1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_descrip.c 8.6 (Berkeley) 4/19/94
37 */
38
39 #include <sys/cdefs.h>
40 #include "opt_capsicum.h"
41 #include "opt_ddb.h"
42 #include "opt_ktrace.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46
47 #include <sys/capsicum.h>
48 #include <sys/conf.h>
49 #include <sys/fcntl.h>
50 #include <sys/file.h>
51 #include <sys/filedesc.h>
52 #include <sys/filio.h>
53 #include <sys/jail.h>
54 #include <sys/kernel.h>
55 #include <sys/limits.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/mutex.h>
60 #include <sys/namei.h>
61 #include <sys/selinfo.h>
62 #include <sys/poll.h>
63 #include <sys/priv.h>
64 #include <sys/proc.h>
65 #include <sys/protosw.h>
66 #include <sys/racct.h>
67 #include <sys/resourcevar.h>
68 #include <sys/sbuf.h>
69 #include <sys/signalvar.h>
70 #include <sys/kdb.h>
71 #include <sys/smr.h>
72 #include <sys/stat.h>
73 #include <sys/sx.h>
74 #include <sys/syscallsubr.h>
75 #include <sys/sysctl.h>
76 #include <sys/sysproto.h>
77 #include <sys/unistd.h>
78 #include <sys/user.h>
79 #include <sys/vnode.h>
80 #include <sys/ktrace.h>
81
82 #include <net/vnet.h>
83
84 #include <security/audit/audit.h>
85
86 #include <vm/uma.h>
87 #include <vm/vm.h>
88
89 #include <ddb/ddb.h>
90
91 static MALLOC_DEFINE(M_FILEDESC, "filedesc", "Open file descriptor table");
92 static MALLOC_DEFINE(M_PWD, "pwd", "Descriptor table vnodes");
93 static MALLOC_DEFINE(M_PWDDESC, "pwddesc", "Pwd descriptors");
94 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "filedesc_to_leader",
95 "file desc to leader structures");
96 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
97 MALLOC_DEFINE(M_FILECAPS, "filecaps", "descriptor capabilities");
98
99 MALLOC_DECLARE(M_FADVISE);
100
101 static __read_mostly uma_zone_t file_zone;
102 static __read_mostly uma_zone_t filedesc0_zone;
103 __read_mostly uma_zone_t pwd_zone;
104 VFS_SMR_DECLARE;
105
106 static int closefp(struct filedesc *fdp, int fd, struct file *fp,
107 struct thread *td, bool holdleaders, bool audit);
108 static void export_file_to_kinfo(struct file *fp, int fd,
109 cap_rights_t *rightsp, struct kinfo_file *kif,
110 struct filedesc *fdp, int flags);
111 static int fd_first_free(struct filedesc *fdp, int low, int size);
112 static void fdgrowtable(struct filedesc *fdp, int nfd);
113 static void fdgrowtable_exp(struct filedesc *fdp, int nfd);
114 static void fdunused(struct filedesc *fdp, int fd);
115 static void fdused(struct filedesc *fdp, int fd);
116 static int fget_unlocked_seq(struct thread *td, int fd,
117 cap_rights_t *needrightsp, struct file **fpp, seqc_t *seqp);
118 static int getmaxfd(struct thread *td);
119 static u_long *filecaps_copy_prep(const struct filecaps *src);
120 static void filecaps_copy_finish(const struct filecaps *src,
121 struct filecaps *dst, u_long *ioctls);
122 static u_long *filecaps_free_prep(struct filecaps *fcaps);
123 static void filecaps_free_finish(u_long *ioctls);
124
125 static struct pwd *pwd_alloc(void);
126
127 /*
128 * Each process has:
129 *
130 * - An array of open file descriptors (fd_ofiles)
131 * - An array of file flags (fd_ofileflags)
132 * - A bitmap recording which descriptors are in use (fd_map)
133 *
134 * A process starts out with NDFILE descriptors. The value of NDFILE has
135 * been selected based the historical limit of 20 open files, and an
136 * assumption that the majority of processes, especially short-lived
137 * processes like shells, will never need more.
138 *
139 * If this initial allocation is exhausted, a larger descriptor table and
140 * map are allocated dynamically, and the pointers in the process's struct
141 * filedesc are updated to point to those. This is repeated every time
142 * the process runs out of file descriptors (provided it hasn't hit its
143 * resource limit).
144 *
145 * Since threads may hold references to individual descriptor table
146 * entries, the tables are never freed. Instead, they are placed on a
147 * linked list and freed only when the struct filedesc is released.
148 */
149 #define NDFILE 20
150 #define NDSLOTSIZE sizeof(NDSLOTTYPE)
151 #define NDENTRIES (NDSLOTSIZE * __CHAR_BIT)
152 #define NDSLOT(x) ((x) / NDENTRIES)
153 #define NDBIT(x) ((NDSLOTTYPE)1 << ((x) % NDENTRIES))
154 #define NDSLOTS(x) (((x) + NDENTRIES - 1) / NDENTRIES)
155
156 #define FILEDESC_FOREACH_FDE(fdp, _iterator, _fde) \
157 struct filedesc *_fdp = (fdp); \
158 int _lastfile = fdlastfile_single(_fdp); \
159 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
160 if ((_fde = &_fdp->fd_ofiles[_iterator])->fde_file != NULL)
161
162 #define FILEDESC_FOREACH_FP(fdp, _iterator, _fp) \
163 struct filedesc *_fdp = (fdp); \
164 int _lastfile = fdlastfile_single(_fdp); \
165 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
166 if ((_fp = _fdp->fd_ofiles[_iterator].fde_file) != NULL)
167
168 /*
169 * SLIST entry used to keep track of ofiles which must be reclaimed when
170 * the process exits.
171 */
172 struct freetable {
173 struct fdescenttbl *ft_table;
174 SLIST_ENTRY(freetable) ft_next;
175 };
176
177 /*
178 * Initial allocation: a filedesc structure + the head of SLIST used to
179 * keep track of old ofiles + enough space for NDFILE descriptors.
180 */
181
182 struct fdescenttbl0 {
183 int fdt_nfiles;
184 struct filedescent fdt_ofiles[NDFILE];
185 };
186
187 struct filedesc0 {
188 struct filedesc fd_fd;
189 SLIST_HEAD(, freetable) fd_free;
190 struct fdescenttbl0 fd_dfiles;
191 NDSLOTTYPE fd_dmap[NDSLOTS(NDFILE)];
192 };
193
194 /*
195 * Descriptor management.
196 */
197 static int __exclusive_cache_line openfiles; /* actual number of open files */
198 struct mtx sigio_lock; /* mtx to protect pointers to sigio */
199 void __read_mostly (*mq_fdclose)(struct thread *td, int fd, struct file *fp);
200
201 /*
202 * If low >= size, just return low. Otherwise find the first zero bit in the
203 * given bitmap, starting at low and not exceeding size - 1. Return size if
204 * not found.
205 */
206 static int
fd_first_free(struct filedesc * fdp,int low,int size)207 fd_first_free(struct filedesc *fdp, int low, int size)
208 {
209 NDSLOTTYPE *map = fdp->fd_map;
210 NDSLOTTYPE mask;
211 int off, maxoff;
212
213 if (low >= size)
214 return (low);
215
216 off = NDSLOT(low);
217 if (low % NDENTRIES) {
218 mask = ~(~(NDSLOTTYPE)0 >> (NDENTRIES - (low % NDENTRIES)));
219 if ((mask &= ~map[off]) != 0UL)
220 return (off * NDENTRIES + ffsl(mask) - 1);
221 ++off;
222 }
223 for (maxoff = NDSLOTS(size); off < maxoff; ++off)
224 if (map[off] != ~0UL)
225 return (off * NDENTRIES + ffsl(~map[off]) - 1);
226 return (size);
227 }
228
229 /*
230 * Find the last used fd.
231 *
232 * Call this variant if fdp can't be modified by anyone else (e.g, during exec).
233 * Otherwise use fdlastfile.
234 */
235 int
fdlastfile_single(struct filedesc * fdp)236 fdlastfile_single(struct filedesc *fdp)
237 {
238 NDSLOTTYPE *map = fdp->fd_map;
239 int off, minoff;
240
241 off = NDSLOT(fdp->fd_nfiles - 1);
242 for (minoff = NDSLOT(0); off >= minoff; --off)
243 if (map[off] != 0)
244 return (off * NDENTRIES + flsl(map[off]) - 1);
245 return (-1);
246 }
247
248 int
fdlastfile(struct filedesc * fdp)249 fdlastfile(struct filedesc *fdp)
250 {
251
252 FILEDESC_LOCK_ASSERT(fdp);
253 return (fdlastfile_single(fdp));
254 }
255
256 static int
fdisused(struct filedesc * fdp,int fd)257 fdisused(struct filedesc *fdp, int fd)
258 {
259
260 KASSERT(fd >= 0 && fd < fdp->fd_nfiles,
261 ("file descriptor %d out of range (0, %d)", fd, fdp->fd_nfiles));
262
263 return ((fdp->fd_map[NDSLOT(fd)] & NDBIT(fd)) != 0);
264 }
265
266 /*
267 * Mark a file descriptor as used.
268 */
269 static void
fdused_init(struct filedesc * fdp,int fd)270 fdused_init(struct filedesc *fdp, int fd)
271 {
272
273 KASSERT(!fdisused(fdp, fd), ("fd=%d is already used", fd));
274
275 fdp->fd_map[NDSLOT(fd)] |= NDBIT(fd);
276 }
277
278 static void
fdused(struct filedesc * fdp,int fd)279 fdused(struct filedesc *fdp, int fd)
280 {
281
282 FILEDESC_XLOCK_ASSERT(fdp);
283
284 fdused_init(fdp, fd);
285 if (fd == fdp->fd_freefile)
286 fdp->fd_freefile++;
287 }
288
289 /*
290 * Mark a file descriptor as unused.
291 */
292 static void
fdunused(struct filedesc * fdp,int fd)293 fdunused(struct filedesc *fdp, int fd)
294 {
295
296 FILEDESC_XLOCK_ASSERT(fdp);
297
298 KASSERT(fdisused(fdp, fd), ("fd=%d is already unused", fd));
299 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
300 ("fd=%d is still in use", fd));
301
302 fdp->fd_map[NDSLOT(fd)] &= ~NDBIT(fd);
303 if (fd < fdp->fd_freefile)
304 fdp->fd_freefile = fd;
305 }
306
307 /*
308 * Free a file descriptor.
309 *
310 * Avoid some work if fdp is about to be destroyed.
311 */
312 static inline void
fdefree_last(struct filedescent * fde)313 fdefree_last(struct filedescent *fde)
314 {
315
316 filecaps_free(&fde->fde_caps);
317 }
318
319 static inline void
fdfree(struct filedesc * fdp,int fd)320 fdfree(struct filedesc *fdp, int fd)
321 {
322 struct filedescent *fde;
323
324 FILEDESC_XLOCK_ASSERT(fdp);
325 fde = &fdp->fd_ofiles[fd];
326 #ifdef CAPABILITIES
327 seqc_write_begin(&fde->fde_seqc);
328 #endif
329 fde->fde_file = NULL;
330 #ifdef CAPABILITIES
331 seqc_write_end(&fde->fde_seqc);
332 #endif
333 fdefree_last(fde);
334 fdunused(fdp, fd);
335 }
336
337 /*
338 * System calls on descriptors.
339 */
340 #ifndef _SYS_SYSPROTO_H_
341 struct getdtablesize_args {
342 int dummy;
343 };
344 #endif
345 /* ARGSUSED */
346 int
sys_getdtablesize(struct thread * td,struct getdtablesize_args * uap)347 sys_getdtablesize(struct thread *td, struct getdtablesize_args *uap)
348 {
349 #ifdef RACCT
350 uint64_t lim;
351 #endif
352
353 td->td_retval[0] = getmaxfd(td);
354 #ifdef RACCT
355 PROC_LOCK(td->td_proc);
356 lim = racct_get_limit(td->td_proc, RACCT_NOFILE);
357 PROC_UNLOCK(td->td_proc);
358 if (lim < td->td_retval[0])
359 td->td_retval[0] = lim;
360 #endif
361 return (0);
362 }
363
364 /*
365 * Duplicate a file descriptor to a particular value.
366 *
367 * Note: keep in mind that a potential race condition exists when closing
368 * descriptors from a shared descriptor table (via rfork).
369 */
370 #ifndef _SYS_SYSPROTO_H_
371 struct dup2_args {
372 u_int from;
373 u_int to;
374 };
375 #endif
376 /* ARGSUSED */
377 int
sys_dup2(struct thread * td,struct dup2_args * uap)378 sys_dup2(struct thread *td, struct dup2_args *uap)
379 {
380
381 return (kern_dup(td, FDDUP_FIXED, 0, (int)uap->from, (int)uap->to));
382 }
383
384 /*
385 * Duplicate a file descriptor.
386 */
387 #ifndef _SYS_SYSPROTO_H_
388 struct dup_args {
389 u_int fd;
390 };
391 #endif
392 /* ARGSUSED */
393 int
sys_dup(struct thread * td,struct dup_args * uap)394 sys_dup(struct thread *td, struct dup_args *uap)
395 {
396
397 return (kern_dup(td, FDDUP_NORMAL, 0, (int)uap->fd, 0));
398 }
399
400 /*
401 * The file control system call.
402 */
403 #ifndef _SYS_SYSPROTO_H_
404 struct fcntl_args {
405 int fd;
406 int cmd;
407 long arg;
408 };
409 #endif
410 /* ARGSUSED */
411 int
sys_fcntl(struct thread * td,struct fcntl_args * uap)412 sys_fcntl(struct thread *td, struct fcntl_args *uap)
413 {
414
415 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, uap->arg));
416 }
417
418 int
kern_fcntl_freebsd(struct thread * td,int fd,int cmd,long arg)419 kern_fcntl_freebsd(struct thread *td, int fd, int cmd, long arg)
420 {
421 struct flock fl;
422 struct __oflock ofl;
423 intptr_t arg1;
424 int error, newcmd;
425
426 error = 0;
427 newcmd = cmd;
428 switch (cmd) {
429 case F_OGETLK:
430 case F_OSETLK:
431 case F_OSETLKW:
432 /*
433 * Convert old flock structure to new.
434 */
435 error = copyin((void *)(intptr_t)arg, &ofl, sizeof(ofl));
436 fl.l_start = ofl.l_start;
437 fl.l_len = ofl.l_len;
438 fl.l_pid = ofl.l_pid;
439 fl.l_type = ofl.l_type;
440 fl.l_whence = ofl.l_whence;
441 fl.l_sysid = 0;
442
443 switch (cmd) {
444 case F_OGETLK:
445 newcmd = F_GETLK;
446 break;
447 case F_OSETLK:
448 newcmd = F_SETLK;
449 break;
450 case F_OSETLKW:
451 newcmd = F_SETLKW;
452 break;
453 }
454 arg1 = (intptr_t)&fl;
455 break;
456 case F_GETLK:
457 case F_SETLK:
458 case F_SETLKW:
459 case F_SETLK_REMOTE:
460 error = copyin((void *)(intptr_t)arg, &fl, sizeof(fl));
461 arg1 = (intptr_t)&fl;
462 break;
463 default:
464 arg1 = arg;
465 break;
466 }
467 if (error)
468 return (error);
469 error = kern_fcntl(td, fd, newcmd, arg1);
470 if (error)
471 return (error);
472 if (cmd == F_OGETLK) {
473 ofl.l_start = fl.l_start;
474 ofl.l_len = fl.l_len;
475 ofl.l_pid = fl.l_pid;
476 ofl.l_type = fl.l_type;
477 ofl.l_whence = fl.l_whence;
478 error = copyout(&ofl, (void *)(intptr_t)arg, sizeof(ofl));
479 } else if (cmd == F_GETLK) {
480 error = copyout(&fl, (void *)(intptr_t)arg, sizeof(fl));
481 }
482 return (error);
483 }
484
485 int
kern_fcntl(struct thread * td,int fd,int cmd,intptr_t arg)486 kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg)
487 {
488 struct filedesc *fdp;
489 struct flock *flp;
490 struct file *fp, *fp2;
491 struct filedescent *fde;
492 struct proc *p;
493 struct vnode *vp;
494 struct mount *mp;
495 struct kinfo_file *kif;
496 int error, flg, kif_sz, seals, tmp, got_set, got_cleared;
497 uint64_t bsize;
498 off_t foffset;
499
500 error = 0;
501 flg = F_POSIX;
502 p = td->td_proc;
503 fdp = p->p_fd;
504
505 AUDIT_ARG_FD(cmd);
506 AUDIT_ARG_CMD(cmd);
507 switch (cmd) {
508 case F_DUPFD:
509 tmp = arg;
510 error = kern_dup(td, FDDUP_FCNTL, 0, fd, tmp);
511 break;
512
513 case F_DUPFD_CLOEXEC:
514 tmp = arg;
515 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOEXEC, fd, tmp);
516 break;
517
518 case F_DUP2FD:
519 tmp = arg;
520 error = kern_dup(td, FDDUP_FIXED, 0, fd, tmp);
521 break;
522
523 case F_DUP2FD_CLOEXEC:
524 tmp = arg;
525 error = kern_dup(td, FDDUP_FIXED, FDDUP_FLAG_CLOEXEC, fd, tmp);
526 break;
527
528 case F_GETFD:
529 error = EBADF;
530 FILEDESC_SLOCK(fdp);
531 fde = fdeget_noref(fdp, fd);
532 if (fde != NULL) {
533 td->td_retval[0] =
534 (fde->fde_flags & UF_EXCLOSE) ? FD_CLOEXEC : 0;
535 error = 0;
536 }
537 FILEDESC_SUNLOCK(fdp);
538 break;
539
540 case F_SETFD:
541 error = EBADF;
542 FILEDESC_XLOCK(fdp);
543 fde = fdeget_noref(fdp, fd);
544 if (fde != NULL) {
545 fde->fde_flags = (fde->fde_flags & ~UF_EXCLOSE) |
546 (arg & FD_CLOEXEC ? UF_EXCLOSE : 0);
547 error = 0;
548 }
549 FILEDESC_XUNLOCK(fdp);
550 break;
551
552 case F_GETFL:
553 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETFL, &fp);
554 if (error != 0)
555 break;
556 td->td_retval[0] = OFLAGS(fp->f_flag);
557 fdrop(fp, td);
558 break;
559
560 case F_SETFL:
561 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETFL, &fp);
562 if (error != 0)
563 break;
564 if (fp->f_ops == &path_fileops) {
565 fdrop(fp, td);
566 error = EBADF;
567 break;
568 }
569 do {
570 tmp = flg = fp->f_flag;
571 tmp &= ~FCNTLFLAGS;
572 tmp |= FFLAGS(arg & ~O_ACCMODE) & FCNTLFLAGS;
573 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
574 got_set = tmp & ~flg;
575 got_cleared = flg & ~tmp;
576 tmp = fp->f_flag & FNONBLOCK;
577 error = fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
578 if (error != 0)
579 goto revert_f_setfl;
580 tmp = fp->f_flag & FASYNC;
581 error = fo_ioctl(fp, FIOASYNC, &tmp, td->td_ucred, td);
582 if (error == 0) {
583 fdrop(fp, td);
584 break;
585 }
586 atomic_clear_int(&fp->f_flag, FNONBLOCK);
587 tmp = 0;
588 (void)fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
589 revert_f_setfl:
590 do {
591 tmp = flg = fp->f_flag;
592 tmp &= ~FCNTLFLAGS;
593 tmp |= got_cleared;
594 tmp &= ~got_set;
595 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
596 fdrop(fp, td);
597 break;
598
599 case F_GETOWN:
600 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETOWN, &fp);
601 if (error != 0)
602 break;
603 error = fo_ioctl(fp, FIOGETOWN, &tmp, td->td_ucred, td);
604 if (error == 0)
605 td->td_retval[0] = tmp;
606 fdrop(fp, td);
607 break;
608
609 case F_SETOWN:
610 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETOWN, &fp);
611 if (error != 0)
612 break;
613 tmp = arg;
614 error = fo_ioctl(fp, FIOSETOWN, &tmp, td->td_ucred, td);
615 fdrop(fp, td);
616 break;
617
618 case F_SETLK_REMOTE:
619 error = priv_check(td, PRIV_NFS_LOCKD);
620 if (error != 0)
621 return (error);
622 flg = F_REMOTE;
623 goto do_setlk;
624
625 case F_SETLKW:
626 flg |= F_WAIT;
627 /* FALLTHROUGH F_SETLK */
628
629 case F_SETLK:
630 do_setlk:
631 flp = (struct flock *)arg;
632 if ((flg & F_REMOTE) != 0 && flp->l_sysid == 0) {
633 error = EINVAL;
634 break;
635 }
636
637 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
638 if (error != 0)
639 break;
640 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
641 error = EBADF;
642 fdrop(fp, td);
643 break;
644 }
645
646 if (flp->l_whence == SEEK_CUR) {
647 foffset = foffset_get(fp);
648 if (foffset < 0 ||
649 (flp->l_start > 0 &&
650 foffset > OFF_MAX - flp->l_start)) {
651 error = EOVERFLOW;
652 fdrop(fp, td);
653 break;
654 }
655 flp->l_start += foffset;
656 }
657
658 vp = fp->f_vnode;
659 switch (flp->l_type) {
660 case F_RDLCK:
661 if ((fp->f_flag & FREAD) == 0) {
662 error = EBADF;
663 break;
664 }
665 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
666 PROC_LOCK(p->p_leader);
667 p->p_leader->p_flag |= P_ADVLOCK;
668 PROC_UNLOCK(p->p_leader);
669 }
670 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
671 flp, flg);
672 break;
673 case F_WRLCK:
674 if ((fp->f_flag & FWRITE) == 0) {
675 error = EBADF;
676 break;
677 }
678 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
679 PROC_LOCK(p->p_leader);
680 p->p_leader->p_flag |= P_ADVLOCK;
681 PROC_UNLOCK(p->p_leader);
682 }
683 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
684 flp, flg);
685 break;
686 case F_UNLCK:
687 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
688 flp, flg);
689 break;
690 case F_UNLCKSYS:
691 if (flg != F_REMOTE) {
692 error = EINVAL;
693 break;
694 }
695 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
696 F_UNLCKSYS, flp, flg);
697 break;
698 default:
699 error = EINVAL;
700 break;
701 }
702 if (error != 0 || flp->l_type == F_UNLCK ||
703 flp->l_type == F_UNLCKSYS) {
704 fdrop(fp, td);
705 break;
706 }
707
708 /*
709 * Check for a race with close.
710 *
711 * The vnode is now advisory locked (or unlocked, but this case
712 * is not really important) as the caller requested.
713 * We had to drop the filedesc lock, so we need to recheck if
714 * the descriptor is still valid, because if it was closed
715 * in the meantime we need to remove advisory lock from the
716 * vnode - close on any descriptor leading to an advisory
717 * locked vnode, removes that lock.
718 * We will return 0 on purpose in that case, as the result of
719 * successful advisory lock might have been externally visible
720 * already. This is fine - effectively we pretend to the caller
721 * that the closing thread was a bit slower and that the
722 * advisory lock succeeded before the close.
723 */
724 error = fget_unlocked(td, fd, &cap_no_rights, &fp2);
725 if (error != 0) {
726 fdrop(fp, td);
727 break;
728 }
729 if (fp != fp2) {
730 flp->l_whence = SEEK_SET;
731 flp->l_start = 0;
732 flp->l_len = 0;
733 flp->l_type = F_UNLCK;
734 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
735 F_UNLCK, flp, F_POSIX);
736 }
737 fdrop(fp, td);
738 fdrop(fp2, td);
739 break;
740
741 case F_GETLK:
742 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
743 if (error != 0)
744 break;
745 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
746 error = EBADF;
747 fdrop(fp, td);
748 break;
749 }
750 flp = (struct flock *)arg;
751 if (flp->l_type != F_RDLCK && flp->l_type != F_WRLCK &&
752 flp->l_type != F_UNLCK) {
753 error = EINVAL;
754 fdrop(fp, td);
755 break;
756 }
757 if (flp->l_whence == SEEK_CUR) {
758 foffset = foffset_get(fp);
759 if ((flp->l_start > 0 &&
760 foffset > OFF_MAX - flp->l_start) ||
761 (flp->l_start < 0 &&
762 foffset < OFF_MIN - flp->l_start)) {
763 error = EOVERFLOW;
764 fdrop(fp, td);
765 break;
766 }
767 flp->l_start += foffset;
768 }
769 vp = fp->f_vnode;
770 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK, flp,
771 F_POSIX);
772 fdrop(fp, td);
773 break;
774
775 case F_ADD_SEALS:
776 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
777 if (error != 0)
778 break;
779 error = fo_add_seals(fp, arg);
780 fdrop(fp, td);
781 break;
782
783 case F_GET_SEALS:
784 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
785 if (error != 0)
786 break;
787 if (fo_get_seals(fp, &seals) == 0)
788 td->td_retval[0] = seals;
789 else
790 error = EINVAL;
791 fdrop(fp, td);
792 break;
793
794 case F_RDAHEAD:
795 arg = arg ? 128 * 1024: 0;
796 /* FALLTHROUGH */
797 case F_READAHEAD:
798 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
799 if (error != 0)
800 break;
801 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
802 fdrop(fp, td);
803 error = EBADF;
804 break;
805 }
806 vp = fp->f_vnode;
807 if (vp->v_type != VREG) {
808 fdrop(fp, td);
809 error = ENOTTY;
810 break;
811 }
812
813 /*
814 * Exclusive lock synchronizes against f_seqcount reads and
815 * writes in sequential_heuristic().
816 */
817 error = vn_lock(vp, LK_EXCLUSIVE);
818 if (error != 0) {
819 fdrop(fp, td);
820 break;
821 }
822 if (arg >= 0) {
823 bsize = fp->f_vnode->v_mount->mnt_stat.f_iosize;
824 arg = MIN(arg, INT_MAX - bsize + 1);
825 fp->f_seqcount[UIO_READ] = MIN(IO_SEQMAX,
826 (arg + bsize - 1) / bsize);
827 atomic_set_int(&fp->f_flag, FRDAHEAD);
828 } else {
829 atomic_clear_int(&fp->f_flag, FRDAHEAD);
830 }
831 VOP_UNLOCK(vp);
832 fdrop(fp, td);
833 break;
834
835 case F_ISUNIONSTACK:
836 /*
837 * Check if the vnode is part of a union stack (either the
838 * "union" flag from mount(2) or unionfs).
839 *
840 * Prior to introduction of this op libc's readdir would call
841 * fstatfs(2), in effect unnecessarily copying kilobytes of
842 * data just to check fs name and a mount flag.
843 *
844 * Fixing the code to handle everything in the kernel instead
845 * is a non-trivial endeavor and has low priority, thus this
846 * horrible kludge facilitates the current behavior in a much
847 * cheaper manner until someone(tm) sorts this out.
848 */
849 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
850 if (error != 0)
851 break;
852 if (fp->f_type != DTYPE_VNODE) {
853 fdrop(fp, td);
854 error = EBADF;
855 break;
856 }
857 vp = fp->f_vnode;
858 /*
859 * Since we don't prevent dooming the vnode even non-null mp
860 * found can become immediately stale. This is tolerable since
861 * mount points are type-stable (providing safe memory access)
862 * and any vfs op on this vnode going forward will return an
863 * error (meaning return value in this case is meaningless).
864 */
865 mp = atomic_load_ptr(&vp->v_mount);
866 if (__predict_false(mp == NULL)) {
867 fdrop(fp, td);
868 error = EBADF;
869 break;
870 }
871 td->td_retval[0] = 0;
872 if (mp->mnt_kern_flag & MNTK_UNIONFS ||
873 mp->mnt_flag & MNT_UNION)
874 td->td_retval[0] = 1;
875 fdrop(fp, td);
876 break;
877
878 case F_KINFO:
879 #ifdef CAPABILITY_MODE
880 if (CAP_TRACING(td))
881 ktrcapfail(CAPFAIL_SYSCALL, &cmd);
882 if (IN_CAPABILITY_MODE(td)) {
883 error = ECAPMODE;
884 break;
885 }
886 #endif
887 error = copyin((void *)arg, &kif_sz, sizeof(kif_sz));
888 if (error != 0)
889 break;
890 if (kif_sz != sizeof(*kif)) {
891 error = EINVAL;
892 break;
893 }
894 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK | M_ZERO);
895 FILEDESC_SLOCK(fdp);
896 error = fget_cap_noref(fdp, fd, &cap_fcntl_rights, &fp, NULL);
897 if (error == 0 && fhold(fp)) {
898 export_file_to_kinfo(fp, fd, NULL, kif, fdp, 0);
899 FILEDESC_SUNLOCK(fdp);
900 fdrop(fp, td);
901 if ((kif->kf_status & KF_ATTR_VALID) != 0) {
902 kif->kf_structsize = sizeof(*kif);
903 error = copyout(kif, (void *)arg, sizeof(*kif));
904 } else {
905 error = EBADF;
906 }
907 } else {
908 FILEDESC_SUNLOCK(fdp);
909 if (error == 0)
910 error = EBADF;
911 }
912 free(kif, M_TEMP);
913 break;
914
915 default:
916 error = EINVAL;
917 break;
918 }
919 return (error);
920 }
921
922 static int
getmaxfd(struct thread * td)923 getmaxfd(struct thread *td)
924 {
925
926 return (min((int)lim_cur(td, RLIMIT_NOFILE), maxfilesperproc));
927 }
928
929 /*
930 * Common code for dup, dup2, fcntl(F_DUPFD) and fcntl(F_DUP2FD).
931 */
932 int
kern_dup(struct thread * td,u_int mode,int flags,int old,int new)933 kern_dup(struct thread *td, u_int mode, int flags, int old, int new)
934 {
935 struct filedesc *fdp;
936 struct filedescent *oldfde, *newfde;
937 struct proc *p;
938 struct file *delfp, *oldfp;
939 u_long *oioctls, *nioctls;
940 int error, maxfd;
941
942 p = td->td_proc;
943 fdp = p->p_fd;
944 oioctls = NULL;
945
946 MPASS((flags & ~(FDDUP_FLAG_CLOEXEC)) == 0);
947 MPASS(mode < FDDUP_LASTMODE);
948
949 AUDIT_ARG_FD(old);
950 /* XXXRW: if (flags & FDDUP_FIXED) AUDIT_ARG_FD2(new); */
951
952 /*
953 * Verify we have a valid descriptor to dup from and possibly to
954 * dup to. Unlike dup() and dup2(), fcntl()'s F_DUPFD should
955 * return EINVAL when the new descriptor is out of bounds.
956 */
957 if (old < 0)
958 return (EBADF);
959 if (new < 0)
960 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
961 maxfd = getmaxfd(td);
962 if (new >= maxfd)
963 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
964
965 error = EBADF;
966 FILEDESC_XLOCK(fdp);
967 if (fget_noref(fdp, old) == NULL)
968 goto unlock;
969 if (mode == FDDUP_FIXED && old == new) {
970 td->td_retval[0] = new;
971 if (flags & FDDUP_FLAG_CLOEXEC)
972 fdp->fd_ofiles[new].fde_flags |= UF_EXCLOSE;
973 error = 0;
974 goto unlock;
975 }
976
977 oldfde = &fdp->fd_ofiles[old];
978 oldfp = oldfde->fde_file;
979 if (!fhold(oldfp))
980 goto unlock;
981
982 /*
983 * If the caller specified a file descriptor, make sure the file
984 * table is large enough to hold it, and grab it. Otherwise, just
985 * allocate a new descriptor the usual way.
986 */
987 switch (mode) {
988 case FDDUP_NORMAL:
989 case FDDUP_FCNTL:
990 if ((error = fdalloc(td, new, &new)) != 0) {
991 fdrop(oldfp, td);
992 goto unlock;
993 }
994 break;
995 case FDDUP_FIXED:
996 if (new >= fdp->fd_nfiles) {
997 /*
998 * The resource limits are here instead of e.g.
999 * fdalloc(), because the file descriptor table may be
1000 * shared between processes, so we can't really use
1001 * racct_add()/racct_sub(). Instead of counting the
1002 * number of actually allocated descriptors, just put
1003 * the limit on the size of the file descriptor table.
1004 */
1005 #ifdef RACCT
1006 if (RACCT_ENABLED()) {
1007 error = racct_set_unlocked(p, RACCT_NOFILE, new + 1);
1008 if (error != 0) {
1009 error = EMFILE;
1010 fdrop(oldfp, td);
1011 goto unlock;
1012 }
1013 }
1014 #endif
1015 fdgrowtable_exp(fdp, new + 1);
1016 }
1017 if (!fdisused(fdp, new))
1018 fdused(fdp, new);
1019 break;
1020 default:
1021 KASSERT(0, ("%s unsupported mode %d", __func__, mode));
1022 }
1023
1024 KASSERT(old != new, ("new fd is same as old"));
1025
1026 /* Refetch oldfde because the table may have grown and old one freed. */
1027 oldfde = &fdp->fd_ofiles[old];
1028 KASSERT(oldfp == oldfde->fde_file,
1029 ("fdt_ofiles shift from growth observed at fd %d",
1030 old));
1031
1032 newfde = &fdp->fd_ofiles[new];
1033 delfp = newfde->fde_file;
1034
1035 nioctls = filecaps_copy_prep(&oldfde->fde_caps);
1036
1037 /*
1038 * Duplicate the source descriptor.
1039 */
1040 #ifdef CAPABILITIES
1041 seqc_write_begin(&newfde->fde_seqc);
1042 #endif
1043 oioctls = filecaps_free_prep(&newfde->fde_caps);
1044 fde_copy(oldfde, newfde);
1045 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
1046 nioctls);
1047 if ((flags & FDDUP_FLAG_CLOEXEC) != 0)
1048 newfde->fde_flags = oldfde->fde_flags | UF_EXCLOSE;
1049 else
1050 newfde->fde_flags = oldfde->fde_flags & ~UF_EXCLOSE;
1051 #ifdef CAPABILITIES
1052 seqc_write_end(&newfde->fde_seqc);
1053 #endif
1054 td->td_retval[0] = new;
1055
1056 error = 0;
1057
1058 if (delfp != NULL) {
1059 (void) closefp(fdp, new, delfp, td, true, false);
1060 FILEDESC_UNLOCK_ASSERT(fdp);
1061 } else {
1062 unlock:
1063 FILEDESC_XUNLOCK(fdp);
1064 }
1065
1066 filecaps_free_finish(oioctls);
1067 return (error);
1068 }
1069
1070 static void
sigiofree(struct sigio * sigio)1071 sigiofree(struct sigio *sigio)
1072 {
1073 crfree(sigio->sio_ucred);
1074 free(sigio, M_SIGIO);
1075 }
1076
1077 static struct sigio *
funsetown_locked(struct sigio * sigio)1078 funsetown_locked(struct sigio *sigio)
1079 {
1080 struct proc *p;
1081 struct pgrp *pg;
1082
1083 SIGIO_ASSERT_LOCKED();
1084
1085 if (sigio == NULL)
1086 return (NULL);
1087 *sigio->sio_myref = NULL;
1088 if (sigio->sio_pgid < 0) {
1089 pg = sigio->sio_pgrp;
1090 PGRP_LOCK(pg);
1091 SLIST_REMOVE(&pg->pg_sigiolst, sigio, sigio, sio_pgsigio);
1092 PGRP_UNLOCK(pg);
1093 } else {
1094 p = sigio->sio_proc;
1095 PROC_LOCK(p);
1096 SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
1097 PROC_UNLOCK(p);
1098 }
1099 return (sigio);
1100 }
1101
1102 /*
1103 * If sigio is on the list associated with a process or process group,
1104 * disable signalling from the device, remove sigio from the list and
1105 * free sigio.
1106 */
1107 void
funsetown(struct sigio ** sigiop)1108 funsetown(struct sigio **sigiop)
1109 {
1110 struct sigio *sigio;
1111
1112 /* Racy check, consumers must provide synchronization. */
1113 if (*sigiop == NULL)
1114 return;
1115
1116 SIGIO_LOCK();
1117 sigio = funsetown_locked(*sigiop);
1118 SIGIO_UNLOCK();
1119 if (sigio != NULL)
1120 sigiofree(sigio);
1121 }
1122
1123 /*
1124 * Free a list of sigio structures. The caller must ensure that new sigio
1125 * structures cannot be added after this point. For process groups this is
1126 * guaranteed using the proctree lock; for processes, the P_WEXIT flag serves
1127 * as an interlock.
1128 */
1129 void
funsetownlst(struct sigiolst * sigiolst)1130 funsetownlst(struct sigiolst *sigiolst)
1131 {
1132 struct proc *p;
1133 struct pgrp *pg;
1134 struct sigio *sigio, *tmp;
1135
1136 /* Racy check. */
1137 sigio = SLIST_FIRST(sigiolst);
1138 if (sigio == NULL)
1139 return;
1140
1141 p = NULL;
1142 pg = NULL;
1143
1144 SIGIO_LOCK();
1145 sigio = SLIST_FIRST(sigiolst);
1146 if (sigio == NULL) {
1147 SIGIO_UNLOCK();
1148 return;
1149 }
1150
1151 /*
1152 * Every entry of the list should belong to a single proc or pgrp.
1153 */
1154 if (sigio->sio_pgid < 0) {
1155 pg = sigio->sio_pgrp;
1156 sx_assert(&proctree_lock, SX_XLOCKED);
1157 PGRP_LOCK(pg);
1158 } else /* if (sigio->sio_pgid > 0) */ {
1159 p = sigio->sio_proc;
1160 PROC_LOCK(p);
1161 KASSERT((p->p_flag & P_WEXIT) != 0,
1162 ("%s: process %p is not exiting", __func__, p));
1163 }
1164
1165 SLIST_FOREACH(sigio, sigiolst, sio_pgsigio) {
1166 *sigio->sio_myref = NULL;
1167 if (pg != NULL) {
1168 KASSERT(sigio->sio_pgid < 0,
1169 ("Proc sigio in pgrp sigio list"));
1170 KASSERT(sigio->sio_pgrp == pg,
1171 ("Bogus pgrp in sigio list"));
1172 } else /* if (p != NULL) */ {
1173 KASSERT(sigio->sio_pgid > 0,
1174 ("Pgrp sigio in proc sigio list"));
1175 KASSERT(sigio->sio_proc == p,
1176 ("Bogus proc in sigio list"));
1177 }
1178 }
1179
1180 if (pg != NULL)
1181 PGRP_UNLOCK(pg);
1182 else
1183 PROC_UNLOCK(p);
1184 SIGIO_UNLOCK();
1185
1186 SLIST_FOREACH_SAFE(sigio, sigiolst, sio_pgsigio, tmp)
1187 sigiofree(sigio);
1188 }
1189
1190 /*
1191 * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
1192 *
1193 * After permission checking, add a sigio structure to the sigio list for
1194 * the process or process group.
1195 */
1196 int
fsetown(pid_t pgid,struct sigio ** sigiop)1197 fsetown(pid_t pgid, struct sigio **sigiop)
1198 {
1199 struct proc *proc;
1200 struct pgrp *pgrp;
1201 struct sigio *osigio, *sigio;
1202 int ret;
1203
1204 if (pgid == 0) {
1205 funsetown(sigiop);
1206 return (0);
1207 }
1208
1209 sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
1210 sigio->sio_pgid = pgid;
1211 sigio->sio_ucred = crhold(curthread->td_ucred);
1212 sigio->sio_myref = sigiop;
1213
1214 ret = 0;
1215 if (pgid > 0) {
1216 ret = pget(pgid, PGET_NOTWEXIT | PGET_NOTID | PGET_HOLD, &proc);
1217 SIGIO_LOCK();
1218 osigio = funsetown_locked(*sigiop);
1219 if (ret == 0) {
1220 PROC_LOCK(proc);
1221 _PRELE(proc);
1222 if ((proc->p_flag & P_WEXIT) != 0) {
1223 ret = ESRCH;
1224 } else if (proc->p_session !=
1225 curthread->td_proc->p_session) {
1226 /*
1227 * Policy - Don't allow a process to FSETOWN a
1228 * process in another session.
1229 *
1230 * Remove this test to allow maximum flexibility
1231 * or restrict FSETOWN to the current process or
1232 * process group for maximum safety.
1233 */
1234 ret = EPERM;
1235 } else {
1236 sigio->sio_proc = proc;
1237 SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio,
1238 sio_pgsigio);
1239 }
1240 PROC_UNLOCK(proc);
1241 }
1242 } else /* if (pgid < 0) */ {
1243 sx_slock(&proctree_lock);
1244 SIGIO_LOCK();
1245 osigio = funsetown_locked(*sigiop);
1246 pgrp = pgfind(-pgid);
1247 if (pgrp == NULL) {
1248 ret = ESRCH;
1249 } else {
1250 if (pgrp->pg_session != curthread->td_proc->p_session) {
1251 /*
1252 * Policy - Don't allow a process to FSETOWN a
1253 * process in another session.
1254 *
1255 * Remove this test to allow maximum flexibility
1256 * or restrict FSETOWN to the current process or
1257 * process group for maximum safety.
1258 */
1259 ret = EPERM;
1260 } else {
1261 sigio->sio_pgrp = pgrp;
1262 SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio,
1263 sio_pgsigio);
1264 }
1265 PGRP_UNLOCK(pgrp);
1266 }
1267 sx_sunlock(&proctree_lock);
1268 }
1269 if (ret == 0)
1270 *sigiop = sigio;
1271 SIGIO_UNLOCK();
1272 if (osigio != NULL)
1273 sigiofree(osigio);
1274 return (ret);
1275 }
1276
1277 /*
1278 * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
1279 */
1280 pid_t
fgetown(struct sigio ** sigiop)1281 fgetown(struct sigio **sigiop)
1282 {
1283 pid_t pgid;
1284
1285 SIGIO_LOCK();
1286 pgid = (*sigiop != NULL) ? (*sigiop)->sio_pgid : 0;
1287 SIGIO_UNLOCK();
1288 return (pgid);
1289 }
1290
1291 static int
closefp_impl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool audit)1292 closefp_impl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1293 bool audit)
1294 {
1295 int error;
1296
1297 FILEDESC_XLOCK_ASSERT(fdp);
1298
1299 /*
1300 * We now hold the fp reference that used to be owned by the
1301 * descriptor array. We have to unlock the FILEDESC *AFTER*
1302 * knote_fdclose to prevent a race of the fd getting opened, a knote
1303 * added, and deleteing a knote for the new fd.
1304 */
1305 if (__predict_false(!TAILQ_EMPTY(&fdp->fd_kqlist)))
1306 knote_fdclose(td, fd);
1307
1308 /*
1309 * We need to notify mqueue if the object is of type mqueue.
1310 */
1311 if (__predict_false(fp->f_type == DTYPE_MQUEUE))
1312 mq_fdclose(td, fd, fp);
1313 FILEDESC_XUNLOCK(fdp);
1314
1315 #ifdef AUDIT
1316 if (AUDITING_TD(td) && audit)
1317 audit_sysclose(td, fd, fp);
1318 #endif
1319 error = closef(fp, td);
1320
1321 /*
1322 * All paths leading up to closefp() will have already removed or
1323 * replaced the fd in the filedesc table, so a restart would not
1324 * operate on the same file.
1325 */
1326 if (error == ERESTART)
1327 error = EINTR;
1328
1329 return (error);
1330 }
1331
1332 static int
closefp_hl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1333 closefp_hl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1334 bool holdleaders, bool audit)
1335 {
1336 int error;
1337
1338 FILEDESC_XLOCK_ASSERT(fdp);
1339
1340 if (holdleaders) {
1341 if (td->td_proc->p_fdtol != NULL) {
1342 /*
1343 * Ask fdfree() to sleep to ensure that all relevant
1344 * process leaders can be traversed in closef().
1345 */
1346 fdp->fd_holdleaderscount++;
1347 } else {
1348 holdleaders = false;
1349 }
1350 }
1351
1352 error = closefp_impl(fdp, fd, fp, td, audit);
1353 if (holdleaders) {
1354 FILEDESC_XLOCK(fdp);
1355 fdp->fd_holdleaderscount--;
1356 if (fdp->fd_holdleaderscount == 0 &&
1357 fdp->fd_holdleaderswakeup != 0) {
1358 fdp->fd_holdleaderswakeup = 0;
1359 wakeup(&fdp->fd_holdleaderscount);
1360 }
1361 FILEDESC_XUNLOCK(fdp);
1362 }
1363 return (error);
1364 }
1365
1366 static int
closefp(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1367 closefp(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1368 bool holdleaders, bool audit)
1369 {
1370
1371 FILEDESC_XLOCK_ASSERT(fdp);
1372
1373 if (__predict_false(td->td_proc->p_fdtol != NULL)) {
1374 return (closefp_hl(fdp, fd, fp, td, holdleaders, audit));
1375 } else {
1376 return (closefp_impl(fdp, fd, fp, td, audit));
1377 }
1378 }
1379
1380 /*
1381 * Close a file descriptor.
1382 */
1383 #ifndef _SYS_SYSPROTO_H_
1384 struct close_args {
1385 int fd;
1386 };
1387 #endif
1388 /* ARGSUSED */
1389 int
sys_close(struct thread * td,struct close_args * uap)1390 sys_close(struct thread *td, struct close_args *uap)
1391 {
1392
1393 return (kern_close(td, uap->fd));
1394 }
1395
1396 int
kern_close(struct thread * td,int fd)1397 kern_close(struct thread *td, int fd)
1398 {
1399 struct filedesc *fdp;
1400 struct file *fp;
1401
1402 fdp = td->td_proc->p_fd;
1403
1404 FILEDESC_XLOCK(fdp);
1405 if ((fp = fget_noref(fdp, fd)) == NULL) {
1406 FILEDESC_XUNLOCK(fdp);
1407 return (EBADF);
1408 }
1409 fdfree(fdp, fd);
1410
1411 /* closefp() drops the FILEDESC lock for us. */
1412 return (closefp(fdp, fd, fp, td, true, true));
1413 }
1414
1415 static int
close_range_cloexec(struct thread * td,u_int lowfd,u_int highfd)1416 close_range_cloexec(struct thread *td, u_int lowfd, u_int highfd)
1417 {
1418 struct filedesc *fdp;
1419 struct fdescenttbl *fdt;
1420 struct filedescent *fde;
1421 int fd;
1422
1423 fdp = td->td_proc->p_fd;
1424 FILEDESC_XLOCK(fdp);
1425 fdt = atomic_load_ptr(&fdp->fd_files);
1426 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1427 fd = lowfd;
1428 if (__predict_false(fd > highfd)) {
1429 goto out_locked;
1430 }
1431 for (; fd <= highfd; fd++) {
1432 fde = &fdt->fdt_ofiles[fd];
1433 if (fde->fde_file != NULL)
1434 fde->fde_flags |= UF_EXCLOSE;
1435 }
1436 out_locked:
1437 FILEDESC_XUNLOCK(fdp);
1438 return (0);
1439 }
1440
1441 static int
close_range_impl(struct thread * td,u_int lowfd,u_int highfd)1442 close_range_impl(struct thread *td, u_int lowfd, u_int highfd)
1443 {
1444 struct filedesc *fdp;
1445 const struct fdescenttbl *fdt;
1446 struct file *fp;
1447 int fd;
1448
1449 fdp = td->td_proc->p_fd;
1450 FILEDESC_XLOCK(fdp);
1451 fdt = atomic_load_ptr(&fdp->fd_files);
1452 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1453 fd = lowfd;
1454 if (__predict_false(fd > highfd)) {
1455 goto out_locked;
1456 }
1457 for (;;) {
1458 fp = fdt->fdt_ofiles[fd].fde_file;
1459 if (fp == NULL) {
1460 if (fd == highfd)
1461 goto out_locked;
1462 } else {
1463 fdfree(fdp, fd);
1464 (void) closefp(fdp, fd, fp, td, true, true);
1465 if (fd == highfd)
1466 goto out_unlocked;
1467 FILEDESC_XLOCK(fdp);
1468 fdt = atomic_load_ptr(&fdp->fd_files);
1469 }
1470 fd++;
1471 }
1472 out_locked:
1473 FILEDESC_XUNLOCK(fdp);
1474 out_unlocked:
1475 return (0);
1476 }
1477
1478 int
kern_close_range(struct thread * td,int flags,u_int lowfd,u_int highfd)1479 kern_close_range(struct thread *td, int flags, u_int lowfd, u_int highfd)
1480 {
1481
1482 /*
1483 * Check this prior to clamping; closefrom(3) with only fd 0, 1, and 2
1484 * open should not be a usage error. From a close_range() perspective,
1485 * close_range(3, ~0U, 0) in the same scenario should also likely not
1486 * be a usage error as all fd above 3 are in-fact already closed.
1487 */
1488 if (highfd < lowfd) {
1489 return (EINVAL);
1490 }
1491
1492 if ((flags & CLOSE_RANGE_CLOEXEC) != 0)
1493 return (close_range_cloexec(td, lowfd, highfd));
1494
1495 return (close_range_impl(td, lowfd, highfd));
1496 }
1497
1498 #ifndef _SYS_SYSPROTO_H_
1499 struct close_range_args {
1500 u_int lowfd;
1501 u_int highfd;
1502 int flags;
1503 };
1504 #endif
1505 int
sys_close_range(struct thread * td,struct close_range_args * uap)1506 sys_close_range(struct thread *td, struct close_range_args *uap)
1507 {
1508
1509 AUDIT_ARG_FD(uap->lowfd);
1510 AUDIT_ARG_CMD(uap->highfd);
1511 AUDIT_ARG_FFLAGS(uap->flags);
1512
1513 if ((uap->flags & ~(CLOSE_RANGE_CLOEXEC)) != 0)
1514 return (EINVAL);
1515 return (kern_close_range(td, uap->flags, uap->lowfd, uap->highfd));
1516 }
1517
1518 #ifdef COMPAT_FREEBSD12
1519 /*
1520 * Close open file descriptors.
1521 */
1522 #ifndef _SYS_SYSPROTO_H_
1523 struct freebsd12_closefrom_args {
1524 int lowfd;
1525 };
1526 #endif
1527 /* ARGSUSED */
1528 int
freebsd12_closefrom(struct thread * td,struct freebsd12_closefrom_args * uap)1529 freebsd12_closefrom(struct thread *td, struct freebsd12_closefrom_args *uap)
1530 {
1531 u_int lowfd;
1532
1533 AUDIT_ARG_FD(uap->lowfd);
1534
1535 /*
1536 * Treat negative starting file descriptor values identical to
1537 * closefrom(0) which closes all files.
1538 */
1539 lowfd = MAX(0, uap->lowfd);
1540 return (kern_close_range(td, 0, lowfd, ~0U));
1541 }
1542 #endif /* COMPAT_FREEBSD12 */
1543
1544 #if defined(COMPAT_43)
1545 /*
1546 * Return status information about a file descriptor.
1547 */
1548 #ifndef _SYS_SYSPROTO_H_
1549 struct ofstat_args {
1550 int fd;
1551 struct ostat *sb;
1552 };
1553 #endif
1554 /* ARGSUSED */
1555 int
ofstat(struct thread * td,struct ofstat_args * uap)1556 ofstat(struct thread *td, struct ofstat_args *uap)
1557 {
1558 struct ostat oub;
1559 struct stat ub;
1560 int error;
1561
1562 error = kern_fstat(td, uap->fd, &ub);
1563 if (error == 0) {
1564 cvtstat(&ub, &oub);
1565 error = copyout(&oub, uap->sb, sizeof(oub));
1566 }
1567 return (error);
1568 }
1569 #endif /* COMPAT_43 */
1570
1571 #if defined(COMPAT_FREEBSD11)
1572 int
freebsd11_fstat(struct thread * td,struct freebsd11_fstat_args * uap)1573 freebsd11_fstat(struct thread *td, struct freebsd11_fstat_args *uap)
1574 {
1575 struct stat sb;
1576 struct freebsd11_stat osb;
1577 int error;
1578
1579 error = kern_fstat(td, uap->fd, &sb);
1580 if (error != 0)
1581 return (error);
1582 error = freebsd11_cvtstat(&sb, &osb);
1583 if (error == 0)
1584 error = copyout(&osb, uap->sb, sizeof(osb));
1585 return (error);
1586 }
1587 #endif /* COMPAT_FREEBSD11 */
1588
1589 /*
1590 * Return status information about a file descriptor.
1591 */
1592 #ifndef _SYS_SYSPROTO_H_
1593 struct fstat_args {
1594 int fd;
1595 struct stat *sb;
1596 };
1597 #endif
1598 /* ARGSUSED */
1599 int
sys_fstat(struct thread * td,struct fstat_args * uap)1600 sys_fstat(struct thread *td, struct fstat_args *uap)
1601 {
1602 struct stat ub;
1603 int error;
1604
1605 error = kern_fstat(td, uap->fd, &ub);
1606 if (error == 0)
1607 error = copyout(&ub, uap->sb, sizeof(ub));
1608 return (error);
1609 }
1610
1611 int
kern_fstat(struct thread * td,int fd,struct stat * sbp)1612 kern_fstat(struct thread *td, int fd, struct stat *sbp)
1613 {
1614 struct file *fp;
1615 int error;
1616
1617 AUDIT_ARG_FD(fd);
1618
1619 error = fget(td, fd, &cap_fstat_rights, &fp);
1620 if (__predict_false(error != 0))
1621 return (error);
1622
1623 AUDIT_ARG_FILE(td->td_proc, fp);
1624
1625 error = fo_stat(fp, sbp, td->td_ucred);
1626 fdrop(fp, td);
1627 #ifdef __STAT_TIME_T_EXT
1628 sbp->st_atim_ext = 0;
1629 sbp->st_mtim_ext = 0;
1630 sbp->st_ctim_ext = 0;
1631 sbp->st_btim_ext = 0;
1632 #endif
1633 #ifdef KTRACE
1634 if (KTRPOINT(td, KTR_STRUCT))
1635 ktrstat_error(sbp, error);
1636 #endif
1637 return (error);
1638 }
1639
1640 #if defined(COMPAT_FREEBSD11)
1641 /*
1642 * Return status information about a file descriptor.
1643 */
1644 #ifndef _SYS_SYSPROTO_H_
1645 struct freebsd11_nfstat_args {
1646 int fd;
1647 struct nstat *sb;
1648 };
1649 #endif
1650 /* ARGSUSED */
1651 int
freebsd11_nfstat(struct thread * td,struct freebsd11_nfstat_args * uap)1652 freebsd11_nfstat(struct thread *td, struct freebsd11_nfstat_args *uap)
1653 {
1654 struct nstat nub;
1655 struct stat ub;
1656 int error;
1657
1658 error = kern_fstat(td, uap->fd, &ub);
1659 if (error != 0)
1660 return (error);
1661 error = freebsd11_cvtnstat(&ub, &nub);
1662 if (error != 0)
1663 error = copyout(&nub, uap->sb, sizeof(nub));
1664 return (error);
1665 }
1666 #endif /* COMPAT_FREEBSD11 */
1667
1668 /*
1669 * Return pathconf information about a file descriptor.
1670 */
1671 #ifndef _SYS_SYSPROTO_H_
1672 struct fpathconf_args {
1673 int fd;
1674 int name;
1675 };
1676 #endif
1677 /* ARGSUSED */
1678 int
sys_fpathconf(struct thread * td,struct fpathconf_args * uap)1679 sys_fpathconf(struct thread *td, struct fpathconf_args *uap)
1680 {
1681 long value;
1682 int error;
1683
1684 error = kern_fpathconf(td, uap->fd, uap->name, &value);
1685 if (error == 0)
1686 td->td_retval[0] = value;
1687 return (error);
1688 }
1689
1690 int
kern_fpathconf(struct thread * td,int fd,int name,long * valuep)1691 kern_fpathconf(struct thread *td, int fd, int name, long *valuep)
1692 {
1693 struct file *fp;
1694 struct vnode *vp;
1695 int error;
1696
1697 error = fget(td, fd, &cap_fpathconf_rights, &fp);
1698 if (error != 0)
1699 return (error);
1700
1701 if (name == _PC_ASYNC_IO) {
1702 *valuep = _POSIX_ASYNCHRONOUS_IO;
1703 goto out;
1704 }
1705 vp = fp->f_vnode;
1706 if (vp != NULL) {
1707 vn_lock(vp, LK_SHARED | LK_RETRY);
1708 error = VOP_PATHCONF(vp, name, valuep);
1709 VOP_UNLOCK(vp);
1710 } else if (fp->f_type == DTYPE_PIPE || fp->f_type == DTYPE_SOCKET) {
1711 if (name != _PC_PIPE_BUF) {
1712 error = EINVAL;
1713 } else {
1714 *valuep = PIPE_BUF;
1715 error = 0;
1716 }
1717 } else {
1718 error = EOPNOTSUPP;
1719 }
1720 out:
1721 fdrop(fp, td);
1722 return (error);
1723 }
1724
1725 /*
1726 * Copy filecaps structure allocating memory for ioctls array if needed.
1727 *
1728 * The last parameter indicates whether the fdtable is locked. If it is not and
1729 * ioctls are encountered, copying fails and the caller must lock the table.
1730 *
1731 * Note that if the table was not locked, the caller has to check the relevant
1732 * sequence counter to determine whether the operation was successful.
1733 */
1734 bool
filecaps_copy(const struct filecaps * src,struct filecaps * dst,bool locked)1735 filecaps_copy(const struct filecaps *src, struct filecaps *dst, bool locked)
1736 {
1737 size_t size;
1738
1739 if (src->fc_ioctls != NULL && !locked)
1740 return (false);
1741 memcpy(dst, src, sizeof(*src));
1742 if (src->fc_ioctls == NULL)
1743 return (true);
1744
1745 KASSERT(src->fc_nioctls > 0,
1746 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1747
1748 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1749 dst->fc_ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1750 memcpy(dst->fc_ioctls, src->fc_ioctls, size);
1751 return (true);
1752 }
1753
1754 static u_long *
filecaps_copy_prep(const struct filecaps * src)1755 filecaps_copy_prep(const struct filecaps *src)
1756 {
1757 u_long *ioctls;
1758 size_t size;
1759
1760 if (__predict_true(src->fc_ioctls == NULL))
1761 return (NULL);
1762
1763 KASSERT(src->fc_nioctls > 0,
1764 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1765
1766 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1767 ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1768 return (ioctls);
1769 }
1770
1771 static void
filecaps_copy_finish(const struct filecaps * src,struct filecaps * dst,u_long * ioctls)1772 filecaps_copy_finish(const struct filecaps *src, struct filecaps *dst,
1773 u_long *ioctls)
1774 {
1775 size_t size;
1776
1777 *dst = *src;
1778 if (__predict_true(src->fc_ioctls == NULL)) {
1779 MPASS(ioctls == NULL);
1780 return;
1781 }
1782
1783 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1784 dst->fc_ioctls = ioctls;
1785 bcopy(src->fc_ioctls, dst->fc_ioctls, size);
1786 }
1787
1788 /*
1789 * Move filecaps structure to the new place and clear the old place.
1790 */
1791 void
filecaps_move(struct filecaps * src,struct filecaps * dst)1792 filecaps_move(struct filecaps *src, struct filecaps *dst)
1793 {
1794
1795 *dst = *src;
1796 bzero(src, sizeof(*src));
1797 }
1798
1799 /*
1800 * Fill the given filecaps structure with full rights.
1801 */
1802 static void
filecaps_fill(struct filecaps * fcaps)1803 filecaps_fill(struct filecaps *fcaps)
1804 {
1805
1806 CAP_ALL(&fcaps->fc_rights);
1807 fcaps->fc_ioctls = NULL;
1808 fcaps->fc_nioctls = -1;
1809 fcaps->fc_fcntls = CAP_FCNTL_ALL;
1810 }
1811
1812 /*
1813 * Free memory allocated within filecaps structure.
1814 */
1815 static void
filecaps_free_ioctl(struct filecaps * fcaps)1816 filecaps_free_ioctl(struct filecaps *fcaps)
1817 {
1818
1819 free(fcaps->fc_ioctls, M_FILECAPS);
1820 fcaps->fc_ioctls = NULL;
1821 }
1822
1823 void
filecaps_free(struct filecaps * fcaps)1824 filecaps_free(struct filecaps *fcaps)
1825 {
1826
1827 filecaps_free_ioctl(fcaps);
1828 bzero(fcaps, sizeof(*fcaps));
1829 }
1830
1831 static u_long *
filecaps_free_prep(struct filecaps * fcaps)1832 filecaps_free_prep(struct filecaps *fcaps)
1833 {
1834 u_long *ioctls;
1835
1836 ioctls = fcaps->fc_ioctls;
1837 bzero(fcaps, sizeof(*fcaps));
1838 return (ioctls);
1839 }
1840
1841 static void
filecaps_free_finish(u_long * ioctls)1842 filecaps_free_finish(u_long *ioctls)
1843 {
1844
1845 free(ioctls, M_FILECAPS);
1846 }
1847
1848 /*
1849 * Validate the given filecaps structure.
1850 */
1851 static void
filecaps_validate(const struct filecaps * fcaps,const char * func)1852 filecaps_validate(const struct filecaps *fcaps, const char *func)
1853 {
1854
1855 KASSERT(cap_rights_is_valid(&fcaps->fc_rights),
1856 ("%s: invalid rights", func));
1857 KASSERT((fcaps->fc_fcntls & ~CAP_FCNTL_ALL) == 0,
1858 ("%s: invalid fcntls", func));
1859 KASSERT(fcaps->fc_fcntls == 0 ||
1860 cap_rights_is_set(&fcaps->fc_rights, CAP_FCNTL),
1861 ("%s: fcntls without CAP_FCNTL", func));
1862 /*
1863 * open calls without WANTIOCTLCAPS free caps but leave the counter
1864 */
1865 #if 0
1866 KASSERT(fcaps->fc_ioctls != NULL ? fcaps->fc_nioctls > 0 :
1867 (fcaps->fc_nioctls == -1 || fcaps->fc_nioctls == 0),
1868 ("%s: invalid ioctls", func));
1869 #endif
1870 KASSERT(fcaps->fc_nioctls == 0 ||
1871 cap_rights_is_set(&fcaps->fc_rights, CAP_IOCTL),
1872 ("%s: ioctls without CAP_IOCTL", func));
1873 }
1874
1875 static void
fdgrowtable_exp(struct filedesc * fdp,int nfd)1876 fdgrowtable_exp(struct filedesc *fdp, int nfd)
1877 {
1878 int nfd1;
1879
1880 FILEDESC_XLOCK_ASSERT(fdp);
1881
1882 nfd1 = fdp->fd_nfiles * 2;
1883 if (nfd1 < nfd)
1884 nfd1 = nfd;
1885 fdgrowtable(fdp, nfd1);
1886 }
1887
1888 /*
1889 * Grow the file table to accommodate (at least) nfd descriptors.
1890 */
1891 static void
fdgrowtable(struct filedesc * fdp,int nfd)1892 fdgrowtable(struct filedesc *fdp, int nfd)
1893 {
1894 struct filedesc0 *fdp0;
1895 struct freetable *ft;
1896 struct fdescenttbl *ntable;
1897 struct fdescenttbl *otable;
1898 int nnfiles, onfiles;
1899 NDSLOTTYPE *nmap, *omap;
1900
1901 KASSERT(fdp->fd_nfiles > 0, ("zero-length file table"));
1902
1903 /* save old values */
1904 onfiles = fdp->fd_nfiles;
1905 otable = fdp->fd_files;
1906 omap = fdp->fd_map;
1907
1908 /* compute the size of the new table */
1909 nnfiles = NDSLOTS(nfd) * NDENTRIES; /* round up */
1910 if (nnfiles <= onfiles)
1911 /* the table is already large enough */
1912 return;
1913
1914 /*
1915 * Allocate a new table. We need enough space for the number of
1916 * entries, file entries themselves and the struct freetable we will use
1917 * when we decommission the table and place it on the freelist.
1918 * We place the struct freetable in the middle so we don't have
1919 * to worry about padding.
1920 */
1921 ntable = malloc(offsetof(struct fdescenttbl, fdt_ofiles) +
1922 nnfiles * sizeof(ntable->fdt_ofiles[0]) +
1923 sizeof(struct freetable),
1924 M_FILEDESC, M_ZERO | M_WAITOK);
1925 /* copy the old data */
1926 ntable->fdt_nfiles = nnfiles;
1927 memcpy(ntable->fdt_ofiles, otable->fdt_ofiles,
1928 onfiles * sizeof(ntable->fdt_ofiles[0]));
1929
1930 /*
1931 * Allocate a new map only if the old is not large enough. It will
1932 * grow at a slower rate than the table as it can map more
1933 * entries than the table can hold.
1934 */
1935 if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) {
1936 nmap = malloc(NDSLOTS(nnfiles) * NDSLOTSIZE, M_FILEDESC,
1937 M_ZERO | M_WAITOK);
1938 /* copy over the old data and update the pointer */
1939 memcpy(nmap, omap, NDSLOTS(onfiles) * sizeof(*omap));
1940 fdp->fd_map = nmap;
1941 }
1942
1943 /*
1944 * Make sure that ntable is correctly initialized before we replace
1945 * fd_files poiner. Otherwise fget_unlocked() may see inconsistent
1946 * data.
1947 */
1948 atomic_store_rel_ptr((volatile void *)&fdp->fd_files, (uintptr_t)ntable);
1949
1950 /*
1951 * Free the old file table when not shared by other threads or processes.
1952 * The old file table is considered to be shared when either are true:
1953 * - The process has more than one thread.
1954 * - The file descriptor table has been shared via fdshare().
1955 *
1956 * When shared, the old file table will be placed on a freelist
1957 * which will be processed when the struct filedesc is released.
1958 *
1959 * Note that if onfiles == NDFILE, we're dealing with the original
1960 * static allocation contained within (struct filedesc0 *)fdp,
1961 * which must not be freed.
1962 */
1963 if (onfiles > NDFILE) {
1964 /*
1965 * Note we may be called here from fdinit while allocating a
1966 * table for a new process in which case ->p_fd points
1967 * elsewhere.
1968 */
1969 if (curproc->p_fd != fdp || FILEDESC_IS_ONLY_USER(fdp)) {
1970 free(otable, M_FILEDESC);
1971 } else {
1972 ft = (struct freetable *)&otable->fdt_ofiles[onfiles];
1973 fdp0 = (struct filedesc0 *)fdp;
1974 ft->ft_table = otable;
1975 SLIST_INSERT_HEAD(&fdp0->fd_free, ft, ft_next);
1976 }
1977 }
1978 /*
1979 * The map does not have the same possibility of threads still
1980 * holding references to it. So always free it as long as it
1981 * does not reference the original static allocation.
1982 */
1983 if (NDSLOTS(onfiles) > NDSLOTS(NDFILE))
1984 free(omap, M_FILEDESC);
1985 }
1986
1987 /*
1988 * Allocate a file descriptor for the process.
1989 */
1990 int
fdalloc(struct thread * td,int minfd,int * result)1991 fdalloc(struct thread *td, int minfd, int *result)
1992 {
1993 struct proc *p = td->td_proc;
1994 struct filedesc *fdp = p->p_fd;
1995 int fd, maxfd, allocfd;
1996 #ifdef RACCT
1997 int error;
1998 #endif
1999
2000 FILEDESC_XLOCK_ASSERT(fdp);
2001
2002 if (fdp->fd_freefile > minfd)
2003 minfd = fdp->fd_freefile;
2004
2005 maxfd = getmaxfd(td);
2006
2007 /*
2008 * Search the bitmap for a free descriptor starting at minfd.
2009 * If none is found, grow the file table.
2010 */
2011 fd = fd_first_free(fdp, minfd, fdp->fd_nfiles);
2012 if (__predict_false(fd >= maxfd))
2013 return (EMFILE);
2014 if (__predict_false(fd >= fdp->fd_nfiles)) {
2015 allocfd = min(fd * 2, maxfd);
2016 #ifdef RACCT
2017 if (RACCT_ENABLED()) {
2018 error = racct_set_unlocked(p, RACCT_NOFILE, allocfd);
2019 if (error != 0)
2020 return (EMFILE);
2021 }
2022 #endif
2023 /*
2024 * fd is already equal to first free descriptor >= minfd, so
2025 * we only need to grow the table and we are done.
2026 */
2027 fdgrowtable_exp(fdp, allocfd);
2028 }
2029
2030 /*
2031 * Perform some sanity checks, then mark the file descriptor as
2032 * used and return it to the caller.
2033 */
2034 KASSERT(fd >= 0 && fd < min(maxfd, fdp->fd_nfiles),
2035 ("invalid descriptor %d", fd));
2036 KASSERT(!fdisused(fdp, fd),
2037 ("fd_first_free() returned non-free descriptor"));
2038 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
2039 ("file descriptor isn't free"));
2040 fdused(fdp, fd);
2041 *result = fd;
2042 return (0);
2043 }
2044
2045 /*
2046 * Allocate n file descriptors for the process.
2047 */
2048 int
fdallocn(struct thread * td,int minfd,int * fds,int n)2049 fdallocn(struct thread *td, int minfd, int *fds, int n)
2050 {
2051 struct proc *p = td->td_proc;
2052 struct filedesc *fdp = p->p_fd;
2053 int i;
2054
2055 FILEDESC_XLOCK_ASSERT(fdp);
2056
2057 for (i = 0; i < n; i++)
2058 if (fdalloc(td, 0, &fds[i]) != 0)
2059 break;
2060
2061 if (i < n) {
2062 for (i--; i >= 0; i--)
2063 fdunused(fdp, fds[i]);
2064 return (EMFILE);
2065 }
2066
2067 return (0);
2068 }
2069
2070 /*
2071 * Create a new open file structure and allocate a file descriptor for the
2072 * process that refers to it. We add one reference to the file for the
2073 * descriptor table and one reference for resultfp. This is to prevent us
2074 * being preempted and the entry in the descriptor table closed after we
2075 * release the FILEDESC lock.
2076 */
2077 int
falloc_caps(struct thread * td,struct file ** resultfp,int * resultfd,int flags,struct filecaps * fcaps)2078 falloc_caps(struct thread *td, struct file **resultfp, int *resultfd, int flags,
2079 struct filecaps *fcaps)
2080 {
2081 struct file *fp;
2082 int error, fd;
2083
2084 MPASS(resultfp != NULL);
2085 MPASS(resultfd != NULL);
2086
2087 error = _falloc_noinstall(td, &fp, 2);
2088 if (__predict_false(error != 0)) {
2089 return (error);
2090 }
2091
2092 error = finstall_refed(td, fp, &fd, flags, fcaps);
2093 if (__predict_false(error != 0)) {
2094 falloc_abort(td, fp);
2095 return (error);
2096 }
2097
2098 *resultfp = fp;
2099 *resultfd = fd;
2100
2101 return (0);
2102 }
2103
2104 /*
2105 * Create a new open file structure without allocating a file descriptor.
2106 */
2107 int
_falloc_noinstall(struct thread * td,struct file ** resultfp,u_int n)2108 _falloc_noinstall(struct thread *td, struct file **resultfp, u_int n)
2109 {
2110 struct file *fp;
2111 int maxuserfiles = maxfiles - (maxfiles / 20);
2112 int openfiles_new;
2113 static struct timeval lastfail;
2114 static int curfail;
2115
2116 KASSERT(resultfp != NULL, ("%s: resultfp == NULL", __func__));
2117 MPASS(n > 0);
2118
2119 openfiles_new = atomic_fetchadd_int(&openfiles, 1) + 1;
2120 if ((openfiles_new >= maxuserfiles &&
2121 priv_check(td, PRIV_MAXFILES) != 0) ||
2122 openfiles_new >= maxfiles) {
2123 atomic_subtract_int(&openfiles, 1);
2124 if (ppsratecheck(&lastfail, &curfail, 1)) {
2125 printf("kern.maxfiles limit exceeded by uid %i, (%s) "
2126 "please see tuning(7).\n", td->td_ucred->cr_ruid, td->td_proc->p_comm);
2127 }
2128 return (ENFILE);
2129 }
2130 fp = uma_zalloc(file_zone, M_WAITOK);
2131 bzero(fp, sizeof(*fp));
2132 refcount_init(&fp->f_count, n);
2133 fp->f_cred = crhold(td->td_ucred);
2134 fp->f_ops = &badfileops;
2135 *resultfp = fp;
2136 return (0);
2137 }
2138
2139 void
falloc_abort(struct thread * td,struct file * fp)2140 falloc_abort(struct thread *td, struct file *fp)
2141 {
2142
2143 /*
2144 * For assertion purposes.
2145 */
2146 refcount_init(&fp->f_count, 0);
2147 _fdrop(fp, td);
2148 }
2149
2150 /*
2151 * Install a file in a file descriptor table.
2152 */
2153 void
_finstall(struct filedesc * fdp,struct file * fp,int fd,int flags,struct filecaps * fcaps)2154 _finstall(struct filedesc *fdp, struct file *fp, int fd, int flags,
2155 struct filecaps *fcaps)
2156 {
2157 struct filedescent *fde;
2158
2159 MPASS(fp != NULL);
2160 if (fcaps != NULL)
2161 filecaps_validate(fcaps, __func__);
2162 FILEDESC_XLOCK_ASSERT(fdp);
2163
2164 fde = &fdp->fd_ofiles[fd];
2165 #ifdef CAPABILITIES
2166 seqc_write_begin(&fde->fde_seqc);
2167 #endif
2168 fde->fde_file = fp;
2169 fde->fde_flags = (flags & O_CLOEXEC) != 0 ? UF_EXCLOSE : 0;
2170 if (fcaps != NULL)
2171 filecaps_move(fcaps, &fde->fde_caps);
2172 else
2173 filecaps_fill(&fde->fde_caps);
2174 #ifdef CAPABILITIES
2175 seqc_write_end(&fde->fde_seqc);
2176 #endif
2177 }
2178
2179 int
finstall_refed(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2180 finstall_refed(struct thread *td, struct file *fp, int *fd, int flags,
2181 struct filecaps *fcaps)
2182 {
2183 struct filedesc *fdp = td->td_proc->p_fd;
2184 int error;
2185
2186 MPASS(fd != NULL);
2187
2188 FILEDESC_XLOCK(fdp);
2189 error = fdalloc(td, 0, fd);
2190 if (__predict_true(error == 0)) {
2191 _finstall(fdp, fp, *fd, flags, fcaps);
2192 }
2193 FILEDESC_XUNLOCK(fdp);
2194 return (error);
2195 }
2196
2197 int
finstall(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2198 finstall(struct thread *td, struct file *fp, int *fd, int flags,
2199 struct filecaps *fcaps)
2200 {
2201 int error;
2202
2203 MPASS(fd != NULL);
2204
2205 if (!fhold(fp))
2206 return (EBADF);
2207 error = finstall_refed(td, fp, fd, flags, fcaps);
2208 if (__predict_false(error != 0)) {
2209 fdrop(fp, td);
2210 }
2211 return (error);
2212 }
2213
2214 /*
2215 * Build a new filedesc structure from another.
2216 *
2217 * If fdp is not NULL, return with it shared locked.
2218 */
2219 struct filedesc *
fdinit(void)2220 fdinit(void)
2221 {
2222 struct filedesc0 *newfdp0;
2223 struct filedesc *newfdp;
2224
2225 newfdp0 = uma_zalloc(filedesc0_zone, M_WAITOK | M_ZERO);
2226 newfdp = &newfdp0->fd_fd;
2227
2228 /* Create the file descriptor table. */
2229 FILEDESC_LOCK_INIT(newfdp);
2230 refcount_init(&newfdp->fd_refcnt, 1);
2231 refcount_init(&newfdp->fd_holdcnt, 1);
2232 newfdp->fd_map = newfdp0->fd_dmap;
2233 newfdp->fd_files = (struct fdescenttbl *)&newfdp0->fd_dfiles;
2234 newfdp->fd_files->fdt_nfiles = NDFILE;
2235
2236 return (newfdp);
2237 }
2238
2239 /*
2240 * Build a pwddesc structure from another.
2241 * Copy the current, root, and jail root vnode references.
2242 *
2243 * If pdp is not NULL, return with it shared locked.
2244 */
2245 struct pwddesc *
pdinit(struct pwddesc * pdp,bool keeplock)2246 pdinit(struct pwddesc *pdp, bool keeplock)
2247 {
2248 struct pwddesc *newpdp;
2249 struct pwd *newpwd;
2250
2251 newpdp = malloc(sizeof(*newpdp), M_PWDDESC, M_WAITOK | M_ZERO);
2252
2253 PWDDESC_LOCK_INIT(newpdp);
2254 refcount_init(&newpdp->pd_refcount, 1);
2255 newpdp->pd_cmask = CMASK;
2256
2257 if (pdp == NULL) {
2258 newpwd = pwd_alloc();
2259 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2260 return (newpdp);
2261 }
2262
2263 PWDDESC_XLOCK(pdp);
2264 newpwd = pwd_hold_pwddesc(pdp);
2265 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2266 if (!keeplock)
2267 PWDDESC_XUNLOCK(pdp);
2268 return (newpdp);
2269 }
2270
2271 /*
2272 * Hold either filedesc or pwddesc of the passed process.
2273 *
2274 * The process lock is used to synchronize against the target exiting and
2275 * freeing the data.
2276 *
2277 * Clearing can be ilustrated in 3 steps:
2278 * 1. set the pointer to NULL. Either routine can race against it, hence
2279 * atomic_load_ptr.
2280 * 2. observe the process lock as not taken. Until then fdhold/pdhold can
2281 * race to either still see the pointer or find NULL. It is still safe to
2282 * grab a reference as clearing is stalled.
2283 * 3. after the lock is observed as not taken, any fdhold/pdhold calls are
2284 * guaranteed to see NULL, making it safe to finish clearing
2285 */
2286 static struct filedesc *
fdhold(struct proc * p)2287 fdhold(struct proc *p)
2288 {
2289 struct filedesc *fdp;
2290
2291 PROC_LOCK_ASSERT(p, MA_OWNED);
2292 fdp = atomic_load_ptr(&p->p_fd);
2293 if (fdp != NULL)
2294 refcount_acquire(&fdp->fd_holdcnt);
2295 return (fdp);
2296 }
2297
2298 static struct pwddesc *
pdhold(struct proc * p)2299 pdhold(struct proc *p)
2300 {
2301 struct pwddesc *pdp;
2302
2303 PROC_LOCK_ASSERT(p, MA_OWNED);
2304 pdp = atomic_load_ptr(&p->p_pd);
2305 if (pdp != NULL)
2306 refcount_acquire(&pdp->pd_refcount);
2307 return (pdp);
2308 }
2309
2310 static void
fddrop(struct filedesc * fdp)2311 fddrop(struct filedesc *fdp)
2312 {
2313
2314 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2315 if (refcount_release(&fdp->fd_holdcnt) == 0)
2316 return;
2317 }
2318
2319 FILEDESC_LOCK_DESTROY(fdp);
2320 uma_zfree(filedesc0_zone, fdp);
2321 }
2322
2323 static void
pddrop(struct pwddesc * pdp)2324 pddrop(struct pwddesc *pdp)
2325 {
2326 struct pwd *pwd;
2327
2328 if (refcount_release_if_not_last(&pdp->pd_refcount))
2329 return;
2330
2331 PWDDESC_XLOCK(pdp);
2332 if (refcount_release(&pdp->pd_refcount) == 0) {
2333 PWDDESC_XUNLOCK(pdp);
2334 return;
2335 }
2336 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
2337 pwd_set(pdp, NULL);
2338 PWDDESC_XUNLOCK(pdp);
2339 pwd_drop(pwd);
2340
2341 PWDDESC_LOCK_DESTROY(pdp);
2342 free(pdp, M_PWDDESC);
2343 }
2344
2345 /*
2346 * Share a filedesc structure.
2347 */
2348 struct filedesc *
fdshare(struct filedesc * fdp)2349 fdshare(struct filedesc *fdp)
2350 {
2351
2352 refcount_acquire(&fdp->fd_refcnt);
2353 return (fdp);
2354 }
2355
2356 /*
2357 * Share a pwddesc structure.
2358 */
2359 struct pwddesc *
pdshare(struct pwddesc * pdp)2360 pdshare(struct pwddesc *pdp)
2361 {
2362 refcount_acquire(&pdp->pd_refcount);
2363 return (pdp);
2364 }
2365
2366 /*
2367 * Unshare a filedesc structure, if necessary by making a copy
2368 */
2369 void
fdunshare(struct thread * td)2370 fdunshare(struct thread *td)
2371 {
2372 struct filedesc *tmp;
2373 struct proc *p = td->td_proc;
2374
2375 if (refcount_load(&p->p_fd->fd_refcnt) == 1)
2376 return;
2377
2378 tmp = fdcopy(p->p_fd);
2379 fdescfree(td);
2380 p->p_fd = tmp;
2381 }
2382
2383 /*
2384 * Unshare a pwddesc structure.
2385 */
2386 void
pdunshare(struct thread * td)2387 pdunshare(struct thread *td)
2388 {
2389 struct pwddesc *pdp;
2390 struct proc *p;
2391
2392 p = td->td_proc;
2393 /* Not shared. */
2394 if (refcount_load(&p->p_pd->pd_refcount) == 1)
2395 return;
2396
2397 pdp = pdcopy(p->p_pd);
2398 pdescfree(td);
2399 p->p_pd = pdp;
2400 }
2401
2402 /*
2403 * Copy a filedesc structure. A NULL pointer in returns a NULL reference,
2404 * this is to ease callers, not catch errors.
2405 */
2406 struct filedesc *
fdcopy(struct filedesc * fdp)2407 fdcopy(struct filedesc *fdp)
2408 {
2409 struct filedesc *newfdp;
2410 struct filedescent *nfde, *ofde;
2411 int i, lastfile;
2412
2413 MPASS(fdp != NULL);
2414
2415 newfdp = fdinit();
2416 FILEDESC_SLOCK(fdp);
2417 for (;;) {
2418 lastfile = fdlastfile(fdp);
2419 if (lastfile < newfdp->fd_nfiles)
2420 break;
2421 FILEDESC_SUNLOCK(fdp);
2422 fdgrowtable(newfdp, lastfile + 1);
2423 FILEDESC_SLOCK(fdp);
2424 }
2425 /* copy all passable descriptors (i.e. not kqueue) */
2426 newfdp->fd_freefile = fdp->fd_freefile;
2427 FILEDESC_FOREACH_FDE(fdp, i, ofde) {
2428 if ((ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0 ||
2429 !fhold(ofde->fde_file)) {
2430 if (newfdp->fd_freefile == fdp->fd_freefile)
2431 newfdp->fd_freefile = i;
2432 continue;
2433 }
2434 nfde = &newfdp->fd_ofiles[i];
2435 *nfde = *ofde;
2436 filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true);
2437 fdused_init(newfdp, i);
2438 }
2439 MPASS(newfdp->fd_freefile != -1);
2440 FILEDESC_SUNLOCK(fdp);
2441 return (newfdp);
2442 }
2443
2444 /*
2445 * Copy a pwddesc structure.
2446 */
2447 struct pwddesc *
pdcopy(struct pwddesc * pdp)2448 pdcopy(struct pwddesc *pdp)
2449 {
2450 struct pwddesc *newpdp;
2451
2452 MPASS(pdp != NULL);
2453
2454 newpdp = pdinit(pdp, true);
2455 newpdp->pd_cmask = pdp->pd_cmask;
2456 PWDDESC_XUNLOCK(pdp);
2457 return (newpdp);
2458 }
2459
2460 /*
2461 * Clear POSIX style locks. This is only used when fdp looses a reference (i.e.
2462 * one of processes using it exits) and the table used to be shared.
2463 */
2464 static void
fdclearlocks(struct thread * td)2465 fdclearlocks(struct thread *td)
2466 {
2467 struct filedesc *fdp;
2468 struct filedesc_to_leader *fdtol;
2469 struct flock lf;
2470 struct file *fp;
2471 struct proc *p;
2472 struct vnode *vp;
2473 int i;
2474
2475 p = td->td_proc;
2476 fdp = p->p_fd;
2477 fdtol = p->p_fdtol;
2478 MPASS(fdtol != NULL);
2479
2480 FILEDESC_XLOCK(fdp);
2481 KASSERT(fdtol->fdl_refcount > 0,
2482 ("filedesc_to_refcount botch: fdl_refcount=%d",
2483 fdtol->fdl_refcount));
2484 if (fdtol->fdl_refcount == 1 &&
2485 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2486 FILEDESC_FOREACH_FP(fdp, i, fp) {
2487 if (fp->f_type != DTYPE_VNODE ||
2488 !fhold(fp))
2489 continue;
2490 FILEDESC_XUNLOCK(fdp);
2491 lf.l_whence = SEEK_SET;
2492 lf.l_start = 0;
2493 lf.l_len = 0;
2494 lf.l_type = F_UNLCK;
2495 vp = fp->f_vnode;
2496 (void) VOP_ADVLOCK(vp,
2497 (caddr_t)p->p_leader, F_UNLCK,
2498 &lf, F_POSIX);
2499 FILEDESC_XLOCK(fdp);
2500 fdrop(fp, td);
2501 }
2502 }
2503 retry:
2504 if (fdtol->fdl_refcount == 1) {
2505 if (fdp->fd_holdleaderscount > 0 &&
2506 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2507 /*
2508 * close() or kern_dup() has cleared a reference
2509 * in a shared file descriptor table.
2510 */
2511 fdp->fd_holdleaderswakeup = 1;
2512 sx_sleep(&fdp->fd_holdleaderscount,
2513 FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0);
2514 goto retry;
2515 }
2516 if (fdtol->fdl_holdcount > 0) {
2517 /*
2518 * Ensure that fdtol->fdl_leader remains
2519 * valid in closef().
2520 */
2521 fdtol->fdl_wakeup = 1;
2522 sx_sleep(fdtol, FILEDESC_LOCK(fdp), PLOCK,
2523 "fdlhold", 0);
2524 goto retry;
2525 }
2526 }
2527 fdtol->fdl_refcount--;
2528 if (fdtol->fdl_refcount == 0 &&
2529 fdtol->fdl_holdcount == 0) {
2530 fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2531 fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2532 } else
2533 fdtol = NULL;
2534 p->p_fdtol = NULL;
2535 FILEDESC_XUNLOCK(fdp);
2536 if (fdtol != NULL)
2537 free(fdtol, M_FILEDESC_TO_LEADER);
2538 }
2539
2540 /*
2541 * Release a filedesc structure.
2542 */
2543 static void
fdescfree_fds(struct thread * td,struct filedesc * fdp)2544 fdescfree_fds(struct thread *td, struct filedesc *fdp)
2545 {
2546 struct filedesc0 *fdp0;
2547 struct freetable *ft, *tft;
2548 struct filedescent *fde;
2549 struct file *fp;
2550 int i;
2551
2552 KASSERT(refcount_load(&fdp->fd_refcnt) == 0,
2553 ("%s: fd table %p carries references", __func__, fdp));
2554
2555 /*
2556 * Serialize with threads iterating over the table, if any.
2557 */
2558 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2559 FILEDESC_XLOCK(fdp);
2560 FILEDESC_XUNLOCK(fdp);
2561 }
2562
2563 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2564 fp = fde->fde_file;
2565 fdefree_last(fde);
2566 (void) closef(fp, td);
2567 }
2568
2569 if (NDSLOTS(fdp->fd_nfiles) > NDSLOTS(NDFILE))
2570 free(fdp->fd_map, M_FILEDESC);
2571 if (fdp->fd_nfiles > NDFILE)
2572 free(fdp->fd_files, M_FILEDESC);
2573
2574 fdp0 = (struct filedesc0 *)fdp;
2575 SLIST_FOREACH_SAFE(ft, &fdp0->fd_free, ft_next, tft)
2576 free(ft->ft_table, M_FILEDESC);
2577
2578 fddrop(fdp);
2579 }
2580
2581 void
fdescfree(struct thread * td)2582 fdescfree(struct thread *td)
2583 {
2584 struct proc *p;
2585 struct filedesc *fdp;
2586
2587 p = td->td_proc;
2588 fdp = p->p_fd;
2589 MPASS(fdp != NULL);
2590
2591 #ifdef RACCT
2592 if (RACCT_ENABLED())
2593 racct_set_unlocked(p, RACCT_NOFILE, 0);
2594 #endif
2595
2596 if (p->p_fdtol != NULL)
2597 fdclearlocks(td);
2598
2599 /*
2600 * Check fdhold for an explanation.
2601 */
2602 atomic_store_ptr(&p->p_fd, NULL);
2603 atomic_thread_fence_seq_cst();
2604 PROC_WAIT_UNLOCKED(p);
2605
2606 if (refcount_release(&fdp->fd_refcnt) == 0)
2607 return;
2608
2609 fdescfree_fds(td, fdp);
2610 }
2611
2612 void
pdescfree(struct thread * td)2613 pdescfree(struct thread *td)
2614 {
2615 struct proc *p;
2616 struct pwddesc *pdp;
2617
2618 p = td->td_proc;
2619 pdp = p->p_pd;
2620 MPASS(pdp != NULL);
2621
2622 /*
2623 * Check pdhold for an explanation.
2624 */
2625 atomic_store_ptr(&p->p_pd, NULL);
2626 atomic_thread_fence_seq_cst();
2627 PROC_WAIT_UNLOCKED(p);
2628
2629 pddrop(pdp);
2630 }
2631
2632 /*
2633 * For setugid programs, we don't want to people to use that setugidness
2634 * to generate error messages which write to a file which otherwise would
2635 * otherwise be off-limits to the process. We check for filesystems where
2636 * the vnode can change out from under us after execve (like [lin]procfs).
2637 *
2638 * Since fdsetugidsafety calls this only for fd 0, 1 and 2, this check is
2639 * sufficient. We also don't check for setugidness since we know we are.
2640 */
2641 static bool
is_unsafe(struct file * fp)2642 is_unsafe(struct file *fp)
2643 {
2644 struct vnode *vp;
2645
2646 if (fp->f_type != DTYPE_VNODE)
2647 return (false);
2648
2649 vp = fp->f_vnode;
2650 return ((vp->v_vflag & VV_PROCDEP) != 0);
2651 }
2652
2653 /*
2654 * Make this setguid thing safe, if at all possible.
2655 */
2656 void
fdsetugidsafety(struct thread * td)2657 fdsetugidsafety(struct thread *td)
2658 {
2659 struct filedesc *fdp;
2660 struct file *fp;
2661 int i;
2662
2663 fdp = td->td_proc->p_fd;
2664 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2665 ("the fdtable should not be shared"));
2666 MPASS(fdp->fd_nfiles >= 3);
2667 for (i = 0; i <= 2; i++) {
2668 fp = fdp->fd_ofiles[i].fde_file;
2669 if (fp != NULL && is_unsafe(fp)) {
2670 FILEDESC_XLOCK(fdp);
2671 knote_fdclose(td, i);
2672 /*
2673 * NULL-out descriptor prior to close to avoid
2674 * a race while close blocks.
2675 */
2676 fdfree(fdp, i);
2677 FILEDESC_XUNLOCK(fdp);
2678 (void) closef(fp, td);
2679 }
2680 }
2681 }
2682
2683 /*
2684 * If a specific file object occupies a specific file descriptor, close the
2685 * file descriptor entry and drop a reference on the file object. This is a
2686 * convenience function to handle a subsequent error in a function that calls
2687 * falloc() that handles the race that another thread might have closed the
2688 * file descriptor out from under the thread creating the file object.
2689 */
2690 void
fdclose(struct thread * td,struct file * fp,int idx)2691 fdclose(struct thread *td, struct file *fp, int idx)
2692 {
2693 struct filedesc *fdp = td->td_proc->p_fd;
2694
2695 FILEDESC_XLOCK(fdp);
2696 if (fdp->fd_ofiles[idx].fde_file == fp) {
2697 fdfree(fdp, idx);
2698 FILEDESC_XUNLOCK(fdp);
2699 fdrop(fp, td);
2700 } else
2701 FILEDESC_XUNLOCK(fdp);
2702 }
2703
2704 /*
2705 * Close any files on exec?
2706 */
2707 void
fdcloseexec(struct thread * td)2708 fdcloseexec(struct thread *td)
2709 {
2710 struct filedesc *fdp;
2711 struct filedescent *fde;
2712 struct file *fp;
2713 int i;
2714
2715 fdp = td->td_proc->p_fd;
2716 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2717 ("the fdtable should not be shared"));
2718 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2719 fp = fde->fde_file;
2720 if (fp->f_type == DTYPE_MQUEUE ||
2721 (fde->fde_flags & UF_EXCLOSE)) {
2722 FILEDESC_XLOCK(fdp);
2723 fdfree(fdp, i);
2724 (void) closefp(fdp, i, fp, td, false, false);
2725 FILEDESC_UNLOCK_ASSERT(fdp);
2726 }
2727 }
2728 }
2729
2730 /*
2731 * It is unsafe for set[ug]id processes to be started with file
2732 * descriptors 0..2 closed, as these descriptors are given implicit
2733 * significance in the Standard C library. fdcheckstd() will create a
2734 * descriptor referencing /dev/null for each of stdin, stdout, and
2735 * stderr that is not already open.
2736 */
2737 int
fdcheckstd(struct thread * td)2738 fdcheckstd(struct thread *td)
2739 {
2740 struct filedesc *fdp;
2741 register_t save;
2742 int i, error, devnull;
2743
2744 fdp = td->td_proc->p_fd;
2745 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2746 ("the fdtable should not be shared"));
2747 MPASS(fdp->fd_nfiles >= 3);
2748 devnull = -1;
2749 for (i = 0; i <= 2; i++) {
2750 if (fdp->fd_ofiles[i].fde_file != NULL)
2751 continue;
2752
2753 save = td->td_retval[0];
2754 if (devnull != -1) {
2755 error = kern_dup(td, FDDUP_FIXED, 0, devnull, i);
2756 } else {
2757 error = kern_openat(td, AT_FDCWD, "/dev/null",
2758 UIO_SYSSPACE, O_RDWR, 0);
2759 if (error == 0) {
2760 devnull = td->td_retval[0];
2761 KASSERT(devnull == i, ("we didn't get our fd"));
2762 }
2763 }
2764 td->td_retval[0] = save;
2765 if (error != 0)
2766 return (error);
2767 }
2768 return (0);
2769 }
2770
2771 /*
2772 * Internal form of close. Decrement reference count on file structure.
2773 * Note: td may be NULL when closing a file that was being passed in a
2774 * message.
2775 */
2776 int
closef(struct file * fp,struct thread * td)2777 closef(struct file *fp, struct thread *td)
2778 {
2779 struct vnode *vp;
2780 struct flock lf;
2781 struct filedesc_to_leader *fdtol;
2782 struct filedesc *fdp;
2783
2784 MPASS(td != NULL);
2785
2786 /*
2787 * POSIX record locking dictates that any close releases ALL
2788 * locks owned by this process. This is handled by setting
2789 * a flag in the unlock to free ONLY locks obeying POSIX
2790 * semantics, and not to free BSD-style file locks.
2791 * If the descriptor was in a message, POSIX-style locks
2792 * aren't passed with the descriptor, and the thread pointer
2793 * will be NULL. Callers should be careful only to pass a
2794 * NULL thread pointer when there really is no owning
2795 * context that might have locks, or the locks will be
2796 * leaked.
2797 */
2798 if (fp->f_type == DTYPE_VNODE) {
2799 vp = fp->f_vnode;
2800 if ((td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) {
2801 lf.l_whence = SEEK_SET;
2802 lf.l_start = 0;
2803 lf.l_len = 0;
2804 lf.l_type = F_UNLCK;
2805 (void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc->p_leader,
2806 F_UNLCK, &lf, F_POSIX);
2807 }
2808 fdtol = td->td_proc->p_fdtol;
2809 if (fdtol != NULL) {
2810 /*
2811 * Handle special case where file descriptor table is
2812 * shared between multiple process leaders.
2813 */
2814 fdp = td->td_proc->p_fd;
2815 FILEDESC_XLOCK(fdp);
2816 for (fdtol = fdtol->fdl_next;
2817 fdtol != td->td_proc->p_fdtol;
2818 fdtol = fdtol->fdl_next) {
2819 if ((fdtol->fdl_leader->p_flag &
2820 P_ADVLOCK) == 0)
2821 continue;
2822 fdtol->fdl_holdcount++;
2823 FILEDESC_XUNLOCK(fdp);
2824 lf.l_whence = SEEK_SET;
2825 lf.l_start = 0;
2826 lf.l_len = 0;
2827 lf.l_type = F_UNLCK;
2828 vp = fp->f_vnode;
2829 (void) VOP_ADVLOCK(vp,
2830 (caddr_t)fdtol->fdl_leader, F_UNLCK, &lf,
2831 F_POSIX);
2832 FILEDESC_XLOCK(fdp);
2833 fdtol->fdl_holdcount--;
2834 if (fdtol->fdl_holdcount == 0 &&
2835 fdtol->fdl_wakeup != 0) {
2836 fdtol->fdl_wakeup = 0;
2837 wakeup(fdtol);
2838 }
2839 }
2840 FILEDESC_XUNLOCK(fdp);
2841 }
2842 }
2843 return (fdrop_close(fp, td));
2844 }
2845
2846 /*
2847 * Hack for file descriptor passing code.
2848 */
2849 void
closef_nothread(struct file * fp)2850 closef_nothread(struct file *fp)
2851 {
2852
2853 fdrop(fp, NULL);
2854 }
2855
2856 /*
2857 * Initialize the file pointer with the specified properties.
2858 *
2859 * The ops are set with release semantics to be certain that the flags, type,
2860 * and data are visible when ops is. This is to prevent ops methods from being
2861 * called with bad data.
2862 */
2863 void
finit(struct file * fp,u_int flag,short type,void * data,struct fileops * ops)2864 finit(struct file *fp, u_int flag, short type, void *data, struct fileops *ops)
2865 {
2866 fp->f_data = data;
2867 fp->f_flag = flag;
2868 fp->f_type = type;
2869 atomic_store_rel_ptr((volatile uintptr_t *)&fp->f_ops, (uintptr_t)ops);
2870 }
2871
2872 void
finit_vnode(struct file * fp,u_int flag,void * data,struct fileops * ops)2873 finit_vnode(struct file *fp, u_int flag, void *data, struct fileops *ops)
2874 {
2875 fp->f_seqcount[UIO_READ] = 1;
2876 fp->f_seqcount[UIO_WRITE] = 1;
2877 finit(fp, (flag & FMASK) | (fp->f_flag & FHASLOCK), DTYPE_VNODE,
2878 data, ops);
2879 }
2880
2881 int
fget_cap_noref(struct filedesc * fdp,int fd,cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2882 fget_cap_noref(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
2883 struct file **fpp, struct filecaps *havecapsp)
2884 {
2885 struct filedescent *fde;
2886 int error;
2887
2888 FILEDESC_LOCK_ASSERT(fdp);
2889
2890 *fpp = NULL;
2891 fde = fdeget_noref(fdp, fd);
2892 if (fde == NULL) {
2893 error = EBADF;
2894 goto out;
2895 }
2896
2897 #ifdef CAPABILITIES
2898 error = cap_check(cap_rights_fde_inline(fde), needrightsp);
2899 if (error != 0)
2900 goto out;
2901 #endif
2902
2903 if (havecapsp != NULL)
2904 filecaps_copy(&fde->fde_caps, havecapsp, true);
2905
2906 *fpp = fde->fde_file;
2907
2908 error = 0;
2909 out:
2910 return (error);
2911 }
2912
2913 #ifdef CAPABILITIES
2914 int
fget_cap(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2915 fget_cap(struct thread *td, int fd, cap_rights_t *needrightsp,
2916 struct file **fpp, struct filecaps *havecapsp)
2917 {
2918 struct filedesc *fdp = td->td_proc->p_fd;
2919 int error;
2920 struct file *fp;
2921 seqc_t seq;
2922
2923 *fpp = NULL;
2924 for (;;) {
2925 error = fget_unlocked_seq(td, fd, needrightsp, &fp, &seq);
2926 if (error != 0)
2927 return (error);
2928
2929 if (havecapsp != NULL) {
2930 if (!filecaps_copy(&fdp->fd_ofiles[fd].fde_caps,
2931 havecapsp, false)) {
2932 fdrop(fp, td);
2933 goto get_locked;
2934 }
2935 }
2936
2937 if (!fd_modified(fdp, fd, seq))
2938 break;
2939 fdrop(fp, td);
2940 }
2941
2942 *fpp = fp;
2943 return (0);
2944
2945 get_locked:
2946 FILEDESC_SLOCK(fdp);
2947 error = fget_cap_noref(fdp, fd, needrightsp, fpp, havecapsp);
2948 if (error == 0 && !fhold(*fpp))
2949 error = EBADF;
2950 FILEDESC_SUNLOCK(fdp);
2951 return (error);
2952 }
2953 #else
2954 int
fget_cap(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2955 fget_cap(struct thread *td, int fd, cap_rights_t *needrightsp,
2956 struct file **fpp, struct filecaps *havecapsp)
2957 {
2958 int error;
2959 error = fget_unlocked(td, fd, needrightsp, fpp);
2960 if (havecapsp != NULL && error == 0)
2961 filecaps_fill(havecapsp);
2962
2963 return (error);
2964 }
2965 #endif
2966
2967 int
fget_remote(struct thread * td,struct proc * p,int fd,struct file ** fpp)2968 fget_remote(struct thread *td, struct proc *p, int fd, struct file **fpp)
2969 {
2970 struct filedesc *fdp;
2971 struct file *fp;
2972 int error;
2973
2974 if (p == td->td_proc) /* curproc */
2975 return (fget_unlocked(td, fd, &cap_no_rights, fpp));
2976
2977 PROC_LOCK(p);
2978 fdp = fdhold(p);
2979 PROC_UNLOCK(p);
2980 if (fdp == NULL)
2981 return (ENOENT);
2982 FILEDESC_SLOCK(fdp);
2983 if (refcount_load(&fdp->fd_refcnt) != 0) {
2984 fp = fget_noref(fdp, fd);
2985 if (fp != NULL && fhold(fp)) {
2986 *fpp = fp;
2987 error = 0;
2988 } else {
2989 error = EBADF;
2990 }
2991 } else {
2992 error = ENOENT;
2993 }
2994 FILEDESC_SUNLOCK(fdp);
2995 fddrop(fdp);
2996 return (error);
2997 }
2998
2999 #ifdef CAPABILITIES
3000 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,bool * fsearch)3001 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, bool *fsearch)
3002 {
3003 const struct filedescent *fde;
3004 const struct fdescenttbl *fdt;
3005 struct filedesc *fdp;
3006 struct file *fp;
3007 struct vnode *vp;
3008 const cap_rights_t *haverights;
3009 cap_rights_t rights;
3010 seqc_t seq;
3011 int fd;
3012
3013 VFS_SMR_ASSERT_ENTERED();
3014
3015 fd = ndp->ni_dirfd;
3016 rights = *ndp->ni_rightsneeded;
3017 cap_rights_set_one(&rights, CAP_LOOKUP);
3018
3019 fdp = curproc->p_fd;
3020 fdt = fdp->fd_files;
3021 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3022 return (EBADF);
3023 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3024 fde = &fdt->fdt_ofiles[fd];
3025 haverights = cap_rights_fde_inline(fde);
3026 fp = fde->fde_file;
3027 if (__predict_false(fp == NULL))
3028 return (EAGAIN);
3029 if (__predict_false(cap_check_inline_transient(haverights, &rights)))
3030 return (EAGAIN);
3031 *fsearch = ((fp->f_flag & FSEARCH) != 0);
3032 vp = fp->f_vnode;
3033 if (__predict_false(vp == NULL)) {
3034 return (EAGAIN);
3035 }
3036 if (!filecaps_copy(&fde->fde_caps, &ndp->ni_filecaps, false)) {
3037 return (EAGAIN);
3038 }
3039 /*
3040 * Use an acquire barrier to force re-reading of fdt so it is
3041 * refreshed for verification.
3042 */
3043 atomic_thread_fence_acq();
3044 fdt = fdp->fd_files;
3045 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3046 return (EAGAIN);
3047 /*
3048 * If file descriptor doesn't have all rights,
3049 * all lookups relative to it must also be
3050 * strictly relative.
3051 *
3052 * Not yet supported by fast path.
3053 */
3054 CAP_ALL(&rights);
3055 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3056 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3057 ndp->ni_filecaps.fc_nioctls != -1) {
3058 #ifdef notyet
3059 ndp->ni_lcf |= NI_LCF_STRICTREL;
3060 #else
3061 return (EAGAIN);
3062 #endif
3063 }
3064 *vpp = vp;
3065 return (0);
3066 }
3067 #else
3068 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,bool * fsearch)3069 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, bool *fsearch)
3070 {
3071 const struct fdescenttbl *fdt;
3072 struct filedesc *fdp;
3073 struct file *fp;
3074 struct vnode *vp;
3075 int fd;
3076
3077 VFS_SMR_ASSERT_ENTERED();
3078
3079 fd = ndp->ni_dirfd;
3080 fdp = curproc->p_fd;
3081 fdt = fdp->fd_files;
3082 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3083 return (EBADF);
3084 fp = fdt->fdt_ofiles[fd].fde_file;
3085 if (__predict_false(fp == NULL))
3086 return (EAGAIN);
3087 *fsearch = ((fp->f_flag & FSEARCH) != 0);
3088 vp = fp->f_vnode;
3089 if (__predict_false(vp == NULL || vp->v_type != VDIR)) {
3090 return (EAGAIN);
3091 }
3092 /*
3093 * Use an acquire barrier to force re-reading of fdt so it is
3094 * refreshed for verification.
3095 */
3096 atomic_thread_fence_acq();
3097 fdt = fdp->fd_files;
3098 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3099 return (EAGAIN);
3100 filecaps_fill(&ndp->ni_filecaps);
3101 *vpp = vp;
3102 return (0);
3103 }
3104 #endif
3105
3106 int
fgetvp_lookup(struct nameidata * ndp,struct vnode ** vpp)3107 fgetvp_lookup(struct nameidata *ndp, struct vnode **vpp)
3108 {
3109 struct thread *td;
3110 struct file *fp;
3111 struct vnode *vp;
3112 struct componentname *cnp;
3113 cap_rights_t rights;
3114 int error;
3115
3116 td = curthread;
3117 rights = *ndp->ni_rightsneeded;
3118 cap_rights_set_one(&rights, CAP_LOOKUP);
3119 cnp = &ndp->ni_cnd;
3120
3121 error = fget_cap(td, ndp->ni_dirfd, &rights, &fp, &ndp->ni_filecaps);
3122 if (__predict_false(error != 0))
3123 return (error);
3124 if (__predict_false(fp->f_ops == &badfileops)) {
3125 error = EBADF;
3126 goto out_free;
3127 }
3128 vp = fp->f_vnode;
3129 if (__predict_false(vp == NULL)) {
3130 error = ENOTDIR;
3131 goto out_free;
3132 }
3133 vrefact(vp);
3134 /*
3135 * XXX does not check for VDIR, handled by namei_setup
3136 */
3137 if ((fp->f_flag & FSEARCH) != 0)
3138 cnp->cn_flags |= NOEXECCHECK;
3139 fdrop(fp, td);
3140
3141 #ifdef CAPABILITIES
3142 /*
3143 * If file descriptor doesn't have all rights,
3144 * all lookups relative to it must also be
3145 * strictly relative.
3146 */
3147 CAP_ALL(&rights);
3148 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3149 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3150 ndp->ni_filecaps.fc_nioctls != -1) {
3151 ndp->ni_lcf |= NI_LCF_STRICTREL;
3152 ndp->ni_resflags |= NIRES_STRICTREL;
3153 }
3154 #endif
3155
3156 /*
3157 * TODO: avoid copying ioctl caps if it can be helped to begin with
3158 */
3159 if ((cnp->cn_flags & WANTIOCTLCAPS) == 0)
3160 filecaps_free_ioctl(&ndp->ni_filecaps);
3161
3162 *vpp = vp;
3163 return (0);
3164
3165 out_free:
3166 filecaps_free(&ndp->ni_filecaps);
3167 fdrop(fp, td);
3168 return (error);
3169 }
3170
3171 /*
3172 * Fetch the descriptor locklessly.
3173 *
3174 * We avoid fdrop() races by never raising a refcount above 0. To accomplish
3175 * this we have to use a cmpset loop rather than an atomic_add. The descriptor
3176 * must be re-verified once we acquire a reference to be certain that the
3177 * identity is still correct and we did not lose a race due to preemption.
3178 *
3179 * Force a reload of fdt when looping. Another thread could reallocate
3180 * the table before this fd was closed, so it is possible that there is
3181 * a stale fp pointer in cached version.
3182 */
3183 #ifdef CAPABILITIES
3184 static int
fget_unlocked_seq(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,seqc_t * seqp)3185 fget_unlocked_seq(struct thread *td, int fd, cap_rights_t *needrightsp,
3186 struct file **fpp, seqc_t *seqp)
3187 {
3188 struct filedesc *fdp;
3189 const struct filedescent *fde;
3190 const struct fdescenttbl *fdt;
3191 struct file *fp;
3192 seqc_t seq;
3193 cap_rights_t haverights;
3194 int error;
3195
3196 fdp = td->td_proc->p_fd;
3197 fdt = fdp->fd_files;
3198 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3199 return (EBADF);
3200
3201 for (;;) {
3202 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3203 fde = &fdt->fdt_ofiles[fd];
3204 haverights = *cap_rights_fde_inline(fde);
3205 fp = fde->fde_file;
3206 if (__predict_false(fp == NULL)) {
3207 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3208 return (EBADF);
3209 fdt = atomic_load_ptr(&fdp->fd_files);
3210 continue;
3211 }
3212 error = cap_check_inline(&haverights, needrightsp);
3213 if (__predict_false(error != 0)) {
3214 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3215 return (error);
3216 fdt = atomic_load_ptr(&fdp->fd_files);
3217 continue;
3218 }
3219 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3220 fdt = atomic_load_ptr(&fdp->fd_files);
3221 continue;
3222 }
3223 /*
3224 * Use an acquire barrier to force re-reading of fdt so it is
3225 * refreshed for verification.
3226 */
3227 atomic_thread_fence_acq();
3228 fdt = fdp->fd_files;
3229 if (seqc_consistent_no_fence(fd_seqc(fdt, fd), seq))
3230 break;
3231 fdrop(fp, td);
3232 }
3233 *fpp = fp;
3234 if (seqp != NULL) {
3235 *seqp = seq;
3236 }
3237 return (0);
3238 }
3239 #else
3240 static int
fget_unlocked_seq(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,seqc_t * seqp __unused)3241 fget_unlocked_seq(struct thread *td, int fd, cap_rights_t *needrightsp,
3242 struct file **fpp, seqc_t *seqp __unused)
3243 {
3244 struct filedesc *fdp;
3245 const struct fdescenttbl *fdt;
3246 struct file *fp;
3247
3248 fdp = td->td_proc->p_fd;
3249 fdt = fdp->fd_files;
3250 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3251 return (EBADF);
3252
3253 for (;;) {
3254 fp = fdt->fdt_ofiles[fd].fde_file;
3255 if (__predict_false(fp == NULL))
3256 return (EBADF);
3257 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3258 fdt = atomic_load_ptr(&fdp->fd_files);
3259 continue;
3260 }
3261 /*
3262 * Use an acquire barrier to force re-reading of fdt so it is
3263 * refreshed for verification.
3264 */
3265 atomic_thread_fence_acq();
3266 fdt = fdp->fd_files;
3267 if (__predict_true(fp == fdt->fdt_ofiles[fd].fde_file))
3268 break;
3269 fdrop(fp, td);
3270 }
3271 *fpp = fp;
3272 return (0);
3273 }
3274 #endif
3275
3276 /*
3277 * See the comments in fget_unlocked_seq for an explanation of how this works.
3278 *
3279 * This is a simplified variant which bails out to the aforementioned routine
3280 * if anything goes wrong. In practice this only happens when userspace is
3281 * racing with itself.
3282 */
3283 int
fget_unlocked(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp)3284 fget_unlocked(struct thread *td, int fd, cap_rights_t *needrightsp,
3285 struct file **fpp)
3286 {
3287 struct filedesc *fdp;
3288 #ifdef CAPABILITIES
3289 const struct filedescent *fde;
3290 #endif
3291 const struct fdescenttbl *fdt;
3292 struct file *fp;
3293 #ifdef CAPABILITIES
3294 seqc_t seq;
3295 const cap_rights_t *haverights;
3296 #endif
3297
3298 fdp = td->td_proc->p_fd;
3299 fdt = fdp->fd_files;
3300 if (__predict_false((u_int)fd >= fdt->fdt_nfiles)) {
3301 *fpp = NULL;
3302 return (EBADF);
3303 }
3304 #ifdef CAPABILITIES
3305 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3306 fde = &fdt->fdt_ofiles[fd];
3307 haverights = cap_rights_fde_inline(fde);
3308 fp = fde->fde_file;
3309 #else
3310 fp = fdt->fdt_ofiles[fd].fde_file;
3311 #endif
3312 if (__predict_false(fp == NULL))
3313 goto out_fallback;
3314 #ifdef CAPABILITIES
3315 if (__predict_false(cap_check_inline_transient(haverights, needrightsp)))
3316 goto out_fallback;
3317 #endif
3318 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count)))
3319 goto out_fallback;
3320
3321 /*
3322 * Use an acquire barrier to force re-reading of fdt so it is
3323 * refreshed for verification.
3324 */
3325 atomic_thread_fence_acq();
3326 fdt = fdp->fd_files;
3327 #ifdef CAPABILITIES
3328 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3329 #else
3330 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3331 #endif
3332 goto out_fdrop;
3333 *fpp = fp;
3334 return (0);
3335 out_fdrop:
3336 fdrop(fp, td);
3337 out_fallback:
3338 *fpp = NULL;
3339 return (fget_unlocked_seq(td, fd, needrightsp, fpp, NULL));
3340 }
3341
3342 /*
3343 * Translate fd -> file when the caller guarantees the file descriptor table
3344 * can't be changed by others.
3345 *
3346 * Note this does not mean the file object itself is only visible to the caller,
3347 * merely that it wont disappear without having to be referenced.
3348 *
3349 * Must be paired with fput_only_user.
3350 */
3351 #ifdef CAPABILITIES
3352 int
fget_only_user(struct filedesc * fdp,int fd,cap_rights_t * needrightsp,struct file ** fpp)3353 fget_only_user(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
3354 struct file **fpp)
3355 {
3356 const struct filedescent *fde;
3357 const struct fdescenttbl *fdt;
3358 const cap_rights_t *haverights;
3359 struct file *fp;
3360 int error;
3361
3362 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3363
3364 *fpp = NULL;
3365 if (__predict_false(fd >= fdp->fd_nfiles))
3366 return (EBADF);
3367
3368 fdt = fdp->fd_files;
3369 fde = &fdt->fdt_ofiles[fd];
3370 fp = fde->fde_file;
3371 if (__predict_false(fp == NULL))
3372 return (EBADF);
3373 MPASS(refcount_load(&fp->f_count) > 0);
3374 haverights = cap_rights_fde_inline(fde);
3375 error = cap_check_inline(haverights, needrightsp);
3376 if (__predict_false(error != 0))
3377 return (error);
3378 *fpp = fp;
3379 return (0);
3380 }
3381 #else
3382 int
fget_only_user(struct filedesc * fdp,int fd,cap_rights_t * needrightsp,struct file ** fpp)3383 fget_only_user(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
3384 struct file **fpp)
3385 {
3386 struct file *fp;
3387
3388 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3389
3390 *fpp = NULL;
3391 if (__predict_false(fd >= fdp->fd_nfiles))
3392 return (EBADF);
3393
3394 fp = fdp->fd_ofiles[fd].fde_file;
3395 if (__predict_false(fp == NULL))
3396 return (EBADF);
3397
3398 MPASS(refcount_load(&fp->f_count) > 0);
3399 *fpp = fp;
3400 return (0);
3401 }
3402 #endif
3403
3404 /*
3405 * Extract the file pointer associated with the specified descriptor for the
3406 * current user process.
3407 *
3408 * If the descriptor doesn't exist or doesn't match 'flags', EBADF is
3409 * returned.
3410 *
3411 * File's rights will be checked against the capability rights mask.
3412 *
3413 * If an error occurred the non-zero error is returned and *fpp is set to
3414 * NULL. Otherwise *fpp is held and set and zero is returned. Caller is
3415 * responsible for fdrop().
3416 */
3417 static __inline int
_fget(struct thread * td,int fd,struct file ** fpp,int flags,cap_rights_t * needrightsp)3418 _fget(struct thread *td, int fd, struct file **fpp, int flags,
3419 cap_rights_t *needrightsp)
3420 {
3421 struct file *fp;
3422 int error;
3423
3424 *fpp = NULL;
3425 error = fget_unlocked(td, fd, needrightsp, &fp);
3426 if (__predict_false(error != 0))
3427 return (error);
3428 if (__predict_false(fp->f_ops == &badfileops)) {
3429 fdrop(fp, td);
3430 return (EBADF);
3431 }
3432
3433 /*
3434 * FREAD and FWRITE failure return EBADF as per POSIX.
3435 */
3436 error = 0;
3437 switch (flags) {
3438 case FREAD:
3439 case FWRITE:
3440 if ((fp->f_flag & flags) == 0)
3441 error = EBADF;
3442 break;
3443 case FEXEC:
3444 if (fp->f_ops != &path_fileops &&
3445 ((fp->f_flag & (FREAD | FEXEC)) == 0 ||
3446 (fp->f_flag & FWRITE) != 0))
3447 error = EBADF;
3448 break;
3449 case 0:
3450 break;
3451 default:
3452 KASSERT(0, ("wrong flags"));
3453 }
3454
3455 if (error != 0) {
3456 fdrop(fp, td);
3457 return (error);
3458 }
3459
3460 *fpp = fp;
3461 return (0);
3462 }
3463
3464 int
fget(struct thread * td,int fd,cap_rights_t * rightsp,struct file ** fpp)3465 fget(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
3466 {
3467
3468 return (_fget(td, fd, fpp, 0, rightsp));
3469 }
3470
3471 int
fget_mmap(struct thread * td,int fd,cap_rights_t * rightsp,vm_prot_t * maxprotp,struct file ** fpp)3472 fget_mmap(struct thread *td, int fd, cap_rights_t *rightsp, vm_prot_t *maxprotp,
3473 struct file **fpp)
3474 {
3475 int error;
3476 #ifndef CAPABILITIES
3477 error = _fget(td, fd, fpp, 0, rightsp);
3478 if (maxprotp != NULL)
3479 *maxprotp = VM_PROT_ALL;
3480 return (error);
3481 #else
3482 cap_rights_t fdrights;
3483 struct filedesc *fdp;
3484 struct file *fp;
3485 seqc_t seq;
3486
3487 *fpp = NULL;
3488 fdp = td->td_proc->p_fd;
3489 MPASS(cap_rights_is_set(rightsp, CAP_MMAP));
3490 for (;;) {
3491 error = fget_unlocked_seq(td, fd, rightsp, &fp, &seq);
3492 if (__predict_false(error != 0))
3493 return (error);
3494 if (__predict_false(fp->f_ops == &badfileops)) {
3495 fdrop(fp, td);
3496 return (EBADF);
3497 }
3498 if (maxprotp != NULL)
3499 fdrights = *cap_rights(fdp, fd);
3500 if (!fd_modified(fdp, fd, seq))
3501 break;
3502 fdrop(fp, td);
3503 }
3504
3505 /*
3506 * If requested, convert capability rights to access flags.
3507 */
3508 if (maxprotp != NULL)
3509 *maxprotp = cap_rights_to_vmprot(&fdrights);
3510 *fpp = fp;
3511 return (0);
3512 #endif
3513 }
3514
3515 int
fget_read(struct thread * td,int fd,cap_rights_t * rightsp,struct file ** fpp)3516 fget_read(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
3517 {
3518
3519 return (_fget(td, fd, fpp, FREAD, rightsp));
3520 }
3521
3522 int
fget_write(struct thread * td,int fd,cap_rights_t * rightsp,struct file ** fpp)3523 fget_write(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
3524 {
3525
3526 return (_fget(td, fd, fpp, FWRITE, rightsp));
3527 }
3528
3529 int
fget_fcntl(struct thread * td,int fd,cap_rights_t * rightsp,int needfcntl,struct file ** fpp)3530 fget_fcntl(struct thread *td, int fd, cap_rights_t *rightsp, int needfcntl,
3531 struct file **fpp)
3532 {
3533 #ifndef CAPABILITIES
3534 return (fget_unlocked(td, fd, rightsp, fpp));
3535 #else
3536 struct filedesc *fdp = td->td_proc->p_fd;
3537 struct file *fp;
3538 int error;
3539 seqc_t seq;
3540
3541 *fpp = NULL;
3542 MPASS(cap_rights_is_set(rightsp, CAP_FCNTL));
3543 for (;;) {
3544 error = fget_unlocked_seq(td, fd, rightsp, &fp, &seq);
3545 if (error != 0)
3546 return (error);
3547 error = cap_fcntl_check(fdp, fd, needfcntl);
3548 if (!fd_modified(fdp, fd, seq))
3549 break;
3550 fdrop(fp, td);
3551 }
3552 if (error != 0) {
3553 fdrop(fp, td);
3554 return (error);
3555 }
3556 *fpp = fp;
3557 return (0);
3558 #endif
3559 }
3560
3561 /*
3562 * Like fget() but loads the underlying vnode, or returns an error if the
3563 * descriptor does not represent a vnode. Note that pipes use vnodes but
3564 * never have VM objects. The returned vnode will be vref()'d.
3565 *
3566 * XXX: what about the unused flags ?
3567 */
3568 static __inline int
_fgetvp(struct thread * td,int fd,int flags,cap_rights_t * needrightsp,struct vnode ** vpp)3569 _fgetvp(struct thread *td, int fd, int flags, cap_rights_t *needrightsp,
3570 struct vnode **vpp)
3571 {
3572 struct file *fp;
3573 int error;
3574
3575 *vpp = NULL;
3576 error = _fget(td, fd, &fp, flags, needrightsp);
3577 if (error != 0)
3578 return (error);
3579 if (fp->f_vnode == NULL) {
3580 error = EINVAL;
3581 } else {
3582 *vpp = fp->f_vnode;
3583 vrefact(*vpp);
3584 }
3585 fdrop(fp, td);
3586
3587 return (error);
3588 }
3589
3590 int
fgetvp(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3591 fgetvp(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
3592 {
3593
3594 return (_fgetvp(td, fd, 0, rightsp, vpp));
3595 }
3596
3597 int
fgetvp_rights(struct thread * td,int fd,cap_rights_t * needrightsp,struct filecaps * havecaps,struct vnode ** vpp)3598 fgetvp_rights(struct thread *td, int fd, cap_rights_t *needrightsp,
3599 struct filecaps *havecaps, struct vnode **vpp)
3600 {
3601 struct filecaps caps;
3602 struct file *fp;
3603 int error;
3604
3605 error = fget_cap(td, fd, needrightsp, &fp, &caps);
3606 if (error != 0)
3607 return (error);
3608 if (fp->f_ops == &badfileops) {
3609 error = EBADF;
3610 goto out;
3611 }
3612 if (fp->f_vnode == NULL) {
3613 error = EINVAL;
3614 goto out;
3615 }
3616
3617 *havecaps = caps;
3618 *vpp = fp->f_vnode;
3619 vrefact(*vpp);
3620 fdrop(fp, td);
3621
3622 return (0);
3623 out:
3624 filecaps_free(&caps);
3625 fdrop(fp, td);
3626 return (error);
3627 }
3628
3629 int
fgetvp_read(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3630 fgetvp_read(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
3631 {
3632
3633 return (_fgetvp(td, fd, FREAD, rightsp, vpp));
3634 }
3635
3636 int
fgetvp_exec(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3637 fgetvp_exec(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
3638 {
3639
3640 return (_fgetvp(td, fd, FEXEC, rightsp, vpp));
3641 }
3642
3643 #ifdef notyet
3644 int
fgetvp_write(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3645 fgetvp_write(struct thread *td, int fd, cap_rights_t *rightsp,
3646 struct vnode **vpp)
3647 {
3648
3649 return (_fgetvp(td, fd, FWRITE, rightsp, vpp));
3650 }
3651 #endif
3652
3653 /*
3654 * Handle the last reference to a file being closed.
3655 *
3656 * Without the noinline attribute clang keeps inlining the func thorough this
3657 * file when fdrop is used.
3658 */
3659 int __noinline
_fdrop(struct file * fp,struct thread * td)3660 _fdrop(struct file *fp, struct thread *td)
3661 {
3662 int error;
3663 #ifdef INVARIANTS
3664 int count;
3665
3666 count = refcount_load(&fp->f_count);
3667 if (count != 0)
3668 panic("fdrop: fp %p count %d", fp, count);
3669 #endif
3670 error = fo_close(fp, td);
3671 atomic_subtract_int(&openfiles, 1);
3672 crfree(fp->f_cred);
3673 free(fp->f_advice, M_FADVISE);
3674 uma_zfree(file_zone, fp);
3675
3676 return (error);
3677 }
3678
3679 /*
3680 * Apply an advisory lock on a file descriptor.
3681 *
3682 * Just attempt to get a record lock of the requested type on the entire file
3683 * (l_whence = SEEK_SET, l_start = 0, l_len = 0).
3684 */
3685 #ifndef _SYS_SYSPROTO_H_
3686 struct flock_args {
3687 int fd;
3688 int how;
3689 };
3690 #endif
3691 /* ARGSUSED */
3692 int
sys_flock(struct thread * td,struct flock_args * uap)3693 sys_flock(struct thread *td, struct flock_args *uap)
3694 {
3695 struct file *fp;
3696 struct vnode *vp;
3697 struct flock lf;
3698 int error;
3699
3700 error = fget(td, uap->fd, &cap_flock_rights, &fp);
3701 if (error != 0)
3702 return (error);
3703 error = EOPNOTSUPP;
3704 if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
3705 goto done;
3706 }
3707 if (fp->f_ops == &path_fileops) {
3708 goto done;
3709 }
3710
3711 error = 0;
3712 vp = fp->f_vnode;
3713 lf.l_whence = SEEK_SET;
3714 lf.l_start = 0;
3715 lf.l_len = 0;
3716 if (uap->how & LOCK_UN) {
3717 lf.l_type = F_UNLCK;
3718 atomic_clear_int(&fp->f_flag, FHASLOCK);
3719 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK);
3720 goto done;
3721 }
3722 if (uap->how & LOCK_EX)
3723 lf.l_type = F_WRLCK;
3724 else if (uap->how & LOCK_SH)
3725 lf.l_type = F_RDLCK;
3726 else {
3727 error = EBADF;
3728 goto done;
3729 }
3730 atomic_set_int(&fp->f_flag, FHASLOCK);
3731 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf,
3732 (uap->how & LOCK_NB) ? F_FLOCK : F_FLOCK | F_WAIT);
3733 done:
3734 fdrop(fp, td);
3735 return (error);
3736 }
3737 /*
3738 * Duplicate the specified descriptor to a free descriptor.
3739 */
3740 int
dupfdopen(struct thread * td,struct filedesc * fdp,int dfd,int mode,int openerror,int * indxp)3741 dupfdopen(struct thread *td, struct filedesc *fdp, int dfd, int mode,
3742 int openerror, int *indxp)
3743 {
3744 struct filedescent *newfde, *oldfde;
3745 struct file *fp;
3746 u_long *ioctls;
3747 int error, indx;
3748
3749 KASSERT(openerror == ENODEV || openerror == ENXIO,
3750 ("unexpected error %d in %s", openerror, __func__));
3751
3752 /*
3753 * If the to-be-dup'd fd number is greater than the allowed number
3754 * of file descriptors, or the fd to be dup'd has already been
3755 * closed, then reject.
3756 */
3757 FILEDESC_XLOCK(fdp);
3758 if ((fp = fget_noref(fdp, dfd)) == NULL) {
3759 FILEDESC_XUNLOCK(fdp);
3760 return (EBADF);
3761 }
3762
3763 error = fdalloc(td, 0, &indx);
3764 if (error != 0) {
3765 FILEDESC_XUNLOCK(fdp);
3766 return (error);
3767 }
3768
3769 /*
3770 * There are two cases of interest here.
3771 *
3772 * For ENODEV simply dup (dfd) to file descriptor (indx) and return.
3773 *
3774 * For ENXIO steal away the file structure from (dfd) and store it in
3775 * (indx). (dfd) is effectively closed by this operation.
3776 */
3777 switch (openerror) {
3778 case ENODEV:
3779 /*
3780 * Check that the mode the file is being opened for is a
3781 * subset of the mode of the existing descriptor.
3782 */
3783 if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
3784 fdunused(fdp, indx);
3785 FILEDESC_XUNLOCK(fdp);
3786 return (EACCES);
3787 }
3788 if (!fhold(fp)) {
3789 fdunused(fdp, indx);
3790 FILEDESC_XUNLOCK(fdp);
3791 return (EBADF);
3792 }
3793 newfde = &fdp->fd_ofiles[indx];
3794 oldfde = &fdp->fd_ofiles[dfd];
3795 ioctls = filecaps_copy_prep(&oldfde->fde_caps);
3796 #ifdef CAPABILITIES
3797 seqc_write_begin(&newfde->fde_seqc);
3798 #endif
3799 fde_copy(oldfde, newfde);
3800 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
3801 ioctls);
3802 #ifdef CAPABILITIES
3803 seqc_write_end(&newfde->fde_seqc);
3804 #endif
3805 break;
3806 case ENXIO:
3807 /*
3808 * Steal away the file pointer from dfd and stuff it into indx.
3809 */
3810 newfde = &fdp->fd_ofiles[indx];
3811 oldfde = &fdp->fd_ofiles[dfd];
3812 #ifdef CAPABILITIES
3813 seqc_write_begin(&oldfde->fde_seqc);
3814 seqc_write_begin(&newfde->fde_seqc);
3815 #endif
3816 fde_copy(oldfde, newfde);
3817 oldfde->fde_file = NULL;
3818 fdunused(fdp, dfd);
3819 #ifdef CAPABILITIES
3820 seqc_write_end(&newfde->fde_seqc);
3821 seqc_write_end(&oldfde->fde_seqc);
3822 #endif
3823 break;
3824 }
3825 FILEDESC_XUNLOCK(fdp);
3826 *indxp = indx;
3827 return (0);
3828 }
3829
3830 /*
3831 * This sysctl determines if we will allow a process to chroot(2) if it
3832 * has a directory open:
3833 * 0: disallowed for all processes.
3834 * 1: allowed for processes that were not already chroot(2)'ed.
3835 * 2: allowed for all processes.
3836 */
3837
3838 static int chroot_allow_open_directories = 1;
3839
3840 SYSCTL_INT(_kern, OID_AUTO, chroot_allow_open_directories, CTLFLAG_RW,
3841 &chroot_allow_open_directories, 0,
3842 "Allow a process to chroot(2) if it has a directory open");
3843
3844 /*
3845 * Helper function for raised chroot(2) security function: Refuse if
3846 * any filedescriptors are open directories.
3847 */
3848 static int
chroot_refuse_vdir_fds(struct filedesc * fdp)3849 chroot_refuse_vdir_fds(struct filedesc *fdp)
3850 {
3851 struct vnode *vp;
3852 struct file *fp;
3853 int i;
3854
3855 FILEDESC_LOCK_ASSERT(fdp);
3856
3857 FILEDESC_FOREACH_FP(fdp, i, fp) {
3858 if (fp->f_type == DTYPE_VNODE) {
3859 vp = fp->f_vnode;
3860 if (vp->v_type == VDIR)
3861 return (EPERM);
3862 }
3863 }
3864 return (0);
3865 }
3866
3867 static void
pwd_fill(struct pwd * oldpwd,struct pwd * newpwd)3868 pwd_fill(struct pwd *oldpwd, struct pwd *newpwd)
3869 {
3870
3871 if (newpwd->pwd_cdir == NULL && oldpwd->pwd_cdir != NULL) {
3872 vrefact(oldpwd->pwd_cdir);
3873 newpwd->pwd_cdir = oldpwd->pwd_cdir;
3874 }
3875
3876 if (newpwd->pwd_rdir == NULL && oldpwd->pwd_rdir != NULL) {
3877 vrefact(oldpwd->pwd_rdir);
3878 newpwd->pwd_rdir = oldpwd->pwd_rdir;
3879 }
3880
3881 if (newpwd->pwd_jdir == NULL && oldpwd->pwd_jdir != NULL) {
3882 vrefact(oldpwd->pwd_jdir);
3883 newpwd->pwd_jdir = oldpwd->pwd_jdir;
3884 }
3885
3886 if (newpwd->pwd_adir == NULL && oldpwd->pwd_adir != NULL) {
3887 vrefact(oldpwd->pwd_adir);
3888 newpwd->pwd_adir = oldpwd->pwd_adir;
3889 }
3890 }
3891
3892 struct pwd *
pwd_hold_pwddesc(struct pwddesc * pdp)3893 pwd_hold_pwddesc(struct pwddesc *pdp)
3894 {
3895 struct pwd *pwd;
3896
3897 PWDDESC_ASSERT_XLOCKED(pdp);
3898 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
3899 if (pwd != NULL)
3900 refcount_acquire(&pwd->pwd_refcount);
3901 return (pwd);
3902 }
3903
3904 bool
pwd_hold_smr(struct pwd * pwd)3905 pwd_hold_smr(struct pwd *pwd)
3906 {
3907
3908 MPASS(pwd != NULL);
3909 if (__predict_true(refcount_acquire_if_not_zero(&pwd->pwd_refcount))) {
3910 return (true);
3911 }
3912 return (false);
3913 }
3914
3915 struct pwd *
pwd_hold(struct thread * td)3916 pwd_hold(struct thread *td)
3917 {
3918 struct pwddesc *pdp;
3919 struct pwd *pwd;
3920
3921 pdp = td->td_proc->p_pd;
3922
3923 vfs_smr_enter();
3924 pwd = vfs_smr_entered_load(&pdp->pd_pwd);
3925 if (pwd_hold_smr(pwd)) {
3926 vfs_smr_exit();
3927 return (pwd);
3928 }
3929 vfs_smr_exit();
3930 PWDDESC_XLOCK(pdp);
3931 pwd = pwd_hold_pwddesc(pdp);
3932 MPASS(pwd != NULL);
3933 PWDDESC_XUNLOCK(pdp);
3934 return (pwd);
3935 }
3936
3937 struct pwd *
pwd_hold_proc(struct proc * p)3938 pwd_hold_proc(struct proc *p)
3939 {
3940 struct pwddesc *pdp;
3941 struct pwd *pwd;
3942
3943 PROC_ASSERT_HELD(p);
3944 PROC_LOCK(p);
3945 pdp = pdhold(p);
3946 MPASS(pdp != NULL);
3947 PROC_UNLOCK(p);
3948
3949 PWDDESC_XLOCK(pdp);
3950 pwd = pwd_hold_pwddesc(pdp);
3951 MPASS(pwd != NULL);
3952 PWDDESC_XUNLOCK(pdp);
3953 pddrop(pdp);
3954 return (pwd);
3955 }
3956
3957 static struct pwd *
pwd_alloc(void)3958 pwd_alloc(void)
3959 {
3960 struct pwd *pwd;
3961
3962 pwd = uma_zalloc_smr(pwd_zone, M_WAITOK);
3963 bzero(pwd, sizeof(*pwd));
3964 refcount_init(&pwd->pwd_refcount, 1);
3965 return (pwd);
3966 }
3967
3968 void
pwd_drop(struct pwd * pwd)3969 pwd_drop(struct pwd *pwd)
3970 {
3971
3972 if (!refcount_release(&pwd->pwd_refcount))
3973 return;
3974
3975 if (pwd->pwd_cdir != NULL)
3976 vrele(pwd->pwd_cdir);
3977 if (pwd->pwd_rdir != NULL)
3978 vrele(pwd->pwd_rdir);
3979 if (pwd->pwd_jdir != NULL)
3980 vrele(pwd->pwd_jdir);
3981 if (pwd->pwd_adir != NULL)
3982 vrele(pwd->pwd_adir);
3983 uma_zfree_smr(pwd_zone, pwd);
3984 }
3985
3986 /*
3987 * The caller is responsible for invoking priv_check() and
3988 * mac_vnode_check_chroot() to authorize this operation.
3989 */
3990 int
pwd_chroot(struct thread * td,struct vnode * vp)3991 pwd_chroot(struct thread *td, struct vnode *vp)
3992 {
3993 struct pwddesc *pdp;
3994 struct filedesc *fdp;
3995 struct pwd *newpwd, *oldpwd;
3996 int error;
3997
3998 fdp = td->td_proc->p_fd;
3999 pdp = td->td_proc->p_pd;
4000 newpwd = pwd_alloc();
4001 FILEDESC_SLOCK(fdp);
4002 PWDDESC_XLOCK(pdp);
4003 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4004 if (chroot_allow_open_directories == 0 ||
4005 (chroot_allow_open_directories == 1 &&
4006 oldpwd->pwd_rdir != rootvnode)) {
4007 error = chroot_refuse_vdir_fds(fdp);
4008 FILEDESC_SUNLOCK(fdp);
4009 if (error != 0) {
4010 PWDDESC_XUNLOCK(pdp);
4011 pwd_drop(newpwd);
4012 return (error);
4013 }
4014 } else {
4015 FILEDESC_SUNLOCK(fdp);
4016 }
4017
4018 vrefact(vp);
4019 newpwd->pwd_rdir = vp;
4020 vrefact(vp);
4021 newpwd->pwd_adir = vp;
4022 if (oldpwd->pwd_jdir == NULL) {
4023 vrefact(vp);
4024 newpwd->pwd_jdir = vp;
4025 }
4026 pwd_fill(oldpwd, newpwd);
4027 pwd_set(pdp, newpwd);
4028 PWDDESC_XUNLOCK(pdp);
4029 pwd_drop(oldpwd);
4030 return (0);
4031 }
4032
4033 void
pwd_chdir(struct thread * td,struct vnode * vp)4034 pwd_chdir(struct thread *td, struct vnode *vp)
4035 {
4036 struct pwddesc *pdp;
4037 struct pwd *newpwd, *oldpwd;
4038
4039 VNPASS(vp->v_usecount > 0, vp);
4040
4041 newpwd = pwd_alloc();
4042 pdp = td->td_proc->p_pd;
4043 PWDDESC_XLOCK(pdp);
4044 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4045 newpwd->pwd_cdir = vp;
4046 pwd_fill(oldpwd, newpwd);
4047 pwd_set(pdp, newpwd);
4048 PWDDESC_XUNLOCK(pdp);
4049 pwd_drop(oldpwd);
4050 }
4051
4052 /*
4053 * Process is transitioning to/from a non-native ABI.
4054 */
4055 void
pwd_altroot(struct thread * td,struct vnode * altroot_vp)4056 pwd_altroot(struct thread *td, struct vnode *altroot_vp)
4057 {
4058 struct pwddesc *pdp;
4059 struct pwd *newpwd, *oldpwd;
4060
4061 newpwd = pwd_alloc();
4062 pdp = td->td_proc->p_pd;
4063 PWDDESC_XLOCK(pdp);
4064 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4065 if (altroot_vp != NULL) {
4066 /*
4067 * Native process to a non-native ABI.
4068 */
4069
4070 vrefact(altroot_vp);
4071 newpwd->pwd_adir = altroot_vp;
4072 } else {
4073 /*
4074 * Non-native process to the native ABI.
4075 */
4076
4077 vrefact(oldpwd->pwd_rdir);
4078 newpwd->pwd_adir = oldpwd->pwd_rdir;
4079 }
4080 pwd_fill(oldpwd, newpwd);
4081 pwd_set(pdp, newpwd);
4082 PWDDESC_XUNLOCK(pdp);
4083 pwd_drop(oldpwd);
4084 }
4085
4086 /*
4087 * jail_attach(2) changes both root and working directories.
4088 */
4089 int
pwd_chroot_chdir(struct thread * td,struct vnode * vp)4090 pwd_chroot_chdir(struct thread *td, struct vnode *vp)
4091 {
4092 struct pwddesc *pdp;
4093 struct filedesc *fdp;
4094 struct pwd *newpwd, *oldpwd;
4095 int error;
4096
4097 fdp = td->td_proc->p_fd;
4098 pdp = td->td_proc->p_pd;
4099 newpwd = pwd_alloc();
4100 FILEDESC_SLOCK(fdp);
4101 PWDDESC_XLOCK(pdp);
4102 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4103 error = chroot_refuse_vdir_fds(fdp);
4104 FILEDESC_SUNLOCK(fdp);
4105 if (error != 0) {
4106 PWDDESC_XUNLOCK(pdp);
4107 pwd_drop(newpwd);
4108 return (error);
4109 }
4110
4111 vrefact(vp);
4112 newpwd->pwd_rdir = vp;
4113 vrefact(vp);
4114 newpwd->pwd_cdir = vp;
4115 if (oldpwd->pwd_jdir == NULL) {
4116 vrefact(vp);
4117 newpwd->pwd_jdir = vp;
4118 }
4119 vrefact(vp);
4120 newpwd->pwd_adir = vp;
4121 pwd_fill(oldpwd, newpwd);
4122 pwd_set(pdp, newpwd);
4123 PWDDESC_XUNLOCK(pdp);
4124 pwd_drop(oldpwd);
4125 return (0);
4126 }
4127
4128 void
pwd_ensure_dirs(void)4129 pwd_ensure_dirs(void)
4130 {
4131 struct pwddesc *pdp;
4132 struct pwd *oldpwd, *newpwd;
4133
4134 pdp = curproc->p_pd;
4135 PWDDESC_XLOCK(pdp);
4136 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4137 if (oldpwd->pwd_cdir != NULL && oldpwd->pwd_rdir != NULL &&
4138 oldpwd->pwd_adir != NULL) {
4139 PWDDESC_XUNLOCK(pdp);
4140 return;
4141 }
4142 PWDDESC_XUNLOCK(pdp);
4143
4144 newpwd = pwd_alloc();
4145 PWDDESC_XLOCK(pdp);
4146 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4147 pwd_fill(oldpwd, newpwd);
4148 if (newpwd->pwd_cdir == NULL) {
4149 vrefact(rootvnode);
4150 newpwd->pwd_cdir = rootvnode;
4151 }
4152 if (newpwd->pwd_rdir == NULL) {
4153 vrefact(rootvnode);
4154 newpwd->pwd_rdir = rootvnode;
4155 }
4156 if (newpwd->pwd_adir == NULL) {
4157 vrefact(rootvnode);
4158 newpwd->pwd_adir = rootvnode;
4159 }
4160 pwd_set(pdp, newpwd);
4161 PWDDESC_XUNLOCK(pdp);
4162 pwd_drop(oldpwd);
4163 }
4164
4165 void
pwd_set_rootvnode(void)4166 pwd_set_rootvnode(void)
4167 {
4168 struct pwddesc *pdp;
4169 struct pwd *oldpwd, *newpwd;
4170
4171 pdp = curproc->p_pd;
4172
4173 newpwd = pwd_alloc();
4174 PWDDESC_XLOCK(pdp);
4175 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4176 vrefact(rootvnode);
4177 newpwd->pwd_cdir = rootvnode;
4178 vrefact(rootvnode);
4179 newpwd->pwd_rdir = rootvnode;
4180 vrefact(rootvnode);
4181 newpwd->pwd_adir = rootvnode;
4182 pwd_fill(oldpwd, newpwd);
4183 pwd_set(pdp, newpwd);
4184 PWDDESC_XUNLOCK(pdp);
4185 pwd_drop(oldpwd);
4186 }
4187
4188 /*
4189 * Scan all active processes and prisons to see if any of them have a current
4190 * or root directory of `olddp'. If so, replace them with the new mount point.
4191 */
4192 void
mountcheckdirs(struct vnode * olddp,struct vnode * newdp)4193 mountcheckdirs(struct vnode *olddp, struct vnode *newdp)
4194 {
4195 struct pwddesc *pdp;
4196 struct pwd *newpwd, *oldpwd;
4197 struct prison *pr;
4198 struct proc *p;
4199 int nrele;
4200
4201 if (vrefcnt(olddp) == 1)
4202 return;
4203 nrele = 0;
4204 newpwd = pwd_alloc();
4205 sx_slock(&allproc_lock);
4206 FOREACH_PROC_IN_SYSTEM(p) {
4207 PROC_LOCK(p);
4208 pdp = pdhold(p);
4209 PROC_UNLOCK(p);
4210 if (pdp == NULL)
4211 continue;
4212 PWDDESC_XLOCK(pdp);
4213 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4214 if (oldpwd == NULL ||
4215 (oldpwd->pwd_cdir != olddp &&
4216 oldpwd->pwd_rdir != olddp &&
4217 oldpwd->pwd_jdir != olddp &&
4218 oldpwd->pwd_adir != olddp)) {
4219 PWDDESC_XUNLOCK(pdp);
4220 pddrop(pdp);
4221 continue;
4222 }
4223 if (oldpwd->pwd_cdir == olddp) {
4224 vrefact(newdp);
4225 newpwd->pwd_cdir = newdp;
4226 }
4227 if (oldpwd->pwd_rdir == olddp) {
4228 vrefact(newdp);
4229 newpwd->pwd_rdir = newdp;
4230 }
4231 if (oldpwd->pwd_jdir == olddp) {
4232 vrefact(newdp);
4233 newpwd->pwd_jdir = newdp;
4234 }
4235 if (oldpwd->pwd_adir == olddp) {
4236 vrefact(newdp);
4237 newpwd->pwd_adir = newdp;
4238 }
4239 pwd_fill(oldpwd, newpwd);
4240 pwd_set(pdp, newpwd);
4241 PWDDESC_XUNLOCK(pdp);
4242 pwd_drop(oldpwd);
4243 pddrop(pdp);
4244 newpwd = pwd_alloc();
4245 }
4246 sx_sunlock(&allproc_lock);
4247 pwd_drop(newpwd);
4248 if (rootvnode == olddp) {
4249 vrefact(newdp);
4250 rootvnode = newdp;
4251 nrele++;
4252 }
4253 mtx_lock(&prison0.pr_mtx);
4254 if (prison0.pr_root == olddp) {
4255 vrefact(newdp);
4256 prison0.pr_root = newdp;
4257 nrele++;
4258 }
4259 mtx_unlock(&prison0.pr_mtx);
4260 sx_slock(&allprison_lock);
4261 TAILQ_FOREACH(pr, &allprison, pr_list) {
4262 mtx_lock(&pr->pr_mtx);
4263 if (pr->pr_root == olddp) {
4264 vrefact(newdp);
4265 pr->pr_root = newdp;
4266 nrele++;
4267 }
4268 mtx_unlock(&pr->pr_mtx);
4269 }
4270 sx_sunlock(&allprison_lock);
4271 while (nrele--)
4272 vrele(olddp);
4273 }
4274
4275 int
descrip_check_write_mp(struct filedesc * fdp,struct mount * mp)4276 descrip_check_write_mp(struct filedesc *fdp, struct mount *mp)
4277 {
4278 struct file *fp;
4279 struct vnode *vp;
4280 int error, i;
4281
4282 error = 0;
4283 FILEDESC_SLOCK(fdp);
4284 FILEDESC_FOREACH_FP(fdp, i, fp) {
4285 if (fp->f_type != DTYPE_VNODE ||
4286 (atomic_load_int(&fp->f_flag) & FWRITE) == 0)
4287 continue;
4288 vp = fp->f_vnode;
4289 if (vp->v_mount == mp) {
4290 error = EDEADLK;
4291 break;
4292 }
4293 }
4294 FILEDESC_SUNLOCK(fdp);
4295 return (error);
4296 }
4297
4298 struct filedesc_to_leader *
filedesc_to_leader_alloc(struct filedesc_to_leader * old,struct filedesc * fdp,struct proc * leader)4299 filedesc_to_leader_alloc(struct filedesc_to_leader *old, struct filedesc *fdp,
4300 struct proc *leader)
4301 {
4302 struct filedesc_to_leader *fdtol;
4303
4304 fdtol = malloc(sizeof(struct filedesc_to_leader),
4305 M_FILEDESC_TO_LEADER, M_WAITOK);
4306 fdtol->fdl_refcount = 1;
4307 fdtol->fdl_holdcount = 0;
4308 fdtol->fdl_wakeup = 0;
4309 fdtol->fdl_leader = leader;
4310 if (old != NULL) {
4311 FILEDESC_XLOCK(fdp);
4312 fdtol->fdl_next = old->fdl_next;
4313 fdtol->fdl_prev = old;
4314 old->fdl_next = fdtol;
4315 fdtol->fdl_next->fdl_prev = fdtol;
4316 FILEDESC_XUNLOCK(fdp);
4317 } else {
4318 fdtol->fdl_next = fdtol;
4319 fdtol->fdl_prev = fdtol;
4320 }
4321 return (fdtol);
4322 }
4323
4324 struct filedesc_to_leader *
filedesc_to_leader_share(struct filedesc_to_leader * fdtol,struct filedesc * fdp)4325 filedesc_to_leader_share(struct filedesc_to_leader *fdtol, struct filedesc *fdp)
4326 {
4327 FILEDESC_XLOCK(fdp);
4328 fdtol->fdl_refcount++;
4329 FILEDESC_XUNLOCK(fdp);
4330 return (fdtol);
4331 }
4332
4333 static int
filedesc_nfiles(struct filedesc * fdp)4334 filedesc_nfiles(struct filedesc *fdp)
4335 {
4336 NDSLOTTYPE *map;
4337 int count, off, minoff;
4338
4339 if (fdp == NULL)
4340 return (0);
4341 count = 0;
4342 FILEDESC_SLOCK(fdp);
4343 map = fdp->fd_map;
4344 off = NDSLOT(fdp->fd_nfiles - 1);
4345 for (minoff = NDSLOT(0); off >= minoff; --off)
4346 count += bitcountl(map[off]);
4347 FILEDESC_SUNLOCK(fdp);
4348 return (count);
4349 }
4350
4351 int
proc_nfiles(struct proc * p)4352 proc_nfiles(struct proc *p)
4353 {
4354 struct filedesc *fdp;
4355 int res;
4356
4357 PROC_LOCK(p);
4358 fdp = fdhold(p);
4359 PROC_UNLOCK(p);
4360 res = filedesc_nfiles(fdp);
4361 fddrop(fdp);
4362 return (res);
4363 }
4364
4365 static int
sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)4366 sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)
4367 {
4368 u_int namelen;
4369 int count;
4370
4371 namelen = arg2;
4372 if (namelen != 1)
4373 return (EINVAL);
4374
4375 if (*(int *)arg1 != 0)
4376 return (EINVAL);
4377
4378 count = filedesc_nfiles(curproc->p_fd);
4379 return (SYSCTL_OUT(req, &count, sizeof(count)));
4380 }
4381
4382 static SYSCTL_NODE(_kern_proc, KERN_PROC_NFDS, nfds,
4383 CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, sysctl_kern_proc_nfds,
4384 "Number of open file descriptors");
4385
4386 /*
4387 * Get file structures globally.
4388 */
4389 static int
sysctl_kern_file(SYSCTL_HANDLER_ARGS)4390 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
4391 {
4392 struct xfile xf;
4393 struct filedesc *fdp;
4394 struct file *fp;
4395 struct proc *p;
4396 int error, n;
4397
4398 error = sysctl_wire_old_buffer(req, 0);
4399 if (error != 0)
4400 return (error);
4401 if (req->oldptr == NULL) {
4402 n = 0;
4403 sx_slock(&allproc_lock);
4404 FOREACH_PROC_IN_SYSTEM(p) {
4405 PROC_LOCK(p);
4406 if (p->p_state == PRS_NEW) {
4407 PROC_UNLOCK(p);
4408 continue;
4409 }
4410 fdp = fdhold(p);
4411 PROC_UNLOCK(p);
4412 if (fdp == NULL)
4413 continue;
4414 /* overestimates sparse tables. */
4415 n += fdp->fd_nfiles;
4416 fddrop(fdp);
4417 }
4418 sx_sunlock(&allproc_lock);
4419 return (SYSCTL_OUT(req, 0, n * sizeof(xf)));
4420 }
4421 error = 0;
4422 bzero(&xf, sizeof(xf));
4423 xf.xf_size = sizeof(xf);
4424 sx_slock(&allproc_lock);
4425 FOREACH_PROC_IN_SYSTEM(p) {
4426 PROC_LOCK(p);
4427 if (p->p_state == PRS_NEW) {
4428 PROC_UNLOCK(p);
4429 continue;
4430 }
4431 if (p_cansee(req->td, p) != 0) {
4432 PROC_UNLOCK(p);
4433 continue;
4434 }
4435 xf.xf_pid = p->p_pid;
4436 xf.xf_uid = p->p_ucred->cr_uid;
4437 fdp = fdhold(p);
4438 PROC_UNLOCK(p);
4439 if (fdp == NULL)
4440 continue;
4441 FILEDESC_SLOCK(fdp);
4442 if (refcount_load(&fdp->fd_refcnt) == 0)
4443 goto nextproc;
4444 FILEDESC_FOREACH_FP(fdp, n, fp) {
4445 xf.xf_fd = n;
4446 xf.xf_file = (uintptr_t)fp;
4447 xf.xf_data = (uintptr_t)fp->f_data;
4448 xf.xf_vnode = (uintptr_t)fp->f_vnode;
4449 xf.xf_type = (uintptr_t)fp->f_type;
4450 xf.xf_count = refcount_load(&fp->f_count);
4451 xf.xf_msgcount = 0;
4452 xf.xf_offset = foffset_get(fp);
4453 xf.xf_flag = fp->f_flag;
4454 error = SYSCTL_OUT(req, &xf, sizeof(xf));
4455
4456 /*
4457 * There is no need to re-check the fdtable refcount
4458 * here since the filedesc lock is not dropped in the
4459 * loop body.
4460 */
4461 if (error != 0)
4462 break;
4463 }
4464 nextproc:
4465 FILEDESC_SUNLOCK(fdp);
4466 fddrop(fdp);
4467 if (error)
4468 break;
4469 }
4470 sx_sunlock(&allproc_lock);
4471 return (error);
4472 }
4473
4474 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE,
4475 0, 0, sysctl_kern_file, "S,xfile", "Entire file table");
4476
4477 #ifdef KINFO_FILE_SIZE
4478 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
4479 #endif
4480
4481 static int
xlate_fflags(int fflags)4482 xlate_fflags(int fflags)
4483 {
4484 static const struct {
4485 int fflag;
4486 int kf_fflag;
4487 } fflags_table[] = {
4488 { FAPPEND, KF_FLAG_APPEND },
4489 { FASYNC, KF_FLAG_ASYNC },
4490 { FFSYNC, KF_FLAG_FSYNC },
4491 { FHASLOCK, KF_FLAG_HASLOCK },
4492 { FNONBLOCK, KF_FLAG_NONBLOCK },
4493 { FREAD, KF_FLAG_READ },
4494 { FWRITE, KF_FLAG_WRITE },
4495 { O_CREAT, KF_FLAG_CREAT },
4496 { O_DIRECT, KF_FLAG_DIRECT },
4497 { O_EXCL, KF_FLAG_EXCL },
4498 { O_EXEC, KF_FLAG_EXEC },
4499 { O_EXLOCK, KF_FLAG_EXLOCK },
4500 { O_NOFOLLOW, KF_FLAG_NOFOLLOW },
4501 { O_SHLOCK, KF_FLAG_SHLOCK },
4502 { O_TRUNC, KF_FLAG_TRUNC }
4503 };
4504 unsigned int i;
4505 int kflags;
4506
4507 kflags = 0;
4508 for (i = 0; i < nitems(fflags_table); i++)
4509 if (fflags & fflags_table[i].fflag)
4510 kflags |= fflags_table[i].kf_fflag;
4511 return (kflags);
4512 }
4513
4514 /* Trim unused data from kf_path by truncating the structure size. */
4515 void
pack_kinfo(struct kinfo_file * kif)4516 pack_kinfo(struct kinfo_file *kif)
4517 {
4518
4519 kif->kf_structsize = offsetof(struct kinfo_file, kf_path) +
4520 strlen(kif->kf_path) + 1;
4521 kif->kf_structsize = roundup(kif->kf_structsize, sizeof(uint64_t));
4522 }
4523
4524 static void
export_file_to_kinfo(struct file * fp,int fd,cap_rights_t * rightsp,struct kinfo_file * kif,struct filedesc * fdp,int flags)4525 export_file_to_kinfo(struct file *fp, int fd, cap_rights_t *rightsp,
4526 struct kinfo_file *kif, struct filedesc *fdp, int flags)
4527 {
4528 int error;
4529
4530 bzero(kif, sizeof(*kif));
4531
4532 /* Set a default type to allow for empty fill_kinfo() methods. */
4533 kif->kf_type = KF_TYPE_UNKNOWN;
4534 kif->kf_flags = xlate_fflags(fp->f_flag);
4535 if (rightsp != NULL)
4536 kif->kf_cap_rights = *rightsp;
4537 else
4538 cap_rights_init_zero(&kif->kf_cap_rights);
4539 kif->kf_fd = fd;
4540 kif->kf_ref_count = refcount_load(&fp->f_count);
4541 kif->kf_offset = foffset_get(fp);
4542
4543 /*
4544 * This may drop the filedesc lock, so the 'fp' cannot be
4545 * accessed after this call.
4546 */
4547 error = fo_fill_kinfo(fp, kif, fdp);
4548 if (error == 0)
4549 kif->kf_status |= KF_ATTR_VALID;
4550 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4551 pack_kinfo(kif);
4552 else
4553 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4554 }
4555
4556 static void
export_vnode_to_kinfo(struct vnode * vp,int fd,int fflags,struct kinfo_file * kif,int flags)4557 export_vnode_to_kinfo(struct vnode *vp, int fd, int fflags,
4558 struct kinfo_file *kif, int flags)
4559 {
4560 int error;
4561
4562 bzero(kif, sizeof(*kif));
4563
4564 kif->kf_type = KF_TYPE_VNODE;
4565 error = vn_fill_kinfo_vnode(vp, kif);
4566 if (error == 0)
4567 kif->kf_status |= KF_ATTR_VALID;
4568 kif->kf_flags = xlate_fflags(fflags);
4569 cap_rights_init_zero(&kif->kf_cap_rights);
4570 kif->kf_fd = fd;
4571 kif->kf_ref_count = -1;
4572 kif->kf_offset = -1;
4573 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4574 pack_kinfo(kif);
4575 else
4576 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4577 vrele(vp);
4578 }
4579
4580 struct export_fd_buf {
4581 struct filedesc *fdp;
4582 struct pwddesc *pdp;
4583 struct sbuf *sb;
4584 ssize_t remainder;
4585 struct kinfo_file kif;
4586 int flags;
4587 };
4588
4589 static int
export_kinfo_to_sb(struct export_fd_buf * efbuf)4590 export_kinfo_to_sb(struct export_fd_buf *efbuf)
4591 {
4592 struct kinfo_file *kif;
4593
4594 kif = &efbuf->kif;
4595 if (efbuf->remainder != -1) {
4596 if (efbuf->remainder < kif->kf_structsize)
4597 return (ENOMEM);
4598 efbuf->remainder -= kif->kf_structsize;
4599 }
4600 if (sbuf_bcat(efbuf->sb, kif, kif->kf_structsize) != 0)
4601 return (sbuf_error(efbuf->sb));
4602 return (0);
4603 }
4604
4605 static int
export_file_to_sb(struct file * fp,int fd,cap_rights_t * rightsp,struct export_fd_buf * efbuf)4606 export_file_to_sb(struct file *fp, int fd, cap_rights_t *rightsp,
4607 struct export_fd_buf *efbuf)
4608 {
4609 int error;
4610
4611 if (efbuf->remainder == 0)
4612 return (ENOMEM);
4613 export_file_to_kinfo(fp, fd, rightsp, &efbuf->kif, efbuf->fdp,
4614 efbuf->flags);
4615 FILEDESC_SUNLOCK(efbuf->fdp);
4616 error = export_kinfo_to_sb(efbuf);
4617 FILEDESC_SLOCK(efbuf->fdp);
4618 return (error);
4619 }
4620
4621 static int
export_vnode_to_sb(struct vnode * vp,int fd,int fflags,struct export_fd_buf * efbuf)4622 export_vnode_to_sb(struct vnode *vp, int fd, int fflags,
4623 struct export_fd_buf *efbuf)
4624 {
4625 int error;
4626
4627 if (efbuf->remainder == 0)
4628 return (ENOMEM);
4629 if (efbuf->pdp != NULL)
4630 PWDDESC_XUNLOCK(efbuf->pdp);
4631 export_vnode_to_kinfo(vp, fd, fflags, &efbuf->kif, efbuf->flags);
4632 error = export_kinfo_to_sb(efbuf);
4633 if (efbuf->pdp != NULL)
4634 PWDDESC_XLOCK(efbuf->pdp);
4635 return (error);
4636 }
4637
4638 /*
4639 * Store a process file descriptor information to sbuf.
4640 *
4641 * Takes a locked proc as argument, and returns with the proc unlocked.
4642 */
4643 int
kern_proc_filedesc_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)4644 kern_proc_filedesc_out(struct proc *p, struct sbuf *sb, ssize_t maxlen,
4645 int flags)
4646 {
4647 struct file *fp;
4648 struct filedesc *fdp;
4649 struct pwddesc *pdp;
4650 struct export_fd_buf *efbuf;
4651 struct vnode *cttyvp, *textvp, *tracevp;
4652 struct pwd *pwd;
4653 int error, i;
4654 cap_rights_t rights;
4655
4656 PROC_LOCK_ASSERT(p, MA_OWNED);
4657
4658 /* ktrace vnode */
4659 tracevp = ktr_get_tracevp(p, true);
4660 /* text vnode */
4661 textvp = p->p_textvp;
4662 if (textvp != NULL)
4663 vrefact(textvp);
4664 /* Controlling tty. */
4665 cttyvp = NULL;
4666 if (p->p_pgrp != NULL && p->p_pgrp->pg_session != NULL) {
4667 cttyvp = p->p_pgrp->pg_session->s_ttyvp;
4668 if (cttyvp != NULL)
4669 vrefact(cttyvp);
4670 }
4671 fdp = fdhold(p);
4672 pdp = pdhold(p);
4673 PROC_UNLOCK(p);
4674
4675 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
4676 efbuf->fdp = NULL;
4677 efbuf->pdp = NULL;
4678 efbuf->sb = sb;
4679 efbuf->remainder = maxlen;
4680 efbuf->flags = flags;
4681
4682 error = 0;
4683 if (tracevp != NULL)
4684 error = export_vnode_to_sb(tracevp, KF_FD_TYPE_TRACE,
4685 FREAD | FWRITE, efbuf);
4686 if (error == 0 && textvp != NULL)
4687 error = export_vnode_to_sb(textvp, KF_FD_TYPE_TEXT, FREAD,
4688 efbuf);
4689 if (error == 0 && cttyvp != NULL)
4690 error = export_vnode_to_sb(cttyvp, KF_FD_TYPE_CTTY,
4691 FREAD | FWRITE, efbuf);
4692 if (error != 0 || pdp == NULL || fdp == NULL)
4693 goto fail;
4694 efbuf->fdp = fdp;
4695 efbuf->pdp = pdp;
4696 PWDDESC_XLOCK(pdp);
4697 pwd = pwd_hold_pwddesc(pdp);
4698 if (pwd != NULL) {
4699 /* working directory */
4700 if (pwd->pwd_cdir != NULL) {
4701 vrefact(pwd->pwd_cdir);
4702 error = export_vnode_to_sb(pwd->pwd_cdir,
4703 KF_FD_TYPE_CWD, FREAD, efbuf);
4704 }
4705 /* root directory */
4706 if (error == 0 && pwd->pwd_rdir != NULL) {
4707 vrefact(pwd->pwd_rdir);
4708 error = export_vnode_to_sb(pwd->pwd_rdir,
4709 KF_FD_TYPE_ROOT, FREAD, efbuf);
4710 }
4711 /* jail directory */
4712 if (error == 0 && pwd->pwd_jdir != NULL) {
4713 vrefact(pwd->pwd_jdir);
4714 error = export_vnode_to_sb(pwd->pwd_jdir,
4715 KF_FD_TYPE_JAIL, FREAD, efbuf);
4716 }
4717 }
4718 PWDDESC_XUNLOCK(pdp);
4719 if (error != 0)
4720 goto fail;
4721 if (pwd != NULL)
4722 pwd_drop(pwd);
4723 FILEDESC_SLOCK(fdp);
4724 if (refcount_load(&fdp->fd_refcnt) == 0)
4725 goto skip;
4726 FILEDESC_FOREACH_FP(fdp, i, fp) {
4727 #ifdef CAPABILITIES
4728 rights = *cap_rights(fdp, i);
4729 #else /* !CAPABILITIES */
4730 rights = cap_no_rights;
4731 #endif
4732 /*
4733 * Create sysctl entry. It is OK to drop the filedesc
4734 * lock inside of export_file_to_sb() as we will
4735 * re-validate and re-evaluate its properties when the
4736 * loop continues.
4737 */
4738 error = export_file_to_sb(fp, i, &rights, efbuf);
4739 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
4740 break;
4741 }
4742 skip:
4743 FILEDESC_SUNLOCK(fdp);
4744 fail:
4745 if (fdp != NULL)
4746 fddrop(fdp);
4747 if (pdp != NULL)
4748 pddrop(pdp);
4749 free(efbuf, M_TEMP);
4750 return (error);
4751 }
4752
4753 #define FILEDESC_SBUF_SIZE (sizeof(struct kinfo_file) * 5)
4754
4755 /*
4756 * Get per-process file descriptors for use by procstat(1), et al.
4757 */
4758 static int
sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)4759 sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)
4760 {
4761 struct sbuf sb;
4762 struct proc *p;
4763 ssize_t maxlen;
4764 u_int namelen;
4765 int error, error2, *name;
4766
4767 namelen = arg2;
4768 if (namelen != 1)
4769 return (EINVAL);
4770
4771 name = (int *)arg1;
4772
4773 sbuf_new_for_sysctl(&sb, NULL, FILEDESC_SBUF_SIZE, req);
4774 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
4775 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
4776 if (error != 0) {
4777 sbuf_delete(&sb);
4778 return (error);
4779 }
4780 maxlen = req->oldptr != NULL ? req->oldlen : -1;
4781 error = kern_proc_filedesc_out(p, &sb, maxlen,
4782 KERN_FILEDESC_PACK_KINFO);
4783 error2 = sbuf_finish(&sb);
4784 sbuf_delete(&sb);
4785 return (error != 0 ? error : error2);
4786 }
4787
4788 #ifdef COMPAT_FREEBSD7
4789 #ifdef KINFO_OFILE_SIZE
4790 CTASSERT(sizeof(struct kinfo_ofile) == KINFO_OFILE_SIZE);
4791 #endif
4792
4793 static void
kinfo_to_okinfo(struct kinfo_file * kif,struct kinfo_ofile * okif)4794 kinfo_to_okinfo(struct kinfo_file *kif, struct kinfo_ofile *okif)
4795 {
4796
4797 okif->kf_structsize = sizeof(*okif);
4798 okif->kf_type = kif->kf_type;
4799 okif->kf_fd = kif->kf_fd;
4800 okif->kf_ref_count = kif->kf_ref_count;
4801 okif->kf_flags = kif->kf_flags & (KF_FLAG_READ | KF_FLAG_WRITE |
4802 KF_FLAG_APPEND | KF_FLAG_ASYNC | KF_FLAG_FSYNC | KF_FLAG_NONBLOCK |
4803 KF_FLAG_DIRECT | KF_FLAG_HASLOCK);
4804 okif->kf_offset = kif->kf_offset;
4805 if (kif->kf_type == KF_TYPE_VNODE)
4806 okif->kf_vnode_type = kif->kf_un.kf_file.kf_file_type;
4807 else
4808 okif->kf_vnode_type = KF_VTYPE_VNON;
4809 strlcpy(okif->kf_path, kif->kf_path, sizeof(okif->kf_path));
4810 if (kif->kf_type == KF_TYPE_SOCKET) {
4811 okif->kf_sock_domain = kif->kf_un.kf_sock.kf_sock_domain0;
4812 okif->kf_sock_type = kif->kf_un.kf_sock.kf_sock_type0;
4813 okif->kf_sock_protocol = kif->kf_un.kf_sock.kf_sock_protocol0;
4814 okif->kf_sa_local = kif->kf_un.kf_sock.kf_sa_local;
4815 okif->kf_sa_peer = kif->kf_un.kf_sock.kf_sa_peer;
4816 } else {
4817 okif->kf_sa_local.ss_family = AF_UNSPEC;
4818 okif->kf_sa_peer.ss_family = AF_UNSPEC;
4819 }
4820 }
4821
4822 static int
export_vnode_for_osysctl(struct vnode * vp,int type,struct kinfo_file * kif,struct kinfo_ofile * okif,struct pwddesc * pdp,struct sysctl_req * req)4823 export_vnode_for_osysctl(struct vnode *vp, int type, struct kinfo_file *kif,
4824 struct kinfo_ofile *okif, struct pwddesc *pdp, struct sysctl_req *req)
4825 {
4826 int error;
4827
4828 vrefact(vp);
4829 PWDDESC_XUNLOCK(pdp);
4830 export_vnode_to_kinfo(vp, type, 0, kif, KERN_FILEDESC_PACK_KINFO);
4831 kinfo_to_okinfo(kif, okif);
4832 error = SYSCTL_OUT(req, okif, sizeof(*okif));
4833 PWDDESC_XLOCK(pdp);
4834 return (error);
4835 }
4836
4837 /*
4838 * Get per-process file descriptors for use by procstat(1), et al.
4839 */
4840 static int
sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)4841 sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)
4842 {
4843 struct kinfo_ofile *okif;
4844 struct kinfo_file *kif;
4845 struct filedesc *fdp;
4846 struct pwddesc *pdp;
4847 struct pwd *pwd;
4848 u_int namelen;
4849 int error, i, *name;
4850 struct file *fp;
4851 struct proc *p;
4852
4853 namelen = arg2;
4854 if (namelen != 1)
4855 return (EINVAL);
4856
4857 name = (int *)arg1;
4858 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
4859 if (error != 0)
4860 return (error);
4861 fdp = fdhold(p);
4862 if (fdp != NULL)
4863 pdp = pdhold(p);
4864 PROC_UNLOCK(p);
4865 if (fdp == NULL || pdp == NULL) {
4866 if (fdp != NULL)
4867 fddrop(fdp);
4868 return (ENOENT);
4869 }
4870 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK);
4871 okif = malloc(sizeof(*okif), M_TEMP, M_WAITOK);
4872 PWDDESC_XLOCK(pdp);
4873 pwd = pwd_hold_pwddesc(pdp);
4874 if (pwd != NULL) {
4875 if (pwd->pwd_cdir != NULL)
4876 export_vnode_for_osysctl(pwd->pwd_cdir, KF_FD_TYPE_CWD, kif,
4877 okif, pdp, req);
4878 if (pwd->pwd_rdir != NULL)
4879 export_vnode_for_osysctl(pwd->pwd_rdir, KF_FD_TYPE_ROOT, kif,
4880 okif, pdp, req);
4881 if (pwd->pwd_jdir != NULL)
4882 export_vnode_for_osysctl(pwd->pwd_jdir, KF_FD_TYPE_JAIL, kif,
4883 okif, pdp, req);
4884 }
4885 PWDDESC_XUNLOCK(pdp);
4886 if (pwd != NULL)
4887 pwd_drop(pwd);
4888 FILEDESC_SLOCK(fdp);
4889 if (refcount_load(&fdp->fd_refcnt) == 0)
4890 goto skip;
4891 FILEDESC_FOREACH_FP(fdp, i, fp) {
4892 export_file_to_kinfo(fp, i, NULL, kif, fdp,
4893 KERN_FILEDESC_PACK_KINFO);
4894 FILEDESC_SUNLOCK(fdp);
4895 kinfo_to_okinfo(kif, okif);
4896 error = SYSCTL_OUT(req, okif, sizeof(*okif));
4897 FILEDESC_SLOCK(fdp);
4898 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
4899 break;
4900 }
4901 skip:
4902 FILEDESC_SUNLOCK(fdp);
4903 fddrop(fdp);
4904 pddrop(pdp);
4905 free(kif, M_TEMP);
4906 free(okif, M_TEMP);
4907 return (0);
4908 }
4909
4910 static SYSCTL_NODE(_kern_proc, KERN_PROC_OFILEDESC, ofiledesc,
4911 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_ofiledesc,
4912 "Process ofiledesc entries");
4913 #endif /* COMPAT_FREEBSD7 */
4914
4915 int
vntype_to_kinfo(int vtype)4916 vntype_to_kinfo(int vtype)
4917 {
4918 struct {
4919 int vtype;
4920 int kf_vtype;
4921 } vtypes_table[] = {
4922 { VBAD, KF_VTYPE_VBAD },
4923 { VBLK, KF_VTYPE_VBLK },
4924 { VCHR, KF_VTYPE_VCHR },
4925 { VDIR, KF_VTYPE_VDIR },
4926 { VFIFO, KF_VTYPE_VFIFO },
4927 { VLNK, KF_VTYPE_VLNK },
4928 { VNON, KF_VTYPE_VNON },
4929 { VREG, KF_VTYPE_VREG },
4930 { VSOCK, KF_VTYPE_VSOCK }
4931 };
4932 unsigned int i;
4933
4934 /*
4935 * Perform vtype translation.
4936 */
4937 for (i = 0; i < nitems(vtypes_table); i++)
4938 if (vtypes_table[i].vtype == vtype)
4939 return (vtypes_table[i].kf_vtype);
4940
4941 return (KF_VTYPE_UNKNOWN);
4942 }
4943
4944 static SYSCTL_NODE(_kern_proc, KERN_PROC_FILEDESC, filedesc,
4945 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_filedesc,
4946 "Process filedesc entries");
4947
4948 /*
4949 * Store a process current working directory information to sbuf.
4950 *
4951 * Takes a locked proc as argument, and returns with the proc unlocked.
4952 */
4953 int
kern_proc_cwd_out(struct proc * p,struct sbuf * sb,ssize_t maxlen)4954 kern_proc_cwd_out(struct proc *p, struct sbuf *sb, ssize_t maxlen)
4955 {
4956 struct pwddesc *pdp;
4957 struct pwd *pwd;
4958 struct export_fd_buf *efbuf;
4959 struct vnode *cdir;
4960 int error;
4961
4962 PROC_LOCK_ASSERT(p, MA_OWNED);
4963
4964 pdp = pdhold(p);
4965 PROC_UNLOCK(p);
4966 if (pdp == NULL)
4967 return (EINVAL);
4968
4969 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
4970 efbuf->fdp = NULL;
4971 efbuf->pdp = pdp;
4972 efbuf->sb = sb;
4973 efbuf->remainder = maxlen;
4974 efbuf->flags = 0;
4975
4976 PWDDESC_XLOCK(pdp);
4977 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4978 cdir = pwd->pwd_cdir;
4979 if (cdir == NULL) {
4980 error = EINVAL;
4981 } else {
4982 vrefact(cdir);
4983 error = export_vnode_to_sb(cdir, KF_FD_TYPE_CWD, FREAD, efbuf);
4984 }
4985 PWDDESC_XUNLOCK(pdp);
4986 pddrop(pdp);
4987 free(efbuf, M_TEMP);
4988 return (error);
4989 }
4990
4991 /*
4992 * Get per-process current working directory.
4993 */
4994 static int
sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)4995 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
4996 {
4997 struct sbuf sb;
4998 struct proc *p;
4999 ssize_t maxlen;
5000 u_int namelen;
5001 int error, error2, *name;
5002
5003 namelen = arg2;
5004 if (namelen != 1)
5005 return (EINVAL);
5006
5007 name = (int *)arg1;
5008
5009 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file), req);
5010 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
5011 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
5012 if (error != 0) {
5013 sbuf_delete(&sb);
5014 return (error);
5015 }
5016 maxlen = req->oldptr != NULL ? req->oldlen : -1;
5017 error = kern_proc_cwd_out(p, &sb, maxlen);
5018 error2 = sbuf_finish(&sb);
5019 sbuf_delete(&sb);
5020 return (error != 0 ? error : error2);
5021 }
5022
5023 static SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD|CTLFLAG_MPSAFE,
5024 sysctl_kern_proc_cwd, "Process current working directory");
5025
5026 #ifdef DDB
5027 /*
5028 * For the purposes of debugging, generate a human-readable string for the
5029 * file type.
5030 */
5031 static const char *
file_type_to_name(short type)5032 file_type_to_name(short type)
5033 {
5034
5035 switch (type) {
5036 case 0:
5037 return ("zero");
5038 case DTYPE_VNODE:
5039 return ("vnode");
5040 case DTYPE_SOCKET:
5041 return ("socket");
5042 case DTYPE_PIPE:
5043 return ("pipe");
5044 case DTYPE_FIFO:
5045 return ("fifo");
5046 case DTYPE_KQUEUE:
5047 return ("kqueue");
5048 case DTYPE_CRYPTO:
5049 return ("crypto");
5050 case DTYPE_MQUEUE:
5051 return ("mqueue");
5052 case DTYPE_SHM:
5053 return ("shm");
5054 case DTYPE_SEM:
5055 return ("ksem");
5056 case DTYPE_PTS:
5057 return ("pts");
5058 case DTYPE_DEV:
5059 return ("dev");
5060 case DTYPE_PROCDESC:
5061 return ("proc");
5062 case DTYPE_EVENTFD:
5063 return ("eventfd");
5064 case DTYPE_TIMERFD:
5065 return ("timerfd");
5066 default:
5067 return ("unkn");
5068 }
5069 }
5070
5071 /*
5072 * For the purposes of debugging, identify a process (if any, perhaps one of
5073 * many) that references the passed file in its file descriptor array. Return
5074 * NULL if none.
5075 */
5076 static struct proc *
file_to_first_proc(struct file * fp)5077 file_to_first_proc(struct file *fp)
5078 {
5079 struct filedesc *fdp;
5080 struct proc *p;
5081 int n;
5082
5083 FOREACH_PROC_IN_SYSTEM(p) {
5084 if (p->p_state == PRS_NEW)
5085 continue;
5086 fdp = p->p_fd;
5087 if (fdp == NULL)
5088 continue;
5089 for (n = 0; n < fdp->fd_nfiles; n++) {
5090 if (fp == fdp->fd_ofiles[n].fde_file)
5091 return (p);
5092 }
5093 }
5094 return (NULL);
5095 }
5096
5097 static void
db_print_file(struct file * fp,int header)5098 db_print_file(struct file *fp, int header)
5099 {
5100 #define XPTRWIDTH ((int)howmany(sizeof(void *) * NBBY, 4))
5101 struct proc *p;
5102
5103 if (header)
5104 db_printf("%*s %6s %*s %8s %4s %5s %6s %*s %5s %s\n",
5105 XPTRWIDTH, "File", "Type", XPTRWIDTH, "Data", "Flag",
5106 "GCFl", "Count", "MCount", XPTRWIDTH, "Vnode", "FPID",
5107 "FCmd");
5108 p = file_to_first_proc(fp);
5109 db_printf("%*p %6s %*p %08x %04x %5d %6d %*p %5d %s\n", XPTRWIDTH,
5110 fp, file_type_to_name(fp->f_type), XPTRWIDTH, fp->f_data,
5111 fp->f_flag, 0, refcount_load(&fp->f_count), 0, XPTRWIDTH, fp->f_vnode,
5112 p != NULL ? p->p_pid : -1, p != NULL ? p->p_comm : "-");
5113
5114 #undef XPTRWIDTH
5115 }
5116
DB_SHOW_COMMAND(file,db_show_file)5117 DB_SHOW_COMMAND(file, db_show_file)
5118 {
5119 struct file *fp;
5120
5121 if (!have_addr) {
5122 db_printf("usage: show file <addr>\n");
5123 return;
5124 }
5125 fp = (struct file *)addr;
5126 db_print_file(fp, 1);
5127 }
5128
DB_SHOW_COMMAND_FLAGS(files,db_show_files,DB_CMD_MEMSAFE)5129 DB_SHOW_COMMAND_FLAGS(files, db_show_files, DB_CMD_MEMSAFE)
5130 {
5131 struct filedesc *fdp;
5132 struct file *fp;
5133 struct proc *p;
5134 int header;
5135 int n;
5136
5137 header = 1;
5138 FOREACH_PROC_IN_SYSTEM(p) {
5139 if (p->p_state == PRS_NEW)
5140 continue;
5141 if ((fdp = p->p_fd) == NULL)
5142 continue;
5143 for (n = 0; n < fdp->fd_nfiles; ++n) {
5144 if ((fp = fdp->fd_ofiles[n].fde_file) == NULL)
5145 continue;
5146 db_print_file(fp, header);
5147 header = 0;
5148 }
5149 }
5150 }
5151 #endif
5152
5153 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc,
5154 CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5155 &maxfilesperproc, 0, "Maximum files allowed open per process");
5156
5157 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5158 &maxfiles, 0, "Maximum number of files");
5159
5160 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
5161 &openfiles, 0, "System-wide number of open files");
5162
5163 /* ARGSUSED*/
5164 static void
filelistinit(void * dummy)5165 filelistinit(void *dummy)
5166 {
5167
5168 file_zone = uma_zcreate("Files", sizeof(struct file), NULL, NULL,
5169 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
5170 filedesc0_zone = uma_zcreate("filedesc0", sizeof(struct filedesc0),
5171 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
5172 pwd_zone = uma_zcreate("PWD", sizeof(struct pwd), NULL, NULL,
5173 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_SMR);
5174 /*
5175 * XXXMJG this is a temporary hack due to boot ordering issues against
5176 * the vnode zone.
5177 */
5178 vfs_smr = uma_zone_get_smr(pwd_zone);
5179 mtx_init(&sigio_lock, "sigio lock", NULL, MTX_DEF);
5180 }
5181 SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, filelistinit, NULL);
5182
5183 /*-------------------------------------------------------------------*/
5184
5185 static int
badfo_readwrite(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5186 badfo_readwrite(struct file *fp, struct uio *uio, struct ucred *active_cred,
5187 int flags, struct thread *td)
5188 {
5189
5190 return (EBADF);
5191 }
5192
5193 static int
badfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5194 badfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5195 struct thread *td)
5196 {
5197
5198 return (EINVAL);
5199 }
5200
5201 static int
badfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5202 badfo_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
5203 struct thread *td)
5204 {
5205
5206 return (EBADF);
5207 }
5208
5209 static int
badfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5210 badfo_poll(struct file *fp, int events, struct ucred *active_cred,
5211 struct thread *td)
5212 {
5213
5214 return (0);
5215 }
5216
5217 static int
badfo_kqfilter(struct file * fp,struct knote * kn)5218 badfo_kqfilter(struct file *fp, struct knote *kn)
5219 {
5220
5221 return (EBADF);
5222 }
5223
5224 static int
badfo_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)5225 badfo_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
5226 {
5227
5228 return (EBADF);
5229 }
5230
5231 static int
badfo_close(struct file * fp,struct thread * td)5232 badfo_close(struct file *fp, struct thread *td)
5233 {
5234
5235 return (0);
5236 }
5237
5238 static int
badfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5239 badfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5240 struct thread *td)
5241 {
5242
5243 return (EBADF);
5244 }
5245
5246 static int
badfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5247 badfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5248 struct thread *td)
5249 {
5250
5251 return (EBADF);
5252 }
5253
5254 static int
badfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5255 badfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5256 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5257 struct thread *td)
5258 {
5259
5260 return (EBADF);
5261 }
5262
5263 static int
badfo_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)5264 badfo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
5265 {
5266
5267 return (0);
5268 }
5269
5270 struct fileops badfileops = {
5271 .fo_read = badfo_readwrite,
5272 .fo_write = badfo_readwrite,
5273 .fo_truncate = badfo_truncate,
5274 .fo_ioctl = badfo_ioctl,
5275 .fo_poll = badfo_poll,
5276 .fo_kqfilter = badfo_kqfilter,
5277 .fo_stat = badfo_stat,
5278 .fo_close = badfo_close,
5279 .fo_chmod = badfo_chmod,
5280 .fo_chown = badfo_chown,
5281 .fo_sendfile = badfo_sendfile,
5282 .fo_fill_kinfo = badfo_fill_kinfo,
5283 };
5284
5285 static int
path_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5286 path_poll(struct file *fp, int events, struct ucred *active_cred,
5287 struct thread *td)
5288 {
5289 return (POLLNVAL);
5290 }
5291
5292 static int
path_close(struct file * fp,struct thread * td)5293 path_close(struct file *fp, struct thread *td)
5294 {
5295 MPASS(fp->f_type == DTYPE_VNODE);
5296 fp->f_ops = &badfileops;
5297 vrele(fp->f_vnode);
5298 return (0);
5299 }
5300
5301 struct fileops path_fileops = {
5302 .fo_read = badfo_readwrite,
5303 .fo_write = badfo_readwrite,
5304 .fo_truncate = badfo_truncate,
5305 .fo_ioctl = badfo_ioctl,
5306 .fo_poll = path_poll,
5307 .fo_kqfilter = vn_kqfilter_opath,
5308 .fo_stat = vn_statfile,
5309 .fo_close = path_close,
5310 .fo_chmod = badfo_chmod,
5311 .fo_chown = badfo_chown,
5312 .fo_sendfile = badfo_sendfile,
5313 .fo_fill_kinfo = vn_fill_kinfo,
5314 .fo_cmp = vn_cmp,
5315 .fo_flags = DFLAG_PASSABLE,
5316 };
5317
5318 int
invfo_rdwr(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5319 invfo_rdwr(struct file *fp, struct uio *uio, struct ucred *active_cred,
5320 int flags, struct thread *td)
5321 {
5322
5323 return (EOPNOTSUPP);
5324 }
5325
5326 int
invfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5327 invfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5328 struct thread *td)
5329 {
5330
5331 return (EINVAL);
5332 }
5333
5334 int
invfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5335 invfo_ioctl(struct file *fp, u_long com, void *data,
5336 struct ucred *active_cred, struct thread *td)
5337 {
5338
5339 return (ENOTTY);
5340 }
5341
5342 int
invfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5343 invfo_poll(struct file *fp, int events, struct ucred *active_cred,
5344 struct thread *td)
5345 {
5346
5347 return (poll_no_poll(events));
5348 }
5349
5350 int
invfo_kqfilter(struct file * fp,struct knote * kn)5351 invfo_kqfilter(struct file *fp, struct knote *kn)
5352 {
5353
5354 return (EINVAL);
5355 }
5356
5357 int
invfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5358 invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5359 struct thread *td)
5360 {
5361
5362 return (EINVAL);
5363 }
5364
5365 int
invfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5366 invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5367 struct thread *td)
5368 {
5369
5370 return (EINVAL);
5371 }
5372
5373 int
invfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5374 invfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5375 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5376 struct thread *td)
5377 {
5378
5379 return (EINVAL);
5380 }
5381
5382 /*-------------------------------------------------------------------*/
5383
5384 /*
5385 * File Descriptor pseudo-device driver (/dev/fd/).
5386 *
5387 * Opening minor device N dup()s the file (if any) connected to file
5388 * descriptor N belonging to the calling process. Note that this driver
5389 * consists of only the ``open()'' routine, because all subsequent
5390 * references to this file will be direct to the other driver.
5391 *
5392 * XXX: we could give this one a cloning event handler if necessary.
5393 */
5394
5395 /* ARGSUSED */
5396 static int
fdopen(struct cdev * dev,int mode,int type,struct thread * td)5397 fdopen(struct cdev *dev, int mode, int type, struct thread *td)
5398 {
5399
5400 /*
5401 * XXX Kludge: set curthread->td_dupfd to contain the value of the
5402 * the file descriptor being sought for duplication. The error
5403 * return ensures that the vnode for this device will be released
5404 * by vn_open. Open will detect this special error and take the
5405 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
5406 * will simply report the error.
5407 */
5408 td->td_dupfd = dev2unit(dev);
5409 return (ENODEV);
5410 }
5411
5412 static struct cdevsw fildesc_cdevsw = {
5413 .d_version = D_VERSION,
5414 .d_open = fdopen,
5415 .d_name = "FD",
5416 };
5417
5418 static void
fildesc_drvinit(void * unused)5419 fildesc_drvinit(void *unused)
5420 {
5421 struct cdev *dev;
5422
5423 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 0, NULL,
5424 UID_ROOT, GID_WHEEL, 0666, "fd/0");
5425 make_dev_alias(dev, "stdin");
5426 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 1, NULL,
5427 UID_ROOT, GID_WHEEL, 0666, "fd/1");
5428 make_dev_alias(dev, "stdout");
5429 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 2, NULL,
5430 UID_ROOT, GID_WHEEL, 0666, "fd/2");
5431 make_dev_alias(dev, "stderr");
5432 }
5433
5434 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, fildesc_drvinit, NULL);
5435