xref: /f-stack/dpdk/lib/librte_mbuf/rte_mbuf.c (revision 2d9fd380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5 
6 #include <string.h>
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <inttypes.h>
12 #include <errno.h>
13 #include <ctype.h>
14 #include <sys/queue.h>
15 
16 #include <rte_compat.h>
17 #include <rte_debug.h>
18 #include <rte_common.h>
19 #include <rte_log.h>
20 #include <rte_memory.h>
21 #include <rte_launch.h>
22 #include <rte_eal.h>
23 #include <rte_per_lcore.h>
24 #include <rte_lcore.h>
25 #include <rte_branch_prediction.h>
26 #include <rte_mempool.h>
27 #include <rte_mbuf.h>
28 #include <rte_mbuf_pool_ops.h>
29 #include <rte_string_fns.h>
30 #include <rte_hexdump.h>
31 #include <rte_errno.h>
32 #include <rte_memcpy.h>
33 
34 /*
35  * pktmbuf pool constructor, given as a callback function to
36  * rte_mempool_create(), or called directly if using
37  * rte_mempool_create_empty()/rte_mempool_populate()
38  */
39 void
rte_pktmbuf_pool_init(struct rte_mempool * mp,void * opaque_arg)40 rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg)
41 {
42 	struct rte_pktmbuf_pool_private *user_mbp_priv, *mbp_priv;
43 	struct rte_pktmbuf_pool_private default_mbp_priv;
44 	uint16_t roomsz;
45 
46 	RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf));
47 
48 	/* if no structure is provided, assume no mbuf private area */
49 	user_mbp_priv = opaque_arg;
50 	if (user_mbp_priv == NULL) {
51 		memset(&default_mbp_priv, 0, sizeof(default_mbp_priv));
52 		if (mp->elt_size > sizeof(struct rte_mbuf))
53 			roomsz = mp->elt_size - sizeof(struct rte_mbuf);
54 		else
55 			roomsz = 0;
56 		default_mbp_priv.mbuf_data_room_size = roomsz;
57 		user_mbp_priv = &default_mbp_priv;
58 	}
59 
60 	RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf) +
61 		((user_mbp_priv->flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) ?
62 			sizeof(struct rte_mbuf_ext_shared_info) :
63 			user_mbp_priv->mbuf_data_room_size) +
64 		user_mbp_priv->mbuf_priv_size);
65 	RTE_ASSERT((user_mbp_priv->flags &
66 		    ~RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) == 0);
67 
68 	mbp_priv = rte_mempool_get_priv(mp);
69 	memcpy(mbp_priv, user_mbp_priv, sizeof(*mbp_priv));
70 }
71 
72 /*
73  * pktmbuf constructor, given as a callback function to
74  * rte_mempool_obj_iter() or rte_mempool_create().
75  * Set the fields of a packet mbuf to their default values.
76  */
77 void
rte_pktmbuf_init(struct rte_mempool * mp,__rte_unused void * opaque_arg,void * _m,__rte_unused unsigned i)78 rte_pktmbuf_init(struct rte_mempool *mp,
79 		 __rte_unused void *opaque_arg,
80 		 void *_m,
81 		 __rte_unused unsigned i)
82 {
83 	struct rte_mbuf *m = _m;
84 	uint32_t mbuf_size, buf_len, priv_size;
85 
86 	priv_size = rte_pktmbuf_priv_size(mp);
87 	mbuf_size = sizeof(struct rte_mbuf) + priv_size;
88 	buf_len = rte_pktmbuf_data_room_size(mp);
89 
90 	RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size);
91 	RTE_ASSERT(mp->elt_size >= mbuf_size);
92 	RTE_ASSERT(buf_len <= UINT16_MAX);
93 
94 	memset(m, 0, mbuf_size);
95 	/* start of buffer is after mbuf structure and priv data */
96 	m->priv_size = priv_size;
97 	m->buf_addr = (char *)m + mbuf_size;
98 	m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
99 	m->buf_len = (uint16_t)buf_len;
100 
101 	/* keep some headroom between start of buffer and data */
102 	m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
103 
104 	/* init some constant fields */
105 	m->pool = mp;
106 	m->nb_segs = 1;
107 	m->port = RTE_MBUF_PORT_INVALID;
108 	rte_mbuf_refcnt_set(m, 1);
109 	m->next = NULL;
110 }
111 
112 /*
113  * @internal The callback routine called when reference counter in shinfo
114  * for mbufs with pinned external buffer reaches zero. It means there is
115  * no more reference to buffer backing mbuf and this one should be freed.
116  * This routine is called for the regular (not with pinned external or
117  * indirect buffer) mbufs on detaching from the mbuf with pinned external
118  * buffer.
119  */
120 static void
rte_pktmbuf_free_pinned_extmem(void * addr,void * opaque)121 rte_pktmbuf_free_pinned_extmem(void *addr, void *opaque)
122 {
123 	struct rte_mbuf *m = opaque;
124 
125 	RTE_SET_USED(addr);
126 	RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
127 	RTE_ASSERT(RTE_MBUF_HAS_PINNED_EXTBUF(m));
128 	RTE_ASSERT(m->shinfo->fcb_opaque == m);
129 
130 	rte_mbuf_ext_refcnt_set(m->shinfo, 1);
131 	m->ol_flags = EXT_ATTACHED_MBUF;
132 	if (m->next != NULL) {
133 		m->next = NULL;
134 		m->nb_segs = 1;
135 	}
136 	rte_mbuf_raw_free(m);
137 }
138 
139 /** The context to initialize the mbufs with pinned external buffers. */
140 struct rte_pktmbuf_extmem_init_ctx {
141 	const struct rte_pktmbuf_extmem *ext_mem; /* descriptor array. */
142 	unsigned int ext_num; /* number of descriptors in array. */
143 	unsigned int ext; /* loop descriptor index. */
144 	size_t off; /* loop buffer offset. */
145 };
146 
147 /**
148  * @internal Packet mbuf constructor for pools with pinned external memory.
149  *
150  * This function initializes some fields in the mbuf structure that are
151  * not modified by the user once created (origin pool, buffer start
152  * address, and so on). This function is given as a callback function to
153  * rte_mempool_obj_iter() called from rte_mempool_create_extmem().
154  *
155  * @param mp
156  *   The mempool from which mbufs originate.
157  * @param opaque_arg
158  *   A pointer to the rte_pktmbuf_extmem_init_ctx - initialization
159  *   context structure
160  * @param m
161  *   The mbuf to initialize.
162  * @param i
163  *   The index of the mbuf in the pool table.
164  */
165 static void
__rte_pktmbuf_init_extmem(struct rte_mempool * mp,void * opaque_arg,void * _m,__rte_unused unsigned int i)166 __rte_pktmbuf_init_extmem(struct rte_mempool *mp,
167 			  void *opaque_arg,
168 			  void *_m,
169 			  __rte_unused unsigned int i)
170 {
171 	struct rte_mbuf *m = _m;
172 	struct rte_pktmbuf_extmem_init_ctx *ctx = opaque_arg;
173 	const struct rte_pktmbuf_extmem *ext_mem;
174 	uint32_t mbuf_size, buf_len, priv_size;
175 	struct rte_mbuf_ext_shared_info *shinfo;
176 
177 	priv_size = rte_pktmbuf_priv_size(mp);
178 	mbuf_size = sizeof(struct rte_mbuf) + priv_size;
179 	buf_len = rte_pktmbuf_data_room_size(mp);
180 
181 	RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size);
182 	RTE_ASSERT(mp->elt_size >= mbuf_size);
183 	RTE_ASSERT(buf_len <= UINT16_MAX);
184 
185 	memset(m, 0, mbuf_size);
186 	m->priv_size = priv_size;
187 	m->buf_len = (uint16_t)buf_len;
188 
189 	/* set the data buffer pointers to external memory */
190 	ext_mem = ctx->ext_mem + ctx->ext;
191 
192 	RTE_ASSERT(ctx->ext < ctx->ext_num);
193 	RTE_ASSERT(ctx->off + ext_mem->elt_size <= ext_mem->buf_len);
194 
195 	m->buf_addr = RTE_PTR_ADD(ext_mem->buf_ptr, ctx->off);
196 	m->buf_iova = ext_mem->buf_iova == RTE_BAD_IOVA ?
197 		      RTE_BAD_IOVA : (ext_mem->buf_iova + ctx->off);
198 
199 	ctx->off += ext_mem->elt_size;
200 	if (ctx->off + ext_mem->elt_size > ext_mem->buf_len) {
201 		ctx->off = 0;
202 		++ctx->ext;
203 	}
204 	/* keep some headroom between start of buffer and data */
205 	m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
206 
207 	/* init some constant fields */
208 	m->pool = mp;
209 	m->nb_segs = 1;
210 	m->port = RTE_MBUF_PORT_INVALID;
211 	m->ol_flags = EXT_ATTACHED_MBUF;
212 	rte_mbuf_refcnt_set(m, 1);
213 	m->next = NULL;
214 
215 	/* init external buffer shared info items */
216 	shinfo = RTE_PTR_ADD(m, mbuf_size);
217 	m->shinfo = shinfo;
218 	shinfo->free_cb = rte_pktmbuf_free_pinned_extmem;
219 	shinfo->fcb_opaque = m;
220 	rte_mbuf_ext_refcnt_set(shinfo, 1);
221 }
222 
223 /* Helper to create a mbuf pool with given mempool ops name*/
224 struct rte_mempool *
rte_pktmbuf_pool_create_by_ops(const char * name,unsigned int n,unsigned int cache_size,uint16_t priv_size,uint16_t data_room_size,int socket_id,const char * ops_name)225 rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
226 	unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
227 	int socket_id, const char *ops_name)
228 {
229 	struct rte_mempool *mp;
230 	struct rte_pktmbuf_pool_private mbp_priv;
231 	const char *mp_ops_name = ops_name;
232 	unsigned elt_size;
233 	int ret;
234 
235 	if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) {
236 		RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n",
237 			priv_size);
238 		rte_errno = EINVAL;
239 		return NULL;
240 	}
241 	elt_size = sizeof(struct rte_mbuf) + (unsigned)priv_size +
242 		(unsigned)data_room_size;
243 	memset(&mbp_priv, 0, sizeof(mbp_priv));
244 	mbp_priv.mbuf_data_room_size = data_room_size;
245 	mbp_priv.mbuf_priv_size = priv_size;
246 
247 	mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
248 		 sizeof(struct rte_pktmbuf_pool_private), socket_id, 0);
249 	if (mp == NULL)
250 		return NULL;
251 
252 	if (mp_ops_name == NULL)
253 		mp_ops_name = rte_mbuf_best_mempool_ops();
254 	ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL);
255 	if (ret != 0) {
256 		RTE_LOG(ERR, MBUF, "error setting mempool handler\n");
257 		rte_mempool_free(mp);
258 		rte_errno = -ret;
259 		return NULL;
260 	}
261 	rte_pktmbuf_pool_init(mp, &mbp_priv);
262 
263 	ret = rte_mempool_populate_default(mp);
264 	if (ret < 0) {
265 		rte_mempool_free(mp);
266 		rte_errno = -ret;
267 		return NULL;
268 	}
269 
270 	rte_mempool_obj_iter(mp, rte_pktmbuf_init, NULL);
271 
272 	return mp;
273 }
274 
275 /* helper to create a mbuf pool */
276 struct rte_mempool *
rte_pktmbuf_pool_create(const char * name,unsigned int n,unsigned int cache_size,uint16_t priv_size,uint16_t data_room_size,int socket_id)277 rte_pktmbuf_pool_create(const char *name, unsigned int n,
278 	unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
279 	int socket_id)
280 {
281 	return rte_pktmbuf_pool_create_by_ops(name, n, cache_size, priv_size,
282 			data_room_size, socket_id, NULL);
283 }
284 
285 /* Helper to create a mbuf pool with pinned external data buffers. */
286 struct rte_mempool *
rte_pktmbuf_pool_create_extbuf(const char * name,unsigned int n,unsigned int cache_size,uint16_t priv_size,uint16_t data_room_size,int socket_id,const struct rte_pktmbuf_extmem * ext_mem,unsigned int ext_num)287 rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n,
288 	unsigned int cache_size, uint16_t priv_size,
289 	uint16_t data_room_size, int socket_id,
290 	const struct rte_pktmbuf_extmem *ext_mem,
291 	unsigned int ext_num)
292 {
293 	struct rte_mempool *mp;
294 	struct rte_pktmbuf_pool_private mbp_priv;
295 	struct rte_pktmbuf_extmem_init_ctx init_ctx;
296 	const char *mp_ops_name;
297 	unsigned int elt_size;
298 	unsigned int i, n_elts = 0;
299 	int ret;
300 
301 	if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) {
302 		RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n",
303 			priv_size);
304 		rte_errno = EINVAL;
305 		return NULL;
306 	}
307 	/* Check the external memory descriptors. */
308 	for (i = 0; i < ext_num; i++) {
309 		const struct rte_pktmbuf_extmem *extm = ext_mem + i;
310 
311 		if (!extm->elt_size || !extm->buf_len || !extm->buf_ptr) {
312 			RTE_LOG(ERR, MBUF, "invalid extmem descriptor\n");
313 			rte_errno = EINVAL;
314 			return NULL;
315 		}
316 		if (data_room_size > extm->elt_size) {
317 			RTE_LOG(ERR, MBUF, "ext elt_size=%u is too small\n",
318 				priv_size);
319 			rte_errno = EINVAL;
320 			return NULL;
321 		}
322 		n_elts += extm->buf_len / extm->elt_size;
323 	}
324 	/* Check whether enough external memory provided. */
325 	if (n_elts < n) {
326 		RTE_LOG(ERR, MBUF, "not enough extmem\n");
327 		rte_errno = ENOMEM;
328 		return NULL;
329 	}
330 	elt_size = sizeof(struct rte_mbuf) +
331 		   (unsigned int)priv_size +
332 		   sizeof(struct rte_mbuf_ext_shared_info);
333 
334 	memset(&mbp_priv, 0, sizeof(mbp_priv));
335 	mbp_priv.mbuf_data_room_size = data_room_size;
336 	mbp_priv.mbuf_priv_size = priv_size;
337 	mbp_priv.flags = RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF;
338 
339 	mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
340 		 sizeof(struct rte_pktmbuf_pool_private), socket_id, 0);
341 	if (mp == NULL)
342 		return NULL;
343 
344 	mp_ops_name = rte_mbuf_best_mempool_ops();
345 	ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL);
346 	if (ret != 0) {
347 		RTE_LOG(ERR, MBUF, "error setting mempool handler\n");
348 		rte_mempool_free(mp);
349 		rte_errno = -ret;
350 		return NULL;
351 	}
352 	rte_pktmbuf_pool_init(mp, &mbp_priv);
353 
354 	ret = rte_mempool_populate_default(mp);
355 	if (ret < 0) {
356 		rte_mempool_free(mp);
357 		rte_errno = -ret;
358 		return NULL;
359 	}
360 
361 	init_ctx = (struct rte_pktmbuf_extmem_init_ctx){
362 		.ext_mem = ext_mem,
363 		.ext_num = ext_num,
364 		.ext = 0,
365 		.off = 0,
366 	};
367 	rte_mempool_obj_iter(mp, __rte_pktmbuf_init_extmem, &init_ctx);
368 
369 	return mp;
370 }
371 
372 /* do some sanity checks on a mbuf: panic if it fails */
373 void
rte_mbuf_sanity_check(const struct rte_mbuf * m,int is_header)374 rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header)
375 {
376 	const char *reason;
377 
378 	if (rte_mbuf_check(m, is_header, &reason))
379 		rte_panic("%s\n", reason);
380 }
381 
rte_mbuf_check(const struct rte_mbuf * m,int is_header,const char ** reason)382 int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
383 		   const char **reason)
384 {
385 	unsigned int nb_segs, pkt_len;
386 
387 	if (m == NULL) {
388 		*reason = "mbuf is NULL";
389 		return -1;
390 	}
391 
392 	/* generic checks */
393 	if (m->pool == NULL) {
394 		*reason = "bad mbuf pool";
395 		return -1;
396 	}
397 	if (m->buf_iova == 0) {
398 		*reason = "bad IO addr";
399 		return -1;
400 	}
401 	if (m->buf_addr == NULL) {
402 		*reason = "bad virt addr";
403 		return -1;
404 	}
405 
406 	uint16_t cnt = rte_mbuf_refcnt_read(m);
407 	if ((cnt == 0) || (cnt == UINT16_MAX)) {
408 		*reason = "bad ref cnt";
409 		return -1;
410 	}
411 
412 	/* nothing to check for sub-segments */
413 	if (is_header == 0)
414 		return 0;
415 
416 	/* data_len is supposed to be not more than pkt_len */
417 	if (m->data_len > m->pkt_len) {
418 		*reason = "bad data_len";
419 		return -1;
420 	}
421 
422 	nb_segs = m->nb_segs;
423 	pkt_len = m->pkt_len;
424 
425 	do {
426 		if (m->data_off > m->buf_len) {
427 			*reason = "data offset too big in mbuf segment";
428 			return -1;
429 		}
430 		if (m->data_off + m->data_len > m->buf_len) {
431 			*reason = "data length too big in mbuf segment";
432 			return -1;
433 		}
434 		nb_segs -= 1;
435 		pkt_len -= m->data_len;
436 	} while ((m = m->next) != NULL);
437 
438 	if (nb_segs) {
439 		*reason = "bad nb_segs";
440 		return -1;
441 	}
442 	if (pkt_len) {
443 		*reason = "bad pkt_len";
444 		return -1;
445 	}
446 
447 	return 0;
448 }
449 
450 /**
451  * @internal helper function for freeing a bulk of packet mbuf segments
452  * via an array holding the packet mbuf segments from the same mempool
453  * pending to be freed.
454  *
455  * @param m
456  *  The packet mbuf segment to be freed.
457  * @param pending
458  *  Pointer to the array of packet mbuf segments pending to be freed.
459  * @param nb_pending
460  *  Pointer to the number of elements held in the array.
461  * @param pending_sz
462  *  Number of elements the array can hold.
463  *  Note: The compiler should optimize this parameter away when using a
464  *  constant value, such as RTE_PKTMBUF_FREE_PENDING_SZ.
465  */
466 static void
__rte_pktmbuf_free_seg_via_array(struct rte_mbuf * m,struct rte_mbuf ** const pending,unsigned int * const nb_pending,const unsigned int pending_sz)467 __rte_pktmbuf_free_seg_via_array(struct rte_mbuf *m,
468 	struct rte_mbuf ** const pending, unsigned int * const nb_pending,
469 	const unsigned int pending_sz)
470 {
471 	m = rte_pktmbuf_prefree_seg(m);
472 	if (likely(m != NULL)) {
473 		if (*nb_pending == pending_sz ||
474 		    (*nb_pending > 0 && m->pool != pending[0]->pool)) {
475 			rte_mempool_put_bulk(pending[0]->pool,
476 					(void **)pending, *nb_pending);
477 			*nb_pending = 0;
478 		}
479 
480 		pending[(*nb_pending)++] = m;
481 	}
482 }
483 
484 /**
485  * Size of the array holding mbufs from the same mempool pending to be freed
486  * in bulk.
487  */
488 #define RTE_PKTMBUF_FREE_PENDING_SZ 64
489 
490 /* Free a bulk of packet mbufs back into their original mempools. */
rte_pktmbuf_free_bulk(struct rte_mbuf ** mbufs,unsigned int count)491 void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count)
492 {
493 	struct rte_mbuf *m, *m_next, *pending[RTE_PKTMBUF_FREE_PENDING_SZ];
494 	unsigned int idx, nb_pending = 0;
495 
496 	for (idx = 0; idx < count; idx++) {
497 		m = mbufs[idx];
498 		if (unlikely(m == NULL))
499 			continue;
500 
501 		__rte_mbuf_sanity_check(m, 1);
502 
503 		do {
504 			m_next = m->next;
505 			__rte_pktmbuf_free_seg_via_array(m,
506 					pending, &nb_pending,
507 					RTE_PKTMBUF_FREE_PENDING_SZ);
508 			m = m_next;
509 		} while (m != NULL);
510 	}
511 
512 	if (nb_pending > 0)
513 		rte_mempool_put_bulk(pending[0]->pool, (void **)pending, nb_pending);
514 }
515 
516 /* Creates a shallow copy of mbuf */
517 struct rte_mbuf *
rte_pktmbuf_clone(struct rte_mbuf * md,struct rte_mempool * mp)518 rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp)
519 {
520 	struct rte_mbuf *mc, *mi, **prev;
521 	uint32_t pktlen;
522 	uint16_t nseg;
523 
524 	mc = rte_pktmbuf_alloc(mp);
525 	if (unlikely(mc == NULL))
526 		return NULL;
527 
528 	mi = mc;
529 	prev = &mi->next;
530 	pktlen = md->pkt_len;
531 	nseg = 0;
532 
533 	do {
534 		nseg++;
535 		rte_pktmbuf_attach(mi, md);
536 		*prev = mi;
537 		prev = &mi->next;
538 	} while ((md = md->next) != NULL &&
539 	    (mi = rte_pktmbuf_alloc(mp)) != NULL);
540 
541 	*prev = NULL;
542 	mc->nb_segs = nseg;
543 	mc->pkt_len = pktlen;
544 
545 	/* Allocation of new indirect segment failed */
546 	if (unlikely(mi == NULL)) {
547 		rte_pktmbuf_free(mc);
548 		return NULL;
549 	}
550 
551 	__rte_mbuf_sanity_check(mc, 1);
552 	return mc;
553 }
554 
555 /* convert multi-segment mbuf to single mbuf */
556 int
__rte_pktmbuf_linearize(struct rte_mbuf * mbuf)557 __rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
558 {
559 	size_t seg_len, copy_len;
560 	struct rte_mbuf *m;
561 	struct rte_mbuf *m_next;
562 	char *buffer;
563 
564 	/* Extend first segment to the total packet length */
565 	copy_len = rte_pktmbuf_pkt_len(mbuf) - rte_pktmbuf_data_len(mbuf);
566 
567 	if (unlikely(copy_len > rte_pktmbuf_tailroom(mbuf)))
568 		return -1;
569 
570 	buffer = rte_pktmbuf_mtod_offset(mbuf, char *, mbuf->data_len);
571 	mbuf->data_len = (uint16_t)(mbuf->pkt_len);
572 
573 	/* Append data from next segments to the first one */
574 	m = mbuf->next;
575 	while (m != NULL) {
576 		m_next = m->next;
577 
578 		seg_len = rte_pktmbuf_data_len(m);
579 		rte_memcpy(buffer, rte_pktmbuf_mtod(m, char *), seg_len);
580 		buffer += seg_len;
581 
582 		rte_pktmbuf_free_seg(m);
583 		m = m_next;
584 	}
585 
586 	mbuf->next = NULL;
587 	mbuf->nb_segs = 1;
588 
589 	return 0;
590 }
591 
592 /* Create a deep copy of mbuf */
593 struct rte_mbuf *
rte_pktmbuf_copy(const struct rte_mbuf * m,struct rte_mempool * mp,uint32_t off,uint32_t len)594 rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
595 		 uint32_t off, uint32_t len)
596 {
597 	const struct rte_mbuf *seg = m;
598 	struct rte_mbuf *mc, *m_last, **prev;
599 
600 	/* garbage in check */
601 	__rte_mbuf_sanity_check(m, 1);
602 
603 	/* check for request to copy at offset past end of mbuf */
604 	if (unlikely(off >= m->pkt_len))
605 		return NULL;
606 
607 	mc = rte_pktmbuf_alloc(mp);
608 	if (unlikely(mc == NULL))
609 		return NULL;
610 
611 	/* truncate requested length to available data */
612 	if (len > m->pkt_len - off)
613 		len = m->pkt_len - off;
614 
615 	__rte_pktmbuf_copy_hdr(mc, m);
616 
617 	/* copied mbuf is not indirect or external */
618 	mc->ol_flags = m->ol_flags & ~(IND_ATTACHED_MBUF|EXT_ATTACHED_MBUF);
619 
620 	prev = &mc->next;
621 	m_last = mc;
622 	while (len > 0) {
623 		uint32_t copy_len;
624 
625 		/* skip leading mbuf segments */
626 		while (off >= seg->data_len) {
627 			off -= seg->data_len;
628 			seg = seg->next;
629 		}
630 
631 		/* current buffer is full, chain a new one */
632 		if (rte_pktmbuf_tailroom(m_last) == 0) {
633 			m_last = rte_pktmbuf_alloc(mp);
634 			if (unlikely(m_last == NULL)) {
635 				rte_pktmbuf_free(mc);
636 				return NULL;
637 			}
638 			++mc->nb_segs;
639 			*prev = m_last;
640 			prev = &m_last->next;
641 		}
642 
643 		/*
644 		 * copy the min of data in input segment (seg)
645 		 * vs space available in output (m_last)
646 		 */
647 		copy_len = RTE_MIN(seg->data_len - off, len);
648 		if (copy_len > rte_pktmbuf_tailroom(m_last))
649 			copy_len = rte_pktmbuf_tailroom(m_last);
650 
651 		/* append from seg to m_last */
652 		rte_memcpy(rte_pktmbuf_mtod_offset(m_last, char *,
653 						   m_last->data_len),
654 			   rte_pktmbuf_mtod_offset(seg, char *, off),
655 			   copy_len);
656 
657 		/* update offsets and lengths */
658 		m_last->data_len += copy_len;
659 		mc->pkt_len += copy_len;
660 		off += copy_len;
661 		len -= copy_len;
662 	}
663 
664 	/* garbage out check */
665 	__rte_mbuf_sanity_check(mc, 1);
666 	return mc;
667 }
668 
669 /* dump a mbuf on console */
670 void
rte_pktmbuf_dump(FILE * f,const struct rte_mbuf * m,unsigned dump_len)671 rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len)
672 {
673 	unsigned int len;
674 	unsigned int nb_segs;
675 
676 	__rte_mbuf_sanity_check(m, 1);
677 
678 	fprintf(f, "dump mbuf at %p, iova=%#"PRIx64", buf_len=%u\n",
679 		m, m->buf_iova, m->buf_len);
680 	fprintf(f, "  pkt_len=%u, ol_flags=%#"PRIx64", nb_segs=%u, port=%u",
681 		m->pkt_len, m->ol_flags, m->nb_segs, m->port);
682 
683 	if (m->ol_flags & (PKT_RX_VLAN | PKT_TX_VLAN))
684 		fprintf(f, ", vlan_tci=%u", m->vlan_tci);
685 
686 	fprintf(f, ", ptype=%#"PRIx32"\n", m->packet_type);
687 
688 	nb_segs = m->nb_segs;
689 
690 	while (m && nb_segs != 0) {
691 		__rte_mbuf_sanity_check(m, 0);
692 
693 		fprintf(f, "  segment at %p, data=%p, len=%u, off=%u, refcnt=%u\n",
694 			m, rte_pktmbuf_mtod(m, void *),
695 			m->data_len, m->data_off, rte_mbuf_refcnt_read(m));
696 
697 		len = dump_len;
698 		if (len > m->data_len)
699 			len = m->data_len;
700 		if (len != 0)
701 			rte_hexdump(f, NULL, rte_pktmbuf_mtod(m, void *), len);
702 		dump_len -= len;
703 		m = m->next;
704 		nb_segs --;
705 	}
706 }
707 
708 /* read len data bytes in a mbuf at specified offset (internal) */
__rte_pktmbuf_read(const struct rte_mbuf * m,uint32_t off,uint32_t len,void * buf)709 const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
710 	uint32_t len, void *buf)
711 {
712 	const struct rte_mbuf *seg = m;
713 	uint32_t buf_off = 0, copy_len;
714 
715 	if (off + len > rte_pktmbuf_pkt_len(m))
716 		return NULL;
717 
718 	while (off >= rte_pktmbuf_data_len(seg)) {
719 		off -= rte_pktmbuf_data_len(seg);
720 		seg = seg->next;
721 	}
722 
723 	if (off + len <= rte_pktmbuf_data_len(seg))
724 		return rte_pktmbuf_mtod_offset(seg, char *, off);
725 
726 	/* rare case: header is split among several segments */
727 	while (len > 0) {
728 		copy_len = rte_pktmbuf_data_len(seg) - off;
729 		if (copy_len > len)
730 			copy_len = len;
731 		rte_memcpy((char *)buf + buf_off,
732 			rte_pktmbuf_mtod_offset(seg, char *, off), copy_len);
733 		off = 0;
734 		buf_off += copy_len;
735 		len -= copy_len;
736 		seg = seg->next;
737 	}
738 
739 	return buf;
740 }
741 
742 /*
743  * Get the name of a RX offload flag. Must be kept synchronized with flag
744  * definitions in rte_mbuf.h.
745  */
rte_get_rx_ol_flag_name(uint64_t mask)746 const char *rte_get_rx_ol_flag_name(uint64_t mask)
747 {
748 	switch (mask) {
749 	case PKT_RX_VLAN: return "PKT_RX_VLAN";
750 	case PKT_RX_RSS_HASH: return "PKT_RX_RSS_HASH";
751 	case PKT_RX_FDIR: return "PKT_RX_FDIR";
752 	case PKT_RX_L4_CKSUM_BAD: return "PKT_RX_L4_CKSUM_BAD";
753 	case PKT_RX_L4_CKSUM_GOOD: return "PKT_RX_L4_CKSUM_GOOD";
754 	case PKT_RX_L4_CKSUM_NONE: return "PKT_RX_L4_CKSUM_NONE";
755 	case PKT_RX_IP_CKSUM_BAD: return "PKT_RX_IP_CKSUM_BAD";
756 	case PKT_RX_IP_CKSUM_GOOD: return "PKT_RX_IP_CKSUM_GOOD";
757 	case PKT_RX_IP_CKSUM_NONE: return "PKT_RX_IP_CKSUM_NONE";
758 	case PKT_RX_EIP_CKSUM_BAD: return "PKT_RX_EIP_CKSUM_BAD";
759 	case PKT_RX_VLAN_STRIPPED: return "PKT_RX_VLAN_STRIPPED";
760 	case PKT_RX_IEEE1588_PTP: return "PKT_RX_IEEE1588_PTP";
761 	case PKT_RX_IEEE1588_TMST: return "PKT_RX_IEEE1588_TMST";
762 	case PKT_RX_FDIR_ID: return "PKT_RX_FDIR_ID";
763 	case PKT_RX_FDIR_FLX: return "PKT_RX_FDIR_FLX";
764 	case PKT_RX_QINQ_STRIPPED: return "PKT_RX_QINQ_STRIPPED";
765 	case PKT_RX_QINQ: return "PKT_RX_QINQ";
766 	case PKT_RX_LRO: return "PKT_RX_LRO";
767 	case PKT_RX_SEC_OFFLOAD: return "PKT_RX_SEC_OFFLOAD";
768 	case PKT_RX_SEC_OFFLOAD_FAILED: return "PKT_RX_SEC_OFFLOAD_FAILED";
769 	case PKT_RX_OUTER_L4_CKSUM_BAD: return "PKT_RX_OUTER_L4_CKSUM_BAD";
770 	case PKT_RX_OUTER_L4_CKSUM_GOOD: return "PKT_RX_OUTER_L4_CKSUM_GOOD";
771 	case PKT_RX_OUTER_L4_CKSUM_INVALID:
772 		return "PKT_RX_OUTER_L4_CKSUM_INVALID";
773 
774 	default: return NULL;
775 	}
776 }
777 
778 struct flag_mask {
779 	uint64_t flag;
780 	uint64_t mask;
781 	const char *default_name;
782 };
783 
784 /* write the list of rx ol flags in buffer buf */
785 int
rte_get_rx_ol_flag_list(uint64_t mask,char * buf,size_t buflen)786 rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
787 {
788 	const struct flag_mask rx_flags[] = {
789 		{ PKT_RX_VLAN, PKT_RX_VLAN, NULL },
790 		{ PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, NULL },
791 		{ PKT_RX_FDIR, PKT_RX_FDIR, NULL },
792 		{ PKT_RX_L4_CKSUM_BAD, PKT_RX_L4_CKSUM_MASK, NULL },
793 		{ PKT_RX_L4_CKSUM_GOOD, PKT_RX_L4_CKSUM_MASK, NULL },
794 		{ PKT_RX_L4_CKSUM_NONE, PKT_RX_L4_CKSUM_MASK, NULL },
795 		{ PKT_RX_L4_CKSUM_UNKNOWN, PKT_RX_L4_CKSUM_MASK,
796 		  "PKT_RX_L4_CKSUM_UNKNOWN" },
797 		{ PKT_RX_IP_CKSUM_BAD, PKT_RX_IP_CKSUM_MASK, NULL },
798 		{ PKT_RX_IP_CKSUM_GOOD, PKT_RX_IP_CKSUM_MASK, NULL },
799 		{ PKT_RX_IP_CKSUM_NONE, PKT_RX_IP_CKSUM_MASK, NULL },
800 		{ PKT_RX_IP_CKSUM_UNKNOWN, PKT_RX_IP_CKSUM_MASK,
801 		  "PKT_RX_IP_CKSUM_UNKNOWN" },
802 		{ PKT_RX_EIP_CKSUM_BAD, PKT_RX_EIP_CKSUM_BAD, NULL },
803 		{ PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN_STRIPPED, NULL },
804 		{ PKT_RX_IEEE1588_PTP, PKT_RX_IEEE1588_PTP, NULL },
805 		{ PKT_RX_IEEE1588_TMST, PKT_RX_IEEE1588_TMST, NULL },
806 		{ PKT_RX_FDIR_ID, PKT_RX_FDIR_ID, NULL },
807 		{ PKT_RX_FDIR_FLX, PKT_RX_FDIR_FLX, NULL },
808 		{ PKT_RX_QINQ_STRIPPED, PKT_RX_QINQ_STRIPPED, NULL },
809 		{ PKT_RX_LRO, PKT_RX_LRO, NULL },
810 		{ PKT_RX_SEC_OFFLOAD, PKT_RX_SEC_OFFLOAD, NULL },
811 		{ PKT_RX_SEC_OFFLOAD_FAILED, PKT_RX_SEC_OFFLOAD_FAILED, NULL },
812 		{ PKT_RX_QINQ, PKT_RX_QINQ, NULL },
813 		{ PKT_RX_OUTER_L4_CKSUM_BAD, PKT_RX_OUTER_L4_CKSUM_MASK, NULL },
814 		{ PKT_RX_OUTER_L4_CKSUM_GOOD, PKT_RX_OUTER_L4_CKSUM_MASK,
815 		  NULL },
816 		{ PKT_RX_OUTER_L4_CKSUM_INVALID, PKT_RX_OUTER_L4_CKSUM_MASK,
817 		  NULL },
818 		{ PKT_RX_OUTER_L4_CKSUM_UNKNOWN, PKT_RX_OUTER_L4_CKSUM_MASK,
819 		  "PKT_RX_OUTER_L4_CKSUM_UNKNOWN" },
820 	};
821 	const char *name;
822 	unsigned int i;
823 	int ret;
824 
825 	if (buflen == 0)
826 		return -1;
827 
828 	buf[0] = '\0';
829 	for (i = 0; i < RTE_DIM(rx_flags); i++) {
830 		if ((mask & rx_flags[i].mask) != rx_flags[i].flag)
831 			continue;
832 		name = rte_get_rx_ol_flag_name(rx_flags[i].flag);
833 		if (name == NULL)
834 			name = rx_flags[i].default_name;
835 		ret = snprintf(buf, buflen, "%s ", name);
836 		if (ret < 0)
837 			return -1;
838 		if ((size_t)ret >= buflen)
839 			return -1;
840 		buf += ret;
841 		buflen -= ret;
842 	}
843 
844 	return 0;
845 }
846 
847 /*
848  * Get the name of a TX offload flag. Must be kept synchronized with flag
849  * definitions in rte_mbuf.h.
850  */
rte_get_tx_ol_flag_name(uint64_t mask)851 const char *rte_get_tx_ol_flag_name(uint64_t mask)
852 {
853 	switch (mask) {
854 	case PKT_TX_VLAN: return "PKT_TX_VLAN";
855 	case PKT_TX_IP_CKSUM: return "PKT_TX_IP_CKSUM";
856 	case PKT_TX_TCP_CKSUM: return "PKT_TX_TCP_CKSUM";
857 	case PKT_TX_SCTP_CKSUM: return "PKT_TX_SCTP_CKSUM";
858 	case PKT_TX_UDP_CKSUM: return "PKT_TX_UDP_CKSUM";
859 	case PKT_TX_IEEE1588_TMST: return "PKT_TX_IEEE1588_TMST";
860 	case PKT_TX_TCP_SEG: return "PKT_TX_TCP_SEG";
861 	case PKT_TX_IPV4: return "PKT_TX_IPV4";
862 	case PKT_TX_IPV6: return "PKT_TX_IPV6";
863 	case PKT_TX_OUTER_IP_CKSUM: return "PKT_TX_OUTER_IP_CKSUM";
864 	case PKT_TX_OUTER_IPV4: return "PKT_TX_OUTER_IPV4";
865 	case PKT_TX_OUTER_IPV6: return "PKT_TX_OUTER_IPV6";
866 	case PKT_TX_TUNNEL_VXLAN: return "PKT_TX_TUNNEL_VXLAN";
867 	case PKT_TX_TUNNEL_GTP: return "PKT_TX_TUNNEL_GTP";
868 	case PKT_TX_TUNNEL_GRE: return "PKT_TX_TUNNEL_GRE";
869 	case PKT_TX_TUNNEL_IPIP: return "PKT_TX_TUNNEL_IPIP";
870 	case PKT_TX_TUNNEL_GENEVE: return "PKT_TX_TUNNEL_GENEVE";
871 	case PKT_TX_TUNNEL_MPLSINUDP: return "PKT_TX_TUNNEL_MPLSINUDP";
872 	case PKT_TX_TUNNEL_VXLAN_GPE: return "PKT_TX_TUNNEL_VXLAN_GPE";
873 	case PKT_TX_TUNNEL_IP: return "PKT_TX_TUNNEL_IP";
874 	case PKT_TX_TUNNEL_UDP: return "PKT_TX_TUNNEL_UDP";
875 	case PKT_TX_QINQ: return "PKT_TX_QINQ";
876 	case PKT_TX_MACSEC: return "PKT_TX_MACSEC";
877 	case PKT_TX_SEC_OFFLOAD: return "PKT_TX_SEC_OFFLOAD";
878 	case PKT_TX_UDP_SEG: return "PKT_TX_UDP_SEG";
879 	case PKT_TX_OUTER_UDP_CKSUM: return "PKT_TX_OUTER_UDP_CKSUM";
880 	default: return NULL;
881 	}
882 }
883 
884 /* write the list of tx ol flags in buffer buf */
885 int
rte_get_tx_ol_flag_list(uint64_t mask,char * buf,size_t buflen)886 rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
887 {
888 	const struct flag_mask tx_flags[] = {
889 		{ PKT_TX_VLAN, PKT_TX_VLAN, NULL },
890 		{ PKT_TX_IP_CKSUM, PKT_TX_IP_CKSUM, NULL },
891 		{ PKT_TX_TCP_CKSUM, PKT_TX_L4_MASK, NULL },
892 		{ PKT_TX_SCTP_CKSUM, PKT_TX_L4_MASK, NULL },
893 		{ PKT_TX_UDP_CKSUM, PKT_TX_L4_MASK, NULL },
894 		{ PKT_TX_L4_NO_CKSUM, PKT_TX_L4_MASK, "PKT_TX_L4_NO_CKSUM" },
895 		{ PKT_TX_IEEE1588_TMST, PKT_TX_IEEE1588_TMST, NULL },
896 		{ PKT_TX_TCP_SEG, PKT_TX_TCP_SEG, NULL },
897 		{ PKT_TX_IPV4, PKT_TX_IPV4, NULL },
898 		{ PKT_TX_IPV6, PKT_TX_IPV6, NULL },
899 		{ PKT_TX_OUTER_IP_CKSUM, PKT_TX_OUTER_IP_CKSUM, NULL },
900 		{ PKT_TX_OUTER_IPV4, PKT_TX_OUTER_IPV4, NULL },
901 		{ PKT_TX_OUTER_IPV6, PKT_TX_OUTER_IPV6, NULL },
902 		{ PKT_TX_TUNNEL_VXLAN, PKT_TX_TUNNEL_MASK, NULL },
903 		{ PKT_TX_TUNNEL_GTP, PKT_TX_TUNNEL_MASK, NULL },
904 		{ PKT_TX_TUNNEL_GRE, PKT_TX_TUNNEL_MASK, NULL },
905 		{ PKT_TX_TUNNEL_IPIP, PKT_TX_TUNNEL_MASK, NULL },
906 		{ PKT_TX_TUNNEL_GENEVE, PKT_TX_TUNNEL_MASK, NULL },
907 		{ PKT_TX_TUNNEL_MPLSINUDP, PKT_TX_TUNNEL_MASK, NULL },
908 		{ PKT_TX_TUNNEL_VXLAN_GPE, PKT_TX_TUNNEL_MASK, NULL },
909 		{ PKT_TX_TUNNEL_IP, PKT_TX_TUNNEL_MASK, NULL },
910 		{ PKT_TX_TUNNEL_UDP, PKT_TX_TUNNEL_MASK, NULL },
911 		{ PKT_TX_QINQ, PKT_TX_QINQ, NULL },
912 		{ PKT_TX_MACSEC, PKT_TX_MACSEC, NULL },
913 		{ PKT_TX_SEC_OFFLOAD, PKT_TX_SEC_OFFLOAD, NULL },
914 		{ PKT_TX_UDP_SEG, PKT_TX_UDP_SEG, NULL },
915 		{ PKT_TX_OUTER_UDP_CKSUM, PKT_TX_OUTER_UDP_CKSUM, NULL },
916 	};
917 	const char *name;
918 	unsigned int i;
919 	int ret;
920 
921 	if (buflen == 0)
922 		return -1;
923 
924 	buf[0] = '\0';
925 	for (i = 0; i < RTE_DIM(tx_flags); i++) {
926 		if ((mask & tx_flags[i].mask) != tx_flags[i].flag)
927 			continue;
928 		name = rte_get_tx_ol_flag_name(tx_flags[i].flag);
929 		if (name == NULL)
930 			name = tx_flags[i].default_name;
931 		ret = snprintf(buf, buflen, "%s ", name);
932 		if (ret < 0)
933 			return -1;
934 		if ((size_t)ret >= buflen)
935 			return -1;
936 		buf += ret;
937 		buflen -= ret;
938 	}
939 
940 	return 0;
941 }
942