1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
4 */
5
6 #include <string.h>
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <inttypes.h>
12 #include <errno.h>
13 #include <ctype.h>
14 #include <sys/queue.h>
15
16 #include <rte_compat.h>
17 #include <rte_debug.h>
18 #include <rte_common.h>
19 #include <rte_log.h>
20 #include <rte_memory.h>
21 #include <rte_launch.h>
22 #include <rte_eal.h>
23 #include <rte_per_lcore.h>
24 #include <rte_lcore.h>
25 #include <rte_branch_prediction.h>
26 #include <rte_mempool.h>
27 #include <rte_mbuf.h>
28 #include <rte_mbuf_pool_ops.h>
29 #include <rte_string_fns.h>
30 #include <rte_hexdump.h>
31 #include <rte_errno.h>
32 #include <rte_memcpy.h>
33
34 /*
35 * pktmbuf pool constructor, given as a callback function to
36 * rte_mempool_create(), or called directly if using
37 * rte_mempool_create_empty()/rte_mempool_populate()
38 */
39 void
rte_pktmbuf_pool_init(struct rte_mempool * mp,void * opaque_arg)40 rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg)
41 {
42 struct rte_pktmbuf_pool_private *user_mbp_priv, *mbp_priv;
43 struct rte_pktmbuf_pool_private default_mbp_priv;
44 uint16_t roomsz;
45
46 RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf));
47
48 /* if no structure is provided, assume no mbuf private area */
49 user_mbp_priv = opaque_arg;
50 if (user_mbp_priv == NULL) {
51 memset(&default_mbp_priv, 0, sizeof(default_mbp_priv));
52 if (mp->elt_size > sizeof(struct rte_mbuf))
53 roomsz = mp->elt_size - sizeof(struct rte_mbuf);
54 else
55 roomsz = 0;
56 default_mbp_priv.mbuf_data_room_size = roomsz;
57 user_mbp_priv = &default_mbp_priv;
58 }
59
60 RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf) +
61 ((user_mbp_priv->flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) ?
62 sizeof(struct rte_mbuf_ext_shared_info) :
63 user_mbp_priv->mbuf_data_room_size) +
64 user_mbp_priv->mbuf_priv_size);
65 RTE_ASSERT((user_mbp_priv->flags &
66 ~RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) == 0);
67
68 mbp_priv = rte_mempool_get_priv(mp);
69 memcpy(mbp_priv, user_mbp_priv, sizeof(*mbp_priv));
70 }
71
72 /*
73 * pktmbuf constructor, given as a callback function to
74 * rte_mempool_obj_iter() or rte_mempool_create().
75 * Set the fields of a packet mbuf to their default values.
76 */
77 void
rte_pktmbuf_init(struct rte_mempool * mp,__rte_unused void * opaque_arg,void * _m,__rte_unused unsigned i)78 rte_pktmbuf_init(struct rte_mempool *mp,
79 __rte_unused void *opaque_arg,
80 void *_m,
81 __rte_unused unsigned i)
82 {
83 struct rte_mbuf *m = _m;
84 uint32_t mbuf_size, buf_len, priv_size;
85
86 priv_size = rte_pktmbuf_priv_size(mp);
87 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
88 buf_len = rte_pktmbuf_data_room_size(mp);
89
90 RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size);
91 RTE_ASSERT(mp->elt_size >= mbuf_size);
92 RTE_ASSERT(buf_len <= UINT16_MAX);
93
94 memset(m, 0, mbuf_size);
95 /* start of buffer is after mbuf structure and priv data */
96 m->priv_size = priv_size;
97 m->buf_addr = (char *)m + mbuf_size;
98 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
99 m->buf_len = (uint16_t)buf_len;
100
101 /* keep some headroom between start of buffer and data */
102 m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
103
104 /* init some constant fields */
105 m->pool = mp;
106 m->nb_segs = 1;
107 m->port = RTE_MBUF_PORT_INVALID;
108 rte_mbuf_refcnt_set(m, 1);
109 m->next = NULL;
110 }
111
112 /*
113 * @internal The callback routine called when reference counter in shinfo
114 * for mbufs with pinned external buffer reaches zero. It means there is
115 * no more reference to buffer backing mbuf and this one should be freed.
116 * This routine is called for the regular (not with pinned external or
117 * indirect buffer) mbufs on detaching from the mbuf with pinned external
118 * buffer.
119 */
120 static void
rte_pktmbuf_free_pinned_extmem(void * addr,void * opaque)121 rte_pktmbuf_free_pinned_extmem(void *addr, void *opaque)
122 {
123 struct rte_mbuf *m = opaque;
124
125 RTE_SET_USED(addr);
126 RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
127 RTE_ASSERT(RTE_MBUF_HAS_PINNED_EXTBUF(m));
128 RTE_ASSERT(m->shinfo->fcb_opaque == m);
129
130 rte_mbuf_ext_refcnt_set(m->shinfo, 1);
131 m->ol_flags = EXT_ATTACHED_MBUF;
132 if (m->next != NULL) {
133 m->next = NULL;
134 m->nb_segs = 1;
135 }
136 rte_mbuf_raw_free(m);
137 }
138
139 /** The context to initialize the mbufs with pinned external buffers. */
140 struct rte_pktmbuf_extmem_init_ctx {
141 const struct rte_pktmbuf_extmem *ext_mem; /* descriptor array. */
142 unsigned int ext_num; /* number of descriptors in array. */
143 unsigned int ext; /* loop descriptor index. */
144 size_t off; /* loop buffer offset. */
145 };
146
147 /**
148 * @internal Packet mbuf constructor for pools with pinned external memory.
149 *
150 * This function initializes some fields in the mbuf structure that are
151 * not modified by the user once created (origin pool, buffer start
152 * address, and so on). This function is given as a callback function to
153 * rte_mempool_obj_iter() called from rte_mempool_create_extmem().
154 *
155 * @param mp
156 * The mempool from which mbufs originate.
157 * @param opaque_arg
158 * A pointer to the rte_pktmbuf_extmem_init_ctx - initialization
159 * context structure
160 * @param m
161 * The mbuf to initialize.
162 * @param i
163 * The index of the mbuf in the pool table.
164 */
165 static void
__rte_pktmbuf_init_extmem(struct rte_mempool * mp,void * opaque_arg,void * _m,__rte_unused unsigned int i)166 __rte_pktmbuf_init_extmem(struct rte_mempool *mp,
167 void *opaque_arg,
168 void *_m,
169 __rte_unused unsigned int i)
170 {
171 struct rte_mbuf *m = _m;
172 struct rte_pktmbuf_extmem_init_ctx *ctx = opaque_arg;
173 const struct rte_pktmbuf_extmem *ext_mem;
174 uint32_t mbuf_size, buf_len, priv_size;
175 struct rte_mbuf_ext_shared_info *shinfo;
176
177 priv_size = rte_pktmbuf_priv_size(mp);
178 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
179 buf_len = rte_pktmbuf_data_room_size(mp);
180
181 RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size);
182 RTE_ASSERT(mp->elt_size >= mbuf_size);
183 RTE_ASSERT(buf_len <= UINT16_MAX);
184
185 memset(m, 0, mbuf_size);
186 m->priv_size = priv_size;
187 m->buf_len = (uint16_t)buf_len;
188
189 /* set the data buffer pointers to external memory */
190 ext_mem = ctx->ext_mem + ctx->ext;
191
192 RTE_ASSERT(ctx->ext < ctx->ext_num);
193 RTE_ASSERT(ctx->off + ext_mem->elt_size <= ext_mem->buf_len);
194
195 m->buf_addr = RTE_PTR_ADD(ext_mem->buf_ptr, ctx->off);
196 m->buf_iova = ext_mem->buf_iova == RTE_BAD_IOVA ?
197 RTE_BAD_IOVA : (ext_mem->buf_iova + ctx->off);
198
199 ctx->off += ext_mem->elt_size;
200 if (ctx->off + ext_mem->elt_size > ext_mem->buf_len) {
201 ctx->off = 0;
202 ++ctx->ext;
203 }
204 /* keep some headroom between start of buffer and data */
205 m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
206
207 /* init some constant fields */
208 m->pool = mp;
209 m->nb_segs = 1;
210 m->port = RTE_MBUF_PORT_INVALID;
211 m->ol_flags = EXT_ATTACHED_MBUF;
212 rte_mbuf_refcnt_set(m, 1);
213 m->next = NULL;
214
215 /* init external buffer shared info items */
216 shinfo = RTE_PTR_ADD(m, mbuf_size);
217 m->shinfo = shinfo;
218 shinfo->free_cb = rte_pktmbuf_free_pinned_extmem;
219 shinfo->fcb_opaque = m;
220 rte_mbuf_ext_refcnt_set(shinfo, 1);
221 }
222
223 /* Helper to create a mbuf pool with given mempool ops name*/
224 struct rte_mempool *
rte_pktmbuf_pool_create_by_ops(const char * name,unsigned int n,unsigned int cache_size,uint16_t priv_size,uint16_t data_room_size,int socket_id,const char * ops_name)225 rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
226 unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
227 int socket_id, const char *ops_name)
228 {
229 struct rte_mempool *mp;
230 struct rte_pktmbuf_pool_private mbp_priv;
231 const char *mp_ops_name = ops_name;
232 unsigned elt_size;
233 int ret;
234
235 if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) {
236 RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n",
237 priv_size);
238 rte_errno = EINVAL;
239 return NULL;
240 }
241 elt_size = sizeof(struct rte_mbuf) + (unsigned)priv_size +
242 (unsigned)data_room_size;
243 memset(&mbp_priv, 0, sizeof(mbp_priv));
244 mbp_priv.mbuf_data_room_size = data_room_size;
245 mbp_priv.mbuf_priv_size = priv_size;
246
247 mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
248 sizeof(struct rte_pktmbuf_pool_private), socket_id, 0);
249 if (mp == NULL)
250 return NULL;
251
252 if (mp_ops_name == NULL)
253 mp_ops_name = rte_mbuf_best_mempool_ops();
254 ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL);
255 if (ret != 0) {
256 RTE_LOG(ERR, MBUF, "error setting mempool handler\n");
257 rte_mempool_free(mp);
258 rte_errno = -ret;
259 return NULL;
260 }
261 rte_pktmbuf_pool_init(mp, &mbp_priv);
262
263 ret = rte_mempool_populate_default(mp);
264 if (ret < 0) {
265 rte_mempool_free(mp);
266 rte_errno = -ret;
267 return NULL;
268 }
269
270 rte_mempool_obj_iter(mp, rte_pktmbuf_init, NULL);
271
272 return mp;
273 }
274
275 /* helper to create a mbuf pool */
276 struct rte_mempool *
rte_pktmbuf_pool_create(const char * name,unsigned int n,unsigned int cache_size,uint16_t priv_size,uint16_t data_room_size,int socket_id)277 rte_pktmbuf_pool_create(const char *name, unsigned int n,
278 unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
279 int socket_id)
280 {
281 return rte_pktmbuf_pool_create_by_ops(name, n, cache_size, priv_size,
282 data_room_size, socket_id, NULL);
283 }
284
285 /* Helper to create a mbuf pool with pinned external data buffers. */
286 struct rte_mempool *
rte_pktmbuf_pool_create_extbuf(const char * name,unsigned int n,unsigned int cache_size,uint16_t priv_size,uint16_t data_room_size,int socket_id,const struct rte_pktmbuf_extmem * ext_mem,unsigned int ext_num)287 rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n,
288 unsigned int cache_size, uint16_t priv_size,
289 uint16_t data_room_size, int socket_id,
290 const struct rte_pktmbuf_extmem *ext_mem,
291 unsigned int ext_num)
292 {
293 struct rte_mempool *mp;
294 struct rte_pktmbuf_pool_private mbp_priv;
295 struct rte_pktmbuf_extmem_init_ctx init_ctx;
296 const char *mp_ops_name;
297 unsigned int elt_size;
298 unsigned int i, n_elts = 0;
299 int ret;
300
301 if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) {
302 RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n",
303 priv_size);
304 rte_errno = EINVAL;
305 return NULL;
306 }
307 /* Check the external memory descriptors. */
308 for (i = 0; i < ext_num; i++) {
309 const struct rte_pktmbuf_extmem *extm = ext_mem + i;
310
311 if (!extm->elt_size || !extm->buf_len || !extm->buf_ptr) {
312 RTE_LOG(ERR, MBUF, "invalid extmem descriptor\n");
313 rte_errno = EINVAL;
314 return NULL;
315 }
316 if (data_room_size > extm->elt_size) {
317 RTE_LOG(ERR, MBUF, "ext elt_size=%u is too small\n",
318 priv_size);
319 rte_errno = EINVAL;
320 return NULL;
321 }
322 n_elts += extm->buf_len / extm->elt_size;
323 }
324 /* Check whether enough external memory provided. */
325 if (n_elts < n) {
326 RTE_LOG(ERR, MBUF, "not enough extmem\n");
327 rte_errno = ENOMEM;
328 return NULL;
329 }
330 elt_size = sizeof(struct rte_mbuf) +
331 (unsigned int)priv_size +
332 sizeof(struct rte_mbuf_ext_shared_info);
333
334 memset(&mbp_priv, 0, sizeof(mbp_priv));
335 mbp_priv.mbuf_data_room_size = data_room_size;
336 mbp_priv.mbuf_priv_size = priv_size;
337 mbp_priv.flags = RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF;
338
339 mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
340 sizeof(struct rte_pktmbuf_pool_private), socket_id, 0);
341 if (mp == NULL)
342 return NULL;
343
344 mp_ops_name = rte_mbuf_best_mempool_ops();
345 ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL);
346 if (ret != 0) {
347 RTE_LOG(ERR, MBUF, "error setting mempool handler\n");
348 rte_mempool_free(mp);
349 rte_errno = -ret;
350 return NULL;
351 }
352 rte_pktmbuf_pool_init(mp, &mbp_priv);
353
354 ret = rte_mempool_populate_default(mp);
355 if (ret < 0) {
356 rte_mempool_free(mp);
357 rte_errno = -ret;
358 return NULL;
359 }
360
361 init_ctx = (struct rte_pktmbuf_extmem_init_ctx){
362 .ext_mem = ext_mem,
363 .ext_num = ext_num,
364 .ext = 0,
365 .off = 0,
366 };
367 rte_mempool_obj_iter(mp, __rte_pktmbuf_init_extmem, &init_ctx);
368
369 return mp;
370 }
371
372 /* do some sanity checks on a mbuf: panic if it fails */
373 void
rte_mbuf_sanity_check(const struct rte_mbuf * m,int is_header)374 rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header)
375 {
376 const char *reason;
377
378 if (rte_mbuf_check(m, is_header, &reason))
379 rte_panic("%s\n", reason);
380 }
381
rte_mbuf_check(const struct rte_mbuf * m,int is_header,const char ** reason)382 int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
383 const char **reason)
384 {
385 unsigned int nb_segs, pkt_len;
386
387 if (m == NULL) {
388 *reason = "mbuf is NULL";
389 return -1;
390 }
391
392 /* generic checks */
393 if (m->pool == NULL) {
394 *reason = "bad mbuf pool";
395 return -1;
396 }
397 if (m->buf_iova == 0) {
398 *reason = "bad IO addr";
399 return -1;
400 }
401 if (m->buf_addr == NULL) {
402 *reason = "bad virt addr";
403 return -1;
404 }
405
406 uint16_t cnt = rte_mbuf_refcnt_read(m);
407 if ((cnt == 0) || (cnt == UINT16_MAX)) {
408 *reason = "bad ref cnt";
409 return -1;
410 }
411
412 /* nothing to check for sub-segments */
413 if (is_header == 0)
414 return 0;
415
416 /* data_len is supposed to be not more than pkt_len */
417 if (m->data_len > m->pkt_len) {
418 *reason = "bad data_len";
419 return -1;
420 }
421
422 nb_segs = m->nb_segs;
423 pkt_len = m->pkt_len;
424
425 do {
426 if (m->data_off > m->buf_len) {
427 *reason = "data offset too big in mbuf segment";
428 return -1;
429 }
430 if (m->data_off + m->data_len > m->buf_len) {
431 *reason = "data length too big in mbuf segment";
432 return -1;
433 }
434 nb_segs -= 1;
435 pkt_len -= m->data_len;
436 } while ((m = m->next) != NULL);
437
438 if (nb_segs) {
439 *reason = "bad nb_segs";
440 return -1;
441 }
442 if (pkt_len) {
443 *reason = "bad pkt_len";
444 return -1;
445 }
446
447 return 0;
448 }
449
450 /**
451 * @internal helper function for freeing a bulk of packet mbuf segments
452 * via an array holding the packet mbuf segments from the same mempool
453 * pending to be freed.
454 *
455 * @param m
456 * The packet mbuf segment to be freed.
457 * @param pending
458 * Pointer to the array of packet mbuf segments pending to be freed.
459 * @param nb_pending
460 * Pointer to the number of elements held in the array.
461 * @param pending_sz
462 * Number of elements the array can hold.
463 * Note: The compiler should optimize this parameter away when using a
464 * constant value, such as RTE_PKTMBUF_FREE_PENDING_SZ.
465 */
466 static void
__rte_pktmbuf_free_seg_via_array(struct rte_mbuf * m,struct rte_mbuf ** const pending,unsigned int * const nb_pending,const unsigned int pending_sz)467 __rte_pktmbuf_free_seg_via_array(struct rte_mbuf *m,
468 struct rte_mbuf ** const pending, unsigned int * const nb_pending,
469 const unsigned int pending_sz)
470 {
471 m = rte_pktmbuf_prefree_seg(m);
472 if (likely(m != NULL)) {
473 if (*nb_pending == pending_sz ||
474 (*nb_pending > 0 && m->pool != pending[0]->pool)) {
475 rte_mempool_put_bulk(pending[0]->pool,
476 (void **)pending, *nb_pending);
477 *nb_pending = 0;
478 }
479
480 pending[(*nb_pending)++] = m;
481 }
482 }
483
484 /**
485 * Size of the array holding mbufs from the same mempool pending to be freed
486 * in bulk.
487 */
488 #define RTE_PKTMBUF_FREE_PENDING_SZ 64
489
490 /* Free a bulk of packet mbufs back into their original mempools. */
rte_pktmbuf_free_bulk(struct rte_mbuf ** mbufs,unsigned int count)491 void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count)
492 {
493 struct rte_mbuf *m, *m_next, *pending[RTE_PKTMBUF_FREE_PENDING_SZ];
494 unsigned int idx, nb_pending = 0;
495
496 for (idx = 0; idx < count; idx++) {
497 m = mbufs[idx];
498 if (unlikely(m == NULL))
499 continue;
500
501 __rte_mbuf_sanity_check(m, 1);
502
503 do {
504 m_next = m->next;
505 __rte_pktmbuf_free_seg_via_array(m,
506 pending, &nb_pending,
507 RTE_PKTMBUF_FREE_PENDING_SZ);
508 m = m_next;
509 } while (m != NULL);
510 }
511
512 if (nb_pending > 0)
513 rte_mempool_put_bulk(pending[0]->pool, (void **)pending, nb_pending);
514 }
515
516 /* Creates a shallow copy of mbuf */
517 struct rte_mbuf *
rte_pktmbuf_clone(struct rte_mbuf * md,struct rte_mempool * mp)518 rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp)
519 {
520 struct rte_mbuf *mc, *mi, **prev;
521 uint32_t pktlen;
522 uint16_t nseg;
523
524 mc = rte_pktmbuf_alloc(mp);
525 if (unlikely(mc == NULL))
526 return NULL;
527
528 mi = mc;
529 prev = &mi->next;
530 pktlen = md->pkt_len;
531 nseg = 0;
532
533 do {
534 nseg++;
535 rte_pktmbuf_attach(mi, md);
536 *prev = mi;
537 prev = &mi->next;
538 } while ((md = md->next) != NULL &&
539 (mi = rte_pktmbuf_alloc(mp)) != NULL);
540
541 *prev = NULL;
542 mc->nb_segs = nseg;
543 mc->pkt_len = pktlen;
544
545 /* Allocation of new indirect segment failed */
546 if (unlikely(mi == NULL)) {
547 rte_pktmbuf_free(mc);
548 return NULL;
549 }
550
551 __rte_mbuf_sanity_check(mc, 1);
552 return mc;
553 }
554
555 /* convert multi-segment mbuf to single mbuf */
556 int
__rte_pktmbuf_linearize(struct rte_mbuf * mbuf)557 __rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
558 {
559 size_t seg_len, copy_len;
560 struct rte_mbuf *m;
561 struct rte_mbuf *m_next;
562 char *buffer;
563
564 /* Extend first segment to the total packet length */
565 copy_len = rte_pktmbuf_pkt_len(mbuf) - rte_pktmbuf_data_len(mbuf);
566
567 if (unlikely(copy_len > rte_pktmbuf_tailroom(mbuf)))
568 return -1;
569
570 buffer = rte_pktmbuf_mtod_offset(mbuf, char *, mbuf->data_len);
571 mbuf->data_len = (uint16_t)(mbuf->pkt_len);
572
573 /* Append data from next segments to the first one */
574 m = mbuf->next;
575 while (m != NULL) {
576 m_next = m->next;
577
578 seg_len = rte_pktmbuf_data_len(m);
579 rte_memcpy(buffer, rte_pktmbuf_mtod(m, char *), seg_len);
580 buffer += seg_len;
581
582 rte_pktmbuf_free_seg(m);
583 m = m_next;
584 }
585
586 mbuf->next = NULL;
587 mbuf->nb_segs = 1;
588
589 return 0;
590 }
591
592 /* Create a deep copy of mbuf */
593 struct rte_mbuf *
rte_pktmbuf_copy(const struct rte_mbuf * m,struct rte_mempool * mp,uint32_t off,uint32_t len)594 rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
595 uint32_t off, uint32_t len)
596 {
597 const struct rte_mbuf *seg = m;
598 struct rte_mbuf *mc, *m_last, **prev;
599
600 /* garbage in check */
601 __rte_mbuf_sanity_check(m, 1);
602
603 /* check for request to copy at offset past end of mbuf */
604 if (unlikely(off >= m->pkt_len))
605 return NULL;
606
607 mc = rte_pktmbuf_alloc(mp);
608 if (unlikely(mc == NULL))
609 return NULL;
610
611 /* truncate requested length to available data */
612 if (len > m->pkt_len - off)
613 len = m->pkt_len - off;
614
615 __rte_pktmbuf_copy_hdr(mc, m);
616
617 /* copied mbuf is not indirect or external */
618 mc->ol_flags = m->ol_flags & ~(IND_ATTACHED_MBUF|EXT_ATTACHED_MBUF);
619
620 prev = &mc->next;
621 m_last = mc;
622 while (len > 0) {
623 uint32_t copy_len;
624
625 /* skip leading mbuf segments */
626 while (off >= seg->data_len) {
627 off -= seg->data_len;
628 seg = seg->next;
629 }
630
631 /* current buffer is full, chain a new one */
632 if (rte_pktmbuf_tailroom(m_last) == 0) {
633 m_last = rte_pktmbuf_alloc(mp);
634 if (unlikely(m_last == NULL)) {
635 rte_pktmbuf_free(mc);
636 return NULL;
637 }
638 ++mc->nb_segs;
639 *prev = m_last;
640 prev = &m_last->next;
641 }
642
643 /*
644 * copy the min of data in input segment (seg)
645 * vs space available in output (m_last)
646 */
647 copy_len = RTE_MIN(seg->data_len - off, len);
648 if (copy_len > rte_pktmbuf_tailroom(m_last))
649 copy_len = rte_pktmbuf_tailroom(m_last);
650
651 /* append from seg to m_last */
652 rte_memcpy(rte_pktmbuf_mtod_offset(m_last, char *,
653 m_last->data_len),
654 rte_pktmbuf_mtod_offset(seg, char *, off),
655 copy_len);
656
657 /* update offsets and lengths */
658 m_last->data_len += copy_len;
659 mc->pkt_len += copy_len;
660 off += copy_len;
661 len -= copy_len;
662 }
663
664 /* garbage out check */
665 __rte_mbuf_sanity_check(mc, 1);
666 return mc;
667 }
668
669 /* dump a mbuf on console */
670 void
rte_pktmbuf_dump(FILE * f,const struct rte_mbuf * m,unsigned dump_len)671 rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len)
672 {
673 unsigned int len;
674 unsigned int nb_segs;
675
676 __rte_mbuf_sanity_check(m, 1);
677
678 fprintf(f, "dump mbuf at %p, iova=%#"PRIx64", buf_len=%u\n",
679 m, m->buf_iova, m->buf_len);
680 fprintf(f, " pkt_len=%u, ol_flags=%#"PRIx64", nb_segs=%u, port=%u",
681 m->pkt_len, m->ol_flags, m->nb_segs, m->port);
682
683 if (m->ol_flags & (PKT_RX_VLAN | PKT_TX_VLAN))
684 fprintf(f, ", vlan_tci=%u", m->vlan_tci);
685
686 fprintf(f, ", ptype=%#"PRIx32"\n", m->packet_type);
687
688 nb_segs = m->nb_segs;
689
690 while (m && nb_segs != 0) {
691 __rte_mbuf_sanity_check(m, 0);
692
693 fprintf(f, " segment at %p, data=%p, len=%u, off=%u, refcnt=%u\n",
694 m, rte_pktmbuf_mtod(m, void *),
695 m->data_len, m->data_off, rte_mbuf_refcnt_read(m));
696
697 len = dump_len;
698 if (len > m->data_len)
699 len = m->data_len;
700 if (len != 0)
701 rte_hexdump(f, NULL, rte_pktmbuf_mtod(m, void *), len);
702 dump_len -= len;
703 m = m->next;
704 nb_segs --;
705 }
706 }
707
708 /* read len data bytes in a mbuf at specified offset (internal) */
__rte_pktmbuf_read(const struct rte_mbuf * m,uint32_t off,uint32_t len,void * buf)709 const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
710 uint32_t len, void *buf)
711 {
712 const struct rte_mbuf *seg = m;
713 uint32_t buf_off = 0, copy_len;
714
715 if (off + len > rte_pktmbuf_pkt_len(m))
716 return NULL;
717
718 while (off >= rte_pktmbuf_data_len(seg)) {
719 off -= rte_pktmbuf_data_len(seg);
720 seg = seg->next;
721 }
722
723 if (off + len <= rte_pktmbuf_data_len(seg))
724 return rte_pktmbuf_mtod_offset(seg, char *, off);
725
726 /* rare case: header is split among several segments */
727 while (len > 0) {
728 copy_len = rte_pktmbuf_data_len(seg) - off;
729 if (copy_len > len)
730 copy_len = len;
731 rte_memcpy((char *)buf + buf_off,
732 rte_pktmbuf_mtod_offset(seg, char *, off), copy_len);
733 off = 0;
734 buf_off += copy_len;
735 len -= copy_len;
736 seg = seg->next;
737 }
738
739 return buf;
740 }
741
742 /*
743 * Get the name of a RX offload flag. Must be kept synchronized with flag
744 * definitions in rte_mbuf.h.
745 */
rte_get_rx_ol_flag_name(uint64_t mask)746 const char *rte_get_rx_ol_flag_name(uint64_t mask)
747 {
748 switch (mask) {
749 case PKT_RX_VLAN: return "PKT_RX_VLAN";
750 case PKT_RX_RSS_HASH: return "PKT_RX_RSS_HASH";
751 case PKT_RX_FDIR: return "PKT_RX_FDIR";
752 case PKT_RX_L4_CKSUM_BAD: return "PKT_RX_L4_CKSUM_BAD";
753 case PKT_RX_L4_CKSUM_GOOD: return "PKT_RX_L4_CKSUM_GOOD";
754 case PKT_RX_L4_CKSUM_NONE: return "PKT_RX_L4_CKSUM_NONE";
755 case PKT_RX_IP_CKSUM_BAD: return "PKT_RX_IP_CKSUM_BAD";
756 case PKT_RX_IP_CKSUM_GOOD: return "PKT_RX_IP_CKSUM_GOOD";
757 case PKT_RX_IP_CKSUM_NONE: return "PKT_RX_IP_CKSUM_NONE";
758 case PKT_RX_EIP_CKSUM_BAD: return "PKT_RX_EIP_CKSUM_BAD";
759 case PKT_RX_VLAN_STRIPPED: return "PKT_RX_VLAN_STRIPPED";
760 case PKT_RX_IEEE1588_PTP: return "PKT_RX_IEEE1588_PTP";
761 case PKT_RX_IEEE1588_TMST: return "PKT_RX_IEEE1588_TMST";
762 case PKT_RX_FDIR_ID: return "PKT_RX_FDIR_ID";
763 case PKT_RX_FDIR_FLX: return "PKT_RX_FDIR_FLX";
764 case PKT_RX_QINQ_STRIPPED: return "PKT_RX_QINQ_STRIPPED";
765 case PKT_RX_QINQ: return "PKT_RX_QINQ";
766 case PKT_RX_LRO: return "PKT_RX_LRO";
767 case PKT_RX_SEC_OFFLOAD: return "PKT_RX_SEC_OFFLOAD";
768 case PKT_RX_SEC_OFFLOAD_FAILED: return "PKT_RX_SEC_OFFLOAD_FAILED";
769 case PKT_RX_OUTER_L4_CKSUM_BAD: return "PKT_RX_OUTER_L4_CKSUM_BAD";
770 case PKT_RX_OUTER_L4_CKSUM_GOOD: return "PKT_RX_OUTER_L4_CKSUM_GOOD";
771 case PKT_RX_OUTER_L4_CKSUM_INVALID:
772 return "PKT_RX_OUTER_L4_CKSUM_INVALID";
773
774 default: return NULL;
775 }
776 }
777
778 struct flag_mask {
779 uint64_t flag;
780 uint64_t mask;
781 const char *default_name;
782 };
783
784 /* write the list of rx ol flags in buffer buf */
785 int
rte_get_rx_ol_flag_list(uint64_t mask,char * buf,size_t buflen)786 rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
787 {
788 const struct flag_mask rx_flags[] = {
789 { PKT_RX_VLAN, PKT_RX_VLAN, NULL },
790 { PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, NULL },
791 { PKT_RX_FDIR, PKT_RX_FDIR, NULL },
792 { PKT_RX_L4_CKSUM_BAD, PKT_RX_L4_CKSUM_MASK, NULL },
793 { PKT_RX_L4_CKSUM_GOOD, PKT_RX_L4_CKSUM_MASK, NULL },
794 { PKT_RX_L4_CKSUM_NONE, PKT_RX_L4_CKSUM_MASK, NULL },
795 { PKT_RX_L4_CKSUM_UNKNOWN, PKT_RX_L4_CKSUM_MASK,
796 "PKT_RX_L4_CKSUM_UNKNOWN" },
797 { PKT_RX_IP_CKSUM_BAD, PKT_RX_IP_CKSUM_MASK, NULL },
798 { PKT_RX_IP_CKSUM_GOOD, PKT_RX_IP_CKSUM_MASK, NULL },
799 { PKT_RX_IP_CKSUM_NONE, PKT_RX_IP_CKSUM_MASK, NULL },
800 { PKT_RX_IP_CKSUM_UNKNOWN, PKT_RX_IP_CKSUM_MASK,
801 "PKT_RX_IP_CKSUM_UNKNOWN" },
802 { PKT_RX_EIP_CKSUM_BAD, PKT_RX_EIP_CKSUM_BAD, NULL },
803 { PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN_STRIPPED, NULL },
804 { PKT_RX_IEEE1588_PTP, PKT_RX_IEEE1588_PTP, NULL },
805 { PKT_RX_IEEE1588_TMST, PKT_RX_IEEE1588_TMST, NULL },
806 { PKT_RX_FDIR_ID, PKT_RX_FDIR_ID, NULL },
807 { PKT_RX_FDIR_FLX, PKT_RX_FDIR_FLX, NULL },
808 { PKT_RX_QINQ_STRIPPED, PKT_RX_QINQ_STRIPPED, NULL },
809 { PKT_RX_LRO, PKT_RX_LRO, NULL },
810 { PKT_RX_SEC_OFFLOAD, PKT_RX_SEC_OFFLOAD, NULL },
811 { PKT_RX_SEC_OFFLOAD_FAILED, PKT_RX_SEC_OFFLOAD_FAILED, NULL },
812 { PKT_RX_QINQ, PKT_RX_QINQ, NULL },
813 { PKT_RX_OUTER_L4_CKSUM_BAD, PKT_RX_OUTER_L4_CKSUM_MASK, NULL },
814 { PKT_RX_OUTER_L4_CKSUM_GOOD, PKT_RX_OUTER_L4_CKSUM_MASK,
815 NULL },
816 { PKT_RX_OUTER_L4_CKSUM_INVALID, PKT_RX_OUTER_L4_CKSUM_MASK,
817 NULL },
818 { PKT_RX_OUTER_L4_CKSUM_UNKNOWN, PKT_RX_OUTER_L4_CKSUM_MASK,
819 "PKT_RX_OUTER_L4_CKSUM_UNKNOWN" },
820 };
821 const char *name;
822 unsigned int i;
823 int ret;
824
825 if (buflen == 0)
826 return -1;
827
828 buf[0] = '\0';
829 for (i = 0; i < RTE_DIM(rx_flags); i++) {
830 if ((mask & rx_flags[i].mask) != rx_flags[i].flag)
831 continue;
832 name = rte_get_rx_ol_flag_name(rx_flags[i].flag);
833 if (name == NULL)
834 name = rx_flags[i].default_name;
835 ret = snprintf(buf, buflen, "%s ", name);
836 if (ret < 0)
837 return -1;
838 if ((size_t)ret >= buflen)
839 return -1;
840 buf += ret;
841 buflen -= ret;
842 }
843
844 return 0;
845 }
846
847 /*
848 * Get the name of a TX offload flag. Must be kept synchronized with flag
849 * definitions in rte_mbuf.h.
850 */
rte_get_tx_ol_flag_name(uint64_t mask)851 const char *rte_get_tx_ol_flag_name(uint64_t mask)
852 {
853 switch (mask) {
854 case PKT_TX_VLAN: return "PKT_TX_VLAN";
855 case PKT_TX_IP_CKSUM: return "PKT_TX_IP_CKSUM";
856 case PKT_TX_TCP_CKSUM: return "PKT_TX_TCP_CKSUM";
857 case PKT_TX_SCTP_CKSUM: return "PKT_TX_SCTP_CKSUM";
858 case PKT_TX_UDP_CKSUM: return "PKT_TX_UDP_CKSUM";
859 case PKT_TX_IEEE1588_TMST: return "PKT_TX_IEEE1588_TMST";
860 case PKT_TX_TCP_SEG: return "PKT_TX_TCP_SEG";
861 case PKT_TX_IPV4: return "PKT_TX_IPV4";
862 case PKT_TX_IPV6: return "PKT_TX_IPV6";
863 case PKT_TX_OUTER_IP_CKSUM: return "PKT_TX_OUTER_IP_CKSUM";
864 case PKT_TX_OUTER_IPV4: return "PKT_TX_OUTER_IPV4";
865 case PKT_TX_OUTER_IPV6: return "PKT_TX_OUTER_IPV6";
866 case PKT_TX_TUNNEL_VXLAN: return "PKT_TX_TUNNEL_VXLAN";
867 case PKT_TX_TUNNEL_GTP: return "PKT_TX_TUNNEL_GTP";
868 case PKT_TX_TUNNEL_GRE: return "PKT_TX_TUNNEL_GRE";
869 case PKT_TX_TUNNEL_IPIP: return "PKT_TX_TUNNEL_IPIP";
870 case PKT_TX_TUNNEL_GENEVE: return "PKT_TX_TUNNEL_GENEVE";
871 case PKT_TX_TUNNEL_MPLSINUDP: return "PKT_TX_TUNNEL_MPLSINUDP";
872 case PKT_TX_TUNNEL_VXLAN_GPE: return "PKT_TX_TUNNEL_VXLAN_GPE";
873 case PKT_TX_TUNNEL_IP: return "PKT_TX_TUNNEL_IP";
874 case PKT_TX_TUNNEL_UDP: return "PKT_TX_TUNNEL_UDP";
875 case PKT_TX_QINQ: return "PKT_TX_QINQ";
876 case PKT_TX_MACSEC: return "PKT_TX_MACSEC";
877 case PKT_TX_SEC_OFFLOAD: return "PKT_TX_SEC_OFFLOAD";
878 case PKT_TX_UDP_SEG: return "PKT_TX_UDP_SEG";
879 case PKT_TX_OUTER_UDP_CKSUM: return "PKT_TX_OUTER_UDP_CKSUM";
880 default: return NULL;
881 }
882 }
883
884 /* write the list of tx ol flags in buffer buf */
885 int
rte_get_tx_ol_flag_list(uint64_t mask,char * buf,size_t buflen)886 rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
887 {
888 const struct flag_mask tx_flags[] = {
889 { PKT_TX_VLAN, PKT_TX_VLAN, NULL },
890 { PKT_TX_IP_CKSUM, PKT_TX_IP_CKSUM, NULL },
891 { PKT_TX_TCP_CKSUM, PKT_TX_L4_MASK, NULL },
892 { PKT_TX_SCTP_CKSUM, PKT_TX_L4_MASK, NULL },
893 { PKT_TX_UDP_CKSUM, PKT_TX_L4_MASK, NULL },
894 { PKT_TX_L4_NO_CKSUM, PKT_TX_L4_MASK, "PKT_TX_L4_NO_CKSUM" },
895 { PKT_TX_IEEE1588_TMST, PKT_TX_IEEE1588_TMST, NULL },
896 { PKT_TX_TCP_SEG, PKT_TX_TCP_SEG, NULL },
897 { PKT_TX_IPV4, PKT_TX_IPV4, NULL },
898 { PKT_TX_IPV6, PKT_TX_IPV6, NULL },
899 { PKT_TX_OUTER_IP_CKSUM, PKT_TX_OUTER_IP_CKSUM, NULL },
900 { PKT_TX_OUTER_IPV4, PKT_TX_OUTER_IPV4, NULL },
901 { PKT_TX_OUTER_IPV6, PKT_TX_OUTER_IPV6, NULL },
902 { PKT_TX_TUNNEL_VXLAN, PKT_TX_TUNNEL_MASK, NULL },
903 { PKT_TX_TUNNEL_GTP, PKT_TX_TUNNEL_MASK, NULL },
904 { PKT_TX_TUNNEL_GRE, PKT_TX_TUNNEL_MASK, NULL },
905 { PKT_TX_TUNNEL_IPIP, PKT_TX_TUNNEL_MASK, NULL },
906 { PKT_TX_TUNNEL_GENEVE, PKT_TX_TUNNEL_MASK, NULL },
907 { PKT_TX_TUNNEL_MPLSINUDP, PKT_TX_TUNNEL_MASK, NULL },
908 { PKT_TX_TUNNEL_VXLAN_GPE, PKT_TX_TUNNEL_MASK, NULL },
909 { PKT_TX_TUNNEL_IP, PKT_TX_TUNNEL_MASK, NULL },
910 { PKT_TX_TUNNEL_UDP, PKT_TX_TUNNEL_MASK, NULL },
911 { PKT_TX_QINQ, PKT_TX_QINQ, NULL },
912 { PKT_TX_MACSEC, PKT_TX_MACSEC, NULL },
913 { PKT_TX_SEC_OFFLOAD, PKT_TX_SEC_OFFLOAD, NULL },
914 { PKT_TX_UDP_SEG, PKT_TX_UDP_SEG, NULL },
915 { PKT_TX_OUTER_UDP_CKSUM, PKT_TX_OUTER_UDP_CKSUM, NULL },
916 };
917 const char *name;
918 unsigned int i;
919 int ret;
920
921 if (buflen == 0)
922 return -1;
923
924 buf[0] = '\0';
925 for (i = 0; i < RTE_DIM(tx_flags); i++) {
926 if ((mask & tx_flags[i].mask) != tx_flags[i].flag)
927 continue;
928 name = rte_get_tx_ol_flag_name(tx_flags[i].flag);
929 if (name == NULL)
930 name = tx_flags[i].default_name;
931 ret = snprintf(buf, buflen, "%s ", name);
932 if (ret < 0)
933 return -1;
934 if ((size_t)ret >= buflen)
935 return -1;
936 buf += ret;
937 buflen -= ret;
938 }
939
940 return 0;
941 }
942