->ipft_max;
7343 tu.ipft_flags = ta->ipft_flags;
7344 bcopy(ta->ipft_name, tu.ipft_name,
7345 MIN(sizeof(tu.ipft_name),
7346 strlen(ta->ipft_name) + 1));
7347 }
7348 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7349 break;
7350
7351 case SIOCIPFGET :
7352 case SIOCIPFSET :
7353 /*
7354 * Search by name or by cookie value for a particular entry
7355 * in the tuning paramter table.
7356 */
7357 IPFERROR(77);
7358 error = ESRCH;
7359 if (cookie != NULL) {
7360 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7361 cookie, NULL);
7362 if (ta != NULL)
7363 error = 0;
7364 } else if (tu.ipft_name[0] != '\0') {
7365 ta = ipf_tune_findbyname(softc->ipf_tuners,
7366 tu.ipft_name);
7367 if (ta != NULL)
7368 error = 0;
7369 }
7370 if (error != 0)
7371 break;
7372
7373 if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7374 /*
7375 * Fetch the tuning parameters for a particular value
7376 */
7377 tu.ipft_vlong = 0;
7378 if (ta->ipft_sz == sizeof(u_long))
7379 tu.ipft_vlong = *ta->ipft_plong;
7380 else if (ta->ipft_sz == sizeof(u_int))
7381 tu.ipft_vint = *ta->ipft_pint;
7382 else if (ta->ipft_sz == sizeof(u_short))
7383 tu.ipft_vshort = *ta->ipft_pshort;
7384 else if (ta->ipft_sz == sizeof(u_char))
7385 tu.ipft_vchar = *ta->ipft_pchar;
7386 tu.ipft_cookie = ta;
7387 tu.ipft_sz = ta->ipft_sz;
7388 tu.ipft_min = ta->ipft_min;
7389 tu.ipft_max = ta->ipft_max;
7390 tu.ipft_flags = ta->ipft_flags;
7391 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7392
7393 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7394 /*
7395 * Set an internal parameter. The hard part here is
7396 * getting the new value safely and correctly out of
7397 * the kernel (given we only know its size, not type.)
7398 */
7399 u_long in;
7400
7401 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7402 (softc->ipf_running > 0)) {
7403 IPFERROR(78);
7404 error = EBUSY;
7405 break;
7406 }
7407
7408 in = tu.ipft_vlong;
7409 if (in < ta->ipft_min || in > ta->ipft_max) {
7410 IPFERROR(79);
7411 error = EINVAL;
7412 break;
7413 }
7414
7415 if (ta->ipft_func != NULL) {
7416 SPL_INT(s);
7417
7418 SPL_NET(s);
7419 error = (*ta->ipft_func)(softc, ta,
7420 &tu.ipft_un);
7421 SPL_X(s);
7422
7423 } else if (ta->ipft_sz == sizeof(u_long)) {
7424 tu.ipft_vlong = *ta->ipft_plong;
7425 *ta->ipft_plong = in;
7426
7427 } else if (ta->ipft_sz == sizeof(u_int)) {
7428 tu.ipft_vint = *ta->ipft_pint;
7429 *ta->ipft_pint = (u_int)(in & 0xffffffff);
7430
7431 } else if (ta->ipft_sz == sizeof(u_short)) {
7432 tu.ipft_vshort = *ta->ipft_pshort;
7433 *ta->ipft_pshort = (u_short)(in & 0xffff);
7434
7435 } else if (ta->ipft_sz == sizeof(u_char)) {
7436 tu.ipft_vchar = *ta->ipft_pchar;
7437 *ta->ipft_pchar = (u_char)(in & 0xff);
7438 }
7439 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7440 }
7441 break;
7442
7443 default :
7444 IPFERROR(80);
7445 error = EINVAL;
7446 break;
7447 }
7448
7449 return error;
7450 }
7451
7452
7453 /* ------------------------------------------------------------------------ */
7454 /* Function: ipf_zerostats */
7455 /* Returns: int - 0 = success, else failure */
7456 /* Parameters: data(O) - pointer to pointer for copying data back to */
7457 /* */
7458 /* Copies the current statistics out to userspace and then zero's the */
7459 /* current ones in the kernel. The lock is only held across the bzero() as */
7460 /* the copyout may result in paging (ie network activity.) */
7461 /* ------------------------------------------------------------------------ */
7462 int
ipf_zerostats(softc,data)7463 ipf_zerostats(softc, data)
7464 ipf_main_softc_t *softc;
7465 caddr_t data;
7466 {
7467 friostat_t fio;
7468 ipfobj_t obj;
7469 int error;
7470
7471 error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7472 if (error != 0)
7473 return error;
7474 ipf_getstat(softc, &fio, obj.ipfo_rev);
7475 error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7476 if (error != 0)
7477 return error;
7478
7479 WRITE_ENTER(&softc->ipf_mutex);
7480 bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7481 RWLOCK_EXIT(&softc->ipf_mutex);
7482
7483 return 0;
7484 }
7485
7486
7487 /* ------------------------------------------------------------------------ */
7488 /* Function: ipf_resolvedest */
7489 /* Returns: Nil */
7490 /* Parameters: softc(I) - pointer to soft context main structure */
7491 /* base(I) - where strings are stored */
7492 /* fdp(IO) - pointer to destination information to resolve */
7493 /* v(I) - IP protocol version to match */
7494 /* */
7495 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7496 /* if a matching name can be found for the particular IP protocol version */
7497 /* then store the interface pointer in the frdest struct. If no match is */
7498 /* found, then set the interface pointer to be -1 as NULL is considered to */
7499 /* indicate there is no information at all in the structure. */
7500 /* ------------------------------------------------------------------------ */
7501 int
ipf_resolvedest(softc,base,fdp,v)7502 ipf_resolvedest(softc, base, fdp, v)
7503 ipf_main_softc_t *softc;
7504 char *base;
7505 frdest_t *fdp;
7506 int v;
7507 {
7508 int errval = 0;
7509 void *ifp;
7510
7511 ifp = NULL;
7512
7513 if (fdp->fd_name != -1) {
7514 if (fdp->fd_type == FRD_DSTLIST) {
7515 ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7516 IPLT_DSTLIST,
7517 base + fdp->fd_name,
7518 NULL);
7519 if (ifp == NULL) {
7520 IPFERROR(144);
7521 errval = ESRCH;
7522 }
7523 } else {
7524 ifp = GETIFP(base + fdp->fd_name, v);
7525 if (ifp == NULL)
7526 ifp = (void *)-1;
7527 }
7528 }
7529 fdp->fd_ptr = ifp;
7530
7531 return errval;
7532 }
7533
7534
7535 /* ------------------------------------------------------------------------ */
7536 /* Function: ipf_resolvenic */
7537 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */
7538 /* pointer to interface structure for NIC */
7539 /* Parameters: softc(I)- pointer to soft context main structure */
7540 /* name(I) - complete interface name */
7541 /* v(I) - IP protocol version */
7542 /* */
7543 /* Look for a network interface structure that firstly has a matching name */
7544 /* to that passed in and that is also being used for that IP protocol */
7545 /* version (necessary on some platforms where there are separate listings */
7546 /* for both IPv4 and IPv6 on the same physical NIC. */
7547 /* ------------------------------------------------------------------------ */
7548 void *
ipf_resolvenic(softc,name,v)7549 ipf_resolvenic(softc, name, v)
7550 ipf_main_softc_t *softc;
7551 char *name;
7552 int v;
7553 {
7554 void *nic;
7555
7556 softc = softc; /* gcc -Wextra */
7557 if (name[0] == '\0')
7558 return NULL;
7559
7560 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7561 return NULL;
7562 }
7563
7564 nic = GETIFP(name, v);
7565 if (nic == NULL)
7566 nic = (void *)-1;
7567 return nic;
7568 }
7569
7570
7571 /* ------------------------------------------------------------------------ */
7572 /* Function: ipf_token_expire */
7573 /* Returns: None. */
7574 /* Parameters: softc(I) - pointer to soft context main structure */
7575 /* */
7576 /* This function is run every ipf tick to see if there are any tokens that */
7577 /* have been held for too long and need to be freed up. */
7578 /* ------------------------------------------------------------------------ */
7579 void
ipf_token_expire(softc)7580 ipf_token_expire(softc)
7581 ipf_main_softc_t *softc;
7582 {
7583 ipftoken_t *it;
7584
7585 WRITE_ENTER(&softc->ipf_tokens);
7586 while ((it = softc->ipf_token_head) != NULL) {
7587 if (it->ipt_die > softc->ipf_ticks)
7588 break;
7589
7590 ipf_token_deref(softc, it);
7591 }
7592 RWLOCK_EXIT(&softc->ipf_tokens);
7593 }
7594
7595
7596 /* ------------------------------------------------------------------------ */
7597 /* Function: ipf_token_flush */
7598 /* Returns: None. */
7599 /* Parameters: softc(I) - pointer to soft context main structure */
7600 /* */
7601 /* Loop through all of the existing tokens and call deref to see if they */
7602 /* can be freed. Normally a function like this might just loop on */
7603 /* ipf_token_head but there is a chance that a token might have a ref count */
7604 /* of greater than one and in that case the the reference would drop twice */
7605 /* by code that is only entitled to drop it once. */
7606 /* ------------------------------------------------------------------------ */
7607 static void
ipf_token_flush(softc)7608 ipf_token_flush(softc)
7609 ipf_main_softc_t *softc;
7610 {
7611 ipftoken_t *it, *next;
7612
7613 WRITE_ENTER(&softc->ipf_tokens);
7614 for (it = softc->ipf_token_head; it != NULL; it = next) {
7615 next = it->ipt_next;
7616 (void) ipf_token_deref(softc, it);
7617 }
7618 RWLOCK_EXIT(&softc->ipf_tokens);
7619 }
7620
7621
7622 /* ------------------------------------------------------------------------ */
7623 /* Function: ipf_token_del */
7624 /* Returns: int - 0 = success, else error */
7625 /* Parameters: softc(I)- pointer to soft context main structure */
7626 /* type(I) - the token type to match */
7627 /* uid(I) - uid owning the token */
7628 /* ptr(I) - context pointer for the token */
7629 /* */
7630 /* This function looks for a a token in the current list that matches up */
7631 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */
7632 /* call ipf_token_dewref() to remove it from the list. In the event that */
7633 /* the token has a reference held elsewhere, setting ipt_complete to 2 */
7634 /* enables debugging to distinguish between the two paths that ultimately */
7635 /* lead to a token to be deleted. */
7636 /* ------------------------------------------------------------------------ */
7637 int
ipf_token_del(softc,type,uid,ptr)7638 ipf_token_del(softc, type, uid, ptr)
7639 ipf_main_softc_t *softc;
7640 int type, uid;
7641 void *ptr;
7642 {
7643 ipftoken_t *it;
7644 int error;
7645
7646 IPFERROR(82);
7647 error = ESRCH;
7648
7649 WRITE_ENTER(&softc->ipf_tokens);
7650 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7651 if (ptr == it->ipt_ctx && type == it->ipt_type &&
7652 uid == it->ipt_uid) {
7653 it->ipt_complete = 2;
7654 ipf_token_deref(softc, it);
7655 error = 0;
7656 break;
7657 }
7658 }
7659 RWLOCK_EXIT(&softc->ipf_tokens);
7660
7661 return error;
7662 }
7663
7664
7665 /* ------------------------------------------------------------------------ */
7666 /* Function: ipf_token_mark_complete */
7667 /* Returns: None. */
7668 /* Parameters: token(I) - pointer to token structure */
7669 /* */
7670 /* Mark a token as being ineligable for being found with ipf_token_find. */
7671 /* ------------------------------------------------------------------------ */
7672 void
ipf_token_mark_complete(token)7673 ipf_token_mark_complete(token)
7674 ipftoken_t *token;
7675 {
7676 if (token->ipt_complete == 0)
7677 token->ipt_complete = 1;
7678 }
7679
7680
7681 /* ------------------------------------------------------------------------ */
7682 /* Function: ipf_token_find */
7683 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */
7684 /* Parameters: softc(I)- pointer to soft context main structure */
7685 /* type(I) - the token type to match */
7686 /* uid(I) - uid owning the token */
7687 /* ptr(I) - context pointer for the token */
7688 /* */
7689 /* This function looks for a live token in the list of current tokens that */
7690 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */
7691 /* allocated. If one is found then it is moved to the top of the list of */
7692 /* currently active tokens. */
7693 /* ------------------------------------------------------------------------ */
7694 ipftoken_t *
ipf_token_find(softc,type,uid,ptr)7695 ipf_token_find(softc, type, uid, ptr)
7696 ipf_main_softc_t *softc;
7697 int type, uid;
7698 void *ptr;
7699 {
7700 ipftoken_t *it, *new;
7701
7702 KMALLOC(new, ipftoken_t *);
7703 if (new != NULL)
7704 bzero((char *)new, sizeof(*new));
7705
7706 WRITE_ENTER(&softc->ipf_tokens);
7707 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7708 if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7709 (uid == it->ipt_uid) && (it->ipt_complete < 2))
7710 break;
7711 }
7712
7713 if (it == NULL) {
7714 it = new;
7715 new = NULL;
7716 if (it == NULL) {
7717 RWLOCK_EXIT(&softc->ipf_tokens);
7718 return NULL;
7719 }
7720 it->ipt_ctx = ptr;
7721 it->ipt_uid = uid;
7722 it->ipt_type = type;
7723 it->ipt_ref = 1;
7724 } else {
7725 if (new != NULL) {
7726 KFREE(new);
7727 new = NULL;
7728 }
7729
7730 if (it->ipt_complete > 0)
7731 it = NULL;
7732 else
7733 ipf_token_unlink(softc, it);
7734 }
7735
7736 if (it != NULL) {
7737 it->ipt_pnext = softc->ipf_token_tail;
7738 *softc->ipf_token_tail = it;
7739 softc->ipf_token_tail = &it->ipt_next;
7740 it->ipt_next = NULL;
7741 it->ipt_ref++;
7742
7743 it->ipt_die = softc->ipf_ticks + 20;
7744 }
7745
7746 RWLOCK_EXIT(&softc->ipf_tokens);
7747
7748 return it;
7749 }
7750
7751
7752 /* ------------------------------------------------------------------------ */
7753 /* Function: ipf_token_unlink */
7754 /* Returns: None. */
7755 /* Parameters: softc(I) - pointer to soft context main structure */
7756 /* token(I) - pointer to token structure */
7757 /* Write Locks: ipf_tokens */
7758 /* */
7759 /* This function unlinks a token structure from the linked list of tokens */
7760 /* that "own" it. The head pointer never needs to be explicitly adjusted */
7761 /* but the tail does due to the linked list implementation. */
7762 /* ------------------------------------------------------------------------ */
7763 static void
ipf_token_unlink(softc,token)7764 ipf_token_unlink(softc, token)
7765 ipf_main_softc_t *softc;
7766 ipftoken_t *token;
7767 {
7768
7769 if (softc->ipf_token_tail == &token->ipt_next)
7770 softc->ipf_token_tail = token->ipt_pnext;
7771
7772 *token->ipt_pnext = token->ipt_next;
7773 if (token->ipt_next != NULL)
7774 token->ipt_next->ipt_pnext = token->ipt_pnext;
7775 token->ipt_next = NULL;
7776 token->ipt_pnext = NULL;
7777 }
7778
7779
7780 /* ------------------------------------------------------------------------ */
7781 /* Function: ipf_token_deref */
7782 /* Returns: int - 0 == token freed, else reference count */
7783 /* Parameters: softc(I) - pointer to soft context main structure */
7784 /* token(I) - pointer to token structure */
7785 /* Write Locks: ipf_tokens */
7786 /* */
7787 /* Drop the reference count on the token structure and if it drops to zero, */
7788 /* call the dereference function for the token type because it is then */
7789 /* possible to free the token data structure. */
7790 /* ------------------------------------------------------------------------ */
7791 int
ipf_token_deref(softc,token)7792 ipf_token_deref(softc, token)
7793 ipf_main_softc_t *softc;
7794 ipftoken_t *token;
7795 {
7796 void *data, **datap;
7797
7798 ASSERT(token->ipt_ref > 0);
7799 token->ipt_ref--;
7800 if (token->ipt_ref > 0)
7801 return token->ipt_ref;
7802
7803 data = token->ipt_data;
7804 datap = &data;
7805
7806 if ((data != NULL) && (data != (void *)-1)) {
7807 switch (token->ipt_type)
7808 {
7809 case IPFGENITER_IPF :
7810 (void) ipf_derefrule(softc, (frentry_t **)datap);
7811 break;
7812 case IPFGENITER_IPNAT :
7813 WRITE_ENTER(&softc->ipf_nat);
7814 ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7815 RWLOCK_EXIT(&softc->ipf_nat);
7816 break;
7817 case IPFGENITER_NAT :
7818 ipf_nat_deref(softc, (nat_t **)datap);
7819 break;
7820 case IPFGENITER_STATE :
7821 ipf_state_deref(softc, (ipstate_t **)datap);
7822 break;
7823 case IPFGENITER_FRAG :
7824 ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7825 break;
7826 case IPFGENITER_NATFRAG :
7827 ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7828 break;
7829 case IPFGENITER_HOSTMAP :
7830 WRITE_ENTER(&softc->ipf_nat);
7831 ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7832 RWLOCK_EXIT(&softc->ipf_nat);
7833 break;
7834 default :
7835 ipf_lookup_iterderef(softc, token->ipt_type, data);
7836 break;
7837 }
7838 }
7839
7840 ipf_token_unlink(softc, token);
7841 KFREE(token);
7842 return 0;
7843 }
7844
7845
7846 /* ------------------------------------------------------------------------ */
7847 /* Function: ipf_nextrule */
7848 /* Returns: frentry_t * - NULL == no more rules, else pointer to next */
7849 /* Parameters: softc(I) - pointer to soft context main structure */
7850 /* fr(I) - pointer to filter rule */
7851 /* out(I) - 1 == out rules, 0 == input rules */
7852 /* */
7853 /* Starting with "fr", find the next rule to visit. This includes visiting */
7854 /* the list of rule groups if either fr is NULL (empty list) or it is the */
7855 /* last rule in the list. When walking rule lists, it is either input or */
7856 /* output rules that are returned, never both. */
7857 /* ------------------------------------------------------------------------ */
7858 static frentry_t *
ipf_nextrule(softc,active,unit,fr,out)7859 ipf_nextrule(softc, active, unit, fr, out)
7860 ipf_main_softc_t *softc;
7861 int active, unit;
7862 frentry_t *fr;
7863 int out;
7864 {
7865 frentry_t *next;
7866 frgroup_t *fg;
7867
7868 if (fr != NULL && fr->fr_group != -1) {
7869 fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7870 unit, active, NULL);
7871 if (fg != NULL)
7872 fg = fg->fg_next;
7873 } else {
7874 fg = softc->ipf_groups[unit][active];
7875 }
7876
7877 while (fg != NULL) {
7878 next = fg->fg_start;
7879 while (next != NULL) {
7880 if (out) {
7881 if (next->fr_flags & FR_OUTQUE)
7882 return next;
7883 } else if (next->fr_flags & FR_INQUE) {
7884 return next;
7885 }
7886 next = next->fr_next;
7887 }
7888 if (next == NULL)
7889 fg = fg->fg_next;
7890 }
7891
7892 return NULL;
7893 }
7894
7895 /* ------------------------------------------------------------------------ */
7896 /* Function: ipf_getnextrule */
7897 /* Returns: int - 0 = success, else error */
7898 /* Parameters: softc(I)- pointer to soft context main structure */
7899 /* t(I) - pointer to destination information to resolve */
7900 /* ptr(I) - pointer to ipfobj_t to copyin from user space */
7901 /* */
7902 /* This function's first job is to bring in the ipfruleiter_t structure via */
7903 /* the ipfobj_t structure to determine what should be the next rule to */
7904 /* return. Once the ipfruleiter_t has been brought in, it then tries to */
7905 /* find the 'next rule'. This may include searching rule group lists or */
7906 /* just be as simple as looking at the 'next' field in the rule structure. */
7907 /* When we have found the rule to return, increase its reference count and */
7908 /* if we used an existing rule to get here, decrease its reference count. */
7909 /* ------------------------------------------------------------------------ */
7910 int
ipf_getnextrule(softc,t,ptr)7911 ipf_getnextrule(softc, t, ptr)
7912 ipf_main_softc_t *softc;
7913 ipftoken_t *t;
7914 void *ptr;
7915 {
7916 frentry_t *fr, *next, zero;
7917 ipfruleiter_t it;
7918 int error, out;
7919 frgroup_t *fg;
7920 ipfobj_t obj;
7921 int predict;
7922 char *dst;
7923 int unit;
7924
7925 if (t == NULL || ptr == NULL) {
7926 IPFERROR(84);
7927 return EFAULT;
7928 }
7929
7930 error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7931 if (error != 0)
7932 return error;
7933
7934 if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7935 IPFERROR(85);
7936 return EINVAL;
7937 }
7938 if ((it.iri_active != 0) && (it.iri_active != 1)) {
7939 IPFERROR(86);
7940 return EINVAL;
7941 }
7942 if (it.iri_nrules == 0) {
7943 IPFERROR(87);
7944 return ENOSPC;
7945 }
7946 if (it.iri_rule == NULL) {
7947 IPFERROR(88);
7948 return EFAULT;
7949 }
7950
7951 fg = NULL;
7952 fr = t->ipt_data;
7953 if ((it.iri_inout & F_OUT) != 0)
7954 out = 1;
7955 else
7956 out = 0;
7957 if ((it.iri_inout & F_ACIN) != 0)
7958 unit = IPL_LOGCOUNT;
7959 else
7960 unit = IPL_LOGIPF;
7961
7962 READ_ENTER(&softc->ipf_mutex);
7963 if (fr == NULL) {
7964 if (*it.iri_group == '\0') {
7965 if (unit == IPL_LOGCOUNT) {
7966 next = softc->ipf_acct[out][it.iri_active];
7967 } else {
7968 next = softc->ipf_rules[out][it.iri_active];
7969 }
7970 if (next == NULL)
7971 next = ipf_nextrule(softc, it.iri_active,
7972 unit, NULL, out);
7973 } else {
7974 fg = ipf_findgroup(softc, it.iri_group, unit,
7975 it.iri_active, NULL);
7976 if (fg != NULL)
7977 next = fg->fg_start;
7978 else
7979 next = NULL;
7980 }
7981 } else {
7982 next = fr->fr_next;
7983 if (next == NULL)
7984 next = ipf_nextrule(softc, it.iri_active, unit,
7985 fr, out);
7986 }
7987
7988 if (next != NULL && next->fr_next != NULL)
7989 predict = 1;
7990 else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7991 predict = 1;
7992 else
7993 predict = 0;
7994
7995 if (fr != NULL)
7996 (void) ipf_derefrule(softc, &fr);
7997
7998 obj.ipfo_type = IPFOBJ_FRENTRY;
7999 dst = (char *)it.iri_rule;
8000
8001 if (next != NULL) {
8002 obj.ipfo_size = next->fr_size;
8003 MUTEX_ENTER(&next->fr_lock);
8004 next->fr_ref++;
8005 MUTEX_EXIT(&next->fr_lock);
8006 t->ipt_data = next;
8007 } else {
8008 obj.ipfo_size = sizeof(frentry_t);
8009 bzero(&zero, sizeof(zero));
8010 next = &zero;
8011 t->ipt_data = NULL;
8012 }
8013 it.iri_rule = predict ? next : NULL;
8014 if (predict == 0)
8015 ipf_token_mark_complete(t);
8016
8017 RWLOCK_EXIT(&softc->ipf_mutex);
8018
8019 obj.ipfo_ptr = dst;
8020 error = ipf_outobjk(softc, &obj, next);
8021 if (error == 0 && t->ipt_data != NULL) {
8022 dst += obj.ipfo_size;
8023 if (next->fr_data != NULL) {
8024 ipfobj_t dobj;
8025
8026 if (next->fr_type == FR_T_IPFEXPR)
8027 dobj.ipfo_type = IPFOBJ_IPFEXPR;
8028 else
8029 dobj.ipfo_type = IPFOBJ_FRIPF;
8030 dobj.ipfo_size = next->fr_dsize;
8031 dobj.ipfo_rev = obj.ipfo_rev;
8032 dobj.ipfo_ptr = dst;
8033 error = ipf_outobjk(softc, &dobj, next->fr_data);
8034 }
8035 }
8036
8037 if ((fr != NULL) && (next == &zero))
8038 (void) ipf_derefrule(softc, &fr);
8039
8040 return error;
8041 }
8042
8043
8044 /* ------------------------------------------------------------------------ */
8045 /* Function: ipf_frruleiter */
8046 /* Returns: int - 0 = success, else error */
8047 /* Parameters: softc(I)- pointer to soft context main structure */
8048 /* data(I) - the token type to match */
8049 /* uid(I) - uid owning the token */
8050 /* ptr(I) - context pointer for the token */
8051 /* */
8052 /* This function serves as a stepping stone between ipf_ipf_ioctl and */
8053 /* ipf_getnextrule. It's role is to find the right token in the kernel for */
8054 /* the process doing the ioctl and use that to ask for the next rule. */
8055 /* ------------------------------------------------------------------------ */
8056 static int
ipf_frruleiter(softc,data,uid,ctx)8057 ipf_frruleiter(softc, data, uid, ctx)
8058 ipf_main_softc_t *softc;
8059 void *data, *ctx;
8060 int uid;
8061 {
8062 ipftoken_t *token;
8063 ipfruleiter_t it;
8064 ipfobj_t obj;
8065 int error;
8066
8067 token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
8068 if (token != NULL) {
8069 error = ipf_getnextrule(softc, token, data);
8070 WRITE_ENTER(&softc->ipf_tokens);
8071 ipf_token_deref(softc, token);
8072 RWLOCK_EXIT(&softc->ipf_tokens);
8073 } else {
8074 error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
8075 if (error != 0)
8076 return error;
8077 it.iri_rule = NULL;
8078 error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
8079 }
8080
8081 return error;
8082 }
8083
8084
8085 /* ------------------------------------------------------------------------ */
8086 /* Function: ipf_geniter */
8087 /* Returns: int - 0 = success, else error */
8088 /* Parameters: softc(I) - pointer to soft context main structure */
8089 /* token(I) - pointer to ipftoken_t structure */
8090 /* itp(I) - pointer to iterator data */
8091 /* */
8092 /* Decide which iterator function to call using information passed through */
8093 /* the ipfgeniter_t structure at itp. */
8094 /* ------------------------------------------------------------------------ */
8095 static int
ipf_geniter(softc,token,itp)8096 ipf_geniter(softc, token, itp)
8097 ipf_main_softc_t *softc;
8098 ipftoken_t *token;
8099 ipfgeniter_t *itp;
8100 {
8101 int error;
8102
8103 switch (itp->igi_type)
8104 {
8105 case IPFGENITER_FRAG :
8106 error = ipf_frag_pkt_next(softc, token, itp);
8107 break;
8108 default :
8109 IPFERROR(92);
8110 error = EINVAL;
8111 break;
8112 }
8113
8114 return error;
8115 }
8116
8117
8118 /* ------------------------------------------------------------------------ */
8119 /* Function: ipf_genericiter */
8120 /* Returns: int - 0 = success, else error */
8121 /* Parameters: softc(I)- pointer to soft context main structure */
8122 /* data(I) - the token type to match */
8123 /* uid(I) - uid owning the token */
8124 /* ptr(I) - context pointer for the token */
8125 /* */
8126 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role */
8127 /* ------------------------------------------------------------------------ */
8128 int
ipf_genericiter(softc,data,uid,ctx)8129 ipf_genericiter(softc, data, uid, ctx)
8130 ipf_main_softc_t *softc;
8131 void *data, *ctx;
8132 int uid;
8133 {
8134 ipftoken_t *token;
8135 ipfgeniter_t iter;
8136 int error;
8137
8138 error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
8139 if (error != 0)
8140 return error;
8141
8142 token = ipf_token_find(softc, iter.igi_type, uid, ctx);
8143 if (token != NULL) {
8144 token->ipt_subtype = iter.igi_type;
8145 error = ipf_geniter(softc, token, &iter);
8146 WRITE_ENTER(&softc->ipf_tokens);
8147 ipf_token_deref(softc, token);
8148 RWLOCK_EXIT(&softc->ipf_tokens);
8149 } else {
8150 IPFERROR(93);
8151 error = 0;
8152 }
8153
8154 return error;
8155 }
8156
8157
8158 /* ------------------------------------------------------------------------ */
8159 /* Function: ipf_ipf_ioctl */
8160 /* Returns: int - 0 = success, else error */
8161 /* Parameters: softc(I)- pointer to soft context main structure */
8162 /* data(I) - the token type to match */
8163 /* cmd(I) - the ioctl command number */
8164 /* mode(I) - mode flags for the ioctl */
8165 /* uid(I) - uid owning the token */
8166 /* ptr(I) - context pointer for the token */
8167 /* */
8168 /* This function handles all of the ioctl command that are actually isssued */
8169 /* to the /dev/ipl device. */
8170 /* ------------------------------------------------------------------------ */
8171 int
ipf_ipf_ioctl(softc,data,cmd,mode,uid,ctx)8172 ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx)
8173 ipf_main_softc_t *softc;
8174 caddr_t data;
8175 ioctlcmd_t cmd;
8176 int mode, uid;
8177 void *ctx;
8178 {
8179 friostat_t fio;
8180 int error, tmp;
8181 ipfobj_t obj;
8182 SPL_INT(s);
8183
8184 switch (cmd)
8185 {
8186 case SIOCFRENB :
8187 if (!(mode & FWRITE)) {
8188 IPFERROR(94);
8189 error = EPERM;
8190 } else {
8191 error = BCOPYIN(data, &tmp, sizeof(tmp));
8192 if (error != 0) {
8193 IPFERROR(95);
8194 error = EFAULT;
8195 break;
8196 }
8197
8198 WRITE_ENTER(&softc->ipf_global);
8199 if (tmp) {
8200 if (softc->ipf_running > 0)
8201 error = 0;
8202 else
8203 error = ipfattach(softc);
8204 if (error == 0)
8205 softc->ipf_running = 1;
8206 else
8207 (void) ipfdetach(softc);
8208 } else {
8209 if (softc->ipf_running == 1)
8210 error = ipfdetach(softc);
8211 else
8212 error = 0;
8213 if (error == 0)
8214 softc->ipf_running = -1;
8215 }
8216 RWLOCK_EXIT(&softc->ipf_global);
8217 }
8218 break;
8219
8220 case SIOCIPFSET :
8221 if (!(mode & FWRITE)) {
8222 IPFERROR(96);
8223 error = EPERM;
8224 break;
8225 }
8226 /* FALLTHRU */
8227 case SIOCIPFGETNEXT :
8228 case SIOCIPFGET :
8229 error = ipf_ipftune(softc, cmd, (void *)data);
8230 break;
8231
8232 case SIOCSETFF :
8233 if (!(mode & FWRITE)) {
8234 IPFERROR(97);
8235 error = EPERM;
8236 } else {
8237 error = BCOPYIN(data, &softc->ipf_flags,
8238 sizeof(softc->ipf_flags));
8239 if (error != 0) {
8240 IPFERROR(98);
8241 error = EFAULT;
8242 }
8243 }
8244 break;
8245
8246 case SIOCGETFF :
8247 error = BCOPYOUT(&softc->ipf_flags, data,
8248 sizeof(softc->ipf_flags));
8249 if (error != 0) {
8250 IPFERROR(99);
8251 error = EFAULT;
8252 }
8253 break;
8254
8255 case SIOCFUNCL :
8256 error = ipf_resolvefunc(softc, (void *)data);
8257 break;
8258
8259 case SIOCINAFR :
8260 case SIOCRMAFR :
8261 case SIOCADAFR :
8262 case SIOCZRLST :
8263 if (!(mode & FWRITE)) {
8264 IPFERROR(100);
8265 error = EPERM;
8266 } else {
8267 error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8268 softc->ipf_active, 1);
8269 }
8270 break;
8271
8272 case SIOCINIFR :
8273 case SIOCRMIFR :
8274 case SIOCADIFR :
8275 if (!(mode & FWRITE)) {
8276 IPFERROR(101);
8277 error = EPERM;
8278 } else {
8279 error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8280 1 - softc->ipf_active, 1);
8281 }
8282 break;
8283
8284 case SIOCSWAPA :
8285 if (!(mode & FWRITE)) {
8286 IPFERROR(102);
8287 error = EPERM;
8288 } else {
8289 WRITE_ENTER(&softc->ipf_mutex);
8290 error = BCOPYOUT(&softc->ipf_active, data,
8291 sizeof(softc->ipf_active));
8292 if (error != 0) {
8293 IPFERROR(103);
8294 error = EFAULT;
8295 } else {
8296 softc->ipf_active = 1 - softc->ipf_active;
8297 }
8298 RWLOCK_EXIT(&softc->ipf_mutex);
8299 }
8300 break;
8301
8302 case SIOCGETFS :
8303 error = ipf_inobj(softc, (void *)data, &obj, &fio,
8304 IPFOBJ_IPFSTAT);
8305 if (error != 0)
8306 break;
8307 ipf_getstat(softc, &fio, obj.ipfo_rev);
8308 error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8309 break;
8310
8311 case SIOCFRZST :
8312 if (!(mode & FWRITE)) {
8313 IPFERROR(104);
8314 error = EPERM;
8315 } else
8316 error = ipf_zerostats(softc, (caddr_t)data);
8317 break;
8318
8319 case SIOCIPFFL :
8320 if (!(mode & FWRITE)) {
8321 IPFERROR(105);
8322 error = EPERM;
8323 } else {
8324 error = BCOPYIN(data, &tmp, sizeof(tmp));
8325 if (!error) {
8326 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8327 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8328 if (error != 0) {
8329 IPFERROR(106);
8330 error = EFAULT;
8331 }
8332 } else {
8333 IPFERROR(107);
8334 error = EFAULT;
8335 }
8336 }
8337 break;
8338
8339 #ifdef USE_INET6
8340 case SIOCIPFL6 :
8341 if (!(mode & FWRITE)) {
8342 IPFERROR(108);
8343 error = EPERM;
8344 } else {
8345 error = BCOPYIN(data, &tmp, sizeof(tmp));
8346 if (!error) {
8347 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8348 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8349 if (error != 0) {
8350 IPFERROR(109);
8351 error = EFAULT;
8352 }
8353 } else {
8354 IPFERROR(110);
8355 error = EFAULT;
8356 }
8357 }
8358 break;
8359 #endif
8360
8361 case SIOCSTLCK :
8362 if (!(mode & FWRITE)) {
8363 IPFERROR(122);
8364 error = EPERM;
8365 } else {
8366 error = BCOPYIN(data, &tmp, sizeof(tmp));
8367 if (error == 0) {
8368 ipf_state_setlock(softc->ipf_state_soft, tmp);
8369 ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8370 ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8371 ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8372 } else {
8373 IPFERROR(111);
8374 error = EFAULT;
8375 }
8376 }
8377 break;
8378
8379 #ifdef IPFILTER_LOG
8380 case SIOCIPFFB :
8381 if (!(mode & FWRITE)) {
8382 IPFERROR(112);
8383 error = EPERM;
8384 } else {
8385 tmp = ipf_log_clear(softc, IPL_LOGIPF);
8386 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8387 if (error) {
8388 IPFERROR(113);
8389 error = EFAULT;
8390 }
8391 }
8392 break;
8393 #endif /* IPFILTER_LOG */
8394
8395 case SIOCFRSYN :
8396 if (!(mode & FWRITE)) {
8397 IPFERROR(114);
8398 error = EPERM;
8399 } else {
8400 WRITE_ENTER(&softc->ipf_global);
8401 #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8402 error = ipfsync();
8403 #else
8404 ipf_sync(softc, NULL);
8405 error = 0;
8406 #endif
8407 RWLOCK_EXIT(&softc->ipf_global);
8408
8409 }
8410 break;
8411
8412 case SIOCGFRST :
8413 error = ipf_outobj(softc, (void *)data,
8414 ipf_frag_stats(softc->ipf_frag_soft),
8415 IPFOBJ_FRAGSTAT);
8416 break;
8417
8418 #ifdef IPFILTER_LOG
8419 case FIONREAD :
8420 tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8421 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8422 break;
8423 #endif
8424
8425 case SIOCIPFITER :
8426 SPL_SCHED(s);
8427 error = ipf_frruleiter(softc, data, uid, ctx);
8428 SPL_X(s);
8429 break;
8430
8431 case SIOCGENITER :
8432 SPL_SCHED(s);
8433 error = ipf_genericiter(softc, data, uid, ctx);
8434 SPL_X(s);
8435 break;
8436
8437 case SIOCIPFDELTOK :
8438 error = BCOPYIN(data, &tmp, sizeof(tmp));
8439 if (error == 0) {
8440 SPL_SCHED(s);
8441 error = ipf_token_del(softc, tmp, uid, ctx);
8442 SPL_X(s);
8443 }
8444 break;
8445
8446 default :
8447 IPFERROR(115);
8448 error = EINVAL;
8449 break;
8450 }
8451
8452 return error;
8453 }
8454
8455
8456 /* ------------------------------------------------------------------------ */
8457 /* Function: ipf_decaps */
8458 /* Returns: int - -1 == decapsulation failed, else bit mask of */
8459 /* flags indicating packet filtering decision. */
8460 /* Parameters: fin(I) - pointer to packet information */
8461 /* pass(I) - IP protocol version to match */
8462 /* l5proto(I) - layer 5 protocol to decode UDP data as. */
8463 /* */
8464 /* This function is called for packets that are wrapt up in other packets, */
8465 /* for example, an IP packet that is the entire data segment for another IP */
8466 /* packet. If the basic constraints for this are satisfied, change the */
8467 /* buffer to point to the start of the inner packet and start processing */
8468 /* rules belonging to the head group this rule specifies. */
8469 /* ------------------------------------------------------------------------ */
8470 u_32_t
ipf_decaps(fin,pass,l5proto)8471 ipf_decaps(fin, pass, l5proto)
8472 fr_info_t *fin;
8473 u_32_t pass;
8474 int l5proto;
8475 {
8476 fr_info_t fin2, *fino = NULL;
8477 int elen, hlen, nh;
8478 grehdr_t gre;
8479 ip_t *ip;
8480 mb_t *m;
8481
8482 if ((fin->fin_flx & FI_COALESCE) == 0)
8483 if (ipf_coalesce(fin) == -1)
8484 goto cantdecaps;
8485
8486 m = fin->fin_m;
8487 hlen = fin->fin_hlen;
8488
8489 switch (fin->fin_p)
8490 {
8491 case IPPROTO_UDP :
8492 /*
8493 * In this case, the specific protocol being decapsulated
8494 * inside UDP frames comes from the rule.
8495 */
8496 nh = fin->fin_fr->fr_icode;
8497 break;
8498
8499 case IPPROTO_GRE : /* 47 */
8500 bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8501 hlen += sizeof(grehdr_t);
8502 if (gre.gr_R|gre.gr_s)
8503 goto cantdecaps;
8504 if (gre.gr_C)
8505 hlen += 4;
8506 if (gre.gr_K)
8507 hlen += 4;
8508 if (gre.gr_S)
8509 hlen += 4;
8510
8511 nh = IPPROTO_IP;
8512
8513 /*
8514 * If the routing options flag is set, validate that it is
8515 * there and bounce over it.
8516 */
8517 #if 0
8518 /* This is really heavy weight and lots of room for error, */
8519 /* so for now, put it off and get the simple stuff right. */
8520 if (gre.gr_R) {
8521 u_char off, len, *s;
8522 u_short af;
8523 int end;
8524
8525 end = 0;
8526 s = fin->fin_dp;
8527 s += hlen;
8528 aplen = fin->fin_plen - hlen;
8529 while (aplen > 3) {
8530 af = (s[0] << 8) | s[1];
8531 off = s[2];
8532 len = s[3];
8533 aplen -= 4;
8534 s += 4;
8535 if (af == 0 && len == 0) {
8536 end = 1;
8537 break;
8538 }
8539 if (aplen < len)
8540 break;
8541 s += len;
8542 aplen -= len;
8543 }
8544 if (end != 1)
8545 goto cantdecaps;
8546 hlen = s - (u_char *)fin->fin_dp;
8547 }
8548 #endif
8549 break;
8550
8551 #ifdef IPPROTO_IPIP
8552 case IPPROTO_IPIP : /* 4 */
8553 #endif
8554 nh = IPPROTO_IP;
8555 break;
8556
8557 default : /* Includes ESP, AH is special for IPv4 */
8558 goto cantdecaps;
8559 }
8560
8561 switch (nh)
8562 {
8563 case IPPROTO_IP :
8564 case IPPROTO_IPV6 :
8565 break;
8566 default :
8567 goto cantdecaps;
8568 }
8569
8570 bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8571 fino = fin;
8572 fin = &fin2;
8573 elen = hlen;
8574 #if defined(MENTAT) && defined(_KERNEL)
8575 m->b_rptr += elen;
8576 #else
8577 m->m_data += elen;
8578 m->m_len -= elen;
8579 #endif
8580 fin->fin_plen -= elen;
8581
8582 ip = (ip_t *)((char *)fin->fin_ip + elen);
8583
8584 /*
8585 * Make sure we have at least enough data for the network layer
8586 * header.
8587 */
8588 if (IP_V(ip) == 4)
8589 hlen = IP_HL(ip) << 2;
8590 #ifdef USE_INET6
8591 else if (IP_V(ip) == 6)
8592 hlen = sizeof(ip6_t);
8593 #endif
8594 else
8595 goto cantdecaps2;
8596
8597 if (fin->fin_plen < hlen)
8598 goto cantdecaps2;
8599
8600 fin->fin_dp = (char *)ip + hlen;
8601
8602 if (IP_V(ip) == 4) {
8603 /*
8604 * Perform IPv4 header checksum validation.
8605 */
8606 if (ipf_cksum((u_short *)ip, hlen))
8607 goto cantdecaps2;
8608 }
8609
8610 if (ipf_makefrip(hlen, ip, fin) == -1) {
8611 cantdecaps2:
8612 if (m != NULL) {
8613 #if defined(MENTAT) && defined(_KERNEL)
8614 m->b_rptr -= elen;
8615 #else
8616 m->m_data -= elen;
8617 m->m_len += elen;
8618 #endif
8619 }
8620 cantdecaps:
8621 DT1(frb_decapfrip, fr_info_t *, fin);
8622 pass &= ~FR_CMDMASK;
8623 pass |= FR_BLOCK|FR_QUICK;
8624 fin->fin_reason = FRB_DECAPFRIP;
8625 return -1;
8626 }
8627
8628 pass = ipf_scanlist(fin, pass);
8629
8630 /*
8631 * Copy the packet filter "result" fields out of the fr_info_t struct
8632 * that is local to the decapsulation processing and back into the
8633 * one we were called with.
8634 */
8635 fino->fin_flx = fin->fin_flx;
8636 fino->fin_rev = fin->fin_rev;
8637 fino->fin_icode = fin->fin_icode;
8638 fino->fin_rule = fin->fin_rule;
8639 (void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8640 fino->fin_fr = fin->fin_fr;
8641 fino->fin_error = fin->fin_error;
8642 fino->fin_mp = fin->fin_mp;
8643 fino->fin_m = fin->fin_m;
8644 m = fin->fin_m;
8645 if (m != NULL) {
8646 #if defined(MENTAT) && defined(_KERNEL)
8647 m->b_rptr -= elen;
8648 #else
8649 m->m_data -= elen;
8650 m->m_len += elen;
8651 #endif
8652 }
8653 return pass;
8654 }
8655
8656
8657 /* ------------------------------------------------------------------------ */
8658 /* Function: ipf_matcharray_load */
8659 /* Returns: int - 0 = success, else error */
8660 /* Parameters: softc(I) - pointer to soft context main structure */
8661 /* data(I) - pointer to ioctl data */
8662 /* objp(I) - ipfobj_t structure to load data into */
8663 /* arrayptr(I) - pointer to location to store array pointer */
8664 /* */
8665 /* This function loads in a mathing array through the ipfobj_t struct that */
8666 /* describes it. Sanity checking and array size limitations are enforced */
8667 /* in this function to prevent userspace from trying to load in something */
8668 /* that is insanely big. Once the size of the array is known, the memory */
8669 /* required is malloc'd and returned through changing *arrayptr. The */
8670 /* contents of the array are verified before returning. Only in the event */
8671 /* of a successful call is the caller required to free up the malloc area. */
8672 /* ------------------------------------------------------------------------ */
8673 int
ipf_matcharray_load(softc,data,objp,arrayptr)8674 ipf_matcharray_load(softc, data, objp, arrayptr)
8675 ipf_main_softc_t *softc;
8676 caddr_t data;
8677 ipfobj_t *objp;
8678 int **arrayptr;
8679 {
8680 int arraysize, *array, error;
8681
8682 *arrayptr = NULL;
8683
8684 error = BCOPYIN(data, objp, sizeof(*objp));
8685 if (error != 0) {
8686 IPFERROR(116);
8687 return EFAULT;
8688 }
8689
8690 if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8691 IPFERROR(117);
8692 return EINVAL;
8693 }
8694
8695 if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8696 (objp->ipfo_size > 1024)) {
8697 IPFERROR(118);
8698 return EINVAL;
8699 }
8700
8701 arraysize = objp->ipfo_size * sizeof(*array);
8702 KMALLOCS(array, int *, arraysize);
8703 if (array == NULL) {
8704 IPFERROR(119);
8705 return ENOMEM;
8706 }
8707
8708 error = COPYIN(objp->ipfo_ptr, array, arraysize);
8709 if (error != 0) {
8710 KFREES(array, arraysize);
8711 IPFERROR(120);
8712 return EFAULT;
8713 }
8714
8715 if (ipf_matcharray_verify(array, arraysize) != 0) {
8716 KFREES(array, arraysize);
8717 IPFERROR(121);
8718 return EINVAL;
8719 }
8720
8721 *arrayptr = array;
8722 return 0;
8723 }
8724
8725
8726 /* ------------------------------------------------------------------------ */
8727 /* Function: ipf_matcharray_verify */
8728 /* Returns: Nil */
8729 /* Parameters: array(I) - pointer to matching array */
8730 /* arraysize(I) - number of elements in the array */
8731 /* */
8732 /* Verify the contents of a matching array by stepping through each element */
8733 /* in it. The actual commands in the array are not verified for */
8734 /* correctness, only that all of the sizes are correctly within limits. */
8735 /* ------------------------------------------------------------------------ */
8736 int
ipf_matcharray_verify(array,arraysize)8737 ipf_matcharray_verify(array, arraysize)
8738 int *array, arraysize;
8739 {
8740 int i, nelem, maxidx;
8741 ipfexp_t *e;
8742
8743 nelem = arraysize / sizeof(*array);
8744
8745 /*
8746 * Currently, it makes no sense to have an array less than 6
8747 * elements long - the initial size at the from, a single operation
8748 * (minimum 4 in length) and a trailer, for a total of 6.
8749 */
8750 if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8751 return -1;
8752 }
8753
8754 /*
8755 * Verify the size of data pointed to by array with how long
8756 * the array claims to be itself.
8757 */
8758 if (array[0] * sizeof(*array) != arraysize) {
8759 return -1;
8760 }
8761
8762 maxidx = nelem - 1;
8763 /*
8764 * The last opcode in this array should be an IPF_EXP_END.
8765 */
8766 if (array[maxidx] != IPF_EXP_END) {
8767 return -1;
8768 }
8769
8770 for (i = 1; i < maxidx; ) {
8771 e = (ipfexp_t *)(array + i);
8772
8773 /*
8774 * The length of the bits to check must be at least 1
8775 * (or else there is nothing to comapre with!) and it
8776 * cannot exceed the length of the data present.
8777 */
8778 if ((e->ipfe_size < 1 ) ||
8779 (e->ipfe_size + i > maxidx)) {
8780 return -1;
8781 }
8782 i += e->ipfe_size;
8783 }
8784 return 0;
8785 }
8786
8787
8788 /* ------------------------------------------------------------------------ */
8789 /* Function: ipf_fr_matcharray */
8790 /* Returns: int - 0 = match failed, else positive match */
8791 /* Parameters: fin(I) - pointer to packet information */
8792 /* array(I) - pointer to matching array */
8793 /* */
8794 /* This function is used to apply a matching array against a packet and */
8795 /* return an indication of whether or not the packet successfully matches */
8796 /* all of the commands in it. */
8797 /* ------------------------------------------------------------------------ */
8798 static int
ipf_fr_matcharray(fin,array)8799 ipf_fr_matcharray(fin, array)
8800 fr_info_t *fin;
8801 int *array;
8802 {
8803 int i, n, *x, rv, p;
8804 ipfexp_t *e;
8805
8806 rv = 0;
8807 n = array[0];
8808 x = array + 1;
8809
8810 for (; n > 0; x += 3 + x[3], rv = 0) {
8811 e = (ipfexp_t *)x;
8812 if (e->ipfe_cmd == IPF_EXP_END)
8813 break;
8814 n -= e->ipfe_size;
8815
8816 /*
8817 * The upper 16 bits currently store the protocol value.
8818 * This is currently used with TCP and UDP port compares and
8819 * allows "tcp.port = 80" without requiring an explicit
8820 " "ip.pr = tcp" first.
8821 */
8822 p = e->ipfe_cmd >> 16;
8823 if ((p != 0) && (p != fin->fin_p))
8824 break;
8825
8826 switch (e->ipfe_cmd)
8827 {
8828 case IPF_EXP_IP_PR :
8829 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8830 rv |= (fin->fin_p == e->ipfe_arg0[i]);
8831 }
8832 break;
8833
8834 case IPF_EXP_IP_SRCADDR :
8835 if (fin->fin_v != 4)
8836 break;
8837 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8838 rv |= ((fin->fin_saddr &
8839 e->ipfe_arg0[i * 2 + 1]) ==
8840 e->ipfe_arg0[i * 2]);
8841 }
8842 break;
8843
8844 case IPF_EXP_IP_DSTADDR :
8845 if (fin->fin_v != 4)
8846 break;
8847 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8848 rv |= ((fin->fin_daddr &
8849 e->ipfe_arg0[i * 2 + 1]) ==
8850 e->ipfe_arg0[i * 2]);
8851 }
8852 break;
8853
8854 case IPF_EXP_IP_ADDR :
8855 if (fin->fin_v != 4)
8856 break;
8857 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8858 rv |= ((fin->fin_saddr &
8859 e->ipfe_arg0[i * 2 + 1]) ==
8860 e->ipfe_arg0[i * 2]) ||
8861 ((fin->fin_daddr &
8862 e->ipfe_arg0[i * 2 + 1]) ==
8863 e->ipfe_arg0[i * 2]);
8864 }
8865 break;
8866
8867 #ifdef USE_INET6
8868 case IPF_EXP_IP6_SRCADDR :
8869 if (fin->fin_v != 6)
8870 break;
8871 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8872 rv |= IP6_MASKEQ(&fin->fin_src6,
8873 &e->ipfe_arg0[i * 8 + 4],
8874 &e->ipfe_arg0[i * 8]);
8875 }
8876 break;
8877
8878 case IPF_EXP_IP6_DSTADDR :
8879 if (fin->fin_v != 6)
8880 break;
8881 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8882 rv |= IP6_MASKEQ(&fin->fin_dst6,
8883 &e->ipfe_arg0[i * 8 + 4],
8884 &e->ipfe_arg0[i * 8]);
8885 }
8886 break;
8887
8888 case IPF_EXP_IP6_ADDR :
8889 if (fin->fin_v != 6)
8890 break;
8891 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8892 rv |= IP6_MASKEQ(&fin->fin_src6,
8893 &e->ipfe_arg0[i * 8 + 4],
8894 &e->ipfe_arg0[i * 8]) ||
8895 IP6_MASKEQ(&fin->fin_dst6,
8896 &e->ipfe_arg0[i * 8 + 4],
8897 &e->ipfe_arg0[i * 8]);
8898 }
8899 break;
8900 #endif
8901
8902 case IPF_EXP_UDP_PORT :
8903 case IPF_EXP_TCP_PORT :
8904 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8905 rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8906 (fin->fin_dport == e->ipfe_arg0[i]);
8907 }
8908 break;
8909
8910 case IPF_EXP_UDP_SPORT :
8911 case IPF_EXP_TCP_SPORT :
8912 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8913 rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8914 }
8915 break;
8916
8917 case IPF_EXP_UDP_DPORT :
8918 case IPF_EXP_TCP_DPORT :
8919 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8920 rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8921 }
8922 break;
8923
8924 case IPF_EXP_TCP_FLAGS :
8925 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8926 rv |= ((fin->fin_tcpf &
8927 e->ipfe_arg0[i * 2 + 1]) ==
8928 e->ipfe_arg0[i * 2]);
8929 }
8930 break;
8931 }
8932 rv ^= e->ipfe_not;
8933
8934 if (rv == 0)
8935 break;
8936 }
8937
8938 return rv;
8939 }
8940
8941
8942 /* ------------------------------------------------------------------------ */
8943 /* Function: ipf_queueflush */
8944 /* Returns: int - number of entries flushed (0 = none) */
8945 /* Parameters: softc(I) - pointer to soft context main structure */
8946 /* deletefn(I) - function to call to delete entry */
8947 /* ipfqs(I) - top of the list of ipf internal queues */
8948 /* userqs(I) - top of the list of user defined timeouts */
8949 /* */
8950 /* This fucntion gets called when the state/NAT hash tables fill up and we */
8951 /* need to try a bit harder to free up some space. The algorithm used here */
8952 /* split into two parts but both halves have the same goal: to reduce the */
8953 /* number of connections considered to be "active" to the low watermark. */
8954 /* There are two steps in doing this: */
8955 /* 1) Remove any TCP connections that are already considered to be "closed" */
8956 /* but have not yet been removed from the state table. The two states */
8957 /* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */
8958 /* candidates for this style of removal. If freeing up entries in */
8959 /* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */
8960 /* we do not go on to step 2. */
8961 /* */
8962 /* 2) Look for the oldest entries on each timeout queue and free them if */
8963 /* they are within the given window we are considering. Where the */
8964 /* window starts and the steps taken to increase its size depend upon */
8965 /* how long ipf has been running (ipf_ticks.) Anything modified in the */
8966 /* last 30 seconds is not touched. */
8967 /* touched */
8968 /* die ipf_ticks 30*1.5 1800*1.5 | 43200*1.5 */
8969 /* | | | | | | */
8970 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8971 /* now \_int=30s_/ \_int=1hr_/ \_int=12hr */
8972 /* */
8973 /* Points to note: */
8974 /* - tqe_die is the time, in the future, when entries die. */
8975 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8976 /* ticks. */
8977 /* - tqe_touched is when the entry was last used by NAT/state */
8978 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be */
8979 /* ipf_ticks any given timeout queue and vice versa. */
8980 /* - both tqe_die and tqe_touched increase over time */
8981 /* - timeout queues are sorted with the highest value of tqe_die at the */
8982 /* bottom and therefore the smallest values of each are at the top */
8983 /* - the pointer passed in as ipfqs should point to an array of timeout */
8984 /* queues representing each of the TCP states */
8985 /* */
8986 /* We start by setting up a maximum range to scan for things to move of */
8987 /* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */
8988 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8989 /* we start again with a new value for "iend" and "istart". This is */
8990 /* continued until we either finish the scan of 30 second intervals or the */
8991 /* low water mark is reached. */
8992 /* ------------------------------------------------------------------------ */
8993 int
ipf_queueflush(softc,deletefn,ipfqs,userqs,activep,size,low)8994 ipf_queueflush(softc, deletefn, ipfqs, userqs, activep, size, low)
8995 ipf_main_softc_t *softc;
8996 ipftq_delete_fn_t deletefn;
8997 ipftq_t *ipfqs, *userqs;
8998 u_int *activep;
8999 int size, low;
9000 {
9001 u_long interval, istart, iend;
9002 ipftq_t *ifq, *ifqnext;
9003 ipftqent_t *tqe, *tqn;
9004 int removed = 0;
9005
9006 for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
9007 tqn = tqe->tqe_next;
9008 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9009 removed++;
9010 }
9011 if ((*activep * 100 / size) > low) {
9012 for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
9013 ((tqe = tqn) != NULL); ) {
9014 tqn = tqe->tqe_next;
9015 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9016 removed++;
9017 }
9018 }
9019
9020 if ((*activep * 100 / size) <= low) {
9021 return removed;
9022 }
9023
9024 /*
9025 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
9026 * used then the operations are upgraded to floating point
9027 * and kernels don't like floating point...
9028 */
9029 if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
9030 istart = IPF_TTLVAL(86400 * 4);
9031 interval = IPF_TTLVAL(43200);
9032 } else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
9033 istart = IPF_TTLVAL(43200);
9034 interval = IPF_TTLVAL(1800);
9035 } else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
9036 istart = IPF_TTLVAL(1800);
9037 interval = IPF_TTLVAL(30);
9038 } else {
9039 return 0;
9040 }
9041 if (istart > softc->ipf_ticks) {
9042 if (softc->ipf_ticks - interval < interval)
9043 istart = interval;
9044 else
9045 istart = (softc->ipf_ticks / interval) * interval;
9046 }
9047
9048 iend = softc->ipf_ticks - interval;
9049
9050 while ((*activep * 100 / size) > low) {
9051 u_long try;
9052
9053 try = softc->ipf_ticks - istart;
9054
9055 for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
9056 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
9057 if (try < tqe->tqe_touched)
9058 break;
9059 tqn = tqe->tqe_next;
9060 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9061 removed++;
9062 }
9063 }
9064
9065 for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
9066 ifqnext = ifq->ifq_next;
9067
9068 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
9069 if (try < tqe->tqe_touched)
9070 break;
9071 tqn = tqe->tqe_next;
9072 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9073 removed++;
9074 }
9075 }
9076
9077 if (try >= iend) {
9078 if (interval == IPF_TTLVAL(43200)) {
9079 interval = IPF_TTLVAL(1800);
9080 } else if (interval == IPF_TTLVAL(1800)) {
9081 interval = IPF_TTLVAL(30);
9082 } else {
9083 break;
9084 }
9085 if (interval >= softc->ipf_ticks)
9086 break;
9087
9088 iend = softc->ipf_ticks - interval;
9089 }
9090 istart -= interval;
9091 }
9092
9093 return removed;
9094 }
9095
9096
9097 /* ------------------------------------------------------------------------ */
9098 /* Function: ipf_deliverlocal */
9099 /* Returns: int - 1 = local address, 0 = non-local address */
9100 /* Parameters: softc(I) - pointer to soft context main structure */
9101 /* ipversion(I) - IP protocol version (4 or 6) */
9102 /* ifp(I) - network interface pointer */
9103 /* ipaddr(I) - IPv4/6 destination address */
9104 /* */
9105 /* This fucntion is used to determine in the address "ipaddr" belongs to */
9106 /* the network interface represented by ifp. */
9107 /* ------------------------------------------------------------------------ */
9108 int
ipf_deliverlocal(softc,ipversion,ifp,ipaddr)9109 ipf_deliverlocal(softc, ipversion, ifp, ipaddr)
9110 ipf_main_softc_t *softc;
9111 int ipversion;
9112 void *ifp;
9113 i6addr_t *ipaddr;
9114 {
9115 i6addr_t addr;
9116 int islocal = 0;
9117
9118 if (ipversion == 4) {
9119 if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
9120 if (addr.in4.s_addr == ipaddr->in4.s_addr)
9121 islocal = 1;
9122 }
9123
9124 #ifdef USE_INET6
9125 } else if (ipversion == 6) {
9126 if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
9127 if (IP6_EQ(&addr, ipaddr))
9128 islocal = 1;
9129 }
9130 #endif
9131 }
9132
9133 return islocal;
9134 }
9135
9136
9137 /* ------------------------------------------------------------------------ */
9138 /* Function: ipf_settimeout */
9139 /* Returns: int - 0 = success, -1 = failure */
9140 /* Parameters: softc(I) - pointer to soft context main structure */
9141 /* t(I) - pointer to tuneable array entry */
9142 /* p(I) - pointer to values passed in to apply */
9143 /* */
9144 /* This function is called to set the timeout values for each distinct */
9145 /* queue timeout that is available. When called, it calls into both the */
9146 /* state and NAT code, telling them to update their timeout queues. */
9147 /* ------------------------------------------------------------------------ */
9148 static int
ipf_settimeout(softc,t,p)9149 ipf_settimeout(softc, t, p)
9150 struct ipf_main_softc_s *softc;
9151 ipftuneable_t *t;
9152 ipftuneval_t *p;
9153 {
9154
9155 /*
9156 * ipf_interror should be set by the functions called here, not
9157 * by this function - it's just a middle man.
9158 */
9159 if (ipf_state_settimeout(softc, t, p) == -1)
9160 return -1;
9161 if (ipf_nat_settimeout(softc, t, p) == -1)
9162 return -1;
9163 return 0;
9164 }
9165
9166
9167 /* ------------------------------------------------------------------------ */
9168 /* Function: ipf_apply_timeout */
9169 /* Returns: int - 0 = success, -1 = failure */
9170 /* Parameters: head(I) - pointer to tuneable array entry */
9171 /* seconds(I) - pointer to values passed in to apply */
9172 /* */
9173 /* This function applies a timeout of "seconds" to the timeout queue that */
9174 /* is pointed to by "head". All entries on this list have an expiration */
9175 /* set to be the current tick value of ipf plus the ttl. Given that this */
9176 /* function should only be called when the delta is non-zero, the task is */
9177 /* to walk the entire list and apply the change. The sort order will not */
9178 /* change. The only catch is that this is O(n) across the list, so if the */
9179 /* queue has lots of entries (10s of thousands or 100s of thousands), it */
9180 /* could take a relatively long time to work through them all. */
9181 /* ------------------------------------------------------------------------ */
9182 void
ipf_apply_timeout(head,seconds)9183 ipf_apply_timeout(head, seconds)
9184 ipftq_t *head;
9185 u_int seconds;
9186 {
9187 u_int oldtimeout, newtimeout;
9188 ipftqent_t *tqe;
9189 int delta;
9190
9191 MUTEX_ENTER(&head->ifq_lock);
9192 oldtimeout = head->ifq_ttl;
9193 newtimeout = IPF_TTLVAL(seconds);
9194 delta = oldtimeout - newtimeout;
9195
9196 head->ifq_ttl = newtimeout;
9197
9198 for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
9199 tqe->tqe_die += delta;
9200 }
9201 MUTEX_EXIT(&head->ifq_lock);
9202 }
9203
9204
9205 /* ------------------------------------------------------------------------ */
9206 /* Function: ipf_settimeout_tcp */
9207 /* Returns: int - 0 = successfully applied, -1 = failed */
9208 /* Parameters: t(I) - pointer to tuneable to change */
9209 /* p(I) - pointer to new timeout information */
9210 /* tab(I) - pointer to table of TCP queues */
9211 /* */
9212 /* This function applies the new timeout (p) to the TCP tunable (t) and */
9213 /* updates all of the entries on the relevant timeout queue by calling */
9214 /* ipf_apply_timeout(). */
9215 /* ------------------------------------------------------------------------ */
9216 int
ipf_settimeout_tcp(t,p,tab)9217 ipf_settimeout_tcp(t, p, tab)
9218 ipftuneable_t *t;
9219 ipftuneval_t *p;
9220 ipftq_t *tab;
9221 {
9222 if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
9223 !strcmp(t->ipft_name, "tcp_established")) {
9224 ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
9225 } else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
9226 ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
9227 } else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
9228 ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
9229 } else if (!strcmp(t->ipft_name, "tcp_timeout")) {
9230 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9231 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9232 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9233 } else if (!strcmp(t->ipft_name, "tcp_listen")) {
9234 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9235 } else if (!strcmp(t->ipft_name, "tcp_half_established")) {
9236 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9237 } else if (!strcmp(t->ipft_name, "tcp_closing")) {
9238 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9239 } else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
9240 ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
9241 } else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
9242 ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
9243 } else if (!strcmp(t->ipft_name, "tcp_closed")) {
9244 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9245 } else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
9246 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9247 } else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
9248 ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
9249 } else {
9250 /*
9251 * ipf_interror isn't set here because it should be set
9252 * by whatever called this function.
9253 */
9254 return -1;
9255 }
9256 return 0;
9257 }
9258
9259
9260 /* ------------------------------------------------------------------------ */
9261 /* Function: ipf_main_soft_create */
9262 /* Returns: NULL = failure, else success */
9263 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
9264 /* */
9265 /* Create the foundation soft context structure. In circumstances where it */
9266 /* is not required to dynamically allocate the context, a pointer can be */
9267 /* passed in (rather than NULL) to a structure to be initialised. */
9268 /* The main thing of interest is that a number of locks are initialised */
9269 /* here instead of in the where might be expected - in the relevant create */
9270 /* function elsewhere. This is done because the current locking design has */
9271 /* some areas where these locks are used outside of their module. */
9272 /* Possibly the most important exercise that is done here is setting of all */
9273 /* the timeout values, allowing them to be changed before init(). */
9274 /* ------------------------------------------------------------------------ */
9275 void *
ipf_main_soft_create(arg)9276 ipf_main_soft_create(arg)
9277 void *arg;
9278 {
9279 ipf_main_softc_t *softc;
9280
9281 if (arg == NULL) {
9282 KMALLOC(softc, ipf_main_softc_t *);
9283 if (softc == NULL)
9284 return NULL;
9285 } else {
9286 softc = arg;
9287 }
9288
9289 bzero((char *)softc, sizeof(*softc));
9290
9291 /*
9292 * This serves as a flag as to whether or not the softc should be
9293 * free'd when _destroy is called.
9294 */
9295 softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9296
9297 softc->ipf_tuners = ipf_tune_array_copy(softc,
9298 sizeof(ipf_main_tuneables),
9299 ipf_main_tuneables);
9300 if (softc->ipf_tuners == NULL) {
9301 ipf_main_soft_destroy(softc);
9302 return NULL;
9303 }
9304
9305 MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9306 MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9307 RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9308 RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9309 RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9310 RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9311 RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9312 RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9313 RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9314
9315 softc->ipf_token_head = NULL;
9316 softc->ipf_token_tail = &softc->ipf_token_head;
9317
9318 softc->ipf_tcpidletimeout = FIVE_DAYS;
9319 softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9320 softc->ipf_tcplastack = IPF_TTLVAL(30);
9321 softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9322 softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9323 softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9324 softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9325 softc->ipf_tcpclosed = IPF_TTLVAL(30);
9326 softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9327 softc->ipf_udptimeout = IPF_TTLVAL(120);
9328 softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9329 softc->ipf_icmptimeout = IPF_TTLVAL(60);
9330 softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9331 softc->ipf_iptimeout = IPF_TTLVAL(60);
9332
9333 #if defined(IPFILTER_DEFAULT_BLOCK)
9334 softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9335 #else
9336 softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9337 #endif
9338 softc->ipf_minttl = 4;
9339 softc->ipf_icmpminfragmtu = 68;
9340 softc->ipf_flags = IPF_LOGGING;
9341
9342 return softc;
9343 }
9344
9345 /* ------------------------------------------------------------------------ */
9346 /* Function: ipf_main_soft_init */
9347 /* Returns: 0 = success, -1 = failure */
9348 /* Parameters: softc(I) - pointer to soft context main structure */
9349 /* */
9350 /* A null-op function that exists as a placeholder so that the flow in */
9351 /* other functions is obvious. */
9352 /* ------------------------------------------------------------------------ */
9353 /*ARGSUSED*/
9354 int
ipf_main_soft_init(softc)9355 ipf_main_soft_init(softc)
9356 ipf_main_softc_t *softc;
9357 {
9358 return 0;
9359 }
9360
9361
9362 /* ------------------------------------------------------------------------ */
9363 /* Function: ipf_main_soft_destroy */
9364 /* Returns: void */
9365 /* Parameters: softc(I) - pointer to soft context main structure */
9366 /* */
9367 /* Undo everything that we did in ipf_main_soft_create. */
9368 /* */
9369 /* The most important check that needs to be made here is whether or not */
9370 /* the structure was allocated by ipf_main_soft_create() by checking what */
9371 /* value is stored in ipf_dynamic_main. */
9372 /* ------------------------------------------------------------------------ */
9373 /*ARGSUSED*/
9374 void
ipf_main_soft_destroy(softc)9375 ipf_main_soft_destroy(softc)
9376 ipf_main_softc_t *softc;
9377 {
9378
9379 RW_DESTROY(&softc->ipf_frag);
9380 RW_DESTROY(&softc->ipf_poolrw);
9381 RW_DESTROY(&softc->ipf_nat);
9382 RW_DESTROY(&softc->ipf_state);
9383 RW_DESTROY(&softc->ipf_tokens);
9384 RW_DESTROY(&softc->ipf_mutex);
9385 RW_DESTROY(&softc->ipf_global);
9386 MUTEX_DESTROY(&softc->ipf_timeoutlock);
9387 MUTEX_DESTROY(&softc->ipf_rw);
9388
9389 if (softc->ipf_tuners != NULL) {
9390 KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9391 }
9392 if (softc->ipf_dynamic_softc == 1) {
9393 KFREE(softc);
9394 }
9395 }
9396
9397
9398 /* ------------------------------------------------------------------------ */
9399 /* Function: ipf_main_soft_fini */
9400 /* Returns: 0 = success, -1 = failure */
9401 /* Parameters: softc(I) - pointer to soft context main structure */
9402 /* */
9403 /* Clean out the rules which have been added since _init was last called, */
9404 /* the only dynamic part of the mainline. */
9405 /* ------------------------------------------------------------------------ */
9406 int
ipf_main_soft_fini(softc)9407 ipf_main_soft_fini(softc)
9408 ipf_main_softc_t *softc;
9409 {
9410 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9411 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9412 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9413 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9414
9415 return 0;
9416 }
9417
9418
9419 /* ------------------------------------------------------------------------ */
9420 /* Function: ipf_main_load */
9421 /* Returns: 0 = success, -1 = failure */
9422 /* Parameters: none */
9423 /* */
9424 /* Handle global initialisation that needs to be done for the base part of */
9425 /* IPFilter. At present this just amounts to initialising some ICMP lookup */
9426 /* arrays that get used by the state/NAT code. */
9427 /* ------------------------------------------------------------------------ */
9428 int
ipf_main_load()9429 ipf_main_load()
9430 {
9431 int i;
9432
9433 /* fill icmp reply type table */
9434 for (i = 0; i <= ICMP_MAXTYPE; i++)
9435 icmpreplytype4[i] = -1;
9436 icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9437 icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9438 icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9439 icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9440
9441 #ifdef USE_INET6
9442 /* fill icmp reply type table */
9443 for (i = 0; i <= ICMP6_MAXTYPE; i++)
9444 icmpreplytype6[i] = -1;
9445 icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9446 icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9447 icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9448 icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9449 icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9450 #endif
9451
9452 return 0;
9453 }
9454
9455
9456 /* ------------------------------------------------------------------------ */
9457 /* Function: ipf_main_unload */
9458 /* Returns: 0 = success, -1 = failure */
9459 /* Parameters: none */
9460 /* */
9461 /* A null-op function that exists as a placeholder so that the flow in */
9462 /* other functions is obvious. */
9463 /* ------------------------------------------------------------------------ */
9464 int
ipf_main_unload()9465 ipf_main_unload()
9466 {
9467 return 0;
9468 }
9469
9470
9471 /* ------------------------------------------------------------------------ */
9472 /* Function: ipf_load_all */
9473 /* Returns: 0 = success, -1 = failure */
9474 /* Parameters: none */
9475 /* */
9476 /* Work through all of the subsystems inside IPFilter and call the load */
9477 /* function for each in an order that won't lead to a crash :) */
9478 /* ------------------------------------------------------------------------ */
9479 int
ipf_load_all()9480 ipf_load_all()
9481 {
9482 if (ipf_main_load() == -1)
9483 return -1;
9484
9485 if (ipf_state_main_load() == -1)
9486 return -1;
9487
9488 if (ipf_nat_main_load() == -1)
9489 return -1;
9490
9491 if (ipf_frag_main_load() == -1)
9492 return -1;
9493
9494 if (ipf_auth_main_load() == -1)
9495 return -1;
9496
9497 if (ipf_proxy_main_load() == -1)
9498 return -1;
9499
9500 return 0;
9501 }
9502
9503
9504 /* ------------------------------------------------------------------------ */
9505 /* Function: ipf_unload_all */
9506 /* Returns: 0 = success, -1 = failure */
9507 /* Parameters: none */
9508 /* */
9509 /* Work through all of the subsystems inside IPFilter and call the unload */
9510 /* function for each in an order that won't lead to a crash :) */
9511 /* ------------------------------------------------------------------------ */
9512 int
ipf_unload_all()9513 ipf_unload_all()
9514 {
9515 if (ipf_proxy_main_unload() == -1)
9516 return -1;
9517
9518 if (ipf_auth_main_unload() == -1)
9519 return -1;
9520
9521 if (ipf_frag_main_unload() == -1)
9522 return -1;
9523
9524 if (ipf_nat_main_unload() == -1)
9525 return -1;
9526
9527 if (ipf_state_main_unload() == -1)
9528 return -1;
9529
9530 if (ipf_main_unload() == -1)
9531 return -1;
9532
9533 return 0;
9534 }
9535
9536
9537 /* ------------------------------------------------------------------------ */
9538 /* Function: ipf_create_all */
9539 /* Returns: NULL = failure, else success */
9540 /* Parameters: arg(I) - pointer to soft context main structure */
9541 /* */
9542 /* Work through all of the subsystems inside IPFilter and call the create */
9543 /* function for each in an order that won't lead to a crash :) */
9544 /* ------------------------------------------------------------------------ */
9545 ipf_main_softc_t *
ipf_create_all(arg)9546 ipf_create_all(arg)
9547 void *arg;
9548 {
9549 ipf_main_softc_t *softc;
9550
9551 softc = ipf_main_soft_create(arg);
9552 if (softc == NULL)
9553 return NULL;
9554
9555 #ifdef IPFILTER_LOG
9556 softc->ipf_log_soft = ipf_log_soft_create(softc);
9557 if (softc->ipf_log_soft == NULL) {
9558 ipf_destroy_all(softc);
9559 return NULL;
9560 }
9561 #endif
9562
9563 softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9564 if (softc->ipf_lookup_soft == NULL) {
9565 ipf_destroy_all(softc);
9566 return NULL;
9567 }
9568
9569 softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9570 if (softc->ipf_sync_soft == NULL) {
9571 ipf_destroy_all(softc);
9572 return NULL;
9573 }
9574
9575 softc->ipf_state_soft = ipf_state_soft_create(softc);
9576 if (softc->ipf_state_soft == NULL) {
9577 ipf_destroy_all(softc);
9578 return NULL;
9579 }
9580
9581 softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9582 if (softc->ipf_nat_soft == NULL) {
9583 ipf_destroy_all(softc);
9584 return NULL;
9585 }
9586
9587 softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9588 if (softc->ipf_frag_soft == NULL) {
9589 ipf_destroy_all(softc);
9590 return NULL;
9591 }
9592
9593 softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9594 if (softc->ipf_auth_soft == NULL) {
9595 ipf_destroy_all(softc);
9596 return NULL;
9597 }
9598
9599 softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9600 if (softc->ipf_proxy_soft == NULL) {
9601 ipf_destroy_all(softc);
9602 return NULL;
9603 }
9604
9605 return softc;
9606 }
9607
9608
9609 /* ------------------------------------------------------------------------ */
9610 /* Function: ipf_destroy_all */
9611 /* Returns: void */
9612 /* Parameters: softc(I) - pointer to soft context main structure */
9613 /* */
9614 /* Work through all of the subsystems inside IPFilter and call the destroy */
9615 /* function for each in an order that won't lead to a crash :) */
9616 /* */
9617 /* Every one of these functions is expected to succeed, so there is no */
9618 /* checking of return values. */
9619 /* ------------------------------------------------------------------------ */
9620 void
ipf_destroy_all(softc)9621 ipf_destroy_all(softc)
9622 ipf_main_softc_t *softc;
9623 {
9624
9625 if (softc->ipf_state_soft != NULL) {
9626 ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9627 softc->ipf_state_soft = NULL;
9628 }
9629
9630 if (softc->ipf_nat_soft != NULL) {
9631 ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9632 softc->ipf_nat_soft = NULL;
9633 }
9634
9635 if (softc->ipf_frag_soft != NULL) {
9636 ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9637 softc->ipf_frag_soft = NULL;
9638 }
9639
9640 if (softc->ipf_auth_soft != NULL) {
9641 ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9642 softc->ipf_auth_soft = NULL;
9643 }
9644
9645 if (softc->ipf_proxy_soft != NULL) {
9646 ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9647 softc->ipf_proxy_soft = NULL;
9648 }
9649
9650 if (softc->ipf_sync_soft != NULL) {
9651 ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9652 softc->ipf_sync_soft = NULL;
9653 }
9654
9655 if (softc->ipf_lookup_soft != NULL) {
9656 ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9657 softc->ipf_lookup_soft = NULL;
9658 }
9659
9660 #ifdef IPFILTER_LOG
9661 if (softc->ipf_log_soft != NULL) {
9662 ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9663 softc->ipf_log_soft = NULL;
9664 }
9665 #endif
9666
9667 ipf_main_soft_destroy(softc);
9668 }
9669
9670
9671 /* ------------------------------------------------------------------------ */
9672 /* Function: ipf_init_all */
9673 /* Returns: 0 = success, -1 = failure */
9674 /* Parameters: softc(I) - pointer to soft context main structure */
9675 /* */
9676 /* Work through all of the subsystems inside IPFilter and call the init */
9677 /* function for each in an order that won't lead to a crash :) */
9678 /* ------------------------------------------------------------------------ */
9679 int
ipf_init_all(softc)9680 ipf_init_all(softc)
9681 ipf_main_softc_t *softc;
9682 {
9683
9684 if (ipf_main_soft_init(softc) == -1)
9685 return -1;
9686
9687 #ifdef IPFILTER_LOG
9688 if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9689 return -1;
9690 #endif
9691
9692 if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9693 return -1;
9694
9695 if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9696 return -1;
9697
9698 if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9699 return -1;
9700
9701 if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9702 return -1;
9703
9704 if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9705 return -1;
9706
9707 if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9708 return -1;
9709
9710 if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9711 return -1;
9712
9713 return 0;
9714 }
9715
9716
9717 /* ------------------------------------------------------------------------ */
9718 /* Function: ipf_fini_all */
9719 /* Returns: 0 = success, -1 = failure */
9720 /* Parameters: softc(I) - pointer to soft context main structure */
9721 /* */
9722 /* Work through all of the subsystems inside IPFilter and call the fini */
9723 /* function for each in an order that won't lead to a crash :) */
9724 /* ------------------------------------------------------------------------ */
9725 int
ipf_fini_all(softc)9726 ipf_fini_all(softc)
9727 ipf_main_softc_t *softc;
9728 {
9729
9730 ipf_token_flush(softc);
9731
9732 if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9733 return -1;
9734
9735 if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9736 return -1;
9737
9738 if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9739 return -1;
9740
9741 if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9742 return -1;
9743
9744 if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9745 return -1;
9746
9747 if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9748 return -1;
9749
9750 if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9751 return -1;
9752
9753 #ifdef IPFILTER_LOG
9754 if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9755 return -1;
9756 #endif
9757
9758 if (ipf_main_soft_fini(softc) == -1)
9759 return -1;
9760
9761 return 0;
9762 }
9763
9764
9765 /* ------------------------------------------------------------------------ */
9766 /* Function: ipf_rule_expire */
9767 /* Returns: Nil */
9768 /* Parameters: softc(I) - pointer to soft context main structure */
9769 /* */
9770 /* At present this function exists just to support temporary addition of */
9771 /* firewall rules. Both inactive and active lists are scanned for items to */
9772 /* purge, as by rights, the expiration is computed as soon as the rule is */
9773 /* loaded in. */
9774 /* ------------------------------------------------------------------------ */
9775 void
ipf_rule_expire(softc)9776 ipf_rule_expire(softc)
9777 ipf_main_softc_t *softc;
9778 {
9779 frentry_t *fr;
9780
9781 if ((softc->ipf_rule_explist[0] == NULL) &&
9782 (softc->ipf_rule_explist[1] == NULL))
9783 return;
9784
9785 WRITE_ENTER(&softc->ipf_mutex);
9786
9787 while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9788 /*
9789 * Because the list is kept sorted on insertion, the fist
9790 * one that dies in the future means no more work to do.
9791 */
9792 if (fr->fr_die > softc->ipf_ticks)
9793 break;
9794 ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9795 }
9796
9797 while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9798 /*
9799 * Because the list is kept sorted on insertion, the fist
9800 * one that dies in the future means no more work to do.
9801 */
9802 if (fr->fr_die > softc->ipf_ticks)
9803 break;
9804 ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9805 }
9806
9807 RWLOCK_EXIT(&softc->ipf_mutex);
9808 }
9809
9810
9811 static int ipf_ht_node_cmp __P((struct host_node_s *, struct host_node_s *));
9812 static void ipf_ht_node_make_key __P((host_track_t *, host_node_t *, int,
9813 i6addr_t *));
9814
9815 host_node_t RBI_ZERO(ipf_rb);
9816 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9817
9818
9819 /* ------------------------------------------------------------------------ */
9820 /* Function: ipf_ht_node_cmp */
9821 /* Returns: int - 0 == nodes are the same, .. */
9822 /* Parameters: k1(I) - pointer to first key to compare */
9823 /* k2(I) - pointer to second key to compare */
9824 /* */
9825 /* The "key" for the node is a combination of two fields: the address */
9826 /* family and the address itself. */
9827 /* */
9828 /* Because we're not actually interpreting the address data, it isn't */
9829 /* necessary to convert them to/from network/host byte order. The mask is */
9830 /* just used to remove bits that aren't significant - it doesn't matter */
9831 /* where they are, as long as they're always in the same place. */
9832 /* */
9833 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because */
9834 /* this is where individual ones will differ the most - but not true for */
9835 /* for /48's, etc. */
9836 /* ------------------------------------------------------------------------ */
9837 static int
9838 ipf_ht_node_cmp(k1, k2)
9839 struct host_node_s *k1, *k2;
9840 {
9841 int i;
9842
9843 i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9844 if (i != 0)
9845 return i;
9846
9847 if (k1->hn_addr.adf_family == AF_INET)
9848 return (k2->hn_addr.adf_addr.in4.s_addr -
9849 k1->hn_addr.adf_addr.in4.s_addr);
9850
9851 i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9852 if (i != 0)
9853 return i;
9854 i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9855 if (i != 0)
9856 return i;
9857 i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9858 if (i != 0)
9859 return i;
9860 i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9861 return i;
9862 }
9863
9864
9865 /* ------------------------------------------------------------------------ */
9866 /* Function: ipf_ht_node_make_key */
9867 /* Returns: Nil */
9868 /* parameters: htp(I) - pointer to address tracking structure */
9869 /* key(I) - where to store masked address for lookup */
9870 /* family(I) - protocol family of address */
9871 /* addr(I) - pointer to network address */
9872 /* */
9873 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9874 /* copy the address passed in into the key structure whilst masking out the */
9875 /* bits that we don't want. */
9876 /* */
9877 /* Because the parser will set ht_netmask to 128 if there is no protocol */
9878 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we */
9879 /* have to be wary of that and not allow 32-128 to happen. */
9880 /* ------------------------------------------------------------------------ */
9881 static void
ipf_ht_node_make_key(htp,key,family,addr)9882 ipf_ht_node_make_key(htp, key, family, addr)
9883 host_track_t *htp;
9884 host_node_t *key;
9885 int family;
9886 i6addr_t *addr;
9887 {
9888 key->hn_addr.adf_family = family;
9889 if (family == AF_INET) {
9890 u_32_t mask;
9891 int bits;
9892
9893 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9894 bits = htp->ht_netmask;
9895 if (bits >= 32) {
9896 mask = 0xffffffff;
9897 } else {
9898 mask = htonl(0xffffffff << (32 - bits));
9899 }
9900 key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9901 #ifdef USE_INET6
9902 } else {
9903 int bits = htp->ht_netmask;
9904
9905 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9906 if (bits > 96) {
9907 key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9908 htonl(0xffffffff << (128 - bits));
9909 key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9910 key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9911 key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9912 } else if (bits > 64) {
9913 key->hn_addr.adf_addr.i6[3] = 0;
9914 key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9915 htonl(0xffffffff << (96 - bits));
9916 key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9917 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9918 } else if (bits > 32) {
9919 key->hn_addr.adf_addr.i6[3] = 0;
9920 key->hn_addr.adf_addr.i6[2] = 0;
9921 key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9922 htonl(0xffffffff << (64 - bits));
9923 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9924 } else {
9925 key->hn_addr.adf_addr.i6[3] = 0;
9926 key->hn_addr.adf_addr.i6[2] = 0;
9927 key->hn_addr.adf_addr.i6[1] = 0;
9928 key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9929 htonl(0xffffffff << (32 - bits));
9930 }
9931 #endif
9932 }
9933 }
9934
9935
9936 /* ------------------------------------------------------------------------ */
9937 /* Function: ipf_ht_node_add */
9938 /* Returns: int - 0 == success, -1 == failure */
9939 /* Parameters: softc(I) - pointer to soft context main structure */
9940 /* htp(I) - pointer to address tracking structure */
9941 /* family(I) - protocol family of address */
9942 /* addr(I) - pointer to network address */
9943 /* */
9944 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
9945 /* ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp. */
9946 /* */
9947 /* After preparing the key with the address information to find, look in */
9948 /* the red-black tree to see if the address is known. A successful call to */
9949 /* this function can mean one of two things: a new node was added to the */
9950 /* tree or a matching node exists and we're able to bump up its activity. */
9951 /* ------------------------------------------------------------------------ */
9952 int
ipf_ht_node_add(softc,htp,family,addr)9953 ipf_ht_node_add(softc, htp, family, addr)
9954 ipf_main_softc_t *softc;
9955 host_track_t *htp;
9956 int family;
9957 i6addr_t *addr;
9958 {
9959 host_node_t *h;
9960 host_node_t k;
9961
9962 ipf_ht_node_make_key(htp, &k, family, addr);
9963
9964 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9965 if (h == NULL) {
9966 if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9967 return -1;
9968 KMALLOC(h, host_node_t *);
9969 if (h == NULL) {
9970 DT(ipf_rb_no_mem);
9971 LBUMP(ipf_rb_no_mem);
9972 return -1;
9973 }
9974
9975 /*
9976 * If there was a macro to initialise the RB node then that
9977 * would get used here, but there isn't...
9978 */
9979 bzero((char *)h, sizeof(*h));
9980 h->hn_addr = k.hn_addr;
9981 h->hn_addr.adf_family = k.hn_addr.adf_family;
9982 RBI_INSERT(ipf_rb, &htp->ht_root, h);
9983 htp->ht_cur_nodes++;
9984 } else {
9985 if ((htp->ht_max_per_node != 0) &&
9986 (h->hn_active >= htp->ht_max_per_node)) {
9987 DT(ipf_rb_node_max);
9988 LBUMP(ipf_rb_node_max);
9989 return -1;
9990 }
9991 }
9992
9993 h->hn_active++;
9994
9995 return 0;
9996 }
9997
9998
9999 /* ------------------------------------------------------------------------ */
10000 /* Function: ipf_ht_node_del */
10001 /* Returns: int - 0 == success, -1 == failure */
10002 /* parameters: htp(I) - pointer to address tracking structure */
10003 /* family(I) - protocol family of address */
10004 /* addr(I) - pointer to network address */
10005 /* */
10006 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
10007 /* ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp. */
10008 /* */
10009 /* Try and find the address passed in amongst the leavese on this tree to */
10010 /* be friend. If found then drop the active account for that node drops by */
10011 /* one. If that count reaches 0, it is time to free it all up. */
10012 /* ------------------------------------------------------------------------ */
10013 int
ipf_ht_node_del(htp,family,addr)10014 ipf_ht_node_del(htp, family, addr)
10015 host_track_t *htp;
10016 int family;
10017 i6addr_t *addr;
10018 {
10019 host_node_t *h;
10020 host_node_t k;
10021
10022 ipf_ht_node_make_key(htp, &k, family, addr);
10023
10024 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
10025 if (h == NULL) {
10026 return -1;
10027 } else {
10028 h->hn_active--;
10029 if (h->hn_active == 0) {
10030 (void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
10031 htp->ht_cur_nodes--;
10032 KFREE(h);
10033 }
10034 }
10035
10036 return 0;
10037 }
10038
10039
10040 /* ------------------------------------------------------------------------ */
10041 /* Function: ipf_rb_ht_init */
10042 /* Returns: Nil */
10043 /* Parameters: head(I) - pointer to host tracking structure */
10044 /* */
10045 /* Initialise the host tracking structure to be ready for use above. */
10046 /* ------------------------------------------------------------------------ */
10047 void
ipf_rb_ht_init(head)10048 ipf_rb_ht_init(head)
10049 host_track_t *head;
10050 {
10051 RBI_INIT(ipf_rb, &head->ht_root);
10052 }
10053
10054
10055 /* ------------------------------------------------------------------------ */
10056 /* Function: ipf_rb_ht_freenode */
10057 /* Returns: Nil */
10058 /* Parameters: head(I) - pointer to host tracking structure */
10059 /* arg(I) - additional argument from walk caller */
10060 /* */
10061 /* Free an actual host_node_t structure. */
10062 /* ------------------------------------------------------------------------ */
10063 void
ipf_rb_ht_freenode(node,arg)10064 ipf_rb_ht_freenode(node, arg)
10065 host_node_t *node;
10066 void *arg;
10067 {
10068 KFREE(node);
10069 }
10070
10071
10072 /* ------------------------------------------------------------------------ */
10073 /* Function: ipf_rb_ht_flush */
10074 /* Returns: Nil */
10075 /* Parameters: head(I) - pointer to host tracking structure */
10076 /* */
10077 /* Remove all of the nodes in the tree tracking hosts by calling a walker */
10078 /* and free'ing each one. */
10079 /* ------------------------------------------------------------------------ */
10080 void
ipf_rb_ht_flush(head)10081 ipf_rb_ht_flush(head)
10082 host_track_t *head;
10083 {
10084 RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
10085 }
10086
10087
10088 /* ------------------------------------------------------------------------ */
10089 /* Function: ipf_slowtimer */
10090 /* Returns: Nil */
10091 /* Parameters: ptr(I) - pointer to main ipf soft context structure */
10092 /* */
10093 /* Slowly expire held state for fragments. Timeouts are set * in */
10094 /* expectation of this being called twice per second. */
10095 /* ------------------------------------------------------------------------ */
10096 void
ipf_slowtimer(softc)10097 ipf_slowtimer(softc)
10098 ipf_main_softc_t *softc;
10099 {
10100
10101 ipf_token_expire(softc);
10102 ipf_frag_expire(softc);
10103 ipf_state_expire(softc);
10104 ipf_nat_expire(softc);
10105 ipf_auth_expire(softc);
10106 ipf_lookup_expire(softc);
10107 ipf_rule_expire(softc);
10108 ipf_sync_expire(softc);
10109 softc->ipf_ticks++;
10110 }
10111
10112
10113 /* ------------------------------------------------------------------------ */
10114 /* Function: ipf_inet_mask_add */
10115 /* Returns: Nil */
10116 /* Parameters: bits(I) - pointer to nat context information */
10117 /* mtab(I) - pointer to mask hash table structure */
10118 /* */
10119 /* When called, bits represents the mask of a new NAT rule that has just */
10120 /* been added. This function inserts a bitmask into the array of masks to */
10121 /* search when searching for a matching NAT rule for a packet. */
10122 /* Prevention of duplicate masks is achieved by checking the use count for */
10123 /* a given netmask. */
10124 /* ------------------------------------------------------------------------ */
10125 void
ipf_inet_mask_add(bits,mtab)10126 ipf_inet_mask_add(bits, mtab)
10127 int bits;
10128 ipf_v4_masktab_t *mtab;
10129 {
10130 u_32_t mask;
10131 int i, j;
10132
10133 mtab->imt4_masks[bits]++;
10134 if (mtab->imt4_masks[bits] > 1)
10135 return;
10136
10137 if (bits == 0)
10138 mask = 0;
10139 else
10140 mask = 0xffffffff << (32 - bits);
10141
10142 for (i = 0; i < 33; i++) {
10143 if (ntohl(mtab->imt4_active[i]) < mask) {
10144 for (j = 32; j > i; j--)
10145 mtab->imt4_active[j] = mtab->imt4_active[j - 1];
10146 mtab->imt4_active[i] = htonl(mask);
10147 break;
10148 }
10149 }
10150 mtab->imt4_max++;
10151 }
10152
10153
10154 /* ------------------------------------------------------------------------ */
10155 /* Function: ipf_inet_mask_del */
10156 /* Returns: Nil */
10157 /* Parameters: bits(I) - number of bits set in the netmask */
10158 /* mtab(I) - pointer to mask hash table structure */
10159 /* */
10160 /* Remove the 32bit bitmask represented by "bits" from the collection of */
10161 /* netmasks stored inside of mtab. */
10162 /* ------------------------------------------------------------------------ */
10163 void
ipf_inet_mask_del(bits,mtab)10164 ipf_inet_mask_del(bits, mtab)
10165 int bits;
10166 ipf_v4_masktab_t *mtab;
10167 {
10168 u_32_t mask;
10169 int i, j;
10170
10171 mtab->imt4_masks[bits]--;
10172 if (mtab->imt4_masks[bits] > 0)
10173 return;
10174
10175 mask = htonl(0xffffffff << (32 - bits));
10176 for (i = 0; i < 33; i++) {
10177 if (mtab->imt4_active[i] == mask) {
10178 for (j = i + 1; j < 33; j++)
10179 mtab->imt4_active[j - 1] = mtab->imt4_active[j];
10180 break;
10181 }
10182 }
10183 mtab->imt4_max--;
10184 ASSERT(mtab->imt4_max >= 0);
10185 }
10186
10187
10188 #ifdef USE_INET6
10189 /* ------------------------------------------------------------------------ */
10190 /* Function: ipf_inet6_mask_add */
10191 /* Returns: Nil */
10192 /* Parameters: bits(I) - number of bits set in mask */
10193 /* mask(I) - pointer to mask to add */
10194 /* mtab(I) - pointer to mask hash table structure */
10195 /* */
10196 /* When called, bitcount represents the mask of a IPv6 NAT map rule that */
10197 /* has just been added. This function inserts a bitmask into the array of */
10198 /* masks to search when searching for a matching NAT rule for a packet. */
10199 /* Prevention of duplicate masks is achieved by checking the use count for */
10200 /* a given netmask. */
10201 /* ------------------------------------------------------------------------ */
10202 void
ipf_inet6_mask_add(bits,mask,mtab)10203 ipf_inet6_mask_add(bits, mask, mtab)
10204 int bits;
10205 i6addr_t *mask;
10206 ipf_v6_masktab_t *mtab;
10207 {
10208 i6addr_t zero;
10209 int i, j;
10210
10211 mtab->imt6_masks[bits]++;
10212 if (mtab->imt6_masks[bits] > 1)
10213 return;
10214
10215 if (bits == 0) {
10216 mask = &zero;
10217 zero.i6[0] = 0;
10218 zero.i6[1] = 0;
10219 zero.i6[2] = 0;
10220 zero.i6[3] = 0;
10221 }
10222
10223 for (i = 0; i < 129; i++) {
10224 if (IP6_LT(&mtab->imt6_active[i], mask)) {
10225 for (j = 128; j > i; j--)
10226 mtab->imt6_active[j] = mtab->imt6_active[j - 1];
10227 mtab->imt6_active[i] = *mask;
10228 break;
10229 }
10230 }
10231 mtab->imt6_max++;
10232 }
10233
10234
10235 /* ------------------------------------------------------------------------ */
10236 /* Function: ipf_inet6_mask_del */
10237 /* Returns: Nil */
10238 /* Parameters: bits(I) - number of bits set in mask */
10239 /* mask(I) - pointer to mask to remove */
10240 /* mtab(I) - pointer to mask hash table structure */
10241 /* */
10242 /* Remove the 128bit bitmask represented by "bits" from the collection of */
10243 /* netmasks stored inside of mtab. */
10244 /* ------------------------------------------------------------------------ */
10245 void
ipf_inet6_mask_del(bits,mask,mtab)10246 ipf_inet6_mask_del(bits, mask, mtab)
10247 int bits;
10248 i6addr_t *mask;
10249 ipf_v6_masktab_t *mtab;
10250 {
10251 i6addr_t zero;
10252 int i, j;
10253
10254 mtab->imt6_masks[bits]--;
10255 if (mtab->imt6_masks[bits] > 0)
10256 return;
10257
10258 if (bits == 0)
10259 mask = &zero;
10260 zero.i6[0] = 0;
10261 zero.i6[1] = 0;
10262 zero.i6[2] = 0;
10263 zero.i6[3] = 0;
10264
10265 for (i = 0; i < 129; i++) {
10266 if (IP6_EQ(&mtab->imt6_active[i], mask)) {
10267 for (j = i + 1; j < 129; j++) {
10268 mtab->imt6_active[j - 1] = mtab->imt6_active[j];
10269 if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
10270 break;
10271 }
10272 break;
10273 }
10274 }
10275 mtab->imt6_max--;
10276 ASSERT(mtab->imt6_max >= 0);
10277 }
10278
10279 #ifdef _KERNEL
10280 static u_int
ipf_pcksum6(fin,ip6,off,len)10281 ipf_pcksum6(fin, ip6, off, len)
10282 fr_info_t *fin;
10283 ip6_t *ip6;
10284 u_int32_t off;
10285 u_int32_t len;
10286 {
10287 struct mbuf *m;
10288 int sum;
10289
10290 m = fin->fin_m;
10291 if (m->m_len < sizeof(struct ip6_hdr)) {
10292 return 0xffff;
10293 }
10294
10295 sum = in6_cksum(m, ip6->ip6_nxt, off, len);
10296 return(sum);
10297 }
10298 #else
10299 static u_int
ipf_pcksum6(fin,ip6,off,len)10300 ipf_pcksum6(fin, ip6, off, len)
10301 fr_info_t *fin;
10302 ip6_t *ip6;
10303 u_int32_t off;
10304 u_int32_t len;
10305 {
10306 u_short *sp;
10307 u_int sum;
10308
10309 sp = (u_short *)&ip6->ip6_src;
10310 sum = *sp++; /* ip6_src */
10311 sum += *sp++;
10312 sum += *sp++;
10313 sum += *sp++;
10314 sum += *sp++;
10315 sum += *sp++;
10316 sum += *sp++;
10317 sum += *sp++;
10318 sum += *sp++; /* ip6_dst */
10319 sum += *sp++;
10320 sum += *sp++;
10321 sum += *sp++;
10322 sum += *sp++;
10323 sum += *sp++;
10324 sum += *sp++;
10325 sum += *sp++;
10326 return(ipf_pcksum(fin, off, sum));
10327 }
10328 #endif
10329 #endif
10330